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Abstract

The comprehensive descriptions for factual
attribute-value tables, which should be accu-
rate, informative and loyal, can be very helpful
for end users to understand the structured data
in this form. However previous neural gen-
erators might suffer from key attributes miss-
ing, less informative and groundless informa-
tion problems, which impede the generation of
high-quality comprehensive descriptions for
tables. To relieve these problems, we first pro-
pose force attention (FA) method to encour-
age the generator to pay more attention to the
uncovered attributes to avoid potential key at-
tributes missing. Furthermore, we propose re-
inforcement learning for information richness
to generate more informative as well as more
loyal descriptions for tables. In our experi-
ments, we utilize the widely used WIKIBIO
dataset as a benchmark. Additionally we cre-
ate WB-filter based on WIKIBIO to test
our model in the simulated user-oriented sce-
narios, in which the generated descriptions
should accord with particular user interests.
Experimental results show that our model out-
performs the state-of-the-art baselines on both
automatic and human evaluation.

1 Introduction

Generating descriptions for the factual attribute-
value tables has attracted widely interests among
NLP researchers especially in a neural end-to-end
fashion (e.g. Lebret et al. (2016); Liu et al. (2018);
Sha et al. (2018); Bao et al. (2018); Puduppully
et al. (2018); Li and Wan (2018); Nema et al.
(2018)) as shown in Fig 1a. For broader potential
applications in this field, we also simulate user-
oriented generation, whose goal is to provide com-
prehensive generation for the selected attributes
according to particular user interests like Fig 1b.

However, we find that previous models might
miss key information and generate less informa-

Attribute Value
Birthplace Utah, America
Position forward (soccer player)

Comprehensive: A Utah soccer player who plays as forward
Missing Key Attri.: A soccer player who plays as forward
Groundless info: A Utah forward in the national team
Less Informative: An American forward

Table 1: An example for comprehensive generation.
Suppose we only have two attribute-value tuples, the
underlined content is groundless information not men-
tioned in source tables.

tive and groundless content in its generated de-
scriptions towards source tables. For example, in
Table 1, the ‘missing key attribute’ case doesn’t
mention where the player comes from (birthplace)
while the ‘less informative’ one chooses American
rather than Utah. The case with groundless infor-
mation contains ‘in the national team’ which is
not mentioned in the source attributes. Although
the ‘key points missing’ problem exists in many
text-to-text and data-to-text datasets, for large-
scale structured tables with vast heterogeneous at-
tributes such as Wikipedia infoboxes, ‘Key at-
tribute missing’ and ‘less informative’ problems
might be even more challenging. As the key at-
tributes, like the ‘position’ of a basketball player
or the ‘political party’ of a senator, are very likely
to be unique features to particular tables, which
usually appear much less frequently and are sel-
domly mentioned than the common attributes like
‘Name’ and ‘Birthdate’. The ‘groundless infor-
mation’, which is also known as the ‘hallucina-
tion’ problem, remains a long-standing problem in
NLG.

In this paper, we show that our model can gen-
erate more accurate and informative descriptions
with less groundless content for tables. Firstly we
design a force-attention (FA) method to encour-
age the decoder to pay more attention to the un-
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Attribute Value

Name Dillon Sheppard

Birthdate 27 Feb 1979

Birthplace Durban, South Africa

Current Club Bidvest Wits

Number 29

Height 1.80 m (5 ft 11 in)

Position Left-winger

(a) End-to-end (neural) Table-to-text Generation

Table Encoder Description Decoder

… …

�	���������
���	�����������������������
������������(����

����
����� ������ ��	���� ��
������ �����)��������������(����
������� ������	�������

�����(��
����������
���� �����������������(�
�����)���� ������ 	�����������
�����������

(b) User-oriented Description Generation for the Tables
User interests

Attributes selected by users : 
Name ; Current Club ; Position

Description Generation

Name played as a
Position in Current Club

Wikipedia Infobox

Figure 1: The end-to-end (a) and user-oriented table-to-
text generation (b) for an infobox (left) in WIKIBIO.

covered attributes to avoid potential key attributes
missing by both stepwise and global constraints.
In addition, we define the ‘information richness’
measurement of the generated descriptions to the
source tables. Based on that, we use the rein-
forcement learning to encourage the generator to
cover infrequent and rarely mentioned attributes
as well as generate more informative descriptions
with less groundless content.

We test our models on two settings:
1) For neural table-to-text generation like Fig

1a, we test our model on WIKIBIO (Lebret et al.,
2016), a crawled dataset from Wikipedia with
paired infoboxes and associated descriptions. It is
a widely used benchmark dataset for description
generation for factual attribute-value tables and
also a quite meaningful testbed in the real-world
scenarios with vast and heterogenous attributes.

2) To test our model in the user-oriented set-
ting, we filter WIKIBIO to form WB-filter. In
this setting, we suppose all attributes in the source
tables of WB-filter are selected by users that
should be covered in the corresponding descrip-
tions. We try to make sure the gold descriptions in
WB-filter cover all the attributes of the source
tables in this condition. Details in Sec 4.

