@inproceedings{pecar-2018-towards,
title = "Towards Opinion Summarization of Customer Reviews",
author = "Pecar, Samuel",
editor = "Shwartz, Vered and
Tabassum, Jeniya and
Voigt, Rob and
Che, Wanxiang and
de Marneffe, Marie-Catherine and
Nissim, Malvina",
booktitle = "Proceedings of {ACL} 2018, Student Research Workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-3001/",
doi = "10.18653/v1/P18-3001",
pages = "1--8",
abstract = "In recent years, the number of texts has grown rapidly. For example, most review-based portals, like Yelp or Amazon, contain thousands of user-generated reviews. It is impossible for any human reader to process even the most relevant of these documents. The most promising tool to solve this task is a text summarization. Most existing approaches, however, work on small, homogeneous, English datasets, and do not account to multi-linguality, opinion shift, and domain effects. In this paper, we introduce our research plan to use neural networks on user-generated travel reviews to generate summaries that take into account shifting opinions over time. We outline future directions in summarization to address all of these issues. By resolving the existing problems, we will make it easier for users of review-sites to make more informed decisions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pecar-2018-towards">
<titleInfo>
<title>Towards Opinion Summarization of Customer Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Pecar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ACL 2018, Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vered</namePart>
<namePart type="family">Shwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeniya</namePart>
<namePart type="family">Tabassum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">Voigt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, the number of texts has grown rapidly. For example, most review-based portals, like Yelp or Amazon, contain thousands of user-generated reviews. It is impossible for any human reader to process even the most relevant of these documents. The most promising tool to solve this task is a text summarization. Most existing approaches, however, work on small, homogeneous, English datasets, and do not account to multi-linguality, opinion shift, and domain effects. In this paper, we introduce our research plan to use neural networks on user-generated travel reviews to generate summaries that take into account shifting opinions over time. We outline future directions in summarization to address all of these issues. By resolving the existing problems, we will make it easier for users of review-sites to make more informed decisions.</abstract>
<identifier type="citekey">pecar-2018-towards</identifier>
<identifier type="doi">10.18653/v1/P18-3001</identifier>
<location>
<url>https://aclanthology.org/P18-3001/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1</start>
<end>8</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Opinion Summarization of Customer Reviews
%A Pecar, Samuel
%Y Shwartz, Vered
%Y Tabassum, Jeniya
%Y Voigt, Rob
%Y Che, Wanxiang
%Y de Marneffe, Marie-Catherine
%Y Nissim, Malvina
%S Proceedings of ACL 2018, Student Research Workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F pecar-2018-towards
%X In recent years, the number of texts has grown rapidly. For example, most review-based portals, like Yelp or Amazon, contain thousands of user-generated reviews. It is impossible for any human reader to process even the most relevant of these documents. The most promising tool to solve this task is a text summarization. Most existing approaches, however, work on small, homogeneous, English datasets, and do not account to multi-linguality, opinion shift, and domain effects. In this paper, we introduce our research plan to use neural networks on user-generated travel reviews to generate summaries that take into account shifting opinions over time. We outline future directions in summarization to address all of these issues. By resolving the existing problems, we will make it easier for users of review-sites to make more informed decisions.
%R 10.18653/v1/P18-3001
%U https://aclanthology.org/P18-3001/
%U https://doi.org/10.18653/v1/P18-3001
%P 1-8
Markdown (Informal)
[Towards Opinion Summarization of Customer Reviews](https://aclanthology.org/P18-3001/) (Pecar, ACL 2018)
- Towards Opinion Summarization of Customer Reviews (Pecar, ACL 2018)
ACL
- Samuel Pecar. 2018. Towards Opinion Summarization of Customer Reviews. In Proceedings of ACL 2018, Student Research Workshop, pages 1–8, Melbourne, Australia. Association for Computational Linguistics.