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Welcome to SemEval-2015

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison
of systems that can analyse diverse semantic phenomena in text with the aim of extending the
current state of the art in semantic analysis and creating high quality annotated datasets in a range of
increasingly challenging problems in natural language semantics. SemEval provides an exciting forum
for researchers to propose challenging research problems in semantics and to build systems/techniques
to address such research problems.

SemEval-2015 is the ninth workshop in the series of International Workshops on Semantic Evaluation
Exercises. The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004),
focused on word sense disambiguation, each time growing in the number of languages offered, in the
number of tasks, and also in the number of participating teams. In 2007, the workshop was renamed
to SemEval, and in the following five SemEval workshops (2007–2014) the nature of the tasks evolved
to include semantic analysis tasks beyond word sense disambiguation. In 2012, SemEval turned into
a yearly event. It currently runs every year, but on a two-year cycle, i.e., the tasks for SemEval-2015
were proposed in 2014.

SemEval-2015 was co-located with the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT’2015) in
Denver, Colorado. It included the following 17 shared tasks1 organized in five tracks:

• Text Similarity and Question Answering TRACK

– Task 1: Paraphrase and Semantic Similarity in Twitter

– Task 2: Semantic Textual Similarity

– Task 3: Answer Selection in Community Question Answering

• Time and Space TRACK

– Task 4: TimeLine: Cross-Document Event Ordering

– Task 5: QA TempEval

– Task 6: Clinical TempEval

– Task 7: Diachronic Text Evaluation

– Task 8: SpaceEval

• Sentiment TRACK

– Task 9: CLIPEval Implicit Polarity of Events

– Task 10: Sentiment Analysis in Twitter

– Task 11: Sentiment Analysis of Figurative Language in Twitter

– Task 12: Aspect Based Sentiment Analysis
1Task 16 was cancelled after acceptance, but we kept the original numbering
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• Word Sense Disambiguation and Induction TRACK

– Task 13: Multilingual All-Words Sense Disambiguation and Entity Linking

– Task 14: Analysis of Clinical Text

– Task 15: A CPA Dictionary-Entry-Building Task

• Learning Semantic Relations TRACK

– Task 17: Taxonomy Extraction Evaluation

– Task 18: Semantic Dependency Parsing

This volume contains both Task Description papers that describe each of the above tasks and System
Description papers that describe the systems that participated in the above tasks. A total of 17 task
description papers and 145 system description papers are included in this volume.

We are grateful to all task organisers (who organised 17 tasks!) and especially to the task participants
whose massive participation (there were about 200 teams who submitted about 600 runs!) has made
SemEval once again a successful event. We are thankful to those task organisers who also served as
area chairs, and to those task organisers and task participants who helped with reviewing papers by
their peers submitted to SemEval-2015: thanks for all the efforts, and for the high-quality, elaborate
and thoughtful reviews! The papers in this proceedings have surely benefited from this feedback. We
also thank the NAACL’2015 conference organizers for the local organization and the forum. Finally,
we most gratefully acknowledge the support of our sponsor, the ACL Special Interest Group on the
Lexicon (SIGLEX).

The SemEval-2015 organizers,
Daniel Cer, David Jurgens, Preslav Nakov and Torsten Zesch
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Abstract

In this shared task, we present evaluations
on two related tasks Paraphrase Identification
(PI) and Semantic Textual Similarity (SS) sys-
tems for the Twitter data. Given a pair of
sentences, participants are asked to produce
a binary yes/no judgement or a graded score
to measure their semantic equivalence. The
task features a newly constructed Twitter Para-
phrase Corpus that contains 18,762 sentence
pairs. A total of 19 teams participated, sub-
mitting 36 runs to the PI task and 26 runs to
the SS task. The evaluation shows encourag-
ing results and open challenges for future re-
search. The best systems scored a F1-measure
of 0.674 for the PI task and a Pearson corre-
lation of 0.619 for the SS task respectively,
comparing to a strong baseline using logis-
tic regression model of 0.589 F1 and 0.511
Pearson; while the best SS systems can of-
ten reach >0.80 Pearson on well-formed text.
This shared task also provides insights into the
relation between the PI and SS tasks and sug-
gests the importance to bringing these two re-
search areas together. We make all the data,
baseline systems and evaluation scripts pub-
licly available.1

1 Introduction

The ability to identify paraphrases, i.e. alternative
expressions of the same (or similar) meaning, and
the degree of their semantic similarity has proven
useful for a wide variety of natural language pro-
cessing applications (Madnani and Dorr, 2010). It

1http://www.cis.upenn.edu/˜xwe/
semeval2015pit/

is particularly useful to overcome the challenge of
high redundancy in Twitter and the sparsity inherent
in their short texts (e.g. oscar nom’d doc↔ Oscar-
nominated documentary; some1 shot a cop↔ some-
one shot a police). Emerging research shows para-
phrasing techniques applied to Twitter data can im-
prove tasks like first story detection (Petrović et al.,
2012), information retrieval (Zanzotto et al., 2011)
and text normalization (Xu et al., 2013; Wang et al.,
2013).

Previously, many researchers have investigated
ways of automatically detecting paraphrases on
more formal texts, like newswire text. The ACL
Wiki2 gives an excellent summary of the state-of-
the-art paraphrase identification techniques. These
can be categorized into supervised methods (Qiu
et al., 2006; Wan et al., 2006; Das and Smith, 2009;
Socher et al., 2011; Blacoe and Lapata, 2012; Mad-
nani et al., 2012; Ji and Eisenstein, 2013) and unsu-
pervised methods (Mihalcea et al., 2006; Rus et al.,
2008; Fernando and Stevenson, 2008; Islam and
Inkpen, 2007; Hassan and Mihalcea, 2011). A few
recent studies have highlighted the potential and
importance of developing paraphrase identification
(Zanzotto et al., 2011; Xu et al., 2013) and semantic
similarity techniques (Guo and Diab, 2012) specif-
ically for tweets. They also indicated that the very
informal language, especially the high degree of lex-
ical variation, used in social media has posed serious
challenges to both tasks.

2http://aclweb.org/aclwiki/index.php?
title=Paraphrase_Identification_(State_of_
the_art)
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Paraphrase? Sentence 1 Sentence 2
yes Ezekiel Ansah wearing 3D glasses wout

the lens
Wait Ezekiel ansah is wearing 3d movie
glasses with the lenses knocked out

yes Marriage equality law passed in Rhode
Island

Congrats to Rhode Island becoming the
10th state to enact marriage equality

yes Aaaaaaaaand stephen curry is on fire What a incredible performance from
Stephen Curry

no Finally saw the Ciara body party video ciara s Body Party video is on point
no Now lazy to watch Manchester united vs

arsenal
Early lead for Arsenal against Manch-
ester United

debatable That s the new Ciroc flavor Need a little taste of that new Ciroc
debatable sarah Palin at the IndyMia game Sarah Palin is at the game are you

pumped

Table 1: Representative examples from PIT-2015 Twitter Paraphrase Corpus

# Unique Sent # Sent Pair # Paraphrase # Non-Paraphrase # Debatable
Train 13231 13063 3996 (30.6%) 7534 (57.7%) 1533 (11.7%)
Dev 4772 4727 1470 (31.1%) 2672 (56.5%) 585 (12.4%)
Test 1295 972 175 (18.0%) 663 (68.2%) 134 (13.8%)

Table 2: Statistics of PIT-2015 Twitter Paraphrase Corpus. Debatable cases are those received a medium-score from
annotators. The percentage of paraphrases is lower in the test set because it was constructed without topic selection.

The SemEval-2015 shared task on Paraphrase and
Semantic Similarity In Twitter (PIT) uses a training
and development set of 17,790 sentence pairs and a
test set of 972 sentence pairs with paraphrase anno-
tations (see examples in Table 1) that is the same as
the Twitter Paraphrase Corpus we developed earlier
in (Xu, 2014) and (Xu et al., 2014). This PIT-2015
paraphrase dataset is distinct from the data used in
previous studies in many aspects: (i) it contains sen-
tences that are opinionated and colloquial, represent-
ing realistic informal language usage; (ii) it con-
tains paraphrases that are lexically diverse; and (iii)
it contains sentences that are lexically similar but se-
mantically dissimilar. It raises many interesting re-
search questions and could lead to a better under-
standing of our daily used language and how seman-
tics can be captured in such language. We believe
that such a common testbed will facilitate docking
of the different approaches for purposes of compari-
son, lead to a better understanding of how semantics
are conveyed in natural language, and help advance
other NLP techniques for noisy user-generated text
in the long run.

2 Task Description and Evaluation Metrics

The task has two sentence-level sub-tasks: a para-
phrase identification task and an optional semantic
textual similarity task. The two sub-tasks share the
same data but differ in annotation and evaluation.

Task A – Paraphrase Identification (PI)
Given two sentences, determine whether they
express the same or very similar meaning. Fol-
lowing the literature on paraphrase identifica-
tion, we evaluate system performance by the F-
1 score (harmonic mean of precision and recall)
against human judgements.

Task B – Semantic Textual Similarity (SS)
Given two sentences, determine a numerical
score between 0 (no relation) and 1 (semantic
equivalence) to indicate their semantic similar-
ity. Following the literature, the system outputs
are compared by Pearson correlation with hu-
man scores. We also compute the maximum
F-1 score over the precision-recall curve as an
additional data point.
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3 Corpus

In this shared task, we use the Twitter Paraphrase
Corpus that we first presented in (Xu, 2014) and (Xu
et al., 2014). Table 2 shows the basic statistics of the
corpus. The sentences are preprocessed with tok-
enization,3 POS and named entity tags.4 The train-
ing and development set consists of 17,790 sentence
pairs posted between April 24th and May 3rd, 2013
from 500+ trending topics featured on Twitter (ex-
cluding hashtags). The training and development set
is a random split. Each sentence pair is annotated by
5 different crowdsourcing workers. For the test set,
we obtain both crowdsourced and expert labels on
972 sentence pairs from 20 randomly sampled Twit-
ter trending topics between May 13th and June 10th,
2013. We use expert labels in this SemEval eval-
uation. Our dataset is more realistic and balanced,
containing about 70% non-paraphrases vs. the 34%
non-paraphrases in the benchmark Microsoft Para-
phrase Corpus derived from news articles by Dolan
et al. (2004). As noted in (Das and Smith, 2009), the
lack of natural non-paraphrases in the MSR corpus
creates bias towards certain models.

4 Annotation

In this section, we describe our data collection and
annotation methodology. Since Twitter users are
free to talk about anything regarding any topic, a
random pair of sentences about the same topic has
a low chance of expressing the same meaning (em-
pirically, this is less than 8%). This causes two prob-
lems: a) it is expensive to obtain paraphrases via
manual annotation; b) non-expert annotators tend to
loosen the criteria and are more likely to make false
positive errors. To address these challenges, we de-
sign a simple annotation task and introduce two se-
lection mechanisms to select sentences which are
more likely to be paraphrases, while preserving di-
versity and representativeness.

3The tokenizer was developed by O’Connor et al. (2010):
https://github.com/brendano/tweetmotif

4The POS tagger was developed by Derczynski et al. (2013)
and the NER tagger was developed by Ritter et al. (2011):
https://github.com/aritter/twitter_nlp
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Figure 1: A heat-map showing overlap between ex-
pert and crowdsourcing annotation. The intensity along
the diagonal indicates good reliability of crowdsourcing
workers for this particular task; and the shift above the di-
agonal reflects the difference between the two annotation
schemas. For crowdsourcing (turk), the numbers indicate
how many annotators out of 5 picked the sentence pair as
paraphrases; 0,1 are considered non-paraphrases; 3,4,5
are paraphrases. For expert annotation, all 0,1,2 are non-
paraphrases; 4,5 are paraphrases. Medium-scored cases
(2 for crowdsourcing; 3 for expert annotation) are dis-
carded in the system evaluation of the PI sub-task.

4.1 Raw Data from Twitter

We crawl Twitter’s trending topics and their associ-
ated tweets using public APIs.5 According to Twit-
ter, trends are determined by an algorithm which
identifies topics that are immediately popular, rather
than those that have been popular for longer periods
of time or which trend on a daily basis. We tokenize,
remove emoticons6 and split tweet into sentences.

4.2 Task Design on Mechanical Turk

We show the annotator an original sentence, then
ask them to pick sentences with the same mean-
ing from 10 candidate sentences. The original and
candidate sentences are randomly sampled from the
same topic. For each such 1 vs. 10 question, we ob-
tain binary judgements from 5 different annotators,
paying each annotator $0.02 per question. On aver-
age, each question takes one annotator about 30 ∼
45 seconds to answer.

5More information about Twitter’s APIs: https://dev.
twitter.com/docs/api/1.1/overview

6We use the toolkit developed by O’Connor et al. (2010):
https://github.com/brendano/tweetmotif
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Figure 2: The proportion of paraphrases (percentage of positive votes from annotators) vary greatly across different
topics. Automatic filtering in Section 4.4 roughly doubles the paraphrase yield.

4.3 Annotation Quality

We remove problematic annotators by checking
their Cohen’s Kappa agreement (Artstein and Poe-
sio, 2008) with other annotators. We also compute
inter-annotator agreement with an expert annotator
on the test dataset of 972 sentence pairs. In the ex-
pert annotation, we adopt a 5-point Likert scale to
measure the degree of semantic similarity between
sentences, which is defined by Agirre et al. (2012)
as follows:

5: Completely equivalent, as they mean the same
thing;

4: Mostly equivalent, but some unimportant details
differ;

3: Roughly equivalent, but some important informa-
tion differs/missing.

2: Not equivalent, but share some details;
1: Not equivalent, but are on the same topic;
0: On different topics.

Although the two scales of expert and crowd-
sourcing annotation are defined differently, their
Pearson correlation coefficient reaches 0.735 (two-
tailed significance 0.001). Figure 1 shows a heat-
map representing the detailed overlap between the
two annotations. It suggests that the graded simi-
larity annotation task could be reduced to a binary
choice in a crowdsourcing setup. As for the binary
paraphrase judgements, the integrated judgement of

five crowdsourcing workers achieve a F1-score of
0.823, precision of 0.752 and recall of 0.908 against
expert annotations.

4.4 Automatic Summarization Inspired
Sentence Filtering

We filter the sentences within each topic to se-
lect more probable paraphrases for annotation. Our
method is inspired by a typical problem in extractive
summarization, that the salient sentences are likely
redundant (paraphrases) and need to be removed
in the output summaries. We employ the scoring
method used in SumBasic (Nenkova and Vander-
wende, 2005; Vanderwende et al., 2007), a simple
but powerful summarization system, to find salient
sentences. For each topic, we compute the probabil-
ity of each word P (wi) by simply dividing its fre-
quency by the total number of all words in all sen-
tences. Each sentence s is scored as the average of
the probabilities of the words in it, i.e.

Salience(s) =
∑
wi∈s

P (wi)
|{wi|wi ∈ s}| (1)

We then rank the sentences and pick the original
sentence randomly from top 10% salient sentences
and candidate sentences from top 50% to present to
the annotators.

In a trial experiment of 20 topics, the filtering
technique double the yield of paraphrases from 152
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to 329 out of 2000 sentence pairs over naı̈ve ran-
dom sampling (Figure 2 and Figure 3). We also use
PINC (Chen and Dolan, 2011) to measure the qual-
ity of paraphrases collected (Figure 4). PINC was
designed to measure n-gram dissimilarity between
two sentences, and in essence it is the inverse of
BLEU. In general, the cases with high PINC scores
include more complex and interesting rephrasings.

4.5 Topic Selection using Multi-Armed Bandits
(MAB) Algorithm

Another approach to increasing paraphrase yield is
to choose more appropriate topics. This is partic-
ularly important because the number of paraphrases
varies greatly from topic to topic and thus the chance
to encounter paraphrases during annotation (Fig-
ure 2). We treat this topic selection problem as a
variation of the Multi-Armed Bandit (MAB) prob-
lem (Robbins, 1985) and adapt a greedy algorithm,
the bounded ε-first algorithm, of Tran-Thanh et al.
(2012) to accelerate our corpus construction.

Our strategy consists of two phases. In the first
exploration phase, we dedicate a fraction of the to-
tal budget, ε, to explore randomly chosen arms of
each slot machine (trending topic on Twitter), each
m times. In the second exploitation phase, we sort
all topics according to their estimated proportion
of paraphrases, and sequentially annotate d (1−ε)Bl−m e
arms that have the highest estimated reward until
reaching the maximum l = 10 annotations for any
topic to insure data diversity.

We tune the parameters m to be 1 and ε to be be-
tween 0.35 ∼ 0.55 through simulation experiments,
by artificially duplicating a small amount of real an-
notation data. We then apply this MAB algorithm
in the real-world. We explore 500 random topics
and then exploited 100 of them. The yield of para-
phrases rises to 688 out of 2000 sentence pairs by
using MAB and sentence filtering, a 4-fold increase
compared to only using random selection (Figure 3).

5 Baselines

We provide three baselines, including a random
baseline, a strong supervised baseline and a state-
of-the-art unsupervised system:

Random:
This baseline provides a randomized real num-

ber between [0, 1] for each test sentence pair as
semantic similarity score, and uses 0.5 as cutoff
for binary paraphrase identification output.

Logistic Regression:
This is a supervised logistic regression (LR)
baseline used by Das and Smith (2009). It uses
simple n-gram (also in stemmed form) overlap-
ping features but shows very competitive per-
formance on the MSR news paraphrase corpus.
It uses 0.5 as cutoff to create binary outputs for
the paraphrase identification task.

Weighted Matrix Factorization (WTMF):7

The third baseline is a state-of-the-art unsu-
pervised method developed by Guo and Diab
(2012). It is specially developed for short sen-
tences by modeling the semantic space of both
words that are present in and absent from the
sentences (Guo and Diab, 2012). The model
was learned from WordNet (Fellbaum, 2010),
OntoNotes (Hovy et al., 2006), Wiktionary, the
Brown corpus (Francis and Kucera, 1979). It
uses 0.5 as cutoff in the binary paraphrase iden-
tification task.

6 Systems and Results

A total of 18 teams participated in the PI task (re-
quired), 13 of which also submitted to the SS task
(optional). Every team submitted 2 runs except one
(up to 2 were are allowed).

6.1 Evaluation Results

Table 3 shows the evaluation results. We use the F1-
score and Pearson correlation as the primary eval-
uation metric for the PI and SS task respectively.
The results are very exciting that most systems out-
performed the two strong baselines we chose, while
still showing room for improvement towards the hu-
man upper-bound estimated by the crowdsourcing
worker’s performance.

6.2 Discussion

Most participants choose supervised methods, ex-
cept for MathLingBp who uses semi-supervised,

7The source code and data for WTMF is available at:
http://www.cs.columbia.edu/˜weiwei/code.
html
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Figure 3: Numbers of paraphrases collected by different
methods. The annotation efficiency (3,4,5 are regarded
as paraphrases) is significantly improved by the sentence
filtering and Multi-Armed Bandits (MAB) based topic
selection.
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Figure 4: PINC scores of paraphrases collected. The
higher the PINC, the more significant the rewording.
Our proposed annotation strategy quadruples paraphrase
yield, while not greatly reducing diversity as measured
by PINC.

Columbia and Yamraj who use unsupervised meth-
ods. While the best performed systems are super-
vised, the best unsupervised system still outperforms
some supervised systems and the state-of-the-art un-
supervised baseline. About half of systems use word
embeddings and many use neural networks.

To out best knowledge, this is the first time to
have a large number of systems in an evaluation that
has the two related tasks — paraphrase identification
and semantic similarity, side by side for compari-
son. One interesting observation that comes out is
the performance of the same system on the two tasks
(“F1 vs. Pearson”) are not necessarily related. For
example, ASOBEK ranked 1st (out of 35 runs) and
18th (out of 25 runs) in the PI and SS tasks respec-
tively, RTM-DCU ranked 27th and 3rd, while the
MITRE system ranked 3nd and 1st place. Neither
“F1 vs. max-F1” nor “Pearson vs. maxF1” nor “F1
vs. Pearson” show a strong correlation. It implies
that (i) high-performance PI systems can be devel-
oped focusing on the binary classification problem
without focusing on the degree of similarity; (ii) it
is crucial to select the threshold to balance precision
and recall for the PI binary classification problem;
(iii) it is important for SS system to handle the de-
batable cases proporiately.

6.3 Participants’ Systems

There are in total 19 teams participated:

AJ: This team utilizes TERp and BLEU – auto-
matic evaluation metrics for Machine Trans-
lation. The system uses a logistic regression
model and performs threshold selection.

AMRITACEN: This team uses Recursive Auto
Encoders (RAEs). The matrix generated for
the given input sentences is of variable size,
then converted to equal sized matrix using re-
peat matrix concept.

ASOBEK (Eyecioglu and Keller, 2015): This
team uses SVM classifier with simple lexical
word overlap and character n-grams features.

CDTDS (Karampatsis, 2015): This team uses
support vector regression trained only on the
training set using the numbers of positive votes
out of the 5 crowdsourcing annotations.

Columbia: This system maps each original sen-
tence to a low dimensional vector as Orthog-
onal Matrix Factorization (Guo et al., 2014),
and then computes similarity score based on the
low dimensional vectors.

Depth: This team uses neural network that learns
representation of sentences, then compute sim-
ilarity scores based on hidden vector represen-
tations between two sentences.

EBIQUITY (Satyapanich et al., 2015): This
team trains supervised SVM and logistic re-
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Rank Paraphrase Identification (PI) Semantic Similarity (SS)
PI SS Team Run F1 Precision Recall Pearson maxF1 mPrec mRecall

Human Upperbound 0.823 0.752 0.908 0.735 —— —— ——
1 ASOBEK 01 svckernel 0.6741 0.680 0.669 0.47518 0.616 0.732 0.531

8 ASOBEK 02 linearsvm 0.6722 0.682 0.663 0.50414 0.663 0.723 0.611
2 1 MITRE 01 ikr 0.6673 0.569 0.806 0.6191 0.716 0.750 0.686
3 ECNU 02 nnfeats 0.6624 0.767 0.583 —— —— —— ——
4 FBK-HLT 01 voted 0.6595 0.685 0.634 0.46219 0.607 0.551 0.674
5 TKLBLIIR 02 gs0105 0.6595 0.645 0.674 —— —— —— ——

MITRE 02 bieber 0.6527 0.559 0.783 0.6122 0.724 0.753 0.697
6 HLTC-HKUST 02 run2 0.6527 0.574 0.754 0.5456 0.669 0.738 0.611

3 HLTC-HKUST 01 run1 0.6519 0.594 0.720 0.5635 0.676 0.697 0.657
ECNU 01 mlfeats 0.64310 0.754 0.560 —— —— —— ——

7 4 AJ 01 first 0.62211 0.523 0.766 0.5277 0.642 0.571 0.731
8 5 DEPTH 02 modelx23 0.61912 0.652 0.589 0.5188 0.636 0.602 0.674
9 9 CDTDS 01 simple 0.61313 0.547 0.697 0.49415 0.626 0.675 0.583

CDTDS 02 simplews 0.61214 0.542 0.703 0.49116 0.624 0.589 0.663
DEPTH 01 modelh22 0.61015 0.647 0.577 0.50513 0.638 0.642 0.634

10 FBK-HLT 02 multilayer 0.60616 0.676 0.549 0.48017 0.604 0.504 0.754
10 ROB 01 all 0.60117 0.519 0.714 0.51310 0.612 0.721 0.531
11 EBIQUITY 01 run 0.59918 0.651 0.554 —— —— —— ——

TKLBLIIR 01 gsc054 0.59019 0.461 0.817 —— —— —— ——
EBIQUITY 02 run 0.59019 0.646 0.543 —— —— —— ——
BASELINE logistic reg. 0.58921 0.679 0.520 0.51111 0.601 0.674 0.543

12 11 COLUMBIA 02 ormf � 0.58822 0.593 0.583 0.42520 0.599 0.623 0.577
13 12 HASSY 01 train 0.57123 0.449 0.783 0.40522 0.645 0.657 0.634
14 RTM-DCU 01 PLSSVR 0.56224 0.859 0.417 0.5644 0.678 0.649 0.709

COLUMBIA 01 ormf � 0.56125 0.831 0.423 0.42520 0.599 0.623 0.577
HASSY 02 traindev 0.55125 0.423 0.789 0.40522 0.629 0.648 0.611

2 RTM-DCU 02 SVR 0.54027 0.883 0.389 0.5703 0.693 0.695 0.691
BASELINE WTMF � 0.53628 0.450 0.663 0.35026 0.587 0.570 0.606

6 ROB 02 all 0.53229 0.388 0.846 0.5159 0.616 0.685 0.560
7 MATHLING 02 twimash � 0.51530 0.364 0.880 0.51111 0.650 0.648 0.651

15 MATHLING 01 twiemb � 0.51530 0.454 0.594 0.22927 0.562 0.638 0.503
16 YAMRAJ 01 google � 0.49632 0.725 0.377 0.36025 0.542 0.502 0.589
17 STANFORD 01 vs 0.48033 0.800 0.343 —— —— —— ——

AJ 02 second 0.47734 0.618 0.389 —— —— —— ——
13 YAMRAJ 02 lexical � 0.47035 0.677 0.360 0.36324 0.511 0.508 0.514

late late AMRITACEN 01 RAE 0.457 0.543 0.394 0.303 0.457 0.543 0.394
18 WHUHJP 02 whuhjp 0.42536 0.299 0.731 —— —— —— ——

WHUHJP 01 whuhjp 0.38737 0.275 0.651 —— —— —— ——
BASELINE random � 0.26638 0.192 0.434 0.01728 0.350 0.215 0.949

Table 3: Evaluation results. The first column presents the rank of each team in the two tasks based on each team’s best
system. The superscripts are the ranks of systems, ordered by F1 for Paraphrase Identification (PI) task and Pearson
for Semantic Similarity (SS) task. � indicates unsupervised or semi-supervised system. In total, 19 teams participated
in the PI task, of which 14 teams also participated in the SS task. Note that although the two sub-tasks share the same
test set of 972 sentence pairs, the PI task ignores 134 debatable cases (received a medium-score from expert annotator)
and uses only 838 pairs (663 paraphrases and 175 non-paraphrases) in evaluation, while SS task uses all 972 pairs.
This causes that the F1-score in the PI task can be higher than the maximum F1-score in the SS task. Also note that
the F1-scores of the baselines in the PI task are higher than reported in the Table 2 of (Xu et al., 2014), because the
later reported maximum F1-scores on the PI task, ignoring the debatable cases.
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gression models using features of semantic
similarities between sentence pairs.

ECNU (Zhao and Lan, 2015): This team adopts
typical machine learning classifiers and uses a
variety of features, such as surface text, seman-
tic level, textual entailment, word distributional
representations by deep learning methods.

FBK-HLT (Ngoc Phuoc An Vo and Popescu,
2015): This team uses supervised learning
model with different features for the 2 runs,
such as n-gram overlap, word alignment and
edit distance.

Hassy: This team uses a bag-of-embeddings ap-
proach via supervised learning. Two sentences
are first embedded into a vector space, and then
the system computes the dot-product of the two
sentence embeddings.

HLTC-HKUST (Bertero and Fung, 2015): This
team uses supervised classification with a stan-
dard two-layer neural network classifier. The
features used include translation metrics, lex-
ical, syntactic and semantic similarity scores,
the latter with an emphasis on aligned semantic
roles comparison.

MathLingBp: This team implements the align-
and-penalize architecture described by Han
et al. (2013) with slight modifications and
makes use of several word similarity metrics.
One metric relies on a mapping of words to
vectors built from the Rovereto Twitter N-
Gram corpus, another on a synonym list built
from Wiktionary’s translations, while a third
approach derives word similarity from concept
graphs built using the 4lang lexicon and the
Longman Dictionary of Contemporary English
(Kornai et al., 2015).

MITRE (Zarrella et al., 2015): A recurrent neu-
ral network models semantic similarity be-
tween sentences using the sequence of sym-
metric word alignments that maximize cosine
similarity between word embeddings. We in-
clude features from local similarity of char-
acters, random projection, matching word se-
quences, pooling of word embeddings, and

alignment quality metrics. The resulting en-
semble uses both semantic and string matching
at many levels of granularity.

RTM-DCU (Bicici, 2015): This team uses ref-
erential translation machines (RTM) and ma-
chine translation performance prediction sys-
tem (MTPP) for predicting semantic similar-
ity where indicators of translatability are used
as features (Biçici and Way, 2014) and in-
stance selection for RTM is performed with
FDA5 (Biçici and Yuret, 2014). RTM works
as follows: FDA5→MTPP→ML training→
predict.

Rob (van der Goot and van Noord, 2015): This
system is inspired by a state-of-the-art semantic
relatedness prediction system by Bjerva et al.
(2014). It combines features from different
parses with lexical and compositional distribu-
tional feature using a logistic regression model.

STANFORD: This team uses a supervised sys-
tem with sentiment, phrase similarity matrix,
and alignment features. Similarity metrics are
based on vector space representation of phrases
which was trained on a large corpus.

TkLbLiiR (Glavaš et al., 2015): This team uses
a supervised model with about 15 comparison-
based numeric features. The most important
features are the distributional features weighted
by the topic-specific information.

WHUHJP: This team uses the word2vec tool to
train a vector model on the training data, then
computes distributed representations of sen-
tences in the test set and their cosine similarity.

Yamraj: This team uses pre-trained word and
phrase vectors on Google News data set (about
100 billion words) and Wikipeida articles. The
system relies on the cosine distance between
vectors representing the sentences computed
using open-source toolkit Gensim.

7 Conclusions and Future Work

We have presented the task definition, data annota-
tion and evaluation results to the first Paraphrase and
Semantic Similarity In Twitter (PIT) shared task.
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Our analysis provides some initial insights into the
relation and the difference between paraphrase iden-
tification and semantic similarity problems. We
make all the data, baseline systems and evaluation
scripts publicly available.8

In the future, we plan to extend the task to allow
leverage of more information from social networks,
for example, by providing the full tweets (and their
ids) that are associated with each sentence and with
each topic.
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Abstract

This paper describes MITRE’s participation
in the Paraphrase and Semantic Similar-
ity in Twitter task (SemEval-2015 Task 1).
This effort placed first in Semantic Similar-
ity and second in Paraphrase Identification
with scores of Pearson’s r of 61.9%, F1 of
66.7%, and maxF1 of 72.4%. We detail the
approaches we explored including mixtures
of string matching metrics, alignments us-
ing tweet-specific distributed word represen-
tations, recurrent neural networks for model-
ing similarity with those alignments, and dis-
tance measurements on pooled latent semantic
features. Logistic regression is used to tie the
systems together into the ensembles submitted
for evaluation.

1 Introduction

Paraphrase identification is the task of judging if two
texts express the same or very similar meaning. Au-
tomatic identification of paraphrases has practical
applications for a range of domains, including news
summarization, information retrieval, essay grading,
and evaluation of machine translation outputs. Fur-
thermore, work on paraphrase detection tends to ad-
vance the state of art in modeling semantics and se-
mantic similarity in natural language in general.

Current approaches to paraphrase detection vary
widely. The Microsoft Research Paraphrase Corpus,
with pairs of sentences from newswire text, serves as
a benchmark for the task (Dolan et al., 2004). One
top result on this dataset uses features from surface
characteristics of text (Madnani et al., 2012). An-
other system with comparable results models sen-
tences as hierarchical compositions of distributed
word embeddings (Socher et al., 2011). SemEval-
2015 Task 1 (Xu et al., 2015), with a corpus drawn
from Twitter, offers an opportunity to test paraphrase

systems in a domain with an expanded vocabulary
and informal grammar.

Our contribution builds upon the recent success
of distributed representations of language (Mikolov
et al., 2013a; Pennington et al., 2014). We further
aim to minimize reliance on language- and domain-
dependent tools. However we do not possess enough
labeled paraphrase data to train a generalized model
of word composition. Instead we explore models
that examine low-dimensional relationships between
individual pairs of aligned words, and combine the
above with string similarity features that generalize
well to out-of-vocabulary terms.

In the remainder of this paper, we describe our
high-performing system for modeling semantic sim-
ilarity between two tweets. In Section 2 we describe
the data, task, and evaluation. In Section 3 we dis-
cuss details of systems we built to solve the semantic
similarity task. We describe our experiments on dif-
ferent parameterizations in Section 4. In Section 5
we present performance results for our ensembles
and all subsystems, and in Section 6 we summarize
our findings.

2 Task, data and evaluation

Paraphrase and Semantic Similarity in Twitter was a
shared task organized within SemEval-2015.

The task organizers released 18,762 pairs of
English-language tweets with a 70/25/5 split for
train, development, and test sets. The organizers re-
moved URLs, deleted non-alphanumeric characters,
and provided part of speech tags. Tweet pairs were
judged by five human annotators to be a paraphrase
(e.g. Amber alert gave me a damn heart attack and
That Amber alert scared the crap out of me) or not
(e.g. My phone is annoying me with these amber
alert and Am I the only one who dont get Amber
alert). Approximately 35% of provided pairs are
paraphrases. For each pair, task participants predict
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a binary label and optionally provide a confidence
score. Systems were evaluated by F1 measure, F1 at
the best confidence threshold, and Pearson correla-
tion with expert annotation.

3 System overview

We created an ensemble of seven systems which
each independently predicted a semantic similarity
score. Some features were reused among the compo-
nents, including word embeddings and alignments.

3.1 Twitter Word Embeddings

We used word2vec to learn distributed representa-
tions of words and phrases from an unlabeled cor-
pus of 330.3 million tweets sampled in 2013 from
Twitter’s public streaming API. Retweets and non-
English messages were not included in the sam-
ple. Text was lowercased and processed to mimic
the style of the task data. We applied word2phrase
(Mikolov et al., 2013b) twice consecutively to iden-
tify phrases comprised of up to four words. We then
trained a skip-gram model of size 256 for the 1.87
million vocabulary items which appeared at least 25
times, using a context window of 10 words and 15
negative samples per positive example. These hy-
perparameters were selected based on our prior ex-
perience in training embeddings for identification of
word analogies.

3.2 Alignment

Comparing semantics in two tweets can be imagined
as a tallying process. One finds some semantic atom
on the left hand side and searches for it in the right
hand side. If found, it gets crossed off. Otherwise,
that atom contributes to a difference. Repeat on the
other side. This idealized process is reminiscent of
finding translation equivalences for training machine
translation systems (Al-Onaizan et al., 1999).

To this end, we built an alignment system on top
of word embeddings. Each tweet was converted into
a bag of words, and two different alignments were
created. The min alignment maximized the cosine
similarity of aligned pairs under the constraint that
no word could be aligned more than once. The max
alignment was constrained such that each word must
be paired with at least one other, and the total num-
ber of edges in the alignment can be no more than

word count of the longer string. LPSOLVE was em-
ployed to find the assignment maximizing these cri-
teria (Berkelaar et al., 2004).

3.3 Seven Systems

Random Projection The random projection fam-
ily of Locality Sensitive Hashing algorithms is a
probabilistic technique for reducing high dimen-
sional inputs to a fixed-length low dimensional
sketch (Charikar, 2002), in which similar inputs
yield similar hashes. This characteristic is useful
for approximate nearest neighbor search and online
clustering (Petrović et al., 2010), but we use it here
to obtain an unsupervised similarity metric that iden-
tifies string overlap at many levels of granularity.
Concretely, we extract the set of all word unigrams,
word bigrams, and character n-grams of lengths 2
through 5. These features are input to 2048 inde-
pendent binary classifiers with random weights, and
each classifier contributes a single bit to the resulting
hash. We assess similarity of two tweets by measur-
ing the Hamming distance between their bit vectors.

Recurrent Neural Network One common ap-
proach to paraphrase detection is to construct a
model of each sentence before learning a distance
function over these representations. We chose to
sidestep this global semantics modeling problem
and instead directly measured the relationships be-
tween embedded lexical items.

In particular, we used a Recurrent Neural Net-
work to examine the sequence of aligned word pairs
obtained from the min alignment process described
in section 3.2. For each aligned pair, we computed
descriptive statistics that were used as input to the
network: cosine similarity and Euclidean distance
of the aligned word embeddings, the magnitudes
of each word’s vector, and the relative position of
each word in the sentence. These features enabled
the network to consider the quality of the alignment
without introducing sparsity by including the word
vectors themselves. The RNN also received two
global features at each time step: the ratio of sen-
tence lengths and the normalized Hamming distance
computed via random projection as described above.

The RNN contained 8 input features, 16 hid-
den units, and a single output, composed as an
Elman network (Elman, 1990) with tied weights.
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We unfolded it using backpropagation through
time (Williams and Zipser, 1990) to create a deep
network with as many hidden layers as there were
lexical units in the shorter sentence. We trained
the RNN with stochastic gradient descent and a for-
mulation of dropout (Hinton et al., 2012) that ran-
domly removed a single word pair from each train-
ing sequence. Parameters were tuned on the devel-
opment set, including a minibatch of 20, a learning
rate of 0.05 or 0.06, hyperbolic tangent activation
functions, and early stopping after about 2000 iter-
ations. Two RNNs were used in the final ensemble,
each trained with different learning rates.

Paris: String Similarity MITRE entered a sys-
tem based on string similarity metrics in the 2004
Pascal RTE competition (Bayer et al., 2005). We re-
vivified the code base (called libparis) and up-
dated it for this evaluation. Eight different string
similarity and machine translation evaluation ap-
proaches are implemented in this package; mea-
sures include an implementation of the MT evalu-
ation BLEU (Papineni et al., 2002); WER, a com-
mon speech recognition word error rate based on
Levenshtein distance (Levenshtein, 1966); WER-g,
an error rate similar to WER, but with denomina-
tor based on the min edit traceback (Foster et al.,
2003); the MT evaluation ROUGE (Lin and Och,
2004); a simple position-independent error rate sim-
ilar to PER as described in Leusch et al. (2003); both
global and local similarity metrics often used for bi-
ological string comparison as described in Gusfield
(1997). Finally, there are precision and recall mea-
sures based on bags of all substrings (or n-grams in
word tokenization).

In total we computed 22 metrics for a pair of
strings. The metrics were run on both lowercased
and original versions as well as on word tokens
and characters, yielding 88 string similarity features.
Some of the metrics are not symmetric, so they were
run both forward and reversed based on presentation
in the dataset yielding 176 features. Finally, for each
feature value x, log(x) was added as a feature, pro-
ducing a final count of 352 string similarity features.
We used LIBLINEAR with these features to build a
L1-regularized logistic regression model.

Simple Alignment Measures Section 3.2 de-
scribes methods we used for aligning two strings.

We built one component that computed similarity
between tweets using simple metrics applied only to
the aligned word pairs. Mean vectors and pooled
component-wise min and max vectors were com-
puted for both sides of the two different types of
alignments. Those six pairs of vectors were com-
pared using cosine distance, Manhattan distance,
and Euclidean distance, resulting in eighteen fea-
tures. Separately, the alignments were traversed and
pairs of word vectors were compared using the three
distance functions. The means of those comparisons
produced six more features. L2-regularized logistic
regression combined these 24 features into a single
measure of semantic similarity.

Similarity Matrices, Averaged and Min/Max
Two subsystems drew upon a similarity matrix and
dynamic pooling technique presented in Socher et
al. (2011). This method considers distance between
all syntactically meaningful subunits of two sen-
tences. First, a representation is induced for each
node of the parse tree of two sentences, starting from
word embeddings at leaf nodes. Then a similarity
matrix is created from measurements of Euclidean
distance between every pair of nodes. Finally, a dy-
namic pooling scheme reduces this to a fixed-size
representation that is used as input to a logistic re-
gression classifier. For one subsystem in MITRE’s
contribution, nodes were represented as averages of
their child nodes; for another, nodes were repre-
sented as the concatenation of the minimum and
maximum of the child nodes.

Normalized Averages This subsystem computed
an unsupervised distance metric based on semantic
features. We first replaced each word in the tweet
with its synonym from the Twitter normalization
lexicon (Han and Baldwin, 2011), for example con-
verting tv to television. The embeddings of these
words were used in experiments on weighted aver-
aging and pooling, folding of part-of-speech tags,
and various distance and similarity metrics. The best
F1 score on the development set was achieved by av-
eraging the word vectors and computing Euclidean
distance between the two tweets’ resulting vectors.

3.4 Ensembles
The predictors described above were selected for in-
clusion in a larger ensemble on the basis of their
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Name Factored Ablated
BLEU 61.5 64.6
ROUGE 60.2 63.8
PER 60.0 64.4
substring bags 58.7 63.5
WER 58.0 63.9
WER-g 57.9 63.9
global sim 57.7 64.1
local sim 55.9 63.1
none − 63.9

Table 1: Dev set F1 scores for string similarities.

performance on the development set. Each compo-
nent’s semantic similarity score contributed to the
final prediction with a weighting determined by L2-
regularized logistic regression. Binary paraphrase
labels were assigned by choosing an ensemble score
threshold that optimized development set F1.

The ensemble described in this paper was submit-
ted for scoring under the name MITRE IKR. A sec-
ond submission was identical with one exception:
its supervised subsystems were retrained on the con-
catenation of the train and development data.

4 Experiments

In all experiments, systems were trained while omit-
ting debatable examples with scores of 2 as sug-
gested by the task organizers. The development set
was used both to fit the hyperparameters (ablations,
lambdas) and the eventual ensemble.

String Similarity Ablations The MT evaluation
metrics and string similarities contributed varying
amounts to that system. In Table 1 we show the
score achieved by the logistic regression system
built using just that one measure (in the Factored
column) as well as the F1 achieved by the logistic
regression when only that one measure is left out
(Ablated column). BLEU was omitted from the sub-
system as a result of this analysis.

Ensemble Construction We focused our ensem-
bles only on the output of our individual compo-
nents, ignoring the features from the original data
they attempt to model. Table 3 shows the weights of
these components. Note that NormalizedAvg pro-
duced larger outputs than the rest; as a result its co-
efficient is about 10 times smaller than its effect.

System Pearson F1 maxF1
MITRE 61.9 66.7 71.6
RTM-DCU 57.0 54.0 69.1
HLTC-UST 56.3 65.1 67.6
ASOBEK 50.4 67.2 66.3
MITRE components

RNN 60.8 71.8
Paris 58.7 68.2
RandProj 54.9 64.6
SimMat_avg 54.6 64.7
SimMat_minmax 53.5 62.8
Aligner 51.8 61.9
NormalizedAvg 45.8 61.1

Table 2: Test scores of Semantic Similarity Systems (%).

5 Results

The evaluation of our components on the compe-
tition test set is shown in Table 2, along with a
sample of top-scoring competitors. Our best en-
semble achieves 0.619 Pearson correlation with ex-
pert judgments, a state-of-the-art result. In contrast,
the correlation of crowdsourced annotations with ex-
pert ratings is 0.735 (Xu et al., 2015). Our sys-
tem’s F1 on the binary paraphrase judgment task was
0.667, with a maximum F1 of 0.716 using an opti-
mal threshold. Additionally several individual com-
ponents performed well in isolation. The recurrent
neural network alone achieved Pearson of 0.608 and
a max F1 of 0.718.

6 Conclusion

Seven models of semantic similarity were combined
for paraphrase detection in Twitter. This ensemble
placed first in the Semantic Similarity competition
organized within SemEval-2015 Task 1. The simi-
larity judgments showed 0.619 correlation with ex-
pert judgment, a relative improvement of 8.6% over
other published results (Xu et al., 2015).

Our best performing single system represents a
novel departure from existing paraphrase detection
approaches. The recurrent neural network makes
use of the relationships between aligned word pairs,
an approach which we feel is well-suited to informal
contexts where explicit models of syntax face addi-
tional challenges.
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Component Φ Component Φ
RNN1 −1.89 SimMat_minmax 0.84
RNN2 −1.11 Aligner 0.28
Paris −1.81 NormalizedAvg −0.034
SimMat_avg −1.28 bias 0.91
RandProj 1.11

Table 3: Final MITRE component coefficients in the en-
semble logistic regression.
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Abstract

This paper describes our approach for the
Community Question Answering Task, which
was presented at the SemEval 2015. The sys-
tem should read a given question and identify
good, potentially relevant, and bad answers
for that question. Our approach transforms the
answers of the training set into a graph based
representation for each answer class, which
contains lexical, morphological, and syntactic
features. The answers in the test set are also
transformed into the graph based representa-
tion individually. After this, different paths are
traversed in the training and test sets in order
to find relevant features of the graphs. As a
result of this procedure, the system constructs
several vectors of features: one for each tra-
versed graph. Finally, a cosine similarity is
calculated between the vectors in order to find
the class that best matches a given answer.
Our system was developed for the English lan-
guage only, and it obtained an accuracy of
53.74 for subtask A and 44.0 for subtask B.

1 Introduction

In this paper we present the experiments carried out
as part of our participation in the SemEval-2015
Task 3 (Answer Selection in Community Question
Answering). The Answer Selection in Commu-
nity Question Answering task is proposed for the
first time this year in the International Workshop on
Semantic Evaluation (SemEval-2015). The task is
based on an application scenario, which is related to
textual entailment, semantic similarity and NL infer-
ence.

Community question answering (CQA) websites
enable people to post questions and answers in var-
ious domains. In this way, users can obtain specific
answers to their questions, instead of searching in
the large volume of information available in the web.
However, it takes effort to go through all possible an-
swers and select which one is the most accurate one
for a specific question. The task proposes to auto-
mate this process by predicting the quality of exist-
ing answers with respect to a question.

There are few works in the literature on evaluat-
ing the quality of answers provided in CQA sites.
Most of such works employ non-textual and tem-
poral features in order to built classification models
for predicting the best answer for a given question.
In (Jeon et al., 2006), the authors extract 13 non-
textual features from the Naver data set and build
a maximum entropy classification model to predict
the quality (three classes: Bad, Medium and Good)
of a given answer. A similar approach is used in
(Shah and Pomerantz, 2010), but extracting 21 fea-
tures (mainly non-textual) from Yahoo! Answers;
the authors employ a logistic regression and classi-
fication model to predict the best answer. Besides,
a set of temporal features is proposed in (Cai and
Chakravarthy, 2011) in order to predict the best an-
swer for a given question. In this work the authors
argue that the traditional classification approaches
are not well suited for this problem because of the
highly imbalanced ratio of the best answer and the
non-best answers in their data set, so they propose
to use learning to rank approaches.

Unlike these approaches, we use only textual in-
formation for predicting the quality of the answers.
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Our approach is based on our previous research
(Pinto et al., 2014) and (Sidorov et al., 2014), where
we propose the graph-based representation model
(Integrated Syntactic Graph) and the soft similarity
measure (soft cosine measure). Our experimental re-
sults are promising, they overcome the baseline sys-
tem for this challenge.

The rest of the paper is organized as follows. Sec-
tion 2 describes our approach. Section 3 presents the
configuration of the submitted runs and the evalua-
tion results. Finally, Section 4 presents the conclu-
sions and outlines some directions of future work.

2 Approach

For many problems in natural language processing,
graph structure is an intuitive, natural and direct way
to represent data. There exist several research works
that have employed graphs for text representation in
order to solve some particular problem (Mihalcea
and Radev, 2011). We propose an approach based on
a graph methodology, which was described in detail
in (Pinto et al., 2014), for building the correspond-
ing system of the two subtasks. These subtasks are
described as follows:

Subtask A Given a question (short title + extended
description) and a list of community answers,
classify each of the answers as: Good, Potential
or Bad (bad, dialog, non-English, other).

Subtask B Given a YES/NO question (short title +
extended description) and a list of community
answers, decide whether the global answer to
the question should be yes, no or unsure, based
on the individual good answers.

The proposed system consists of the following sub-
modules: document preprocessing, graph genera-
tion, and answer quality classification.

2.1 Document Preprocessing
An XML parser receives as input a structured cor-
pus in XML format. This XML file contains all the
questions, along with their respective answers. An
XML interpreter extracts the questions and associ-
ated answers.

Thereafter, we process the answers for both sub-
tasks separately. All the answers belonging to the
same class are grouped together, and the result is

passed to the next module. This means that at the
end of this module, we will have all the good an-
swers in one document, the bad ones in another doc-
ument and so on for all classes. In the same way, for
the task B, the yes/no answers are grouped together
in different documents.

2.2 Graph Generation
In the graph generation module, all sentences of
each class are parsed to produce what we call their
Integrated Syntactic Graph (ISG) representation (see
(Pinto et al., 2014)). For the graph representation
we took into account various linguistic levels (lexi-
cal, syntactic, morphological, and semantic) in order
to capture the majority of the features present in the
text.

The process of the graph generation is performed
by the following submodules:

The Syntactic Parser is the base of the graph struc-
ture. We use the Stanford Dependency Parser1

for producing the parsed tree for each sentence
of the documents. In this type of parsing, we
detect grammatical relation.

The Morphological Tagger obtains PoS tags
of words. For this purpose we used the Stanford
Log linear Part-Of-Speech Tagger2 for English.
The Lancaster stemmer algorithm was used in
order to obtain word stems.

As a result of this process, each class is repre-
sented as a graph rooted in a ROOT − 0 node. The
vertices to sub-trees represent all sentences in the
class document. The nodes of the trees represent
words or lemmas of the sentences along with their
part-of-speech tags. The vertices between nodes
represent the dependency tags between these con-
nected nodes along with a frequency label, for exam-
ple: nsubj-5, that shows the number of occurrences
of the pair (initial node, final node) in the graph plus
the frequency of the dependency tag of the same pair
of nodes. In the same way, the answers to be clas-
sified in one of the quality classes are represented in
an ISG with the same characteristics.

In order to fully understand the process of con-
struction of the ISG and the collapse of nodes in the

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://nlp.stanford.edu/software/tagger.shtml
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(a ) I'm going to share with you the story as to how I have become an HIV/AIDS campaigner

(c ) In November of 2003 I was invited to take part in the launch of Nelson Mandela's 46664 Foundation

(b ) And this is the name of my campaign, SING Campaign

Figure 1: Dependency trees of three sentences of a target text using word POS combination for the nodes and depen-
dency labels for the edges
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Figure 2: The Integrated Syntactic Graph for the three sentences considered as example
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graph, in Figure 1, we show the dependency trees
of three sentences; each node of the graph is aug-
mented with other annotations, such as the combi-
nation of lemma (or word) and POS tags: (lemma
POS).

The collapsed graph of the three sentences is
shown in Figure 2. Each edge of this graph contains
the dependency tag together with a number that in-
dicates the frequency of the dependency tag plus the
frequency of the pair of nodes, both calculated using
the occurrences of the dependency trees associated
to each sentence.

The feature extraction process starts by fixing the
root node of the answer graph as the initial node,
whereas the selected final nodes correspond to the
remaining nodes of the answer graph. We use the
Dijkstra′s Algorithm (Dijkstra, 1959) for find-
ing the shortest paths between the initial and each
final node. After this, we count the occurrences of
all the multi-level linguistic features considered in
the text representation such as POS tags and depen-
dency tags found in the path. The same procedure
is performed with the class document graph, using
the pair of nodes identified in the answer graph as
the initial and final node. As a result of this proce-
dure, we obtain two feature vectors: one for the an-
swer and another one for the class document. This
module was implemented in Python, using the Net-
workX3 package for creation and manipulation of
graphs.

2.3 Classification based on Quality of Answers

This module receives several feature vectors (−→ft,i)
for each class document. Thus, the class docu-
ment d is now represented by m features (d∗ =
{−→fd,1,

−→
fd,2, ...,

−−→
fd,m}), as well as the different an-

swers a, (a∗ = {−→fa,1,
−→
fa,2, ...,

−−→
fa,m}), being m the

number of different paths that can be traversed in
both graphs.

We use the cosine similarity measure from the
equation below for calculating the degree of simi-
larity among each traversed path.

Similarity(a∗, d∗) =
m∑

i=1

Cosine(−→fa,i,
−→
fd,i)

3https://networkx.github.io/

=
m∑

i=1

−→
fa,i · −→

fd,i

||−→fa,i|| · ||−→fd,i||
After obtaining all similarity scores between the

answers with each of the class documents, the class
(to which the document belongs) achieving the high-
est score is selected as the correct class for each an-
swer.

3 Results

The acronym of our system is CICBUAPnlp. Tables
1 and 2 show the scores for the English subtasks A
and B on the test data, respectively. Although, our
results did not overcome the general average, it is
worth noting that our methodology is quite simple
and straightforward. We only used syntactic and
morphological features, thus comparing the struc-
tures of the answers against the structure of the la-
beled sets. Instead of training a classifier, we built
a Syntactic Integrated Graph for each class and then
try to match the answers in the test set against them,
calculating in this way the similarity between the
graphs.

Table 1: Results of the subtask A, English
TeamId Macro F1 Accuracy Rank
JAIS 57.19 72.52 1
HITSZ-ICRC 56.41 68.67 2
QCRI 53.74 70.50 3
ECNU 53.47 70.55 4
ICRC-HIT 49.60 67.68 5
VectorSlu 49.10 66.45 5
Shiraz 47.34 56.83 7
FBK-HLT 47.32 69.13 8
Voltron 46.07 62.35 9
CICBUAPnlp 40.40 53.74 10
Yamraj 37.65 45.50 11
CoMiC 30.63 54.20 12

4 Conclusion and Future Work

We described the approach and the system devel-
oped as a part of our participation in the Answer
Selection in Community Question Answering task.
The approach uses a graph structure for represent-
ing the classes and the answers. It extracts lin-
guistic features from both graphs—classes and an-
swers—by traversing shortest paths. The features
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Table 2: Results of the subtask B, English
TeamId Macro F1 Accuracy Rank
VectorSlu 63.7 72.0 1
ECNU 55.8 68.0 2
QCRI 53.6 64.0 3=4
HITSZ-ICRC 53.6 64.0 3=4
CICBUAPnlp 38.8 44.0 5
ICRC-HIT 30.9 52.0 6
Yamraj 29.8 28.0 7
FBK-HLT 27.8 40.0 8

are further used for computing the similarity be-
tween the classes and the answers.

We sent two runs (primary and contrastive) for
each English subtask to the evaluation forum. The
best run in both cases was the primary run.

In future work, we are planning to use the soft
cosine measure to compare the similarity between
the answers and the quality classes, thus evaluating
the feasibility of this kind of structures for this task.
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Abstract

This paper describes the system developed by
our team (HLTC-HKUST) for task 1 of Se-
mEval 2015 workshop about paraphrase clas-
sification and semantic similarity in Twitter.
We trained a neural network classifier over a
range of features that includes translation met-
rics, lexical and syntactic similarity score and
semantic features based on semantic roles. The
neural network was trained taking into consid-
eration in the objective function the six dif-
ferent similarity levels provided in the corpus,
in order to give as output a more fine-grained
estimation of the similarity level of the two
sentences, as required by subtask 2. With an
F-score of 0.651 in the binary paraphrase clas-
sification subtask 1, and a Pearson coefficient
of 0.697 for the sentence similarity subtask 2,
we achieved respectively the 6th place and the
3rd place, above the average of what obtained
by the other contestants.

1 Introduction

Paraphrase identification is the problem to determine
whether two sentences have the same meaning, and is
the objective of the task 1 of SemEval 2015 workshop
(Xu et al., 2015).

Conventionally this task has been mainly evaluated
on the Microsoft Research Paraphrase corpus (Dolan
and Brockett, 2005), which consists of pairs of sen-
tences taken out from news headlines and articles.
News domain sentences are usually grammatically
correct and of average to long length. The current
state-of-the-art method to our knowledge on this cor-
pus (Ji and Eisenstein, 2013) trains an SVM over

latent semantic vectors, lexical and syntactic simi-
larity features. Although their main objective was
to show the effectiveness of a method based on la-
tent semantic analysis, it is also evident that other
features pertinent to different aspects of sentence sim-
ilarity are able to boost the results. Previously Socher
et al. (2011) used a recursive autoencoder to simi-
larly obtain a vector representation of each sentence,
again combining other lexical similarity features to
improve the results. Other methods, such as Mad-
nani et al. (2012) or Wan et al. (2006) used instead a
more traditional supervised classification approach
over different sets of features and different classifiers,
most of which improved previous results.

Task 1 of SemEval 2015 workshop required to
evaluate paraphrases on a new corpus, consisting of
sentences taken from Twitter posts (Xu et al., 2014).
Twitter sentences notoriously differ from those taken
from news articles: the 140 characters limit makes
the sentences short, with few words, lots of different
abbreviations; they also include many misspelled and
invented words, and often lack a correct grammatical
structure. Another important difference is the six-
level classification labels provided, compared to the
binary labels of MSRP corpus, which allows a fine-
grained evaluation of the similarity level between the
sentences.

The task was divided into two subtasks. Subtask
1 was the classical binary paraphrase classification
task, where given a pair of sentences the system had
to identify if it is a paraphrase or not. Subtask 2
instead required the system to provide a score in the
range [0, 1] that measures the actual similarity level
of the two sentences.
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2 System Description

We chose a supervised machine learning strategy
based on a multi-view set of features. Our first goal
was to select the features in order to get a complete
estimation of lexical, syntactic and semantic similar-
ity between any given pair of sentences. In particular
we were interested in what roles semantic features
can play in this task. The second goal was to make
use of a classifier which can take full advantage of the
six level labeling provided in order to have good per-
formance in both subtasks, identified in an artificial
neural network.

2.1 Lexical and Syntactic Similarity Features

The first set of lexical features includes three binary
indexes obtained from the analysis of the numerical
tokens: the first of them is 1 if they are the same in
both sentences or there are not any, the second is 1
only if they are the same, and the third is 1 if the
tokens representing numbers of one sentences are the
subset of the other (Socher et al., 2011). Two other
features include the percentage of overlapping tokens,
and the difference in sentence length. Another feature
considers the word order: starting from one sentence
we align the tokens that matches with the other sen-
tence, and for each aligned pair we take the average
of the differences of the absolute positions of the two
elements, normalized by the length of the first sen-
tence, and we do the same switching the order of the
two sentences. Another group of features involves
WordNet word synonym sets (Miller, 1995). We take
from them, separately for nouns and verbs, the av-
erage of the path similarity scores obtained, among
all word alignments, from the one which gives the
maximum score. When the two words in the pair
to be scored have multiple synonym sets we select
the two sets that again are giving the highest score.
Finally, in order to include an estimation of the level
of similarity in the syntax parse tree of the sentences,
we use the parse tree edit distance from the Zhang-
Shasha algorithm (Zhang and Shasha, 1989; Wan
et al., 2006).

2.2 Semantic Similarity Features

The way we evaluate the semantic similarity of each
pair of sentences is through the analysis of the se-
mantic roles. The first feature we choose in this

sense is the semantic role based MEANT machine
translation score (Lo et al., 2012), effective to pro-
vide, as shown by various experiments, a translation
evaluation closer to human judges. This metric first
annotates each sentence with semantic roles (Pradhan
et al., 2004), then aligns them and computes a similar-
ity score only within the aligned frames (Fung et al.,
2007) using the Jaccard coefficient (Tumuluru et al.,
2012). Another set of features is obtained by looking
at the semantic roles themselves and their alignment
without looking at the content: these include the per-
centage of semantic roles of one sentence that are
also present in the other, the percentage of correct
pairs of semantic roles after the alignment operated
for MEANT, and a binary feature equal to 1 in case
the semantic parser fails to give any output for at
least one of the sentences. In this last case all the
other features based on semantic roles are 0 except
the MEANT score which is set to the value of the
Jaccard coefficient between the whole sentences (Lo
and Wu, 2013).

2.3 Translation Metrics

Previous work (Finch et al., 2005; Madnani et al.,
2012) have shown that machine translation evalua-
tion metrics are useful for the paraphrase recognition
task, due to their ability to capture useful similarity
information to correctly classify the sentence pairs.

The various translation metrics all take into
account different aspects of sentence similarities.
BLEU (Papineni et al., 2002) and the subsequent
evaluation metrics such as NIST (Goutte, 2006) and
SEPIA (Habash and Elkholy, 2008) look at n-gram
overlaps between the source and the target sentences.
While the most basic BLEU takes into consideration
only n-gram overlap, the other metrics also consider
synonyms, stemming, simple paraphrase patterns and
the syntactic structure of the n-grams. Yet another
set of metrics are based instead on different princi-
ples: TER (Snover et al., 2006) and TERp (Snover
et al., 2009) count the number of edits needed to
transform a sentence into the other, MAXSIM (Chan
and Ng, 2008) evaluates lexical similarity perform-
ing a word-by-word matching and finding out how
much the aligned words are similar in each mean-
ing, BADGER (Parker, 2008) the distance between
the compression of each sentence obtained from the
Burrows-Wheeler transform algorithm (Burrows and
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Wheeler, 1994), and MEANT which, as discussed in
the previous section, scores the similarity of aligned
semantic frames.

For each pair of sentences the scores are calculated
first taking one of the sentences as the reference and
the other as the sample and then vice-versa. Both
scores are included as distinct features except in the
case of BADGER, as it computes a distance between
two objects without taking into account the direction.
In case of BLEU and NIST we use the scores from
unigrams up to 4-grams for BLEU (Madnani et al.,
2012) and up to the maximum order which gives at
least one result different than zero for NIST.

2.4 Classifier
To classify the sentence pairs we design a feedfor-
ward neural network. One of the main properties
of the neural network is its ability to learn complex
functions of the input values (Hornik et al., 1989). It
follows that in our task, given the combination of fea-
tures, the network would learn how to combine them
effectively and take advantage of their mutual interac-
tion. The neural network can also be trained using an
objective function that takes into consideration a la-
bel not just binary but which can take multiple values
in a given range. Therefore it has a good ability to
determine as output a precise estimation of the sim-
ilarity level of the sentence pair, particularly useful
in subtask 2. During our experiments the results we
obtained in the binary classification task over the de-
velopment set with the neural network were always at
least slightly higher than those obtained with an SVM
we used as a comparison system, further justifying
our neural network choice.

We choose a two layer standard configuration (hid-
den and output layer), where we fix the size of the
hidden layer large enough at three times the size of
the input layer; the hyperbolic tangent (tanh) and the
sigmoid are used respectively as the non-linear acti-
vation functions of the hidden layer and the output
layer. Due to this choice the output assumes values
in the interval [0, 1], which is also exactly the output
range required in subtask 2. The network weights,
with the exception of the ones associated to the bias
terms set at zero, are initialized (Glorot and Bengio,
2010) with uniform values in the range:

wt=0 ∈
[
−α

(
6

nin + nout

) 1
2

, α

(
6

nin + nout

) 1
2

]
(1)

Where α = 1 in case the activation function is the
hyperbolic tangent, and α = 4 with the sigmoid. We
train the model using standard backpropagation algo-
rithm, taking the cross-entropy as the cost objective
function:

E = −l log(y)− (1− l) log(1− y) +R (2)

where y is the network output, l the objective value
(both in the range [0, 1]), and R is an L2 regulariza-
tion term.