Both automatic and human evaluation show that
our model relieves the 3 problems (Table 1) and
helps the generator to produce accurate, informa-
tive and loyal descriptions. We also achieve the
state-of-the-art performance on the end-to-end ta-
ble description and the user-oriented generation
tasks.

The remainder of this paper is organized as fol-
lows. We first introduce how we formulate table-
to-text generation into encoder-decoder frame-
work in Sec 2. After that, we discuss force-
attention method (Sec 3.1) and richness-oriented
reinforcement learning (Sec 3.2), which are moti-
vated by the three goals we set up for comprehen-

sive table descriptions (Table 1). Then we demon-
strate how and why we create WB-filter (Sec
4.1) as well as evaluations (Sec 4.2), experimental
configurations (Sec 4.3 and 4.4), case studies and
visualizations (Sec 4.5) and error analysis (Sec
4.6).

2 Background: Table-to-Description

2.1 Table Encoder

Given a structured table like Fig 1 (left), we model
the attribute-value tuples in the table as a sequence
of words with related attribute names. After seri-
alizing all the words in the ‘Value’ columns, for
the i-th word in the table xaki whose attribute is
ak (the k-th attribute), we use the attribute name
ak and the word’s position in that tuple to lo-
cate the word (Lebret et al., 2016). Specifically
we utilize a triple zaki = {ak, paki+, p

ak
i−} to rep-

resent the structure information for word xaki , in
which paki+ and paki− are the positions of xaki counted
from the beginning and end of ak, respectively.
For example, for the ‘Birthplace’ attribute in Fig
1 (left), we can use triples {birthplace,1,4} and
{birthplace,4,1} to represent the structure infor-
mation for the words ‘Durban’ 1 and ‘Africa’. We
concatenate the word xt and its structure represen-
tation zt at the t-th time step and feed them into
LSTM (Hochreiter and Schmidhuber, 1997) unit
to encode the table. ht = LSTM([xt; zt], ht−1)
is the t-th hidden state among the encoder states
H = {ht}Tt=1. In the following sections, we might
omit the superscript of xaki if it is not necessary.

2.2 Description Decoder

For the generated description y∗, the generated to-
ken y∗t at the t-th time step is predicted based on
all the previously generated tokens y∗<t before y∗t
and the hidden states H of the table encoder:

P (y∗t |H, y∗<t) = softmax(Ws�tanh(Wt[st, ct]))
(1)

where � is element-wise product, st =
LSTM(y∗t−1, st−1) is the t-th hidden state of the
decoder. ct =

∑T
i=1 α

i
thi is the context vec-

tor, which is the weighted sum of encoder hid-
den states according to the attention matrix α.
αit ∝ eg(st,hi) is the attention element of the t-
th decoder state st and the i-th encoder state hi.

1More concretely, ‘Durban’ is the first word counted from
the begining and also the fourth word counted from the end
of birthplace attribute in Fig 1 (left).
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where g(st, hi) is a relevance score between st and
hi. We use Bahdanau-style attention mechanism
(Bahdanau et al., 2014) to calculate g(st, hi).

g(st, hi) = tanh(Wphi +Wqst + b) (2)

Ws,Wt,Wp,Wq are learnable parameters.

3 Comprehensive Table Description

The problems listed in Table 1 not only prevent
the generators to produce comprehensive descrip-
tions for selected entries in the tables (Fig 1b), but
also prevent the generator to produce informative,
accurate and loyal table descriptions (Fig 1a). So
we propose two methods: force-attention (FA) and
richness-oriented reinforcement learning to pro-
duce accurate, informative and loyal descriptions.

3.1 Force-Attention Module

For ‘missing key attributes’ problem (Table 1), we
find that the generator usually focuses on partic-
ular attributes while the other attributes have rel-
atively low attention values in the entire decod-
ing procedure. So force attention method is pro-
posed to guide the decoder to pay more attention
to the previous uncovered attributes with low at-
tention values to avoid potential key attribute miss-
ing. Note that FA method focuses on attribute-
level coverage rather than word-level coverage (Tu
et al., 2016) as our goal is to reduce the ‘missing
key attributes’ phenomenons instead of building
rigid word-by-word alignment between tables and
descriptions.
Stepwise Forcing Attention: We define attribute-
level attention βakt = avg(

∑
xi∈ak α

i
t) at the t-th

step for attribute ak as the average value of the
word-level attention values for the words in that
attribute. The word-level coverage is defined as
the sum of attention vector before the t-th step
θit = θit−1 + αit (Tu et al., 2016). In the sim-
ilar way, we define the attribute-level coverage
γakt = γakt−k + βakt as the overall attention for
attribute ak before the t-th time step. The av-
erage word-level and attribute-level coverage are
θit = θit/t and γakt = γakt /t, respectively.

Then we propose stepwise attention forcing,
which explicitly guides the decoder to pay more
attention on the uncovered attributes by calculat-
ing a new context vector c̃t = πct + (1 − π)vt
to make compensation for the ignored attributes in
the previous time steps. π is a learnable vector.

�����

�����

�����

����

�����

�����

����

����

�����

�����

����	

Dillon

Sheppard

27

February

1979

Durban

South

Africa

Bidvest

Wits

leftwinger

�����

�����

�����

�����

����	

Dillon

Sheppard

27

February

1979

Durban

South

Africa

Bidvest

Wits

leftwinger

Decoder at 14th timestep:Dillon Sheppard �born 27 february 1979 ,
Durban SouthAfrica � is a

Average Word-level
Coverage !"#

����

����

����

����

����

��
�

��
�

��
�

����

����

���	

$"#

%"# = '()(!"#� +"#�
Compensation Values

',- %"# − %"#

Name

Birthdate

Birthplace

Currentclub

Position

Average Attribute-level
Coverage +"#

H
igh C

om
pensation

Low
 C

om
pensation

�����

�����

�����

�����

�����

�����

����

�����

�����

�����

����	

�����

�����

�����

�����

�����

�����

����

�����

�����

�����

����	

Figure 2: Stepwise forcing attention at the 14-th step
for the filtered version of the original infobox in Fig
1 in the WB-filter dataset (The next word is ‘left-
winger’). The uncovered attributes like ‘currentclub’
and ‘position’ (marked in orange and green) get high
attention compensation (rightmost). Note that word
‘Sheppard’ does not get any compensation (rightmost)
because it has got high attention in the previous steps.

vt is a compensation vector for the low-coverage
attributes:

vt =
T∑
i=1

(max(ζt)− ζit)hi; ζit = min(θit, γ
ak
t )

(3)
ζt is the modified average word-level coverage re-
garding the average attribute-level coverage as the
upper bound to avoid excessive compensation.

Fig 2 shows a running example. The motivation
behind is that we want the decoder to pay enough
attention to all the attributes in the whole decoding
process, which prevents missing key attributes be-
cause of the low attention value on them. Thus we
make compensation for the previous uncovered at-
tributes (like ‘currentclub’ and ‘position’ in Fig 2
) by vt at the t-th time step.
Global Forcing Attention: Inspired by the soft-
attention constraint of (Xu et al., 2015) which en-
courages the generator to pay equal attention to
every part of the image while generating image
captions, we propose global forcing attention to
avoid insufficient or excessive attention on certain
attributes by adding the following loss to the prime
seq2seq loss.

LFA = λ
K∑
k=1

[γak−1 − 1/K]2 (4)

where K is the number of attributes in the table,
λ is a hyper-parameter which is set to 0.3 based
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on evaluations on the validation data. γak−1 is the
average attribute-level coverage for attribute ak at
the last time step.

3.2 Reinforced Richness-oriented Learning

We also propose a reinforcement learning frame-
work which encourages the generator to cover rare
and seldom mentioned words and attributes in the
table. The experiments and case studies show its
effectiveness to deal with the ‘groundless informa-
tion’ and ‘less informative’ problems in Table 1.

3.2.1 Information Richness
The information richness (Eq 5) is the multiplica-
tion of the attribute-level and word-level richness
of the descriptions towards the source tables.
Attribute-level Information Richness: Different
tables which describe different objects are always
featured by the unique attributes in the table. For
example, a sportsman often has the attributes like
‘position’, ‘debutyear’. The information in the
unique attributes is harder to capture than that in
the common attributes like ‘name’, ‘birthdate’ as
the latters are very frequent in the training set. We
define the information richness for an attribute ai
as f(ak) = [freq(ak)]

−1 by calculating its fre-
quency in the training set.
Word-level Information Richness: The unique
words in the tables are more likely to be informa-
tive, such as a specific location, name or book. To
calculate the word-level information richness, we
firstly lemmatize all the words in the tables and
filter the words with a stop-words list which in-
cluding prepositions, symbols and numbers, etc.
Then we randomly sample 5 synonyms of the cer-
tain word from WordNet (Miller, 1995). Finally,
we calculate the word-level richness w(xaki ) for
the i-th word in attribute ak by averaging the tf-idf
values of xaki and its synonyms in the training set.

For a generated description y∗, we lemmatize
all the words in y∗ to get y∗. Then we calculate the
information richness based on the related source
table with T words and the gold description y, re-
spectively.

Rich(y∗) =

∑T

i=1
[f(ak) · w(x

ak
i ) · 1{x̃aki ∈ y∗}]∑T

i=1
[f(ak) · w(x

ak
i )]

(5)

in which x̃aki represents any word among xaki and
its synonyms in the table. The information rich-
ness measures the ratio of covered information in
the table by the description.

3.2.2 Reinforcement Learning
Reward Function: Different from previous mod-
els which only measures how well the generated
sentences match the target sentences, we design
a mixed reward Rmix which contains both the
BLEU-4 scores and the information richness of the
generated descriptions towards the source tables.

Rmix = λRinfo + (1− λ)RBLEU (6)

λ is set to 0.4 and 0.6 for WIKIBIO and
WB-filter based on evaluations on the valida-
tion data. Fig 6 shows how we choose λ.
Training Algorithm: We use the REINFORCE
algorithm (Williams, 1992) to learn an agent to
maximize the reward function Rmix. The train-
ing loss of sequence generation is defined as the
negative expected reward.