3 Experiments

3.1 Corpus
We made use of the corpus provided for the contest
(Xu et al., 2014), made of a training set of 13063
sentence pairs, a development set of 4727 pairs, and
a test set of 972 pairs released a few days before the
deadline without the labels. Each pair of sentences
was labeled by five users via Amazon Mechanical
Turk, hence providing a six-level classification label
(from (5, 0) when all the five user classify the pair as
a paraphrase, to (0, 5) when none of them identifies
the pair to be a paraphrase).

3.2 Experimental Setup
The neural network was setup with a hidden layer
dimension of three times the input. The development
set was used to tune the L2 regularization coefficient,
set at γ = 0.01, as well as the learning rate and the
other hyperparameters, and to have a measure of im-
provement against the official thresholding baseline
provided for the task (Das and Smith, 2009). To
implement the neural network we used THEANO
Python toolkit (Bergstra et al., 2010).

We train the network with all the sentences pro-
vided in the training set. The objective label of the
cross-entropy objective function was set to 1.0 for
pairs labeled (5, 0) and (4, 1), 0.75 for pairs labeled
(3, 2), 0.5 for pairs labeled (2, 3) and 0.0 for pairs la-
beled (0, 5). This choice allowed a more fine training
for task 2, where a continuous similarity value must
be estimated, without altering too much the behavior
in the binary estimation task 1.

The training procedure was repeated several times,
each time with a different random initialization of the
weights and with a different random pair order. In
order to avoid overfitting, in each run the training was

25



Subtask 1 Subtask 2
Description Precision Recall F-score Precision Recall F-score Pearson
Subtask 1 best (ASOBEK) 0.680 0.669 0.674 0.732 0.531 0.616 0.475
Subtask 2 best (MITRE) 0.569 0.806 0.667 0.750 0.686 0.716 0.619
Our method, run 2 0.574 0.754 0.652 0.738 0.611 0.669 0.545
Our method, run 1 0.594 0.720 0.651 0.697 0.657 0.676 0.563
Baseline (Das and Smith, 2009) 0.679 0.520 0.589 0.674 0.543 0.601 0.511
Contest average result 0.600 0.626 0.581 0.645 0.626 0.631 0.483

Table 1: Result comparison between our method and the winners of subtask 1 and subtask 2.

stopped when the best results on the development set
were obtained. The final results were taken from the
run that yielded the best accuracy, and in case of tie
the best F1 score, on the development set for subtask
1.

Run 2 instead was an attempt to include latent
semantic vectors obtained through the procedure de-
scribed in Ji and Eisenstein (2013) and added to the
network from an extra layer whose output was con-
catenated to the features input vector.

3.3 Results and Discussion

F-measure and Pearson coefficient were the official
evaluation metrics used to rank respectively subtask
1 and subtask 2. In subtask 1 – binary evaluation of
the sentence pairs – we achieved an F-score of 0.651
and ranked 6th over 18 methods, the best method
(ASOBEK) achieved an F-score of 0.674. In subtask
2, which was aimed at finding a similarity score in
the range [0, 1], with a Pearson coefficient of 0.563
we reached the 3rd place among 13 methods (the
other five provided only a binary output), with the
winner (MITRE) obtaining a Pearson score of 0.619.
A summary and comparison of our results with the
winners of the two subtasks, with the average results
and with the supervised official baseline (n-gram
overlapping features with logistic regression from
Das and Smith (2009)) is shown in table 1. For both
tasks our results are above the average both in term
of ranking and average results.

Semantic features were useful to identify para-
phrases, as they improved the accuracy and F-score
on the development set by 0.6%. But often the shal-
low semantic parser failed to give an output for many
sentences, limiting their potential contribution. This
is due to two main reasons. The first one is the imper-
fect accuracy of the semantic parser itself, also ob-
served in previous experiments where we employed
it, which fails to analyze sentences containing certain

patterns and predicates. The second reason, more
specific to Twitter domain, is that some sentences
lack a valid predicate or a proper grammatical struc-
ture. This prevents the semantic parser from giving
an accurate output.

The inclusion on latent semantic features in run
2 proved to be ineffective, as it improved subtask
1 F-score by less than 0.001, and gave a worse per-
formance in subtask 2. During the evaluation phase
other experiments were tried as using the latent se-
mantic vectors of Guo and Diab (2012), or using
the vectors as described in Ji and Eisenstein (2013)
instead of the extra layer, and other modifications,
all without obtaining any perceptible improvement
when the system was tested on the development set.
The non-perfect implementation and usage of these
features, together with the fact they might not be suit-
able to be applied to Twitter domain, may explain
this lack of improvement.

4 Conclusions

We have used a neural network classifier, with a com-
bination of multiple views of lexical, syntactic and
semantic information, as the system which partici-
pated in SemEval 2015 task 1, whose goal was to
classify paraphrases in Twitter. The inaccurate se-
mantic parsing is the main reason which prevented
us from obtain higher results. A possible future di-
rections that can improve the quality of the semantic
roles annotations, apart from improving the semantic
parser, is to apply an effective lexical normalization
method (such as Han and Baldwin (2011)), and even-
tually find ways to reconstruct the predicate in case
it is missing.
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Abstract

This paper reports the description and perfor-
mance of our system, FBK-HLT, participating
in the SemEval 2015, Task #1 "Paraphrase and
Semantic Similarity in Twitter", for both sub-
tasks. We submitted two runs with different
classifiers in combining typical features (lexi-
cal similarity, string similarity, word n-grams,
etc) with machine translation metrics and edit
distance features. We outperform the baseline
system and achieve a very competitive result to
the best system on the first subtask. Eventually,
we are ranked 4th out of 18 teams participating
in subtask "Paraphrase Identification".

1 Introduction

Paraphrase identification/recognition is an important
task that can be used as a feature to improve many
other NLP tasks as Information Retrieval, Machine
Translation Evaluation, Text Summarization, Ques-
tion and Answering, and others. Besides this, analyz-
ing social data like tweets of social network Twitter
is a field of growing interest for different purposes.
The interesting combination of these two tasks was
brought forward as Shared Task #1 in the SemEval
2015 campaign for "Paraphrase and Semantic Simi-
larity in Twitter" (Xu et al., 2015). In this task, given
a set of sentence pairs, which are not necessarily full
tweets, their topic and the same sentences with part-
of-speech and named entity tags; participating sys-
tem is required to predict for each pair of sentences
is a paraphrase (Subtask 1) and optionally compute
a graded score between 0 and 1 for their semantic
equivalence (Subtask 2). We participate in this shared

task with a system combining different features us-
ing a binary classifier. We are interested in finding
out whether semantic similarity, textual entailment
and machine translation evaluation techniques could
increase the accuracy of our system. This paper is
organized as follows: Section 2 presents the System
Description, Section 3 describes the Experiment Set-
tings, Section 4 reports the Evaluations, Section 5
shows the Error Analysis, and finally Section 6 is the
Conclusions and Future Work.

2 System Description

In order to build our system, we extract and select sev-
eral different linguistic features ranging from simple
(word/string similarity, edit distance) to more com-
plex ones (machine translation evaluation metrics),
then we consolidate them by a binary classifier. More-
over, different features can be used independently or
together with others to measure the semantic similar-
ity and recognize the paraphrase of given sentence
pair as well as to evaluate the significance of each
feature to the accuracy of system’s predictions. On
top of this, the system is expandable and scalable for
adopting more useful features aiming for improving
the accuracy.

2.1 Data Preprocessing

In order to optimizing the system performance, we
carefully analyze the given data and notice that
Tweets’ topic is a sentence part that is always present
in both sentences; this redundant similarity in the
pairs does not give any information about paraphrase
as two sentences can always have a same topic, yet
they are may be paraphrase or not. Hence, we remove
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the topic from the sentences, and we did the same in
the pairs with Part-of-Speech (POS) and named entity
tags. We have not try our system with the topic inside
tweets. As being suggested by the guideline of the
task, we remove all the pairs with uncertain judgment,
such as "debatable" (2, 3). After this data process-
ing, we obtain two smaller datasets with very short
texts, sometime reduced to a single word and with
very poor syntactic structure. We split the original
dataset into two subsets, in which one is composed
by sentence pairs and the other one is composed by
pairs with POS and named entity tags. Because of the
simple structure of given datasets, after undergoing
the preprocessing, we decide to focus on exploiting
the lexical and string similarity information, rather
than syntactic information.

2.2 Lexical and String Similarity

Firstly, for computing the lexical and string similarity
between two sentences, we take advantage from the
task baseline (Das and Smith, 2009) which is a sys-
tem using a logistic regression model with eighteen
features based on n-grams. This baseline system uses
precision, recall and F1-score of 1-gram, 2-grams
and 3-grams of tokens and stems from sentence pair
to build a binary classification model for identifying
paraphrase. We extract these eighteen features from
baseline system, without modifications, to use in our
classification model.

2.3 Machine Translation Evaluation Metrics

Other than similarity features, we also use evalua-
tion metrics for machine translation as suggested in
(Madnani et al., 2012) for paraphrase recognition
on Microsoft Research paraphrase corpus (MSRP)
(Dolan et al., 2004). In machine translation, the eval-
uation metric scores the hypotheses by aligning them
to one or more reference translations. We take into
consideration to use all the eight metrics proposed,
but we find that adding some of them without a care-
ful process of training on the dataset may decrease
the performance of the system. Thus, we use two met-
rics for word alignment in our system, the METEOR
and BLEU. We actually also take into consideration
the metric TERp (Snover et al., 2009), but it does
not make any improvement on system performance,
hence, we exclude it.

2.3.1 METEOR (Metric for Evaluation of
Translation with Explicit ORdering)

We use the latest version of METEOR (Denkowski
and Lavie, 2014) that find alignments between sen-
tences based on exact, stem, synonym and paraphrase
matches between words and phrases. We used the
system as distributed on its website, using only the
"norm" option that tokenizes and normalizes punctu-
ation and lowercase as suggested by documentation.1

We compute the word alignment scores on sentences
and on sentences with part-of-speech and named en-
tity tags, as our idea is that if two sentences are simi-
lar, their tagged version also should be similar.

2.3.2 BLEU (Bilingual Evaluation Understudy)
We use another metric for machine translation

BLEU (Papineni et al., 2002) that is one of the most
commonly used and because of that has an high re-
liability. It is computed as the amount of n-gram
overlap, for different values of n=1,2,3, and 4, be-
tween the system output and the reference translation,
in our case between sentence pairs. The score is tem-
pered by a penalty for translations that might be too
short. BLEU relies on exact matching and has no
concept of synonymy or paraphrasing.

2.4 Edit Distance
We use the edit distance between sentences as a fea-
ture; for that we used the Excitement Open Platform
(EOP) (Magnini et al., 2014). To obtain the edit dis-
tance, we use EDITS Entailment Decision Algorithm
(EDITS EDA), this algorithm classifies the pairs on
the base of their edit distance, we take only this one
without considering the entailment or not entailment
decision. We configure the system to use lemmas and
synonyms as identical words to compute sentence
distance, the system normalizes the score on the num-
ber of token of the shortest sentence. We choose this
configuration because it returns the best performance
evaluated on training and development data.

2.5 Classification Algorithms
We build two systems for the task with different clas-
sifiers, to optimize the Accuracy and F1-score. We
use WEKA (Hall et al., 2009) to obtain robust and
efficient implementation of the classifiers. We try
several classification algorithms in WEKA, among

1http://www.cs.cmu.edu/ alavie/METEOR/index.html
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Classifier / Features
Baseline
features
(n-grams)

Baseline
+METEOR

Baseline
+METEOR
+TERp

Baseline
+METEOR
+BLEU

Baseline
+METEOR
+BLEU
+EditDistance

Baseline (Das and Smith, 2009) 72.4
EOP EditDistance 73.3
VotedPerceptron 73.7 75.6 75.5 75.8 76.2
MultiLayerPerceptron 73.9 75.6 75.3 75.4 76.1

Table 1: Accuracy obtained on development dataset using different classifiers with different features.

others, we find that the VotedPerceptron (with expo-
nent 0.8) and MultilayerPerceptron (with learn rate
0.1; momentum 0.3 and N 10000) return the best
performance for the evaluation on training and devel-
opment data.

3 Experiment Settings

For Subtask 1, we train two models with different fea-
ture settings using the VotedPerceptron and Multilay-
erPerception classification algorithms on the training
dataset and we evaluate these models on the devel-
opment dataset. Finally, we use the same models for
the evaluation on the test dataset. In table 1, we re-
port the Accuracy results obtained by using different
classifiers with different features. Our chosen classi-
fication algorithms outperform the baseline and EOP
EditDistance (standalone setting). Table 2 shows
F1-score obtained with different classifiers on our
best set of features, and our classification algorithms
again perform much better the baseline and EOP Ed-
itDistance.

For Subtask 2, due to no training data is given
for computing the semantic similarity, a different ap-
proach is needed. We do not use a classifier, our
similarity score is simply the average between ME-
TEOR score and edit distance score.

Classifier F1

Baseline (Das and Smith, 2009) .502
EOP EditDistance .609
VotedPerceptron .746
MultiLayerPerceptron .741

Table 2: F1-score obtained using different classifiers on
the best set of features (baseline + METEOR + BLEU +
EditDistance).

Subtask1 Subtask2
Team Prec Rec F1 Pearson
Baseline(logistic reg) .679 .520 .589 .511
Baseline(WTMF) .450 .663 .536 .350
Baseline(random) .192 .434 .266 .017
ASOBEK(1st Subtask1) .680 .669 .674 .475
MITRE(1st Subtask2) .569 .806 .667 .619
FBK-HLT(voted) .685 .634 .659 .462
FBK-HLT(multilayer) .676 .549 .606 .480

Table 3: Paraphrase and Semantic Similarity Results.

4 Evaluations

We submit two runs using two models described in
the Section 3 for both subtasks. In the Table 3, we re-
port the performance of our two runs against the base-
lines and best systems in each subtask. In Subtask 1,
our runs outperform all three baselines and achieve
very competitive results to the best system ASOBEK.
In the run FBK-HLT(voted), we even achieve a better
Precision than the best system. In Subtask 2, though
we apply a simple computation method for semantic
similarity by averaging the word alignment score and
EditDistance, we still have better results than two our
of three baselines.

5 Error Analysis

In this section, we conduct an analysis of the mis-
classifications that our best system, FBK-HLT(voted),
makes on test dataset. We extract and show some
randomly selected examples in which our system
classifies incorrectly, both false positive or false neg-
ative; and then we analyze the possible causes for
the misclassification. This inspection yields not only
the top sources of error for our approach but also
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uncovers sources of unclear annotations in dataset.

True True False False
Positive Negative Positive Negative

111 612 51 64

Table 4: Error Analysis.

5.1 False positive
[1357] omg Family Guy is killing me right now -
OMG we were quoting family guy
[1357] family guy is trending in the US - Family guy
is so racist or maybe they just point out the racism in
America
[4135] hahaha that sounds like me - That sounds
totally reasonable to me
[5211] The world of jenks is such a real show - Jenks
from the World of Jenks is such a good person
[128] Anyone trying to see After Earth sometime
soon - Me and my son went to see After Earth last
night

Though all these sentence pairs share many word
similarity/matching and alignments, they are anno-
tated as non-paraphrase. For example, the sentence
pair [4135] has very high word matching and align-
ment after removing the common topic "sounds", but
the important words "like" and "reasonable" which
differ the meaning between two sentences, are not
really semantically captured and distinguished by our
system. As our system does not use any semantic
feature, this kind of semantic difference is difficult to
distinguish,leading to false positive case.

5.2 False negative
[4220] Hell yeah Star Wars is on - Star Wars and
lord of the rings on tv
[785] Chris Davis is putting the team on his back -
Chris Davis doing what he does
[400] Rafa Benitez deserves a hell of a thank you -
Any praise for Benitez from my Chelsea followers
[2832] Classy gesture by the Mets for Mariano - real
class shown by The Mets Mo Rivera is a legend
[4062] Shonda is a freaking genius - THAT LADY IS
AMAZING I LOVE SHONDA

This case is opposite to the previous case, even
though these sentence pairs do not share many word

similarity and alignment, they are annotated as para-
phrase. We can possibly propose some hypothesis as
follows:

Extra information Though the pairs [4220] and
[400] may not be paraphrase according to the para-
phrase definition in the literature (Bhagat and Hovy,
2013), they are annotated as paraphrase in the gold-
standard labels. We notice that as one sentence con-
tains more extra information than the other one, it
leads to low word similarity and alignment, which
makes our system make wrong classification.
Specific knowledge-base In this case, the pairs
[785] and [2832] require a specific knowledge-base,
which is about baseball, to recognize the paraphrase;
hence, even for human without any related knowl-
edge, it might be difficult detect the paraphrase.
Common sense Though both sentences of the pair
[4062] do not share any word similarity/alignment,
they have a positive polarity that may allow iden-
tifying the paraphrase. This case may be easy for
human to identify the paraphrase, yet it is difficult
for machine to capture the same perception.

Table 4 shows that we can improve our system
performance by reducing the false positive and false
negative. In other word, we need to exploit more se-
mantic features to make correct classification. How-
ever, according to our analysis for the false negative,
it is difficult to cover these cases.

6 Conclusions and Future Work

In this paper, we describe a system participating in
the SemEval 2015, Task #1 "Paraphrase and Seman-
tic Similarity in Twitter", for both subtasks. We
present a supervised system which considers mul-
tiple features at low level, such as lexical, string
similarities, word alignment and edit distance. The
performance of our runs is much better than the base-
lines and very competitive to the best system; we are
ranked 4th of total 18 teams in Subtask 1.
A lower result was obtained in Subtask 2, as the cho-
sen features have not really acquired the semantic
similarity judgment. Hence, we expect to study more
useful features (e.g the POS information, semantic
word similarity) to improve our system performance
on both identifying paraphrase and computing seman-
tic similarity scores.
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Abstract

This paper describes our approaches to para-
phrase recognition in Twitter organized as task
1 in Semantic Evaluation 2015. Lots of ap-
proaches have been proposed to address the
paraphrasing task on conventional texts ( sur-
veyed in (Madnani and Dorr, 2010)). In this
work we examined the effectiveness of vari-
ous linguistic features proposed in tradition-
al paraphrasing task on informal texts, (i.e.,
Twitter), for example, string based, corpus
based, and syntactic features, which served as
input of a classification algorithm. Besides,
we also proposed novel features based on
distributed word representations, which were
learned using deep learning paradigms. Re-
sults on test dataset show that our proposed
features improve the performance by a mar-
gin of 1.9% in terms of F1-score and our team
ranks third among 10 teams with 38 systems.

1 Introduction

Generally, a paraphrase is an alternative surface
form in the same language expressing the same se-
mantic content as the original form and it can appear
at different levels, e.g., lexical, phrasal, sentential
(Madnani and Dorr, 2010). Identifying paraphrase
can improve the performance of several natural lan-
guage processing (NLP) applications, such as query
and pattern expansion (Metzler et al., 2007), ma-
chine translation (Mirkin et al., 2009), question an-
swering (Duboue and Chu-Carroll, 2006), see sur-
vey (Androutsopoulos and Malakasiotis, 2010) for
completion. Most of previous work of paraphrase
are on formal text. Recently with the rapidly growth

of microblogs and social media services, the compu-
tational linguistic community is moving its attention
to informal genre of text (Java et al., 2007; Ritter et
al., 2010). For example, (Zanzotto et al., 2011) de-
fined the problem of redundancy detection in Twitter
and proposed SVM models based on bag-of-word,
syntactic content features to detect paraphrase.

To provide a benchmark so as to compare and de-
velop different paraphrasing techniques in Twitter,
the paraphrase and semantic similarity task in Se-
mEval 2015 (Xu et al., 2015) requires the partici-
pants to determine whether two tweets express the
same meaning or not and optionally a degree score
between 0 and 1, which can be regarded as a bina-
ry classification problem. Paraphrasing task is very
close to semantic textual similarity and textual en-
tailment task (Marelli et al., 2014) since substan-
tially these tasks all concentrated on modeling the
underlying similarity between two sentences. The
commonly-used features in these tasks can be cat-
egorized into several following groups: (1) string
based which measures the sequence similarities of
original strings with others, e.g., n-gram Overlap,
cosine similarity; (2) corpus based which measures
word or sentence similarities using word distribu-
tional vectors learned from large corpora using dis-
tributional models, like Latent Semantic Analysis
(LSA), etc. (3) knowledge based which estimates
similarities with the aid of external resources, such
as WordNet; (4) syntactic based which utilizes syn-
tax information to measure similarities; (5) other
features such as using Named Entity similarity.

In this work, we built a supervised binary clas-
sifier for paraphrase judgment and adopted multi-
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ple features used in conventional texts to recognize
paraphrase in Twitter, which includes string based
features, corpus based features, etc. Besides, we
also proposed a novel feature based on distribut-
ed word representations (i.e., word embeddings)
learned over a large raw corpus using neural lan-
guage models. The results on test dataset demon-
strate that linguistic features are effective for para-
phrase in Twitter task and proposed word embed-
ding features further improve the performance.

The rest of this paper is organized as follows. Sec-
tion 2 describes the features used in our systems.
System setups and experimental results on training
and test datasets are presented in Section 3. Finally,
conclusions and future work are given in Section 4.

2 Feature Engineering

In this section, we describe the our preprocessing
step and the traditional NLP linguistic features, as
well as the word embedding features used in our sys-
tems.

2.1 Preprocessing

We conducted following text preprocessing opera-
tions before we extracted features: (1) we recov-
ered the elongated words to their normal forms,
e.g., “goooooood” to “good”; (2) about 5,000 slangs
or abbreviations collected from Internet were used
to convert these informal texts into their complete
forms, e.g., “1dering” to “wondering”, “2g2b4g”
to “to good to be forgotten”; (3) the WordNet-
based Lemmatizer implemented in Natural Lan-
guage Toolkit1 was used to lemmatize all words to
their nearest base forms in WordNet, for example,
was is lemmatized to be. (4) we replaced a word
from one sentence with another word from the other
sentence if the two words share the same meaning,
where WordNet was used to look up synonyms. No
word sense disambiguation was performed and all
synsets for a particular lemma were considered.

2.2 String Based Features

We firstly recorded length information of given sen-
tences pairs using following eight measure function-
s: |A|, |B|, |A−B|, |B−A|, |A∪B|, |A∩B|, (|A|−|B|)

|B| ,
(|B|−|A|)

|A|
where |A| stands for the number of non-repeated

1http://nltk.org/

words in sentence A , |A − B| means the number of
unmatched words found in A but not in B , |A∪B| s-
tands for the set size of non-repeated words found in
either A or B and |A∩B| means the set size of shared
words found in both A and B .

Motivated by the hypothesis that two texts are
considered to be more similar if they share more
strings, we adopted the following five types of mea-
surements: (1) longest common sequence similar-
ity on the original and lemmatized sentences; (2)
Jaccard, Dice, Overlap coefficient on origi-
nal word sequences; (3) Jaccard similarity using
n-grams, where n-grams were obtained at three dif-
ferent levels, i.e., the original word level (n=1,2,3),
the lemmatized word level (n=1,2,3) and the char-
acter level (n=2,3,4); (4) weighted word overlap
feature (Šarić et al., 2012) that takes the impor-
tance of words into consideration, where Web 1T
5-gram Corpus2 was used to estimate the impor-
tance of words. (5) sentences were represented as
vectors in tf*idf schema based on their lemmatized
forms and then these vectors were used to calcu-
late cosine, Manhattan, Euclidean distance
and Pearson, Spearmanr, Kendalltau cor-
relation coefficients based on different perspectives.
Totally, we got thirty-one string based features.

2.3 Corpus Based Features

Corpus based features aim to capture the semantic
similarities using distributional meanings of words
and Latent Semantic Analysis (LSA) (Landauer and
Dumais, 1997) is widely used to estimate the dis-
tributional vectors of words. Hence, we adopted t-
wo distributional sets released in TakeLab (Šarić et
al., 2012), where LSA is performed over the New Y-
ork Times Annotated Corpus (NYT)3 and Wikipedi-
a. Then two strategies were used to convert the
distributional meanings of words to sentence level:
(i) simply summing up the distributional vectors of
words in the sentence, (ii) using the information con-
tent (Šarić et al., 2012) to weigh the LSA vector of
each word w and summing them up. At last we used
cosine similarity to measure the similarity of two
sentences based on these vectors. Besides, we used
the Co-occurrence Retrieval Model (CRM) (Weeds,

2https://catalog.ldc.upenn.edu/LDC2006T13
3https://catalog.ldc.upenn.edu/LDC2008T19
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2003) as another type of corpus based feature. The
CRM was calculated based on a notion of substi-
tutability, that is, the more appropriate it was to sub-
stitute word w1 in place of word w2 in a suitable
natural language task, the more semantically similar
they were.

Besides, the extraction of aforementioned fea-
tures rely on large external corpora, while (Guo
and Diab, 2012) proposed a novel latent model,
i.e., weighted textual matrix factorization (WTM-
F), to capture the contextual meanings of words
in sentences based on internal term-sentence ma-
trix. WTMF factorizes the original term-sentence
matrix X into two matrices such that Xi,j ≈
P T∗,iQ∗,j , where P∗,i is a latent semantics vec-
tor profile for word wi and Q∗,j is the vec-
tor profile that represents the sentence sj . The
weight matrix W is introduced in the optimiza-
tion process in order to model the missing word-
s at the right level of emphasis. Then, we used
cosine, Manhattan, Euclidean functions
and Pearson, Spearmanr, Kendalltau corre-
lation coefficients to calculate the similarities based
on sentence representations. At last, we obtained
twelve corpus based features.

2.4 Syntactic Features

We estimated the similarities of sentence pairs at
syntactic level. Stanford CoreNLP toolkit (Manning
and Surdeanu, 2014) was used to obtain POS tag
sequences. Afterwards, we performed eight mea-
sure functions described in Section 2.2 over these
sequences, which resulted in eight syntactic based
features.

2.5 Other Features

We built a binary feature to indicate whether two
sentences in a pair have the same polarity (affirma-
tive or negative) by looking up a manually-collected
negation list with 29 negation words (e.g., scarcely,
no, little). Also, we checked whether one sentence
entails the other only using the named entity infor-
mation which was provided in the dataset. Finally,
we obtained nineteen other features.

2.6 Word Embedding Features

Recently, deep learning has achieved a great suc-
cess in the fields of computer vision, automatic

speech recognition and natural language processing.
As a consequence of its application in NLP, word
embeddings have been building blocks in many
tasks, e.g., named entity recognition and chunk-
ing (Turian et al., 2010), semantic word similari-
ties (Mikolov et al., 2013a), etc. Being distribut-
ed representation of words, word embeddings usu-
ally are learned using neural networks over a large
raw corpus and has outperformed LSA for pre-
serving linear regularities among words (Mikolov
et al., 2013a). Due to its superior performance,
we adopted word embeddings to estimate the sim-
ilarities of sentence pairs. In our experiments, we
used seven different word embeddings with differ-
ent dimensions: word2vec (Mikolov et al., 2013b),
Collobert and Weston embeddings (Collobert and
Weston, 2008) and HLBL embeddings (Mnih and
Hinton, 2007). Word2vec embeddings are dis-
tributed within the word2vec toolkit4 and they are
300-dimensional vectors learned from Google News
Corpus which consists of over a 100 billion word-
s. Collobert and Weston and HLBL embeddings are
learned over a part of RCV1 corpus which consist-
s of 63 millions words, with 25, 50, 100, or 200
dimensions and 50, 100 dimensions over 5-gram
windows respectively. To obtain sentence repre-
sentations, we simply summed up embedding vec-
tors corresponding to the non-stopwords tokens in
bag of words (BOW) of sentences. After that, we
used cosine, Manhattan, Euclidean func-
tions and Pearson, Spearmanr, Kendalltau
correlation coefficients to calculate the similarities
based on these synthetic sentence representations.
We got ninety word embedding features.

3 Experiments and Results

3.1 System Setups
The organizers provided 13,063 training pairs to-
gether with 4,727 development pairs in development
phase and 972 test pairs in test phase. We removed
the debatable instances (i.e., two annotators vote for
yes and the other three for no) existing in the dataset,
which resulted in 11,530 training pairs and 4,142 de-
velopment pairs. We built two supervised classifica-
tion systems over these datasets. One is mlfeats
which only uses the traditional linguistic features

4https://code.google.com/p/word2vec
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Algorithm
mlfeats nnfeats

Precision Recall F1 Precision Recall F1
SVC(0.1) 0.756 0.942 0.839 0.756 0.942 0.839
GB(140) 0.756 0.939 0.838 0.754 0.940 0.837
GB(150) 0.755 0.939 0.837 0.753 0.939 0.836
RF(45) 0.754 0.937 0.835 0.749 0.936 0.832

Table 1: Top results of different classification algorithms in systems mlfeats and nnfeats on development dataset
together with parameter values in brackets.

System F1-Rank Precision Recall F1
ECNU nnfeats 4 0.767 0.583 0.662
ECNU mlfeats 10 0.754 0.560 0.643
BASELINE logistic 21 0.679 0.520 0.589
BASELINE WTMF 28 0.450 0.663 0.536
BASELINE random 38 0.192 0.434 0.266
ASOBEK svckernel 1 0.680 0.669 0.674
ASOBEK linearsvm 2 0.682 0.663 0.672
MITRE ikr 3 0.569 0.806 0.667

Table 2: Performance and rankings of systems mlfeats, nnfeats and baseline systems on test dataset officially
released by the organizers, as well as top ranking systems.

(i.e., features described in Section 2.2-2.5, 64 fea-
tures in total) and the other is nnfeatswhich com-
bines the traditional linguistic features with the word
embedding features (148 features in total). Sever-
al classification algorithms were explored on devel-
opment dataset including Support Vector Classifi-
cation (SVC, linear), Random Forest (RF), Gradi-
ent Boosting (GB) implemented in the scikit-learn
toolkit (Pedregosa et al., 2011) and a large scale
of parameter values in these algorithms were tuned,
i.e., the trade-off parameter c in SVR, the number of
trees n in RF, the number of boosting stages n in G-
B. F-score was used to evaluate the performance of
systems.

3.2 Results and Discussion

Table 1 presents the best four F1 results achieved by
different algorithms together with their parameters
in system mlfeats and nnfeats on developmen-
t dataset. The results show that these two system-
s consistently yield comparable performance, which
means that our proposed features based on word em-
beddings have little help to detect paraphrase on de-
velopment set. And we also find that SVC performs
slightly better than GB and RF algorithm. There-

fore, we adopted a major voting schema based on
SVC (c=0.1) and GB (n=140,150) in test period.

Table 2 summarizes the performance and ranks of
our systems on test dataset, along with the baseline
systems provided by the organizers and the top three
systems. From this table, we observe following find-
ings. Firstly, nnfeats using word embedding fea-
tures outperforms the system mlfeats only using
traditional linguistic features by 1.9%, which is in-
consistent with the findings on development set. The
possible reason may be that test data is collected
from a different time period while train and devel-
opment data is from the same time period while the
word embedding features might more or less cap-
ture this differences. Secondly, our results are sig-
nificantly better than the three baseline systems s-
ince our systems incorporate the features used in
baseline systems and other effective features. Third-
ly, the top 1 system (i.e., ASOBEK svckernel)
yields 3.1% and 1.2% improvement over our system
mlfeats and nnfeats respectively, which indi-
cates that word embedding features and traditional
linguistic features are effective in resolving Twitter
paraphrase problem.

To explore the influence of different feature type-
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s, we conducted feature ablation experiments where
we removed one feature group from all feature set
every time and then executed the same classifica-
tion procedure. Table 3 shows the results of fea-
ture ablation experiments. From this table, we can
see that the most influential features for recognizing
tweet paraphrase is corpus based features and the
second most important feature group is word em-
bedding features, which are within our expectation
since these two kinds of feature take advantage of
the semantic meaning of words.

Feature Precision Recall F1
All 0.767 0.583 0.662
-string 0.717 0.594 0.650 (-0.012)
-corpus 0.772 0.543 0.638 (-0.024)
-syntactic 0.797 0.560 0.658 (-0.004)
-other 0.784 0.560 0.653 (-0.009)
-embedding 0.823 0.531 0.646 (-0.016)

Table 3: The results of feature ablation experiments.

4 Conclusion

In this paper we address paraphrase in Twitter task
by building a supervised classification model. Many
linguistic features used in traditional paraphrase task
and newly proposed features based on word embed-
dings were extracted. The results on test dataset
demonstrate that (1) our proposed word embedding
features improve the performance by a value of
1.9%; (2) the linguistic features used in paraphrase
on conventional texts task are also useful and effec-
tive in Twitter domain.
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Abstract

Paraphrase recognition is the task of iden-
tifying whether two pieces of natural lan-
guage represent similar meanings. This pa-
per describes a system participating in the
shared task 1 of SemEval 2015, which is about
paraphrase detection and semantic similarity
in twitter. Our approach is to exploit se-
mantically meaningful features to detect para-
phrases. An existing state-of-the-art model
for predicting semantic similarity is adapted
to this task.

A wide variety of features is used, ranging
from different types of models, to lexical over-
lap and synset overlap. A maximum entropy
classifier is then trained on these features. In
addition to the detection of paraphrases, a sim-
ilarity score is also predicted, using the proba-
bilities of the classifier. To improve the results,
normalization is used as preprocessing step.

Our final system achieves a F1 score of 0.620
(10th out of 18 teams), and a Pearson correla-
tion of 0.515 (6th out of 13 teams).

1 Introduction

A good paraphrase detection system can be useful in
many natural language processing tasks, like search-
ing, translating or summarization. For clean texts,
F1 scores as high as 0.84 have been reported on para-
phrase detection (Madnani et al., 2012).

However, previous research focused almost solely
on clean text. Thanks to the Twitter Paraphrase Cor-
pus (Xu et al., 2014), this has now changed. Car-
rying out this task on noisy texts is a new chal-
lenge. The abundant availability of social media data

and the high redundancy that naturally exists in this
data makes this task highly relevant (Zanzotto et al.,
2011).

Our approach is based on the model described
by Bjerva et al. (2014). This model has proved
to achieve state-of-the-art results at predicting se-
mantic similarity (Marelli et al., 2014). It is based
on overlaps of semantically meaningful properties
of sentences. A random forest regression model
(Breiman, 2001) combines these features to predict a
semantic similarity score. We rely heavily on the as-
sumption that semantically meaningful features can
also be used to identify paraphrases.

The features of the existing system are also used
in the new system. However, the old system used a
regression model, while the new task demands class-
based output. Hence, the machine learning model
model is changed to a maximum entropy model.

2 Data

The Twitter Paraphrase Corpus consists of two dis-
tinct parts, the training data differs significantly from
the test data.

The 17,790 tweet pairs for training are collected
between April 24th and May 3rd, 2014. These
tweets are selected based on the trending topics
of that period. Annotation of the training data is
done by human annotators from Amazon Mechan-
ical Turk. Every sentence pair is annotated by 5 dif-
ferent annotators, resulting in a score of 0-5. Based
on this score we create a binary paraphrase judge-
ment. If 0, 1 or 2 annotators judged positively, we
treat the sentence pair as not being a paraphrase, for
3, 4 or 5 positive judgements we treat the sentence
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pair as a paraphrase.
The test data is collected between May 13th and

June 10th, and is thus based on different trending
topics. This assures the integrity of the evaluation.
In contrast to the training data, this data is anno-
tated by an expert similarity rating on a 5-point Lik-
ert scale (Likert, 1932), to mimic the training data.
Sentence pairs with a similarity score of 0, 1 and 2
are considered non-paraphrases, and sentence pairs
with scores of 4 and 5 are considered paraphrases.
The one uncertain category (similarity score of 3) is
discarded in the evaluation.

Using this data, we end up with two different
types of gold data per sentence pair. Firstly, we have
the binary gold data that indicates if a sentence pair
is a paraphrase. Secondly, we have the raw annota-
tions that can be used as a similarity score. These an-
notations are normalized by dividing them by their
maximum score (5), so we end up with 〈0.0, 0.2, 0.4,
0.6, 0.8, 1.0〉 as possible similarity scores.

The tweets in the corpus are already tokenized us-
ing TweetMotif (O’Connor et al., 2010). Addition-
ally, Part Of Speech (POS) tags are provided by a
tagger that is adapted to twitter (Derczynski et al.,
2013). Named entity tags are also obtained from an
adapted tagger (Ritter et al., 2011).

3 Method

The model is based on a state-of-the-art semantic
similarity prediction model (Bjerva et al., 2014). It
is mainly based on overlap features extracted from
different parsers, but also includes synset overlap,
and a Compositional Distributional Semantic Model
(CDSM). The parsers used in this model are a con-
stituency parser (Steedman, 2001), logical parser
Paradox (Claessen and Sörensson, 2003) and the
DRS parser Boxer (Bos, 2008).

3.1 Features
Our model uses 25 features in total. Due to space
constraints we cannot describe them all in detail
here. Instead we group the features as follows:

• Lexical features: word overlap, proportional
sentence length difference.
• POS: noun overlap, verb overlap.
• Logical model: instance overlap, relation over-

lap.

• DRS: agent overlap, patient overlap, DRS com-
plexity.

• Entailments: binary features for: neutral, en-
tailment and contradiction predictions.

• CDSM: The cosine distance between the ele-
ment wise addition of the vectors in each sen-
tence is used.

• Synsets (WordNet): The distance of the closest
synsets of each word in both sentences, and the
distance between the noun synsets.

• Named entity: overlap between named enti-
ties1.

For a complete detailed overview we refer to
the paper describing the semantic similarity system
(Bjerva et al., 2014), or for even more detail (van der
Goot, 2014).

3.2 Maximum Entropy Models

We will compare two different maximum entropy
models. The maximum entropy implementation of
Scikit-Learn (Pedregosa et al., 2011) is used.

The first maximum entropy model is a binary
model that also outputs a probability. From this
model, the normal binary output is not used, instead
we use the estimated probability that something is
a paraphrase. Using this value, we can set our own
threshold to have more control on the final output.

The second maximum entropy model is a multi-
class model. This classifier is based on the 6 dif-
ferent classes in our data, and thus outputs 6 proba-
bilities. We use the similarity score of each class as
weight to convert all probabilities to one probabil-
ity. For each class we multiply the similarity score
with the probability that our model predicts for this
class. The results of the 6 classes are then summed
to get a single probability. This classification model
uses more specific training data, thus it should have
a more precise output.

3.3 Normalization

A normalization approach very similar to that de-
scribed by Han et al. (2013) is used to try to im-
prove the parses. This normalization consists of
three steps.

1This is the only feature not present in the original semantic
similarity system
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Figure 1: Precision and recall for the different classifiers.

The first step is to decide which tokens might need
a correction, this is decided by a dictionary lookup
in the Aspell dictionary2.

The second step is the generation of possible cor-
rections for every misspelled word. For this, the As-
pell source code is adapted to lower the costs of dele-
tion in its algorithm, because we assume words are
often typed in an abbreviated form in this domain.

The last step is the ranking of the candidates. Here
we use a different approach than the traditional ap-
proach. Instead of using a static formula to predict
the probability of each candidate, we want to use a
more flexible approach. Google N-gram probabili-
ties (Brants and Franz, 2006), Aspell scores and dic-
tionary lookups are combined using logistic regres-
sion. To adjusts the weights of the regression model,
200 sentences are normalized manually. The result-
ing model is then applied to all the other sentences.

This normalization approach does not reach a per-
fect accuracy, and normalizing a sentence might re-
move meaningful information. So instead of using
the normalization as straightforward pre processing
of the data, we use the raw and the normalized sen-
tence in the model. For each feature, scores are cal-
culated for both versions of the sentence. The high-
est of these scores be used as input for our maximum
entropy model.

4 Evaluation

This chapter is divided in the two sub tasks of para-
phrase detection and similarity prediction. A strong

2www.aspell.net

Figure 2: F-Score for the different classifiers. P is the
threshold that decides if a sentence pair is a paraphrase.

baseline is used, namely a state-of-the art model for
clean text: a logistic regression model that uses sim-
ple lexical overlap features (Das and Smith, 2009).

4.1 Paraphrase Detection

The evaluation is done on expert annotations, which
are only available for the test set. The binary and
multi-class classifiers are evaluated separately. Ad-
ditionally, we also tried to improve the system by
using normalization.

The precision and recall of both classifiers is plot-
ted in Figure 1. In this graph the differences are
barely visible, therefore it looks like both models are
approximately equal.

If we look at the F-scores of Figure 2, the dif-
ferences are bigger. The highest F-scores of both
classifiers are 0.604 and 0.610 for respectively the
binary and the multi-class classifier. Both classifiers
outperform the baseline F-score of 0.583.

These graphs also show that the default output of
the binary deos not perform well, so it is really nec-
essary to use the probabilities.

4.1.1 Feature Comparisons
We use the same grouping for features as in 3.1.

The absolute weights of all features within each
group are summed. For the multi-class classifier the
weights are averaged over all 6 classes. Also an ab-
lation experiment is done. An overview this evalua-
tion is shown in Table 1.

In the ablation experiments we see that it is not
always better to use more features. Especially the
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Weights Ablation
Feat. group Binary Multi Binary Multi
Lexical 2.43 1.65 0.601 0.598
POS 0.79 0.71 0.600 0.600
Log. model 0.74 1.61 0.573 0.606
DRS 3.57 1.88 0.551 0.553
Entailments 0.51 2.79 0.584 0.589
CDSM 5.29 3.63 0.538 0.523
Synsets 0.49 0.63 0.588 0.584
NE 0.06 0.09 0.597 0.599
All - - 0.600 0.604

Table 1: Absolute weights of the feature groups and fea-
ture group ablation F1-Scores.

logical model should be left out in the multi-class
entropy model. The models differ in some aspects,
whereas some features are important for both. More
specifically, we can see that the parsers outputs and
lexical features are more important for the multi-
class model, while the other features are more im-
portant for the binary model.

4.1.2 Normalization
After the normalization of the sentences, we run

the systems again. These runs are not plotted in the
graphs, because the differences are small. Despite
the small differences, there is one little performance
boost on the top-runs of the multi-class classifiers,
resulting in the highest F-score of 0.62.

4.2 Semantic Similarity Prediction

Even though we do not have real semantic similarity
training data, we simulate semantic similarity using
the amount of the positive judgements per sentence
pair. Our system is evolved from a semantic simi-
larity prediction system, so this model should work
well for this task. The Pearson correlation between
the different annotations of experts (test) and crowd-
sourcing (training) is 0.735.

For this sub task we will also try different heuris-
tics using both our classifiers. We start with the
multi-class classifier, because it is trained to give
back a similarity score. The model produces prob-
abilities for each class, the class with the high-
est probability is used as output. We call this the
Highest P method.

Another model can be built using the predicted

Baseline Highest P Binary P Weighted
R 0.511 0.416 0.508 0.515

Table 2: Pearson correlation (R) for the different similar-
ity prediction approaches.

weights, similar to section 3.2. We refer to this as
the Weighted method.

Besides the multi-class classifier, we also trained
a binary classifier. The only way for this classifier to
output a degree score, is using the probability. This
is called Binary P.

Only the weighted method beats the baseline. Re-
sults of all three approaches and the baseline can be
found in Table 2.

5 Conclusion

The main conclusion to draw from these experi-
ments is that by using deep semantic features, we
can achieve a maximum F-score of 0.61 on the para-
phrase detection task. By using normalization we
can improve this F-score to 0.62.

Following from this, it is safe to conclude that a
semantic similarity prediction system can be used in
paraphrase detection reasonably well. Our system
had an average result on this shared task (10th out of
18 teams)3. The advantage of this system is that it
can be created easily from existing tools.

Unsurprisingly, the results on the semantic simi-
larity task were better (6th out of 13 teams). Even
though the gold data does not represent a real se-
mantic similarity, but a scale of positive annotations
of the paraphrase detection task.

The source code of our system has been made
publicly available4.
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Abstract

We explore using recursive autoencoders for
SemEval 2015 Task 1: Paraphrase and Seman-
tic Similarity in Twitter. Our paraphrase de-
tection system makes use of phrase-structure
parse tree embeddings that are then provided
as input to a conventional supervised classi-
fication model. We achieve an F1 score of
0.45 on paraphrase identification and a Pear-
son correlation of 0.303 on computing seman-
tic similarity.

1 Introduction

The process of rewriting text with a different choice
of words or using a different sentence structure
while preserving meaning is called paraphrasing.
Identifying paraphrases can be a difficult task owing
to the fact that evaluating surface level similarity is
often not enough, but rather systems must take into
account the underlying semantics of the content be-
ing assessed.

Paraphrasing and paraphrase detection are impor-
tant and challenging tasks, which find their applica-
tion in various subfields of Natural Language Pro-
cessing (NLP) such as information retrieval, ques-
tion answering (Erwin and Emiel, 2005), plagiarism
detection (Paul Clough et al., 2002), text summa-
rization and evaluation of machine translation (Chris
Callison Burch, 2008).

We explore using recursive autoencoders for para-
phrase detection and similarity scoring as a part of
SemEval 2015 Task 1: Paraphrase and Semantic
Similarity in Twitter. Twitter is an online social net-
working service with millions of users who casually

converse about diverse topics in a continuous and
contemporaneous manner (Wei Xu et al., 2014; Wei
Xu et al., 2015). Table 1 gives an example of real
tweets, some of which are paraphrases of each other.
The very casual style of the Twitter corpus makes it
more challenging to work with for many NLP tools.
We use vector space embeddings, in part, since they
are relatively good at dealing with noisy data.

2 Related Work

Socher et al. (2011) explored using recursive au-
toencoders (RAEs) and dynamic pooling for para-
phrase detection. They parse each sentence within a
pair, compute embeddings for each node in the parse
trees, and then construct a similarity matrix compar-
ing the embedding vectors for all nodes within the
two parse trees. Using dynamic pooling, they con-
vert the variable size similarity matrix for each sen-
tence pair to a matrix of fixed size. The resulting
fixed size matrix is then given to a softmax classifier
to detect whether the sentences are paraphrases.

3 A Deep Learning System

The architecture of our system is depicted in Figure
1. The raw Twitter corpus is preprocessed using a
phrase-structure parser. The resulting parse trees are
then used to train an unfolding RAE model. This
model provides us with embedding vectors that are
then used to compute the similarity between every
node in the parse trees associated with a sentence
pair. A similarity matrix is populated with the node-
to-node similarity scores as measured by the Eu-
clidean distance beween the node embedding vec-
tors. The size of the similarity matrix depends on
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Sentence 1 Sentence 2 Paraphrase or Not
AAP is in the Adidas commercial AAP in that Adidas Commercial lol Paraphrase
That amber alert was getting annoying Why do I get amber alerts tho Not paraphrase
I am so watching Cinderella right now Im so watching Cinderella right now Paraphrase
That shot counted by Bayless Bayless just RAN for it Not Paraphrase
Damon EJ 1st Qb off the board if EJ is the 1st QB off the board Paraphrase

Table 1: Sample tweets from SemEval 2015 Twitter Paraphrase Corpus.

Figure 1: System architecture: The unfolding recursive autoencoder computes phrase embedding vectors for each
node in a parse tree. For a pair of sentences being evaluated, the distances between all the nodes in the paired parse
trees are computed and fill a variable sized similarity matrix. Dynamic pooling is used to convert the variable size
similarity matrix to fixed size matrix. The fixed size similarity matrix is given to a softmax classifier to detect both
whether the paired sentences are paraphrases and for paraphrase similarity scoring.
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Figure 2: Dynamic pooling: The original variable sized
matrix is partitioned into an np×np grid of blocks of ap-
proximately equivalent size. We use min-pooling as the
aggregation operation, whereby the values of the cells in
the fixed size np × np matrix are assigned to the mini-
mum value of the corresponding partition in the original
matrix.

the number of nodes in the parse trees being com-
pared. This variable size similarity matrix is con-
verted to a fixed size matrix using Dynamic Pooling
(Socher et.al, 2011). Dynamic pooling partitions the
rows and columns of similarity matrix into np ap-
proximately equivalent segments which creates an
np × np grid. As depicted in Figure 2, the individ-
ual cells in the fixed size np × np matrix are assign
to the minimum values of their corresponding par-
titions in the original matrix. The resulting fixed
size matrix is then used to train a softmax classifier
to perform the actual paraphrase detection and pair-
wise similarity scoring tasks. To classify a pair of
new sentences, the sentences are first parsed. Using
the parse trees, the embedding vectors for each sen-
tence are constructed and used to populate a node-
to-node similarity matrix. This matrix is converted
to a fixed size using dynamic pooling and passed to
the softmax classification model.

3.1 Unfolding Recursive Autoencoders (RAEs)

The architecture of our unfolding RAEs is illustrated
in Figure 2. The main difference between standard
RAEs and unfolding RAEs is that standard RAEs
are only directly trained to have each node recon-
struct its immediate children. Unfolding RAEs dif-
fer in that the training objective assess not only how

Figure 3: Architecture of unfolding RAEs. Using unfold-
ing RAEs, the embedding vector associated with each
node in a parse tree is trained to reconstruct the whole
parse tree fragment rooted at the current node.

well the representation of each node reconstructs it’s
immediate children, but rather how well the node’s
representation reconstructs the entire parse tree frag-
ment rooted at the current node.

4 Experimental Results

We use a general domain parsing model distributed
with the Stanford Parser, englishPCFG v1.6.9 (Klein
and Manning, 2003). Prior to training the RAE vec-
tors, we pre-trained word embedding vectors for use
as the word level representations (Ronan and Jason,
2008). The hyperparameter values used for our sys-
tem are as follows: (1) the size of the pooling matrix
np = 13; (2) the regularization for the softmax clas-
sifier c = 0.05; (3) Both the RAE and word embed-
dings are 100-dimensional vectors.

4.1 Data Set Details

Our SemEval task provided the PIT-2015 Twitter
Paraphrase corpus for training and system develop-
ment (Wei Xu, 2014; Wei Xu et al., 2014; Wei Xu
et al., 2015). The corpus contains a training set with
13,063 sentence pairs, a development set with 4,727
sentence pairs, and a test set with 972 sentence pairs.
Table 2 shows the label distribution statistics for this
corpus. This data set is distinct from the data used
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Category Paraphrase Non-Paraphrase Debatable Total
Sentence pair Sentence pair Sentence pair

Training 3,996 7,534 1,533 13,063
Development 1,470 2,672 585 4,727
Testing 175 663 134 972

Table 2: Statistics of PIT-2015 Twitter Paraphrase Corpus.

Twitter Training Testing/ Precision Recall F1
Corpus Development Measure
50,000 13,063 4,727 0.51 0.48 0.49
80,000 13,063 4,727 0.65 0.37 0.51
95,000 13,063 4,727 0.77 0.35 0.56

Table 3: PIT-2015 dev set performance using varying amounts of training data.

in other work on paraphrasing in the following ways:
(1) it contains sentences that are colloquial and opin-
ionated; (2) it contains paraphrases that are lexically
diverse; and (3) it contains many sentences that are
lexically similar but semantically dissimilar (Wei Xu
et al., 2015).

The training and development data was jointly
collected from 500+ trending topics and then ran-
domly split into the final training and development
sets. The test data was drawn from 20 randomly
sampled Twitter trending topics. Labels were col-
lected by having each sentence pair annotated by 5
different crowdsourced workers.

4.2 Evaluation and Discussion

For the unsupervised unfolding RAE training, we
experimented with using subsets of different sized
Twitter corpora of 50,000, 80,000 and 95,000 sen-
tences to evaluate the proposed system. Using PIT-
2015, we trained using tweets from the training set
and evaluated the resulting series of systems on the
dev set (Wei Xu et al., 2015). For supervised train-
ing, we used the training set from PIT-2015. For
training the unsupervised unfolding RAE vectors,
we collected additional data using the Twitter De-
veloper API. As shown in Table 3, we found that
increasing the size of the data set used to train the
RAE embeddings leads to strong gains in system
performance.1 Notice that as the amount of data
used to train the RAE vectors increases, the preci-

1Due to time constraints we did not explore using more than
95,000 sentences to train our embedding model.

Metrics Type Accuracy
maxF1 0.457
mPrecision 0.543
mRecall 0.394
Pearson 0.303

Table 4: Results from the SemEval-2015.

sion value for paraphrase detection increases signif-
icantly while the recall value is actually falling.

The official evaluation metrics for SemEval-2015
Task 1 are F1-score for paraphrase identification
and Pearson correlation for the semantic similarity
scores. The performance of our system on the shared
task evaluation data using these metrics is presented
in Table 4.

5 Conclusion and Future Work

We participated in SemEval 2015 Task 1: Para-
phrase and Semantic Similarity in Twitter using
a system architecture motivated by the success of
prior work on using RAE for paraphrase detection
(Socher et al. 2011). We find that the performance
of the system receives a sizable boost with the ad-
dition of a moderate amount of unsupervised RAE
training data.

In future work, we plan to try to improve perfor-
mance by first normalizing the Twitter data prior to
parsing. Given the mismatch between general do-
main English data and tweets, parse accuracy would
have likely been improved by performing a pre-
processing step that normalized the tweets prior to
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giving them to the parser (Juri Ganitkevitch et al.,
2013; Brendan O Connor et al., 2010). This could
lead to improved downstream paraphrase detection
and similarity scoring. We would also like to ex-
plore using new learning algorithms for the final
paraphrase classification as well as alternative mech-
anisms of constructing the sentence level embedding
vectors.
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Abstract 

We describe the system we developed to partic-

ipate in SemEval 2015 Task 1, Paraphrase and 

Semantic Similarity in Twitter. We create simi-

larity vectors from two-skip trigrams of prepro-

cessed tweets and measure their semantic simi-

larity using our UMBC-STS system. We sub-

mit two runs. The best result is ranked eleventh 

out of eighteen teams with F1 score of 0.599. 

1. Introduction 

In this task (Wei, et al., 2015), participants were 

given pairs of text sequences from Twitter trends 

and produced a binary judgment for each stating 

whether or not they are paraphrases (e.g., semanti-

cally the same) and optionally a graded score (0.0 

to 1.0) measuring their degree of semantic equiva-

lence. For example, for the trending topic “A Walk 

to Remember” (a film released in 2002), the pair A 

Walk to Remember is the definition of true love” 

and “A Walk to Remember is on and Im in town 

and Im upset” might be judged as not paraphrases 

with score 0.2 whereas the pair “A Walk to Re-

member is the definition of true love” and “A Walk 

to Remember is the cutest thing” could be judged 

as paraphrases with a score of 0.6. 

Many methods have been proposed to solve the 

paraphrase detection problem. Early approaches 

were often based on lexical matching techniques, 

e.g., word n-gram overlap (Barzilay and Lee, 

2003) or predicate argument tuple matching (Qiu, 

et al., 2006). Some other approaches that go be-

yond simple lexical matching have also been de-

veloped. For example, (Mihalcea, et al., 2006) es-

timated semantic similarity of sentence pairs with 

word-to-word similarity measures and a word 

specificity measure. (Zhang and Patrick, 2005) 

uses text canonicalization to transfer texts of simi-

lar meaning into the same surface text with a high-

er probability than those with different meaning. 

Many of these approaches adopt distributional 

semantic models, but limited to a word level. To 

extend distributional semantic models beyond 

words, several researchers have learned phrase or 

sentence representation by composing the repre-

sentation of individual words (Mitchell and Lapata, 

2010; Baroni and Zamparelli, 2010). An alternative 

approach by (Socher et al., 2011) represents 

phrases and sentences with fixed matrices consist-

ing of pooled word and phrase pairwise similari-

ties. (Le and Mikolov, 2014) learns representation 

of sentences directly by predicting context without 

composition of words.  

In our work, we judge that two sentences are 

paraphrases if they have high degree of semantic 

similarity. We use the UMBC-Semantic Textual 

Similarity system (Lushan Han et al., 2013), which 

provides high accurate semantic similarity meas-

urement. The remainder of this paper is organized 

as follows. Section 2 describes the task and the 

details of our method. Section 3 presents our re-
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sults and a brief discussion.  The last section offers 

conclusions. 

2. Our Method  

To decide whether two tweets are paraphrases or 

not, we use a measurement based on semantic sim-

ilarity values. If two tweets are semantically simi-

lar, they are judged as paraphrases, otherwise they 

are not. We described steps of our method as fol-

lows. 

1.1. Preprocessing 

Generally, tweets are informal text sequences that 

include abbreviations, neologisms, emoticons and 

slang terms as well genre-specific elements such as 

hashtags, URLs and @mentions of other Twitter 

accounts.  This is due to both the informal nature 

of the medium and the requirement to limit content 

to at most 140 characters. Thus, before measuring 

the semantic similarity, we replace abbreviation 

and slang to the readable version. We collected 

about 685 popular abbreviations and slang terms 

from several Web resources
1
 and combined these 

with the provided twitter normalization lexicon 

developed by Han Bo and Timothy Baldwin 

(2011). 

After replacing abbreviations and slang terms, 

we remove all stop words to get our final desired 

processed tweets. Then we produce a set of two-

skip trigrams for each tweet and name these sets as 

trigram sets. We adapted the skip-gram technique 

from (Guthrie, et al., 2006).  

Take the tweet “Google Now for iOS simply 

beautiful” as an example, after removing stop word 

s, we get ‘Google Now iOS simply beautiful’. Then 

a two-skip trigram set is produced: {‘Google Now 

iOS’, ‘Now iOS simply’, ‘iOS simply beautiful’, 

‘Google iOS simply’, ‘Google simply beautiful’, 

‘Now simply beautiful’, ‘Google Now beautiful’, 

‘Google Now simply’, ‘Now iOS beautiful’}, which 

is referred as trigram set. We transform every raw 

tweet into its processed version and then corre-

sponding trigram set.  
 

 

                                                 
1 These included http://webopedia.com, http://blog.-

mltcreative.com and http://internetslang.com and others. 

1.2. LSA Word Similarity Model 

Our LSA word similarity model is a revised ver-

sion of the one we used in the 2013 and 2014 

SemEval semantic text similarity tasks (Han, et al., 

2013, Kashyap et al., 2014). LSA relies on the fact 

that semantically similar words (e.g., cat and feline 

or nurse and doctor) are more likely to occur near 

one another in text.  Thus evidence for word simi-

larity can be computed from a statistical analysis of 

a large text corpus.  We extract raw word co-

occurrence statistics from a portion of a 2007 Stan-

ford WebBase dataset (Stanford, 2001). 

We performed part of speech tagging and lem-

matization on the corpus using the Stanford POS 

tagger (Toutanova et al., 2000). Word/term co-

occurrences were counted with a sliding window 

of  fixed size over the entire corpus. We generate 

two co-occurrence models using window sizes ±1 

and ±4. The smaller window provides more precise 

context which is better for comparing words of the 

same part of speech while the larger one is more 

suitable for computing the semantic similarity be-

tween words of different syntactic categories. 

Our word co-occurrence models are based on a 

predefined vocabulary of 22,000 common English 

open-class words and noun phrases, extended with 

about 2,000 verb phrases from WordNet. The final 

dimensions of our word/phrase co-occurrence ma-

trices are 29,000×29,000 when words/phrases are 

POS tagged.  We apply singular value decomposi-

tion on the word/phrase  co-occurrence matrices 

(Burgess 1998) after transforming the raw 

word/phrase co-occurrence counts into their log 

frequencies, and select the 300 largest singular 

values.  The LSA similarity between two 

words/phrases is then defined as the cosine similar-

ity of their corresponding LSA vectors generated 

by the SVD transformation.  

To compute the semantic similarity of two text 

sequences, we use the simple align-and-penalize 

algorithm described in (Han et al., 2013) with a 

few improvements. These improvements include 

some sets of common disjoint concepts and an en-

hanced stop word list. 

1.3. Features 

For two trigram sets, we compute the semantic 

similarity of every possible pair of trigrams in the-

se two sets using the UMBC Semantic Textual 
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Similarity system. For each pair of tweet (T1 and 

T2), six features are produced as: 

• Feature1 = semantic similarity value between 

each pair of tweets (whole sentence with ab-

breviation and slangs replaced, and stop words 

removed)  

• Feature2 =   

• Feature3 =   

• Feature4 =   

• Feature5 =  

• Feature6 = the weighted average on length of 

tweets of two averages above. 

1.5. Training 

We used the LIBSVM system (Chang and Lin, 

2011) for training a logistic regression model and a 

support vector regression model. We run a grid 

search to find the best parameters for both models. 

All training data (13,063 pairs of tweets) were used 

to train the models without discarding any debata-

ble data. We tested the contribution for of each of 

the features through ablation experiments on the 

development data in which each feature was delet-

ed in each experimental run. Table 1 shows the 

statistical results for each feature ablation run. 

  

Feature deleted F1 Precision Recall 

Feature 1 0.7 0.709 0.728 

Feature 2 0.697 0.706 0.726 

Feature 3 0.697 0.706 0.726 

Feature 4 0.691 0.700 0.722 

Feature 5 0.696 0.706 0.726 

Feature 6 0.695 0.705 0.725 

 
Table 1. Performance of our system on runs against the 

development data in which each feature was removed. 

 

From Table 1, we can see that the feature of lowest 

performance is Feature 1, the semantic similarity 

computed with entire tweets without using the 

skip-gram technique. But we still keep Feature 1 

since performance of these six features is not sig-

nificantly different. We show the performance of 

each model on development data in Table 2.  

 

Model F1 Precision Recall 

Logistic 

Regression 
0.697 0.706 0.726 

Support Vector 

Regression 0.691 0.707 0.726 

 

Table 2. Performance of system on development data. 

 

Since the performance of both systems is almost 

the same, we decide to submit one run of each sys-

tem. 

3.  Results and Discussions 

We submit two runs: Run1 (Logistic Regression) 

obtained an F1 score of 0.599, precision score of 

0.651 and recall score of 0.554, and Run2 (Support 

Vector Regression), which received an F1 of 

0.590, precision of 0.646, and recall of 0.543. 

When ranked, we are in the eighteenth (Run1) and 

the nineteenth (Run2) out of the 38 runs. The first 

rank has F1 score of 0.674. The full distribution of 

F1 score is shown in Figure 1. The relatively low 

ranking of our system might be the result of sever-

al factors. 

First factor is the prevalence of neologisms, 

misspellings, informal slang and abbreviations in 

tweets. Better preprocessing to make the tweets 

closer  to normal text might improve our results. 

 Another factor is the UMBC STS system. Ex-

amples of input on which UMBC STS system per-

form poorly are shown in Table 3. We can group 

these into two sets, each associated with problem 

in performing the paraphrase task.  

The first problem is that a slang word may have 

different meanings when it is used in different gen-

res. As we can see in the first example in Table 3, 

‘bombs’ does not mean ‘a container filled with 

explosive’ but is a synonym of ‘home runs’ when 

mentioned in a sports or baseball context. We can 

recognize this meaning by reading sport articles 

but it is not included in any dictionaries or 

WordNet. Thus our system predicts that the two 

tweets, each containing either ‘bombs’ or ‘home 

runs’,  have low semantic similarity and thus are 

not paraphrases. 

The second problem involves out-of-vocabulary 

words, such as the named entities found in the ex-

amples in Table 3.  Tweet 2 of the second example 
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‘NOW YOU SEE ME and AFTER EARTH Cant 

Outpace FAST FURIOUS 6’ is full of movie 

names whose meanings our STS system cannot 

recognize. We can solve this problem by adding 

name entity recognition to the system. Another 

potential solution would be to adopt a simple 

string-matching component. With string matching, 

we may handle those out-of-vocabulary words sit-

uations similar to the third and fourth example. We 

can match ‘orr’ and ‘chara’ between two tweets of 

the third example and ‘new ciroc’ in the fourth ex-

ample. 

To improve our STS performance, which is 

trained on a corpus that mostly consisted of rea-

sonably well-written narrative text, we need to ex-

pand training corpus. Training a LSA model on a 

collection of tweets or a mixture of tweets and nar-

rative text, and adding name entity recognition 

process may lead to better results. 

  

Figure 1. Ranked F1 score of 38 runs 

 

 

# 
Tweet 1 Tweet 2   System Gold 

1 chris davis is 44 with two bombs Chris Davis has 2 home runs tonight False True 

2 I wanna see the movie after earth 
NOW YOU SEE ME and AFTER EARTH 

Cant Outpace FAST FURIOUS 6 
True False 

3 Orr with a big hit on Chara I keep waiting for the chara vs orr fight False True 

4 New Ciroc Amaretto I NEED THAT Oh shit I gotta try that new ciroc flavor False True 

 

Table 3. Examples of input pairs on which our system performed poorly 

 

4. Conclusion 

We describe our system submitted in participating 

the SemEval 2015 Task 1 Paraphrase and Seman-

tic Similarity in Twitter. We preprocess tweets us-

ing two-skip trigrams to produce sets of possible 

trigrams and measure their semantic similarity us-

ing the UMBC-STS system. We computed the sta-

tistical value as maximum and average of each pair 

and use two regression models; logistic regression 

and support vector regression. Our best performing 

run achieved an F1 score of 0.599 and was ranked 

eleventh out of eighteen teams. 
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Abstract

We use referential translation machines
(RTMs) for predicting the semantic similarity
of text. RTMs are a computational model
effectively judging monolingual and bilingual
similarity while identifying translation acts
between any two data sets with respect to
interpretants. RTMs pioneer a language
independent approach to all similarity tasks
and remove the need to access any task or
domain specific information or resource.
RTMs become the 2nd system out of 13
systems participating in Paraphrase and
Semantic Similarity in Twitter, 6th out of 16
submissions in Semantic Textual Similarity
Spanish, and 50th out of 73 submissions in
Semantic Textual Similarity English.

1 Referential Translation Machine (RTM)

We present positive results from a fully automated
judge for semantic similarity based on Referential
Translation Machines (Biçici and Way, 2014b) in
two semantic similarity tasks at SemEval-2015, Se-
mantic Evaluation Exercises - International Work-
shop on Semantic Evaluation (Nakov et al., 2015).
Referential translation machine (RTM) is a compu-
tational model for identifying the acts of translation
for translating between any given two data sets with
respect to a reference corpus selected in the same
domain. An RTM model is based on the selection
of interpretants, training data close to both the train-
ing set and the test set, which allow shared seman-
tics by providing context for similarity judgments.
Each RTM model is a data translation and transla-
tion prediction model between the instances in the

training set and the test set and translation acts are
indicators of the data transformation and translation.
RTMs present an accurate and language independent
solution for making semantic similarity judgments.

RTMs pioneer a computational model for qual-
ity and semantic similarity judgments in monolin-
gual and bilingual settings using retrieval of relevant
training data (Biçici and Yuret, 2015) as interpre-
tants for reaching shared semantics. RTMs achieve
(i) top performance when predicting the quality of
translations (Biçici, 2013; Biçici and Way, 2014a);
(ii) top performance when predicting monolingual
cross-level semantic similarity; (iii) second perfor-
mance when predicting paraphrase and semantic
similarity in Twitter (iv) good performance when
judging the semantic similarity of sentences; (iv)
good performance when evaluating the semantic re-
latedness of sentences and their entailment (Biçici
and Way, 2014b).

RTMs use Machine Translation Performance Pre-
diction (MTPP) System (Biçici et al., 2013; Biçici
and Way, 2014b), which is a state-of-the-art (SoA)
performance predictor of translation even without
using the translation. MTPP system measures the
coverage of individual test sentence features found
in the training set and derives indicators of the close-
ness of test sentences to the available training data,
the difficulty of translating the sentence, and the
presence of acts of translation for data transforma-
tion. MTPP features for translation acts are provided
in (Biçici and Way, 2014b). RTMs become the 2nd
system out of 13 systems participating in Paraphrase
and Semantic Similarity in Twitter (Task 1) (Xu et
al., 2015) and achieve good results in Semantic Tex-
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Figure 1: RTM depiction.

Algorithm 1: Referential Translation Machine
Input: Training set train, test set test,

corpus C, and learning model M .
Data: Features of train and test, Ftrain

and Ftest.
Output: Predictions of similarity scores on the

test q̂.
1 FDA5(train,test, C)→ I
2 MTPPSystem(I,train)→ Ftrain
3 MTPPSystem(I,test)→ Ftest
4 learn(M,Ftrain)→M
5 predict(M,Ftest)→ ŷ

tual Similarity (Task 2) (Agirre et al., 2015) becom-
ing 6th out of 16 submissions in Spanish.

We use the Parallel FDA5 instance selection
model for selecting the interpretants (Biçici et al.,
2014; Biçici and Yuret, 2015), which allows efficient
parameterization, optimization, and implementation
of Feature Decay Algorithms (FDA), and build an
MTPP model. We view that acts of translation are
ubiquitously used during communication:

Every act of communication is an act of
translation (Bliss, 2012).

Translation need not be between different languages
and paraphrasing or communication also contain
acts of translation. When creating sentences, we use
our background knowledge and translate informa-
tion content according to the current context.

Figure 1 depicts RTM and Algorithm 1 describes

Task Setting Train LM
Task 1, ParSS English 313 7813
Task 2, STS English 441 6441
Task 2, STS English headlines 531 8031
Task 2, STS English images 411 6411
Task 2, STS Spanish 409 6409

Table 1: Number of sentences in I (in thousands) se-
lected for each task.

the RTM algorithm. Our encouraging results in the
semantic similarity tasks increase our understanding
of the acts of translation we ubiquitously use when
communicating and how they can be used to pre-
dict semantic similarity. RTMs are powerful enough
to be applicable in different domains and tasks with
good performance. We describe the tasks we partic-
ipated as follows:

ParSS Paraphrase and Semantic Similarity in
Twitter (ParSS) (Xu et al., 2015):

Given two sentences S1 and S2 in the
same language, produce a similarity score
indicating whether they express a similar
meaning: a discrete real number in [0, 1].

We model as sentence MTPP between S1 to S2.

STS Semantic Textual Similarity (STS) (Agirre
et al., 2015):

Given two sentences S1 and S2 in the same
language, quantify the degree of similar-
ity: a real number in [0, 5].

STS is in English and Spanish (a real number in
[0, 4]). We model as sentence MTPP of S1 and S2.

2 SemEval-15 Results

We develop individual RTM models for each task
and subtask that we participate at SemEval-2015
with the RTM-DCU team name. Interpretants are
selected from the LM corpora distributed by the
translation task of WMT14 (Bojar et al., 2014) and
LDC for English (Parker et al., 2011) and Span-
ish (Ângelo Mendonça et al., 2011) 1. We use the
Stanford POS tagger (Toutanova et al., 2003) to ob-
tain the lemmatized corpora for the ParSS task. The
number of instances we select for the interpretants

1English Gigaword 5th, Spanish Gigaword 3rd edition.
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RTM-DCU results
Data Model F1 Precision Recall maxF1 mPrecision mRecall rP MAE RAE MAER MRAER Rank
R SVR 0.54 0.883 0.389 0.693 0.695 0.691 0.5697 0.1953 0.7918 0.4278 0.8694 3
R PLS-SVR 0.562 0.859 0.417 0.678 0.649 0.709 0.564 0.2001 0.8109 0.4442 0.9105 4

RTM results with further optimization
Data Model F1 Precision Recall maxF1 mPrecision mRecall rP MAE RAE MAER MRAER
R PLS-SVR 0.502 0.938 0.343 0.674 0.686 0.663 0.5798 0.1912 0.775 0.6901 0.838
R RR 0.521 0.94 0.36 0.681 0.735 0.634 0.5777 0.1866 0.7564 0.7438 0.7944
R+L SVR 0.53 0.892 0.377 0.669 0.652 0.686 0.5719 0.1944 0.7879 0.6788 0.8615
R+L PLS-SVR 0.5 0.884 0.349 0.642 0.649 0.634 0.5245 0.2028 0.8218 0.7425 0.8864

Table 2: ParSS test results.

in each task is given in Table 1.

We use ridge regression (RR), support vector re-
gression (SVR), and extremely randomized trees
(TREE) (Geurts et al., 2006) as the learning mod-
els. These models learn a regression function using
the features to estimate a numerical target value. We
also use them after a dimensionality reduction and
mapping step with partial least squares (PLS) (Spe-
cia et al., 2009). We optimize the learning parame-
ters, the number of dimensions used for PLS, and the
parameters for parallel FDA5. More details about
the optimization processes are in (Biçici and Way,
2014b; Biçici et al., 2014). We optimize the learning
parameters by selecting ε close to the standard devi-
ation of the noise in the training set (Biçici, 2013)
since the optimal value for ε is shown to have lin-
ear dependence to the noise level for different noise
models (Smola et al., 1998). At testing time, the
predictions are bounded to obtain scores in the cor-
responding ranges.

We use Pearson’s correlation (rP ), mean absolute
error (MAE), and relative absolute error (RAE) for
evaluation:

MAE(ŷ, y) =

n∑
i=1

|ŷi − yi|
n RAE(ŷ, y) =

n∑
i=1

|ŷi − yi|
n∑

i=1

|ȳ − yi|
(1)

We define MAER and MRAER for easier replica-
tion and comparability with relative errors for each

instance:

MAER(ŷ, y) =

n∑
i=1

|ŷi − yi|
b|yi|cε
n

MRAER(ŷ, y) =

n∑
i=1

|ŷi − yi|
b|ȳ − yi|cε

n

(2)

MAER is the mean absolute error relative to the
magnitude of the target and MRAER is the mean
absolute error relative to the absolute error of a pre-
dictor always predicting the target mean assuming
that target mean is known. MAER and MRAER are
capped from below2 with ε = MAE(ŷ, y)/2, which
is the measurement error and it is estimated as half
of the mean absolute error or deviation of the pre-
dictions from target mean. ε represents half of the
score step with which a decision about a change
in measurement’s value can be made. ε is simi-
lar to half of the standard deviation, σ, of the data
but over absolute differences. For discrete target
scores, ε = step size

2 . A method for learning deci-
sion thresholds for mimicking the human decision
process when determining whether two translations
are equivalent is described in (Biçici, 2013).

MAER and MRAER are able to capture averaged
fluctuations at the instance level and they may eval-
uate the performance of a predictor at performance
prediction tasks at the instance level (e.g. perfor-
mance of the similarity of sentences, performance
of translation of different translation instances) bet-
ter. RAE compares sums of prediction errors and
MRAER averages instance prediction error compar-
isons.

2We use b . cε to cap the argument from below to ε.
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RTM-DCU rP results
Model answers-forums answers-students belief headlines images Weighted rP Rank

PLS-TREE 0.5484 0.5549 0.6223 0.7281 0.7189 0.6468 50

RTM top result rP selected according to Weighted rP among top 3 results with further optimization
Model answers-forums answers-students belief headlines images Weighted rP
TREE 0.5517 0.6729 0.6750 0.7812 0.7830 0.7126
Rank 48 38 39 29 49 38

Table 4: STS English test rP results for each domain.

Data Model F1 rP MAE RAE MAER MRAER
R PLS-SVR .4740 .6183 .2106 .6963 1.5408 .9223
R RR .4920 .6165 .2174 .7188 1.8609 .9132
R PLS-TREE .5330 .6156 .2201 .7276 1.939 .9144
R SVR .4800 .6152 .2107 .6965 1.5012 .9306
R PLS RR .5110 .6140 .2170 .7175 1.8443. .9240
R+L SVR .5040 .6216 .2085 .6893 1.4723 .9344
R+L PLS-SVR .4970 .6209 .2093 .6919 1.5402 .9226
R+L PLS-TREE .5410 .6205 .2177 .7196 1.8834 .9161
R+L RR .4970 .6194 .2164 .7154 1.8448 .9096
R PLS-SVR .4740 .6183 .2106 .6963 1.5408 .9223

Table 3: ParSS training results of top 5 RTM systems
with further optimization.

2.1 Task 1: Paraphrase and Semantic
Similarity in Twitter (ParSS)

ParSS contains sentences provided by Twitter 3 (Xu
et al., 2015). Official evaluation metric is Pearson’s
correlation score, which we use to select the top
systems on the training set. RTM-DCU results on
the ParSS test set are given in Table 2. The set-
ting R using SVR becomes 2nd out of 13 systems
and 3rd out of 25 submissions. Looking at MAE
and MAER allows us to obtain explanations to train
and test performance differences for example with-
out knowing their target distribution. Even though
MAE of PLS-SVR is about %5 smaller on the ParSS
test set, MAER is %55 smaller due to test set con-
taining fewer zero entries (%16 vs. %39 on the train
set). Lower test MAE than training MAE may be
attributed to RTMs.

We obtained results with lemmatized datasets and
further optimized the learning model parameters af-
ter the challenge. We present the performance of the
top 5 individual RTM models on the training set in
Table 3. R uses the regular truecase (Koehn et al.,

3www.twitter.com

RTM-DCU rP results
Model Wikipedia News Weighted rP Rank
TREE 0.5823 0.5251 0.5443 6

RTM top result rP selected according to Weighted
rP among top 3 results with further optimization

Model Wikipedia News Weighted rP Rank
TREE 0.6622 0.5833 0.6096 5
Rank 4 5

Table 5: STS Spanish test results.

2007; Koehn, 2010) corpora and L uses the lemma-
tized truecased corpora. R+L correspond to using
the features from both R and L, which doubles the
number of features.

2.2 Task 2: Semantic Textual Similarity (STS)

STS contains sentence pairs from different do-
mains: answers-forums, answers-students, belief,
headlines, and images for English and wikipedia
and newswire for Spanish. Official evaluation met-
ric in STS is the Pearson’s correlation score. We
build separate RTM models for headlines and im-
ages domains for STS English. Domain specific
RTM models obtain improved performance in those
domains (Biçici and Way, 2014b). STS English test
set contains 2000, 1500, 2000, 1500, and 1500 sen-
tences respectively from the specified domains how-
ever for evaluation, STS use a subset of the test set,
375, 750, 375, 750, and 750 instances respectively
from the corresponding domains. This may lower
the performance of RTMs by causing FDA5 to se-
lect more domain specific data and less task specific
since RTMs use the test set to select interpretants
and build a task specific RTM prediction model.

Table 4 and Table 5 list the results on the test set
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along with their ranks out of 73 and 16 submissions
respectively for English STS and Spanish STS.

RTM top test results selected according to
Weighted rP among top 3 results on STS for each
subtask as well as top RTM-DCU results in STS
2014 (Biçici and Way, 2014b) are presented in Ta-
ble 6, where we have used the top results from do-
main specific RTM models for headlines and images
domains in the overall model results. Top 3 individ-
ual RTM model performance on the training set with
further optimized learning model parameters after
the challenge are presented in Table 7. Better rP ,
RAE, and MRAER on the test set than on the train-
ing set in STS 2015 English may be attributed to
RTMs.

2.3 RTMs Across Tasks and Years

We compare the difficulty of tasks according to
MRAER where the correlation of RAE and MRAER
is 0.89. In Table 8, we list the RAE, MAER,
and MRAER obtained for different tasks and sub-
tasks, also listing RTM results from SemEval-
2013 (Biçici and van Genabith, 2013), from
SemEval-2014 (Biçici and Way, 2014b), and and
from quality estimation task (QET) (Biçici and Way,
2014a) of machine translation (Bojar et al., 2014).
RTMs at SemEval-2013 contain results from STS.
RTMs at SemEval-2014 contain results from STS,
semantic relatedness and entailment (SRE) (Marelli
et al., 2014), and cross-level semantic similarity
(CLSS) tasks (Jurgens et al., 2014). RTMs at
WMT2014 QET contain tasks involving the predic-
tion of an integer in [1, 3] representing post-editing
effort (PEE), a real number in [0, 1] represent-
ing human-targeted translation edit rate (HTER), or
an integer representing post-editing time (PET) of
translations.

The best results are obtained for the CLSS para-
graph to sentence subtask, which may be due to the
larger contextual information that paragraphs can
provide for the RTM models. For the ParSS task,
we can only reduce the error with respect to know-
ing and predicting the mean by about 22.5%. Predic-
tion of bilingual similarity as in quality estimation of
translation can be expected to be harder and RTMs
achieve SoA performance in this task as well (Biçici
and Way, 2014a). Table 8 can be used to evaluate
the difficulty of various tasks and domains based on

our SoA predictor RTM. MRAER considers both the
predictor’s error and the target scores’ fluctuations
at the instance level. We separated the results hav-
ing MRAER greater than 1 as in these tasks and sub-
tasks RTM does not perform significantly better than
mean predictor and fluctuations render these as tasks
that may require more work.

3 Conclusion

Referential translation machines pioneer a clean
and intuitive computational model for automatically
measuring semantic similarity by measuring the acts
of translation involved and achieve to become the
2nd system out of 13 systems participating in Para-
phrase and Semantic Similarity in Twitter, 6th out
of 16 submissions in Semantic Textual Similarity
Spanish, and 50th out of 73 submissions in Semantic
Textual Similarity English. RTMs make quality and
semantic similarity judgments possible based on the
retrieval of relevant training data as interpretants for
reaching shared semantics. We define MAER, mean
absolute error relative to the magnitude of the target,
and MRAER, mean absolute error relative to the ab-
solute error of a predictor always predicting the tar-
get mean assuming that target mean is known. RTM
test performance on various tasks sorted according
to MRAER can identify which tasks and subtasks
may require more work.
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Domain Model rP MAE RAE MAER MRAER
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S

20
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English

headlines
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ALL L+S SVR 0.5844 1.0818 0.7791 0.8494 0.77

Table 6: RTM top test results selected according to Weighted rP among top 3 results on STS as well as top RTM-DCU
results in STS 2013 and STS 2014 (Biçici and Way, 2014b). ALL presents results over all of the test set.
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Table 7: RTM training results of top 3 systems on STS English, English images, English headlines, and Spanish tasks.
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Task Subtask Domain Model RAE MAER MRAER
CLSS 2014 Paragraph to Sentence Mixed TREE 0.4579 0.5112 0.5037
STS 2014 English OnWN TREE 0.5585 0.7975 0.546
QET 2014 English-Spanish PEE Europarl PLS-TREE 1.0794 0.304 0.614
STS 2015 English Images TREE 0.5885 0.5424 0.6229
STS 2015 English Headlines RR 0.5894 0.4844 0.6380
CLSS 2014 Sentence to Phrase Mixed TREE 0.6255 0.6857 0.6444
QET 2014 German-English PEE Europarl RR 0.8204 0.3575 0.679
QET 2014 English-German PEE Europarl TREE 0.8602 0.3692 0.6985
STS 2014 English Images TREE 0.7395 0.8338 0.7246
QET 2014 Spanish-English PEE Europarl FS-RR 0.9 0.3798 0.7491
QET 2014 English-Spanish PET Europarl SVR 0.7223 0.4651 0.7786
STS 2014 English Headlines TREE 0.7845 0.6711 0.7854
SRE 2014 English SICK R+L PLS-SVR 0.6645 0.1827 0.8177
ParSS 2015 English Tweets SVR 0.775 0.6901 0.838
STS 2015 English Answers-students PLS-SVR 0.7819 0.5542 0.8404
CLSS 2014 Phrase to Word Mixed TREE 0.9488 1.1454 0.8483
STS 2013 English OnWN L+S SVR 0.8255 1.2875 0.8605
STS 2014 English Tweet-news TREE 0.8093 0.4601 0.875
QET 2014 English-Spanish HTER Europarl SVR 0.8532 0.7727 0.8758
STS 2014 English Deft-news TREE 0.8716 0.6271 0.881

STS 2015 Spanish News TREE 0.9426 0.4096 1.1052
STS 2013 English Headlines L+S SVR 1.0231 1.0456 1.1444
STS 2015 Spanish Wikipedia TREE 0.9499 0.4844 1.2062
STS 2014 English Deft-forum TREE 1.0908 0.7724 1.216
STS 2015 English Answers-forums PLS-SVR 1.1675 1.5369 1.3449
STS 2013 English FNWN L+S SVR 1.2633 1.5087 1.4048
STS 2015 English Belief PLS-SVR 1.1825 1.5749 1.4119
STS 2014 Spanish Wikipedia TREE 1.3579 0.65 1.6612
STS 2014 Spanish News TREE 1.4141 0.5994 1.8053
STS 2013 English SMT L+S SVR 1.6132 0.1669 2.0718

Table 8: Best RTM test results for different tasks and subtasks sorted according to MRAER.
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Abstract 

We present an approach to identifying 
Twitter paraphrases using simple lexical over-
lap features. The work is part of ongoing re-
search into the applicability of knowledge-
lean techniques to paraphrase identification. 
We utilize features based on overlap of word 
and character n-grams and train support vector 
machine (SVM). Our results demonstrate that 
character and word level overlap features in 
combination can give performance compara-
ble to methods employing more sophisticated 
NLP processing tools and external resources. 
We achieve the highest F-score for identifying 
paraphrases on the Twitter Paraphrase Corpus 
as part of the SemEval-2015 Task1. 

1 Introduction 

This paper presents an approach to identifying 
Twitter paraphrase pairs using lexical overlap fea-
tures. Paraphrase identification (PI) may be de-
fined as “the task of deciding whether two given 
text fragments have the same meaning” (Lintean & 
Rus 2011). Methods for identifying paraphrases 
thus take a pair of texts and make a binary judg-
ment. The PI task has practical importance in the 
Natural Language Processing (NLP) community 
because of the pervasive problem of linguistic var-
iation. Accurate methods for PI should help im-
prove the performance of NLP systems that would 
seem to require language understanding. This in-
cludes key applications such as question answer-
ing, information retrieval and machine translation, 
amongst others. Acquired paraphrases have been 

shown to improve the performance of Statistical 
Machine Translation (SMT) systems, for example 
(Callison-Burch et al. 2006, Owczarzak et al., 
2006; Madnani et al., 2007)  

Many researchers on PI make use of existing 
NLP tools and other resources to identify para-
phrases. For example, Duclaye et al., (2002) ex-
ploits the NLP tools of a question answering 
system for reformulating rules to identify para-
phrases. Other researchers (Finch et al 2005, 
Mihalcea et al 2006, Fernando & Stevenson 2008, 
Malakasiotis 2009, Das & Smith 2009) have em-
ployed lexical semantic similarity information 
based on resources such as WordNet (Miller, 
1995).  

Although the PI task aims to identify sentenc-
es that are semantically equivalent, a number of 
researchers have shown that classifiers trained on 
lexical overlap features may achieve relatively 
high accuracy. Good performance is achieved 
without the use of knowledge-based semantic fea-
tures or other external knowledge sources such as 
parallel corpora (Lintean & Rus 2011, Blacoe & 
Lapata, 2012). We consider methods as 
knowledge-lean if they make use of just the text at 
hand and avoid the use of external processing tools 
and other resources. Knowledge-lean PI methods 
may thus employ shallow overlap measures based 
on lexical items or n-grams, but they might also 
make use of distributional techniques where these 
are based on simple text statistics.  

The work described here is part of ongoing 
research that is investigating the extent to which 
knowledge-lean techniques may help to identify 
paraphrases. Preliminary work has been conducted 
using the Microsoft Research Paraphrase Corpus 

64



(MSRPC) (Dolan & Brockett, 2005). However, the 
approach may be of particular value where 
knowledge-based language resources are not readi-
ly available or applicable. In this context, Twitter 
presents interesting challenges. Its short texts 
(tweets), widespread use of non-standard grammar, 
spelling and punctuation, as well as slang, abbrevi-
ations and neologisms, etc. make syntactic and se-
mantic analysis difficult.   

We apply a supervised learning approach us-
ing SVMs and learn classifiers based on simple 
lexical and character n-gram overlap features. 
SVM classifiers benefit from features that are in-
terdependent and informative, so good choice of 
feature combinations is crucial. We also experi-
mented with different kernels to find out whether a 
non-linear kernel works well for this task. 

2 Related Work 

A number of researchers have investigated whether 
near state-of-the-art PI results can be obtained 
without use of external sources. Blacoe & Lapata 
(2012) use distributional methods to find composi-
tional meaning of phrases and sentences. They find 
that performance of shallow approaches is compa-
rable to methods that are computationally intensive 
or that use very large corpora. Lintean & Rus 
(2011) apply word unigrams and bigrams. Bigrams 
capture word order information, which can in turn 
capture syntactic similarities between two text 
fragments. Finch et al. (2005) combines several 
MT metrics and uses them as features. Madnani et 
al. (2012) also shows that good results are obtained 
by combining different MT metrics. Ji & Eisen-
stein (2013) attains state-of-the-art results based on 
latent semantic analysis and a new term-weighting 
metric, TF-KLD.1   

A variety of classifiers has been employed for 
the purpose of identifying paraphrases. Kozarova 
& Montoyo (2006) measures lexical and semantic 
similarity with the combination of different classi-
fiers: k-Nearest Neighbours, Support Vector Ma-
chines, and Maximum Entropy. The SVM 
Classifiers remains the most applicable in recent 
research whether applied solely (Finch et al., 2005; 
Wan et al., 2006) or part of combined classifiers 
(Kozoreva & Montotyo, 2006; Lintean & Rus, 
2011; Madnani et al, 2012).  

                                                             
1 State-of-the-art results are shown in Section 5. 

3 The Task 

The Semeval-2015 task “Paraphrase and Semantic 
Similarity in Twitter” involves predicting whether 
two tweets have the same meaning. Training and 
test data are provided in the form of a Twitter Par-
aphrase Corpus (TPC) (Xu, 2014). The TPC is 
constructed semi-randomly and annotated via Am-
azon Mechanical Turk by 5 annotators. It consists 
of around 35% paraphrases and 65% non-
paraphrases. Training and development data con-
sists of 18K tweet pairs and 1K test data. Test data 
is drawn from a different time period and annotat-
ed by an expert. 

4 Approach 

4.1 Text Preprocessing 

Text preprocessing is essential to many NLP appli-
cations. It may involve tokenizing, removal of 
punctuation, PoS-tagging, and so on. For identify-
ing paraphrases, this may not always be appropri-
ate. Removing punctuation and stop words, as 
commonly done for many NLP applications, argu-
ably results in the loss of information that may be 
critical in terms of PI. We therefor keep text pre-
processing to a minimum. 

The TPC is already tokenized (O’Connor et 
al., 2010), part-of-speech tagged (Derczynski et al., 
2013), and named entity tagged (Ritter et al., 
2011). Here we only experiment on tokenized data, 
ignoring part-of-speech and named entity tagged 
data. In the next section we also report results for 
the MSR Paraphrase Corpus. We used the Rasp 
Toolkit (Briscoe et al., 2006) to perform tokeniza-
tion in this case. 

A particular issue in dealing with Twitter is 
the use of capitalization. Variability in the use of 
capitals (some tweets may be uncapitalised, others 
written in all uppercase) presents a problem for 
simple lexical overlap measures between candidate 
paraphrase pairs. To help overcome this, tokenized 
tweets are lowercased. Although this potentially 
causes confusion between proper nouns and com-
mon nouns (e.g. apple the fruit v. Apple the com-
pany) our experimental work shows that it most 
likely increases the quantity of identified para-
phrase pairs.  

Tweets tend to have a higher proportion of 
out-of-vocabulary (OOV) words than other texts. 
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Due to the character limit, words are often short-
ened or abbreviated and standard spelling rules 
ignored. In addition, characters may be added for 
emphasis. Nevertheless, we have not normalized 
the original texts to compensate for this. 

A novel aspect of the TPC compared to other 
paraphrase corpora is the inclusion of topic infor-
mation, which is also used during the construction 
process. Despite the possibility that topic features 
might be utilized, we have not made use of this 
information in our approach. 

4.2 Features and Instances 

As the basis for deriving a number of overlap fea-
tures, we consider different representations of a 
text as a set of tokens, where a token may be either 
a word or character n-gram. For the work de-
scribed here we restrict attention to word and char-
acter unigrams and bigrams. Use of a variety of 
machine translation techniques (Madnani et al., 
2012) that utilise word n-grams motivated their use 
in representing texts for this task. In particular, 
word bigrams may provide potentially useful syn-
tactic information about a text. Character bigrams, 
on the other hand, allow us to capture similarity 
between related word forms. Possible overlap fea-
tures are constructed using basic set operations: 
Size of union: the size of the union of the tokens 
in the two texts of a candidate paraphrase pair.  
Size of intersection: the number of tokens com-
mon to the texts of a candidate paraphrase pair.  
Text Size: the size of the set of tokens representing 
a given text. 
This yields a total of eight possible overlap fea-
tures for a pair of texts, plus four ways of measur-
ing text size. Each data instance is a vector of 
features representing a pair of tweets. In order to 
select an optimal set of features we ran a number 
of preliminary experiments. Table 1 presents the 
results for different features and combinations of 
features on the development data. We present re-
sults obtained for a linear kernel. The general pat-
tern for an RBF kernel is similar.  

Intuitively, knowing about the union, intersec-
tion or size of a text in isolation may not be very 
informative. However, for a given token type, the-
se four features in combination provide potentially 
useful information about similarity of texts. In the 
following, C1 and C2 each denote four features 
(union, intersection, sizes of tweet 1 and tweet 2) 

produced by character unigrams and bigrams, re-
spectively. Similarly, W1 and W2 denote the four 
features generated by word unigrams and bigrams, 
respectively. Combinations (e.g. C1W2) represent 
eight features: those for C1 plus those for W2.  
 

Features Acc  Pre.  Rec.  F-sc. 
C1 64.5 0.0 0.0 0.0 
C2 74.5 70.2 48.4 57.7 
C1C2 74.5 70.3 48.5 57.4 
W1 74.1 70.5 46.5 56.0 
W2 70.5 63.9 38.8 48.3 
W1W2 74.0 69.9 46.9 56.2 
C1W1 74.2 70.4 47.2 56.5 
C2W2 74.9 71.1 49.1 58.1 
C1W2 71.4 72.0 31.9 44.2 
C2W1 75.6 72.4 50.6 59.6 
Baseline 72.6 70.4 38.9 50.1 
Table 1: Individual and Combined Results by Linear SVM 

It is clear that features based on character bi-
grams are more informative than character uni-
grams (for C1, all instances are classified 
negative). For words, on the other hand, use of bi-
grams did not improve performance over uni-
grams. However, combining features for words and 
characters proved beneficial. Although, the combi-
nation of character and word bigrams increases 
performance, combining word unigrams and char-
acter bigrams is more informative. We therefore 
chose to represent instances using a combination of 
character bigrams and word unigrams. 2 

An important step in SVM classification is 
rescaling of the features. Apart from a simple scal-
ing mechanism, which is applied during the classi-
fication process, features are kept as they are.  

4.3 SVM Classifiers  

An SVM classifier maps the feature vectors into 
high dimensional vector space and computes the 
dot product of the two vectors inside the kernel. Its 
applicability to both linear and non-linear systems 
has been proven for different NLP applications. 
We used SVM implementations from scikit-learn 
(Pedregosa et al., 2011) and experimented with a 
number of classifiers. We report here on results 
obtained using SVC adapted from libsvm (Chang 
& Lin, 2011) by embedding different kernels. We 
                                                             
2 The submitted system used just six features: four character 
bigram features together with just the union and intersection of 
word unigrams. This had no impact on performance. 
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experimented with linear and Radial Basis Func-
tion (RBF) kernels. Linear kernels are known 
to work well with large datasets and RBF kernels 
are the first choice if small number of features are 
applied (Hsu et al., 2003), which both cases to ap-
ply our datasets. Classifiers are used with their de-
fault parameters and trained on the data provided. 

5 Results 

Table 2 shows that SVC with a linear kernel 
achieved an F-score of 67.4. This represent the 
highest score amongst those systems participating 
in Task 1, though still some way below Xu et al 
(2014) and the human upper-bound. Xu et al. 
(2014)’s approach constructs a joint word-sentence 
paraphrase model (MULTIP) and utilizes topic 
information, which outperforms other features in-
dividually. Table 2 also shows the result for the 
RBF kernel, which was not submitted for the task. 
For this task the non-linear kernel does not provide 
any performance gain over the linear SVM. 
 

Model Acc. Pre. Rec. F-sc. 
Human Upperbound -- 75.2 90.8 82.3 
Xu et al. (2014) -- 72.2 72.6 72.4 
SVC (linear kernel) 86.5 68.0 66.9 67.4 
SVC (rbf kernel) 85.7 64.9 68.6 66.7 
Baseline    -- 67.9 52.0 58.9 

Table 2: TPC Results 

For comparison, Table 3 shows state-of-the-
art results for the PI task on the MSRPC, together 
with our classifiers trained using of same set of 
features as for the TPC. Our method performs well 
above baseline, but with relatively lower precision 
than other systems. In contrast to Table 2, our 
highest result is obtained using the RBF kernel. 
 

Model Acc. Pre. Rec. F-sc.  
Ji&Eisenstein(2013) 80.4   85.96 
Madnani et al (2012) 77.4 - - 84.1 
Socher et al. (2011) 76.8 - - 83.6 
Wan et al. (2006) 75.6 77.0 90.0 83.0 
 SVC(rbf kernel) 74.4 74.8 92.9 82.8 
Das & Smith (2009)  76.1 79.6 86.1 82.7 
Finch et al. (2005) 75.0 76.6 89.8 82.7 
Fernando&Stevenson (2008) 74.1 75.2 91.3 82.4 
SVC (linear kernel) 73.7 75.0 90.1 82.1 
Qiu et al. (2006) 72.0 72.5 93.4 81.6 
Zhang and Patrick (2005) 71.9 74.3 88.2 80.7 
BASELINE 65.4 71.6 79.5 75.3 

Table 3: Paraphrase Identification State-of-the-art Results on MSRPC 

We note that the features that we adopt as in-
formative for the Twitter PI task outperform some 
recent approaches to PI on the MSRPC. This is 
encouraging and indicates applicability of 
knowledge-lean approaches to other data sets.  

6 Conclusions 

Our results demonstrate that knowledge-lean 
methods based on character and word level overlap 
features in combination can give good results in 
terms of the identification of Twitter paraphrases. 
SVM classifiers were successfully used to identify 
paraphrase pairs given just a few simple features. 
Our approach performed as well as and generally 
much better (in terms of F-score) than other, more 
sophisticated participating systems.  

Overlap of character bigrams was more in-
formative than that of character unigrams. We hy-
pothesize that measuring overlap of character 
bigrams provides a way of detecting similarity of 
related word-forms. It thus performs a similar 
function to stemming or lemmatization in other 
domains, whilst retaining some information about 
difference. This may be especially helpful with 
Twitter, where a variety of idiosyncratic spellings 
and short forms may be observed alongside the 
usual morphological variants. 

A strength of our approach is that pre-
processing is kept to a minimum. This may explain 
why our system outperforms other approaches that 
use a similar set of overlap features. Methods that 
require the removal of stop words, punctuation, 
OOV words etc., lose potentially useful infor-
mation. On the other hand, we found that normaliz-
ing tweets with regard to capitalization enhanced 
performance of the classifier.  

The current work on paraphrase identification 
is ongoing. There is clearly room for reaching to 
human upper bound shown in Table 2. Our latest 
work shows that extending character and word n-
grams to up to 4 is promising and gives perfor-
mance that is close to the state–of-the-art results on 
TPC obtained by Xu et al. (2014). We intend to 
report on these results in a future paper.   
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Abstract
When tweeting on a topic, Twitter users often
post messages that convey the same or similar
meaning. We describe TweetingJay, a system
for detecting paraphrases and semantic simi-
larity of tweets, with which we participated in
Task 1 of SemEval 2015. TweetingJay uses a
supervised model that combines semantic over-
lap and word alignment features, previously
shown to be effective for detecting semantic
textual similarity. TweetingJay reaches 65.9%
F1-score and ranked fourth among the 18 par-
ticipating systems. We additionally provide
an analysis of the dataset and point to some
peculiarities of the evaluation setup.

1 Introduction

Recognizing tweets that convey the same meaning
(paraphrases) or similar meaning is useful in applica-
tions such as event detection (Petrović et al., 2012),
tweet summarization (Yang et al., 2011), and tweet
retrieval (Naveed et al., 2011). Paraphrase detection
in tweets is a more challenging task than paraphrase
detection in other domains such as news (Xu et al.,
2013). Besides brevity (max. 140 characters), tweets
exhibit all the irregularities typical of social media
text (Baldwin et al., 2013), such as informality, un-
grammaticality, disfluency, and excessive use of jar-
gon.

In this paper we present the TweetingJay system
for detecting paraphrases in tweets, with which we
participated in Task 1 of SemEval 2015 evaluation
exercise (Xu et al., 2015). Our system builds on
findings from a large body of work on semantic tex-
tual similarity (STS) (Šarić et al., 2012; Sultan et al.,

2014) and recent breakthroughs in distributed word
representations (Mikolov et al., 2013a). We design a
set of measures that capture the semantic similarity
of tweets and train a support vector machine (SVM)
using these measures as features. Positioning of our
system at rank four among 18 teams, with only point
and a half lower performance compared to the the
best-performing system, suggests that STS measures
are useful for detecting paraphrases in Twitter. We
make our system freely available.1

Besides providing the description of the Tweeting-
Jay system, in this paper we analyze the evaluation
setup, with special focus on the provided dataset and
its subsets (train, validation, and test), and discuss
the stability of the evaluation results.

2 Related Work

There is a large body of work on automated para-
phrase detection; see (Madnani and Dorr, 2010) for a
comprehensive overview. The majority of research
efforts focus on detecting paraphrases in standard
texts such as news (Das and Smith, 2009; Madnani
et al., 2012) or artificially generated text (Madnani
et al., 2012). State-of-the-art approaches typically
combine several measures of semantic similarity be-
tween text fragments. For instance, Madnani et al.
(2012) achieve state-of-the-art performance by com-
bining eight different machine translation metrics in
a supervised fashion.

A task closely related to paraphrase detection is
semantic textual similarity (STS), introduced at Se-
mEval 2012 (Agirre et al., 2012). There is now a

1http://takelab.fer.hr/tweetingjay
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significant amount of work on this task. The best
performing STS systems employ various methods
for aligning semantically corresponding words or
otherwise quantifying the amount of semantically
congruent content between two sentences (Sultan et
al., 2014; Šarić et al., 2012).

In contrast, STS research on Twitter data has been
scarce. Zanzotto et al. (2011) detect content redun-
dancy between tweets, where redundant means para-
phrased or entailed content. They achieve reasonable
performance with SVM using vector-comparison and
syntactic tree kernels. Xu et al. (2014) propose MUL-
TIP, a latent variable model for joint inference of
correspondence of words and sentences. An unsu-
pervised model based on representing sentences in
latent space is presented by Guo and Diab (2012).

3 TweetingJay

TweetingJay is essentially a supervised machine
learning model, which employs a number of semantic
similarity features (18 features in total). Because the
number of features is relatively small, we use SVM
with a non-linear (RBF) kernel. Our features can be
divided into (1) semantic overlap features, most of
which are adaptations of STS features proposed by
Šarić et al. (2012), and (2) word alignment features,
based on (a) the output of the word alignment model
by Sultan et al. (2014) and (b) a re-implementation
of the MULTIP model by Xu et al. (2014).

In the dataset provided by the organizers, each
tweet is associated with a topic, with 10 to 100 tweet
pairs per topic. An important preprocessing step is
to remove tokens that can be found in the name of a
topic. For example, for the topic “Roberto Mancini”,
we trim the tweets “Roberto Mancini gets the boot
from the Man City” and “City sacked Mancini” to

“gets the boot from the Man City” and “City sacked”,
respectively, and then compute the features on the
trimmed tweets. The rationale is that, given a topic,
there is an overlap in topic words between both para-
phrase and non-paraphrase tweet pairs, which dimin-
ishes the discriminative power of the model’s com-
parison features.

3.1 Semantic Overlap Features

Semantic overlap features compare the content words
(nouns, verbs, adjectives, adverbs, and numbers).

Ngram overlap. We compute the number of
matching n-grams between two tweets. This number
is normalized by the length of the first and the second
tweet, respectively, and the harmonic mean of these
two measures is taken as the similarity score. These
features are computed separately for unigrams and
bigrams. We also compute a weighted version by
weighting the matched words w with their informa-
tion content:

ic(w) = − log
freq(w) + 1∑

w′∈C freq(w′) + 1

where C is the set of all words in the corpus and
freq(w) is the word’s frequency. We obtained the
frequencies from the Google Books Ngrams (GBN)
(Michel et al., 2011). In the weighted version of the
ngram overlap, the overlap is normalized by the sum
of information contents of all words in the first and
second tweet, respectively, and the resulting similar-
ity score is the harmonic mean of these two scores.

Greedy word alignment overlap (GWAO). To
compute this feature, we iteratively pair the words –
one word from each tweet – according to their seman-
tic similarity. In each iteration we greedily select the
pair of words with the largest semantic similarity, and
remove the words from their corresponding tweets,
until no words are left in shorter of the two tweets.
The similarity between words is computed as the
cosine between their corresponding 300-dimension
embedding vectors obtained using word2vec tool
(Mikolov et al., 2013b) on a 100 billion words por-
tion of the Google News dataset. Let P (t1, t2) be
the set of word pairs obtained through the alignment
on a pair of tweets (t1, t2) and let vec(w) be the em-
bedding vector of the word w. The GWAO score is
computed as:

gwao(t1, t2) =
∑

(w1,w2)
∈P (t1,t2)

α · cos (vec(w1), vec(w2))

where α is the larger of the information contents
of the two words, α = max (ic(w1), ic(w1)). The
gwao(t1, t2) score is normalized with the sum of
information contents of words from t1 and t2, respec-
tively, and the harmonic mean of the two normalized
scores is taken as the feature value.
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Tweet embedding similarity. Linear combina-
tions of word embedding vectors have been shown
to correspond well to the semantic composition of
the individual words (Mikolov et al., 2013a; Mikolov
et al., 2013b). Building on this finding, we embed
a tweet as a weighted sum of the embeddings of its
content words, where we use information content of
words as their weights:

vec(t) =
∑
w∈t

ic(w) · vec(w).

As the tweet embedding similarity, we simply com-
pute the cosine between the corresponding tweet em-
beddings, i.e., cos (vec(t1), vec(t2)).

Topic-specific information content. While infor-
mation content computed on a general corpus such
as GBN indicates how informative the word is in
general, we also wanted to have a measure of how
informative each word is within a tweet’s topic. To
this end we also compute topic-specific versions of
all the above features using topic-specific instead of
GBN information contents.

3.2 Word Alignment Features

We adopt the word alignment features from two
alignment-based systems: (1) the DLS@CU system
of Sultan et al. (2014), which achieved the best per-
formance on the STS task at SemEval 2014 (Agirre et
al., 2014), and (2) our implementation of the MULTIP
latent variables model (Xu et al., 2014), which uti-
lizes the concept of an anchor: a pair of semantically
aligned words from a paraphrased pair of tweets.

Aligned word pairs (AWP). A state-of-the art
monolingual word alignment model by Sultan et al.
(2014) outputs pairs of semantically aligned words
between two given sentences.2 We used the output
of the DLS@CU model to generate two features: (1)
the raw count of the aligned word pairs, and (2) the
normalized count, which is the harmonic mean of the
scores obtained by normalizing the raw count with
the length of the first and second tweet, respectively.
We computed two versions for both of these features,
one considering all the tokens in tweets, and the other
taking into account only content words.

2https://github.com/ma-sultan/
monolingual-word-aligner

Anchor count (ANC). We re-implemented the
MULTIP model of Xu et al. (2014).3 As anchor candi-
dates we consider all pairs of content words from the
two tweets. We use a minimalistic set of features in-
cluding (1) Levenshtein distance between candidate
words, (2) several binary features indicating related-
ness of words (e.g., lowercased tokens match, POS-
tags match), and (3) semantic similarity obtained as
the cosine of word embeddings, obtained with the
GloVe model (Pennington et al., 2014) trained on
Twitter data.4 To account for feature interactions,
following (Xu et al., 2014), we also use conjunction
features. We use the number of anchors identified by
this method for a pair of tweets as a feature for our
SVM model.

4 Evaluation

Each team was allowed to submit two runs on the
test set provided by the task organizers (Xu et al.,
2015). Participants were provided with a training set
(13,063 pairs) and a development set (4,727 pairs).
We used the train and development set to optimize
the hyperparameters C and γ of our SVM model
with the RBF kernel. For the final evaluation, the
organizers used a test set of 972 tweet pairs.

Feature sets. We divided the features in three
groups: (1) semantic overlap features (SO) from Sec-
tion 3.1, (2) aligned word pairs (AWP) features, and
(3) the anchor count feature (ANC) from Section 3.2.

Model optimization. There are three ways how
the optimization of the SVM model (hyperparameters
C and γ) could have been carried out: (1) training and
optimization on the train set using 10-folded cross-
validation, with no use of the development set (model
M1); (2) training on the train set and optimization on
the development set (model M2), and (3) training on
the union of the train and development set using 10-
folded cross-validation (model M3). Following the
advice of the task organizers, we removed debatable
cases from both the train and dev sets. We submitted
models M1 and M2 for the official evaluation (our
team name was TKLBLIIR).

3We obtain lower results on the test set (61.3% F1 vs. 69.6%).
This is likely caused by the use of slightly different features and
perhaps by differences in implementation.

4http://nlp.stanford.edu/projects/glove/
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Team P R F1 Rank

ASOBEK 68.0 66.9 67.4 1
MITRE 80.6 56.9 66.7 2
ECNU 76.7 58.3 66.2 3
FBK-HLT 68.5 63.4 65.9 4
TKLBLIIR M1 64.5 67.4 65.9 5
TKLBLIIR M2 46.1 81.7 59.0 19

MULTIP 71.9 67.4 69.6 –
Baseline (log.reg.) 67.9 52.0 58.9 21
Baseline (WTMF) 45.0 66.3 53.6 28

Table 1: Official SemEval Task 1 evaluation.

M1 M2 M3

Features dev test dev test dev test

SO 63.3 63.4 64.9 59.0 63.3 61.5
SO+AWP 64.0 61.6 64.7 60.4 64.0 61.6
SO+ANC 60.8 65.9 64.6 60.8 64.5 62.5
SO+AWP+ANC 64.1 63.2 64.9 59.0 64.4 61.2

Table 2: Model optimization using different datasets.

4.1 Official Results

A subset of the official ranking is shown in Table
4.1. Our model M1 ranked fourth (sharing that place
with FBK-HLT) in the official evaluation with a 1.5%
lower F1 score than the best-performing system. Our
model M2 outperforms both baselines. The state-of-
the-art model MULTIP outperforms all participating
systems. There is a notable performance gap be-
tween our two runs. We believe this comes from
the high sensitivity of the performance on the test
set to small changes in hyperparameter values. We
elaborate more on this in the next section.

4.2 Dataset Analysis

In Table 4.2 we show the performance of the models
M1, M2, and M3 on the development and test set.
We observe an unusual behavior for all three mod-
els: a model that performs good on the development
set typically performs bad on the test set, and vice
versa. Furthermore, optimal cross-validated F1 per-
formance on the train set is 72%, which is 7 points
above the best performance on the validation set. We
believe this may be indicative of significant differ-
ences in the distributions underlying the datasets.

To investigate this further, we applied the

Kolmogorov-Smirnov two-sample goodness-of-fit
test (K-S test) (Daniel, 1990) for each of the used
features to determine whether the train set is drawn
from the same distribution as the development and
test set. The K-S test is a nonparametric test that
determines whether two independent samples differ
in some respect, both in the measure of locations
(means, median) and the shapes of the distributions
(skewness, dispersion, kurtosis). The assumptions
for the K-S test (independence of random samples
and continuous variables) are met for all our features.
We tested all features at the level of significance of
0.05 and rejected the null hypothesis for all features
but one (bigram overlap). This confirms our initial
assumption that the features in the train set are not
identically distributed to those in the test set, bring-
ing into question the representativeness of the test
set. Reasons for this may include different annotation
sources (crowdsourcing vs experts) and differences in
time periods of tweets. Moreover, due to differences
in the datasets, the performance is very much affected
by the choice of the model optimization setup.

4.3 Feature Analysis

Due to volatile performance, it is difficult to say much
about which features are most useful. However, we
have observed consistent performance boosts in all
settings when introducing topic-specific versions of
features.

5 Conclusion

We described TweetingJay, a supervised model for
detecting Twitter paraphrases with which we partici-
pated in Task 1 of SemEval 2015. TweetingJay relies
on features capturing semantic similarity and word
alignments between tweets and achieves performance
comparable to best-performing models on the task.

On the methodological side, we investigated the
cause for unusual behavior of our models on the
different datasets. Our preliminary statistical analysis
of the datasets seems to suggest that the underlying
distributions datasets are significantly different. We
believe this makes the performance estimates less
reliable and suggest that the results should be taken
with caution.
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Abstract

In this paper we describe a system that rec-
ognizes paraphrases in Twitter for tweets that
refer to the same topic. The system partici-
pated in Task1 of SEMEVAL-2015 and uses a
support vector regression machine to predict
the degree of similarity. The similarity is then
thresholded to create a binary prediction. The
model and experimental results are discussed
along with future work that could improve the
method.

1 Introduction

Recently, Twitter has gained significant popularity
among the social network services. Lots of users of-
ten use Twitter to express feelings or opinions about
a variety of subjects. Analysing this kind of content
can lead to useful information for fields such as per-
sonalized marketing or social profiling. However,
such a task is not trivial, because the language used
on Twitter is often informal, presenting new chal-
lenges to text analysis.

Task1 of SEMEVAL-2015 (Xu et al., 2015) fo-
cuses on recognition of paraphrases and semantic
similarity in Twitter i.e., recognizing if two tweets
are alternative linguistic expressions of the same, or
similar, meaning (Bhagat and Hovy, 2013). The task
is based on a crowdsourced corpus of 18000 pairs
of paraphrases and non-paraphrased sentences from
Twitter (Xu et al., 2014) and each pair consists of
two tweets from the same topic. A label is provided
with each pair, which is the number of yes votes
from 5 crowdsourced annotators when asked if the
second tweet is a paraphrase of the first one.

Paraphrase Example:
Roberto Mancini gets the boot from Man City
Roberto Mancini has been sacked by Manchester

City with the Blues saying
Non-Paraphrase Example:

WORLD OF JENKS IS ON AT 11
World of Jenks is my favorite show on tv

Figure 1: Examples of both a paraphrase and a non-
paraphrase pair of the data.

The method utilizes a support vector regression
machine (SVR). The regression model tries to pre-
dict the degree of semantic similarity between two
tweets, by assuming that it can be represented by the
probability that random human annotators would an-
notate the pair as a paraphrase. The predicted value
is transformed into a binary decision via a threshold.

Section 2 describes the data provided by the or-
ganizers. Sections 4 and 5 present the system and
its performance respectively. Finally, Section 6 pro-
vides ideas for future work and Section 7 concludes.

2 Data

The objective of this task is to predict whether two
sentences from Twitter sharing the same topic, im-
ply the same or very similar meaning and optionally
a degree score between 0 and 1. In Figure 1, a para-
phrase and a non-paraphrase example taken from the
task website are illustrated.

The organizers released a training (Train) and a
development set (Dev), both labeled and they also
provided a test set (Test) for the task. To collect
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Set Size Paraphrase Non-Paraphrase Debatable
Train 13693 3996 7534 1533
Dev 724 948 2672 585
Test 972 175 663 134

Table 1: Class distribution of the train, development
and test sets.

the data they used Twitter’s public API1 to crawl
trending topics and their associated tweets (Xu et
al., 2014). Annotation of the collected tweets was
performed via crowdsourcing (Amazon Mechanical
Turk). From each topic, 11 random tweets were se-
lected and 5 different annotators were used. One of
the 11 tweets was randomly selected as the original
sentence. The annotators were asked to select which
of the remaining 10 tweets have the same meaning
as the original one. Each topic’s pairs are annotated
with the number of annotators that voted for them.
Problematic annotators were removed by checking
their Cohen’s Kappa agreement (Artstein and Poe-
sio, 2008) with other annotators. Agreement with
an expert annotator on 972 sentence pairs (test set)
was also measured and the Pearson correlation coef-
ficient was 0.735 although the expert annotator had
actually used a different scale for the annotation.
Both Train and Dev were collected from the same
time period while Test was collected from a differ-
ent time period.

Table 1 illustrates the class distribution of the
data. The task organizers have stated that when a
pair has either 1 or 0 votes it should be considered
a non-paraphrase, while pairs that have 3, 4, and 5
votes should be considered as paraphrases. Pairs that
have exactly 2 votes are assumed debatable and the
organizers suggest that they should be discarded. We
can observe that all the data sets have a very similar
distribution and that the majority class is in all cases
the non-paraphrase one with about 60% of the data
(debatable instances included).

3 Previous Work

Measuring semantic text similarity has been a re-
search subject in natural language processing, infor-
mation retrieval and artificial intelligence for many
years. Most works have focused on the document

1https://dev.twitter.com/docs/api/1.1/overview

level (i.e., comparing two long texts or comparing
a small text with a long one). Recently, there has
been growing interest at the sentence level, specifi-
cally on computing the similarity of two sentences.
The most related task to computing tweets similarity
is the computation of sentence similarity.

According to (Han et al., 2012), there are three
main approaches for sentence similarity. The first
is based on a vector space model (Meadow, 1992)
that models the text as a “bag of words” and rep-
resents it using a vector, and the similarity between
the two texts is computed as the cosine similarity
of their vectors. The second approach relies on the
assumption that the words or expressions of two se-
mantically equivalent sentences should be able to be
aligned. The quality of this alignment can then be
used as a similarity measure. When this approach
is utilized, words from the two sentences are paired
(Mihalcea et al., 2006) by maximizing the summa-
tion of the word similarity of the resulting pairs. Fi-
nally, the third and final approach utilizes machine
learning and combines different measures and fea-
tures (such as lexical, semantic and syntactic fea-
tures) which are supplied to a classifier that learns
a model on the training data.

The unique characteristics of Twitter present new
challenges and opportunities for paraphrase research
(Xu et al., 2013; Ling et al., 2013). Most of the
work has focused on paraphrase generation (Xu et
al., 2013; Ling et al., 2013) in order to use it for text
normalization. However, the task organizers (Xu et
al., 2014) created a dataset, implemented a system
and reimplemented several baselines and state-of-
the-art systems for sentence paraphrase recognition.
They showed that their method, which combines a
previous system with latent space achieves at least
as good results as state-of-the-art systems.

4 System Overview

The main objective of the implemented system is to
classify pairs of tweets from the same topic as se-
mantically similar or not. The approach used differs
from previous works because it models the problem
as a regression task first and then as a classification
task, while typical approaches treat the problem as
a classification task (usually binary since debatable
pairs are discarded). The main inspiration for this
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Number of Votes 0 1 2 3 4 5
Label Value 0 0.2 0.4 0.6 0.8 1

Table 2: Mapping of the number of positive votes
from the annotators to real valued labels.

approach comes from the observation that for ex-
ample, pairs that got voted from 3 of the annota-
tors will not be as similar as pairs that got voted
from 5. Treating these instances in the same way
is very likely to confuse the model. The regression
approach is a possible way to avoid this effect since
instances with different number of votes will not just
use different values but will have a relation between
their values. For example, instances that got 5 votes
will use a better score as their label than instances
that got 4 or 3.

To extract this relation from Train data, the ra-
tio of positive votes against the total number of an-
notators (5) for each pair was used to create the la-
bels. The debatable instances correspond to exactly
2 votes from the human annotators, which maps to
0.4. These instances were discarded as the organiz-
ers suggested. This resulted in the use of the values
shown in Table 2 as labels.

An SVR with a linear kernel function2 was used
to predict the degree of similarity between the tweet
pairs. For each training instance (i.e. a tweet pair)
a feature vector is supplied to the regression model3

along with the corresponding label. The output of
the SVR can be used for classification by using
a threshold. 0.35 was chosen as the classification
threshold as it belongs to the debatable space and it
is slightly less than 0.4, in order to increase the re-
call of the minority class (Paraphrases). However,
the threshold could be tuned using cross validation
on the training data or by testing on the development
set for better results.

4.1 Data Preprocessing

Preprocessing can greatly affect the performance of
a system. The tweets were passed through a Twitter
specific tokenizer and part-of-speech (POS) tagger
(Ritter et al., 2011) by the organizers. We converted

2The LIBLINEAR distribution (Fan et al., 2008)
3The regression model uses L2-regularized regression with

the default parameter C=1.

all the tweets to lower case and stopwords were re-
moved using the NLTK (Loper and Bird, 2002) stop-
words list. Moreover, we removed the tokens of the
topic since they always exist in both tweets. Finally,
we applied stemming to each one of the remaining
tokens and the stemmed representations are stored.

4.2 Feature Engineering

In this section the features used in the model will
be described in detail. We made two submissions.
Both share the same features except for the senti-
ment matching feature.

4.2.1 Lexical Overlap Features
A very popular and competitive baseline is to

use lexical overlap features (Das and Smith, 2009).
These features use the unigrams, bigrams and tri-
grams of the sentences, both with and without stem-
ming. The cardinality of the intersection of the n-
grams between each pair of tweets as a proportion
of the length of each tweet is used as a feature. The
harmonic mean of these two values is also calculated
and used as a feature. These three types of features
for each n-gram size were named precision, recall
and F1 (harmonic mean of precision and recall) by
Das and Smith (2009).

4.2.2 Ratio of the Tweets Length in Tokens
The ratio of the length of the shortest tweet in

the pair divided by the length of the longer tweet is
used as a feature. This feature is used because if the
tweets differ a lot in length then they will probably
not have similar meaning.

4.2.3 Overlap of POS Tags
Similar to the lexical overlap features the overlap

of POS tags of unigrams, bigrams and trigrams is
checked and a total of 9 features is created. For ex-
ample the tweet “Wow EJ Manuel” contains the fol-
lowing two POS bigrams: UH NNP and NNP NNP.

4.2.4 Overlap of Named Entities Tags (NE)
Similar to the lexical overlap features the overlap

of NE is checked and three features are created.

4.2.5 GloVe Word Vectors Similarity
Vector space representations of words have suc-

ceeded in capturing semantic and syntactic regulari-
ties using vector arithmetic (Pennington et al., 2014;
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Mikolov et al., 2013). The word vectors from GloVe
(Pennington et al., 2014) were used to calculate the
semantic similarity between tokens of the two sen-
tences by measuring their cosine similarity. The
word vectors utilized were created from a corpus of
2B tweets which contains 27B tokens. Experiments
on the development set were also done with vectors
from Wikipedia2014 + Gigawords5 (about 6B to-
kens) but were not used for submission since they
performed worse than the Twitter ones.

The calculation of these features is based on the
alignment algorithm described by (Han et al., 2013).
For each of the two tweets we iterate over its to-
kens. For each token the similarity to all the tokens
of the other tweet that exist in the model is calcu-
lated and the maximum is returned. When the algo-
rithm finishes, the maximum, minimum and average
values of the matched similarities for each tweet are
returned as features. This makes a total of 6 fea-
tures. An additional feature is calculated by finding
the similarity of the centroids of the two tweets.

4.2.6 Sentiment Matching
A Twitter sentiment classifier was used to pre-

dict the sentiment of the tweets (Karampatsis et al.,
2014). The feature has a value of 1 if both tweets of
the pair have the same sentiment and 0 otherwise.

5 Experimental Results

Each system had to submit for each test set instance
its prediction (paraphrase or not) (subtask1) and op-
tionally a degree of semantic similarity (subtask2).
To evaluate system performance for subtask1 the
organizers used F1 against human judgements on
the predictions. While for subtask2 they used the
Pearson correlation of the predicted similarity scores
with the human scores. Our team was ranked 9th
on both subtasks4 and our systems were ranked 13th
and 14th on subtask1 and 15th and 16th on sub-
task2. Table 3 illustrates the results and rankings
of our systems and the baselines. The results in-
dicate that the sentiment feature decreases perfor-
mance and should be removed from our system.

We used the official evaluation script to assess the
performance of our systems on the test set for dif-
ferent threshold values. The results are illustrated in

46 teams did not participate in subtask2

Figure 2. We used thresholds from 0 to 1 with a step
of 0.05 except for the space [0.3, 0.4] where we used
a step of 0.01. The two systems behave similarly and
the best performance (0.622) was achieved from the
All-Sentiment system using a threshold of 0.36.

Figure 2: F1 for subtask1 on the test set for our sys-
tems using different threshold values.

6 Future Work

A possible direction would be to use locality sen-
sitive hashing on the tweets (Petrovic et al., 2012)
to create more features. Moreover, ordinal regres-
sion could be used to train the model (Hardin and
Hilbe, 2001). The addition of a text normalization
algorithm in the preprocessing step could enhance
the performance of lexical overlap features and that
of other methods such as wordnet, LDA (Blei et al.,
2003) or LSA (Deerwester et al., 1990). Finally, the
overlap of character n-grams could also be used as
features.

7 Conclusion

We described a system that predicts semantic simi-
larity between tweets from the same topic. The sys-
tem’s aim is to identify paraphrases of a tweet on a
specific topic, which is really useful in event recog-
nition systems. It employs a support vector regres-
sion to predict the probability that human annotators
would annotate a pair of tweets as a paraphrase. The
predicted value is then used for binary classification
by using a threshold. The system’s performance was
measured on SEMEVAL-2015 Task1 and it achieves
better results than the task baselines.
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System F1 F1 Rank Precision Recall Pearson Pearson Rank maxF1 mPrecision mRecall
All Features 0.613 13/38 0.547 0.697 0.494 15/28 0.626 0.675 0.583
All-Sentiment 0.612 14/38 0.542 0.703 0.491 16/28 0.624 0.589 0.663
LR Baseline 0.589 21/38 0.679 0.520 0.511 11/28 0.601 0.674 0.543
WTMF Baseline 0.536 28/38 0.450 0.663 0.350 26/28 0.587 0.570 0.606
Random 0.266 38/38 0.192 0.434 0.350 28/28 0.350 0.215 0.949
Human Bound 0.823 - 0.752 0.908 0.017 - - - -

Table 3: Results of our systems, baselines and human annotators on the test set.
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Abstract 

This paper describes the yiGou system we de-
veloped to compute the semantic similarity of 
two English sentences, which we submitted to 
the SemEval 2015 Task 2 (English subtask). 
The system uses a support vector machine 
model with literal similarity, shallow syntactic 
similarity, WordNet-based similarity and la-
tent semantic similarity to predict the seman-
tic similarity score of two short texts. In our 
experiments, WordNet-based and LSA-based 
features performed better than other features.  
Out of the 73 submitted runs, our two runs 
ranked 38th and 42th, with mean Pearson corre-
lation 0.7114 and 0.6964 respectively.   