LRL = −Eys∼pφ [r(y
s) · log(Pφ(ys))] (7)

where Pφ(ys) is the agent’s policy, i.e. the word
distribution of description decoder (Eq 1), and r(·)
is the reward function defined in Eq 6. In the im-
plementation, ys is a sequence that can be sam-
pled from Pφ by Monte-Carlo sampling ys =
{ys1, ys2, · · · , ys|Y |}. The policy gradients for Eq 7
can be calculated as:

∇φLRL = λ∇φRinfo + (1− λ)∇φRBLEU (8)

We use self-critical sequence training method
(Rennie et al., 2017; Paulus et al., 2017) to reduce
the variance of gradients by subtracting a baseline
reward for the mix reward in Eq 6.

∇φRBLEU ≈ −[B(ys, y)−B(yg, y)]∇φlog(Pφ(ys)) (9)

where B(a, b) is the BLEU score of sequence a
compared with sequence b, yg is a generated se-
quence using greedy search. To calculate the in-
formation richness reward Rinfo for the lemma-
tized sampled sequence ys, we use the information
richness (Eq 5) of the related lemmatized gold de-
scription y towards the source table as the baseline
reward.

∇φRinfo ≈ −[Rich(ys)−Rich(y)]∇φlog(Pφ(ys)) (10)

For more technical details, we refer the interested
readers to (Williams, 1992; Ranzato et al., 2015;
Rennie et al., 2017).
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Dataset WIKIBIO WB-filter

# instances 728321 88287

# Tokens
per Bio

26.1 30.2

# Tokens
per Table

53.1 20.8

# Attri.
per Table

19.7 6.3

# Word
overlap

9.5 12.1

Figure 3: The ‘coverage-frequency’ figure (left) (each
point represents an attribute) shows that many at-
tributes have very low coverage and low frequency in
the WIKIBIO dataset. Due to our filtering, the at-
tributes in WB-filter have 100% Hit-1 coverage
(Sec 4.2) and more overlapping words with the origi-
nal tables as shown in the data statistics (right).

4 Experiments

4.1 Datasets
We use two datasets to test our model in the con-
text of end-to-end table description generation and
comprehensive generation for selected attributes
in user-oriented scenario.

For end-to-end description generation, we use
WIKIBIO dataset (Lebret et al., 2016) as the
benchmark dataset, which contains 728,321 arti-
cles from English Wikipedia (Sep 2015) and uses
the first sentence of each article as the description.

To test our model in the user-oriented scenario,
we filtered the WIKIBIO dataset to form a new
dataset WB-filter. To simulate the user inter-
ests, we first select the top 100 frequent 2 attributes
in WIKIBIO. After that we manually filter irrel-
evant attributes (like ’caption’, ’website’ or ’sig-
nature’) and merge identical attributes (like ’ar-
ticle title’ and ’name’) to avoid repetition. Then
we leave out all the remaining attributes in the ta-
bles and filter the instances in WIKIBIO whose
descriptions can not cover the selected attributes
to form WB-filter. To achieve this, we firstly
lemmatize all the tokens in the infoboxes as well
as those in the related gold biographies and filter
them by a stop-words list, then we randomly re-
trieve 5 synonyms for every word in the infoboxes
from WordNet. Finally we make sure the gold bi-
ographies cover at least one word (or its synonym)
for every attribute-value tuple among the chosen
attributes and filter the unqualified instances in

2In this setup, the reason of choosing high fre-
quent attributes is to ensure enough training instances in
WB-filter for data-driven methods.

WIKIBIO.
The ‘frequency-coverage’ figure in Fig 3 shows

1) The filtering ensures that the WB-filter
dataset achieves 100% Hit-1 coverage. 2) The
WIKIBIO dataset suffers from both ‘low fre-
quency’ and ‘low coverage’ problems, which
means some key attributes in the tables are sel-
dom mentioned by the descriptions. The cause of
‘low coverage’ problem is the loosely alignment
between structured data and related descriptions.
The two datasets are divided in to training (80%),
testing (10%) and validation (10%) sets.

4.2 Evaluation Metrics

Automatic Metrics: Following the previous work
(Lebret et al., 2016; Sha et al., 2018; Liu et al.,
2018), we use BLEU-4 (Papineni et al., 2002) and
ROUGE-4 (F measure) (Lin, 2004) for automatic
evaluation. Furthermore, to evaluate how the gen-
erated biographies cover the key points in the in-
foboxes, we also use information richness (Eq 5)
as one of our automatic evaluation. ‘Hit at least 1
word’ for an attribute means that a biography has
at least one overlapping word with the words (or
their synonyms) in that attribute, which are lem-
matized and filtered by a stop-words list like the
way we get WB-filter in Sec 4.1. ‘HIT-1 cov-
erage’ for an attribute is the ratio of the instances
involving that attribute whose biographies ‘Hit at
least 1 word’ in that attribute.
Human Evaluation: Since automatic evaluations
like BLEU may not be reliable for NLG sys-
tems (Callison-Burch et al., 2006; Reiter and Belz,
2009; Reiter, 2018). We use human evaluation
which involves the generation fluency, coverage
(how much given information in the infobox is
mentioned in the related biography) and correct-
ness (how much false or irrelevant information is
mentioned in the biography). We firstly sampled
300 generated biographies from the generators for
human evaluation. After that, we hired 3 third-
party crowd-workers who are equipped with suffi-
cient background knowledge to rank the given bi-
ographies. We present the generated descriptions
to the annotators in a randomized order and ask
them to be objective and not to guess which sys-
tem a particular generated case is from. Two bi-
ographies may have the same ranking if it is hard
to decide which one is better. The Pearson corre-
lations of inter-annotator agreement are 0.76 and
0.71 (Table 3) on WIKIBIO and WB-filter, re-
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spectively.