1 Introduction 

Semantic Text Similarity (STS) plays an important 
role in many Natural language processing tasks, 
such as Question Answering (Narayanan and 
Harabagiu, 2004), Machine Translation (Beale et 
al., 1995), Automatic Summarization (Wang et al., 
2008) and Word Sense Disambiguation (Navigli 
and Velardi, 2005). Since STS is an essential chal-
lenge in NLP, that has attracted a significant 
amount of attention by the research community. 
SemEval has held tasks about STS for four years in 
a row, from which we can see the importance and 
difficulty of this challenge. Particularly, SemEval 
focuses on semantic similarity of short texts as a 
lot of researches about long texts have been done 
in past years and the demand of finding new meth-
ods to measure short texts similarity has become 
stronger in many new applications. 

In this paper, we proposed a SVM-based solu-
tion to compute the semantic similarity between 
two sentences which is the goal of SemEval 2015 

Task 2. Knowledge-based and corpus-based fea-
tures were involved in our solution. We used the 
combination of the word similarity to estimate sen-
tence similarity. And the training data of SemEval 
2012 (Agirre et al., 2012) was used to train our 
model. In our experiments, WordNet-based and 
LSA-based features performed better than other 
features. Out of the 73 submitted runs, our two 
runs ranked 38th and 42th, with mean Pearson cor-
relation 0.7114 and 0.6964 respectively. The eval-
uation results showed that our solution has good 
generalization ability on the test dataset of 
SemEval 2015 which is very different from our 
training set in terms of the sources of the sentences. 
Some of the relatively new technologies such as 
Word2Vec (Mikolov et al., 2013) and Sen-
tence2Vec (Le and Mikolov, 2014) are potential 
methods to represent sentences and will be includ-
ed in our further works. 

2 Data and Metrics 

In SemEval 2015, the trial dataset comprises the 
2012, 2013 and 2014 datasets, which can be used 
to develop and train models. Because of the limita-
tion of the time, we only used the training data of 
SemEval 2012 as our training set. The training data 
of SemEval 2012 contained 2000 sentence pairs 
from existing paraphrase datasets and machine 
translation evaluation resources, while the test set 
of SemEval 2015 coming from image description, 
news headlines, student answers paired with refer-
ence answer, answers to questions posted in stack 
exchange forums and English discussion forum 
data exhibiting committed belief. The evaluation 
metric of SemEval 2015 task 2 is mean Pearson 
correlation, which is calculated by averaging the 
Pearson correlations of each subset in the test set. 
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3 Feature engineering 

Considering the training set used in our system, we 
were trying to generate features which have little 
relation with the sources where the sentences came 
from. Four kinds of features are included in our 
model. They are literal similarity, shallow syntactic 
similarity, WordNet-based similarity and latent 
semantic similarity. 

3.1 Literal Similarity 

Intuitively, a pair of sentences that look similar to 
each other may be similar semantically. For exam-
ple: 
S1: A boy is playing a guitar. 
S2: A man is playing a guitar. 
S3: Someone is drawing. 
Apparently, S1 and S2 look more similar and they 
are closer in semantics than S1 and S3. We chose 
the Edit Distance (also known as Levenshtein Dis-
tance) over characters to measure the similarity 
between two sentences. The higher the value is, the 
less similar the two sentences are. As this measure 
is case sensitive, we lowercase all letters in the 
sentences before computing the similarity. Alt-
hough this method may draw opposite conclusions 
to our expectations in some specific occasions (For 
example, I hate it VS I have it, the Edit Distance of 
this pair of sentences is two, but they express very 
different meaning), the feature was still kept as we 
observed that it contributed to the overall perfor-
mance in our experiments.  

3.2 Shallow Syntactic Similarity 

It is quite a common phenomenon that two sen-
tences only differ in one or two syntactic constitu-
ents and have very similar syntactic structures. For 
example (example comes from training set): 
S1: A man is peeling a potato. 
S2: A man is slicing a potato. 
This pair of sentences got very high score in gold-
en standard file. As we can see, only the predicates 
of the two sentences are different, and the rest of 
the sentences are the same. This gives us a clue 
that using syntactic similarity to build the feature 
could be feasible. Moreover, two sentences may 
express exactly the same meaning, but use differ-
ent English voices. This situation was also consid-
ered in our model. Jaccard Distance was chosen to 
compute this feature, which is defined as follows: 

 

Where and  are the collections of Part-Of-
Speech tags of each sentence. We used the NLTK 
toolkit (Bird, 2006) to tag each sentence. Since 
Jaccard distance measure only cares about the ap-
pearance of the tags, and ignores the order of them, 
it can reduce the impact of the tense change. 

3.3 WordNet-based Similarity 

WordNet (Miller, 1995) is a widely used lexical 
database for English, and it’s a convenient tool to 
find synonyms of nouns, verbs, adjectives and ad-
verbs. WordNet supports numerous lexical similar-
ity measures (Pedersen et al., 2004). In this work, 
we explore using two of these similarity measures: 
res_similarity and path_similarity. The core idea 
behind the path_similarity measure is that the simi-
larity between two concepts can be derived from 
the length of the path linking the concepts and the 
position of the concepts in the WordNet taxonomy. 
(Meng et al., 2013). While res_similarity (Resnik, 
2011) is a similarity measure based on information 
content. The result of res_similarity is dependent 
on the corpus that generates the information con-
tent. 

 
Figure 1 An example of word alignment using maxi-
mum path_similarity. The upper part of the figure is 
showing the alignment candidates for tomato scored 
with path_similarity and the lower part of the figure is 
showing the max path_similarity alignment for the con-
tent words in the sentence pair. 

 In our system, we used the NLTK WordNet 
API to compute WordNet-based similarity. Based 
on WordNet and Brown corpus, the computing of 
res_similarity and path_similarity involve follow-
ing steps: 
 Partition a pair of sentences into two lists of 

tokens. 
 Part-of-speech tagging. 
 Find out the most appropriate sense for every 

word according to the tagging results; put the 

81



Features MSRpar MSRvid SMTeuroparl Sur.OnWN Sur.SMTnews Mean 
All 0.51237 0.83766 0.48213 0.67070 0.47941 0.596454 

w/o  res_similarity 0.50939 0.83920 0.47976 0.66406 0.47976 0.594434 
w/o path_similarity 0.37667 0.78555 0.38714 0.64145 0.45963 0.530088 
w/o WN-based sim 0.37583 0.79046 0.38930 0.64348 0.45767 0.531348 
Table 1 Results of comparing the importance of res_similarity and path_similarity on test set of SemEval 2012. The 
WN-based sim included both res_similarity and path_similarity. 

Corpus MSRpar MSRvid SMTeuroparl Sur.OnWN Sur.SMTnews Mean 
Brown 0.51237 0.83766 0.48213 0.67070 0.47941 0.596454 

Bnc 0.51199 0.83770 0.48157 0.66719 0.48050 0.595790 
Treebank 0.51199 0.83781 0.48181 0.66689 0.48066 0.595832 
Semcor 0.51269 0.83768 0.48017 0.66763 0.48017 0.595668 

Semcorraw 0.51274 0.83792 0.48138 0.66691 0.47997 0.595784 
Shaks 0.51120 0.83746 0.48229 0.66665 0.48105 0.595730 

Table 2 Results of using different corpus in res_similarity on test set of SemEval 2012.

results into two lists S1 and S2. 
 For every word w in S1, find out the word in 

S2 that has the maximum res_similarity/ 
path_similarity with w. Adding all of the simi-
larity values together, and then average this 
value with the length of S1. 

 For every word w in S2, find out the word in 
S1 that has the maximum res_similarity/ 
path_similarity with w. Adding all of the simi-
larity values together, and then average this 
value with the length of S2. 

 Computing the harmonic mean of the two av-
erage values, and the result is the value of this 
feature. 

Figure 1 is an example shows how we find the 
corresponding word which has the maximum 
res_similarity/path_similarity with the words in 
the second sentence. In this example, potato has 
the maximum path_similarity score with tomato, 
compared to girl and slicing (0.33 vs. 0.0077 and 
0.0). In the bottom part of the figure, each word in 
the first sentence would find one word which has 
the maximum similarity score in the second sen-
tence, these scores would then be used to compute 
this feature. 

To compare the importance of the two measures, 
we separately exclude one of the two features from 
all the features used in our solution to train two 
models and compare their performance. The results 
are shown in Table 1. As we can see from the table, 
path_similarity contributes more to our overall 
performance than res_similarity. According to the 
definition of res_similarity, we changed the corpus 
to find out the influence of the corpus on our over-

all performance. The results are showed in Table 2, 
from which we can see that the results varied very 
little with different corpora. In our submitted mod-
el, Brown corpus (Francis and Kucera, 1979) was 
used to compute information content. 

3.4 Latent Semantic Similarity 

All of the features generated above contained little 
semantic information. While sentences from some 
sources such as headlines and image descriptions 
are always have various forms which may not be 
easily compared through some string match 
measures or shallow syntactic oriented measures. 
So, a new feature that measures similarity in se-
mantic space is necessary. Latent semantic analysis 
(Landauer et al., 1998) is a very popular technique 
to convert the term-document matrix which de-
scribes the occurrences of terms in document into 
three smaller matrixes like follows: 

 

Where  could be preserved as the semantic space 
of words. Each word could be represented as a row    
vector in . When measuring semantic similarity 
of two sentences, all word vectors appeared in the 
sentence were summed and then averaged with the 
length of the sentences. Thus we can get vector 
representations of the two sentences V1 and V2. 
With V1 and V2, the similarity of the two sentences 
can be measured with cosine similarity. Cosine 
similarity defined as follows:  
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Features MSRpar MSRvid SMTeuroparl Sur.OnWN Sur.SMTnews Mean 
1 to 2 -0.05064 0.23562 -0.13259 0.07697 -0.03636 0.018600 
1 to 3 0.50225 0.82813 0.41859 0.57242 0.35525 0.535328 
1 to 4 0.50593 0.82628 0.41881 0.57676 0.35390 0.536336 
1 to 5 0.51120 0.83746 0.48229 0.66665 0.48105 0.595730 
1 to 7 0.51237 0.83766 0.48213 0.67070 0.47941 0.596454 

Table 4 Results of SVR on SemEval 2012 test set with different feature combinations.

Feature_ID Feature_Name 
1 Edit Distance 
2 Jaccard Distance 
3 path_similarity 
4 res_similarity 
5 Latent Semantic Similarity 
6 IDF-weighted-LSA 
7 Freq-weighted-LSA 

Table 3 All features we used in our submitted model. 

In our experiment, we directly used the LSA model 
provided by SEMILAR1. A word is represented as 
a row vector in the LSA model (Niraula et al., 
2014), and the model was decomposed from the 
whole Wikipedia articles.  

We also developed two weighted LSA features 
to further use semantic information, they are IDF-
weighted-LSA and Freq-weighted-LSA. IDF-
weighted-LSA weighted the words (one word is 
represented as a 200-dimension vector generated 
from LSA) using inverse document frequency and 
then summed up all the weighted vectors of words 
which appeared in the sentence to be the represen-
tation of the sentence. The cosine distance of two 
sentence representations is the value of this feature.  
Freq-weighted-LSA used word frequency to weight 
the words and following the same steps mentioned 
above. In our experiment, the IDF and Word-
Frequency values were calculated on Wikipedia 
corpus dumped in December of 2012  (Jin et al., 
2014). These features were only included in our 
second run yiGou-midbaitu. Unfortunately, this 
system got worse performance than the first run in 
official estimation. This may be caused by the 
overfitting of our model on the training data. 

4 Experiments and Results 

Due to the limitation of the time, in our submitted 
system, we trained Support Vector Regression 
(SVR)  models  using  Scikit-learn toolkit (Pedrego  

                                                           
1 http://www.semanticsimilarity.org/ 

parameter kernel gamma C epsilon 
value rbf 0.0 1.0 0.1 

Table 5 Parameter setting in our models. 

sa et al., 2011). Table 3 shows the features used in 
our submitted models. The results with different 
feature combinations on the test set of SemEval 
2012 are shown in Table 4.  Table 5 is our parame-
ter settings. 

The performance of the best system in SemEval 
2012 is 0.67 (Mean) with 19 features, and our best 
performance is 0.596 (Mean) with 7 features. In 
SemEval 2015, out of the 73 submitted runs, our 
two runs ranked 38th and 42th (with mean Pearson 
correlation 0.7114 and 0.6964 respectively).  And 
the best performance in 2015 is 0.8015. 

5 Conclusions and Future Work 

In this paper, we presented our system that partici-
pated in the Semantic Text Similarity task in 
SemEval 2015. We proposed a method using SVR 
to combine various features to evaluate the similar-
ity between two sentences. We found that Word-
Net based and LSA-based features are very useful 
for semantic similarity computing. For future work, 
we would like to further explore features about 
semantic representations of words, generate more 
features related to sentence structures and try to 
employ some new technologies such as Word2Vec 
and Sentence2Vec in our model. Besides, using a 
single model is not adequate to get a better accura-
cy, other models will be tried and compared in our 
further work.  
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Abstract

This paper describes the USAAR-
SHEFFIELD systems that participated
in the Semantic Textual Similarity (STS)
English task of SemEval-2015. We extend the
work on using machine translation evaluation
metrics in the STS task. Different from
previous approaches, we regard the metrics’
robustness across different text types and
conflate the training data across different
subcorpora. In addition, we introduce a novel
deep regressor architecture and evaluated its
efficiency in the STS task.

1 Introduction

Semantic Textual Similarity (STS) is the task of
measuring the degree to which two text snippets
have the same meaning (Agirre et al., 2014). For
instance, given the two texts, ”a dog sprints across
the water” and ”a dog jumps through water”, partic-
ipating systems are required to predict a real number
similarity score on a scale of 0 (no relation) to 5 (se-
mantic equivalence).

This paper presents a collaborative submission
between Saarland University and University of
Sheffield to the STS English shared task at SemEval-
2015. We have submitted three models that use Ma-
chine Translation (MT) evaluation metrics as fea-
tures to build supervised regressors that predict the
similarity scores for the STS task. We introduce two
variants of a novel deep regressor architecture and
a classical baseline regression system that uses MT
evaluation metrics as input features.

2 Related Work

Previously, research teams have applied MT evalua-
tion metrics for the STS task with increasingly bet-
ter results (Agirre et al., 2012; Agirre et al., 2013;
Agirre et al., 2014). Rios et al. (2012) trained a
Support Vector Regressor scoring a Pearson corre-
lation mean of 0.3825 (Baseline1: 0.4356). Barrón-
Cedeño et al. (2013) also used a Support Vector Re-
gressor and did better than the baseline at 0.4037
mean score (Baseline: 0.3639). Huang and Chang
(2014) used a linear regressor and scored 0.792 beat-
ing the baseline system (Baseline: 0.613).

Another notable mention of MT technology in the
STS task is the use of referential translation ma-
chines to predict and derive features instead of us-
ing MT evaluation metrics (Biçici and van Genabith,
2013; Biçici and Way, 2014).

These previous approaches have trained a differ-
ent system for each subcorpus provided by the task
organizers. We have chosen to combine the differ-
ent subcorpora since MT evaluation metrics are ex-
pected to be robust against text types and domains
(Han et al., 2012; Padó et al., 2009).

Much of the previous work on using MT evalu-
ation metrics is based on improving the regressors
through algorithm choice, feature selection and pa-
rameters tuning. We introduce a novel architecture
of hybrid supervised machine learning, Deep Re-
gression, which attempts to combine different re-
gressors and automating feature selection by means
of dimensionality reduction.

1Refers to the token cosine baseline system
(baseline-tokencos) from the task organizers.
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3 Deep Regression Architecture

Ensemble learning constructs a set of models based
on different algorithms and then labels new data
points by taking a (weighted) vote from the algo-
rithms’ predictions (Dietterich, 2000). A typical sin-
gle layer feed-forward neural network creates a layer
of perceptrons that receives inputs and predicts a
series of outputs converted by means of an activa-
tion function and then the outputs will enter a final
layer of a single classifier to provide a final predic-
tion (Auer et al., 2008). We propose a deep regres-
sion architecture that is a unique way to combine
a single-layer feed-forward neural net architecture
with ensemble-like supervised learning.

Figure 1: Deep Regression Architecture.

Figure 1 presents the Deep Regression architec-
ture where the inputs are fed into the different hid-
den regressors and unlike traditional neural network,
each regressor produces a discrete output with a dif-
ferent cost function unlike the consistent activation
function in neural nets. Different from ensemble
learning, the voting/selection determinant has been
replaced by a last layer of a single regressor that
takes latent layer as input to produce the final out-
put STS score.

By designing the architecture in this way, the fea-
ture space from the input is reduced to the number
of hidden regressors and the input for the last layer
regressors is a latent layer in the higher dimensional
space. Within a standard neural net, every node in
the latent layer is influenced by all the perceptrons
in the previous layer. In contrast, each latent dimen-

sion is only dependent on one regressor; in this re-
spect it resembles ensemble learning where the re-
gressors/classifiers are trained independently.

4 Feature Matrix

Machine Translation evaluation metrics consider
varying degrees of information at the lexical, syn-
tactic and semantic levels. Each metric comprises
several features that compute the translation quality
by comparing every translation against one or sev-
eral reference translations. We consider three sets
of features: n-gram overlaps, Shallow Parsing met-
rics and METEOR. These metrics correspond to the
lexical, syntactic and semantic levels respectively.

4.1 N -gram Overlaps
Gonzàlez et al. (2014) reintroduces the notion of lan-
guage independent metrics relying on n-gram over-
laps. This is similar to the BLEU metric that cal-
culates the geometric mean of n-gram precision by
comparing the translation against its reference(s)
(Papineni et al., 2002) without the brevity penalty.

Different from BLEU, the n-gram overlaps are
computed as similarity coefficients instead of taking
the crude proportion of overlap n-gram.

n -gramoverlap = sim
(
n -gramtrans ∩ n -gramref

)
We use 16 features of n-gram overlap by consid-

ering both the cosine similarity and Jaccard Index in
calculating the n-gram overlaps for character and to-
ken n-gram from the order of bigrams to 5-grams. In
addition, we use the ratio of n-gram lengths and the
Jaccard similarity of pseudo-cognates (Simard et al.,
1992) as the 17th and 18th n-gram overlap features.

4.2 Shallow Parsing
The Shallow Parsing (SP) metric measures the syn-
tactic similarities by computing the overlaps be-
tween the translation and the reference translation at
the Parts-Of-Speech (POS), word lemmas and base
phrase chunks level. The purpose of the SP metric
is to capture the proportion of lexical items correctly
translated according to their shallow syntactic real-
ization.

The base phrase chunks are tagged using the
BIOS toolkit (Surdeanu et al., 2005) and POS tag-
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ging and lemmatization are achieved using SVM-
Tool (Giménez and Màrquez, 2004). For in-
stance, given a pair of sentences in the format
(word/POS/lemma/chunk):

• NP(a/DT/a/B-NP dog/NN/dog/I-NP)
sprints/VBZ/sprint/B-VP across/IN/across/O
NP(the/DET/the/B-NP water/NN/water/I-NP)

• NP(a/DT/a/B-NP dog/NN/dog/I-NP)
jumps/VBZ/jump/B-VP through/IN/through/O
water/NN/water/B-NP

We consider the overlap proportions for the POS
features, lemma, IOB features, shallow chunks. The
Inside, Outside, Begin (IOB) features refer to the
shallow parsing tags at the lexical level, e.g. B-NP
represents the beginning of a noun phrase (Sang et
al., 2000). The IOB features are measured lexi-
cally by considering each IOB tag while the shallow
chunk features only consider the number of brack-
eted chunks.

For instance, the POS tag DT occurs twice in first
sentence one and once in second sentence, thus we
extract the feature SP-POS(DT) = 1/2 = 0.5.

• SP-POS(DT,NN,VBZ,IN) = [0.5,1,1,1]
• SP-LEMMA(a,dog,jump,through,water) =

[1,1,0,0,1]
• SP-IOB(B-NP,I-NP,B-VP,O) = [1,1,-0.5,1,1]
• SP-CHUNK(NP) = [0.5]

For SP-POS, SP-LEMMA and SP-IOB, we use
the NIST-like measure where we not only con-
sider the individual POS, LEMMA or IOB tags but
an accumulated score over a sequence of 1-5 n-
grams, e.g. SP-POS(DT+NN,DT+NN+VBZ, ...)
or SP-LEMMA(a+dog,a+dog+jump, ...).

5 METEOR

METEOR aligns the translation to a reference trans-
lation first then it uses unigram mapping to match
words at their surface forms, word stems, syn-
onym matches and paraphrase matches (Banerjee
and Lavie, 2005; Denkowski and Lavie, 2010).

Different from the n-gram and shallow parsing
features, METEOR makes a distinction between
content words and function words and the precision
and recall is measured by weighing them differently.

It also accounts for word order differences by penal-
izing chunks from the translation that do not appear
in the translation.

We use the METEOR 1.5 system with tuned
weights and penalty using the WMT12 data. For
the STS experiment, we use all four variants of
METEOR: exact matches, stem matches, synonym
matches and paraphrase matches.

6 Experiments and Results

6.1 Training Data

We conflated all training and test data of vari-
ous text types from previous SemEval STS shared
tasks into a single training set with 10597 para-
graph/sentence/caption pairs. The MT metrics for
each text pair were computed with the Asiya toolkit
(Giménez and Màrquez, 2010). Tokenization and
preprocessing operations, such as lemmatization,
POS tagging, parsing and n-gram extraction, are per-
formed by the Asiya toolkit.

6.2 Models

We submitted three models to the SemEval-2015
STS English Task:

• ModelX: Deep Regression framework with the
full feature set from n-gram overlaps, Shallow
Parsing and METEOR.

• ModelY: Bayesian Ridge Regressor with the
full feature set

• ModelZ: Deep Regression framework with
only METEOR features

For the hidden regressors layer of the deep regres-
sion models, we have used the multivariate linear,
logistic, Bayesian ridge, elastic net, random sam-
ple consensus and support vector (radial basis func-
tion kernel) regressors.2 The final layer regressor
is a Bayesian ridge regressor. These supervised re-
gressors are implemented in scikit-learn (Pe-
dregosa et al., 2011).

2No comprehensive parameter tuning was at-
tempted on the models and the default parameters for
each regressor can be found on our code repository,
https://github.com/alvations/USAAR-SemEval-2015.
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Ans-Forums Ans-Student Belief Headlines Images Mean Rank
ModelX 0.3706 0.3609 0.4767 0.5183 0.5436 0.4616 68
ModelY 0.6264 0.7386 0.705 0.7927 0.8162 0.7275 21
ModelZ 0.4237 0.6757 0.6994 0.5239 0.6833 0.6111 58

Table 1: Spearman’s Results for STS English Task @ SemEval-2015.

6.3 Results

Table 1 presents the official results for the En-
glish STS task where our baseline model (ModelY)
strikingly outperforms the deep regressor models
(ModelX and ModelZ).

Our baseline model achieved modest results rank-
ing 24 out of 73 submissions, however our deep re-
gressors have failed to function on par with a sim-
ple baseline regressor. We note that the deep regres-
sor with the full feature set (ModelX) scored lower
than the deep regressor with only the METEOR fea-
tures (ModelZ). This reiterates the effectiveness of
semantically motivated METEOR features in deter-
mining similarity as previously indicated by Huang
and Chang (2014).

Figure 2: Comparison of Results with Best and Baseline
Systems

Interestingly, the conflation of datasets has no
obvious detrimental effects on the performance for
any specific domains. Figure 2 presents a com-
parison of results between ModelY, the top sys-
tem from DLSU and the organizers’ baseline sys-
tem (TokenCos). It shows that the distribution
of Spearman’s correlation for our model is as well-
balanced as the best system.

7 Conclusion

In this paper, we have described our submissions
to the STS English task for SemEval-2015. We
have introduced a novel deep regression infrastruc-
ture with MT evaluation metrics to measure seman-
tic similarity. Although our deep regressors per-
formed poorly, our baseline system have achieved
promising results amongst the participating systems
and we showed that conflating datasets of different
genres has negligible effects on a semantic similarity
system based on MT evaluation metrics.

The results also confirm the good performance of
METEOR, a traditional MT evaluation metric, for
the STS task.
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An Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathemat-
ical Linguistics, (94):77–86.
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rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830.

Miguel Rios, Wilker Aziz, and Lucia Specia. 2012.
UOW: Semantically Informed Text Similarity. In First
Joint Conference on Lexical and Computational Se-
mantics (*SEM): Proceedings of the Main Confer-
ence and the Shared Task, pages 673–678, Montréal,
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Abstract

Text is composed of words and phrases. In
bag-of-word model, phrases in texts are split
into words. This may discard the inner seman-
tics of phrases which in turn may give incon-
sistent relatedness score between two texts.
TrWP , the unsupervised text relatedness ap-
proach combines both word and phrase relat-
edness. The word relatedness is computed
using an existing unsupervised co-occurrence
based method. The phrase relatedness is com-
puted using an unsupervised phrase related-
ness function f that adopts Sum-Ratio tech-
nique based on the statistics in the Google n-
gram corpus of overlapping n-grams associ-
ated with the two input phrases. The second
run of TrWP ranked 30th out of 73 runs in
SemEval-2015 task2a (English STS).

1 Introduction

Generally, a phrase is an ordered sequence of mul-
tiple words that all together refer to a particular
meaning (Zamir and Etzioni, 1999). Phrase related-
ness quantifies how two phrases relate to each other.
It plays an important role in different Text Mining
tasks; for instance, document similarity 1, classifica-
tion and clustering are performed on the documents
composed of phrases. Several document clustering
methods use phrase similarity to determine the simi-
larity between documents so as to improve the clus-
tering result (Chim and Deng, 2008; Shrivastava et
al., 2013). SpamED (Pera and Ng, 2009) uses the

1We use ‘relatedness’ and ‘similarity’ interchangeably in
our paper, albeit ‘similarity’ is a special case of ‘relatedness’.

bi-gram and tri-gram phrase similarity between an
incoming e-mail message and a previously marked
spam to enhance the accuracy of spam detection.

Most works on text relatedness can be abstracted
as a function of word relatedness (Ho et al., 2010).
The classical Bag-of-Word (BoW) text relatedness
methods split phrases into words; then compute text-
pair relatedness by word-pair relatedness (Islam and
Inkpen, 2008; Islam et al., 2012; Tsatsaronis et al.,
2010). TrWP considers text as Bag-of-Word-and-
Phrase (BoWP). It considers a (word, bi-gram) or
(bi-gram, bi-gram) pair as a phrase-pair 2 and com-
putes text relatedness using both word and phrase
relatedness.

There are phrase relatedness tasks that use com-
positional distributional semantic (CDS) model (An-
nesi et al., 2012; Hartung and Frank, 2011).
Some use different tools and knowledge-based re-
sources (Han et al., 2013; Tsatsaronis et al., 2010).
These methods split phrases into words without con-
sidering the word order that might change the mean-
ing of phrases leading to inconsistent phrase relat-
edness score (Turney and Pantel, 2010). For exam-
ple, if we split the phrases “boat house” and “house
boat” into words, we get the relatedness score one,
nonetheless as a whole unit, these two phrases do not
refer to exactly the same meaning (Turney and Pan-
tel, 2010). To preserve the phrase meaning, TrWP
uses the phrase relatedness function f that considers
a phrase as a single unit.

2We consider the bi-grams as phrases. A word is also con-
sidered as a phrase when relatedness is computed between word
and bi-gram.

90



2 Terminology used in Phrase Relatedness

The terminologies used in measuring phrase related-
ness are described below.

2.1 Bi-gram Context

Bi-gram context is a bi-gram, extracted by placing
a phrase in the left most, middle and right position
within the Google n(=3,4)-grams. Sample bi-gram
contexts for the bi-gram phrase “large number” are
shown in Table 1.

Phrase position Google 4-grams
Left most large number of files
Middle very large number generator
Right most multiply a large number

Table 1: Positions of the bi-gram phrase (“large
number”) in Google 4-grams and corresponding bi-
gram contexts marked bold.

2.2 Overlapping Bi-gram Context

The overlapping bi-gram context is a bi-gram which
is overlapped between two Google n(=3,4)-grams
that contain two target phrases at the same posi-
tion. Consider two Google 4-grams “large number
of death” and “vast amount of death” where “large
number” and “vast amount” are the target phrases
and “of death” is an overlapping bi-gram context.

2.3 Sum-Ratio (SR)

Sum-Ratio refers to the product of sum and ratio be-
tween the minimum (min) and maximum (max) of
two numbers. The Sum-Ratio of two numbers in-
dicates the strength of association between them by
maximizing the sum of two numbers with respect to
their ratio. The objective of Sum-Ratio is to capture
the strength of association between two overlapping
Google n(=3,4)-grams. Given two numbers a and b,
the Sum-Ratio of a and b is defined as follows.

Sum(a, b) = a+ b

Ratio(a, b) = min(a, b)/max(a, b)
Sum-Ratio(a, b) = Sum×Ratio

2.4 Relatedness Strength

Relatedness strength is the strength of association
between two phrases P1 and P2, computed using

the Sum-Ratio values between the counts of any two
Google n(=3,4)-grams that contain P1 and P2, re-
spectively and an overlapping bi-gram context.

3 Phrase Detection

Given a specific text, we elicit bi-grams of in-
terest as candidate phrases if they are highly
frequent in the Google bi-gram corpus, as-
serted in the Google Book-Ngram-Viewer
(books.google.com/ngrams/info). We adopt a
naive approach to detect the bi-gram phrases using
the mean (ubg) and standard deviation (sdbg) of all
Google bi-gram frequencies which are computed
once. At first, the whole text is split by stop-words
producing a list of c-grams 3. Then for each c-gram,
the following two steps are executed.

Step 1: If the c-gram is a bi-gram and its fre-
quency is greater than ubg + sdbg, then we add it
to the list of bi-gram phrases.

Step 2: If the length of c-gram is greater than
two, we generate an array of bi-grams from the c-
gram and find the most frequent bi-gram (mfbg)
among them; If the frequency of mfbg is greater
than ubg + sdbg, then we add mfbg to the list of
bi-gram phrases and split the c-gram into two parts
(e.g., left, right) by mfbg. After splitting, for each
of the left and right parts, we examine the Step 1 and
Step 2 recursively.

4 Computing Phrase Relatedness

The phrase relatedness function f , computes relat-
edness strength between two phrases P1 and P2 us-
ing the Google n-gram corpus (Brants and Franz,
2006) which is then normalized between 0 and 1 us-
ing NGD (Cilibrasi and Vitanyi, 2007) in conjunc-
tion with NGD´ (Gracia et al., 2006).

4.1 Lexical Pruning on the Bi-gram Contexts

At first the bi-gram contexts of phrases are extracted.
However some phrases along with their bi-gram
contexts do not convey meaningful insight due to the
improper positioning of stop-words within bi-gram
contexts. Therefore lexical pruning 4 is performed

3c-gram: A chunk of uni-grams with no stop-word.
4Perform pruning on the bi-gram contexts implies to the

pruning of the Google n(=3,4)-grams from which those contexts
are extracted.
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based on the position of stop-words inside the bi-
gram contexts. When the target phrase is placed at
the left or right most positions respectively, then the
Google n(=3,4)-gram is pruned if the right or left
most word is a stop-word. When the phrase is in the
middle surrounded by two context words, then the
Google n(=3,4)-gram is pruned if both the surround-
ing context words are stop-words. After perform-
ing lexical pruning, we have two sets of non-pruned
Google n(=3,4)-grams containing the bi-gram con-
texts of two phrases, respectively.

4.2 Finding Overlapping Bi-gram Contexts

We find the overlapping bi-gram contexts between
two sets of non-pruned Google n(=3,4)-grams. The
Google n(=3,4)-grams having overlapping bi-gram
contexts are separated from the Google n(=3,4)-
grams that have no overlapping contexts.

4.3 Statistical Pruning on the Overlapping
Bi-gram Contexts

Each Google n(=3,4)-gram pair with overlapping bi-
gram context possesses a strength of association. We
presume that if most of the Google n(=3,4)-gram
pairs have higher strengths of association, the relat-
edness score between two phrases tends to be higher
and vice versa. However some strengths of associa-
tion do not lie within the group of maximum num-
ber of strengths of association called outliers and be-
cause of the outliers the relatedness score between
two phrases becomes inconsistent. Hence we apply
statistical pruning on the strengths of association to
prune the outliers. To find the group of maximum
number of strengths of association and prune the
outliers, we adopt the Normal Distribution (Bohm
and Zech, 2010) for statistical pruning. It has been
shown that in Normal Distribution most of the sam-
ples exist within the mean ± standard deviation.

We divide each Google n(=3,4)-gram count (fre-
quency) within a pair by the count of its corre-
sponding n(=1,2)-gram phrase, resulting a normal-
ized count. For each Google n(=3,4)-gram pair, the
minimum and maximum among the two normal-
ized counts are determined. After that we calculate
the ratio (e.g., minimum/maximum) between them.
Following that, for each Google n(=3,4)-gram pair,
we multiply the ratio with the sum of two Google
n(=3,4)-gram counts, producing a resultant product

(e.g., strength of association). Later on we compute
the mean (usr) and standard deviation (sdsr) from
the strengths of association of the Google n(=3,4)-
gram pairs. If the strength of association is within
the usr ± sdsr, it is kept otherwise pruned.

4.4 Computing Relatedness Strength

Relatedness strength between P1 and P2 is com-
puted by multiplying the relatedness strengths from
overlapping and all bi-gram contexts.

4.4.1 Relatedness Strength using Overlapping
Bi-gram Contexts

For each non-pruned Google n(=3,4)-gram pair
having overlapping bi-gram context, the strength of
association is calculated following the Sum-Ratio
technique. We sum the two Google n(=3,4)-gram
counts and find the minimum and maximum among
them. After that we calculate the ratio (e.g., min-
imum/maximum) between them. Then the Sum-
Ratio value is calculated by multiplying the sum
with ratio which signifies the strength of associa-
tion for a Google n(=3,4)-gram pair. By summing up
the strength of association of each Google n(=3,4)-
gram pair, we get the relatedness strength between
the phrases P1 and P2 denoted by RSOB(P1, P2)
as shown in Eq. 1. GP1 and GP2 are the Google
n(=3,4)-grams that contain P1 and P2, respectively
and an overlapping bi-gram context. C(GP1) and
C(GP2) are the counts of GP1 and GP2, respec-
tively. k is the number of non-pruned Google
n(=3,4)-gram pairs.

RSOB(P1, P2) =
n∑ min(C(GP1), C(GP2))
max(C(GP1), C(GP2))

× sum(C(GP1), C(GP2))

(1)

4.4.2 Relatedness Strength using all Bi-gram
Contexts

All bi-gram contexts of a phrase P1 include both
non-pruned overlapping and non-overlapping bi-
gram contexts, extracted from the Google n(=3,4)-
grams where P1 appears. Two vectors V1 and V2

in Vector Space Model are constructed for P1 and
P2, respectively using their corresponding all bi-
gram Contexts. The elements of V1 and V2 are bi-
nary and reflect the presence or absence of a bi-gram
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context belonging to the phrases P1 and P2, corre-
spondingly. The relatedness strength between P1

and P2 using all bi-gram contexts is designated as
cosSim(V1, V2), and computed by the cosine simi-
larity between V1 and V2, defined in Eq. 2.

cosSim(V1, V2) =
V1.V2

||V1|| ||V2|| (2)

4.4.3 Multiplying Relatedness Strengths from
Overlapping and all Bi-gram Contexts

We multiply the relatedness strengths
RSOB(P1, P2) and cosSim(V1, V2) obtained
from overlapping and all bi-gram contexts, respec-
tively to compute the overall relatedness strength
f(P1, P2) between the phrases P1 and P2, defined
in Eq. 3. The purpose of multiplying these two
strengths is to quantify RSOB(P1, P2) with respect
to cosSim(V1, V2).

f(P1, P2) = RSOB(P1, P2)× cosSim(V1, V2)
(3)

4.5 Normalizing Overall Relatedness Strength
The relatedness between phrases P1 and P2 is
computed by normalizing the overall relatedness
strength between 0 and 1 using NGD in conjunction
with NGD´ as defined in Eq. 4. C(P ) is the count of
phrase P where P is a Google n(=1,2)-gram. N =
total number of web documents used in the Google
n-gram corpus.

NGDf(P1, P2) =

e
−2×max(log C(P1),log C(P2))−log f(P1,P2)

log N−min(log C(P1),log C(P2))

(4)

5 Computing Text Relatedness

At first punctuations are removed from texts. The
phrases are extracted using phrase detection algo-
rithm. Other than phrases the rest of the text is split
into non stop-words. The relatedness between two
texts is calculated by the word-pair and phrase-pair
relatedness following the notion of text relatedness
in (Islam et al., 2012). Word-pair relatedness is com-
puted by the word relatedness method in (Islam et
al., 2012).

Step 1: We assume that the two texts A =
{a1, a2, ..., ap} and B = {b1, b2, ..., bq} have p and
q tokens, respectively and p ≤ q. Otherwise we

switch A and B. A token is a word or bi-gram
phrase.

Step 2: We count the number of common tokens
(δ) in both A and B where δ ≤ p. Common tokens
are determined by applying PorterStemmer (Porter,
1980) on each token pair. Common tokens are re-
moved from A and B. So, A = {a1, a2, ..., ap−δ}
and B = {b1, b2, ..., bq−δ}. If all tokens match e.g.,
p− δ = 0, go to step Step 5.

Step 3: We construct a (p− δ)× (q− δ) ‘seman-
tic relatedness matrix’ (Say, M = (αij)(p−δ)×(q−δ))
using the following process. We set αij ←
relatedness(ai, bj)× w2 where i = 1...p− δ, j =
1...q − δ, w = weighting factor to boost the related-
ness score. The value of w is the average number of
words within a word or phrase-pair. The reason for
boosting is that same relatedness score of a phrase-
pair is more weighted than that of a word-pair.
If (ai, bj) is a word-pair, relatedness(ai, bj) =
word-pair relatedness (Islam et al., 2012); otherwise
relatedness(ai, bj) = phrase-pair relatedness from
Eq. 4.

M =



α1,1 · · · α1,j · · · α1,q−δ
α2,1 · · · α2,j · · · α2,q−δ

...
. . .

...
. . .

...
αi,1 · · · αi,j · · · αi,q−δ

...
. . .

...
. . .

...
αp−δ,1 · · · αp−δ,j · · · αp−δ,q−δ


Step 4: For each row we compute the mean

(u) and standard deviation (sd) of the relatedness
scores and select the scores which are larger than
u+sd. The idea is to find more related tokens among
(q − δ), for each (p− δ) tokens. The average of the
selected scores is computed for a row and for (p−δ)
rows we get (p − δ) averages. We sum the (p − δ)
average values denoted by SAvg.

Step 5: To compute relatedness between the texts
A and B, we use the normalization in (Islam et al.,
2012) with minor modification, given in Eq. 5.

rel.(A,B) =
(2|δ|+ SAvg)× (2|A|+ 2|B|)

2 · 2|A| · 2|B|
(5)

Number of words in A, B and δ are denoted by
|A|, |B|, |δ|, respectively. Since we multiply w with
relatedness score while constructing the matrix M ;
|A|, |B| and |δ| are multiplied by 2.
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6 Experiments

We submit three runs of TrWP on 5 datasets of
SemEval-2015 task2a (English STS) (Agirre et al.,
2015).

6.1 Run1
In the first run we consider words, phrases and num-
bers as tokens. After removing punctuations and
stop-words, if any sentence within a pair has no to-
kens, then the relatedness of that sentence pair is 0.

6.2 Run2
The tokens are same as in the first run. After remov-
ing punctuations and stop-words, if any sentence
within a pair has no tokens, then we keep the stop-
words.

6.3 Run3
We consider words and phrases as tokens. The fol-
lowing steps are same as in the first run.

7 Result

The result from three different runs of TrWP are
shown in Table 2.

SemEval-2015 task2a
Dataset (English STS)

Run1 (r) Run2 (r) Run3 (r)

answers-forums 0.6857 0.6857 0.6857
answers-students 0.6618 0.6618 0.6612
belief 0.6769 0.7245 0.6772
headlines 0.7709 0.7709 0.7710
images 0.7865 0.7865 0.7865
Weighted mean 0.7251 0.7311 0.7250
Ranking out of 73 runs 31 30 32

Table 2: Pearson’s r on five datasets, obtained from
three different runs of TrWP .

8 Conclusion

TrWP is an unsupervised text relatedness method
that combines both word and phrase relatedness.
Both the word and phrase relatedness are computed
in unsupervised manner. The word relatedness is
computed using the co-occurrences of two words in
the Google 3-gram corpus. To compute phrase re-
latedness, TrWP uses an unsupervised function f
based on the Sum-Ratio technique along with the

statistical pruning. Unlike other phrase relatedness
methods based on word relatedness, f considers the
whole phrase as a single unit without losing inner
semantic meaning within a phrase.
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Abstract

This paper describes the system submitted
by the University of Wolverhampton and the
University of Malaga for SemEval-2015 Task
2: Semantic Textual Similarity. The system
uses a Supported Vector Machine approach
based on a number of linguistically motivated
features. Our system performed satisfactorily
for English and obtained a mean 0.7216
Pearson correlation. However, it performed
less adequately for Spanish, obtaining only a
mean 0.5158.

1 Introduction

Similarity measures play an important role in
a wide variety of Natural Language Processing
(NLP) applications. Information Retrieval (IR),
for example, relies on semantic similarity in order
to determine the best result for a related query.
Semantic similarity also plays a crucial role in other
applications such as Paraphrasing and Translation
Memory (TM). However, computing semantic
similarity between sentences remains a complex and
difficult task. Over the years, SemEval’s shared
tasks worked to fine-tune and perfect these similarity
measures, and explore the nature of meaning in
language.

SemEval2015’s Task 2 involves computing
how similar two sentences are in both English
(Subtask 2a) and Spanish (Subtask 2b). In
this paper we detail our submission to SemEval
Task 2. We use an improved and revised
version of the system presented in our SemEval
2014 submission (Gupta et al., 2014). As
in Gupta et al., 2014, we employ a Machine

Learning (ML) method which exploits available
NLP technology, adding features inspired by deep
semantics (such as parsing and paraphrasing)
with distributional Similarity Measures, Conceptual
Similarity Measures, Semantic Similarity Measures
and Corpus Pattern Analysis1 (CPA).

The remainder of the paper is structured as
follows. Section 2 describes our approach, i.e.
explains how the data was preprocessed and what
features were extracted. Section 3 is divided in two
section, the first one describes the ML algorithm and
how it was tuned for this task (section 3.1) and the
second one shows the obtained results along with
a descriptive analysis of the runs based on the test
and training data provided by the SemEval-2015
Task 2 (section 3.2). Finally, section 4 presents
the final remarks and highlights our future plans for
improving the system.

2 Approach

This section describes our approach to calculating
semantic relatedness. It covers all the required
preprocessing steps to extract the features
themselves.

2.1 Data Preprocessing
This section presents all the tools, libraries and
frameworks used to preprocess not only the test
datasets but also the training datasets.

2.1.1 POS-Tagger, Lemmatiser, Stemmer
The software we used for these specific NLP tasks

were: the Stanford CoreNLP2 (Toutanova et al.,
1http://pdev.org.uk
2http://nlp.stanford.edu/software/

corenlp.shtml
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2003) toolkit, which provides a lemmatiser, POS-
Tagger, NER, parsing, and coreference; the TT4J3

library, which is a Java wrapper around the popular
TreeTagger (Schmid, 1995); and the Porter stemmer
algorithm provided by the Snowball4 library.

2.1.2 Named Entity Recogniser (NER)
The library used to identify named entities in

English and Spanish was the Apache OpenNLP
library5. For English, all the pre-trained NER
models made available by the Apache OpenNLP
library were used (i.e. we used models to identify
dates, locations, money, organisations, percentages,
persons and time). We also used all the pre-trained
NER models for Spanish (in this case, we used
models to identify persons, organisations, locations
and miscellanea).

2.1.3 Translation Model
Since one of the features we implemented was

available only for English (i.e. the Semantic
Similarity Measures), we trained a Statistical
Machine Translation (SMT) system to translate our
Spanish dataset into English. For this purpose,
we used the PB-SMT system Moses (Koehn et al.,
2007), 5-gram language models with Kneser-Ney
smoothing trained with SRILM (Stolcke, 2002), the
GIZA++ implementation of IBM word alignment
model 4 (Och and Ney, 2003), with refinement and
phrase-extraction heuristics as described in Koehn et
al., 2003. We trained this system on the Europarl
Corpus (Koehn, 2005) and used Minimum Error
Rate Training (MERT) (Och, 2003) for tuning on the
development set.

2.1.4 Resources
Given that a number of our features depends on

stopwords (see section 2.2), we compiled two lists
of stopwords, one for English and another one for
Spanish. Both are freely available to download6.

We also used two lists (English and Spanish) of
candidates for Multiword Expressions (MWEs) as a
resource for one of the features (see section 2.2.5).
These lists were extracted from the Europarl Corpus
(Koehn, 2005) using the collocation modules of the

3https://code.google.com/p/tt4j
4http://snowball.tartarus.org
5http://opennlp.apache.org
6https://github.com/hpcosta/stopwords

NLTK package (Loper and Bird, 2002), and sorted
by the degree of likelihood association between their
components.

2.2 Extracted Features

This section details the features that our system uses
to measure the semantic textual similarity between
two sentences. The system uses the same features
for both Subtask 2a and Subtask 2b. In addition
to the baseline features used in Gupta et al., 2014,
we introduced a set of Distributional, Semantic and
Conceptual Similarity Measures, as well as a feature
reflecting MWEs across sentences.

2.2.1 Baseline Features
The system is built on the baseline system

developed for SemEval2014, which consists of 13
features explained in detail in Gupta et al., 2014.
The code which implements these features can be
found on GitHub7.

2.2.2 Distributional Similarity Measures
Information Retrieval (IR) (Singhal, 2001) is

the task of locating specific information within a
collection of documents or other natural language
resources according to some request (Salton and
Buckley, 1988; Costa et al., 2010; Costa et al.,
2011). Among IR methods, we can find a large
number of statistical approaches based on the
occurrence of words in documents or sentences.
Following Harris’ distributional hypothesis (Harris,
1970), which assumes that similar words tend to
occur in similar contexts, these methods are suitable,
for instance, to find similar sentences based on the
words they contain or to compute the similarity
of words based on their co-occurrence. To that
end, we can assume that the amount of information
contained in a sentence could be evaluated by
summing the amount of information contained in
the sentence words. Moreover, the amount of
information conveyed by a word can be represented
by means of the weight assigned to it (Salton
and Buckley, 1988). Bearing this in mind, we
used two independent IR measures, the Spearman’s
Rank Correlation Coefficient (SCC) and the χ2

to compute the similarity between two sentences
7https://github.com/rohitguptacs/

wlvsimilarity
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written in the same language (cf. Kilgarriff, 2001).
Both measures are particularly useful for this task
because they are independent of text size (mostly
because both measures use a list of the common
entities), and they are language-independent. In
detail, for every pair of sentence (English and
Spanish), we used the lemmas to extract the list of
common terms to compute both measures.

2.2.3 Conceptual Similarity Measures

This feature aims to find the conceptual similarity
between two sentences written in the same
language. In order to calculate the conceptual
similarity, we took advantage of the BabelNet8

(Navigli and Paolo Ponzetto, 2012) multilingual
semantic network. As BabelNet organises lexical
information in a semantic conceptual way, we
created a conceptual sentence for all input pair
of sentences (English and Spanish). More
precisely, for every pair of sentence we only
extracted lemmatised nouns, verbs, adjectives and
adverbs. Then, a conceptual term list was built
by extracting all the occurrences of the term in
the conceptual network (i.e. BabelNet). As a
result, we got a “conceptual representation” of
both sentences, each of them containing a set of
conceptual term lists. Next, for every term in the
“conceptual sentence 1”, we counted the number
of co-occurrences in the conceptual term lists in
the “conceptual sentence 2”. In other words, we
intersected the terms in sentence 1 with all the
conceptual term lists in sentence 2. After computing
all the co-occurrences, we used these values to
calculate the Jaccard’ (Jaccard, 1901), Lin’ (Lin,
1998) and PMI’ (Turney, 2001) scores.

2.2.4 Semantic Similarity Measures

This feature takes advantage of the Align,
Disambiguate and Walk (ADW)9 library (Pilehvar et
al., 2013), a WordNet-based approach for measuring
semantic similarity of arbitrary pairs of lexical
items. It is important to mention that this feature
is the only one that only works for English, which
explains why we have a translation model (see
section 2.1.3). In other words, when we are dealing

8http://babelnet.org
9http://lcl.uniroma1.it/adw

with Spanish text, we use the trained model to
translate from Spanish to English.

As the ADW library permits us to measure
the semantic similarity between two raw English
sentences, either by using disambiguation or not, we
used both options to calculate all the comparison
methods made available by the library, i.e.
WeightedOverlap, Cosine, Jaccard, KLDivergence
and JensenShannon divergence.

2.2.5 Multiword Expressions

Multiword Expressions (MWEs) are meaningful
lexical units whose distinct idiosyncratic properties
call for special treatment within a computational
system. Non-compositionality is one of the
properties of MWEs. The degree of association
between the components of a MWE has been
proved to be a promising approach to find out how
much they are non-compostional and therefore how
probable they are acceptable MWEs (Ramisch et
al., 2010). The more non-compositional a MWE
is, the more important is not to treat its components
separately for NLP purposes, including processing
semantic similarities.

For the purpose of our experiments, we focused
on two more common types of MWEs in English
and Spanish: verb noun combinations and
verb particle constructions. Whenever a
verb+noun or a verb+particle combination
occurs in our sentence pair, we search a prepared
list MWEs, sorted according to their likelihood
measures of association. The degree of association
of these combinations served as a feature in our ML
system.

3 Predicting Through Machine Learning

In this section, we outline the ML model trained
on the extracted features to compute a relatedness
score between two sentences. It details the tools and
parameters used to build a support vector regressor,
which we used to predict a number between 0 and 5,
denoting a degree of semantic similarity.

3.1 Model Description

We used a Support Vector Machine (SVM) in order
to compute semantic relatedness for both subtasks.
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We used LibSVM10, a library for SVMs developed
by Chang and Lin, 2011.

We built a regression model which estimates
a continuous score between 0 and 5 for each
sentence pair. The values of C and γ have been
optimised through a grid-search which uses a 5-fold
cross-validation method, and all systems use an RBF
kernel.

The system for Subtask 2a (English) is trained
on a combination of training and trial data provided
by the 2012, 2013 and 2014 SemEval tasks. We
used these datasets to form a training set of 9750
sentence pairs combining the different domains
covered by the STS task: image description (image),
news headlines (headlines), student answers paired
with reference answers (answers-students), answers
to questions posted in stach exchange forums
(answers-forum), English discussion forum data
exhibiting committed belief (belief). However, the
training set for Subtask 2b (Spanish) was much
smaller, at only 804 sentence pairs collected by
combining previous datasets from the Newswire and
Wikipedia domains.

3.2 Results and Analysis

The task required the submission of 3 different
runs for each task. The runs for the Subtask
2a (English) were identical except for some
parameter differences for the SVM training. Our
system performed adequately, with our primary run
achieving a mean Pearson Correlation of 0.7216.

However, the runs for Subtask 2b (Spanish) were
trained on different training sets. Run-1 and Run-2
are trained on the 804 Spanish sentence-pairs. The
Spanish set’s Run-3, however, is trained on the much
larger English training set. For this purpose, we
needed to translate the Spanish test set into English
in order to use the Semantic Similarity language-
dependent features (see sections 2.1.3 and 2.2.4).
This system did not outperform the basic Spanish
model used in Run-1 and Run-2, despite the much
larger training set. Our Spanish system did not yield
a satisfactory performance, achieving a Pearson
Correlation score of only 0.5158. This could be
part due to the smaller training set in Spanish,

10http://www.csie.ntu.edu.tw/˜cjlin/
libsvm/

and the imperfect translations into English which
consequently influenced the performance of the
language-dependent features. The detailed results
for both tasks are given in Table 1 and 2.

Run-1 Run-2 Run-3
answers-forums 0.6781 0.6454 0.6179
answers-students 0.7304 0.7093 0.6977
belief 0.6294 0.5165 0.3236
headlines 0.6912 0.6084 0.5775
images 0.8109 0.7999 0.7954
mean 0.7216 0.6746 0.6353
rank (out of 74) 33 45 55

Table 1: Task 2a – Pearson Correlation for English.

Run-1 Run-2 Run-3
wikipedia 0.5239 0.4671 0.4402
newswire 0.5076 0.5437 0.5524
mean 0.5158 0.5054 0.4963
rank (out of 17) 9 10 11

Table 2: Task 2b – Pearson Correlation for Spanish.

4 Conclusion and Future Work

We have presented an efficient approach to calculate
semantic relatedness for both English and Spanish
sentence pairs. We used the same feature set for both
tasks, even though it meant translating the Spanish
sentences into English before extracting one of the
features (i.e. the Semantic Similarity). The system
did not performed well for Spanish as it ranked 9
out of 17, with a 0.5158 average Person correlation
over two test sets (0.1747 correlation points less
than the best submitted run). On the other hand, it
performed reasonably well for English, where the
system’s best result ranked 33 among 74 submitted
runs with 0.7216 Pearson correlation over five test
sets (only 0.0799 correlation points less than the best
submitted run).

In the future we plan to extract the conceptual
description provided by the BabelNet network in
order to match it with the conceptual terms. We have
not done that for now because we need to treat these
descriptions as sentences, which requires filtering
out the noise produced by them.
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Abstract

This paper reports the description and perfor-
mance of our system, FBK-HLT, participat-
ing in the SemEval 2015, Task #2 “Semantic
Textual Similarity”, English subtask. We sub-
mitted three runs with different hypothesis in
combining typical features (lexical similarity,
string similarity, word n-grams, etc) with syn-
tactic structure features, resulting in different
sets of features. The results evaluated on both
STS 2014 and 2015 datasets prove our hypoth-
esis of building a STS system taking into con-
sideration of syntactic information. We out-
perform the best system on STS 2014 datasets
and achieve a very competitive result to the
best system on STS 2015 datasets.

1 Introduction

Semantic related tasks have been a noticed trend
in Natural Language Processing (NLP) community.
Particularly, the task Semantic Textual Similarity
(STS) has captured a huge attention in the NLP com-
munity despite being recently introduced since Se-
mEval 2012 (Agirre et al., 2012). Basically, the
task requires to build systems which can compute
the similarity degree between two given sentences.
The similarity degree is scaled as a real score from
0 (no relevance) to 5 (semantic equivalence). The
evaluation is done by computing the correlation be-
tween human judgment scores and system scores by
the mean of Pearson correlation method.

At SemEval 2015, Task #2 “Semantic Textual
Similarity (STS)”, English STS subtask (Agirre et
al., 2015) evaluates participating systems on five test

datasets: image description (image), news headlines
(headlines), student answers paired with reference
answers (answers-students), answers to questions
posted in stach exchange forums (answers-forum),
and English discussion forum data exhibiting com-
mited belief (belief ). As being inspired by the UKP
system (Bär et al., 2012), which was the best system
in STS 2012, we build a supervised system on top of
it. Our system adopts some word and string similar-
ity features in UKP, such as string similarity, charac-
ter/word n-grams, and pairwise similarity; however,
we also add other distinguished features, like syn-
tactic structure information, word alignment and se-
mantic word similarity. As a result, our team, FBK-
HLT, submitted three runs and achieve very compet-
itive results in the top-tier systems of the task.

The remainder of this paper is organized as fol-
lows: Section 2 presents the System Description,
Section 3 describes our Experiment Settings, Sec-
tion 4 reports the Evaluations of our system. Finally,
Section 5 is Conclusions and Future Work.

2 System Description

We describe our system, which is built from differ-
ent linguistic features. We construct a pipeline sys-
tem, in which each component produces different
features independently and at the end, all features
are consolidated by a machine learning tool, which
learns a regression model for predicting the similar-
ity scores from given sentence-pairs. On top of this,
the system is expandable and scalable for adopting
more useful features aiming for improving the accu-
racy. The System Overview in Figure 1 shows the
logic and design processes in which different com-
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Figure 1: System Overview.

ponents connect and work together.

2.1 Data Preprocessing

The input data undergoes the data preprocessing
in which we use Tree Tagger (Schmid, 1994) to
perform tokenization, lemmatization, and Part-of-
Speech (POS) tagging. On the other hand, we use
Stanford Parser (Klein and Manning, 2003) to ob-
tain the dependency parsing from given sentences.

2.2 Word and String Similarity Features

We adopt some word and string similarity features
from the UKP system (Bär et al., 2012), which are
briefly described as follows:

• String Similarity: we use Longest Common
Substring (Gusfield, 1997), Longest Common
Subsequence (Allison and Dix, 1986) and
Greedy String Tiling (Wise, 1996) measures.

• Character/Word n-grams: we compare charac-
ter n-grams (Barrón-Cedeno et al., 2010) with
the variance n=2, 3, ..., 15. In contrast, we com-
pare the word n-grams using Jaccard coefficient
done by Lyon (Lyon et al., 2001) and contain-
ment measure (Broder, 1997) with the variance
of n=1, 2, 3, and 4.

• Semantic Word Similarity: we use the pairwise
similarity algorithm by Resnik (Resnik, 1995)
on WordNet (Fellbaum, 1998), and the vector
space model Explicit Semantic Analysis (ESA)
(Gabrilovich and Markovitch, 2007) which is
constructed by two lexical semantic resources

Wikipedia 1 and Wiktionary 2.

2.3 Syntactic Structure Features

We exploit the syntactic structure information by the
mean of three different toolkits: Syntactic Tree Ker-
nel, Distributed Tree Kernel and Syntactic Gener-
alization. We describe how each toolkit is used to
learn and extract the syntactic structure information
from texts to be used in our STS system.

2.3.1 Syntactic Tree Kernel
Syntactic Tree Kernel (Moschitti, 2006) is a tree

kernels approach to learn the syntactic structure
from syntactic parsing information, particularly, the
Partial Tree (PT) kernel is proposed as a new convo-
lution kernel to fully exploit dependency trees. We
use the open-source toolkit "Tree Kernel in SVM-
Light3" to learn this syntactic information.

Having assumed that paraphrased pairs would
share the same content and similar syntactic struc-
tures, we decide to choose the Microsoft Research
Paraphrasing Corpus (Dolan et al., 2005) which
contains 5,800 sentence pairs extracted from news
sources on the web, along with human annota-
tions indicating whether each pair captures a para-
phrase/semantic equivalence relationship. This cor-
pus is split into Training set (4,076 pairs) and Test-
ing set (1,725 pairs).

We use Stanford Parser (Klein and Manning,
2003) to obtain the dependency parsing from sen-
tence pairs. Then we use the machine learning tool
svm-light-tk 1.2 which uses Tree Kernel approach to
learn the similarity of syntactic structure to build a
binary classifying model on the Train dataset. The
output predictions are probability confidence scores
in [-1,1], corresponds to the probability of the label
to be positive. According to the assumption above,
we label paraphrased pairs as 1, -1 otherwise. We
obtain the Accuracy of 69.16% on the Test set.

2.3.2 Distributed Tree Kernel
Distributed Tree Kernel (DTK) (Zanzotto and

Dell’Arciprete, 2012) is a tree kernels method using
a linear complexity algorithm to compute vectors for
trees by embedding feature spaces of tree fragments

1http://en.wikipedia.org/wiki/Main_Page
2http://en.wiktionary.org
3http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Settings deft-forum deft-news headlines images OnWN tweet-news Mean
Baseline 0.353 0.596 0.510 0.513 0.406 0.654 0.507
DLS@CU (ranked 1st) 0.4828 0.7657 0.7646 0.8214 0.8589 0.7639 0.761
Word/String Sim (1) 0.4314 0.7089 0.6887 0.7671 0.8125 0.6932 0.7008
Syntactic Features (2) 0.2402 0.3886 0.3233 0.2419 0.4066 0.4489 0.3441
(1) & (2) 0.4495 0.7032 0.6902 0.7627 0.8115 0.6974 0.7026
All Features 0.5076 0.7616 0.7647 0.8182 0.8953 0.7485 0.7672

Table 1: Evaluation Results on STS 2014 datasets.

System ans-forums ans-students belief headlines images Mean
Baseline 0.4453 0.6647 0.6517 0.5312 0.6039 0.5871
DLS@CU-S1 (ranked 1st) 0.739 0.7725 0.7491 0.825 0.8644 0.8015
FBK-HLT Run1 0.7131 0.7442 0.7327 0.8079 0.8574 0.7831
FBK-HLT Run2 0.7101 0.7410 0.7377 0.8008 0.8545 0.7801
FBK-HLT Run3 0.6555 0.7362 0.7460 0.7083 0.8389 0.7461

Table 2: Evaluation Results on STS 2015 datasets.

in low-dimensional spaces. Then a recursive algo-
rithm is proposed with linear complexity to compute
reduced vectors for trees. The dot product among
reduced vectors is used to approximate the original
tree kernel when a vector composition function with
specific ideal properties is used.

Firstly, we use Stanford Parser (PCFG Parser)
trained on Penn TreeBank (Klein and Manning,
2003) to obtain the dependency parsing of sen-
tences, and feed them to the software "distributed-
tree-kernels" to produce the distributed trees.4 Then,
we compute the Cosine similarity between the vec-
tors of distributed trees of each sentence pair. This
cosine similarity score is converted to the scale of
STS and SR for evaluation.

2.3.3 Syntactic Generalization
Given a pair of parse trees, the Syntactic General-

ization (SG) (Galitsky, 2013) finds a set of maximal
common subtrees. The toolkit "relevance-based-on-
parse-trees" is an open-source project which eval-
uates text relevance by using syntactic parse tree-
based similarity measure.5 Given a pair of parse
trees, it measures the similarity between two sen-
tences by finding a set of maximal common subtrees,
using representation of constituency parse trees via
chunking. Each type of phrases (NP, VP, PRP etc.)

4https://code.google.com/p/distributed-tree-kernels
5https://code.google.com/p/relevance-based-on-parse-trees

will be aligned and subject to generalization. It uses
the OpenNLP system to derive dependency trees for
generalization (chunker and parser).6 This tool is
made to give as a tool for text relevance which can
be used as a black box, no understanding of compu-
tational linguistics or machine learning is required.
We apply the tool on the STS datasets to compute the
similarity of syntactic structure of sentence pairs.

2.4 Further Features
We also deploy other features which also may help
in identifying the semantic similarity degree be-
tween two given sentences, such as word align-
ment in machine translation evaluation metric and
the vector space model Weighted Matrix Factoriza-
tion (WMF) for pairwise similarity.

2.4.1 Machine Translation Evaluation Metric -
METEOR

METEOR (Metric for Evaluation of Translation
with Explicit ORdering) (Banerjee and Lavie, 2005)
is an automatic metric for machine translation eval-
uation, which consists of two major components:
a flexible monolingual word aligner and a scorer.
For machine translation evaluation, hypothesis sen-
tences are aligned to reference sentences. Align-
ments are then scored to produce sentence and cor-
pus level scores. We use this word alignment feature

6https://opennlp.apache.org
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to learn the similarity between words, phrases in two
given texts in case of different orders.

2.4.2 Weighted Matrix Factorization (WMF)
WMF (Guo and Diab, 2012) is a dimension re-

duction model to extract nuanced and robust latent
vectors for short texts/sentences. To overcome the
sparsity problem in short texts/sentences (e.g. 10
words on average), the missing words, a feature that
LSA/LDA typically overlooks, is explicitly mod-
eled. We use the pipeline to compute the similarity
score between texts.

3 Experiment Settings

We generate and select 25 optimal features, rang-
ing from lexical level to string level and syntac-
tic level. We deploy the machine learning toolkit
WEKA (Hall et al., 2009) for learning a regression
model (GaussianProcesses) to predict the similarity
scores. We build three models based on three sets of
features to verify our hypothesis in which we aug-
ment that computing semantic similarity degree is
not only about lexical similarity and string similar-
ity, but also taking into consideration a deeper level
at syntactic structure where more semantic informa-
tion is embedded.

In the system development process, we train our
system on the given datasets of STS 2012, 2013 and
use the STS 2014 datasets for evaluating the system.
In Table 1, we also examine the contribution of dif-
ferent features to the overall accuracy of system, and
prove that syntactic structure information also has
some impact to the performance of our system. Our
model using all features described above outperform
the best system DLS@CU in STS 2014 evaluation.

We submitted three runs with different sets of fea-
tures as below:

- Run1: All features described in Section 2 used.
- Run2: The feature obtained by Distributed Tree

Kernel approach is excluded as sometimes it returns
negative correlation.

- Run3: No syntactic features are included.

4 Evaluations

In Table 2 we report the performance of our three
runs achieved on the STS 2015 test datasets. Among
three submitted runs, Run1 has the best score, which

confirm that exploiting the syntactic structure infor-
mation benefits the overall performance of our sys-
tem. Besides, although occasionally the features
extracted by Distributed Tree Kernel approach re-
turns negative result, it still contributes a small pos-
itive portion in the final result, which is shown in
the Run2. In contrast, the Run3 which excludes all
syntactic structure features, eventually, returns 4%
lower than the other two runs.

In overall, our system achieves a very compet-
itive result compared to the best ranked system,
DLS@CU-S1. Specifically, the difference between
our Run1 and the DLS@CU-S1 on each test dataset
of STS 2015 varies slightly 1%-2%. However, this
difference is not statistically significant, as we can
understand that each system may perform slightly
different on different evaluation datasets. Generally,
by taking into account the results of our system and
DLS@CU on both STS 2014 and 2015 evaluation
datasets, we can consider that we are almost equiva-
lent in performance.

5 Conclusions and Future Work

In this paper, we describe the pipeline system FBK-
HLT participating in the SemEval 2015, Task #2
"Semantic Textual Similarity", English subtask. We
present a supervised system which considers mul-
tiple linguistic features from low to high language
level, such as lexical, string and syntactic. We also
augment that looking into the syntactic structure of
text will more or less benefit the capability of pre-
dicting the semantic similarity. Among our three
submitted runs, our performance is much above the
baseline and very competitive to the best system; we
are ranked in the top-tier (12th, 13th, and 23nd) out of
total 73 systems.

For the time being, we can see that the contri-
bution of syntactic features is still limited (about
4%) to the overall performance. However, it does
not deny the significance of syntactic information
in semantic related tasks, especially, this STS task.
Hence, we expect to study to exploit more useful
features from the syntactic information, which in-
tuitively, is supposed to play a significant role in se-
mantic reasoning.
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Abstract

This paper describes SVCSTS, a system that
was submitted in SemEval-2015 Task 2: Se-
mantic Textual Similarity(STS)(Agirre et al.,
2015). The task has 3 subtasks viz., English
STS, Spanish STS and Interpretable STS.
SVCSTS uses Monolingual word aligner (Sul-
tan et al., May 2014), supervised machine
learning, Google and Bing translator API’s.
Various runs of the system outperformed all
other participating systems in Interpretable
STS for non-chunked sentence input.

1 Introduction

Semantic Textual Similarity gives a quantifier to
evaluate semantic equivalence between two sen-
tences. Earlier SemEval tasks (Agirre et al., 2012),
(Agirre et al., 2013), (Agirre et al., 2014) focused on
finding the semantic equivalence between sentences
in English and Spanish. A new pilot task was intro-
duced this year to find which parts (chunks) of the
sentences are equivalent in meaning.

SVCSTS is an extension to (Sultan et al., 2014)
and it handles both Spanish STS and Interpretable
STS. SVCSTS uses Monolingual word aligner (Sul-
tan et al., May 2014), supervised machine learning
techniques, Google and Bing translator API’s.

Section 2 describes a brief overview of SVCSTS’s
approach for various subtasks. Section 3 outlines
the performance of SVCSTS in various subtasks of
SemEval 2015 Task-2.

2 System Description

Following 3 sub sections describe SVCSTS’s ap-
proach for the 3 subtasks.

2.1 English STS
This task was about finding the semantic similarity
between English sentences. (Sultan et al., 2014) sys-
tem was used to find the semantic equivalence be-
tween two sentences and a score on a scale of 0-5
was given.

2.2 Spanish STS
Spanish STS is built upon English STS to calculate
similarity scores for a given pair of Spanish sen-
tences on a scale of 0 to 4. Spanish sentences were
translated to English, fed to English STS system
and the scores are scaled accordingly. Translations
were done using Bing Translator API (Bing Transla-
tor API) and Google Translate API. Two translators
were used to improve the accuracy of the transla-
tions.

Google Translate API was obtained from
(Kashyap et al., 2014). We used this system to get
multiple translations of each chunk in a sentence.
Multiple sentences are generated by combining
the top two translations of each chunk. We then
randomly pick a maximum of ten sentences for
each Spanish sentence. Translation pairs are formed
by choosing corresponding numbered sentences
from sentence 1 and sentence 2 translations. We
limited the number of translations to 10 to reduce
the overall computation time.

Translation pairs were then passed to English STS
system. Final score was obtained as the average
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taken from all translation pairs for a given Spanish
sentence pair and the score is scaled accordingly.

2.3 Interpretable STS
Existing STS systems report similarity for a pair of
sentences.

This is a pilot task where the challenge is to find
the semantic relationships between the chunks of
sentence 1 and sentence 2. Chunks from the input
sentence pair are to be aligned, labeled with the type
(described here) of alignment and are to be scored
on a scale of 0-5 based on their semantic similarity.

The type of alignments defined in the task de-
scription are:

1. EQUI : both chunks are semantically similar.

2. OPPO : both chunks are semantically opposite.

3. SPE1 : both chunks are semantically similar
but chunk1 has more information.

4. SPE2 : both chunks are semantically similar
but chunk2 has more information.

5. SIMI : similar chunks but no EQUI, OPPO,
SPE1 or SPE2.

6. REL : related chunks but no SIMI, EQUI,
OPPO, SPE1, SPE2.

7. ALIC : when 1:1 alignment of chunks is not
possible extra chunks are given ALIC

8. NOALI: a chunk has no corresponding seman-
tically similar chunk

There are two variations in the input for this sub-
task:

1. Raw input - Plain sentences are provided and
the system has to identify the chunks

2. Chunked input - Chunked sentences are pro-
vided by the task organizers

2.3.1 Identifying Chunks
OpenNLP chunker was used to chunk the in-

put sentences and some post processing was done.
For the post processing we observed a few rules
from gold standard chunks. Those rules include
combining chunks of specific chunk tags given by

OpenNLP chunker. A large number of rules were
discovered but the following were the rules, which
maximized accuracy.

• PP + NP + PP + NP

• PP + NP

• VP + PRT

• NP + O + NP

• VP + ADVP

• VP + PP + NP + O

• NP + O

Applying these rules we have increased accuracy
from 86.58% to 90.16% against the gold standard
chunks.

2.3.2 Aligning Chunks
Monolingual word aligner (Sultan et al., May

2014) was used to find word alignments in the
two input sentences. For chunked input, sentences
are generated from the chunks prior to running the
word aligner. For words aligned their corresponding
chunks are aligned.

2.3.3 Labeling Aligned Chunks
Supervised machine learning was performed us-

ing Scikit-Learn (scikit-learn). We used the follow-
ing features for each chunk alignment to assign a
type for the alignment.

1. Length of sentence 1 chunk

2. Length of sentence 2 chunk

3. Number of nouns in sentence 1 chunk

4. Number of nouns in sentence 2 chunk

5. Number of verbs in sentence 1 chunk

6. Number of verbs in sentence 2 chunk

7. Number of adjectives in sentence 1 chunk

8. Number of adjectives in sentence 2 chunk

9. Number of prepositions in sentence 1 chunk

10. Number of prepositions in sentence 2 chunk
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Type of Alignment Score
EQUI 5
SPE1 3.75
SPE2 3.55
ALIC NIL
NOALI 0
SIMI 2.94
REL 2.82
OPPO 4

Table 1: Avg. alignment type scores

Runs Features Used
Run - 1 3,4,5,6,7,8,9,10,11,12
Run - 2 3,4,5,6,7,8,9,10,11,12,13
Run - 3 1,2,3,4,5,6,7,8,9,10,11,12,13

Table 2: Features used in various runs

11. The path similarity between words of sentence
1 and sentence 2 chunks

12. Unigram overlap between sentence 1 and sen-
tence 2 chunks

13. Bigram overlap between sentence 1 and sen-
tence 2 chunks

We experimented the classification of labels us-
ing 3 classifiers LinearSVC, SVC with RBF (Radial
Basis Function) Kernel and SVC with Polynomial
Kernel. But the classifier SVC with RBF (with pa-
rameters C = 1.0, gamma=0.7) proved to give better
results.

2.3.4 Scoring Aligned Chunks
Average score for each alignment type was cal-

culated from the gold standard data. The average
scores that were used to score chunk alignment are
described in Table 1.

2.3.5 Multiple Runs
We tried various combination of features (de-

scribed in Section 2.3.3) for training the classifier.
The details of three runs that resulted in better accu-
racy on training data are described in Table 2.

3 Results

The results of all the subtracks were very encour-
aging. For English STS, the results are outlined in

Inputs Baseline SVCSTS
answers-forums 0.4453 0.6561
answers-students 0.6647 0.7816
belief 0.6517 0.7363
headlines 0.5312 0.8085
images 0.6039 0.8236
Mean 0.5871 0.7775
Rank 59 14

Table 3: Scores for English STS

Inputs SVCSTS
Wikipedia 0.59364
Newswire 0.65471
Mean 0.63430
Rank 4

Table 4: Scores for Spanish STS

Table 3. SVCSTS was ranked 14th among 73 runs.
The results of Spanish STS are shown in Table 4.
We were ranked 4th among 16 runs. Table 5 and Ta-
ble 6 summarize the results of Interpretable STS for
chunked and non-chunked input respectively. Runs
2 and 3 seemed to outperform many other participat-
ing systems for non-chunked sentence input.
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Inputs Baseline SVCSTS
For Headlines - Run 2
F1 Ali 0.6701 0.7820
F1 Type 0.4571 0.5154
F1 Score 0.6066 0.7024
F1 Type+Score 0.4571 0.5098
For Images - Run 3
F1 Ali 0.7060 0.8336
F1 Type 0.3696 0.5759
F1 Score 0.6092 0.7511
F1 Type+Score 0.3693 0.5634

Table 5: Scores for Interpretable STS (Chunked Input)
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Inputs Baseline SVCSTS
For Headlines - Run 1
F1 Ali 0.8448 0.8861
F1 Type 0.5556 0.5962
F1 Score 0.7551 0.7960
F1 Type+Score 0.5556 0.5887
For Images - Run 2
F1 Ali 0.8388 0.8853
F1 Type 0.4328 0.6095
F1 Score 0.7210 0.7968
F1 Type+Score 0.4326 0.5964

Table 6: Scores for Interpretable STS (Raw Input)
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Abstract

This paper describes the SemantiKLUE sys-
tem (Proisl et al., 2014) used for the SemEval-
2015 shared task on Semantic Textual Simi-
larity (STS) for English. The system was de-
veloped for SemEval-2013 and extended for
SemEval-2014, where it participated in three
tasks and ranked 13th out of 38 submissions
for the English STS task. While this year’s
submission ranks 46th out of 73, further ex-
periments on the selection of training data
led to notable improvements showing that the
system could have achieved rank 22 out of
73. We report a detailed analysis of those
training selection experiments in which we
tested different combinations of all the avail-
able STS datasets, as well as results of a qual-
itative analysis conducted on a sample of the
sentence pairs for which SemantiKLUE gave
wrong STS predictions.

1 Introduction

The SemEval-2015 task on ”Semantic Textual Sim-
ilarity for English” (Agirre et al., 2015) is a rerun
of the corresponding task from SemEval-2014 with
new test data and updated categories. The predic-
tions of participating systems were evaluated against
manually annotated and subsequently filtered data.
STS was measured on a scale ranging from 0 (no
similarity at all) to 5 (total equivalence). SemantiK-
LUE, developed in 2014, uses a distributional bag-
of-words model as well as a word-to-word align-
ment for each pair of sentences based on a maximum
weight matching algorithm.

Our SemEval-2015 submission for all 5 test cat-
egories (headlines, images, belief, answers-forums,
answers-students) was based on the training data set
from 2014 with 2234 sentence pairs from 3 cate-
gories, namely paraphrase sentence pairs (MSRpar),
sentence pairs from video descriptions (MSRvid)
and MT evaluation sentence pairs (SMTeuroparl).
Follow up experiments conducted after the submis-
sion deadline showed us that this training config-
uration was far from optimal, and that our system
would have benefited a lot from a better training,
as we managed to significantly improve the overall
scores. With the best training configuration, Seman-
tiKLUE would have ranked 22nd out of 73 submis-
sions (11th out of 28 teams), with a weighted mean
of Pearson correlation coefficients over all test cate-
gories of 0.7508 (best system: 0.8015)

In the following sections, we first give a short
overview of the system (Section 2), and then we de-
scribe the follow-up experiments that allowed us to
define the best training data set in terms of its sub-
sets (Section 3); finally, we present the results of a
qualitative analysis of the performance of our sys-
tem (Section 4).

2 System Description

SemantiKLUE combines supervised and unsuper-
vised approaches for the computation of textual sim-
ilarity: a number of similarity measures are com-
puted and passed to a support vector regression
learner, which is trained on the available training
data and test sets of previous years. The learnt
weights are then used to generate semantic similar-
ity scores for the test data in the desired range.
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2.1 Training Data and Preprocessing
The system was trained on manually annotated sen-
tence pairs from the STS task at SemEval 2014.
All sentence pairs were preprocessed with Stan-
ford CoreNLP1 for part-of-speech annotation and
lemmatization. Each sentence was represented as a
graph using the CCprocessed variant of the Stanford
Dependencies (collapsed dependencies with propa-
gation of conjunct dependencies) implemented with
the NetworkX2 module. This graph representation
was involved in the computation of all 39 similar-
ity measures for words and tokens in each sentence.
Prepositions, articles, conjunctions as well as auxil-
iary verbs like be and have were ignored in the com-
putation of token-based measures.

2.2 Similarity Measures: Overview
A detailed description of all 39 similarity measures
used as features in SemantiKLUE is provided in
Proisl et al., 2014 (Sections 2.2 - 2.7). Similarity
measures used by our system include:
• Heuristic similarity measures: word form over-

lap and lemma overlap between two texts com-
puted with Jaccard coefficient; difference in text
length used by Gale and Church (1993); a binary
feature to treat negation in each sentence pair.
• Document similarity measures based on two

distributional models: a model based on non-
lemmatized information, built from the second re-
lease of the Google Books N-Grams database (Lin
et al., 2012); a lemmatized model, built from a 10-
billion word Web corpus3.
• Alignment-based measures: one-to-one align-

ment and one-to-many alignment for both words
and lemmata, computed via maximum weight
matching, based on cosine similarity between two
words in paired sentences as edge weight. Figure
1 visualizes a one-to-many alignment based on
lemmatized data. The colors of the connections
correspond to different cosine ranges, reported in
the legend to the right of the plot.
• WordNet-based similarity measures: Leacock

and Chodorow’s (1998) normalized path length
1http://nlp.stanford.edu/software/corenlp.shtml
2http://networkx.github.com
3Wackypedia and UkWaC (Baroni et al., 2009), UMBC

WebBase (Han et al., 2013), and UKCOW 2012 (Schäfer and
Bildhauer, 2012).

Figure 1: One-to-many alignment plot. Sentences: “A
black and white dog is jumping into the water” , “A white
dog runs across the water”; Subset: Images; Gold Score:
2.8; SemantiKLUE score: 2.93.

and Lin’s (1998) universal similarity measure.
Using these similarity measures, the best one-to-
one and the best one-to-many alignment are com-
puted. After that, the arithmetic mean of the simi-
larities between the aligned words from text A and
text B with and without identical word pairs is cal-
culated. An additional WordNet-based feature is
the number of unknown words in both texts.
• Dependency-based heuristic measures: overlap

of dependency relation labels between the two
texts; arithmetic mean of the similarities between
the best aligned one-to-one dependency relations
based on Leacock and Chodorow’s normalized
path lengths; average overlap of neighbors for all
aligned word pairs based on one-to-one alignment
created with similarity scores from the lemma-
based DSM.
• Experimental features: cosine similarities for

each pair of sentences; average neighbor rank
based on the rank of text A among the nearest
neighbors from text B and vice versa.
The feature set described above was processed

by the support vector regressor implemented in the
scikit-learn4 (Pedregosa et al., 2011) library. All
the experiments presented in this paper rely on the
best support vector setting identified by Proisl et al.
(2014), namely: RBF kernel of degree 2 and penalty
C = 0.7. In what follows, we describe the proce-
dures adopted to adjust training data and find the
best training configurations.

3 Experiments

This section describes all post-hoc experiments on
the STS 2015 test data performed to improve the

4http://scikit-learn.org/
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predictions of the system. The abbreviations used
in the following tables reporting experiment results
are listed in Table 1.

short full name source
mp MSRpar5 train 2014
mv MSRvid6 train 2014
smt SMTeuroparl7 train 2014
img images8 test 2014
hl headlines9 test 2014
ow OnWN10 test 2014
df deft-forum11 test 2014
dn deft-news12 test 2014
tn tweet-news test 2014
fn FNWN 13 test 2013
ans-f answers-forums test 2015
ans-s answers-students test 2015
head headlines test 2015

Table 1: Training set categories: abbreviations.

All 39 similarity measures were used by the re-
gression learner to train the system. SemantiKLUE
was tested on different training data with various
combinations of training and test sets from 2013 and
2014. Results for the submitted system are typeset
in italics in Table 2, the best results in each column
are typeset in bold font.

The best results would have been obtained by
training on the MSR data from SemEval 2014 for
all test sets. Considerable improvements can be
achieved removing the SMTeuroparl category from
the training set. This category consists of MT pairs
of sentences whose exclusion would have given the
system rank 37 (weighted mean of .7148) instead of
46 (.6717) out of 73 submissions.

We turned the test data from SemEval 2014 into a
training set for the 2015 test data (see Table 3). The
figures in Table 3 show that training sets for images
and headlines perform best with the corresponding
categories of the test set (images and headlines) from
SemEval 2014.

STS results appear to be extremely sensitive to the
choice of the training dataset. For this reason, we

5Microsoft Research Paraphrase Corpus.
6Microsoft Research Video Description Corpus.
7WMT2008 development dataset.
8Image descriptions from the Flickr dataset.
9Headlines mined from news sources.

10Sense definitions from OntoNotes and WordNet .
11Forum posts.
12News summaries.
13Sense definitions from FrameNet and WordNet

ans-f ans-s head belief images mean
mp -.2533 .5944 .4515 .3102 .6497 .4310
mv .3262 .5990 .6044 .5021 .7879 .6014
smt .2603 .5263 .4073 .3177 .4715 .4235
mp + mv .5509 .7259 .7009 .6961 .8088 .7148
mv + smt .4891 .6849 .6822 .5658 .7991 .6734
smt + mp -.0893 .4989 .2947 .1296 .3781 .2980
mp + mv + smt .4913 .7005 .6681 .5617 .7915 .6717

Table 2: Evaluation results for different training sets from
2014.

ans-f ans-s head belief images mean
img .2673 .6549 .6574 .5669 .8180 .6367
hl .5760 .6760 .7734 .6439 .7249 .6960
ow .3446 .6661 .5960 .5386 .7334 .6093
df .3743 .5884 .5618 .6023 .5818 .5551
dn .2620 .6746 .5765 .5804 .7246 .5992
tn .6484 .6134 .6968 .6858 .7018 .6698

Table 3: Evaluation results for different training sets
based on the 2014 test categories.

conducted more fine-grained experiments to look for
the best combination of training data for the 2015
test sets. We combined training and test data of
SemEval 2014 with the best training categories of
SemEval 2013 (see Table 4) to test the performance
of the system on the optimal training subset defined
for SemEval 201414. That optimal training configu-
ration consists of the FNWN, headlines, MSR and
OnWN data sets: the corresponding performance
is typeset in italics. Comparable or even better re-
sults can be achieved with a combination of test and
train categories of SemEval 2014 only. Thus, com-
bining the training category MSR (mp + mv) with
another test category of 2014 (such as tweets or
headlines) results in about 1.5%-2% improvement.
A more precise investigation helped us to find the
best test combination with MSR, headlines, images,
and tweet-news categories. This brought our sys-
tem to the weighted mean of .7508, corresponding
to the 11th place out of 28 teams. We tried to fur-
ther improve these results, by adding the optimal
categories for training found in 2014 and extended
the best training set defined for 2015 with FNWN
(mp+mv+hl+img+tn+fn), but this led to slightly
worse results in all test categories.

A further set of experiments was aimed at testing
different subsets of similarity measures used at the

14For space reasons we list only the combinations resulting in
the best scores. Combinations with SMTeuroparl, for example,
led to consistently worse results and are therefore left out.
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answers-forums answers-students headlines belief images mean
img+hl .5119 .6995 .7663 .6296 .8262 .7157
tn+img .6158 .6949 .7354 .6982 .8187 .7265
tn+hl .6313 .6625 .7736 .6887 .7350 .7078
tn+mp+mv .6460 .7213 .7462 .7118 .8136 .7400
tn+hl+img .6223 .7028 .7682 .7004 .8247 .7392
mp+mv+img .4853 .7297 .7110 .6596 .8302 .7108
mp+mv+hl .6246 .7336 .7766 .7057 .8210 .7491
mp+mv+hl+fn .5426 .7335 .7775 .6664 .8147 .7326
mp+mv+tn+hl .6458 .6961 .7734 .7106 .8180 .7414
mp+mv+tn+img .6319 .7292 .7434 .7076 .8269 .7423
mp+mv+tn+fn .5891 .7212 .7459 .6895 .8087 .7288
mp+mv+img+fn .3337 .6693 .4005 .5791 .7756 .5755
mp+mv+ow+fn+hl .5906 .7225 .7600 .6762 .8135 .7324
mp+mv+hl+img+tn .6341 .7325 .7686 .7067 .8315 .7508
mp+mv+hl+img+tn+fn .5931 .7313 .7684 .6869 .8291 .7422

Table 4: Evaluation results for different training sets based on train and test categories of 2014 and 2013.

answers-forums answers-students headlines belief images mean
token (one to one) .5377 .6483 .6393 .6663 .6608 .6375
token (one to many) .3930 .6566 .5744 .5449 .5901 .5725
lemma (one to one) .6423 .6484 .6610 .7075 .7774 .6904
lemma (one to many) .6043 .6749 .6082 .6777 .7469 .6677

Table 5: Single-feature experiments with different alignments: correlation based on cosine similarity.

img hl ow df dn tn
img .8689 .6141 .6767 .3363 .4479 .5183
hl .7249 .8173 .6754 .4179 .6028 .6763
ow .7039 .5707 .8926 .3790 .5666 .5760
df .5497 .4931 .5969 .7818 .5193 .4836
dn .6957 .5582 .6428 .4008 .8588 .3935
tn .6823 .6453 .6321 .3816 .5222 .8697

Table 6: Test data categories of 2014 against each other
(columns = training sets, lines = test sets).

machine learning stage. Results showed that the use
of fewer similarity features (exclusion of all identi-
cal words in each pair of sentences from the calcu-
lation of similarity scores) resulted in worse perfor-
mance of the whole system.

Our system is based on a relatively large feature
set, but we were also interested in discovering how
well SemantiKLUE would have performed if trained
on a single feature. We tested a feature based on co-
sine similarity between the two centroid vectors as
a measure of semantic similarity for each sentence
pair as suggested by Schütze (1998) using either to-
kens or lemmas (see Table 5). We selected cosine
between centroid vectors as a candidate feature, be-
cause it is most intuitive and naturally connects to
the representation of topical information, crucial in
capturing textual similarity.

We found that regardless of the alignment (one

to one or one to many both for lemma and to-
kens), the weighted mean of Pearson correlation
coefficients is low (.6904 for the one-to-one align-
ment) for the cosine similarity value calculated with
lemma based centroid vectors, but still higher than
what is achieved by the more complex system with
a large set of features with a poor training set (.6717)
in the submission with mp+mv+smt used for the
training set (see Table 4 for comparison).

As we were interested in identifying the most bal-
anced training sets in the test categories of 2014, we
tested all categories against each other. Results are
shown in Table 6: the rows of the table correspond
to test subsets, while columns represent training sets.
The results typeset in italics show that there is a high
level of overtraining for the cases in which training
and test data are identical. The most balanced and
robust test data are those of the image and OnWN
categories: they can be used as training data for fu-
ture experiments.

To sum up, our results show that the best train-
ing configuration for SemEval 2015 involves MSR,
headlines, images, and tweet-news categories (see
Table 4). The scatter plots in Figures 2 to 4 relate
the similarity score in the gold standard (x-axis) to
the relatedness score produced by SemantiKLUE (y-
axis) in its best training configuration, for three of
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Figure 2: Answers Forums.
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Figure 3: Belief.
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Figure 4: Images.

the five Semeval 2015 test sets. For each plot we
show the regression line (drawn in red) as well as a
smoother, drawn (in blue) with the LOWESS func-
tion from R15. Smoothed lines show different non-
linear patterns for the different subsets.

4 Qualitative Analysis

In this section, we report the results of a qualita-
tive analysis conducted on sentence pairs for which
SemantiKLUE, in the optimal training configuration
identified in Section 2.2, made wrong predictions.

Our goal was to identify a taxonomy of Seman-
tiKLUE’s problems. Broadly speaking, there are
two possibilities for SemantiKLUE to make a wrong
similarity guess: the system can overestimate the
similarity between the two sentences - thus gener-
ating a relatedness score higher than the speakers’
judgments - or it can underestimate similarity -
generating a score lower than the gold standard. In
the process of interpretation/classification, we relied
on the inspection of alignment plots (cf. Figure 1)
and on our knowledge of the dynamics of the fea-
tures within SemantiKLUE.

The analysis was conducted manually on a se-
lected sample of sentence pairs from the test data.
We selected sentences for which the absolute dif-
ference between the similarity score in the gold
standard and the relatedness score produced by Se-
mantiKLUE was between 1.5 and 2.5 points. That
range was identified by inspecting the distribution
of gold standard/relatedness score differences in the
five subsets (corresponding plots are not shown here
for reasons of space). Within this range, we ran-
domly picked 40 items (sentence pairs) per subset,
20 with positive difference (underestimation), 20

15http://www.r-project.org/

with negative difference (overestimation)16.
Let us start with the cases in which SemantiK-

LUE overestimated STS. We list the identified mis-
take categories, providing a short description for the
cases in which the label is not self-explanatory, and
report the percentage of affected sentences. Each
item can be affected by more than one mistake type.

• One or two words (often very frequent and with
generic meaning) dominate the alignment, or
one sentence is practically a subset of the other:
56% of the items.
• Wrong alignments: 25% of the items.
• Modification: presence of identical modifiers

with different heads boosts overall similarity. This
mistake type affects 7% of the cases.
• Same frame, different participants: the sen-

tences depict the same event, but the participants
(or the background) determine a significant differ-
ence in meaning that our system fails to capture.
This problem affects 8% of the items.
• Same participants, different frames: 11% of

the items.
• Negation: 10% of the items.
• (Near) Antonyms: 8% of the items.
• Proper Names: 18% of the items.
• Amounts: when building the alignment, Seman-

tiKLUE ignores numerical values, which are in
some cases crucial in determining (dis)similarities
between sentences otherwise near identical (e.g.,
“2 people killed..” vs. “100 people killed”). This
problem affects 18% of the items.

We now proceed to cases of underestimation, for
which we identified the following mistake types:

16In two cases, we had to enlarge the range to ensure that
at least 20 items would have been selected: belief/positive, be-
tween 1.4 and 3.5; answers-forums/negative, between 1 and 2.5.
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• Collocations (e.g, “heads up”, “make sense”)
negatively affect the alignment process: Seman-
tiKLUE would have performed better if multi-
words had entered the alignment process as a
whole, and not as individual edges. This mistake
type affects 10% of the items.
• Crucial alignments missing or weaker than ex-

pected: 17% of the items.
• The similarity between the sentences is due to

logical form, compositionality or world knowl-
edge. This problem affects 16% of the items.
• Different register makes alignment problematic,

even if the sentences are content-wise similar:
12% of the items.
• Displacement of different pieces of information

between two sentences otherwise centered on
the same topic makes them less similar for Se-
mantiKLUE then for the raters: 28% of the items.
• Spelling mistakes prevent otherwise straightfor-

ward alignments: 10% of the items.
• Difficult cases, for which the alignment would

simply suggest a score higher than the one pre-
dicted by the regressor. Such cases, (15%), re-
quire further investigation.

5 Conclusion

In this paper, we presented the results of our evalua-
tion experiments on the performance of the Seman-
tiKLUE system (Proisl et al., 2014) on the SemEval-
2015 STS task. Our experiments showed that the
performance of our system is heavily dependent on
the choice of the training set, as we managed to sig-
nificantly improve the performance of our system
with respect to the original submission. The qual-
itative evaluation sketched in Section 4 provided in-
teresting insights into specific features of the STS
data and it allowed us to identify some idiosyncra-
cies (e.g., the behavior of the system in case of align-
ment of identical words) and weaknesses (e.g., the
treatment of multiwords in the process of alignment)
that we are already working on improving.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
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Abstract

This paper reports our submissions to seman-
tic textual similarity task, i.e., task 2 in Se-
mantic Evaluation 2015. We built our sys-
tems using various traditional features, such as
string-based, corpus-based and syntactic simi-
larity metrics, as well as novel similarity mea-
sures based on distributed word representa-
tions, which were trained using deep learning
paradigms. Since the training and test datasets
consist of instances collected from various do-
mains, three different strategies of the usage
of training datasets were explored: (1) use all
available training datasets and build a unified
supervised model for all test datasets; (2) se-
lect the most similar training dataset and sep-
arately construct a individual model for each
test set; (3) adopt multi-task learning frame-
work to make full use of available training set-
s. Results on the test datasets show that using
all datasets as training set achieves the best av-
eraged performance and our best system ranks
15 out of 73.

1 Introduction

Estimating the degree of semantic similarity be-
tween two sentences is the building block of many
natural language processing (NLP) applications,
such as textual entailment (Zhao et al., 2014a), tex-
t summarization (Lloret et al., 2008), question an-
swering (Celikyilmaz et al., 2010), etc. Therefore,
semantic textual similarity (STS) has been received
an increasing amount of attention in recent years,
e.g., the Semantic Textual Similarity competition-
s in Semantic Evaluation Exercises have been held

from 2012 to 2014. This year the participants in the
STS task in SemEval 2015 (Agirre et al., 2015) are
required to rate the similar degree of a pair of sen-
tences by a value from 0 (no relation) to 5 (semantic
equivalence) with an optional confidence score.

To identify semantic textual similarity of tex-
t pairs, most existing works adopt at least one of
the following feature types: (1) string based simi-
larity (Bär et al., 2012; Jimenez et al., 2012) which
employs common functions to calculate similari-
ties over string sequences extracted from original
strings, e.g., lemma, stem, or n-gram sequences; (2)
corpus based similarity (Šarić et al., 2012; Han et al.,
2013) where distributional models such as Laten-
t Semantic Analysis (LSA) (Landauer and Dumais,
1997), are used to derive the distributional vectors of
words from a large corpus according to their occur-
rence patterns, afterwards, similarities of sentence
pairs are calculated using these vectors; (3) knowl-
edge based method (Shareghi and Bergler, 2013;
Mihalcea et al., 2006) which estimates the similari-
ties with the aid of external resources, such as Word-
Net1. Among them, lots of researchers (Sultan et
al., 2014; Han et al., 2013) leverage different word
alignment strategies to bring word-level similarity to
sentence-level similarity.

In this work, we first borrow aforementioned ef-
fective types of similarity measurements including
string-based, corpus-based, syntactic features and so
on, to capture the semantic similarity between two
sentences. Beside, we also present a novel feature
type based on word embeddings that are induced us-
ing neural language models over a large raw cor-

1http://wordnet.princeton.edu/
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pus (Mikolov et al., 2013b). Then these features are
served as input of a regression model. Notice that,
the organizers provide us seventeen training dataset-
s and five test datasets, which are drawn from dif-
ferent but related domains. Accordingly, we build
three different systems in terms of the usage of train-
ing datasets: (1) exploit all the training datasets and
train a single model for all test datasets; (2) choose
one domain-dependent training dataset for each test
dataset using cosine distance selection criterion and
train models individually for each test dataset; (3) to
overcome overuse or underuse of training datasets,
we adopt multi-task learning (MTL) framework to
make full use of available training datasets, that is,
for each test set the main task is built upon designat-
ed training datasets and the rest training datasets are
used in the auxiliary tasks.

The rest of this paper is organized as follows.
Section 2 describes various similarity measurements
used in our systems. System setups and experimen-
tal results on training and test datasets are presented
in Section 3. Finally, conclusions and future work
are given in Section 4.

2 Semantic Similarity Measurements

Following our previous work (Zhao et al., 2014b),
we adopted the traditional widely-used features (i.e.,
string, corpus, syntactic features) for semantic simi-
larity measurements. In this work, we also proposed
several novel features using word embeddings.

2.1 Preprocessing

Several text preprocessing operations were per-
formed before we extracted features. We first con-
verted the contractions to their formal writings, for
example, doesn’t is rewritten as does not. Then the
WordNet-based Lemmatizer implemented in Natu-
ral Language Toolkit2 was used to lemmatize al-
l words to their nearest base forms in WordNet, for
example, was is lemmatized to be. After that, We re-
placed a word from one sentence with another word
from the other sentence if these two words share the
same meaning, where WordNet was used to look up
synonyms. No word sense disambiguation was per-
formed and all synsets in WordNet for a particular
lemma were considered.

2http://nltk.org/

2.2 String Based Features

We firstly recorded length information of given
sentences pairs using the following eight mea-
sure functions: |A|, |B|, |A − B|, |B − A|, |A ∪ B|, |A ∩
B|, (|A|−|B|)

|B| ,
(|B|−|A|)

|A| , where |A| stands for the num-
ber of non-repeated words in sentence A , |A − B|
means the number of unmatched words found in A

but not in B , |A ∪ B| stands for the set size of non-
repeated words found in either A or B and |A ∩ B|
means the set size of shared words found in both A

and B .
Motivated by the hypothesis that two texts are

considered to be semantic similar if they share more
common strings, we adopted the following five type-
s of measurements: (1) longest common sequence
similarity on the original and lemmatized sentences;
(2) Jaccard, Dice, Overlap coefficient on orig-
inal word sequences; (3) Jaccard similarity using
n-grams, where n-grams were obtained at three dif-
ferent levels, i.e., the original word level (n=1,2,3),
the lemmatized word level (n=1,2,3) and the char-
acter level (n=2,3,4); (4) weighted word overlap
feature (Šarić et al., 2012) that takes the impor-
tance of words into consideration, where Web 1T
5-gram Corpus3 was used to estimate the impor-
tance of words; (5) sentences were represented as
vectors in tf*idf schema based on their lemmatized
forms and then these vectors were used to calcu-
late cosine, Manhattan, Euclidean distance
and Pearson, Spearmanr, Kendalltau corre-
lation coefficients.

Totally, we got thirty-one string based features.

2.3 Corpus Based Features

The distributional meanings of words own good se-
mantic properties and Latent Semantic Analysis (L-
SA) (Landauer and Dumais, 1997) is widely used to
estimate the distributional vectors of words. Hence,
we adopted two distributional word sets released by
TakeLab (Šarić et al., 2012), where LSA was per-
formed on the New York Times Annotated Corpus
(NYT)4 and Wikipedia. Then two strategies were
used to convert the distributional meanings of words
to sentence level: (i) simply summing up the distri-
butional vector of each word w in the sentence, (ii)

3https://catalog.ldc.upenn.edu/LDC2006T13
4https://catalog.ldc.upenn.edu/LDC2008T19
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using the information content (Šarić et al., 2012) to
weigh the LSA vector of each word w and then sum-
ming them up. After that we used cosine similarity
to measure the similarity of two sentences based on
these vectors. Besides, we used the Co-occurrence
Retrieval Model (CRM) (Weeds, 2003) as another
type of corpus based feature. The CRM was cal-
culated based on a notion of substitutability, that is,
the more appropriate it was to substitute word w1 in
place of word w2 in a suitable natural language task,
the more semantically similar they were.

At last, we obtained six corpus based features.

2.4 Syntactic Features

Besides semantic similarity, we also estimated the
similarities of sentence pairs at syntactic level. S-
tanford CoreNLP toolkit (Manning et al., 2014) was
used to obtain the POS tag sequences for each sen-
tence. Afterwards, we performed eight measure
functions described above in Section 2.2 over these
sequences, resulting in eight syntactic features.

2.5 Word Embedding Features

Recently, deep learning has archived a great success
in the fields of computer vision, automatic speech
recognition and natural language processing. One
result of its application in NLP, i.e., word embed-
dings, has been successfully explored in named en-
tity recognition, chunking (Turian et al., 2010) and
semantic word similarities(Mikolov et al., 2013a),
etc. The distributed representations of words (i.e.,
word embeddings) learned using neural network-
s over a large raw corpus have been shown that
they performed significantly better than LSA for p-
reserving linear regularities among words (Mikolov
et al., 2013a). Due to its superior performance,
we adopted word embeddings to estimate the sim-
ilarities of sentence pairs. In our experiments, we
used two different word embeddings: word2vec
(Mikolov et al., 2013b) and Collobert and West-
on embeddings (Turian et al., 2010). The word
embeddings from Word2vec are distributed within
the word2vec toolkit5 and they are 300-dimensional
vectors learned from Google News Corpus which
consists of over a 100 billion words. The Col-
lobert and Weston embeddings are learned over a

5https://code.google.com/p/word2vec

part of RCV1 corpus which consists of 63 mil-
lions words, resulting in 100-dimensional contin-
uous vectors. To obtain the sentence representa-
tions from word representations, we used idf to
weigh the embedding vectors of words and sim-
ply summed them up. Although the word embed-
ding is obtained from large corpus in considera-
tion of its context, using this bag of words (BOW)
representation of sentences, the current word se-
quence in sentence is neglected. After that, we
used cosine, Manhattan, Euclidean func-
tions and Pearson, Spearmanr, Kendalltau
correlation coefficients to calculate the similarities
based on these synthetic sentence representations.

2.6 Other Features

Besides the shallow semantic similarities between
words and strings, we also calculated the similari-
ties of named entities in two sentences using longest
common sequence function. Seven types of named
entities, i.e., location, organization, date, money,
person, time and percent, recognized by Stanford
CoreNLP toolkit (Manning et al., 2014) were con-
sidered. We designed a binary feature to indicate
whether two sentences in a given pair have the same
polarity (i.e., affirmative or negative) by looking up
a manually-collected negation list with 29 negation
words (e.g., scarcely, no, little). Finally, we obtained
in eight features.

3 Experiments and Results

3.1 Datasets

Participants built their systems on seventeen dataset-
s in development period and evaluated their systems
on five test datasets in test period. Each dataset con-
sists of a number of sentence pairs and each pair has
a human-assigned similarity score in the range [0, 5]
which increases with similarity. The datasets were
collected from different but related domains. Due
to limitation of page length, we only provide a brief
description of test sets in Table 1. Refer (Agirre et
al., 2014) for more details. As we can see from this
table, datasets from different domains have distinct
average lengths of sentence A and B.
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Dataset # of pairs average length
answers-forums 2000 (17.56,17.37)
answers-students 1500 (10.49,11.17)

belief 2000 (15.16,14.56)
headlines 1500 ( 7.86,7.91 )
images 1500 (10.59,10.58)

Table 1: The statistics of test datasets for STS task in
SemEval 2015.

3.2 Experimental Setups
We built three different systems according to the us-
age of training datasets as follows.
allData: We used all the training datasets and
built a single global regression model regardless of
domain information of different test datasets.
DesignatedData: For each test dataset, we cal-
culated the cosine distance with every candidate
training dataset. Then the training dataset with
the lowest distance score was chose as the train-
ing dataset to fit a regression model for specific test
dataset.

Dist(Xtst, Xc) = 1−
∑

xi∈Xtst

∑
xj∈Xc

cosine(xi, xj)
|Xtst||Xc|

MTL: On one hand, taking all the training dataset-
s into consideration may hurt the performance since
training and test datasets are from different domains.
On the other hand, using the most related dataset-
s leads to insufficient usage of available datasets.
Therefore, we considered to adopt multi-task learn-
ing framework to take full advantage of available
training sets. Under multi-task learning framework,
a main task learns together with other related aux-
iliary tasks at the same time, using a shared repre-
sentation. This often leads to a better model for the
main task, because it allows the learner to use the
commonality among the tasks. Hence, for each test
dataset we selected the datasets whose cosine dis-
tances are less than 0.1 (at least one training set)
as training set to construct the main task, and then
used the remaining training sets to construct auxil-
iary tasks. In this work, we adopted the robust multi-
task feature learning (rMTFL) (Gong et al., 2012),
which assumes that the model W can be decom-
posed into two components: a shared feature struc-
ture P that captures task relatedness and a group-
sparse structure Q that detects outlier tasks. Specifi-

cally, it solves following formulation:

min
W

t∑
i=1

∥WF
i Xi − Yi∥2

F + ρ1∥P∥2,1 + ρ2∥QT ∥2,1

subject to : W = P + Q

where Xi denotes the input matrix of the i-th task,
Yi denotes its corresponding label, Wi is the model
for task i, the regularization parameter ρ1 controls
the joint feature learning, and the regularization pa-
rameter ρ2 controls the columnwise group sparsity
on Q that detects outliers.

In our preliminary experiments, several regres-
sion algorithms were examined, including Support
Vector Regression (SVR, linear), Random Forest
(RF) and Gradient Boosting (GB) implemented in
the scikit-learn toolkit (Pedregosa et al., 2011). The
system performance is evaluated using Pearson cor-
relation (r).

3.3 Results on Training Data
To configure the parameters in the three systems,
i.e., the trade-off parameter c in SVR, the number
of trees n in RF, the number of boosting stages n
in GB in allData and DesignatedData, ρ1,2

in MTL, we conducted a series of experiments on
STS 2014 datasets (eleven datasets for training, six
datasets for development). Table 2 shows the Pear-
son performance of our systems on developmen-
t datasets. We explored a large scale of parameter
values and only the best result for each algorith-
m was listed due to the limitation of page length.
The numbers in the brackets in algorithms colum-
n indicate the parameter values and those in bold
font represent the best performance for each dataset
and system. From the table we find that (1) GB
and SVR obtain the best averaged results in sys-
tem allData and DesignatedData respective-
ly; (2) although DesignatedData uses only one
most-closely dataset for training for each test set, it
achieves comparable or even better performance on
some datasets when compared with allData; (3)
our multi-task learning framework can indeed boost
the performance.

3.4 Results on Test Data
According to the results on training datasets,
we configured three submitted runs as following:
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Algorithms deft-forum deft-news headlines images OnWN tweet-news Mean
SVR (0.01) 0.458 0.761 0.728 0.813 0.836 0.727 0.721

RF (65) 0.491 0.751 0.718 0.789 0.873 0.741 0.727
GB (50) 0.499 0.760 0.725 0.805 0.863 0.739 0.732

SVR (0.1) 0.549 0.725 0.765 0.790 0.810 0.740 0.730
RF (75) 0.513 0.709 0.741 0.768 0.814 0.767 0.719
GB (50) 0.504 0.694 0.738 0.790 0.809 0.751 0.714

MTL (0.1, 0.1) 0.556 0.772 0.738 0.808 0.819 0.745 0.740

Table 2: Pearson of allData,DesignatedData using different algorithms and MTL on STS 2014 datasets.

RUN answers-forums answers-students belief headlines images Mean Rank
ECNU-1stSVMALL 0.715 0.712 0.728 0.798 0.847 0.755 15
ECNU-2ndSVMONE 0.687 0.733 0.698 0.820 0.836 0.747 19
ECNU-3rdMTL 0.692 0.752 0.695 0.805 0.858 0.752 18
DLSCU-S1 0.739 0.773 0.749 0.825 0.864 0.785 1
ExBThemis-themisexp 0.695 0.778 0.748 0.825 0.853 0.773 2

Table 3: Results of our three runs on STS 2015 test datasets, as well as top rank runs.

ECNU-1stSVMALL which builds a global model
on all datasets using SVR with parameter c=0.1;
ECNU-2ndSVMONEwhich fits individual model for
each test set on a designated training set using GB
with parameter n=50; ECNU-3rdMTL which em-
ploys robust multi-task feature learning with param-
eter ρ1 = ρ2 = 0.1.

Table 3 summarizes the results of our sub-
mitted runs on test datasets officially released
by the organizers, as well as the top rank run-
s. In terms of mean Pearson measuremen-
t, system ECNU-1stSVMALL performs the best,
which is comparable to ECNU-3rdMTL. Howev-
er, the ECNU-2ndSVMONE performs the worst.
This is inconsistent with the results on train-
ing datasets wherein ECNU-3rdMTL yields the
best performance. On test dataset, we find that
ECNU-3rdMTL has much worse performances
than ECNU-1stSVMALL on answers-forums and
belief while it achieves much better results on
answers-students, headlines and images dataset-
s. The possible reason may be that the train-
ing dataset selected from the candidate dataset-
s in main task are ill-suited for answers-forums
and belief test datasets, which is also verified by
the results of system ECNU-2ndSVMONE. It is
noteworthy that on answers-students and headlines
ECNU-2ndSVMONE achieves much better results
than ECNU-1stSVMALL although the former sys-

tem only uses much less training instances (750,750
vs. 10592). In addition, the difference between top
system DLSCU-S1 and our systems is about 3%,
which means our systems are promising.

4 Conclusion

We used traditional NLP features including string-
based, corpus-based and syntacitc features, for tex-
tual semantic similarity estimation, as well as nov-
el word embedding features. We also presented
three different systems to compare the strategies of
different usage of training data, i.e., single super-
vised learning with all training datasets and individ-
ual training dataset for each test dataset, and multi-
task learning framework. Our best system achieves
15th place out of 73 systems on test datasets. Notice-
ably each system achieves the best performance on
different test datasets, which indicates the usage of
training datasets is important, we will explore more
sophisticated way to utilize these training datasets in
future work.
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Abstract 

This paper presents an approach for estimat-
ing the Semantic Textual Similarity of full 
English sentences as specified in Shared Task 
2 of SemEval-2015. The semantic similarity 
of sentence pairs is quantified from three per-
spectives - structural, syntactical, and seman-
tic. The numerical representations of the 
derived similarity measures are then applied 
to train a regression ensemble. Although none 
of these three sets of measures is able to rep-
resent the semantic similarity of two sentences 
individually, our experimental results show 
that the combination of these features can pre-
cisely assess the semantic similarity of the 
sentences. In the English subtask our system’s 
best result ranked 35 among 73 system runs 
with 0.7189 average Pearson correlation over 
five test sets. This was 0.08 correlation points 
less than the best submitted run. 

1 Introduction 

Semantic textual similarity (STS) aims to automat-
ically estimate the relatedness of the meaning of 
sentences (Agirre et al., 2015). The literature con-
sists of a series of well-established frameworks to 
explore a deeper understanding of the semantic 
relationship between entities, ranging from onto-
logical reasoning to compositional as well as dis-
tributional semantics (Cohen et al., 2009). 
However, automatically estimating the semantic 
similarity of full sentences is still a challenging 
task. 

Our system aims to quantify the similarity of 
pairs of sentences by encoding a variety of related-
ness features in a vector of attributes and then pre-
dicting their similarity scores by employing 
machine-learning algorithms. Different syntactic, 

semantic, and structural similarity measures have 
been applied to quantify the similarity of texts. We 
have chosen to approach the estimation of similari-
ty as a regression problem. Hence, we use the 
quantified similarity of sentence pairs to train a 
regressor that can then be applied to predict simi-
larity scores for the unseen pairs. The paper is 
structured as follows: Section 2 presents the pro-
posed similarity measures. In Section 3, the regres-
sion models are introduced and the experimental 
results are discussed in detail. The conclusions are 
summarized in Section 4. 

2 Similarity Measures 

In this section we describe the similarity measures 
we have employed to calculate semantic related-
ness of pairs of sentences.  

2.1 Syntactic Similarity Measures 

Bags of words overlap: A simple measure for 
computing the similarity of a sentence pair is the 
number of words they have in common. Although 
a pair of sentences with the same bag of words (i.e. 
unordered list of all words of a sentence) can con-
vey completely different meanings, this measure 
along with some structural measures can form an 
effective criterion for semantic comparison.  

Bags of lemmatised/stemmed words overlap: 
The value of this feature is computed using the 
same method as above, however, instead of using 
bags of words, it uses bags of lemmas / stems.  

Set similarity of lemmatised effective words: 
There are a number of words in a sentence that do 
not play effective roles in modelling the meaning 
of that sentence, such as determiners (the, a, an) 
and preposition or subordinating conjunctions (in, 
on, at). We remove these terms from the bag of 
words of a sentence and we call the remaining 
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words the set of effective words. In this measure 
we lemmatise the effective words and compare the 
resulting sets of lemmas for a pair of sentences. 

Jaccard similarity of sets of words/lemmas: A 
sentence can be considered as a set of words. To 
incorporate this perspective, we calculate the Jac-
card similarity coefficient of a pair of sentences. 

Windows of words overlap: We perform a slid-
ing window of different sizes (from window of two 
words up to the size of the smaller sentence in a 
pair) over a pair of sentences. Afterwards we com-
pute the total number of equal windows of words 
of two sentences. Also, we keep the size of the 
longest equal window of words that two sentences 
share together. Due to varying sizes of sentences 
and therefore varying sizes and number of win-
dows, we normalise each of these measures to 
reach a comparable value between zero and one. 
The same window-based measures can be alterna-
tively be calculated by only considering effective 
words in sentences and also, from a grammatical 
perspective, by only considering Part of Speech 
(POS) tags of the constituent words of sentences. 

Ratio of shared skipped bigrams: Skipped bi-
grams are the pairs of words which are created by 
combining two words of a sentence that are located 
in arbitrary positions. The set of these bigrams can 
then be used as a basis for similarity comparison. 
We create the skipped bigrams of participating 
verbs, nouns, adjectives, and adverbs of a sentence 
(we ignore other unimportant terms) and then cal-
culate the intersection of each set of these bigrams 
with the corresponding set from the other sentence 
in a pair. 

Pairwise Sentence Polarity: We investigate the 
presence of some lexical elements that act as nega-
tion agent, e.g., not, neither, no, etc. We apply the 
NegEx algorithm (Chapmana et al., 2001) to find 
the negation in sentences and then we perform 
pairwise comparison of the polarity of sentences. 

Ratio of Sentence Lengths: The relative length 
of two sentences (length of smaller sentence over 
the longer one) provides a simple measure of simi-
larity. However, this naïve attribute of a pair can 
be useful when combined with other more concep-
tual measures. 

2.2 Structural Similarity Measures 

Ratio of number of clauses: The meaning of a 
sentence can be inferred from the meaning of its 

clause(s). Consequently, the equality of the clauses 
of a pair of sentences provides another measure for 
assessing the relatedness of those sentences. In this 
case, the level of equality is calculated by analys-
ing the parse tree of each sentence and finding the 
number of clauses that each sentence is composed 
of. The ratio of this clause-level equality is then 
obtained by dividing the smaller number of clauses 
by the larger number of clauses for each pair. Parse 
trees were produced with the Stanford Parser 
(Klein et al., 2003). 

Reduced parse tree overlap: While the previ-
ous measure only considered the shallow size-
based comparison, this measure provides a more 
in-depth analysis of the structural similarity. More 
concretely, it quantifies the overlap of the parsed 
trees for each sentence, composed of only the POS 
tags of the effective words.  

2.3 Semantic Similarity Measures 

Role-based word-by-word similarity: In order to 
compute this measure, we first split the sentences 
into clauses and determine the subject, predicate 
and object within each clause. Each of these roles 
is then transformed into a bag of lemmatised 
words, which is then compared to corresponding 
bags of lemmatised words denoting the same role 
in the other sentence. The similarity between the 
two bags of words is calculated using a mixture of 
two well-known semantic similarity measures – 
i.e., Lin (1998) and Wu & Palmer (1994), both 
having WordNet (Miller, 1995) as background 
knowledge. Due to WordNet’s lower coverage of 
verbs, for the words in the predicate bags we com-
pute the similarity between words using FrameNet 
(Fillmore et al., 2003) and by comparing sets of 
corresponding frames of words in each bag. 

Semantic similarity of effective words: Given 
the sets of effective words of a pair of sentences, 
we compute their similarity using the same method 
as above, however, without taking into account the 
underlying roles – i.e., it is computed in a 
sentence-wide manner.  

Cosine similarity of Information Content (IC) 
vectors: We map the sequence of words in a sen-
tence to a vector of corresponding numeric values. 
In order to create this vector we use the notion of 
Information Content (IC) (Resnik, 1995). The re-
latedness of a given pair can then be estimated by 
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employing a distance measure between the two 
vectors, such as the cosine similarity.  

Role-based POS tags alignment: For this simi-
larity measure we get the POS tags of each word in 
the subject and object phrases of a sentence and 
form a sequence of these tags. We then employ 
Needleman-Wunsch algorithm (Needleman et al., 
1970) for aligning these sequences of POS tags to 
find their similarity ratio. 

WordNet/FrameNet based synonym 
similarity: Other sets of vocabulary-based similar-
ity measures can be devised by getting all the syn-
onyms of each word of sentences and considering 
them in the comparison process. One of these 
measures can be calculated by applying WordNet 
for obtaining synonyms of words. For this Word-
Net synonymy measure, the corresponding synsets 
of all the lemmas of the effective words in sen-
tences are retrieved from WordNet. The sets of 
synsets of a pair of sentences are then compared to 
each other and the ratio of their similarity is calcu-
lated. Another similar measure can be calculated 
using FrameNet as the background knowledge in-
stead of WordNet. 

Cosine similarity of the best senses: This 
measure uses a WordNet-based word sense disam-
biguation approach to find the best senses of effec-
tive words of a pair. These senses are then used to 
form vectors of best senses, which can then be 
compared using cosine similarity. 

Normalised set similarity for best senses 
synsets: Similar to the previous measure, we apply 
word sense disambiguation to retrieve the best 
senses for all words of the sentence, and subse-
quently create a set of synsets which can be com-
pared to the corresponding set of synsets extracted 
from the other sentence.  

Normalised set similarity of the best senses 
skipped bigrams: We create a set of skipped bi-
grams of best senses of words instead of the 
skipped bigrams of words of a sentence and then 
calculate each pair’s sets similarity. 

Similarity of sets of associated terms: Our last 
two sets of features make use of vector space mod-
els, using Wikipedia English articles as the back-
ground corpus and Hyperspace Analogue to 
Language (HAL) model to produce term vectors 
(Lund et al., 1996) by employing the Seman-
ticVector library (Widdows et al., 2008). The asso-
ciated terms for words of a sentence form a set that 
can be compared with a corresponding set of an-

other sentence – for example, by calculating their 
intersection. The resulting value is normalised by 
size of the smallest set.  

Cosine similarity of matrices of associated 
terms vectors: For this last feature, we use the 
numerical representation (vector) of each term, 
retrieved from the distributional model, to form a 
matrix of associated terms vectors for a sentence. 
To enhance the effectiveness of this similarity 
measure, only vectors of effective words of a sen-
tence are used to build the matrix.  

3 Results 

In this section, the results from applying our sys-
tem to STS 2015 (Task 2) are presented. Before 
discussing the results, we firstly describe the ex-
perimental setup and training process.   

3.1 Experimental Setup 

All the data released in STS 2012, 2013, and 2014 
was permitted to be used to develop and train the 
systems. All the data sets consist of pairs of sen-
tences along with their human annotated similarity 
scores. The similarity scores ranged from 0 to 5, 
with 0 representing completely dissimilar pairs and 
5 representing perfect similarity (or equality). In 
order to evaluate the English STS systems, five test 
sets were provided. Although the test data in total 
consists of 8500 pairs, a subset of the instances of 
each test set was sampled and used for the final 
official evaluations by the organizers. The official 
measurement criterion for evaluation is the Pearson 
correlation. It should be mentioned that prior to 
computing the measures the punctuations were 
removed from sentences to avoid naïve token-level 
matching of them in some similarity measures. 

3.2 Experiments Over Training Data 

We first performed a number of experiments over 
the training data in order to prepare the final re-
gression system. The training set consists of 10592 
annotated pairs, achieved by merging previous 
SemEval STS data sets. We approached the seman-
tic similarity estimation as a regression problem. 
Hence, we investigated different regression algo-
rithms and Table 1 lists their evaluation results. 
The WEKA implementations of these algorithms 
have been used in our system (Hall et al., 2009). 
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Algorithm Pearson Corre-
lation 

Root mean 
squared error 

Regression Algorithms 
RepTree  0.6747 1.1207 
K* 0.6968 1.1497 
Linear Regression  0.6809 1.1088 

Regression By Classification 
Regression by Ran-
dom Forest  

0.7745 0.964 

Regression by KNN  0.7139 1.0651 
Regression Ensemble 

Ensemble 0.7813 0.9484 

Table 1: Experiments on training data (5-fold cross 
validation). 

The first part of Table 1 shows the results 
achieved by selected regression approaches. 
Among these algorithms, K* achieved the best 
Pearson correlation. In regression by classification, 
the continuous similarity scores are discretised to 
nominal values. Then, a classifier was used to cat-
egorize instances into the resultant nominal clas-
ses. In our experiments, the continuous range of 0 
to 5 scores is discretised into 10 bins. The best re-
sults have been achieved by applying Random 
Forest as the base classifier. Finally, the ensemble 
of regressors is composed of three meta-regressors: 
bagging, random SubSpace, and regression by dis-
cretisation. Regression by discretisation follows 
precisely the same methodology as above. The 
bagging strategy uses RepTree as its first level re-
gressor, while the random SubSpace employs the 
K* algorithm. The final outputs of the ensemble 
are the average of the prediction values from all of 
the regressors. This ensemble gained the best cor-
relation amongst all of the models. 

3.3 Results Over Test Data and Discussions 

We submitted three different runs to the English 
STS 2015 Task 2. The same regression ensemble 
has been applied to all three runs. The main differ-
ence between them is related to the data that was 
used for training. The data used to train the run1 
system were STS 2012 train and test sets, STS 
2013 test set, and STS 2014 test set. In the second 
system (run2), we used all the run1 data as well as 
one additional data set which was the training set 
of the SICK corpus (Marelli et al., 2014). It was 
introduced in SemEval-2014 Task 1. Contrary to 
STS corpora, the similarity scores from the SICK 
corpus ranged from 1 to 5 (instead of 0 to 5). We 
gave a unique numerical ID to each pair in the data 

sets, which were then kept in the feature vectors as 
well. In run3, exactly the same data was used as 
run1 but without the IDs in the feature vectors. 

 run1 run2 run3 
answers-forums 0.5923 0.6132 0.6188 
answers-students 0.6876 0.6882 0.6757 
belief 0.5904 0.6229 0.7178 
headlines 0.7521 0.7602 0.7549 
images 0.7817 0.7855 0.7769 
Means 0.7032 0.7130 0.7189 
Rank 40 37 35 

Table 2: Our systems’ results over test sets. 

Table 2 lists the results of our system runs. It can 
be observed that the third run achieved better over-
all correlations compared with the other two. By 
applying the additional data set (i.e. training set of 
the SICK corpus) the average correlation slightly 
improved (i.e. in run2). However, as previously 
mentioned, the difference in scoring the semantic 
similarities (0-5 vs. 1-5) caused the regressor mod-
el to fail to encode the scores properly (especially 
for lower similarity scores). In addition, as a side 
experiment, but contrary to the positive experience 
gained from SemEval-2014 semantic relatedness 
Task, the unique numerical ID had a negative im-
pact over the outcome of the system (comparing 
run1’s results – with IDs, to run3’s – without IDs). 

4 Conclusions 

This paper describes the system we submitted to 
SemEval-2015 Task 2: STS in order to estimate 
semantic similarity of full English sentences. We 
approached the task as a regression problem. An 
ensemble of regressors as well as a variety of simi-
larity measures was proposed. These measures 
(that compared syntactic, semantic, and structural 
aspects) were extracted from pairs of sentences. 
Our system’s best result ranked 35 among 73 sub-
mitted runs with 0.7189 average Pearson correla-
tions over five test sets. This was 0.08 correlation 
points less than the best submitted run. 

Acknowledgments 
This research is funded by the Australian Research 
Council (ARC) Discovery Early Career Researcher 
Award (DECRA) -- DE120100508. It is also par-
tially supported by CSIRO Postgraduate Student-
ship. 

126



References  
 
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel 

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei 
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada 
Mihalcea, German Rigau, Larraitz Uria, and Janyce 
Wiebe. 2015. SemEval-2015 Task 2: Semantic 
Textual Similarity, English, Spanish and Pilot on 
Interpretability. In Proceedings of the 9th 
International Workshop on Semantic Evaluation 
(SemEval 2015), Denver, CO. 

Wendy W. Chapmana, Will Bridewellb, Paul Hanburya, 
Gregory F. Coopera, and Bruce G. Buchanan. 2001. 
A simple algorithm for identifying negated findings 
and diseases in discharge summaries. Journal of 
Biomedical Informatics, 34(5), 301-310. 