4.3 Experimental Details

Following previous work (Liu et al., 2018). For
WIKIBIO We select the most frequent 20,000
words and 1480 attributes in the training set as
the word and attribute vocabulary. We tune
the hyper-parameters based on the model perfor-
mance on the validation set. The dimensions
of word embedding, attribute embedding, posi-
tion embedding and hidden unit are 500, 50, 600,
10 respectively. The batch size, learning rate
and optimizer for both two datasets are 32, 5e-
4 and Adam (Kingma and Ba, 2014), respec-
tively. We use Xavier initialization (Glorot and
Bengio, 2010) for all the parameters in our model.
The global constraint of force-attention (Eq 4)
is adapted after 4 and 1.5 epochs of training to
avoid hurting the primary loss for the WIKIBIO
and WB-filter datasets, respectively. Before
the richness-oriented reinforced training, the neu-
ral generator is pre-trained 8 and 4 epochs for
the WIKIBIO and WB-filter datasets (with or
without force-attention module), respectively. We
replace UNK tokens with the most relevant token
in the source table according to the attention ma-
trix (Jean et al., 2015).

4.4 Baselines

KN & Template KN: A template-based Kneser-
Ney (KN) language model (Heafield et al., 2013)
The extracted template for Table 1 is “name 1
name 2 (born birthdate 1 · · · ”. During inference,
the decoder is constrained to emit words from the
vocabulary or the special tokens in the tables.
Table NLM: Lebret et al. (2016) proposed a neu-
ral language model Table NLM taking the attribute
information into consideration.
Order-planning: Sha et al. (2018) proposed a
link matrix to model the order for the attribute-
value tuples while generating biographies.
Struct-aware: Liu et al. (2018) proposed a
structure-aware model using a modified LSTM
unit and a specific attention mechanism to incor-
porate the attribute information.
Word & Attribute level Coverage: we also im-
plement the implicit coverage method (Tu et al.,
2016) for comparison. For word-level coverage,
we replace Eq 2 with g(st, hi) = tanh(Wphi +
Wqst +Wmθt + b). For attribute-level coverage,
we replace Eq 2 with g(st, hi) = tanh(Wphi +

Models BLEU ROUGE
KN 2.21 0.38
Template KN 19.80 10.70
NLM 4.17 1.48
Table NLM 34.70 25.80
Order-planning 43.91 37.15
Struct-aware 44.89 41.21
Word-level Coverage* 43.44 39.84
Attri-level Coverage* 42.87 38.95
Seq2seq 43.51 39.61
+ Force-Attention 44.46 40.58
+ Richness RL † 45.47 41.54

(a) Automatic evaluation on WIKIBIO
Models BLEU ROUGE
Struct-aware* 40.81 36.52
Word-level Coverage* 38.85 35.11
Attri-level Coverage* 38.34 34.92
Seq2seq 39.17 35.39
+ Force Attention 41.21 36.71
+ Richness RL † 42.03 37.55
(b) Automatic evaluation on WB-filter

Table 2: BLEU and ROUGE scores on the WIKIBIO
and WB-filter datasets. The baselines with * are
based on our implementation while the others are re-
ported by their authors. Models with † are trained us-
ing the RL criterion specified in Sec 3.2.2 while the
remaining models are trained using the maximum like-
lihood estimate (MLE).

Wqst +Wmγt + b). θt and γt are the word-level
and attribute-level coverage defined in Sec 3.1.

4.5 Analysis of Experimental Results

Automatic evaluations are shown in Table 2 for
WIKIBIO and WB-filter. The proposed force-
attention module achieves 1.11/0.98 and 2.04/1.32
BLEU/ROUGE increases on the WIKIBIO and
WB-filter datasets, respectively. Although the
proposed force attention method does not outper-
form the ‘struct-aware’ method in terms of BLEU
and ROUGE in the WIKIBIO dataset. We show
its advantages in the user-oriented scenario as well
as its ability to cover the key attributes as shown
in Table 4 and 5. The richness-oriented reinforced
module further enhances the model performance,
helping our model outperform the state-of-the-art
system (Liu et al., 2018) by about 0.79 BLEU and
0.58 ROUGE. Note that the BLEU and ROUGE
scores are lower in the WB-filter datasets be-
cause firstly, the WIKIBIO has much larger train-
ing set. Secondly, the gold biographies might con-
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Models Fluency Coverage Correctness
Seq2seq 1.87 1.99 1.95
Struct-aware 1.61 1.80 1.71
Our best 1.54 1.46 1.61

(a) Human evaluation on WIKIBIO
Models Fluency Coverage Correctness
Seq2seq 2.02 1.88 1.93
Struct-aware 1.58 1.52 1.65
Our best 1.54 1.39 1.54

(b) Human evaluation on WB-filter

Table 3: Average ranking (lower is better) of 3 systems.
We calculate the Pearson correlation to show the inter-
annotator agreement.