Trevor Cohen and Dominic Widdows. 2009. Empirical 
distributional semantics: Methods and biomedical 
applications. Journal of Biomedical Informatics, 
42(2), 390-405. 

Charles J. Fillmore, Christopher R. Johnson, and 
Miriam R.L. Petruck. 2003. Background to 
FrameNet. International Journal of Lexicography, 
16(3), 235-250. 

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard 
Pfahringer, Peter Reutemann, and Ian H. Witten. 
2009. The WEKA Data Mining Software: An 
Update. SIGKDD Explorations, 11(1). 

Dan Klein and Christopher D. Manning. 2003. Accurate 
unlexicalized parsing. In Proceedings of the 
Conference 41st Annual Meeting of the Association 
for Computational Linguistics, pages 423-430. 

Dekang Lin. 1998. An Information-Theoretic Definition 
of Similarity. In Proceedings of the 15th 
International Conference on Machine Learning, 
pages 296-304. 

Kevin Lund and Curt Burgess. 1996. Producing high-
dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods Instruments 
& Computers, 28(2), 203-208. 

Marco Marelli, Stefano Menini, Marco Baroni, Luisa 
Bentivogli, Raffaella Bernardi, and Roberto 
Zamparelli. 2014. A SICK cure for the evaluation of 
compositional distributional semantic models. In 
Proceedings of the Ninth International Conference 
on Language Re-sources and Evaluation (LREC-
2014), Reykjavik, Iceland. 

George A. Miller. 1995. Wordnet - a Lexical Database 
for English. Communications of the ACM, 38(11), 
39-41. 

Saul B. Needleman and Christian D. Wunsch. 1970. A 
general method applicable to the search for 
similarities in the amino acid sequence of two 
proteins Journal of Molecular Biology, 48(3), 443 - 
453. 

Philip Resnik. 1995. Using information content to 
evaluate semantic similarity in a taxonomy. In 
Proceedings of the Fourteenth International Joint 
Conference on Artificial Intelligence, pages 448-
453. 

Dominic Widdows and Kathleen Ferraro. 2008. 
Semantic Vectors: A Scalable Open Source Package 
and Online Technology Management Application. In 
Sixth International Conference on Language 
Resources and Evaluation, Lrec 2008, pages 1183-
1190. 

Zhibiao Wu and Martha Palmer. 1994. Verbs Semantics 
and Lexical Selection. In Proceedings of the 32nd 
Annual Meeting on Association for Computational 
Linguistics, pages 133-138, Las Cruces, New 
Mexico. 

 

 

127



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 128–131,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

WSL: Sentence Similarity Using Semantic Distance Between Words 

Naoko Miura     Tomohiro Takagi 

Meiji University, Japan 

1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi,Kanagawa 214–8571 

E-mail:{n_miura,takagi}@cs.meiji.ac.jp  

 

 

Abstract 

A typical social networking service contains 

huge amounts of data, and analyzing this data 

at the level of the sentence is important. In 

this paper, we describe our system for a 

SemEval2015 semantic textual similarity task 

(task2). We present our approach, which uses 

edit distance to consider word order, and in-

troduce word appearance in context. We re-

port the results from SemEval2015. 

1 Introduction 

The Internet, particularly sites related to social 

networking services (SNS), contains a vast array of 

information used for a variety of purposes. The 

vector space model is conventionally used for nat-

ural language processing. This model creates vec-

tors on the basis of frequency of word appearance 

and co-occurring words, without taking word order 

into account. When it comes to short texts, word 

co-occurrence is rare (or even non-existent), and 

the number of words is often less than in a typical 

newspaper article. Because the average SNS con-

tains data consisting mostly of short sentences, the 

vector space model is not the best choice. 

In this work, we describe a system we developed 

and submitted to SemEval2015. In the proposed 

system, we compute sentence similarity using edit 

distance to consider word order along with the se-

mantic distance between words. We also introduce 

word appearance in context. 

The rest of this paper is organized as follows. 

Section 2 reviews related work and in Section 3 we 

present the three systems we submitted for 

SemEval2015. In Section 4, we discuss the  results 

of our evaluation at SemEval2015.We conclude in 

Section 5 with a brief summary. 

 
Fig. 1. Hierarchical semantic knowledge base (Li et al., 

2006). 

2 Related Work 

Recent research has introduced the lexical database 

as a dictionary to analyze short texts(Aziz et 

al.,2010). Aziz uses a set of similar noun phrases 

and similar verb phrases and common words to 

compute sentence similarity. Li combines semantic 

similarity between words into a hierarchical se-

mantic knowledge base and word order(Li et 

al.,2006). There are currently a few hierarchical 

semantic knowledge bases available, one of which 

is WordNet(Miller,1995). WordNet contains 

155,287 words and 117,659 synsets that were 

stored in 2012 into the lexical categories of nouns, 

verbs, adjectives, and adverbs(WordNet Statistics, 

2014). All synsets have semantic relation to other 

synsets. An example in the case of using nouns is 

shown in Fig.1. Li proposed a formula to measure 

the similarity s(w1,w2) between words w1 and w2  as 
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where l is the shortest path length between w1 and 

w2 and h is the depth of the subsumer of w1 and w2 

in WordNet. For example, we describe the path 

between “boy” and “girl” in Fig. 1. The shortest 

path is boy-male-person-female-girl, which is 4, so 

l = 4.   The subsumer of “boy” and “girl” is “per-

son, human...”, so the depth of this synset is h. In 

hierarchical semantic nets, words at the upper lay-

ers have a general meaning and less similarity than 

words at the lower layers. Li sets  = 0.2 and   = 

0.45.   

Not only the similarity between words but also 

word order is important. For example, the two sen-

tences “a dog bites Mike” and “Mike bites a dog” 

consist of the same words, but the meanings are 

very different. In this case, we use vectors such 

that when each vector completely matches, the sen-

tence similarity is high. Our approach is based on 

edit distance to take into account word order and 

combined semantic similarity between words. 

3 System Details 

The proposed system uses edit distance to take 

word order into account. It also uses the impact of 

word appearance in each context. 

In this paper, we describe sentence S1 as 

S1={a1,a2,… ,an} and sentence S2 as S2 ={b1,b2,

…,bm}. S1 consists of n words and S2 consists of m 

words. ai  is the i th word of  S1 and bj is the j th 

word of  S2. We describe the similarity Sim(S1,,S2) 

between S1 and S2 within the range of 0 (no rela-

tion) to 1 (semantic equivalence). 

3.1 Edit Distance 

Edit distance is a way of computing the dissimilari-

ty between two strings. Conventionally, the dis-

tance is computed for a set of characters with three 

kinds of operations (substitution, insertion, dele-

tion). However, our approaches are for word sets. 

Here, we describe the two kinds of edit distance 

extended in our system. 

 

3.1.1  Levenshtein Distance 

The Levenshtein distance between S1 and S2 

(|S1|=n,|S2|=m) is L(n,m), where 
 

0≦i≦n, 0≦j≦m 
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The indicator function c1(ai,bj) is defined as 
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3.1.2 Jaro-Winkler Distance 
The Jaro distance between S1 and S2 (|S1|=n,|S2|=m)  

is dj: 
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where q is the number of matching words between 

S1 and S2. We consider two words as matching 

when they are the same and not father than 

1
2
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t is half the number of transpositions. 

The Jaro-Winkler distance is dw: 
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where k is the length of common words at the start 

of the sentence. p is constant and usually set to p = 

0.1. 

3.2 Semantic Distance 

We borrow our approach to compute similarity 

between words from Li (Li et al.,2006)(Eq. (1)). It 

can be used for both nouns and verbs because both 

are organized into hierarchies. However, it is not 

available for adjectives and adverbs, which are not 

organized into hierarchies. Therefore, in addition 

to Eq. (1), when w1∈synsetA, w2∈synsetB, we 

define semantic similarity between words if they 

are adverbs and adjectives as 
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s(w1,w2) is 1 if w1 and w2 are in the same synset. 

  Conventionally, we calculated edit distance on 

the basis of match or mismatch between words and 
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ignored how similar two words are. However, with 

this approach, if two words have the same meaning 

although they are different words (e.g., “fall” and 

“autumn”), edit distance defines them as a mis-

match. We address this issue by introducing se-

mantic similarity between words as distance. 

 

(a) Levenshtein distance  

We rewrite Eq. (3) as 
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We propose a measure for the sentence simi-

larity of S1 and S2   Sim(S1,,S2) as 
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(b) Jaro-Winkler distance 

We rewrite Jaro-distance dj defined by Eq. (4) 

as  
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We define q’ in Eq. (10). q’ indicates the sum 

of all semantic similarity between words in S1 

and S2 (1≦i≦n,1≦j≦m , SUM(c2(ai,bj)) ). Further, 

originally, we calculated t only if two words 

are matching (ai=bj); however, in our proposed 

methods we change to s(ai,bj)>0.5 to take into 

account of the semantic similarity of words. 

 

1≦i≦n, 1≦j≦m 
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C2 in Eq. (10) is defined by Eq. (11). It means 

the semantic similarity of words. 
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We propose a measure for the sentence simi-

larity of S1 and S2  Sim(S1,, S2) as 

 

wdSSSim ),( 21
                                           (12) 

3.3 The Impact of Word Appearance in Con-

text 

There is one issue when we compute Sim(S1,,S2), as 

follows. Let us consider two sentences: “I ate an 

apple” and “I hate an apple”. These sentences indi-

cate opposite meanings. However, except for “ate” 

and “hate”, both sentences consist of the same 

words and have the same word order. Therefore, 

the method we mentioned above (Eq. (8)) com-

putes the Sim(S1,,S2) as high. However, we decide 

that the similarity between these sentences have 

opposite meanings because of “ate” and “hate”. 

For this reason, we introduce conditional probabil-

ity to estimate word appearance for each context 

and extract the probabilities from a corpus as train-

ing data. Further, we give this word appearance for 

semantic similarity (Eq. (1)) as a weight.  

Let us show an example. P(I | S2), P(ate| S2), 

P(an| S2), and P(apple|S2) are words of S1 appear-

ance in context S2. We define S* as the set of nouns, 

verbs, adjectives, and adverbs (e.g., when sentence 

S is “It is a dog”, S* is {“is”, “dog”}). 

We measure each word appearance weight(w) in 

context S as:  
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where docw,S* is the number of documents that con-

tains both w and S* and docS* is the number of doc-

uments that contains  S*. We set  = 5.0 . 

We take into account the impact of words in 

context and apply it to Levenshtein distance, re-

writing Eq. (7) as 

 
11

1 )(*)(*)),(1(),(  jijiji bweightaweightbasbac   (15) 

 

When a word in one sentence co-occurs with  

words in the other sentence frequently, the impact 

is low, and when it co-occurs less frequently, the 

impact is high. We use Eq.(15) when ai and bj are 

nouns or verbs and s(ai,bj) < 0.7 . 
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4 Results  

 STS systems at SemEval 2015 were evaluated on 

five data sets. Each data set contained a number of 

sentence pairs that have a gold-standard score in 

the range of 0–5 as correct answers. The STS sys-

tems were evaluated by Pearson correlation be-

tween the system output and the gold-standard 

score. We used the Reuters Corpus as training data. 

4.1 Submissions 

We submitted the outputs of three of our system 

runs. In the STS task, the similarity between the 

score(S1,S2) of two sentences needed to be in the 

range of 0–5. Accordingly, we set score(S1,S2) as 

score(S1,S2) =5* Sim(S1,S2). For pre-processing, we 

use Stanford-NLP tools for tokenization and POS-

tagging. We also remove punctuation marks.  

And we use JWNL to measure the similarity be-

tween words. (Eq.(1)) 

-run1 

  Levenshtein distance approach (Eq. (8)) 

-run2 

Jaro-Winkler distance approach (Eq. (12)) 

-run3 

Using run1 (Eq. (8)) in conjunction with word 

appearance in context (Eq. (15)) 

4.2 Evaluation on STS 2015 Data 

Table 1 shows the results (Pearson correlation) of 

each of our three runs evaluated on five data sets. 

Our best system was run3. It was ranked 64 out of  

74 systems. 

The weighted-mean scores of run1 and run2 

were almost the same. When we compare the 

scores of run1 and run3, run3 performed better 

on four datasets (the exception was “answers-

forums”). Overall, the best performance in terms of 

weighted-mean score was by run3. 
 

 
Data Set run1 run2 run3 

answers-forums 0.3759 0.4287 0.3709 

answers-students 0.5269 0.6028 0.5437 

belief 0.6387 0.5231 0.6478 

headlines 0.5462 0.6029 0.5752 

images 0.5710 0.4879 0.6407 

Weighted-Mean 0.5379 0.5424 0.5672 

Table 1 .  Results of evaluation on SemEval2015 STS 

task. 

 

5 Conclusion 

In this paper, we proposed methods for deter-

mining sentence similarity. We adopted the seman-

tic distance of word on edit distance along with 

word appearance in context. Evaluation results 

suggest that using word appearance in context is an 

effective element for determining sentence similar-

ity.  
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Abstract

This paper describes the system used by the
LIPN-IIMAS team in the Task 2, Semantic
Textual Similarity, at SemEval 2015, in both
the English and Spanish sub-tasks. We in-
cluded some features based on alignment mea-
sures and we tested different learning models,
in particular Random Forests, which proved
the best among those used in our participation.

1 Introduction

Our participation in SemEval 2015 was focused
on solving the technical problems that afflicted
our previous participation (Buscaldi et al., 2014)
and including additional features based on align-
ments, such as the Sultan similarity (Sultan et al.,
2014b) and the measure available in CMU Sphinx-4
(Lamere et al., 2003) for speech recognition. We
baptised the new system SOPA from the Spanish
word for “soup”, since it uses a heterogeneous mix
of features. Well aware of the importance that the
training corpus and the regression algorithms have
for the STS task, we used language models to select
the most appropriate training corpus for a given text,
and we explored some alternatives to the ν-Support
Vector Regression (ν-SVR) (Schölkopf et al., 1999)
used in our previous participations, specifically the
Multi-Layer Perceptron (Bishop and others, 1995)
and Random Forest (Breiman, 2001) regression al-
gorithms. The obtained results show that Random
Forests outperforms the other algorithms on every
test set. We describe all the features in Section 2; the
details on the learning algorithms and the training

corpus selection process are described in Section 3,
and the results obtained by the system are detailed
in Section 4.

2 Similarity Measures

In this section we describe the measures used as fea-
tures in our system. The total number of features
used was 16 in English and 14 in Spanish. Since
most measures have already been used in our pre-
vious participation, we provide only basic overview,
referring the reader to the complete description in
(Buscaldi et al., 2013) for further details. When
POS tagging and NE recognition were required, we
used the Stanford CoreNLP for English and Span-
ish (Manning et al., 2014).

2.1 WordNet-based Conceptual Similarity

This measure has been introduced in order to mea-
sure similarities between concepts with respect to an
ontology. The similarity is calculated as follows:
first of all, words in sentences p and q are lemma-
tised and mapped to the related WordNet synsets.
All noun synsets are put into the set of synsets as-
sociated to the sentence, Cp and Cq, respectively. If
the synsets are in one of the other POS categories
(verb, adjective, adverb) we look for their deriva-
tionally related forms in order to find a related noun
synset: if there exists one, we put this synset in Cp

(or Cq). No disambiguation process is carried out,
so we take all possible meanings into account.

GivenCp andCq as the sets of concepts contained
in sentences p and q, respectively, with |Cp| ≥ |Cq|,
the conceptual similarity between p and q is calcu-
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lated as:

ss(p, q) =

∑
c1∈Cp

max
c2∈Cq

s(c1, c2)

|Cp|

where s(c1, c2) is a conceptual similarity measure.
Concept similarity can be calculated in different
ways. We used a variation of the Wu-Palmer for-
mula (Wu and Palmer, 1994) named “ProxiGenea3”,
introduced by (Dudognon et al., 2010), which is in-
spired by the analogy between a family tree and the
concept hierarchy in WordNet. The ProxiGenea3
measure is defined as:

s(c1, c2) =
1

1 + d(c1) + d(c2)− 2 · d(c0)
where c0 is the most specific concept that is

present both in the synset path of c1 and c2 (that is,
the Least Common Subsumer or LCS). The function
returning the depth of a concept is noted with d.

2.2 IC-based Similarity

This measure has been proposed by (Mihalcea et
al., 2006) as a corpus-based measure which uses
Resnik’s Information Content (IC) and the Jiang-
Conrath (Jiang and Conrath, 1997) similarity met-
ric. This measure is more precise than the one in-
troduced in the previous subsection because it takes
into account also the importance of concepts and not
only their relative position in the hierarchy. We re-
fer to (Buscaldi et al., 2013) and (Mihalcea et al.,
2006) for a detailed description of the measure. The
idf weights for the words were calculated using the
Google Web 1T (Brants and Franz, 2006) frequency
counts, while the IC values used are those calcu-
lated by Ted Pedersen (Pedersen et al., 2004) on the
British National Corpus1.

2.3 Syntactic Dependencies

This measure tries to capture the syntactic similarity
between two sentences using dependencies. Previ-
ous experiments showed that converting constituents
to dependencies still achieved best results on out-of-
domain texts (Le Roux et al., 2012), so we decided
to use a 2-step architecture to obtain syntactic de-
pendencies. First we parsed pairs of sentences with

1http://www.d.umn.edu/ tpederse/similarity.html

the LORG parser2. Second we converted the result-
ing parse trees to Stanford dependencies.

Given the sets of parsed dependenciesDp andDq,
for sentence p and q, a dependency d ∈ Dx is a
triple (l, h, t) where l is the dependency label (for in-
stance, dobj or prep), h the governor and t the depen-
dant. The similarity measure between two syntactic
dependencies d1 = (l1, h1, t1) and d2 = (l2, h2, t2)
is the levenshtein distance between the labels l1 and
l2 multiplied by the average of idfh ∗ s(h1, h2) and
idft ∗ s(t1, t2), where idfh and idft are the inverse
document frequencies calculated on Google Web 1T
for the governors and the dependants (we retain the
maximum for each pair), respectively, and s is the
ProxiGenea3 measure. NOTE: This measure was
used only in the English sub-task.

2.4 Information Retrieval-based Similarity
Let us consider two texts p and q, an IR system S
and a document collection D indexed by S. This
measure is based on the assumption that p and q are
similar if the documents retrieved by S for the two
texts, used as input queries, are ranked similarly.

Let be Lp = {dp1 , . . . , dpK} and Lq =
{dq1 , . . . , dqK}, dxi ∈ D the sets of the top K docu-
ments retrieved by S for texts p and q, respectively.
Let us define sp(d) and sq(d) the scores assigned by
S to a document d for the query p and q, respectively.
Then, the similarity score is calculated as:

simIR(p, q) = 1−

∑
d∈Lp∩Lq

√
(sp(d)−sq(d))2

max(sp(d),sq(d))

|Lp ∩ Lq|
if |Lp ∩ Lq| 6= ∅, 0 otherwise.
For the participation in the English sub-task we

indexed a collection composed by the AQUAINT-
23 and the English NTCIR-84 document collections,
using the Lucene5 4.2 search engine with BM25
similarity. We indexed also DBPedia6 abstracts and
the UkWaC (Ferraresi et al., 2008), but they were
used to produce two additional features (separate

2https://github.com/CNGLdlab/LORG-Release
3http://www.nist.gov/tac/data/data desc.html#AQUAINT-2
4http://metadata.berkeley.edu/NTCIR-GeoTime/ntcir-8-

databases.php
5http://lucene.apache.org/core
6http://www.dbpedia.org/
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from the basic IR one). The Spanish index was
created using the Spanish QA@CLEF 2005 (agen-
cia EFE1994-95, El Mundo 1994-95) and multiUN
(Eisele and Chen, 2010) collections. The K value
was set to 70 after a study detailed in (Buscaldi,
2013). Another IR-based feature was derived by the
rank-biased overlap measure introduced by (Webber
et al., 2010) which compares rankings without the
need of weights. In total, we had 4 IR-based mea-
sures for English and 2 for Spanish.

2.5 N-gram Based Similarity
This measure tries to capture the fact that similar
sentences have similar n-grams, even if they are
not placed in the same positions. The measure is
based on the Clustered Keywords Positional Dis-
tance (CKPD) model proposed in (Buscaldi et al.,
2009) for the passage retrieval task.

The similarity between a text fragment p and an-
other text fragment q is calculated as:

simngrams(p, q) =
∑
∀x∈Q

h(x, P )∑n
i=1wid(x, xmax)

Where P is the set of the heaviest n-grams in p
where all terms are also contained in q; Q is the
set of all the possible n-grams in q, and n is the to-
tal number of terms in the longest sentence. The
weights for each term wi are calculated as wi =
1 − log(ni)

1+log(N) where ni is the frequency of term
ti in the Google Web 1T collection, and N is the
frequency of the most frequent term in the Google
Web 1T collection. The weight for each n-gram
(h(x, P )), with |P | = j is calculated as:

h(x, P ) =
{ ∑j

k=1wk if x ∈ P
0 otherwise

The function d(x, xmax) determines the minimum
distance between a n-gram x and the heaviest one
xmax as the number of words between them.

2.6 Geographical Context Similarity
This measure tries to measure if the two sentences
refer to events that took place in the same geograph-
ical area. It is based on the observation that the
compatibility of the geographic context between the
sentences is an important clue to determine whether

the sentences are related or not, especially in news.
We built a database of geographically-related enti-
ties, using geo-WordNet (Buscaldi and Rosso, 2008)
and expanding it with all the synsets that are related
to a geographically grounded synset. This implies
that also adjectives and verbs may be used as clues
for the identification of the geographical context of
a sentence. For instance, “Afghan” is associated to
“Afghanistan”, “Sovietize” to “Soviet Union”, etc.
The Named Entities of type PER (Person) are also
used as clues: we use Yago7 to check whether the
NE corresponds to a famous leader or not, and in the
affirmative case we include the related nation to the
geographical context of the sentence. For instance,
“Merkel” is mapped to “Germany”. Given Gp and
Gq the sets of places found in sentences p and q,
respectively, the geographical context similarity is
calculated as follows:

simgeo(p, q) = 1−logK

1 +

∑
x∈Gp

min
y∈Gq

d(x, y)

max(|Gp|, |Gq|)


Where d(x, y) is the spherical distance in Km. be-
tween x and y, and K is a normalization factor set
to 10000 Km. to obtain similarity values between
1 and 0. If no toponyms or geographically ground-
able entities are found in either sentences, then the
geographic context similarity is set to 1.

2.7 Word Alignment Similarity
This similarity metric is based on the work of (Sul-
tan et al., 2014b; Sultan et al., 2014a). The met-
ric calculates a similarity score based on an align-
ment between two texts. It starts with an alignment
between similar words, it proceeds to align similar
name entities, to continue with words with similar
content, to finally align stop words. In the case of
content words, it proposes to use the syntactic con-
text to identify similar words. At the end, the simi-
larity is calculated as a harmonic mean between the
ratios of align words from sentence one to sentence
two, and from sentence two to sentence one.

CMU Sphinx-4 (Lamere et al., 2003) is a speech
recognition system that includes an alignment func-
tion that is used to align speech transcriptions with

7http://www.mpi-inf.mpg.de/yago-naga/yago/
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text. We took one of the sentence as a reference and
the other one as a transcription and we used the out-
put of the Sphinx alignment measure as a feature.

2.8 Other Measures

In addition to the above text similarity measures, we
used also the difference in size between sentences
and the following measures:

Cosine
Cosine distance calculated between p =

(wp1 , . . . , wpn) and q = (wq1 , . . . , wqn), the vec-
tors of tf.idf weights associated to sentences p and
q, with idf values calculated on Google Web 1T.

Edit Distance
This similarity measure is calculated using the

Levenshtein distance on characters between the two
sentences.

Named Entity Overlap
This is a per-class overlap measure (in this

way, “France” as an Organization does not match
“France” as a Location) calculated using the Dice
coefficient between the sets of NEs found, respec-
tively, in sentences p and q.

Skip-gram Similarity
This measure is obtained as the dice coefficient

calculated between the set of skip-grams contained
in the two sentences.

3 Learning Models

Besides the ν-Support Vector Regression (ν-SVR)
(Schölkopf et al., 1999) used in previous participa-
tion, we used Multilayer Perceptron and Random
Forests. The Multilayer perceptron (Bishop and oth-
ers, 1995) is a neural network model which has sev-
eral interesting properties, such as robustness and
nonlinearity. Our implementation uses a simple gra-
dient descent learning algorithm with backpropaga-
tion and one hidden layer with 5 units. Random
Forests (Breiman, 2001) are an ensemble learning
method based on boosting and bagging of classifi-
cation trees. In our experiments, we used Random
Forests with 10 bootstrap samples.

In our runs, we selected a subset of the train-
ing set according to a similarity measure between

the test and the training set based on a 1- to 3-
grams language model and average sentence length.
The idea behind this selection process is that learn-
ing sentence similarities on a specific type of text
will increase the accuracy of predictions on text
with similar characteristics: image descriptions are
usually written in a very different form than word
definitions or forum answers. For each coher-
ent subset of the training set, we built a language
model Lm = (G1, G2, G3) where Gn is the dis-
tribution frequency of n-grams in the subset. We
obtained the same for the input dataset (Li) and
we calculated S(Lm, Li) = (b(Lm1, Li1) + 2 ∗
b(Lm2, Li2) + 3 ∗ b(Lm3, Li3))/6 where b(F1, F2)
is the Bhatthacharyya distance between the distribu-
tions F1 and F2. We selected only those training
dataset where S(Lm, Li) > 0.2. In Table 3 we
show the comparison of the results obtained with
such selection (the official ones) and those obtained
using the complete training set (not submitted). The
complete English training set was composed by the
data from SemEval STS 2012, 2013 and 2014. In
Spanish, we used our 2014 training set, which in-
cluded the automatically translated English 2012-
2013 pairs from STS and a corpus we made from
RAE8 definitions, and the 2014 Spanish test set.

4 Results

Table 1 and 2 presents our results our runs in Sem-
Eval 2015 (Agirre et al., 2015). Our participation
consisted on three runs for three different machine
learning approaches to regressions: Support Vec-
tor Regression (LIPN-SVM), Multi Layer Perceptron
(LIPN-MLP) and Random Forest (LIPN-RF). The
LIPN-RF configuration was our best one and was
ranked 25th run-wise and 14th system wise for the
English corpora; 5th run-wise and 3rd system-wise
for Spanish. Our English system had better overall
performance than Spanish. The best performance
was reached for the Believe dataset in English and
News dataset in Spanish.

Part of our proposal uses a language model to
select a subset of the corpus used to train the re-
gression. Table 3 shows performance with the full
dataset and the selected training corpus for the En-

8“Real Academia Española de la lengua” Spanish dictio-
nary: http://www.rae.es
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Answer-forums Answer-students Headlines Believe Images Overall
LIPN-RF 0,6709 0,5914 0,7243 0,8123 0,8414 0,7356
LIPN-MLP 0,6178 0,5864 0,6886 0,8121 0,8184 0,7175
LIPN-SVM 0,5918 0,5718 0,7028 0,7985 0,8104 0,7070

Table 1: English results (Official runs).

Wikipedia News Overall
LIPN-RF 0,5637 0,5655 0,5649
LIPN-MLP 0,25257 0,5342 0,4401
LIPN-SVM 0,4194 0,4007 0,4069

Table 2: Spanish results (Official runs).

glish dataset with the three regression approaches.
The overall score points that the corpus selection
was not beneficial. The most significant improve-
ment was concentrated on the Answer-students data-
set, in this case the performance felt 0,0588 points.

We checked the contribution of each feature using
the relief attribute selection measure (Kononenko,
1994) over the English training set. The best fea-
ture was the WordNet one, followed by Sultan and
IC-based similarity. The worst features were Rank-
biased Overlap followed by NE Overlap and the
Geographic context similarity (however, apart from
RBO, the other ones don’t have complete coverage).
The other features have a statistically similar contri-
bution.

5 Conclusions and Future Work

The new learning models adopted were particularly
effective, outperforming the Support Vector Regres-
sion algorithm that we used in our previous partici-
pation. The alignment measure based on Sultan was
also very effective, as indicated by feature selection.
On the other hand, our corpus selection strategy did
not prove useful in general, although it provided
slight improvements on specific corpora. We will
need to further analyse these results to understand
how SOPA can still be improved.
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Abstract

We present our approach to measuring seman-
tic similarity of sentence pairs used in Se-
meval 2015 tasks 1 and 2. We adopt the
sentence alignment framework of (Han et al.,
2013) and experiment with several measures
of word similarity. We hybridize the common
vector-based models with definition graphs
from the 4lang concept dictionary and de-
vise a measure of graph similarity that yields
good results on training data. We did not ad-
dress the specific challenges posed by Twitter
data, and this is reflected in placing 11th from
30 in Task 1, but our systems perform fairly
well on the generic datasets of Task 2, with the
hybrid approach placing 11th among 78 runs.

1 Introduction

This paper describes the systems participating in
Semeval-2015 Task 1 (Xu et al., 2015) and Task 2
(Agirre et al., 2015). To compute the semantic sim-
ilarity of two sentences we use the architecture pre-
sented in (Han et al., 2013) to find, for each word, its
counterpart in the other sentence that is semantically
most similar to it. We implemented several meth-
ods for measuring word similarity, among them (i)
a word embedding created by the method presented
in (Mikolov et al., 2013) and (ii) a metric based on
networks of concepts derived from the 4lang con-
cept lexicon (Kornai and Makrai, 2013; Kornai et
al., 2015) and definitions from the Longman Dic-
tionary of Contemporary English (Bullon, 2003). A
hybrid system exploiting both of these metrics yields
the best results and placed 11th among 73 systems

on Semeval Task 2a (Semantic Textual Similarity
for English). All components of our system are
available for download under an MIT license from
GitHub12. Section 2 describes the system architec-
ture and points out the main differences between our
system and that in (Han et al., 2013), section 3 out-
lines our word similarity metric derived from the
4lang concept lexicon. We present the evaluation
of our systems on both tasks in section 4, and section
5 provides a brief conclusion.

2 Architecture

Our framework for determining the semantic simi-
larity of two sentences is based on the system pre-
sented in (Han et al., 2013). Their architecture,
Align and Penalize, involves computing an align-
ment score between two sentences based on some
measure of word similarity. We’ve chosen to reim-
plement this system so that we can experiment with
various notions of word similarity, including the
one based on 4lang and presented in section 3.
Although we reimplemented virtually all rules and
components described by (Han et al., 2013) for
experimentation, we shall only describe those that
ended up in at least one of the five configurations
submitted to Semeval.

The core idea behind the Align and Penalize archi-
tecture is, given two senteces S1 and S2 and some
measure of word similarity, to align each word of
one sentence with some word of the other sentence
so that the similarity of word pairs is maximized.

1http://github.com/juditacs/semeval
2http://github.com/kornai/pymachine

138



The mapping need not be one-to-one and is calcu-
lated independently for words of S1 (aligning them
with words from S2) and words of S2 (aligning them
with words from S1). The score of an alignment is
the sum of the similarities of each word pair in the
alignment, normalized by sentence length. The fi-
nal score assigned to a pair of sentences is the aver-
age of the alignment scores for each sentence. For
out-of-vocabulary (OOV) words, i.e. those that are
not covered by the component used for measuring
word similarity, we use the Dice-similarity over the
sets of character 4-grams in each word. Addition-
ally, we use simple rules to detect acronyms and
compounds: if a word of one sentence that is a se-
quence of 2-5 characters (e.g. ABC) has a matching
sequence of words in the other sentence (e.g. Ameri-
can Broadcasting Company), all words of the phrase
are aligned with this word and recieve an alignment
score of 1. If a sentence contains a sequence of two
words (e.g. long term or can not) that appear in the
other sentence without a space and with or without
a hyphen (e.g. long-term or cannot), these are also
aligned with a score of 1. The score returned by the
word similarity component can be boosted based on
WordNet (Miller, 1995), e.g. if one is a hypernym
of the other, if one appears frequently in glosses of
the other, or if they are derivationally related. For
the exact cases covered and a description of how
the boost is calculated, the reader is referred to (Han
et al., 2013). In our submissions we only used this
boost on word similarity scores obtained from word
embeddings.

The similarity score may be reduced by a vari-
ety of penalties, which we only enabled for Task
1 runs – they haven’t brought any improvement on
Task 2 datasets in any of our early experiments. Of
the penalties described in (Han et al., 2013) we only
used the one which decreases alignment scores if
the word similarity score for some word pair is very
small (< 0.05). We also introduced two new types
of penalties based on our observations of error types
in Twitter data: if one sentence starts with a question
word and the other one does not or if one sentence
contains a past-tense verb and the other does not,
we reduce the overall score by 1/(L(S1) + L(S2)),
where L(S1) and L(S2) are the numbers of words in
each sentence.

3 Similarity from Concept Networks

This section will present the word similarity mea-
sure based on principles of lexical semantics pre-
sented in (Kornai, 2010). The 4lang concept dic-
tionary (Kornai and Makrai, 2013) contains 3500
definitions created manually. Because the Longman
Defining Vocabulary (LDV) (Boguraev and Briscoe,
1989) is a subset of 4lang, we could automat-
ically extend this manually created seed to every
headword of the Longman Dictionary of Contem-
porary English (LDOCE) by processing their defi-
nitions with the Stanford Dependency Parser (Klein
and Manning, 2003), and mapping dependency re-
lations to sets of edges in the 4lang-style concept
graph. Details of the mapping will be described else-
where (Recski, 2015).

Since these definitions are essentially graphs of
concepts, we have experimented with similarity
functions over pairs of such graphs that capture se-
mantic similarity of the concepts defined by each of
them. There are two fundamentally different config-
urations present in 4lang graphs:

1. two nodes may be connected via a 0-edge,
which is a generalization over unary predi-
cation (dog 0−→ bark), attribution (dog 0−→
faithful), and hypernymy, or the IS A re-
lation (dog 0−→ mammal).

2. two nodes can be connected, via a 1-edge and a
2-edge respectively, to a third one representing
a binary relation. Binaries include all transitive
verbs (e.g. cat 1←− CATCH

2−→ branch). and
a handful of binary primitives (e.g. tree

1←−
HAS

2−→ branch).

We start by the intuition that similar con-
cepts will overlap in the elementary configura-
tions they take part in: they might share a 0-
neighbor, e.g. train

0−→ vehicle
0←− car,

or they might be on the same path of 1- and
2-edges, e.g. park

1←− IN
2−→ town and

street
1←− IN

2−→ town.
We’ll define the predicates of a node as

the set of such configurations it takes part
in. For example, based on the definition
graph in Figure 1, the predicates of the concept
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Figure 1: 4lang definition of bird.

bird are {vertebrate; (HAS, feather);
(HAS, wing); (MAKE, egg)}.

Our initial version of graph similarity is the Jac-
card similarity of the sets of predicates of each con-
cept, i.e.

S(w1, w2) =
|P (w1) ∩ P (w2)|
|P (w1) ∪ P (w2)|

For all words that are not among the 3500 de-
fined in 4lang we obtain definition graphs by au-
tomated parsing of Longman definitions and the ap-
plication of a simple mapping from dependency re-
lations to graph edges (Recski, 2015). By far the
largest source of noise in these graphs is that cur-
rently there is no postprocessor component that rec-
ognizes common structures of dictionary definitions
like appositive relative clauses. For example the
word casualty is defined by LDOCE as someone
who is hurt or killed in an accident or war and we
currently build the graph in Figure 2 instead of that
in Figure 3. To mitigate the effects of these anomal-
ities, we updated our definition of predicates: we let
them be “inherited” via paths of 0-edges encoding
the IS A-relationship.

We’ve also experimented with similarity mea-
sures that take into account the sets of all nodes ac-
cessible from each concept in their respective def-
inition graphs. This proved useful in establishing
that two concepts which would otherwise be treated
as entirely dissimilar are in fact somewhat related.
For example, given the definitions of the concepts
casualty and army in Figures 2 and 4, the node
war will allow us to assign nonzero similarity to the
pair (army, casualty). We found it most ef-
fective to use the maximum of these two types of
similarity.

Testing several versions of graph similarity on

Figure 2: Definition of casualty built from LDOCE.

Figure 3: Expected definition of casualty.

Figure 4: Definition of army in 4lang.
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past years’ STS data, we found that if two words
w1 and w2 are connected by a path of 0-edges, it is
best to treat them as synonymous, i.e. assign to them
a similarity of 1. This proved very efficient for de-
termining semantic similarity of the most common
types of sentence pairs in the Semeval datasets. Two
descriptions of the same event (common in the head-
lines dataset) or the same picture (in images) will of-
ten only differ in their choice of words or choice of
concreteness. In a dataset from 2014, for example,
two descriptions, likely of the same picture, are A
bird holding on to a metal gate and A multi-colored
bird clings to a wire fence. Similarly, a pair of news
headlines are Piers Morgan questioned by police
and Piers Morgan Interviewed by Police. Although
wire is by no means a synonym for metal, nor does
being questioned mean exactly the same as being in-
terviewed, treating them as perfect synonyms proved
to be an efficient strategy when trying to assign sen-
tence similarity scores that correlate highly with hu-
man annotators’ judgements.

4 Submissions

We shall now describe the particular configurations
used for each submission in Semeval. For Task 1
(Paraphrase and Semantic Similarity in Twitter) we
ran two systems: twitter-embed uses a single
source of word similarity, a word embedding built
from a corpus of word 6-grams from the Rovereto
Twitter N-Gram Corpus3 using the gensim4 pack-
age’s implementation of the method presented in
(Mikolov et al., 2013). Our second submission,
twitter-mash combines several sources of word
similarity by averaging the output of various systems
using weights that have been learned using plain
least squares regression on the training data avail-
able. The systems participating in the vote differ
in the word similarity measure they use: one sub-
set uses the character ngram baseline described in
section 2 with various parameters (n = 2, 3, 4, each
with Jaccard- and Dice-similarity), two systems use
word embeddings (built from 5-grams and 6-grams
of the Rovereto corpus, respectively) and one uses
the 4lang-based word similarity described in sec-
tion 3.

3http://clic.cimec.unitn.it/amac/twitter ngram/
4http://radimrehurek.com/gensim

embedding hybrid

Task 1a: Paraphrase Identification
Precision 0.454 0.364
Recall 0.594 0.880
F-score 0.515 0.515

Task 1b: Semantic Similarity
Pearson 0.229 0.511

Table 1: Performance of submitted systems on Task 1.

embedding machine hybrid

Task 2a: Semantic Similarity
answers-forums 0.704 0.698 0.723
answers-students 0.700 0.746 0.751
belief 0.733 0.736 0.747
headlines 0.769 0.805 0.804
images 0.804 0.841 0.844
mean Pearson 0.748 0.777 0.784

Table 2: Performance of submitted systems on Task 2.

For Task 2 (Semantic Textual Similarity) we were
allowed three submissions. The embedding sys-
tem uses a word embedding built from the first
1 billion words of the English Wikipedia using
the word2vec5 tool (Mikolov et al., 2013). The
machine system uses the word similarity measure
described in section 3 (both systems use the charac-
ter ngram baseline as a fallback for OOVs). Finally,
for the hybrid submission we used a weighted sum
of these two systems and the character ngram base-
line (weights were once again obtained using sim-
ple least square regression on the available training
data). In both hybrid submissions we trained on a
single dataset consisting of all training data avail-
able, we haven’t experimented with genre-specific
models.

Our results on each task are presented in Tables 1
and 2. In case of Task 1a (Paraphrase Identification)
our two systems performed equally in terms of F-
score and ranked 30th among 38 systems. On Task
1b the hybrid system performed considerably better
than the purely vector-based run, placing 11th out of
28 runs. On Task 2 our hybrid system ranked 11th
among 78 systems, the systems using the word em-
bedding and the 4lang-based similarity alone (with
string similarity as a fallback for OOVs in each case)
ranked 22nd and 15th, respectively.

5https://code.google.com/p/word2vec/

141



5 Conclusion

In a framework like (Han et al., 2013) which ap-
proximates sentence similarity by word similarity,
the first order of business is to get the word simi-
larity right. Character ngrams are quite useful for
this, and remain an invaluable fallback even when
more complex measures of word similarity, such as
embeddings, are used. Dictionary-based methods,
such as the 4lang-based system presented here, are
slightly better, and require only a one-time invest-
ment of manual labor to generate the seed. Criti-
cally, the error characteristics of the context-based
(embedding) and the dictionary-based systems are
quite different, so hybridizing the two provides a real
boost over both.
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Competence in lexical semantics. To appear in Proc.
*SEM-2015.

András Kornai. 2010. The algebra of lexical seman-
tics. In Christian Ebert, Gerhard Jäger, and Jens
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Abstract
We describe the work carried out by the DCU
team on the Semantic Textual Similarity task
at SemEval-2015. We learn a regression
model to predict a semantic similarity score
between a sentence pair. Our system exploits
distributional semantics in combination with
tried-and-tested features from previous tasks
in order to compute sentence similarity. Our
team submitted 3 runs for each of the five En-
glish test sets. For two of the test sets, belief
and headlines, our best system ranked second
and fourth out of the 73 submitted systems.
Our best submission averaged over all test sets
ranked 26 out of the 73 systems.

1 Introduction

This paper describes DCU’s participation in the Se-
mEval 2015 English Semantic Textual Similarity
(STS) task, whose goal is to predict how similar
in meaning two sentences are (Agirre et al., 2014).
The semantic similarity between two sentences is
defined on a scale from 0 (no relation) to 5 (semantic
equivalence). Thus, given a sentence pair, our aim is
to learn a model which outputs a score between 0
and 5 reflecting the semantic similarity between the
two sentences.

We explore distributional representations of
words computed using neural networks – specifi-
cally Word2Vec vectors (Mikolov et al., 2013) – and
we design features which attempt to encode seman-
tic similarity at the sentence level. We also experi-
ment with several methods of data selection, both for
training word embeddings, and for selecting training
data for our regression models. We submitted three

runs for this task: for all three runs, the features used
are identical, and the only difference between them
is the training instance selection method used.

2 Data and Resources

The training data for the task is comprised of all
the corpora from previous years STS tasks: STS-
2012, STS-2013 and STS-2014 (Agirre et al., 2012;
Agirre et al., 2013; Agirre et al., 2014). The test
data is taken from five domains: answers-forums,
answers-students, belief, headlines and images. Two
domains (headlines and images) have some training
data available from the previous STS tasks1 – the
other three have been introduced for the first time.

We use the Word2Vec (W2V) representation for
computing semantic similarity between two words.
We then expand to incorporate the similarity be-
tween two sentences. Using W2V, a word can
be represented as a vector of D dimensions, with
each dimension capturing some aspect of the word’s
meaning in the form of different concepts learnt
from the trained model. We use the gensim W2V
implementation (Řehůřek and Sojka, 2010).

We use the text8 Wikipedia corpus to train our
general W2V model. This corpus is comprised of
100MB of compressed Wikipedia data.2 We use
the UMBC corpus (Han et al., 2013) for building
domain-specific W2V models.

1http://ixa2.si.ehu.es/stswiki/index.php/Main Page
2http://mattmahoney.net/dc/textdata.html
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3 Methodology

3.1 Pre-processing

We perform minimal pre-processing, replacing all
hyphens and apostrophes with spaces, and removing
all non-alphanumeric symbols from the data. Our
general domain model uses the NLTK3 stop word
list for stop word removal and the Porter stemming
algorithm (Porter, 1980). Word2Vec handles the
stem variations to some extent when it learns the
vector representation from the raw input data. Thus
for the domain-specific models, we only remove
stopwords and do not stem.

3.2 Feature Design

To predict a semantic similarity score, we learn a re-
gression model using the M5P algorithm.4 We rep-
resent a sentence pair using the features described in
the folowing subsections.

3.2.1 Cosine Similarity
We have two features representing the cosine sim-

ilarity between two sentences, s1 and s2, where
the sentences are represented as binary vectors with
each dimension indicating the presence of a word.
The first feature is the basic cosine similarity be-
tween the two sentence vectors and the second is the
weighted cosine similarity between the two vectors,
where each word is weighted by its inverse collec-
tion frequency (ICF).5

3.2.2 Word2Vec
Sum W2V: For a given sentence we represent
each word by its W2V representation and then sum
each word vector in a sentence to find the centroid
of the word vectors representing the entire sentence.
The cosine of the centroids of the two sentences in-
dicates the similarity between them. Using the sum
approach, two features, sum and sum icf, are calcu-
lated, one corresponding to the basic cosine similar-
ity between the vectors, and the other representing
the weighted cosine similarity where, before calcu-
lating the centroid, each word vector is multiplied

3http://www.nltk.org/
4We used the weka implementation: http://www.cs

.waikato.ac.nz/ml/weka/ without performing any ex-
tra hyper-parameter optimization.

5ICF is calculated using word frequency from the wikipedia
2011 dump.

by its ICF weight.
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Product W2V: Given s1 and s2, we take the
element-wise product of each word vector in s1 and
s2 and store the maximum product value for each
word in s1 and similarly for s2. The Product W2V
feature is the average of the maximum weights be-
tween each word of s1 with s2 and vice versa:
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The sum and product W2V models are inspired
by the composition models of Mitchell and Lapata
(2008) and semantic similarity measures of Mihal-
cea et al. (2006).

Domain-specific Cosine Similarity: Good cover-
age is obtained using the text8 corpus to train the
W2V model. However, we also want to explore
the performance with respect to an in-domain W2V
model. So, for each of the test corpora, we first ex-
tract a corpus of similar sentences from the UMBC
corpus by selecting up to 500 sentences for each
content word in the test corpus and then use the ex-
tracted dataset to train a W2V model that has bet-
ter coverage of the test domain. Using the domain-
specific W2V corpus, we compute the feature do-
main w2v cosine similarity in a similar fashion to
the Sum W2V feature – we compute the centroid
vector of the content words in each sentence and
then compute the cosine between the two centroids.

Syntax: We also hypothesize that two semanti-
cally similar sentences should have high overlap be-
tween their nouns, verbs, adjectives and adverbs.
For each coarse-grained POS tag (NN*, VB*, JJ*
and RB*) we calculate the W2V cosine similarity
between all words from s1 and s2 which have the
same POS tag (using the Sum W2V combination
method). For each coarse-grained POS tag, we also
calculate the number of lexical matches with that
particular POS tag.
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We also parse each sentence using the Stanford
parser (Manning et al., 2014) and look for depen-
dency relation overlap between s1 and s2.6 We
concentrate on six dependency relations – nsubj,
dobj, det, prep, amod and aux. For each re-
lation we calculate the degree of overlap between
the occurrences of this relation in the two sentences.
We have two notions of relation overlap: a non-
lexicalized version which just counts the relation it-
self (e.g. nsubj) and a lexicalized version which
counts the relation and the two tokens it connects
(e.g. nsubj word1 word2).

3.2.3 Monolingual Alignment
We compute the monolingual alignment between

the two sentences using the word aligner introduced
in (Sultan et al., 2014). Their system aligns re-
lated words in a sentence pair by exploiting seman-
tic and contextual similarities of the words. From
the aligned sentences, we then extract two features:
percent aligned source and percent aligned target,
which represent the fraction of tokens in each sen-
tence which have an alignment in the other sentence.
The intuition behind these features is that sentences
which are semantically similar should have a higher
fraction of aligned tokens, since alignments consti-
tute either identical strings or paraphrases.

3.2.4 TakeLab
The Takelab system (Šarić et al., 2012) was the

top performing system in STS-2012 task. Their
system used support vector regression models with
multiple features measuring word overlap similar-
ity and syntactic similarity. We find that adding the
Takelab features provides additional knowledge to
our system and improves performance for the train-
ing datasets. We add the 21 features of the Takelab
system to our feature set.

3.3 Training instance selection

After designing features to model semantic similar-
ity between two sentences, the next important task is
to select the training corpus for learning the weights
for these features. Out of the five test sets for STS-
2015, we only have in-domain training corpora for
the headlines and images data sets. We hypothesize

6Parsing is carried out on the raw sentences.

that finding vocabulary similarity between the en-
tire training and test corpus could be used to select
more similar corpus for training of the system. We
calculate the similarity between each of the corpora
we have from previous STS tasks and each of the
test corpora. Using the entire corpus vocabulary as a
vector we find the cosine similarity between differ-
ent corpora using the TFIDF (Manning et al., 2008),
LSI (Hofmann, 1999), LDA (Blei et al., 2003b) and
HLDA (Blei et al., 2003a) measures.

Next, we describe the mechanism we used for
training data selection for each run:

1. Run-1: For the two corpora for which we have
prior training data we took the previous years’
training data. For the other test corpora we se-
lect the most similar corpus from the previous
years’ training data based on the corpus vector
cosine similarity, where each word in a vector
is replaced by its TFIDF weight. The training
corpora we selected are as follows:
Images: Images 2014, Headlines: Headlines-
2014, Belief: Deft Forum 2014, Answers-stu-

dents: MSRVid 2012 train, Answers-forums:
Deft Forum 2014

2. Run-2: We want to make sure that the train-
ing data has instances similar to the test sam-
ples. To capture diversity in our training cor-
pus we compute corpus vector cosine similar-
ity where each word is replaced by its TFIDF
weight, then we merge the top three most sim-
ilar training corpora for each test set as shown
below:
Images: Images 2014 + MSRVid 2012 train +
MSRVid 2012 test
Headlines: Headlines 2013 + Headlines 2014
+ MSRPar 2012 train
Belief: Deft Forum 2014 + Headlines 2014 +
Headlines 2013
Answers-students: OnWn 2012 test + MSR-
Vid 2012 train + MSRPar 2012 test
Answers-forums: Deft forum 2014 + SMT-
2012 train + MSRPar 2012 train

For each test set instance, we find the five7

most similar instances from the merged training

7Five was empirically chosen by experimenting with differ-
ent values on the training data.
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Test Set Baseline Run-1 Run-2 Run-3 Top System Our Rank
Images 0.6039 0.8394 0.835 0.8434 0.8713 19
Headlines 0.5312 0.8284 0.8187 0.8181 0.8417 4
Belief 0.6517 0.5464 0.7549 0.6977 0.7717 2
Answers-students 0.6647 0.6582 0.6233 0.6108 0.7879 47
Answers-forum 0.4453 0.5556 0.5628 0.653 0.739 30
Mean 0.7192 0.734 0.7369 26

Table 1: Results of our final runs compared to the baseline and the best system for each test set.

corpus (similar instances are computed using
cosine similarity between the feature vectors).
By combining these five training instances for
all test instances and removing duplicates, we
form a more focused training set which is ex-
pected to capture the test set diversity more ef-
fectively.

3. Run-3: In this variant, we do not want to limit
ourselves to just the top three corpora, so we
merge all the training data and then look for the
five most similar training instances for each test
instance to form a focused training set.

4 Results

Table 1 shows the results of our systems on the five
test sets. For the test sets answers-forum and be-
lief there was a considerable difference in the re-
sults across the three runs, indicating that select-
ing training instances has a significant effect on per-
formance. For these two datasets across two runs
the absolute difference in the Pearson coefficient is
about 10% for answers-forum and about 20% for
the belief dataset. Overall, our best system rank is
26 out of 73. If we look at the results for individ-
ual test sets, it seems our approach works well for
the belief, headlines and image test set but performs
poorly for the answer-student and answer-forum test
sets. For the belief test set our Run-2 was ranked
2nd overall and for the headlines test set our Run-1
was ranked 4th overall. For the images test set, the
results are competitive – the absolute difference in
the Pearson value between our best run and the best
system is only 0.03. Thus, apart from two corpora,
answers-students and answer-forums, our approach
performed quite well.

We analyzed the features using GradientBoostin-

gRegressor8 for all the training sets. The feature
importance varies slightly across different domains.
For all datasets, we remove features with gini impor-
tance9 < 0.01, then we look for the features which
are present in at least three of the different domain
for this year’s test set. The features that performed
well are shown in Table 2.

Our Features
sum icf, sum, product, domain w2v cosine,
percent aligned target, percent source target,
nn w2v, vb w2v, jj w2v, nsub 1, cosine, cosine icf
TakeLab Features
wn sim match, weighted word match,
weighted word match, dist sim,
weighted dist sim, weighted dist sim,
relative len difference, relative ic difference

Table 2: Important features.

5 Conclusions

All of our runs have the same features, but use dif-
ferent training corpora to learn the weights. We thus
show that training data selection can have an im-
pact on the performance of a model, especially for a
novel genre. Using Word2Vec to find semantic simi-
larity between a sentence pair proved to be effective.
Furthermore, composing W2V features in different
ways can help to reveal new information about se-
mantic similarity.

Investigating the test sets where we failed to per-
form well, answer-forums and answer-students, re-
veals that we need to handle phrasal information
more effectively by, for example, handling negation,

8http://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
GradientBoostingRegressor.html

9http://www.stat.berkeley.edu/˜breiman/
RandomForests/cc_home.htm
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devising measures to compare the sentences at the
entity level and making better use of parser output.
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Abstract

We describe a set of top-performing systems
at the SemEval 2015 English Semantic Textual
Similarity (STS) task. Given two English sen-
tences, each system outputs the degree of their
semantic similarity. Our unsupervised system,
which is based on word alignments across the
two input sentences, ranked 5th among 73 sub-
mitted system runs with a mean correlation of
79.19% with human annotations. We also sub-
mitted two runs of a supervised system which
uses word alignments and similarities between
compositional sentence vectors as its features.
Our best supervised run ranked 1st with a mean
correlation of 80.15%.

1 Introduction

Identification of short text similarity is an important
research problem with application in a multitude of
areas: natural language processing (machine transla-
tion, text summarization), information retrieval (ques-
tion answering), education (short answer scoring),
and so on. The SemEval Semantic Textual Similarity
(STS) task series (Agirre et al., 2012; Agirre et al.,
2013; Agirre et al., 2014; Agirre et al., 2015) has
become a central platform for the task: a publicly
available corpus of more than 14,000 sentence pairs
have been developed over the past four years with
human annotations of similarity for each pair; and a
total of 290 system runs have been evaluated.

In this article, we describe a set of systems that
were submitted at the SemEval 2015 English STS
task (Agirre et al., 2015). Given two English sen-
tences, the objective is to compute their semantic

similarity in the range [0, 5], where the score in-
creases with similarity (i.e., 0 indicates no similarity
and 5 indicates identicality). The official evaluation
metric was the Pearson correlation coefficient with
human annotations. The best of our three system runs
achieved the highest mean correlation (80.15%) with
human annotations among all submitted systems on
five test sets (containing a total of 3000 test pairs).

Early work on sentence similarity (Corley and Mi-
halcea, 2005; Mihalcea et al., 2006; Li et al., 2006;
Islam and Inkpen, 2008) established the basic pro-
cedural framework under which most modern algo-
rithms operate: computing sentence similarity as a
mean of word similarities across the two input sen-
tences. With no human annotated STS data set avail-
able, these algorithms were unsupervised and were
evaluated extrinsically on tasks like paraphrase detec-
tion and textual entailment recognition. The SemEval
STS task series has made an important contribution
through the large annotated data set, enabling intrin-
sic evaluation of STS systems and making supervised
STS systems a reality.

At SemEval 2012, domain-specific training data
was provided for most of the test pairs (Agirre et al.,
2012) and consequently, supervised systems were
the most successful (Bär et al., 2012; Šarić et al.,
2012). These systems combined different similarity
measures, e.g., lexico-semantic, syntactic and string
similarity, using regression models. However, at the
2013 and 2014 STS events, no such training data was
provided; instead, the systems were allowed to use
all past data to train their systems. Interestingly, the
best systems at these two events were unsupervised
(Han et al., 2013; Sultan et al., 2014b); some super-
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Figure 1: Words aligned by our aligner across two sentences taken from the MSR alignment corpus (Brockett, 2007).
(We show only part of the second sentence.) Besides exact word/lemma matches, it identifies and aligns semantically
similar word pairs using PPDB (awarded – received in this example).

vised systems did well, too (Wu et al., 2013; Lynum
et al., 2014). The core component of a typical un-
supervised system is term alignment: semantically
related terms across the two sentences are aligned at
first and then their semantic similarity is computed
as a monotonically increasing function of the degree
of alignment.

At SemEval 2015, we submitted an unsupervised
system based on word alignments which is almost
identical to our winning system at SemEval 2014
(Sultan et al., 2014b). We also submitted a super-
vised ridge regression model that uses (1) the output
of our unsupervised system, and (2) the cosine simi-
larity between the vector representations of the two
sentences (derived from neural word embeddings of
their content words (Baroni et al., 2014)) as its fea-
tures. Our unsupervised system ranked 5th and the
two supervised runs ranked 1st and 3rd. Evaluation
also shows that our best run outperforms the winning
systems at all past SemEval STS events.

2 System Overview

We describe our three system runs in this section in
order of their complexity – new capabilities and/or
features are added with each run.

2.1 Run 1: U

This is an unsupervised system that first aligns related
words across the two input sentences and then out-
puts the proportion of aligned content words as their
semantic similarity. It is similar to our last year’s sys-
tem (Sultan et al., 2014b) based on the word aligner
described in (Sultan et al., 2014a). However, where
last year’s system computed a separate proportion
for each sentence and then took their harmonic mean,
this year’s system computes a single proportion over

all words in the two sentences. In other words, given
sentences S(1) and S(2),

sts(S(1), S(2)) =
na

c (S
(1)) + na

c (S
(2))

nc(S(1)) + nc(S(2))

where nc(S(i)) and na
c (S

(i)) are the number of con-
tent words and the number of aligned content words
in S(i), respectively. This is a conceptually simpler
step and yielded better experimental results on data
from past STS events.

The aligner aligns words based on their semantic
similarity and the similarity between their local se-
mantic contexts in the two sentences. It uses the Para-
phrase Database (PPDB) (Ganitkevitch et al., 2013)
to identify semantically similar words, and relies on
dependencies and surface-form neighbors of the two
words to determine their contextual similarity. Word
pairs are aligned in decreasing order of a weighted
sum of their semantic and contextual similarity. Fig-
ure 1 shows an example set of alignments. For more
details, see (Sultan et al., 2014a).

We also consider a levenshtein distance1 of 1 be-
tween a misspelled word and a correctly spelled word
(of length > 2) to be a match. In all runs, we truncate
at the extremes to keep the score in [0, 5].

2.2 Run 2: S1

A fundamental limitation of our unsupervised system
is that it only relies on PPDB to identify semanti-
cally similar words; consequently, similar word pairs
are limited to only lexical paraphrases. Hence it
fails to utilize semantic similarity or relatedness be-
tween non-paraphrase word pairs (e.g., ‘sister’ and

1the minimum number of single-character edits needed to
change one word into the other, where an edit is an insertion, a
deletion or a substitution.
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‘related’). In this run, we leverage neural word em-
beddings to overcome this limitation. We use the
400-dimensional vectors2 developed by Baroni et
al. (2014). They used the word2vec toolkit3 to ex-
tract these vectors from a corpus of about 2.8 billion
tokens. These vectors performed exceedingly well
across different word similarity data sets in their ex-
periments. Details on their approach and findings can
be found in (Baroni et al., 2014).

Instead of comparing word vectors across the two
input sentences, we adopt a simple vector composi-
tion scheme to construct a vector representation of
each input sentence and then take the cosine simi-
larity between the two sentence vectors as our sec-
ond feature for this run. The vector representing
a sentence is the centroid (i.e., the componentwise
average) of its content lemma vectors.

Finally, we combine the two features – output of
our unsupervised run (U ) and the sentence vectors’
cosine similarity – using a ridge regression model
(implemented in scikit-learn (Pedregosa et al., 2011),
with α = 1.0 and the ‘auto’ solver that automatically
selects a feature weight learning algorithm from a
pool depending on the type of the data). The model is
trained using annotations from SemEval 2012–2014
(details in Section 3).

2.3 Run 3: S2

The aligner used in our previous two runs aligns con-
tent words even if there are no similarities between
their contexts in the two sentences. In this run, we use
an alignment-based feature (in addition to our two
features in S1) where content words are aligned only
if they have some contextual similarity – a common
word either in their dependencies or in a neighbor-
hood of 3 words to the left and 3 words to the right
(considering only content words for the latter).

3 Data

The 3000 test sentence pairs at SemEval 2015 were
divided into five sets, each consisting of pairs from a
different domain. Each pair was assigned similarity
scores in the range [0, 5] by multiple human annota-
tors (0: no similarity, 5: identicality) and the average

2http://clic.cimec.unitn.it/composes/
semantic-vectors.html

3https://code.google.com/p/word2vec/

Data Set Source of Text # of Pairs
answers-forums forum answers 375

answers-students student short answers 750
belief belief annotations 375

headlines news headlines 750
images image descriptions 750

Table 1: Test sets at SemEval STS 2015.

of the annotations was taken as their final similarity
score. We describe each data set briefly in Table 1.

We trained our supervised systems using data from
the past three years of SemEval STS (Agirre et al.,
2012; Agirre et al., 2013; Agirre et al., 2014). For
answers-forums, answers-students and belief, we
used all past annotations. For headlines, we used all
headlines (2013), headlines (2014), deft-news (2014)
and smtnews (2012) pairs. For images, we used all
msrpar (2012; train and test), msrvid (2012; train and
test) and images (2014) pairs. The specific training
corpus selections for the two latter data sets were
based on our experiments with past headlines and im-
ages data, where these subsets yielded better results
than an all-inclusive training set (seemingly due to
the fact that they were drawn from similar domains
and were still large-enough to provide the model with
effective supervision).

4 Evaluation

In addition to the official evaluation at SemEval 2015,
we report evaluation results on past STS (2012–2014)
test data. For all these evaluations, the performance
metric is the Pearson correlation coefficient between
system output and average human annotations. Cor-
relation is computed for each individual test set, and a
weighted sum of all correlations (i.e. over all test sets)
is used as the final evaluation metric. The weight of
a test set is proportional to the number of sentence
pairs it contains.

Before presenting the results, we describe a pre-
processing step for one of the 2015 test sets. Iden-
tifying the right stop words (some of which can be
domain-specific) proved key in our past investiga-
tion of STS (Sultan et al., 2014b); therefore we con-
sider it very important to manually examine indi-
vidual domains to ensure proper categorization of
words. An inspection of the trial data for the answers-
students set indicated that the expressions in the
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Data Set Runs Best
U S1 S2 Score

answers-forums 0.6821 0.7390 0.7241 0.7390
answers-students 0.7879 0.7725 0.7569 0.7879

belief 0.7325 0.7491 0.7223 0.7717
headlines 0.8238 0.8250 0.8250 0.8417

images 0.8485 0.8644 0.8631 0.8713
Weighted Mean 0.7919 0.8015 0.7921 -

Rank 5 1 3 -

Table 2: Performance on STS 2015 data. Each number
in rows 1–5 is the correlation between system output and
human annotations for the corresponding data set. The
rightmost column shows the best score by any system.
The last two rows show the value of the final evaluation
metric and the system rank, respectively, for each run.

following pairs are semantically equivalent for the
given domain: {‘battery terminal’, ‘terminal’} and
{‘electrical state’, ‘state’}. Therefore, we treated the
two words ‘battery’ and ‘electrical’ as special stop
words during occurrences of these pairs across the
input sentences.

4.1 STS 2015 Results

Performances of our three runs on each of the STS
2015 test sets are shown in Table 2. Each bold num-
ber represents the best score by any system on the
corresponding test set and each italic number shows
the best score among our runs. The weighted mean
of correlations and rank for each run is also shown.

Our best run (S1) did not perform the best on all
test sets (in fact it does so on only one test set), but
it maintained the best balance across all test sets.
The second best overall system run (ExBThemis-
themisexp) had a mean correlation of 79.42%. We
found the difference of 0.73% between this system
and S1 to be statistically significant at p < 0.0001
in a two-sample one-tailed z-test4 (unlike last year’s
0.05% (Agirre et al., 2014)).

The third feature in S2 did not prove useful as S2

performed worse than S1 on almost all test sets. This
result falls in line with our observation reported in
(Sultan et al., 2014a): “more often than not content
words are inherently sufficiently meaningful to be
aligned even in the absence of contextual evidence
when there are no competing pairs.”

4Standard deviation was computed from the frequency distri-
bution of correlations across the five test sets.

Year S1 Winning System
2014 0.779 0.761
2013 0.6542 0.6181
2012 0.6803 0.6773

Table 3: Performance of our top system (S1) on past STS
test sets (mean correlation with human annotations). The
score of the winning system at each event is shown on
column 3. S1 outperforms all past winning systems.

Contrary to our findings from past years’ data, the
special stop words for the answers-students test set
(discussed in the previous section) did not improve
performance – considering these words as content
words, we observed a slightly higher correlation of
0.7895 for our unsupervised system U .

4.2 Results on Past Test Sets

Table 3 shows the performance of our best system
S1 on test data from SemEval 2012–2014. To ensure
fair comparison with other systems, for years 2013
and 2014, we used only past data to train our model.
For year 2012, we used the designated training data
for test sets msrpar, msrvid and smteuroparl, and all
2012 training pairs for the other two test sets.

S1 outperformed all winning systems from 2012
through 2014. Without any domain-specific training
data, the top systems at SemEval 2013 and 2014 were
unsupervised. S1 achieved the best performance on
both despite its supervised nature.

4.3 Ablation Study

We performed a feature ablation study for S1 on STS
2015 data to determine the relative importances of its
two features. Table 4 shows the results. Columns 2
and 4 show performances of our U and S1 systems.
(Remember that the former is used as a feature by
the latter.) Column 3 shows the performance of the
second feature of S1 (i.e. cosine similarity between
the sentence vectors) as a measure of STS.

On four of the five test sets, U outperformed sen-
tence vector similarity. However, combining the two
features improved system performance on four out of
five test sets, and overall. These results indicate that
each feature captures aspects of STS that the other
does not and consequently the two complement each
other when used together.
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Data Set U Vector Sim S1

answers-forums 0.6821 0.7330 0.7390
answers-students 0.7879 0.6899 0.7725

belief 0.7325 0.6981 0.7491
headlines 0.8238 0.7511 0.8250

images 0.8485 0.8411 0.8644
Weighted Mean 0.7919 0.7494 0.8015

Table 4: Performance of each individual feature of our
best run (S1) on STS 2015 test sets. Combining the two
features improves performance on all but one test set.

5 Conclusions and Future Work

At SemEval 2014, we reported a top-performing un-
supervised STS system (Sultan et al., 2014b) that
relied only on word alignment. This year, we present
a supervised system that is statistically significantly
better than our last year’s system. Combining a vec-
tor similarity feature derived from word embeddings
with alignment-based similarity, it outperforms all
past and current STS systems. Since it makes use
of only off-the-shelf software5 and data, it is easily
replicable as well.

The primary limitation of our system is the inabil-
ity to model semantics of units larger than words
(phrasal verbs, idioms, and so on). This is an impor-
tant future direction not only for our system but also
for STS and text comparison tasks in general. Incor-
poration of stop word semantics is key to identifying
similarities and differences in subtle aspects of sen-
tential semantics like polarity and modality. Finally,
rather than studying STS as a standalone problem, the
time has come to develop algorithms that can adapt
to requirements posed by different data domains and
applications.
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Abstract 

This paper describes FCICU team participa-

tion in SemEval 2015 for Semantic Textual 

Similarity challenge. Our main contribution is 

to propose a word-sense similarity method us-

ing BabelNet relationships. In the English 

subtask challenge, we submitted three systems 

(runs) to assess the proposed method. In 

Run1, we used our proposed method coupled 

with a string kernel mapping function to cal-

culate the textual similarity. In Run2, we used 

the method with a tree kernel function. In 

Run3, we averaged Run1 with a previously 

proposed surface-based approach as a kind of 

integration. The three runs are ranked 41
st
, 

57
th

, and 20
th

 of 73 systems, with mean corre-

lation 0.702, 0.597, and 0.759 respectively. 

For the interpretable task, we submitted a 

modified version of Run1 achieving mean F1 

0.846, 0.461, 0.722, and 0.44 for alignment, 

type, score, and score with type respectively. 

1 Introduction 

Semantic Textual Similarity (STS) is the task of 

measuring the similarity between two text snippets 

according to their meaning. Human has an intrinsic 

ability to recognize the degree of similarity and 

difference between texts. Simulating the process of 

human judgment in computers is still an extremely 

difficult task and has recently drawn much atten-

tion. STS is very important because a wide range 

of NLP applications such as information retrieval, 

question answering, machine translation, etc. rely 

heavily on this task. 

This paper describes our proposed STS systems 

by which we participated in two subtasks of STS 

task (Task2) at SemEval 2015, namely English 

STS and Interpretable STS. The former calculates 

a graded similarity score from 0 to 5 between two 

sentences (with 5 being the most similar), while 

the latter is a pilot subtask that requires aligning 

chunks of two sentences, describing what kind of 

relation exists between each pair of chunks, and a 

score for the similarity between the pair of chunks 

(Agirre et al., 2015). 

 Sense or meaning of natural language text can 

be inferred from several linguistic concepts, in-

cluding lexical, syntactic, and semantic knowledge 

of the language. Our approach employs those as-

pects to calculate the similarity between senses of 

text constituents, phrases or words, relying mainly 

on BabelNet senses. The similarity between two 

text snippets is firstly calculated using kernel func-

tions, which map a text snippet to the feature space 

based on a proposed word sense similarity method. 

Besides, the sense-based similarity score obtained 

is combined with a surface-based similarity score 

to study the consolidation impact in the STS task. 

The paper is organized as follows. Section 2 

explains our proposed word sense similarity meth-

od. Section 3 describes the proposed systems. Sec-

tion 4 presents the experiments conducted and 

analyzes the results achieved. Section 5 concludes 

the paper and suggests some future directions.   
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2 The proposed Word-Sense Similarity 

(WSS) Method 

Several semantic textual similarity (STS) methods 

have been proposed in literature. Sense-based 

methods are qualified when different words are 

used to convey the same meaning in different texts 

(Pilehvar et al., 2013). Surface-based methods, 

mostly fail in identifying similarity between texts 

with maximal semantic overlap but minimal lexical 

overlap. We present a sense-based STS approach 

that produces similarity score between texts by 

means of a kernel function (Shawe-Taylor and 

Cristianini, 2004). Then, we integrate the sense-

based approach with the surface-based soft cardi-

nality approach presented in (Jimenez et al., 2012) 

to demonstrate that both sense-based and surface-

based similarity methods are complementary to 

each other.  

The design of our kernel function relies on the 

hypothesis that the greater the similarity of word 

senses between two texts, the higher their semantic 

equivalence will be. Accordingly, our kernel maps 

a text to feature space using a similarity measure 

between word senses. We proposed a WSS meas-

ure that computes the similarity score between two 

word senses (wsi, wsj) using the arithmetic mean of 

two measures: Semantic Distance (simD) and Con-

textual Similarity (simC). That is: 
 

2

),(),(
),(

jiCjiD

ji

wswssimwswssim
wswsWSS


   (1) 

2.1 Semantic Distance 

This measure computes the similarity between 

word senses based on the distance between them in 

a multilingual semantic network, named BabelNet 

(Navigli and Ponzetto, 2010). BabelNet
1
 is a rich 

semantic knowledge resource that covers a wide 

range of concepts and named entities connected 

with large numbers of semantic relations. Concepts 

and relations are gathered from WordNet (Miller, 

1995); and Wikipedia
2
. The semantic knowledge is 

encoded as a labeled directed graph, where vertices 

are BabelNet senses (concepts), and edges connect 

pairs of senses with a label indicating the type of 

the semantic relation between them. Our semantic 

distance measure is a function of two similarity 

scores: simBn and simNBn.  
                                                           
1 http://babelnet.org/ 
2 http://en.wikipedia.org/ 

The first score (simBn) is based on the distance 

between two word-senses, wsi and wsj; where, the 

shorter the distance between them, the more se-

mantically related they are. That is: 

Maxlen

wswslen
wswssim
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jiBn

),(
1),(   (2) 

where Maxlen
3
 is the maximum path length con-

necting two senses in BabelNet, and len(wsi,wsj) is 

the length of the shortest path between two senses, 

wsi and wsj, in BabelNet in both directions; i.e wsi 

 wsj, and wsj  wsi. The shortest path is calculat-

ed using Dijkstra's algorithm. 

The second score (simNBn) represents the degree 

of similarity between the neighbors of wsi and the 

neighbors of wsj, which influences the degree of 

similarity between the two senses. Hence, simNBn is 

calculated by taking the arithmetic mean of all 

neighbor-pairs similarity. That is: 
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where NSi and NSj are the sets of the most semanti-

cally related senses directly connected to wsi and 

wsj respectively in BabelNet; ni = | NSi |, and nj = | 

NSj |; and simWuP (wsk, wsl) is Wu and Palmer simi-

larity measure (Wu and Palmer, 1994). 

The values of the two scores presented above 

determine the way of calculating the semantic dis-

tance measure (simD) for word senses’ pair (wsi, 

wsj). For zero similarity of both scores, simD is 

simply equals to Wu and Palmer similarity meas-

ure; i.e. simD (wsi,wsj) = simWuP (wsi,wsj). Generally, 

for non-zero similarity scores, simD is calculated 

using the arithmetic mean of the two scores. 

2.2 Contextual Similarity 

This measure calculates the similarity between the 

word senses pair (wsi, wsj) based on the overlap 

between their contexts derived from a corpus. The 

overlap coefficient used is Jaccard Coefficient. 

That is:  

ji

ji

jiC
CC

CC
wswssim




),(          (4) 

where Ci is the set of: 1) all the word senses that 

co-occur with wsi in the corpus, and 2) all senses 

directly connected to wsi in BabelNet; Cj is similar. 

                                                           
3 We tried different values in experiments and the best was 7. 
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3 Systems Description 

3.1 Text Preprocessing 

The given input sentences are first preprocessed to 

map the raw natural language text into structured 

or annotated representation. This process includes 

different tasks: tokenization, lemmatization, Part-

of-Speech tagging, and word-sense tagging. All 

tasks except word-sense tagging are carried out 

using Stanford CoreNLP (Manning et al., 2014). 

Sense tagging is the task of attaching a sense to a 

word or a token. It is performed by selecting the 

most commonly used BabelNet sense that matches 

the part of speech (POS) of the word. Accordingly, 

we restricted sense tagging to: nouns, verbs, 

adjectives, and adverbs. 

3.2 English STS Subtask 

We submitted three systems in this subtask, named 

Run1, Run2, and Run3.  

3.2.1 Sense-based String Kernel (Run1) 

Given two sentences, s1 and s2, the similarity score 

between s1 and s2 resulted by this system is the 

value of a designed string kernel function between 

the two sentences. This kernel is defined by an 

embedded mapping from the space of sentences 

possibly to a vector space F, whose coordinates are 

indexed by a set I of word senses contained in s1 

and s2; i.e.  : s  (ws(s))wsI  F.  Thus, given a 

sentence s, it can be represented by a row vector 

as:  (s) = (ws1(s), ws2(s) … wsN(s)), in which 

each entry records how similar a particular word 

sense (wsI) is to the sentence s. The mapping is 

given by: 

 ),(max)(
1

i
ni

ws wswsWSSs


 , (5) 

where WSS(ws, wsi) is our defined word sense sim-

ilarity method ( Eq. (1) ), and n is the number of 

word senses contained in sentence s. 

The string kernel between two sentences s1 and 

s2 is calculated as (Shawe-Taylor and Cristianini, 

2004): 





Iws
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The last step remaining is normalizing the ker-

nel (i.e. range = [0,1]) to avoid any biasness to sen-

tence length. The normalized string kernel 

κNS(s1,s2) is calculated by (Shawe-Taylor and 

Cristianini, 2004): 
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Hence, ),(),( 21211 sssssim NSRun  . 

3.2.2 Sense-based Tree Kernel (Run2) 

This system applies tree kernel instead of string 

kernel. Tree kernels generally map a tree to the 

feature space of subtrees. There are various types 

of tree kernel designed in literature, among them is 

the all-subtree kernel presented in (Shawe-Taylor 

and Cristianini, 2004). The all-subtree kernel is 

defined by an embedded mapping from the space 

of all finite syntactic trees to a vector space F, 

whose coordinates are indexed by a subset T of 

syntactic subtrees; i.e.  : t  (st(t))stT  F.  The 

mapping st(t) is a simple exact matching function 

that returns 1 if st is a subtree in t, and returns 0 

otherwise. We modified the mapping of all-subtree 

kernel to capture the semantic similarity between 

subtrees instead of the structural similarity. The 

semantic similarity between subtrees is calculated 

recursively bottom-up from leaves to the root, in 

which the similarity between leaves is calculated 

using our defined word sense similarity method.  

From this point, the remaining steps are typical 

to the string kernel steps followed in the first sys-

tem. Hence, given two sentences s1 and s2, their 

similarity score is the normalized kernel value be-

tween their syntactic parse trees t1 and t2; 

i.e. ),(),( 21212 ttsssim NTRun  . 

3.2.3 Sense-based with Surface-based (Run3) 

This system provides the results of taking the 

arithmetic mean of: 1) our sense-based string ker-

nel (Run1); and 2) the surface-based similarity 

function proposed by Jimenez et al. (2012). The 

approach presented in (Jimenez et al., 2012) 

represents sentence words as sets of q-grams on 

which the notion of Soft Cardinality is applied. In 

this system, all the calculations in the approach are 

used unchanged with the following parameters set-

up: p=2, bias=0, and =0.5. Accordingly, the 

similarity function is the Dice overlap coefficient 

on q-grams; i.e.  ''/'2),( BABABAsimSC  .  

Hence, 

2
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3.3 Interpretable STS Subtask 

The interpretable STS is a pilot subtask, which 

aims to determine the parts of sentences, chunks, 

that are equivalent in meaning and the parts that 

are not. This is twofold: (a) aligning corresponding 

chunks, and (b) assigning a similarity score, and a 

type to each alignment. Given two sentences split-

ted into gold standard chunks, our system carries 

out the task requirements using our sense-based 

string kernel by considering each chunk as a text 

snippet. Firstly, the similarity between chunks of 

all possible chunk-pairs is calculated, upon which 

chunks are aligned. Where, chunk pairs with a high 

similarity score are aligned first, followed by pairs 

with lower similarity. Thereafter, for each align-

ment of chunks c1 and c2, the alignment type is 

determined according to the following rules: 

• If the similarity score between c1 and c2 is 5, 

the type is EQUI.  

• If all word senses of c1 matched the word 

senses in c2, the type is SPEC2; similarly for 

SPEC1. 

• If both c1 and c2 contain a single word sense, 

and are directly connected by an antonym re-

lation in BabelNet, then the type is OPPO. 

• If the similarity score between c1 and c2 is in 

range [3,5[, the type is SIM; while if it is in 

range ]0,3[, the type is REL. 

• If any chunk has no corresponding chunk in 

the other sentence, then the type is either 

NOALI or ALIC based on the alignment re-

striction in the subtask. 

4 Experimental Results 

4.1 English STS  

The main evaluation measure selected by the task 

organizers was the mean Pearson correlation be-

tween the system scores and the gold standard 

scores calculated on the test set (3000 sentence 

pairs from five datasets). Table 1 presents the offi-

cial results of our submissions in this subtask on 

SemEval-2015 test set. It also includes the results 

of the Soft Cardinality STS approach (SC) on the 

same test set for analysis. Our best system (Run3) 

achieved 0.7595 and ranked the 20
th
 out of 73 sys-

tems.  

We conducted preliminary experiments on the 

training dataset of SemEval-2015 for evaluating 

our sense-based string and tree kernel similarity 

methods, and the integration between each of them 

with the SC approach. The results of those experi-

ments led to the final submission of the two ker-

nels separately (Run1 and Run2) and integrating 

the string kernel method with SC (Run3). Table 2 

focuses on the results obtained from our integrated 

system (Run3) and SC approach in training, but 

includes also the recent SC approach (SC-ML) 

proposed in (Jimenez et al., 2014).  

It is noteworthy from the tables that Run3 im-

proved the SC system results on both the training 

and testing sets for all the different settings for al-

pha value in the SC approach. The possible reason 

based on our observation on the training datasets is 

that the two systems have opposite strength and 

weakness points. Figure 1 depicts the similarity 

scores resulted from Run1, Run3, and SC systems 

along with the gold standard scores (GS) on some 

sentence pairs from images dataset. It is shown 

from the figure that Run1 outperforms SC for se-

mantically equivalent sentence pairs (i.e. scores > 

3.5), while SC outperforms Run1 for less-related 

sentence pairs (i.e. score < 2). Hence, their integra-

tion by taking their average (Run3) improves the 

performance of their individual use and did not 

reduce the SC results. Also, though this integration 

is simple, it outperformed SC-ML that applies ma-

chine learning on some extracted text features. 

 
Figure 1. Sample Results of Run1, Run3, and SC on 

‘images’ Dataset of SemEval Training data. 

4.2 Interpretable STS 

There were two datasets only in the test set, name-

ly images and headlines. The results in this subtask 

are evaluated by four F1 measures for alignment, 

score, alignment type, and both score with align-

ment. The results of our submitted run (average of 

the two datasets) were 0.846, 0.461, 0.722, and 

0.44 for F1-Ali, F1-type, F1-score, and F1-

score+type respectively. 
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System answers-forums answers-students belief headlines images Mean Rank 

Run1 0.6152 0.6686 0.6109 0.7418 0.7853 0.7022 41st/73 

Run2 0.3659 0.6460 0.5896 0.6448 0.6194 0.5970 57th/73 

Run3 0.7091 0.7096 0.7184 0.7922 0.8223 0.7595 20th/73 

SC 0.7078 0.7020 0.7232 0.7966 0.8120 0.7565 - 

Table 1. Our Results on SemEval-2015 Test Datasets. 

 System deft-forum deft-news headlines images OnWN tweet-news Mean 

- Run1 0.4259 0.7271 0.6914 0.7576 0.7597 0.7227 0.6955 

- SC-ML 0.4607 0.7216 0.7605 0.7782 0.8426 0.6583 0.7209 

0.25 
Run3 0.5092 0.7479 0.7383 0.7902 0.7857 0.7744 0.7387 

SC 0.5047 0.7311 0.7362 0.7785 0.7727 0.7709 0.7307 

0.5 
Run3 0.4937 0.7531 0.7377 0.7887 0.7834 0.7723 0.7359 

SC 0.4789 0.7407 0.7374 0.7763 0.7671 0.7641 0.7257 

0.7 
Run3 0.4816 0.7541 0.7356 0.7862 0.7806 0.7681 0.7322 

SC 0.4558 0.7396 0.7321 0.7694 0.7586 0.7496 0.7158 

Table 2. Results of Run3 vs. SC on SemEval-2014 Test Datasets (SemEval-2015 Training dataset).

5 Conclusions and Future work 

Our experiments proved that sense-based and sur-

face-based similarity methods are complementary 

to each other in STS. We also realized that string 

kernel is more beneficial than tree kernel. Our po-

tential future work includes: 1) enhancing our 

sense-based kernel approach, and 2) further en-

hancement in the integration between SC and our 

sense-based approach. 
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Abstract

This work uses recursive autoencoders
(Socher et al., 2011), word embeddings
(Pennington et al., 2014), associative matrices
(Schuler, 2014) and lexical overlap features
to model human judgments of sentential
similarity on SemEval-2015 Task 2: English
STS (Agirre et al., 2015). Results show a
modest positive correlation between system
predictions and human similarity scores,
ranking 69th out of 74 submitted systems.

1 Introduction

This work uses a support vector machine (SVM)
to determine the similarity of sentence pairs, tak-
ing as input the similarity judgments of four subsys-
tems: a set of surface features, unfolding recursive
autoencoders (URAE; Socher et al., 2011), Global
Vector word embeddings (GloVe; Pennington et al.,
2014), and the Schuler (2014) associative matrix ap-
proach using the Nguyen et al. (2012) Generalized
Categorial Grammar (GCG). Evaluation is run on
SemEval 2015 task 2, Semantic Textual Similarity
(STS), which includes a corpus of human similarity
judgments. The test set consists of 3000 randomly
chosen sentence pairs from a corpus of 8500 pairs,
which spans five domains (news headlines, image
captions, student answers, forum responses, and sen-
tences about belief). Similarity scores range from 0
(no similarity) to 5 (complete semantic equivalence).

2 System Overview

All subsystems in Azmat are trained with sentences
from previous SemEval tasks 2012 - 2014 (Agirre et

al., 2012; Agirre et al., 2013; Agirre et al., 2014).
In total, 15,406 sentences were selected from the
Microsoft video, news headlines, images, and para-
phrase datasets. The main purpose of the subsys-
tems (excluding surface features) is to generate bina-
rized phrase-structure trees, which are used to create
cosine similarity features between multiple levels
of paired sentences. The URAE subsystem prepro-
cesses training sentences by parsing them with the
Stanford Parser (Klein and Manning, 2003) and then
binarizing. The associative matrix and GloVe sub-
systems use GCG parses of the training sentences,
obtained by training the Berkeley parser (Petrov and
Klein, 2007) with the Nguyen et al. (2012) GCG re-
annotated Penn Treebank. GCG parse trees are con-
verted into typed dependency graphs and binarized.
Around 2% of the sentences fail to parse; these are
omitted from the training set.

2.1 Subsystem Combination
Because vector composition methods vary across
subsystems, this work incorporates multiple subsys-
tems to give insight on which composition meth-
ods perform better at finding semantic textual sim-
ilarity. For each sentence, each subsystem generates
a single binarized phrase-structure tree with a sin-
gle embedding labeled at each node. Cosine similar-
ity scores are calculated between each node in one
tree and each node in the other tree, allowing com-
parison between input sentences at and across leaf,
phrasal and sentential levels. These similarity scores
are used to generate a feature vector for training an
SVM regressor with a linear kernel.1

1http://scikit-learn.org/stable/modules/svm.html
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In order to generalize findings across sentence
pairs with varying lengths and tree structures, how-
ever, similarity scores must be consistently ordered
for the SVM and must generate a feature vector of
consistent length. To accomodate these constraints,
each output node (n) in a tree is assigned a composi-
tion depth (dn) based on the depth of its child nodes
(a and b):

dn =

{
0 if n is a leaf
max(da, db) + 1 otherwise

(1)

Similarity between two nodes are grouped with
similarities of similar depth (x and y) into a vec-
tor (vxy), which is sorted before being concatenated
with other depth similarities2 to form the actual fea-
ture vector which will be input to the SVM:

| 0.8 0.7 0.3 . . .︸ ︷︷ ︸
(d=0 d=0)

| 0.9 0.4 0.2 . . .︸ ︷︷ ︸
(d=0 d=1)

| . . . (2)

The actual ordering of the concatenated depth
groups within the vector does not matter to the
downstream SVM classifier so long as the ordering
is consistent. Each vxy is given a constant length to
losslessly capture the similarity of balanced trees up
to 50 words in length:3

|vxy|= 50
2dx
· 50

2dy
(3)

Each depth-pair subvector is duplicated up to the
needed length before being re-sorted. This approach
is analogous to a lossless version of the dynamic
pooling used by Socher et al. (2011).

Using the above approach, each subsystem gener-
ates its own version of the vector in (2). Then each
of those vectors is concatenated together to form the
entire SVM input vector.

2.2 Surface Features

Surface features include n-gram overlap measures of
precision, recall, and F-score, where precision and

2Remember that similarities are computed between all nodes
in one tree and all nodes in the other tree, which results in some
similarities being computed between nodes of different depths.

3Consistent lengths permit each vxy to be at a consistent
position within the overall feature vector.

recall are defined as overlap from sentence A to sen-
tence B, and from sentence B to sentence A, re-
spectively. 1- through 3-grams are measured using
stemmed4 and unstemmed lexical items for each of
the 3 overlaps, resulting in a total of 18 surface fea-
tures. These features are based on those used by Das
and Smith (2009) for paraphrase detection.

2.3 Unfolding Recursive Autoencoders

Socher et al. (2011) show good results for para-
phrase detection by using recursive autoencoders
(RAEs) to compose word embeddings into phrasal
and sentential embeddings, allowing similarity met-
rics at various structural levels. Their method uses
word embeddings from Turian et al. (2010) as input,
along with a binarized phrase-structure parse from
the Stanford Parser (Klein and Manning, 2003).
Given a binarized parse tree and leaf node embed-
dings, weight matrices are learned to both encode
and decode nodes above the leaves by minimizing
reconstruction error. ‘Unfolding’ refers to a learning
objective that reconstructs the entire subtree below
each node, not just the immediate children. Once a
model is trained, the learned encoding matrix can
generate embeddings at each node for novel sen-
tences. The current work uses the pre-trained model
and code from Socher et al. (2011) to generate fea-
tures from the previous SemEval task sentences.

2.4 Associative Matrices

The associative matrix subsystem (AM) is in-
spired by a cognitively-grounded parsing model that
stores associations between words as dependency
relations (Nguyen et al., 2012; Wu and Schuler,
2011). Dependency-like associations are learned
from typed dependency graphs generated from gold
Nguyen et al. (2012) GCG annotations of Simple
Wikipedia. Dependency-based skip-grams are used
to build a co-occurrence matrix for all words, and
single value decomposition (SVD; Landauer and
Dumais, 1997) generates word embeddings with re-
duced dimensionality.

Each labeled dependency in the training data is
recorded in associative matrices by adding the outer
product of the governor and the dependent to the ma-
trix corresponding to the dependency label, creating

4NLTK Lancaster Stemmer (Bird et al., 2009; Paice, 1990)
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(

︸ ︷︷ ︸
matrix amod

·

︸︷︷︸
red

d = 0

)
=

︸︷︷︸
red things

;

︸︷︷︸
red things

�

︸︷︷︸
ball

d = 0

=

︸︷︷︸
red ball
d = 1

Figure 1: Example vector composition using learned associative matrices. The dependency triple (red, ball,
amod) can be composed by first cueing red off of the amod matrix. The resulting target vector represents a
superposition of all governors red stands in an amod relation to. The target is then pointwise multiplied with
the embedding for ball to get a final phrasal representation. Note that words are depth 0, and the composition
results in an embedding at depth 1.

an associative matrix for each dependency type:

Mdeplabel =
∑
D

(ū⊗ v̄) (4)

where (u, v, deplabel) is a labeled dependency.
To compose a phrasal embedding, the dependent

word embedding is first inner multiplied with the as-
sociation matrix for the dependency type, a process
called cueing, which returns a target vector. Cue-
ing converts the dependent word embedding into the
space of its governor, essentially representing the su-
perposed vectors of all governors that the dependent
co-occurs with. Finally, the target is pointwise multi-
plied with the governor embedding, reinforcing the
influence of the observed governor and specifying
the meaning of the phrase as a combination of the
meaning of the dependent and of its governor. See
Table 1 for an example. All unknown (OOV) word
vectors are filled with ones to avoid contaminating
products during composition. As with all subsys-
tems, a single binarized parse tree with an embed-
ding at each node is the result.

2.5 Global Vectors
Due to the success of word embeddings in word
similarity judgment tasks (Mikolov et al., 2013),
this work also makes use of Global Vector word
embeddings (GloVe; Pennington et al., 2014). 300-
dimensional GloVe embeddings are trained on 42
billion lower-cased tokens from the Stanford tok-
enized Common Crawl. These word embeddings are
combined using the same GCG structure as the AM

Model Unk ρ Known ρ Test ρ
SUGA 0.5370 0.6118 0.4512
UGA 0.4620 0.5493
SUA 0.5547 0.6233
SGA 0.5650 0.6299
SUG 0.5897 0.6566

Table 1: Model correlation with human judgments
on unknown and known domains in development as
each subsystem is omitted (included subsystems are
noted: S for surface, U for URAE, G for GloVe, and
A for AM). Final system performance on test data
for the task is also shown at right.

subsystem. Each node in the GCG tree is assigned
the embedding of that subtree’s head word, so the
‘red ball’ node is assigned the embedding for ‘ball’.
All OOV word vectors are drawn from a uniform
distribution between 0 and 1.

3 Experiments and Error Analysis

For development, 1000 pairs are held out of the
training data in jack-knifed batches. Table 1 shows
how the system performs when each subsystem is
omitted. Each model is designated using the first let-
ter of each subsystem, so the full model is named
SUGA. Table 1 (left) shows the performance of the
system when all of the held-out pairs are from a
single domain (e.g., news headlines) and thus ap-
proximates the system’s performance on unknown
domains. Table 1 (middle) shows the performance
when the held-out pairs are distributed evenly across
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Dataset Leaf Comp Cross Full
Belief 0.5435 0.4966 0.4338 0.3587

Forums 0.4871 0.4114 0.4535 0.2933
Headlines 0.6583 0.6389 0.5826 0.5264

Images 0.6276 0.5587 0.5369 0.5145
Students 0.6399 0.5454 0.5222 0.4293

Mean 0.5913 0.5302 0.5058 0.4244
Wt. Mean 0.6103 0.5493 0.5213 0.4491

Table 2: Correlations with human judgments when
only certain similarity relations are used: only word-
level similarity (leaf), only compositional non-leaf
similarity (comp), only similarity between leaf and
non-leaf nodes (cross), and permitting all similari-
ties (full). The weighted mean accounts for the pro-
portion of test cases in each dataset.

all domains and so estimates the system’s perfor-
mance on domains that are familiar. SemEval-2015
Task 2 test results are shown in Table 1 (right).5

Omission of the surface features results in a sharp
performance decrease, showing they capture com-
plementary information to other features. See UGA
model as compared to the SUGA model in Table 1.
Also observable in the table is that excluding any
one of the three main subsystems (URAE, GloVe,
AM) improves performance, which implies the full
system overfits to the training data.6 Since the com-
position method differs between all three subsys-
tems, and since URAE even uses a different under-
lying dependency structure, the overfit likely stems
from the fact that all three systems are computing
leaf/leaf similarity. Overfitting might be reduced by
either only using the leaf/leaf similarity from a sin-
gle system or by tuning the tolerance of the SVM.7

Since the development results suggest that the full
system overfits, it may be informative to test how
the different parts of the compositional framework
behave. To test this, the full SUGA system is re-
trained with some similarity relations removed (see
Table 2). When only leaf/leaf similarities are used
during training, the system performs the best. This
finding is likely due to the ubiquity of word-level

5SUGA ranked 69th of 74 systems. For full results, see
http://alt.qcri.org/semeval2015/task2/index.php?id=results

6One example of overfitting is that the larger SUGA model
performs worse than the smaller SUG model for the same known
dataset (0.6118<0.6566).

7The current work uses an untuned tolerance of 0.001.

similarity/analogy as a task, for which word embed-
dings such as GloVe were designed. System perfor-
mance declines when trained only on similarities be-
tween non-leaf nodes, suggesting the compositions
are less good at reflecting phrasal- and sentence-
level similarity. The system becomes even less accu-
rate when only using similarities between leaf nodes
and non-leaf nodes, which were hoped to enable the
system to capture similarities between more and less
general phrases (e.g., between ‘red ball’ and ‘ball’).
This finding is somewhat surprising since URAE is
thought to capture these types of similarities.

Although leaf/leaf similarities are useful, overre-
liance on non-compositional nodes causes problems
when comparing pairs with more abstract differ-
ences. For example, the system rates the following
unrelated pair as very similar despite completely dif-
ferent subject-predicate and modifier compositions:

Zoo worker dies after tiger attack
Teacher dies after attack in New Zealand

Further, while coarse feature selection (e.g., re-
moving all non-leaf features) improves perfor-
mance, it is not a foregone conclusion that composi-
tion features are completely uninformative. For ex-
ample, comparisons between nodes of similar depths
(e.g., 0-1, 4-3) might be more informative than node
comparisons of dissimilar depths (e.g., 1-7, 6-2),
so future work should determine whether there is
an information gradient when comparing composi-
tional nodes. Additionally, the fixed length chosen
in this work for each depth-paired subvector guaran-
tees a lossless representation of similarities between
balanced trees up to 50 words long, but the simi-
larity vectors involving non-leaf nodes become in-
creasingly lossy as the input trees become less bal-
anced. Therefore, the current system possibly under-
estimates the informativity of non-leaf features.

4 Conclusion

The current work combined surface lexical features
with lexical and phrasal tree node similarity fea-
tures using URAE, GLoVe, and an associative ma-
trix composition system to model sentential similar-
ity. Since phrasal similarity is likely extremely use-
ful in determining sentence similarity, this work pro-
vides insight into the use and combination of multi-
ple phrasal similarity systems.
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Abstract

We present in this paper our system developed
for SemEval 2015 Shared Task 2 (2a - En-
glish Semantic Textual Similarity, STS, and
2c - Interpretable Similarity) and the results
of the submitted runs. For the English STS
subtask, we used regression models combin-
ing a wide array of features including semantic
similarity scores obtained from various meth-
ods. One of our runs achieved weighted mean
correlation score of 0.784 for sentence similar-
ity subtask (i.e., English STS) and was ranked
tenth among 74 runs submitted by 29 teams.
For the interpretable similarity pilot task, we
employed a rule-based approach blended with
chunk alignment labeling and scoring based
on semantic similarity features. Our system
for interpretable text similarity was among the
top three best performing systems.

1 Introduction

Semantic Textual Similarity (STS) is the task of
measuring the degree of semantic equivalence for
a given pair of texts. The importance of semantic
similarity in Natural Language Processing is high-
lighted by the diversity of datasets and shared task
evaluation campaigns over the last decade (Dolan et
al., 2004; Agirre et al., 2012; Agirre et al., 2013;
Agirre et al., 2014; Rus et al., 2014) and by many
uses such as in text summarization (Aliguliyev,
2009) and student answer assessment (Rus and Lin-
tean, 2012; Niraula et al., 2013).

∗* These authors contributed equally to this work
††Work done while at University of Memphis

This year’s SemEval shared task on semantic
textual similarity focused on English STS, Span-
ish STS, and Interpretable Similarity (Agirre et al.,
2015). We participated in the English STS and In-
terpretable Similarity subtasks. We describe in this
paper our systems participated in these two subtasks.

The English STS subtask was about assigning a
similarity score between 0 and 5 to pairs of sen-
tences; a score of 0 meaning the sentences are un-
related and 5 indicating they are equivalent. Our
three runs for this subtask combined a wide array
of features including similarity scores calculated us-
ing knowledge based and corpus based methods in
a regression model (cf. Section 2). One of our sys-
tems achieved mean correlation score of 0.784 with
human judgment on the test data.

Although STS systems measure the degree of se-
mantic equivalence in terms of a score which is use-
ful in many tasks, they stop short of explaining why
the texts are similar, related, or unrelated. They
do not indicate what kind of semantic relations ex-
ist among the constituents (words or chunks) of the
target texts. Finding explicit relations between con-
stituents in the paired texts would enable a mean-
ingful interpretation of the similarity scores. To this
end, Brockett (2007) and Rus et al. (2012) produced
datasets where corresponding words (or multiword
expressions) were aligned and in the later case their
semantic relations were explicitly labeled. Simi-
larly, this year’s pilot subtask called Interpretable
Similarity required systems to align the segments
(chunks) either using the chunked texts given by the
organizers or chunking the given texts and indicat-
ing the type of semantic relations (such as EQUI for
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equivalent, OPPO for opposite) between each pair
of aligned chunks. Moreover, a similarity score for
each alignment (0 − unrelated, 5 − equivalent) had
to be assigned. We applied a set of rules blended
with similarity features in order to assign the labels
and scores for the chunk-level relations (cf. Section
3). Our system was among the top performing sys-
tems in this subtask.

2 System for English STS

We used regression models to compute final
sentence-to-sentence similarity scores using various
features such as different sentence-to-sentence simi-
larity scores, presence of negation cues, lexical over-
lap measures etc. The sentence-to-sentence similar-
ity scores were calculated using word-to-word sim-
ilarity methods and optimal word and chunk align-
ments.

2.1 Word-to-Word Similarity

We used knowledge based, corpus based, and hy-
brid methods to compute word-to-word similarity.
From the knowledge based category, we used Word-
Net (Fellbaum, 1998) based similarity methods from
SEMILAR Toolkit (Rus et al., 2013) which in-
clude Lin (Lin, 1998), Lesk (Banerjee and Pedersen,
2003), Hso (Hirst and St-Onge, 1998), Jcn (Jiang
and Conrath, 1997), Res (Resnik, 1995), Path, Lch
(Leacock and Chodorow, 1998), and Wup (Wu and
Palmer, 1994).

In corpus based category, we developed Latent
Semantic Analysis (LSA) (Landauer et al., 2007)
models1 from the whole Wikipedia articles as de-
scribed in Stefanescu et al. (2014a). We also used
pre-trained Mikolov word representations (Mikolov
et al., 2013)2 and GloVe word vectors (Pennington
et al., 2014)3. In these cases, each word was rep-
resented as a vector encoding and the similarity be-
tween words were computed as cosine similarity be-
tween corresponding vectors. We exploited the lex-
ical relations between words, i.e. synonymy and
antonymy, from WordNet 3.0. As such we computed

1Models available at http://semanticsimilarity.org
2Downloaded from http://code.google.com/p/word2vec/
3Downloaded from http://nlp.stanford.edu/projects/glove/

similarity scores between two words a and b as:

sim(a, b) =


1, if a and b are synonyms
0, if a and b are antonyms

A.B
|A||B| , otherwise

where A and B are vector representations of words
a and b respectively.

In hybrid approach, we developed a new
word-to-word similarity measure (hereafter referred
as Combined-Word-Measure) by combining the
WordNet-based similarity methods with corpus
based methods (using Mikolov’s word embeddings
and GloVe vectors) by applying Support Vector Re-
gression (Banjade et al., 2015).

2.2 Sentence-to-Sentence Similarity

We applied three different approaches to compute
sentence-to-sentence similarity.

2.2.1 Optimal Word Alignment Method
Our alignment step was based on the optimal as-

signment problem, a fundamental combinatorial op-
timization problem which consists of finding a maxi-
mum weight matching in a weighted bipartite graph.
An algorithm, the Kuhn-Munkres method (Kuhn,
1955), can find solutions to the optimum assignment
problem in polynomial time.

In our case, we first computed the similarity of
word pairs (all possible combinations) using all sim-
ilarity methods described in Section 2.1. The sim-
ilarity score less than 0.3 (empirically set thresh-
old), was reset to 0 in order to avoid noisy align-
ments. Then the words were aligned so that the
overall alignment score between the full sentences
was maximum. Once the words were aligned opti-
mally, we calculated the sentence similarity score as
the sum of the word alignment scores normalized by
the average length of the sentence pair.

2.2.2 Optimal Chunk Alignment Method
We created chunks and aligned them to calculate

sentence similarity as in Stefanescu et al. (2014b)
and applied optimal alignment twice. First, we ap-
plied optimal alignment of words in two chunks to
measure the similarity of the chunks. As before,
word similarity threshold was set to 0.3. We then
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normalized chunk similarity by the number of to-
kens in the shorter chunk such that it assigned higher
scores to pairs of chunks such as physician and gen-
eral physician. Second, we applied optimal align-
ment at chunk level in order to calculate the sentence
level similarity. We used chunk-to-chunk similarity
threshold 0.4 to prevent noisy alignments. In this
case, however, the similarity score was normalized
by the average number of chunks in the given texts
pair. All threshold values were set empirically based
on the performance on the training set.

2.2.3 Resultant Vector Based Method
In this approach, we combined vector based word

representations to obtain sentence level representa-
tions through vector algebra. We added the vectors
corresponding to content words in each sentence to
create a resultant vector for each sentence and the
cosine similarity was calculated between the resul-
tant vectors. We used word vector representations
from Wiki LSA, Mikolov and GloVe models.

For a missing word, we used vector representa-
tion of one of its synonyms obtained from the Word-
Net. To compute the synonym list, we considered all
senses of the missing word given its POS category.

2.3 Features for Regression

We summarize the features used for regression next.

1. Similarity scores using optimal alignment of
words where word-to-word similarity was cal-
culated using vector based methods using word
representations from Mikolov, GloVe, LSA
Wiki models and Combined-Word-Measure
which combines knowledge based methods and
corpus based methods.

2. Similarity score using optimal alignment of
chunks where word-to-word similarity scores
were calculated using Mikolov’s word repre-
sentations.

3. Similarity scores based on the resultant vec-
tor method using word representations from
Mikolov, GloVe, and LSA Wiki models.

4. Noun-Noun, Adjective-Adjective, Adverb-
Adverb, and Verb-Verb similarity scores
and similarity score for other words using

Data set Count Release time
SMTnews 351 STS2012-Test
Headlines 1500 STS2013-Test
Deft-forum 423 STS2014-Test
Deft-news 299 STS2014-Test
Images 749 STS2014-Test

Table 1: Summary of training data

optimal word alignment and Mikolov’s word
representations.

5. Multiplication of noun-noun similarity score
and verb-verb similarity score (scores calcu-
lated as described in 4).

6. Whether there was any antonym pair present.

7.
|Ci1 − Ci2|
Ci1 + Ci2

where Ci1 and Ci2 are the counts

of i ∈ {all tokens, adjectives, adverbs, nouns,
and verbs} for sentence 1 and 2 respectively.

8. Presence of adjectives and adverbs in first sen-
tence, and in the second sentence.

9. Unigram overlap with synonym check, bi-
gram overlap and BLEU score (Papineni et al.,
2002).

10. Presence of negation cue (e.g. no, not, never)
in either of sentences.

11. Whether one sentence was a question while the
other was not.

12. Total number of words in each sentence. Sim-
ilarly, the number of adjectives, nouns, verbs,
adverbs, and others, in each sentence.

2.4 Experiments and Results
Data: For training, we used data released in pre-
vious shared tasks (summarized in Table 1). We
selected datasets that included texts from different
genres. However, some others, such as Tweet-news
and MSRPar were not included. Tweet-news data
were quite different from most other texts. MSRPar,
being more biased towards overlapping text (Rus et
al., 2014), was also a concern.

The test set included data (sentence pairs) from
Answers-forums (375), Answers-students (750),
Belief (375), Headlines (750), and Images (750).
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Preprocessing: We removed stop words, la-
beled each word with Part-of-Speech (POS) tag and
lemmatized them using Stanford CoreNLP Toolkit
(Manning et al., 2014). We did spelling corrections
in student answers and forum data using Jazzy tool
(Idzelis, 2005) with WordNet dictionary. Moreover,
in student answers data, we found that the symbol
A (such as in bulb A and node A) typed in lower-
case was incorrectly labeled as a determiner ’a’ by
the POS tagger. We applied a rule to correct it. If
the token after ’a’ is not an adjective, adverb, or
noun, or the token is the last token in the sentence,
we changed its type to noun (NN). We then created
chunks as described by Stefuanescu et al. (2014b).

Regression: We generated various features as de-
scribed in Section 2.3 and applied regression meth-
ods in three different settings. In the first run (R1),
all features were used in Support Vector Regression
(SVR) with Radial Basis Function kernel. The sec-
ond run (R2) was same as R1 except that the features
in R2 did not include the count features (i.e., features
in 12). In the third run (R3), we used features same
as R2 but applied linear regression instead.

For SVR, we used LibSVM library (Chang and
Lin, 2011) in Weka (Holmes et al., 1994) and for the
linear regression we used Weka’s implementation.
The 10-fold cross validation results (r) of three dif-
ferent runs with the training data were 0.7734 (R1),
0.7662 (R2), and 0.7654 (R3).

Data set Baseline R1 R2 R3
Ans-forums 0.445 0.526 0.694 0.677
Ans-students 0.664 0.725 0.744 0.735
Belief 0.651 0.631 0.751 0.722
Headlines 0.531 0.813 0.807 0.812
Images 0.603 0.858 0.864 0.857
Mean 0.587 0.743 0.784 0.776

Table 2: Results of our submitted runs on test data.

The results on the test set have been presented
in Table 2. Though R1 had the highest correlation
score in a 10-fold cross validation process using the
training data, the results of R2 and R3 on the test
data were consistently better than the results of R1.
It suggests that absolute count features used in R1
tend to overfit the model. The weighted mean cor-
relation of R2 was 0.784 - the best among our three
runs and ranked 10th among 74 runs submitted by 29

Figure 1: A graph showing similarity scores predicted by
our system (R2) and corresponding human judgment in
test data (sorted by gold score).

participating teams. The correlation score was very
close to the results of other best performing systems.
Moreover, we observed from Figure 1 that our sys-
tem worked fairly well at all range of scores. The ac-
tual variation of scores at extreme (very low and very
high) points is not very high though the regression
line seems to be more skewed. However, the corre-
lation scores of answer-forum, answer-students, and
belief data were found to be lower than those of
headlines and images data. The reason might be
the texts in the former data being not well-written
as compared to the latter. Also, more contextual in-
formation is required to fully understand them.

3 Interpretable STS

For each sentence pair, participating systems had
to identify the chunks in each sentence or use the
given gold chunks, align corresponding chunks and
assign a similarity/relatedness score and type of the
alignment for each alignment. The alignment types
were EQUI (semantically equivalent), OPPO (oppo-
site in meaning), SPE (one chunk is more specific
than other), SIM (similar meanings, but no EQUI,
OPPO, SPE), REL (related meanings, but no SIM,
EQUI, OPPO, SPE), ALIC (does not have any cor-
responding chunk in the other sentence because of
the 1:1 alignment restriction), and NOALI (has no
corresponding chunk in the other sentence). Fur-
ther details about the task including type of relations
and evaluation criteria can be found in Agirre et al.
(2015).

Our system uses gold chunks of a given sentence
pair and maps chunks of the first sentence to those
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from the second by assigning different relations and
scores based on a set of rules. The system performs
stop word marking, POS tagging, lemmatization,
and named-entity recognition in the preprocessing
steps. It also uses lookups for synonym, antonym
and hypernym relations.

For synonym lookup, we created a strict synonym
lookup file using WordNet. Similarly, an antonym
lookup file was created by building an antonym set
for a given word from its direct antonyms and their
synsets. We further constructed another lookup file
for strict hypernyms.

3.1 Rules

In this section, we describe the rules used for chunk
alignments and scoring. The scores given by each
rule are highlighted.
Conditions: We define below a number of condi-
tions for a given chunk pair that might be checked
before applying a rule.
C1: One chunk has a conjunction and other does not
C2: A content word in a chunk has an antonym in
the other chunk
C3: A word in either chunk is a NUMERIC entity
C4: Both chunks have LOCATION entities
C5: Any of the chunks has a DATE/TIME entity
C6: Both chunks share at least one content word
other than noun
C7: Any of the chunks has a conjunction

Next, we define a set of rules for each relation
type. For aligning a chunk pair (A, B), these rules
are applied in order of precedence as NOALIC,
EQUI, OPPO, SPE, SIMI, REL, and ALIC. Once a
chunk is aligned, it would not be considered for fur-
ther alignments. Moreover, there is a precedence of
rules within each relation type e.g. EQ2 is applied
only if EQ1 fails and EQ3 is applied if both EQ1

and EQ2 fail and so on. If a chunk does not get any
relation after applying all the rules, a NOALIC rela-
tion is assigned. Note that we frequently use sim-
Mikolov(A, B) to refer to the similarity score be-
tween the chunks A and B using Mikolov word vec-
tors as described in Section 2.2.2.

3.1.1 NOALIC Rules
NO1: If a chunk to be mapped is a single token and
is a punctuation, assign NOALIC.

3.1.2 EQUI Rules
EQUI Rules EQ1 − EQ3 are applied uncondition-
ally. The rest rules (EQ4 − EQ5) are applied only
if none of conditions C1 - C5 are satisfied.
EQ1 - Both chunks have same tokens (5) - e.g. to
compete⇔ To Compete
EQ2 - Both chunks have same content words (5) -
e.g. in Olympics⇔ At Olympics
EQ3 - All content words match using synonym
lookup (5) - e.g. to permit⇔ Allowed
EQ4 : All content words of a chunk match and un-
matched content word(s) of the other chunk are all
of proper noun type (5) - e.g. Boeing 787 Dream-
liner⇔ on 787 Dreamliner
EQ5 : Both chunks have equal number of content
words and sim −Mikolov(A, B) > 0.6 (5) - e.g.
in Indonesia boat sinking⇔ in Indonesia boat cap-
size

3.1.3 OPPO Rules
OPPO rules are applied only when none of C3 and
C7 are satisfied.
OP1: A content word in a chunk has an antonym
in the other chunk (4) - e.g. in southern Iraq ⇔ in
northern Iraq

3.1.4 SPE Rules
SP1: If chunk A but B has a conjunction and A con-
tains all the content words of B then A is SPE of B
(4) - e.g. Angelina Jolie ⇔ Angelina Jolie and the
complex truth.
SP2: If chunk A contains all content words of chunk
B plus some extra content words that are not verbs,
A is a SPE of B or vice-versa. If chunk B has mul-
tiple SPEs, then the chunk with the maximum token
overlap with B is selected as the SPE of B. (4) - e.g.
Blade Runner Pistorius⇔ Pistorius.
SP3: If chunks A and B contain only one noun each
say n1 and n2 and n1 is hypernym of n2, B is SPE
of A or vice versa (4) - e.g. by a shop⇔ outside a
bookstore.

3.1.5 SIMI Rules
SI1: Only the unmatched content word in each
chunk is a CD type(3)-e.g. 6.9 magnitude earth-
quake⇔ 5.6 magnitude earthquake
SI2: Each chunk has a token of DATE/TIME type
(3)- e.g. on Friday⇔ on Wednesday
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Run A T S T+S

H
ea

dl
in

es Baseline 0.844 0.555 0.755 0.555
R1 0.898 0.654 0.826 0.638
R2 0.897 0.655 0.826 0.640
R3 0.897 0.666 0.815 0.642

Im
ag

es

Baseline 0.838 0.432 0.721 0.432
R1 0.887 0.614 0.787 0.584
R2 0.880 0.585 0.781 0.561
R3 0.883 0.603 0.783 0.575

Table 3: F1 scores for Images and Headlines. A, T and
S refer to Alignment, Type, and Score respectively. The
highlighted scores are the best results produced by our
system.

SI3: Each chunk has a token of LOCATION type
(3) - e.g. Syria⇔ Iraq
SI4: When both chunks share at least one noun then
assign 3 if sim-Mikolov(A, B) >= 0.4 and 2 oth-
erwise. - e.g. Nato troops⇔ NATO strike
SI5: This rule is applied only if C6 is not
satisfied. Scores are assigned as : (i) 4 if
sim-Mikolov(A, B) ∈ [0.7, 1.0] (ii) 3 if sim-
Mikolov(A, B) ∈ [0.65, 0.7) (iii) 2 if sim-
Mikolov(A, B) ∈ [0.60, 0.65)

3.1.6 REL Rules
RE1: If both chunks share at least one content word
other than noun then assign REL relation. Scores are
assigned as follows : (i) 4 if sim-Mikolov(A, B) ∈
[0.5, 1.0] (ii) 3 if sim-Mikolov(A, B) ∈ [0.4, 0.5)
(iii) 2 otherwise. e.g. to Central African Republic
⇔ in Central African capital

3.1.7 ALIC Rules
AL1: If a chunk in a sentence X (Cx) is not
aligned yet but has a chunk in another pair-sentence
Y (Cy) that is already aligned and has sim-
Mikolov(Cx, Cy) >= 0.6, assign ALIC relation to
Cx with a score of (0).

3.2 Experiments and Results
We applied above mentioned rules in the training
data set by varying thresholds for sim-Mikolov
scores and selected the thresholds that produced the
best results in the training data set. Since three runs
were allowed to submit, we defined them as follows:
Run1(R1) : We applied our full set of rules with
limited stop words (375 words). However EQ4 was

modified such that it would apply when unmatched
content words of the bigger chunk were of noun
rather than proper noun type.
Run2(R2) : Same as R1 but with extended stop
words (686 words).
Run3(R3) : Applied full set of rules with extended
stop words.

The results corresponding to our three runs and
that of the baseline are presented in Table 3. In
Headlines test data, our system outperformed the
rest competing submissions in all evaluation met-
rics (except when alignment type and score were
ignored). In Images test data, R1 was the best in
alignment and type metrics. Our submissions were
among the top performing submissions for score and
type+score metrics.

R3 performed better among all runs in case of
Headlines data in overall. This was chiefly due to
modified EQ4 rule which reduced the number of
incorrect EQUI alignments. We also observed that
performance of our system was least affected by
size of stopword list for Headlines data as both R1

and R2 recorded similar F1-measures for all evalua-
tion metrics. However, R1 performed relatively bet-
ter than R2 in Images data-particularly in correctly
aligning chunk relations. It could be that images
are described mostly using common words and thus
were filtered by R2 as stop words.

4 Conclusion

In this paper we described our submissions to the
Semantic Text Similarity Task in SemEval Shared
Task 2015. Our system for the English STS subtask
used regression models that combined a wide array
of features including semantic similarity scores ob-
tained with various methods. For the Interpretable
Similarity subtask, we employed a rule-based ap-
proach for aligning chunks in sentence pairs and as-
signing relations and scores for the alignments. Our
systems were among the top performing systems in
both subtasks. We intend to publish our systems at
http://semanticsimilarity.org.
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Abstract
This paper describes our Align-and-
Differentiate approach to the SemEval
2015 Task 2 competition for English Seman-
tic Textual Similarity (STS) systems. Our
submission achieved the top place on two
of the five evaluation datasets. Our team
placed 3rd among 28 participating teams,
and our three runs ranked 4th, 6th and 7th
among the 73 runs submitted by the 28
teams. Our approach improves upon the
UMBC PairingWords system by semantically
differentiating distributionally similar terms.
This novel addition improves results by 2.5
points on the Pearson correlation measure.

1 Introduction

Since its inception in 2012, the annual Semantic
Textual Similarity (STS) task has attracted and in-
creasing amount of interest in the NLP community.
The task is to measure the semantic similarity be-
tween two sentences using a scale ranging from 0
to 5 (Agirre et al., 2012; Agirre et al., 2013; Agir-
rea et al., 2014). In this task, 0 means unrelated
and 5 means complete semantic equivalence. For
example, the sentence “China’s new PM rejects US
hacking claims” is semantically equivalent to the
sentence “China Premier Li rejects ‘groundless’ US
hacking accusations” even though there are many
word level differences between the two sentences.

Improvements in the STS task can advance or
benefit many research areas, such as paraphrase
recognition (Dolan et al., 2004), automatic ma-
chine translation evaluation (Kauchak and Barzi-
lay, 2006), ontology mapping and schema matching

(Han, 2014), Twitter search (Sriram et al., 2010), im-
age retrieval by captions (Coelho et al., 2004) and
information retrieval in general.

Measuring semantic similarity is difficult because
it is relatively easy to express the same idea in very
different ways. Both word choice and word order
can have a great impact on the semantics of a sen-
tence, or not at all. For example, the sentences “A
woman is playing piano on the street” and “A lady
is playing violin on the street” have a semantic sim-
ilarity score of only 2, because pianos are not vio-
lins so the two events in the sentences must be dif-
ferent. This is problematic because common solu-
tions, such as bag-of-words representations, parse
trees, and word alignments measure word choice and
word order. We improve upon existing word choice
approaches with better measures to semantically dif-
ferentiate distributionally similar terms, and by us-
ing these measures to also improve the word align-
ment.

Our solution is an Align-and-Differentiate ap-
proach, in which we greedily align words between
sentences, before penalizing non-matching words
in the differentiate-phase. Our system improves
upon the successful UMBC PairingWords system
by about 2 points of Pearson’s Correlation measure.
The success of the PairingWords system is largely
due to their high-quality distributional word similar-
ity model1 described in (Han et al., 2013). The dis-
tributional similarity model can tell that “woman”
and “lady” in the above example are highly similar,
which is usually correct, but it also says that “pi-

1See http://swoogle.umbc.edu/SimService/
for a demo.

172



ano” and “violin” are very similar, which in many
contexts is incorrect. While distributional similarity
measures can be criticized for producing high simi-
larity scores for antonyms and contrasting words, we
find that this property is actually advantageous when
performing word alignment between two sentences.
We take advantage of this property by first aligning
with distributional similarity, and then differentiate
by penalizing alignments of words that are semanti-
cally disjoint (Ex: antonyms). This technique to first
align and then differentiate is our key improvement.

The remainder of the paper proceeds as follows.
Section 2 briefly revisits the UMBC PairingWords
system. Section 3 presents our new Align-and-
Differentiate approach. Section 4 presents and dis-
cusses our results.

2 UMBC PairingWords System

The PairingWords system (Han et al., 2013) uses
a state-of-the-art word similarity measure to align
words in the sentence pair and computes the STS
score using a simple metric that combines individ-
ual term alignment scores.

Figure 1: Overview of UMBC PairingWords system.

2.1 Precompute Word Similarities

First, a distributional model was built on an En-
glish corpus2 of three-billion words and separated

2The UMBC WebBase corpus is available for download at
http://ebiq.org/r/351

into paragraphs. Words are POS tagged and lem-
matized. A small context window of ±4 words is
used to count word co-occurrences. The vocabulary
has a size of 29,000 terms, which includes primar-
ily open-class words (i.e. nouns, verbs, adjectives
and adverbs). Singular Value Decomposition (SVD)
(Landauer and Dumais, 1997; Burgess et al., 1998)
has been used to reduce the 29K word vectors to 300
dimensions. The distributional similarity between
two words is measured by the cosine similarity of
their corresponding reduced word vectors. The dis-
tributional similarity is then enhanced with WordNet
(Fellbaum, 1998) relations in eight categories (See
(Han et al., 2013)). Finally it is wrapped with sur-
face similarity modules to handle the matching of
out-of-vocabulary words.

2.2 NLP Pipeline

The Stanford POS tagger is applied to tag and lem-
matize the input sentences. A predefined vocab-
ulary, POS tags, and regular expressions are used
to recognize multi-word terms including noun and
verb phrases, proper nouns, numbers and time.
Stop words are ignored. The stop word list was
augmented with adverbs that occurred more than
500, 000 times in the corpus.

2.3 Word Alignment Between Two Sentences

The alignment function g for a target word w in one
sentence S is simply defined as its most similar word
w′ in the other sentence S′ with respect to the afore-
mentioned word similarity measure. See Equation 1.

g(w) = argmax
w′∈S′

sim(w,w′) (1)

2.4 Score

The PairingWords systems yield an STS score in the
range [0, 1] with a linearly scaled definition corre-
sponding to the standard STS score. This score is
computed using the word level semantic similarity
of the aligned words. The PairingWords system uses
a similarity threshold to decide whether a term can
be aligned. If a term cannot be aligned then a penalty
is imposed. Therefore, the PairingWords STS score
is the result of subtracting the penalty score P from
the overall term alignment score T , which is defined
in Equation 2.
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T =

∑
t∈S1

sim(t, g(t))

2 · |S1| +

∑
t∈S2

sim(t, g(t))

2 · |S2| (2)

where S1 and S2 are the sets of words/terms in two
input sentences.

3 Align-and-Differentiate Approach

Our system extends the UMBC PairingWords sys-
tem by differentiating distributionally similar terms,
resulting in a conceptually new framework to tackle
the STS challenge. Figure 2 illustrates our system.
After preprocessing there are four main algorithms:
align, differentiate, score, and rescore.

Figure 2: Our system overview. Blue components (Dif-
ferentiate and Rescore) mark the most novel additions to
the PairingWords system.

3.1 Precompute Word Similarities

We reused the distributional model built for the
UMBC PairingWords system.

3.2 NLP Pipeline

In addition to the basic NLP techniques used by the
PairingWords in Section 2.2 we use the Stanford de-

pendency parser to translate the input sentences into
their dependency graph representation.

3.3 Word Alignment Between Two Sentences

For alignment we upgraded the PairingWords ap-
proach (see Equation 1) with candidate disambigua-
tion. If multiple candidates (ambiguity) exist, we
use their neighboring words in the sentences and de-
pendency graphs to carry out disambiguation. For
two mapping candidates, we found their neighbor-
ing words in terms of dependency relations. Then
we choose the candidate with the highest neighbor
similarity. This alignment method is directional. In
domains for which we have high confidence that
the dependency parser will correctly parse both sen-
tences, we require mutual agreement in both direc-
tions. Mutual alignment is computed by finding g
such that g(w) = w′ and g(w′) = w.

The similarity function sim(w,w′) is the word
similarity function described in Section 2.1.

Following the PairingWords system, we use a
similarity threshold of .05 to determine whether a
vocabulary word3 has at least some minimum sim-
ilarity with any of the words in the other sentence.
We call a word Out Of Context (OOC) if the thresh-
old is not satisfied. The appearance of OOC words
could be an indicator of different sentence seman-
tics, as illustrated in the example “A beautiful red
car” vs. “A beautiful red rose” where “car” is an
OOC word with respect to the other sentence. The
impact of OOC words to semantic equivalence is
disproportionately high. Therefore, we penalize se-
mantic similarity scores in proportion to the number
of OOC words.

However, we observed that if OOC words oc-
cur because there are additional details, then these
words should not be penalized. For example, in the
two sentences “Matt Smith to leave Doctor Who af-
ter 4 years” and “Matt Smith quits Doctor Who”, the
word ‘year’ is an OOC word that does not signifi-
cantly reduce the semantic equivalence. We found
that many of these extraneous and benign OOC
words do not represent physical objects, i.e. some-
thing that can be touched. Hence, we chose to
only penalize OOC words that are physical objects.

3A vocabulary word means a word in our vocabulary of 29k
words
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WordNet has a synset physical objects and we use
its descendants to collect the set of physical objects.

3.4 Differentiate

This subsection defines and then describes how we
identify Disjoint Similar Concepts.

The semantic similarity of two words is the degree
of semantic equivalence between the two words. We
may also say, it is the ability to substitute one term
for the other without changing the meaning of a sen-
tence.