Models BLEU Rich
1 seq2seq 43.51 28.21
2 + Stepwise (only) 43.69 30.01
3 + Global loss (only) 44.21 31.65
4 + Stepwise + Global loss 44.46 32.90
5 + Richness RL (only) 45.23 35.84
6 + All 45.47 37.64

(a) Ablation studies on WIKIBIO
Models BLEU Rich

1 seq2seq 39.17 56.30
2 + Stepwise (only) 39.59 59.29
3 + Global loss (only) 40.83 61.12
4 + Stepwise + Global loss 41.21 62.81
5 + Richness RL (only) 41.66 63.89
6 + All 42.03 64.41

(b) Ablation studies on WB-filter

Table 4: The ablation studies for our model. Models
2-4 are from the force-attention method. ‘Rich’ is the
‘information richness’ defined in Eq 5.

tain information beyond the tables. Although this
phenomenon also occurs in WIKIBIO, the filter-
ing of WB-filter magnifies this issue. Human
evaluations in Table 3 show our model achieves
better generation coverage and correctness than all
the baselines. Table 4 shows that the ablation stud-
ies of our model.

As demonstrated in Table 5, we select an in-
fobox from WIKIBIO and WB-filter respec-
tively for case studies. By observing the gen-
erated description in WIKIBIO, we find that 1)
compared with the vanilla seq2seq model, our
force-attention module can cover the information
in the ‘Notableworks’ attribute. 2) The richness-
oriented module further helps our model to cover
the ‘Alma mater’ and ‘ Notableworks’ attributes as
they are infrequent attributes (more informative) in
the dataset. Additionally, due to the rareness of the
word ‘kiev’, our model is able to cover the related
information. Similarly, the generated description
for WB-filter covers the information from ‘Or-
ganization’ and ‘ Birthplace’ with the help of pro-




                              seq2seq                                          seq2seq+Force-attention





                struct-aware [Liu et al. 2017]                                         coverage-oriented (ours)

Name Dillon Sheppard

Birthdate 27 February 1979

Birthplace Durban , South Africa

Currentclub Bidvest Wits

Position left-winger

Name Dillon Sheppard

Birthdate 27 February 1979

Birthplace Durban , South Africa

Currentclub Bidvest Wits

Position left-winger

Name Dillon Sheppard

Birthdate 27 February 1979

Birthplace Durban , South Africa

Currentclub Bidvest Wits

Position left-winger

Name Dillon Sheppard

Birthdate 27 February 1979

Birthplace Durban , South Africa

Currentclub Bidvest Wits

Position left-winger

S2S+cover: Dillon Sheppard ( born 27 february 1979 ) is a soccer who plays 
for Bidvest Wits.

Sha et al. 2017: Dillon Sheppard ( born 27 february 1979 ) is a soccer who 
plays for Bidvest Wits.

Liu et al. 2017: Dillon Sheppard ( born 27 february 1979 ) is a South African 
soccer who plays for Bidvest Wits.

Ours: Dillon Sheppard ( born 27 february 1979, Durban South Africa ) is a 
footballer who plays as left-winger for Bidvest Wits.


seq2seq: Dillon Sheppard (born 27 february 1979) is a soc-
cer who plays for Bidvest Wits.
seq2seq+FA: Dillon Sheppard (born 27 february 1979,
Durban South Africa) is a left-winger in Bidvest Wits.

Figure 4: The average attribute-level (green) and
word-level (red) coverage of the seq2seq models with
or without force-attention module for an infobox in
WB-filter (higher values are darker) in the last de-
coding step. The vanilla seq2seq model ignores the
‘birthplace’ and ‘position’ attributes as the low cover-
age on them while the FA module attracts enough at-
tention on them while decoding.

Figure 5: Hit-1 coverage (Sec 4.2) for attributes on the
test sets of WIKIBIO and WB-filter. For better vi-
sualization, we first select the attributes whose frequen-
cies are larger than 0.1%, then rank the Hit-1 coverage
of these attributes (214 attributes in WIKIBIO; 26 at-
tributes in WB-filter) in the descending ordering.

posed model.
Fig 4 shows the effectiveness of the force-

attention module. The decoder is guided to pay
more attention to the uncovered attributes (‘birth-
place’ and ‘position’) while decoding. Fig 5
shows that both two proposed modules can boost
the attribute-level coverage on the two datasets.
Fig 6(left) explains why our model can also im-
prove end-to-end table description generation. At-
tributes like ‘position’, ‘battles’ and ‘political
party’ are key information to describe the in-
foboxes for sportsmen, soldiers and politicians.
Fig 6(right) shows the effects of λ in Eq 6.

4.6 Error Analysis

Although the proposed models achieve compet-
itive performance, we also observe some failure
cases. To sum up, the irrelevant information in the
generated descriptions to the source tables. For ex-
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Name:Ivan Ohienko Metropolitan Ilarion ; Birthdate:2 January 1882 ;Birthplace:Brusilov, Kiev governorate, Russian
empire ; Deathdate:29 March 1972;Deathplace:Winnipeg, Canada; Occupation:cleric, historian, ethnographer, and
scholar, writer, and translator; Language:Ukrainian; Nationality:Ukrainian; Alma mater:Kiev university
Notableworks:translation of the bible into ukrainian Article title:Ilarion Ohienko

Seq2seq: Ivan Ohienko Metropolitan ( January 2 , 1882 – March 29 , 1972 ) was a Ukrainian cleric , historian , ethnogra-
pher, writer , linguist , writer and scolar.
+Force-Attention: Ivan Ohienko Metropolitan Ilarion ( 2 January 1882 in Brusilov – 29 march 1972 in Winnipeg ) was a
Ukrainian linguist , ethnographer , and scholar , best known for his translation of the bible into ukrainian .
+Richness-oriented RL: Ivan Ohienko Metropolitan Ilarion ( 2 January 1882 , Krusilov , Kiev governorate– 29 march
1972 , Winnipeg ) was a Ukrainian cleric, historian , ethnographer , and scholar of Kiev university , best known for his
translation of the bible into ukrainian .

Name:Rajendra Singh ; Birthdate:06 August 1959 ;Birthplace:Daula, Bagpat District, Uttar Pradesh ; Nationality:
Indian; Organization:Tarun Bharat Sangh; Occupation:water conservationist Alma mater:Allahabad University

Seq2seq: Rajendra Singh is an Indian water conservationist.
+Force-Attention: Rajendra Singh (born 6 August 1959) is an Indian conservationist and a senior fellow of
the Tarun Bharat Sangh.
+Richness-oriented RL: Rajendra Singh (born 6 august 1959, Uttar Pradesh) is an Indian water conservationist
and a member of the Tarun Bharat Sangh.

Table 5: The generated cases in WIKIBIO (above) and WB-filter (below) datasets. The underlined texts, which
are the key information of the source tables, are ignored by seq2seq model.

Hit-1 coverage of some key attributes while summarizing WIKIBIO How we choose the ! in Eq 6 forWIKIBIO

!: 	$%&' = !$&)*+ + (1 − !)$1234

Figure 6: Hit-1 Coverage (Sec 4.2) for some key at-
tributes (left) on the test set of WIKIBIO shows that
our model can help to cover some key attributes while
describing the tables. The right figure is the analysis of
λ (Eq 6) for ‘Seq2seq + RL’ model on the validation
set of WIKIBIO.

ample, a biography about a football player might
contain ‘in the national football league’ although
the related infobox does not mention this piece
of information as the similar expression exists in
many instances of the training set. Although our
model could largely relieve this problem as shown
in human evaluation (Table 3), it is still a gen-
eral problem in NLG. As for the ability to cover
important information in the tables, although our
model is able to cover much more comprehensive
information than the previous models (Table 2 and
3). Some implicitly expressed (like if a person is
retired or not) or rarely covered (like ‘spouse’ or
‘high school’) attributes in the source tables might
still be ignored in the descriptions generated by
our model. Furthermore, those pieces of informa-
tion which need some form of inference across

several attributes (like a time span) may not be
well represented by our model.

5 Related Work

Data-to-text a language generation task to gener-
ate text for structured data. Table-to-text belongs
to the data-to-text generation (Reiter and Dale,
2000). Many previous work (Barzilay and Lapata,
2005, 2006; Liang et al., 2009) treated the task as
a pipelined systems, which viewed content selec-
tion and surface realization as two separate tasks.
Duboue and McKeown (2002) proposed a clus-
tering approach in the biography domain by scor-
ing the semantic relevance of the text and paired
knowledge base. In a similar vein, Barzilay and
Lapata (2005) modeled the dependencies between
the American football records and identified the
bits of information to be verbalized. Liang et al.
(2009); Angeli et al. (2010) extended the work of
Barzilay and Lapata (2005) to soccer and weather
domains by learning the alignment between data
and text using hidden variable models. Androut-
sopoulos et al. (2013) and Duma and Klein (2013)
focused on generating descriptive language for
Ontologies and RDF triples. Most recent work
utilize neural networks on data-to-text generation
(Mahapatra et al., 2016; Wiseman et al., 2017;
Laha et al., 2018; Kaffee et al., 2018; Freitag and
Roy, 2018; Qader et al., 2018; Dou et al., 2018;
Yeh et al., 2018; Jhamtani et al., 2018; Jain et al.,
2018; Liu et al., 2017b, 2019; Peng et al., 2019;
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Dušek et al., 2019).
Some closely relevant work also focused on

the table-to-text generation. Mei et al. (2016)
proposed an encoder-aligner-decoder framework
for generating weather broadcast. Hachey et al.
(2017) used a table-text and text-table auto-
encoder framework for table-to-text generation.
Nema et al. (2018) proposed gated orthogonaliza-
tion to avoid repetitions. Wiseman et al. (2018)
used neural semi-HMM to generate template-like
descriptions for structured data. Our work some-
what shares similar goals as Kiddon et al. (2016);
Tu et al. (2016); Liu et al. (2017a); Gong et al.
(2018) in the sense that they emphasis easily ig-
nored (usually less frequent) features or bits of in-
formation in the training procedure by smoothing
or regularization. The greatest difference between
our work and theirs is that our method is tailored
for covering the key information embedded in the
attributes (entries) of the key-value tables rather
than single words or labels. Although the deficient
score of Tu et al. (2016) in Table 2 has demon-
strated that word-level coverage oriented methods
may not still be suitable to the structured tables,
we assume other word-level constraints may easily
transfer to the structured tables without losing ef-
ficiency. We leave the recognition of potential ap-
plicable word-level constraints to the future work.

This paper focused on generating one-sentence
biographies for infoboxes like many previous
works (Lebret et al., 2016; Hachey et al., 2017;
Liu et al., 2018; Bao et al., 2018; Nema et al.,
2018; Puduppully et al., 2018; Cao et al., 2018).
Perez-Beltrachini and Lapata (2018) used the first
paragraph of the wikipedia pages as the gold
biographies aiming at generating longer biogra-
phies. We tried the same setting and unfortu-
nately found most generated biographies contain
too much groundless information compared with
the source infoboxes. This is because the related
gold biographies from first paragraph contain too
much groundless information beyond the source
infoboxes.

6 Conclusion and Future Work

We set up 3 goals for comprehensive description
generation for attribute-value factual tables: ac-
curate, informative and loyal. To achieve these
goals, we propose force-attention method, which
encourages the generator to pay more attention
to previous uncovered attributes to avoid poten-

tial key attribute missing. Richness-oriented re-
inforcement learning is proposed to cover more
informative contents in source tables, which help
the generator to generate informative and accurate
descriptions. The experiments on the WIKIBIO
and WB-filter datasets show the merits of our
model. In the future, we will explore the repre-
sentation for the implicit information like whether
a man is retired or not or how long a sportsman’s
career is given starting and ending years, in the ta-
ble by including some inference strategies.
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Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In EMNLP 2016,
pages 1203–1213.

Liunian Li and Xiaojun Wan. 2018. Point precisely:
Towards ensuring the precision of data in generated
texts using delayed copy mechanism. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1044–1055.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1, pages
91–99. Association for Computational Linguistics.

https://aclanthology.info/papers/E17-1060/e17-1060
https://aclanthology.info/papers/E17-1060/e17-1060
https://doi.org/10.1162/neco.1997.9.8.1735
http://aclweb.org/anthology/P/P15/P15-1001.pdf
http://aclweb.org/anthology/P/P15/P15-1001.pdf
https://aclanthology.info/papers/N18-2101/n18-2101
https://aclanthology.info/papers/N18-2101/n18-2101
https://aclanthology.info/papers/N18-2101/n18-2101
http://aclweb.org/anthology/D/D16/D16-1032.pdf
http://aclweb.org/anthology/D/D16/D16-1032.pdf
http://arxiv.org/abs/1810.02889
http://arxiv.org/abs/1810.02889
http://aclweb.org/anthology/D/D16/D16-1128.pdf
http://aclweb.org/anthology/D/D16/D16-1128.pdf


5995

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Tianyu Liu, Fuli Luo, Qiaolin Xia, Shuming Ma,
Baobao Chang, and Zhifang Sui. 2019. Hierarchical
encoder with auxiliary supervision for neural table-
to-text generation: Learning better representation
for tables. In Proceedings of AAAI.

Tianyu Liu, Kexiang Wang, Baobao Chang, and Zhi-
fang Sui. 2017a. A soft-label method for noise-
tolerant distantly supervised relation extraction. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1790–1795.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation
by structure-aware seq2seq learning. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 4881–
4888.

Tianyu Liu, Bingzhen Wei, Baobao Chang, and Zhi-
fang Sui. 2017b. Large-scale simple question gen-
eration by template-based seq2seq learning. In Nat-
ural Language Processing and Chinese Computing
- 6th CCF International Conference, NLPCC 2017,
Dalian, China, November 8-12, 2017, Proceedings,
pages 75–87.

Joy Mahapatra, Sudip Kumar Naskar, and Sivaji
Bandyopadhyay. 2016. Statistical natural language
generation from tabular non-textual data. In Pro-
ceedings of the 9th International Natural Language
Generation conference, pages 143–152.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? selective gener-
ation using lstms with coarse-to-fine alignment. In
NAACL HLT 2016, pages 720–730.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Preksha Nema, Shreyas Shetty, Parag Jain, Anirban
Laha, Karthik Sankaranarayanan, and Mitesh M
Khapra. 2018. Generating descriptions from struc-
tured data using a bifocal attention mechanism and
gated orthogonalization. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
volume 1, pages 1539–1550.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL2002, pages
311–318.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Hao Peng, Ankur P. Parikh, Manaal Faruqui, Bhuwan
Dhingra, and Das Dipanjan. 2019. Text generation
with exemplar-based adaptive decoding. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Laura Perez-Beltrachini and Mirella Lapata. 2018.
Bootstrapping generators from noisy data. In Pro-
ceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers), pages
1516–1527.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2018.
Data-to-text generation with content selection and
planning. arXiv preprint arXiv:1809.00582.

Raheel Qader, Khoder Jneid, François Portet, and Cyril
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