Many distributionally similar terms are not se-
mantically similar. Examples include “good” vs
“bad”, “cat” vs “dog”, “Thuesday” vs “Monday”,
“France” vs “England” and etc. Existing research
on distributional models has mainly been focused on
studying antonyms or contrasting words (Moham-
mad et al., 2008; Scheible et al., 2013; Mohammad
et al., 2013). However, as shown by the above exam-
ples, the scope of distributionally similar but not se-
mantically similar terms goes far beyond antonyms.
Hereafter, we refer to this new category of terms as
Disjoint Similar Concepts (DSCs).

To the best of our knowledge, collecting Disjoint
Similar Concepts is a novel research problem. Gen-
eral statistical methods are not easily available, but
we can extract such information from human-crafted
ontologies, such as WordNet. For this work, we
identify Disjoint Similar Concepts as siblings under
a common parent in an ontology, such as WordNet.
For example, in the electronics domain, we can as-
sert that smart phone and tablet are DSCs if they are
siblings with the same parent electronics in the on-
tology.

We use a semi-automatic method to produce sev-
eral sets of potential DSCs for our STS system. The
sets include animals, countries, vehicles, weekdays,
colors and etc. First, we decide what types of DSCs
are likely to appear in a dataset. For example, an-
imals and vehicles will likely appear in the images
training dataset.

We penalize each aligned word pair that has Dis-
joint Similar Concepts. If both words are antonyms
then they are DSCs. If both words share the same
hypernym in WordNet, and that hypernym is a po-
tential DSC, then they are DSCs. Otherwise, the
concepts are considered semantically similar.

3.5 Score

We create a base similarity score Ei, and then ap-
ply penalties for OOC wordsOi and Disjoint Similar
Concepts Di.

Ti =
Ei −Oi −Di

2 · |Si| i ∈ {1, 2} (3)

Ei =
∑

〈t,g(t)〉∈SSi

sim(t, g(t)) i ∈ {1, 2} (4)

Oi =
∑

t∈OOCi

α(t) i ∈ {1, 2} (5)

Di =
∑

〈t,g(t)〉∈DSCi

β(〈t, g(t)〉) i ∈ {1, 2} (6)

STS = T1 + T2 (7)

Our primary method of producing the STS score
is shown in Equations 3 to 7. The method is based
on the directional alignment function described in
Section 3.3. Ei is the base score where i indicates
the alignment direction and SSi represents the col-
lection of pairs of semantically similar terms for di-
rection i. Oi is the sum of penalties applied to OOC
terms for direction i. In our current system, the func-
tion α(t) has a constant value 1.0. Di is the sum of
penalties applied to Disjoint Similar Concepts for di-
rection i. We normally set β(〈t, g(t)〉) to 0.5 but we
can also tune β coefficient depending on different
types of Disjoint Similar Concepts (e.g.animal and
color), if a training dataset is available.

3.6 Rescore by Learning STS Offset Scores

We learn an offset score to account for and correct
systemic biases in the Align and Differentiate algo-
rithm using supervised machine learning. For do-
mains with labeled data we used bag-of-words Sup-
port Vector Machines (SVMs) in regression mode,
with a linear kernel, to compute an offset score
measuring the difference between our Equation 7
STS score and the gold standard training STS score.
We add this offset score to the Equation 7 STS
score. This process improved our Pearson Corre-
lation scores from .7936 to .8162 on the 2014 STS
data in a ten fold cross-validation setting.

The SVM was trained on a length normalized
bag-of-words with additional non-normalized meta
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Dataset alpha beta delta
headlines (750 pairs) 0.8342 (2) 0.8342 0.8417 (1)
images (750 pairs) 0.8701 (2) 0.8713 (1) 0.8634
students (750 pairs) 0.7827 (2) 0.7819 0.7825
forums (375 pairs) 0.6589 0.6586 0.6639
belief (375 pairs) 0.7029 0.6995 0.6952
weighted mean 0.7920 (4) 0.7916 (7) 0.7918 (6)

Table 1: Pearson correlation and STS 2015 Competition
Rank of our three runs on test sets.

features for (1) the length difference between sen-
tence pairs, (2) the percentage of exact word to word
matches between both sentences, and (3) the STS
score produced in Equation 7. The bag-of-words
feature values were calculated by taking the abso-
lute value of the difference between the number of
times a word occurred in the first sentence versus
the number of occurrences in the paired sentence.
The bag-of-words was created with both words and
bi-gram word sequences.

4 Results and Discussion

Table 1 shows the official results of our three runs,
alpha, beta and delta, in the 2015 STS task. Each en-
try supplies a run’s Pearson correlation on a dataset
and the rank of the run among all 73 runs submitted
by the 28 teams. The last row shows the weighted
mean and the overall ranks of our three runs.

The alpha run was produced by applying the
align-and-differentiate algorithm to the five datasets
with the same parameter settings. The beta run was
produced without penalizing OOC terms, except for
the images dataset. The result for penalizing OOC
terms are slightly better, but are just shy of a 95%
confidence interval (using paired T-tests). On the
images dataset, we exploited dependency structure
in the align and differentiate algorithm. We use
the supervised ML model to rescuer our STS scores
only for the delta run on the Headlines and Images
datasets.

Our results on the forums and beliefs datasets
were surprisingly much lower than other datasets
due to the PairingWords system’s poor baseline per-
formance on these datasets as shown in Table 2. We
speculate that this drop in performance is caused by
the PairingWords system ignoring words that are not
nouns, verbs, adjectives and limited adverbs. These
include common meaningful words such as “how”
and “why” in both datasets.

System headline image student forum belief mean
UMBC .8059 .8431 .7588 .6646 .6996 .7725
alpha .8342 .8701 .7827 .6589 .7029 .7920

Table 2: Our approach improves results by 2.5% in Pear-
son’s correlation.

Our approach of semantically differentiating dis-
tributionally similar terms, as shown in Table 2 is a
statistically significant improvement at the 95% con-
fidence interval.
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Abstract

In Semantic Textual Similarity, systems rate
the degree of semantic equivalence on a
graded scale from 0 to 5, with 5 being the most
similar. For the English subtask, we present
a system which relies on several resources for
token-to-token and phrase-to-phrase similarity
to build a data-structure which holds all the in-
formation, and then combine the information
to get a similarity score. We also participated
in the pilot on Interpretable STS, where we ap-
ply a pipeline which first aligns tokens, then
chunks, and finally uses supervised systems to
label and score each chunk alignment.

1 Introduction

In Semantic Textual Similarity (STS), systems rate
the degree of semantic equivalence on a graded scale
from 0 to 5, with 5 being the most similar. We partic-
ipated in two of the subtask for STS in 2015 (Agirre
et al., 2015). For the English subtask, we present a
system which relies on several resources for token-
to-token and phrase-to-phrase similarity to build a
data-structure which holds all the information, and
then combine the information to get a similarity
score. We also participated in the pilot on Inter-
pretable STS, where we apply a pipeline which first
aligns tokens, then chunks, and finally uses super-
vised systems to label and score each chunk align-
ment.

Note that some of the authors participated in the
organization of the task. We scrupulously separated
the tasks in such a way that the developers of the
systems did not have access to the test sets, and that
they only had access to the same training data as the
rest of the participants.

2 Cubes for English STS

In this section we describe a novel approach to com-
pute similarity scores between two sentences using
a cube where each layer contains token-to-token and
phrase-to-phrase similarity scores from a different
method and/or resource. Our assumption is that we
can obtain better results using this similarity scores
together than independently.

2.1 Building Cubes
The first step is to produce parse trees for the sen-
tences using the Stanford Parser (Toutanova et al.,
2003). After parsing the sentences each pair of sen-
tences can be represented by a NxM matrix, being N
is the number of nodes of the parse tree of the first
sentence, and M the number of nodes of the parse
tree of the second sentence. Note that some nodes
(terminals) correspond to words, while others (non-
terminals) represent phrases. We can have as many
matrices as we wish, and fill them with different sim-
ilarity scores, forming a cube.

In this first attempt we used three layers:

1. Euclidean distance between Collobert and We-
ston Word Vector (Collobert and Weston,
2008). The vector representations for each
non-terminal node in the tree were learnt us-
ing Recursive Autoencoder (RAE) (Socher et
al., 2011).

2. Euclidean distance between Mikolov Word
Vectors (Mikolov et al., 2013a; Mikolov et
al., 2013b). To compute the vector represen-
tations for each non-terminal node in the tree,
we summed the vectors and normalize them di-
viding by the number of words in the phrase.

3. PPDB Paraphrase database values (Ganitke-
vitch et al., 2013). We used the XXXL ver-
sion. In this case both words and some phrases
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are contained in the resource. This resource
yields conditional probabilities. As our scores
are undirected, in case the database contains
values for both directions, we average.

The first two produce a dense layer, where most
of the cells have a value. The third one produces a
sparse layer, where only the pairs occurring in the
resource have a value. Note that some of the phrases
in PPDB do not correspond to a node in the tree. In
this case, we add extra columns and rows.

2.2 Producing STS Score
Before computing a similarity score we flatten our
cube into a single layer, where each of the element
in the new NxM matrix is the maximum between
the values for that position across all the layers. We
do that because we studied the different resources
and we think that these resources have less False
Positives (FP) than False Negatives (FN). In other
words, if one of the resources says that something
is very similar we trust on it and take that similarity
score instead of the other (even if they are very low).
Moreover, our assumption is that the final similarity
score is specially based in similarities between to-
kens/phrases in the sentences, and not on dissimilar-
ities.

Once we have this matrix, we compute the final
STS score using the scoring function seen in (Mi-
halcea et al., 2006).

sim(S1, S2) =
1

2

(∑
w∈S1

(maxSim(w∈S2) ∗ idf(w))∑
w∈S1

idf(w)

+

(∑
w∈S2

(maxSim(w∈S1) ∗ idf(w))∑
w∈S2

idf(w)

)

2.3 Results
Due to time constraints we submitted a single run,
which ranked 54 among 74 runs. We expect to im-
prove this results adding more layers and combining
them using more sophisticated aggregation methods.

3 Participating on the Interpretable STS
Pilot Subtask

The SemEval 2015 STS task offered a new pilot sub-
task on interpretable STS1. Given a sentence pair,

1http://alt.qcri.org/semeval2015/task2/
index.php?id=proba

the objective of the subtask is to align segments per-
taining to one sentence with the segments pertaining
to the other sentence. The whole subtask is in deep
described in (Agirre et al., 2015).

In sum, every alignment may consist of a similar-
ity score and a relatedness tag. The similarity score
is a real number bounded by [0,5] where 0 means
no relation at all and 5 means complete equivalence.
As regards the relatedness tag, there exists a set of
categorical values to choose on, such as: equiva-
lence, opposition, specialization (direction is rele-
vant), similarity and one more tag for other kind of
relatedness.

For the case of unaligned segments there are an-
other two possible categorical values. The one for
declaring segments unaligned (not aligned); and
the other to declare that the segment related to the
current segment has already been aligned (context
alignment). Notice that due to the limitations of
the current pilot the only way to align segments
is making 1:1 alignments. Thus, 1:N alignments
are simulated making an 1:1 alignment and sev-
eral context alignments. This concept is relevant
to the work done in section 3.1.2 when we extend
the Hungarian-Munkres (Clapper, 2009) algorithm
to identify already aligned chunks.

In addition, factuality or polarity connotations can
be added as requested to the previously mentioned
tags. Two different scenarios are provided in the pi-
lot subtask, the first one makes gold standard seg-
ments available for participants (Gold Chunks or GS
scenario); and, the second one, only provides sen-
tence raw text (System Chunks or SYS scenario).

In conclusion, the first pilot on interpretable STS
seems challenging because participating systems
must not only discover and score the relatedness be-
tween segments, but also identify the inner relation
between them.

3.1 System Description
This section describes the principal algorithm and
the distinct modules it uses, modules are further de-
scribed in the following subsections (3.1.1, 3.1.2,
3.1.3 and 3.1.4). System configurations (runs) used
to submit results are described in section 3.1.5.

The system makes use of several modules to
identify segments over sentence pairs, and then,
make alignments between them. First of all, the
input handling and chunking module is responsible
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for linguistically processing the given input, and for
creating the internal representation of the sentences.
Once the input is processed the alignment module
identifies related and unrelated segments among sen-
tences. Finally, by using segment pair based fea-
tures the classification module and the scoring mod-
ule produce respectively the final relatedness tag and
the similarity score.

3.1.1 Input Handling and Chunking Module
We use the Stanford NLP parser (Klein and

Manning, 2003) to linguistically process input sen-
tences and register lowercased token information
(lemma, part of speech analysis and dependency
structure is also needed for the following module).
The next step consists of determining segments or
token regions. This information is gathered accord-
ing to the specified scenario (GS or SYS). In the case
of the GS scenario the baseline obviously uses gold
standard input; and, in the SYS scenario the baseline
uses the ixa-pipes-chunker (Agerri et al., 2014).

Ixa-pipes-chunk has been trained using the
Apache OpenNLP API (OpenNLP, 2011), which is a
maximum entropy chunker. Nevertheless, the chun-
ker’s output has been improved using simple regular
expressions to fit to our task proposal. Actually, we
developed four rules to optimize how conjunctions,
punctuations and prepositions are handled. In brief,
the developed rules try to join consequent chunks
forming new chunks consisting of the previous ones,
for instance, we found significant improvement if
prepositional phrases followed by a nominal phrase
were unified as a single chunk. We also developed
some rules to unify nominal phrases separated by
punctuations or conjunctions, or a combination of
those.

3.1.2 Alignment Module
The alignment module mainly focuses on the

work done by the monolingual word aligner de-
scribed in (Sultan et al., 2014), and Hungarian-
Munkres algorithm.

The monolingual word aligner is a simple and
ready-to-use system that has demonstrated state-of-
the-art performance. To begin with we start by con-
structing the token to token link matrix in which each
element at position (i,j) determines that there exists
a link between token i (from sentence 1) and token j
(from sentence 2). A link exists in the matrix if and

only if the monolingual word aligner has determined
that both tokens are related.

Then, the system uses token regions to group in-
dividual tokens into segments, and calculates the
weight between every segment in the sentence pair.
The weight among two segments is proportional to
the number of links that interconnect tokens inside
those segments. In other words, by summing regions
we collapse the token to token link matrix onto a
chunk to chunk link matrix. After that, we use the
mentioned Hungarian-Munkres algorithm to dis-
cover which are the segments (x,y) which score the
highest weight (link ratio); but also, we extend it to
discover which are the segments that are linked to
either segment x or segment y, but not with a max-
imum alignment ratio. This processing to find not-
maximal weights is essential to effectively assign the
context alignment tag for 1:N relations. In addition,
the system is also aware of chunks that have been
left unaligned.

3.1.3 Classification Module
The system can use one of the following ap-

proaches to assign relatedness tags to segment pairs:
the naive approach and the machine learning ap-
proach. The naive approach directly assigns the
tag as a majority classifier would do, that is: for
the segments with highest weight it always assigns
the equivalence tag, for the segments that are linked
with lower weights it always assigns the context
alignment tag, and for the not aligned segments it
always assigns the not aligned tag.

The machine learning approach makes use of
the segment-pair to calculate a total of 21 features
to improve the tag assignment. The objective of
the induced model is to refine the output given by
the naive approach only for segment pairs tagged as
equivalent. The features used to induce the model
can be classified in the following groups: Jaccard
overlap related features, segment length related fea-
tures, WordNet similarity related features among
segment heads, WordNet depth related features, and
other kind of features obtained by means of the cube
described in section 2.

To induce the model we use the Support Vec-
tor Machine (SVM) implementation described in
(Chang and Lin, 2011) under the latest experimental
version of Weka (Hall et al., 2009) using randomly
shuffled 5-fold cross validation. We indistinctly join
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the available datasets and grid search to optimize the
cost and gamma parameters.

3.1.4 Scoring Module
To assign segment pair similarity scores the sys-

tem can also use two distinct approaches: the naive
approach and the cube based regression approach.
The naive scorer directly assigns a certain score to
each one of the tags, which has been previously as-
signed using the naive tagger: for equivalence tags it
assigns a score of 5 and for not aligned and context
aligned tags it assigns ’NIL’. (as requested by the
guidelines). The regression approach uses the cube
described in section 2 to improve the score given to
segment pairs tagged by the machine learning tag-
ger. Its returning value is used directly as the value
for the pair similarity score.

3.1.5 Submitted Runs
Even the subtask allows the submission of up to

three runs, we only submitted two distinct configu-
rations, named run1 and run2. run1 and run2 are
mainly the same system, but run1 makes use of the
naive approaches for both classification and scor-
ing tasks; whereas run2 makes use of the machine
learning approach for the tag assignment and the
cube based regression approach for the scoring as-
signment.

3.2 Result Analysis

Participating runs were evaluated using the official
scorer provided by task organizers, which computes
four distinct metrics: F1 ALI (segment pair align-
ment correctness regardless of the tag), F1 Type
(segment pair alignment correctness taking tag into
account), F1 Score (segment pair alignment correct-
ness taking score into account) and F1 Type + Score
(segment pair alignment correctness taking tag and
score into account).

3.2.1 Development
We developed two runs as above described using

the training data provided by task organizers. Train-
ing data consists of two datasets (images dataset and
headlines dataset) with 750 sentence pairs each. We
built and evaluated our system using 5-fold cross
validation and using a grid search optimization to
tune the SVM parameters. Results for both runs are
shown in table 1.

I GS Ali Type Score Type + Score
Run1 0.8942 0.5115 0.7776 0.5115
Run2 0.8942 0.7408 0.8175 0.6934
I SYS Ali Type Score Type + Score
Run1 0.8379 0.4734 0.7271 0.4734
Run2 0.8379 0.6499 0.7627 0.6106
H GS Ali Type Score Type + Score
Run1 0.8920 0.5740 0.7869 0.5738
Run2 0.8920 0.6908 0.8133 0.6544

H SYS Ali Type Score Type + Score
Run1 0.7650 0.4808 0.6707 0.4808
Run2 0.7650 0.5210 0.6862 0.4902

Table 1: Development results for both datasets in the
two scenarios. ’I’ stands for the images dataset, and ’H’
stands for the headlines dataset.

The table shows that run2 outperforms run1 in all
of the scenarios, which was expected as run1 is us-
ing the naive approach for both: the relatedness tag
and the similarity score assignment. Notice that both
runs obtain the same F1 Alignment score as both
runs are using the same input handling and chunk-
ing module. Without the shadow of a doubt, we can
observe that for both datasets the F1 alignment is
noticeable higher in the GS scenario than in the SYS
scenario. Moreover, as evaluation measures are in-
cremental, F1 Type, F1 Score and F1 Type + Score
are also lower for the SYS scenario.

It is also important to mention that the difference
in performance (F Type+Score) between run1 and
run2 is more noticeable in the images dataset, ac-
tually, for the headlines dataset in the SYS scenario,
the difference between both runs is under 0.01. This
difference increases up to 0.08 for the headlines
dataset in the GS scenario.

3.2.2 Test

The test dataset was composed of 378 sentence
pairs for the headlines dataset and of 375 sentence
pairs for the images dataset. Table 2 illustrates the
results obtained by run1 and run2. The results ob-
tained for the test datasets follow in general the same
tendency as the one seen for the development. In
fact, run2 most of the times outperforms run1;
being this difference in performance more notice-
able in the images dataset than in the headlines
dataset. It might be necessary to further analyze the

181



I GS Ali Type Score Type + Score

Baseline 0.8388 0.4328 0.721 0.4326
Run1 0.8846 0.4749 0.7709 0.4746
Run2 0.8846 0.6557 0.8085 0.6159

MAX Par 0.887 0.6143 0.7968 0.5964
AVG Par 0.8193 0.5004 0.7197 0.4748

I SYS Ali Type Score Type + Score

Baseline 0.706 0.3696 0.6092 0.3693
Run1 0.8388 0.445 0.728 0.4447
Run2 0.8388 0.6019 0.7634 0.5643

MAX Par 0.8336 0.5759 0.7511 0.5634
AVG Par 0.67 0.4086 0.5892 0.3912

H GS Ali Type Score Type + Score

Baseline 0.8448 0.5556 0.7551 0.5556
Run1 0.8991 0.5882 0.8031 0.5882
Run2 0.8991 0.6402 0.8211 0.6185

MAX Par 0.8984 0.6666 0.8263 0.6426
AVG Par 0.8365 0.5576 0.7468 0.5381
H SYS Ali Type Score Type + Score

Baseline 0.6701 0.4571 0.6066 0.4571
Run1 0.7709 0.5019 0.6892 0.5019
Run2 0.7709 0.4865 0.7014 0.4705

MAX Par 0.782 0.5154 0.7024 0.5098
AVG Par 0.6870 0.4498 0.6094 0.4335

Table 2: Test results for both datasets in the two scenar-
ios. ’I’ stands for the images dataset, ’H’ stands for the
headlines dataset and ’Par’ stands for participants.

unique scenario in which run1 obtains higher accu-
racy than run2 (Headlines SYS), but actually, results
have been also very close at development in this con-
text.

The baseline seems to be not that trivial as it
sometimes outperforms participants average perfor-
mance; but as we can see both of our runs obtain
higher accuracy than the baseline, in both cases by
large margin. For example, in the images dataset
the difference between the baseline and the second
run is 0.18 and 0.19 respectively for the GS and the
SYS scenario. Regarding other participants, we can
conclude that our runs obtain quite good results, spe-
cially for the images dataset where run2 obtains the
highest score.

4 Conclusions and Future Work

Through this paper we have described the systems
that participated in the Semantic Textual Similarity
task 2A (English STS) and 2C (Interpretable STS).
Our main focus in the English subtask was on de-
ploying our idea of building a cube with similarity
information from several sources. We are currently
working on more layers, including Random Walks
over WordNet and Wikipedia, string similarity (Fer-
rone and Zanzotto, 2014), and also a special layer
to deal with numbers. Additionally, we are consid-
ering the idea of dissimilarity layers, for instance,
adding information about negation and antonymy.
We are also developing new methods to combine
these knowledge to generate the final STS score.

Regarding the interpretable STS system, this was
the first time a pilot was put in place. We obtained
excellent results, even if we had very little time to
develop the system. Future work will focus on fur-
ther improvements. For instance, our experiments
showed that grouping chunks lead to a considerable
improvement for the F1 Type evaluation score. We
would also like to incorparate factuality or polarity
information.

Although our original idea was to combine the
cube and the interpretable system, we did not have
time for that. In one direction, we would like to in-
corparate some of the semantic similarity informa-
tion in the cube into our system, including similarity
between chunks. On the other direction, the infor-
mation from the similarity module might be a good
feature to improve the overall STS score.
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Abstract

ThisThis work is licensed under a Creative
Commons Attribution 4.0 International Li-
cence. Page numbers and proceedings footer
are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/
paper describes the second version of the
ASAP system1 and its participation in the
SemEval-2015, task 2a on Semantic Textual
Similarity (STS). Our approach is based on
computing the WordNet semantic relatedness
and similarity of phrases from distinct sen-
tences. We also apply topic modeling to get
topic distributions over a set of sentences as
well as some linguistic heuristics. In a special
addition for this task, we retrieve named
entities and compound nouns from DBPedia.
All these features are used to feed a regression
algorithm that learns the STS function.

1 Introduction

Semantic Textual Similarity (STS), which is the task
of computing the similarity between two sentences,
has received an increasing amount of attention in re-
cent years (Agirre et al., 2012; Agirre et al., 2013;
Marelli et al., 2014a; Agirre et al., 2014; Agirre et
al., 2015). Our contribution to this challenge is to
learn the STS function for English texts. ASAP-II
is an evolution of the ASAP system (Alves et al.,
2014), which participated in SemEval 2014 - Task 1:
Evaluation of compositional distributional semantic
models on full sentences through semantic related-
ness and textual entailment. Although with a differ-
ent goal from STS, which goes beyond relatedness

1This work was supported by the InfoCrowds project - FCT-
PTDC/ECM-TRA/1898/2012

and entailment, and different datasets, which include
pairs of short texts instead of controlled sentences,
we believe that, rather than specifying rules, con-
straints and lexicons manually, it is possible to adapt
a system from one to the other task, by automat-
ically acquiring linguistic knowledge through ma-
chine learning (ML) methods. For this purpose, we
apply some pre-processing techniques to the train-
ing set in order to extract different types of features.
On the semantic aspect, we compute the similar-
ity/relatedness between phrases using known mea-
sures over WordNet (Miller, 1995).

Considering the problem of modeling a text cor-
pus to find short descriptions of documents, we aim
at an efficient processing of large collections, while
preserving the essential statistical relationships that
are useful for similarity judgment. Therefore, we
also apply topic modeling, in order to get topic dis-
tribution over each sentence set. These features are
then used to feed an ensemble ML algorithm for
learning the STS function. Our system is entirely
developed as a Java independent software package,
publicly available2 for training and testing on given
and new datasets containing pairs of texts.

The remainder of this paper comprises 4 sections.
In section 2, fundamental concepts are introduced
in order to understand the proposed approach delin-
eated in section 3. Section 4 presents some results
of our approach, using not only the SemEval-2015’s
dataset, but also datasets from previous tasks. Fi-
nally, section 5 presents some conclusions and com-
plementary work to be done in a near future.

2See https://github.com/examinus-/ASAP
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2 Background

2.1 Knowledge Bases

WordNet (Miller, 1995) is a lexical knowledge base
structured in synsets – groups of synonymous words
that may be seen as possible lexicalizations of a con-
cept – and relations between them, including hyper-
nymy or part-of. DBpedia (Auer et al., 2007) is
an effort for extracting structured information from
Wikipedia, a well-known collaborative encyclope-
dia. DBPedia is a central part of the Linked Data
initiative and consequently, it is linked to many
other resources, including a RDF version of Word-
Net. In fact, some DBPedia entities are connected
to their abstract category in WordNet, through the
wordnet type property. For instance, CNN is con-
nected to the synset {channel, transmission chan-
nel} and Berlusconi to {chancellor, premier, prime
minister}.

2.2 Semantic Similarity

There are two main approaches to semantic sim-
ilarity: (i) semantic relatedness is based on co-
occurrence statistics, typically over a large corpus;
(ii) classic semantic similarity exploits semantic re-
lations in a lexical knowledge base, such as Word-
Net. Semantic similarity differs from semantic re-
latedness because it computes proximity between
concepts in a given concept hierarchy (see (Resnik,
1995) and (Jiang and Conrath, 1997)), while the for-
mer computes the usage of common concepts to-
gether (see (Lesk, 1986), in this case on dictionary
definitions/glosses).

2.3 Topic Modeling

Topic modeling relies on the assumption that doc-
uments are mixtures of topics, which, in turn, are
probability distributions over words. Latent Dirich-
let Allocation (LDA) is a generative probabilistic
topic model (Blei et al., 2003) where documents are
represented as random mixtures over latent topics,
characterized by a distribution over words. Assump-
tions are not made on the word order, only their fre-
quency is relevant. In LDA, main variables are the
topic-word distribution Φ and topic distributions θ
for each document.

3 Proposed Approach

Our approach to STS is based on a regression func-
tion, learned automatically to compute the similarity
between sentences, using their components as fea-
tures. Sentence features are obtained after a pre-
processing stage, where sentences are lexically, syn-
tactically and semantically decomposed to obtain
different partial similarities. Clustering is applied
by LDA in order to obtain the difference of topic
distribution between pairs of sentences, which can
be considered a composed partial similarity on each
topic distribution. Partial similarities are used as fea-
tures in the supervised learning process. In the fol-
lowing section, complementary stages of our system
are explained in detail.

3.1 Natural Language Preprocessing

Sentences are decomposed after applying well-
known Natural Language Processing subtasks,
namely tokenization, part-of-speech tagging and
chunking. For this purpose, we use OpenNLP3,
a tool for processing natural language text out-of-
the-box, based on a maximum entropy (ME) ap-
proach (Berger et al., 1996). Although OpenNLP
offers an English stemmer, this is not sufficient for
our approach. Instead, we rely on the lemmatization
performed by the WS4J library4, with some addi-
tional heuristics (see section 3.2.3).

3.2 Feature Engineering

Features encode information from raw data that al-
lows machine learning algorithms to estimate an un-
known value. We focus on, what we call, light fea-
tures since they are computed automatically, not re-
quiring a specific labeled dataset and we are using
already trained models. Each feature is computed
as a partial similarity metric, which will later feed
the posterior regression analysis. This process is
fully automatized, as all features are extracted us-
ing OpenNLP and other tools that will be introduced
later. For convenience, we set an id for each feature,
which has the form f#n, n ∈ {1..}.

3See http://opennlp.sourceforge.net
4A thread-safe, self-contained, Java implementation of

some of useful functions over WordNet.See https://code.
google.com/p/ws4j/
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3.2.1 Lexical Features
Some basic similarity metrics are used as fea-

tures related exclusively with word forms. In this
set, we include for each text: the number of stop
words, from the Snowball list (Porter, 2001) (f1 and
f2 respectively) and the absolute difference of those
counts (f3 = |f1−f2|); the number of those words
expressing negation (f4 and f5 respectively) and the
absolute difference of those counts (f6 = |f4−f5|).
In addition, we used the absolute difference of over-
lapping words for each text pair (f7..10)5.

3.2.2 Syntactic Features
The Max Entropy models of OpenNLP were used

for tokenization, part-of-speech tagging and text
chunking, applied in a pipeline for identifying Noun
Phrases (NPs), Verbal Phrases (VPs) and Preposi-
tional Phrases (PPs) of each sentence. Heuristically,
these NPs are further identified as subjects if they are
in the beginning of sentences. This kind of shallow
parser is useful for identifying the syntactic structure
of texts. Considering only this property, different
features were computed as the absolute value of the
difference of the number of NPs (f11), VPs (f12)
and PPs(f13) for each text pair.

3.2.3 Semantic Features
When possible, suitable WordNet synsets are re-

trieved for NPs, VPs and PPs of each sentence.
These will enable the computation of similarity mea-
sures to be used as semantic features. These phrases
might be simple words or compounds, language
words or named entities, and they might be inflected
(e.g. nouns as electrics or economic electric cars are
in the plural form). In order to increase the cover-
age of named entities, when a word is not in Word-
Net, we look it up in DBPedia to identify WordNet
synset corresponding to its category. Inflected words
can also be problematic because WordNet synsets
are retrieved by the lemma of their words. Al-
though some WordNet APIs already perform some
kind of lemmatization, many situations are not cov-
ered. Therefore, to increase the number of words

5We thank the SemEval 2014 - Task 1 organizers for
providing a Python script for computing baselines available
at http://alt.qcri.org/semeval2014/task1/
data/uploads/sick_baseline.zip, which we used
as a different setting for stop word removal (from 0 to 3, 4
different combinations)

with a suitable synset, the leftmost word of a com-
pound phrase, generally a modifier, is removed until
the phrase is empty or a synset is retrieved. If still
unsuccessful and the last word ends with an ‘s’, the
last character is removed and the word is looked up
again.

After retrieving a WordNet sense for each phrase,
semantic similarity is computed for each pair, using
Resnik (1995) (f14), Jiang & Conrath (1997) (f15)
and the Adapted Lesk metrics (Banerjee and Peder-
sen, 2003) (f16) using WS4j tool, where algorithms
in the WordNet::Similarity (Pedersen et al., 2004)
Perl package are implemented. For part-of-speech
tagged words with multiple senses, the one maxi-
mizing partial similarity is selected.

3.3 Distributional Features

The distribution of topics over documents (in our
case, short texts) may contribute to model Seman-
tic Similarity since there is no notion of mutual ex-
clusivity that restricts words to be part of one topic
only. This allows topic models to capture polysemy.
We may thus see topics as natural word sense con-
texts, as words occur in different topics with distinct
“senses”.

Gensim (Řehůřek and Sojka, 2010) is a ma-
chine learning framework for topic modeling. It
includes several pre-processing techniques, such as
stop-word removal and TF-IDF, a standard statisti-
cal method that combines the frequency of a term in
a particular document with its inverse document fre-
quency in general use (Salton and Buckley, 1988).
This score is high for rare terms that occur fre-
quently in a document and are therefore more likely
to be significant.

Gensim computes a distribution of 25 topics over
texts with or without using TF-IDF (f17...41). Each
feature is the absolute difference of topici (i.e.
topic[i] = |topic[i]s1 − topic[i]s2|). The euclidean
distance over the difference of topic distribution be-
tween text pairs was used as another feature (f42).

3.4 Supervised Learning

WEKA (Hall et al., 2009) is a large collection of
machine learning algorithms, written in Java, used
for learning our STS function from aforementioned
features.
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One of four approaches is commonly adopted for
building classifier ensembles, each focused on a dif-
ferent level of action. Approach A concerns the dif-
ferent ways of combining the results from the clas-
sifiers. Approach B uses different models.At feature
level (Approach C), different feature subsets can be
used for the classifiers, either if they use the same
classification model or not. Finally, datasets can be
modified so that each classifier in the ensemble is
trained on its own dataset (Approach D) (Kuncheva
and Whitaker, 2003).

Different methods where applied such as Voting
(Franke and Mandler, 1992) (Approach A), Stacking
(Seewald, 2002) (Approach B), and variation of the
feature subset used (Approach C). Voting is perhaps
a simpler approach, as it selects the class with the
largest number of votes. Stacking is used to com-
bine different types of classifiers and demands the
use of another learning algorithm to predict which of
the models would be the most reliable for each case.
This is done with a meta-learner, another learning
scheme that combines the output of the base learn-
ers. The predictions of base learners are used as in-
put to the meta-learner.

We used WEKA’s “Stacking” (Wolpert, 1992)
meta-classifier in our first run, combining the fol-
lowing base models: three K-Nearest Neighbour
(KNN) classifiers (K = 1, K = 3, K = 5) (Aha et
al., 1991); a Linear Regression model without an at-
tribute selection method (−S1) and default ridge pa-
rameter (1.0−8); three M5P classifiers which imple-
ment base routines for generating M5 Model trees
and rules with a different minimum number of in-
stances (M = 4, M = 10, M = 20) (Quinlan,
1992; Wang and Witten, 1997). The meta-classifier
was a M5P classifier with M = 4. Other ensembles
were added for the second and third runs:

1. Stacking combining three base models: KNN
classifier (K = 1); Linear Regression model
without an attribute selection method (−S1)
and default ridge parameter (1.0−8); M5P, with
M = 4, being the meta-classifier6.

2. Stacking combining four base models: KNN
classifier (K = 1); Linear Regression model
without an attribute selection method (−S1)

6A Regression Tree using the M5 algorithm (Quinlan, 1992)

and default ridge parameter (1.0−8); ZeroR, a
simple rule-based classifier which determines
the median similarity score; and Isotonic Re-
gression model. M5P, with M = 4, as the
meta-classifier.

3. Voting model of the seven classifiers of the first
run.

Specifically, the second and third run consisted in
the average similarity score produced by the three
models presented above, plus the model considered
in the first run. The only difference between the two
runs was that distributional features were not con-
sidered in the third run (Approach C).

4 Some Results and Discussion

Although, STS might look similar to SemEval 2014
- Task 1, available datasets showed that they are very
different from each other. Therefore, we made indi-
vidual sets of data for training models and for ex-
tracting distributional features to evaluate with each
target dataset. In SemEval 2014 - Task 1, there was
only one homogeneous dataset, SICK (Marelli et al.,
2014b), with a relatively big amount of entries (5000
for training, 5000 for evaluation) which generally re-
sults in better ML outcome. Since answers-forums,
answers-students and belief were from new sources,
we opted to target these with the same systems, built
with most of the available data from previous STS
tasks.Table 1 shows that ASAP-II performed better
in the SICK dataset, followed by the two datasets
that are recurring (images and headlines). Unexpect-
edly though, the configuration targeting answers-
students performed well with only a little difference
to the best performance on the headlines, especially
if compared to the very low correlation achieved on
both answers-forums and belief. Finally, weighted
average pearson coefficient was computed consider-
ing the size of each evaluation dataset.

5 Conclusions and Future Work

We used complementary features for learning the
STS function, which is also part of the challenge
of building Compositional Distributional Semantic
Models. For this purpose, for each sentence, we ex-
tracted lexical, syntactic, semantic and distributional
features. On the semantic aspect, we computed the

187



First-run Second-run Third-run
answers-forums 0.2304 0.2374 0.2302

answers-students 0.6503 0.7095 0.6719
belief 0.3928 0.3986 0.4342

headlines 0.6614 0.7039 0.7156
images 0.6548 0.7294 0.7250

SICK 0.7200 0.7013 0.7735
Weighted Average 0.57± 0.07 0.62± 0.08 0.61± 0.07

Table 1: Pearson’s correlation coefficient for ASAP-II in
SemEval2015-STS, by dataset, and a simulation of Se-
mEval2014 - Task 1, with the same configuration.

semantic similarity and relatedness between phrases
using known measures on WordNet, whose “cover-
age” was increased with the help of DBPedia. We
also applied topic modeling to get topic distribu-
tions over sets of sentences. All these features were
used to feed an ensemble algorithm for learning the
STS function. This resulted in a Pearson’s r of
0.62 ± 0.08 in our best performance over different
datasets.

We are motivated by this participation in STS and
intend to participate in further editions, while im-
proving ASAP. To this end, we should: make a
deeper analysis of the ensemble, to identify where
it can be improved; try to complement the feature
set with additional relevant features; explore differ-
ent topic distributions while varying the number of
topics and hopefully maximizing the log likelihood;
and assess the impact of each feature.
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Abstract

In this paper, we describe the TATO sys-
tem which participated in the SemEval-2015
Task 2a: “Semantic Textual Similarity (STS)
for English”. Our system is trained on pub-
lished datasets from the previous competi-
tions. Based on some machine learning tech-
niques, it combines multiple similarity mea-
sures of varying complexity ranging from sim-
ple lexical and syntactic similarity measures
to complex semantic similarity ones to com-
pute semantic textual similarity. Our final
model consists of a simple linear combination
of about 30 main features out of a numerous
number of features experimented. The results
are promising, with Pearson’s coefficients on
each individual dataset ranging from 0.6796 to
0.8167 and an overall weighted mean score of
0.7422, well above the task baseline system.

1 Introduction
Measuring semantic textual similarity (STS) can be
defined as the task of computing the degree of se-
mantic equivalence between pairs of texts. It has
drawn an increasing amount of attention from the
NLP community, especially at level of short text
fragments, as partly reflected in the SemEval tasks
in recent years. In the SemEval-2015 Task 2, the de-
gree of semantic equivalence for each sentence pair
is represented by a similarity score between 0 (no
relation) and 5 (semantic equivalence). STS has a
wide range of applications which includes applica-
tions for machine translation evaluation, information
extraction, question answering, and summarization.

STS is related to, but different from textual en-
tailment (TE) (Dagan et al., 2006) and paraphrase

recognition (PARA) (Dolan et al., 2004) as it aims
to render a graded notion of semantic equivalence
between two textual snippets, rather than a binary
yes/no decision. STS requires a bidirectional sim-
ilarity relation between sentences, while TE anno-
tates them with an unidirectional entailment relation.

The literature of STS is rife with attempts to
compute similarity between texts using a multitude
of measures at different levels of depth: lexical
(Malakasiotis and Androutsopoulos, 2007), syntac-
tic (Malakasiotis, 2009; Zanzotto et al., 2009), and
semantic (Rinaldi et al., 2003; Bos and Markert,
2005). (Gomaa and Fahmy, 2013) discusses exist-
ing works on STS and partitions them into three cat-
egories based on the similarity measures used: (i)
string-based approaches (Bär et al., 2012; Malakasi-
otis and Androutsopoulos, 2007) which operate on
string sequences and character composition to com-
pute similarities and can be categorized into two
groups: character-based and term-based approaches;
(ii) corpus-based approaches (Li et al., 2006) which
gain statistics information about words from large
corpora and reflect their semantics in distributional
high semantic space to determine the similarity, such
as Latent Semantic Analysis (LSA) (Landauer et
al., 1998; Foltz et al., 1998) and Explicit Seman-
tic Analysis (ESA) (Gabrilovich and Markovitch,
2007); (iii) knowledge-based approaches (Mihalcea
et al., 2006) which determine the degree of similar-
ity between texts using information derived from se-
mantic networks, such as WordNet (Miller, 1995).

Though each of these existing measures has its
own advantages, they are typically used in separa-
tion. In our work, we integrate multiple similarity
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measures of varying complexity ranging from sim-
ple lexical and syntactic similarity measures to com-
plex semantic similarity ones and rely on supervised
machine learning to take advantage of the different
contributions of different features.

We organize the remainder of the paper as fol-
lows: Section 2 describes the features in detail. Sec-
tion 3 presents the machine learning setup and our
submitted system. Sections 4 discusses the results.
The conclusions follow in the final section.

2 Text Similarity Measures
In this section, we describe the various features we
experimented and selected for our final model.

2.1 Lexical Similarity Measures

2.1.1 Word/Phrase Alignment Measures
When two sentences are related semantically,

they tend to be similar in appearance. Hence,
we develop an automatic word/phrase alignment
module based on the METEOR metric (Denkowski
and Lavie, 2010) to align corresponding words and
phrases between each pair of sentences. Alignments
here are based on exact, stem, synonym (via Word-
Net), and paraphrase (via a lookup table) matches
between words and phrases. Given two sentences of
text, s1 and s2 (stop-words are removed from each
sentence), we define the following metrics:

S (s1,s2) =
∣∣numOfMatches(s1,s2)− min{len(s1),len(s2)}

2

∣∣
and

D(s1, s2) = 2×numOfMatches(s1,s2)
min{len(s1),len(s2)} ,

where numOfMatches(s1, s2) and len(s) are the
number of aligned word/phrase pairs between s1 and
s2, and the number of words in s, respectively.

2.1.2 Machine Translation Measures
We treat the task as a monolingual machine trans-

lation (MT) task (the source and target languages are
the same, and the input and output should be simi-
lar in meaning), and take advantage of a variety of
MT measures. At the lexical level, we experiment
different n-gram and edit-distance-based metrics.

BLEU (Papineni et al., 2002), NIST (Doddington,
2002), and METEOR (Denkowski and Lavie, 2010)
are n-gram-based metrics commonly used for MT
evaluation. BLEU scores the target output by count-

ing n-gram matches with the reference, relying on
exact matching and has no concept of synonymy or
paraphrasing. NIST is similar to BLEU, however, it
uses the arithmetic mean of n-gram overlaps, rather
than the geometric mean. Unlike BLEU which fo-
cuses on precision, METEOR uses a combination of
both precision and recall. Moreover, it incorporates
stemming, synonymy and paraphrase. MAXSIM
(Chan and Ng, 2008) models the MT problem as
a maximum bipartite matching one and maps each
word in one sentence to at most one word in the other
sentence. We also experiment with TESLA (Liu et
al., 2010) - a variant of MAXSIM.

Besides those, we also use edit-distance-based
metrics. TER (Snover et al., 2006) and TERp
(Snover et al., 2009) measure the number of edit
operations (e.g. insertions, deletions, and substitu-
tions) necessary to transform one text into the other.

2.2 Syntactic Similarity Measures
2.2.1 Content Word Match and Mismatch

Given a sentence pair, we extract corresponding
content words (nouns, verbs, adjectives, and ad-
verbs) between the sentences. This syntactic infor-
mation is obtained from the Stanford parser (Klein
and Manning, 2003). We have both the proportions
of aligned words and the proportions of unaligned
words in the two sentences (by normalizing with the
harmonic mean of their number of content words)
for each lexical category of content word.

2.2.2 Subject-Verb-Object Comparison
We also employ dependency parsing in measur-

ing semantic similarity. Specifically, some attributes
like subjects, verbs, objects are identified for each
pair of sentences. These attributes are used for our
matching procedure which is based on the following
comparisons between each pair of sentences:

• Subject-Subject Comparison

• Verb-Verb Comparison

• Object-Object Comparison

• Subject-Verb Comparison

• Verb-Object Comparison

• Cross Subject-Object Comparison

For each of these comparisons, we assign a matching
score of 1.0 (match) or 0.0 (mismatch).

191



2.3 Semantic Similarity Measures

2.3.1 Named Entity, Number, Time Expression
Match and Mismatch

Careful observation of the development dataset
revealed that mismatch of named entities, numbers
or time expressions might cause semantic dissimi-
larity, for example, when s1 consists of a named en-
tity that does not appear in s2. Based on this, we
detect both match and mismatch of named entities,
numbers and time expressions between each pair of
sentences (similar to that of content words). We use
the Stanford Named Entity Recognizer (Finkel et al.,
2005) to detect named entities in sentences.

2.3.2 LDA-based measures
We build two Latent Dirichilet Allocation (LDA)

models (Blei et al., 2003) from Wikipedia and
the training dataset separately, using the Gensim
(Řehůřek and Sojka, 2010) and Mallet (McCallum,
2002) software with 100 requested latent topics.
Each sentence is represented by a vector using topics
estimated by LDA. The similarity between two sen-
tences is calculated as the cosine similarity between
their corresponding vectors.

2.3.3 Word-representation-based measures
Word representation computes vector representa-

tions of each word based on its context from very
large datasets, usually capturing both syntactic and
semantic information of words. Given two sentences
s1 and s2 (stop-words are removed), each word of
the sentences is represented as a single vector. We
develop two different strategies as follows:

Strategy 1 For each word wi in s1, we iden-
tify a word wj most similar to wi in s2 by using
cosine similarity measure. We define a measure
W 2V (s1, s2) as follows:

W 2V (s1, s2) =

∑
wi∈s1

max
wj∈s2

cos(wi, wj)

len(s1)
,

where cos(wi, wj) is the cosine similarity between
the word vectors of wi and wj . We also apply this
strategy for each category of content words (noun,
verb, adjective, and adverb) separately.

Strategy 2 We sum up all of the vectors of words
that occur in each sentence and define a sentence
similarity measure S 2V (s1, s2) as follows:

S 2V (s1, s2) = cos(
∑

wi∈s1

wi,
∑

wj∈s2

wj),

For word representation, we use both the Word2vec
model (Mikolov et al., 2013) trained on Google
News and the GloVe model (Pennington et al., 2014)
trained on Common Crawl data.

2.3.4 WordNet-based measures

WordNet (Miller, 1995) is a commonly used lex-
ical database of English where words of the same
meaning are grouped into synonym sets (synsets).
By using information derived from WordNet, we
construct some similarity measures as follows:

Strategy 1 This is similar to Strategy 1 for word-
representation-based measures, however, instead of
using cosine similarity, we use the Wordnet path
similarity (the shortest path that connects the senses
in the is-a (hypernym/hypnoym) taxonomy).

Strategy 2 We determine some semantic relation-
ships, e.g, synonym, antonym, and hypernym be-
tween sentences. The proportions of synonym word
pairs, antonym word pairs, hypernym word pairs in
two sentences (by normalizing with the harmonic
mean of their number of content words) are taken
as proxies of their semantic similarity.

3 System Description

3.1 Machine Learning Setup

The machine learning setup is described as follows:
Pre-processing The pre-processing phase in-

cludes tokenization, POS tagging, lemmatization,
NER, syntactic parsing with the Stanford CoreNLP
Toolkit (Manning et al., 2014). For some measures,
we filter out punctuations and stop-words by using a
pre-compiled stop-words list.

Feature Generation We run each of the similar-
ity measures separately and use the resulting scores
as features for a machine learning classifier. A fea-
ture is selected for our final model if it proves useful
in improving the performance of the system.

Feature Combination The pre-computed simi-
larity score vectors serve as features for this step.
Our system utilizes a classifier combination ap-
proach, using a simple linear regression model to
combine all the similarity measures. We use the
trial dataset that comprises the 2012, 2013 and 2014
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datasets to develop and train our model. In the devel-
opment cycle, we used a training dataset consisting
of 6842 sentence pairs and a test dataset consisting
of 3750 sentence pairs, with gold standard scores.
We use the WEKA machine learning toolkit (Hall et
al., 2009) to perform our experiments.

Post-processing If the pre-processed sentences
match, we set their similarity score to 5 regardless
of the output of our classifier. If the classifier out-
puts an invalid similarity score s which is not in the
score range [0-5], we set the similarity score to f(s)

defined as follows: f(s) =
{

0 + α if s < 0
5− α if s > 5

In our experiments, the best value for α is 0.5.

3.2 Submitted System
TATO-1stWTW Because of our limited time, we
submitted only one run to the SemEval-2015 Task
2a. After the development cycle, we identified about
30 main features out of a numerous number of fea-
tures experimented. These features achieved the best
performance on the training dataset. For our final
system, we trained the classifier on a joint dataset
of all known training datasets, instead of training a
separate classifier for each individual dataset.

4 Results

4.1 Results on the 2014 Test Data
We evaluated our model on the 2014 test data
comprising pairs of news headlines (headlines),
pairs of glosses (OnWN), image descriptions (im-
ages), DEFT-related discussion forums (deft-forum)
and news (deft-news), and tweet comments and
newswire headline mappings (tweet-news). We used
the 2012, 2013 datasets consisting of 6842 sentence
pairs to train our model. The test dataset contains
3750 sentence pairs excluded from training. Our
model was compared against the best performing
system on the SemEval-2014 English STS sub-task
(DLS@CU-run2) using the official scorer. The re-
sults are summarized in Table 1. With regard to
Deft-forum and Tweets, our system outperformed
the DLS@CU’s system, we also achieved a higher
score in the weighted mean across all datasets.

4.2 Results on the 2015 Test Data
The official score is based on the average of Pearson
correlation. Besides Pearson correlations computed

Run DF DN H I OWN TN Mean
TATO1 .550 .748 .755 .807 .817 .777 .764
DLS@CU2 .483 .766 .765 .821 .859 .764 .761

Table 1: Results on the 2014 test datasets: deft-forum
(DF), deft-news (DN), headlines (H), images (I), OnWN
(OWN), tweet-news (TN).

for individual datasets, including answers-forums,
answers-students, belief, headlines, and images,
Mean scores are provided to show the weighted
means across all datasets (the weight is based on the
number of sentence pairs in each dataset).

Table 2 reports our official results achieved on
the test data (TATO-1stWTW), besides the highest-
performance and lowest-performance systems (ac-
cording to Mean), and also the task baseline system.
Our system was ranked among the most robust sys-
tems out of more than 70 participating systems and
achieved good performance on answers-forums and
belief datasets.

# Run AF AS B H I Mean
1 DLS@CU1 .739 .773 .749 .825 .864 .802
...

...
...

...
...

...
...

...
25 TATO1 .680 .685 .721 .767 .817 .742
...

...
...

...
...

...
...

...
59 baseline1 .445 .665 .652 .531 .604 .587
...

...
...

...
...

...
...

...
73 DalGTM1 .290 -.053 .063 .060 .066 .062

Table 2: Official results on the test datasets: answers-
forums (AF), answers-students (AS), belief (B), head-
lines (H), and images (I).

5 Conclusions and Future Work

This paper describes the TATO team’s submission to
the SemEval-2015 Task 2a: “Semantic Textual Sim-
ilarity for English”. Our system uses a simple linear
regression model to combine multiple text similarity
measures at different levels of depth: lexical, syn-
tactic, and semantic. While we did not achieve the
highest ranks on any of the particular datasets, our
system was ranked among the most robust systems
out of more than 70 participating systems.

For the future work, we will explore other eval-
uation measures for STS and try to train a sepa-
rate classifier for each type of the existing datasets.
We also suggest that we should work on some other
types of data, such as legal or medical data.
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Abstract 

This paper describes the participation of the 
HITSZ-ICRC team on the Answer Selection 
Challenge in SemEval-2015. Our team parti-
cipated in English subtask A, English subtask 
B and Arabic task. Two approaches, ensemble 
learning and hierarchical classification were 
proposed for answer selection in each task. 
Bag-of-words features, lexical features and 
non-textual features were employed. For the 
Arabic task, features were extracted from both 
Arabic data and English data that translated 
from the Arabic data. Evaluation demonstrat-
ed that the proposed methods were effective, 
achieving a macro-averaged F1 of 56.41% 
(rank 2nd) in English subtask A, 53.60 % (rank 
3rd) in English subtask B and 67.70% (rank 3rd) 
in Arabic task, respectively. 

1 Introduction 

In recent years, community question answering 
(CQA) systems are becoming more and more pop-
ular on the Internet. By using CQA system, a user 
can post his/her question on CQA portal and re-
ceive answers from other users. All users can post 
questions and answers on CQA portal freely. Al-
though it makes CQA users to get answers easily, 
the answer quality evaluation becomes a challenge 
for questions with multiple answers. To reduce the 
inconvenient in going through plenty of candidate 
answers, it makes sense to evaluate the quality of 
answers and select high-quality answers automati-
cally for CQA systems. As a consequently, the task 
of answer quality evaluation and answer selection 

in CQA have attracted more and more attention in 
recent years (Arai and Handayani, 2013; Shah and 
Pomerantz, 2010; Agichtein et al., 2008). 

The Answer Selection in CQA challenge was 
opened as one new task in SemEval-2015: SemEv-
al-2015 Task 3 (Màrquez et al., 2015). It created a 
venue and provided annotated datasets for re-
searchers to compare their methods for answer se-
lection in CQA. This challenge consisted of 
Subtask A and Subtask B. Subtask A required par-
ticipant system to classify answers as relevant, po-
tentially useful and bad for each question. Subtask 
B required participant system to decide whether 
the answer to a YES_NO question should be Yes, 
No or Unsure based on the answer list. Subtask A 
was offered for two languages: English and Arabic. 
Data for the two languages was in different data set 
format. In remainder of this paper, Subtask A in 
English is abbreviated to English subtask A, Sub-
task A in Arabic is abbreviated to Arabic task and 
Subtask B in English is abbreviated to English sub-
task B. 

HITSZ-ICRC team participated in English sub-
task A, English subtask B and Arabic task. This 
paper describes the ensemble learning method and 
hierarchical classification method proposed for 
each subtask in SemEval-2015 Task 3. 

2 Methods for Answer Classification 

Different classification methods were tried by pre-
vious researchers for answer evaluation, prediction 
and selection in CQA. Jeon et al. (2006) designed a 
framework using non-textual features, most of 
which were user profile features, to predict the 
document quality and tried the framework on CQA. 
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Shah and Pomerantz (2010) used text, user infor-
mation and answer rank features to evaluate and 
predict answer quality. Arai and Handayani (2013) 
tried non-textual features mainly include no-
content features of text to train models to predict 
answer quality in CQA. For SemEval-2015 Task 3, 
we proposed ensemble learning method and hierar-
chical classification method to classify answers for 
each task. 

2.1 English subtask A 

English subtask A required participant system to 
classify each answer of test questions as definitely 
relevant (good), potentially useful (potential) or 
bad (bad, dialog, non-English and other).  

Features employed to train classifiers for Eng-
lish subtask A include: 

Word length features: length of the max length 
word, average word length.  

Word number features: word number, capital 
word number, polite word number, word “yes” 
number, word  “no” number,  word “thank” num-
ber. 

Punctuation features: question mark number, 
exclamation mark number. 

Sentence features: average sentence length, 
sentence number. 

Part-of-speech features: noun word number 
and ratio, verb word number and ratio, pronoun 
word number and ratio, WH word number and ra-
tio. 

Name entity feature: number of name entity. 
Content tag features: number of web link and 

number of image link contained in content. 
The 7 groups features in the upper list were ex-

tracted separately on questions and answers. 
Answer position in Answer list: whether the 

answer is first, whether the answer is last. 
User id features: whether user id of answer is 

the question user id, whether the user id of pre-
vious answer is question user id, whether the user 
id of next answer is question user id. 

Answer and question correlative features: 
number and ratio of same n-gram terms between 
answer and question, cosine similarity between 
answer body and question body, KL distance be-
tween answer body and question body. 

Class tag features: QCATEGORY tag of ques-
tion, QTYPE tag of question.  

Frequent n-gram term features: frequent uni-
gram terms, bigram terms and trigram terms.  

Two methods were proposed to classify answers 
for English subtask A: (1) two-level hierarchical 
classification: classifying answers as 
good_potential and bad_dialog in the first level; 
classifying good_potential answers as good and 
potential, classifying bad_dialog answers as bad 
and dialog separately in the second level; (2) en-
semble learning: training and choosing top N best 
classifiers based on cross validation on training 
data, then using the N classifiers to vote final result.  

2.2 English subtask B 

The English subtask B required participant system 
to give “Yes”, “No” or “Unsure” answer directly to 
a YES_NO question based on its candidate answers.  

Evidence to answer YES_NO question is the 
yes/no opinion of each good answer in answer list. 
YES_NO question answering can be split into three 
steps: first, finding out good answers from candi-
date answers; second, classifying each good an-
swer into yes, no or unsure based on its opinion; 
third, summarizing final answer for YES_NO ques-
tion according to opinions of all good answers. 

Given a YES_NO question, recognizing good 
answers can be achieved with the classifiers 
trained in English subtask A; final answer is pre-
dicted based on the comparison between the num-
ber of yes class answers and the number of no class 
answers in answer list of the question. So the re-
maining task for YES_NO question answering is 
good answer classification according to the opinion. 

Two methods were proposed for answer opinion 
classification: (1) piping the best performance clas-
sifier for answer selection and the best classifier 
for answer opinion classification; (2) classifying 
answers of YES_NO question into 5 classes with 
single classifier: yes, no, unsure, bad and dialogue. 

Feature extraction for English subtask A was 
same as English subtask A. Features employed 
were selected according to gain ratio. We proposed 
ensemble learning method for the answer classifi-
cation in English subtask B. 

2.3 Arabic task 

Dataset for Arabic task is in Arabic. The task re-
quired participant system to classify answers of 
question into definitely relevant (direct), potential-
ly useful (related) and bad (irrelevant). 

Features extracted for Arabic task are similar to 
English subtask A. But some features were not ex-
tracted for Arabic task, such as “answer position” 
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was ineffective for Arabic task; “WH word num-
ber” cannot be extracted on Arabic data. To get 
more effective features, the dataset for Arabic task 
was translated to English by Google Translate1, 
and feature extraction was done on both original 
Arabic data and English data translated from origi-
nal Arabic data. 

Features extracted for answer classification in 
Arabic task include: 

Word length features: length of the max length 
word, average word length.  

Word number feature: number of words. 
Punctuation features: question mark number, 

exclamation mark number. 
Sentence features: average sentence length, 

sentence number. 
The features in the upper list were extracted 

separately on answers and questions. 
Answer and question correlative features: 

number and ratio of same n-gram terms, cosine 
similarity between answer and question body, KL 
distance between answer and question body. 

Name entity feature: number of name entity in 
answer. 

Frequent n-gram term features: frequent uni-
gram, bigram terms and trigram terms in Arabic 
data and English data. 

Features were extracted only on translated Eng-
lish data in the following 2 groups:  

Word number features in English: all capital 
word number, polite word number, word “yes” 
number, word  “no” number. 

Part-of-speech features: noun word number 
and ratio, verb word number and ratio, pronoun 
word number and ratio, WH word number and ra-
tio. 

Methods proposed for Arabic task include: (1) 
two-level hierarchical classification method: classi-
fying answers as irrelevant and not irrelevant in 
the first level and classifying not irrelevant an-
swers as direct and related in the second level; (2) 
ensemble learning method: training and choosing 
top N best classifiers and using the results of those 
classifiers to vote final result. 

3 Data Sets 

Data sets used for classifiers training includes the 
training and development data provided. No exter-
nal data was used for classifiers training.  

                                                           
1 http://translate.google.com 

For English task, CQA-QL corpus (Màrquez et 
al., 2015) was provided. This corpus was gotten 
from the Qatar Living Forum2 and was filtered and 
annotated manually. Questions in the corpus were 
labeled into GENERAL and YES_NO class in 
QTYPE dimension, and yes, no, unsure and Not 
Applicable class in QGOLD_YN dimension. An-
swers were labeled into Good, Potential, Bad, Di-
alogue, Not English and Other class in CGOLD 
dimension, and Yes, No, Unsure and Not Applica-
ble class in CGOLD_YN dimension. 

For Arabic task, Fatwa corpus (Màrquez et al., 
2015) was provided, which was manually 
processed and annotated on source data from the 
Fatwa website3. Answers in this corpus were la-
beled into direct, related, and irrelevant class. The 
irrelevant class answers for each question were 
random selected from answers of other questions.  

4 Results Evaluation  

Some toolkits were employed to extract features 
and train classifiers. NLTK (Bird et al., 2009) was 
used to extract features, include part-of-speech of 
question and answer, frequent n-gram terms, co-
sine similarity and so on. WEKA (Hall et al., 2009) 
toolkit was used to do feature selection and clas-
sifier training and choosing. LIBSVM (Chang and 
Lin, 2011) and LIBLINEAR (Fan et al., 2008) 
were used to train SVM classifier. Scikit-learn 
toolkit (Pedregosa et al., 2011) was used to train 
classifiers. 

We submitted 3 formal results for each subtask 
including English subtask A, English subtask B 
and Arabic task following task result submission 
requests: 1 primary result as team official result, 2 
contrastive results to compare effects of different 
methods. 

4.1 Measures 

The official metric to evaluate results is the macro-
averaged F1-score (Màrquez et al., 2015), which is 
calculated as: 

1

1
1

NumC

i
i

F
macro F

NumC
 


                         (1) 

where NumC is the number of class in test set, F1i 
is the F1 value for class i in test set. F1 value is 
calculated as: 

                                                           
2 http://www.qatarliving.com/forum 
3 http://fatwa.islamweb.net 
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where P and R is the precision and recall of test 
results for a class in test set. 
    The total accuracy for test result is used as sec-
ondary metric for results comparison, which is cal-
culated as: 

totalRighNum
Accuracy

totalTestCaseNum
                     (3) 

4.2 Results of English subtask A 

Official evaluation on English subtask A was dif-
ferent to other task. In CQA-QL corpus, all an-
swers were labeled in fine-grained labels which 
include 6 classes: good, bad, potential, dialogue, 
“not English” and other. But in official evaluation, 
the macro-F1 score was calculated based on the 
coarse-grained labels which include 3 classes: 
good, bad, potential. The class dialogue, “not Eng-
lish” and other were merged with class bad. 

We considered English subtask A as a 5-class 
(good, potential, bad, dialogue, and “not English”) 
classification problem. The answers in “not Eng-
lish” class were firstly recognized by toolkit Lan-
guage Detection (Shuyo, 2010). Other answers 
were classified with methods we proposed. 

 The evaluation results for English subtask A 
submissions are shown in table 1. 

Submission Macro F1 Accuracy
primary 56.41 68.67 
contrastive1 56.44 69.43 
contrastive2 55.22 67.91 

Table 1. Macro F1 and accuracy of English subtask A. 

The primary submission was gotten by two-level 
hierarchical classification method: in the first level, 
answers were classified into good_potential and 
bad_dialogue. In the second level, good_potential 
answers and bad_dialogue answers were classified 
separately: good_potential answers were classified 
into good and potential, bad_dialogue answers 
were classified into bad and dialogue. The classifi-
ers used here were SVM which were trained using 
toolkit LIBLINEAR. 

In contrastive1 submission, two-level hierar-
chical classification method was used, and a spe-
cial ensemble learning method was designed for 
potential answers classifying. The potential class 
answers were classified using ensemble learning 
method in the first level. The other 3 classes an-

swers were classified in the second level. The en-
semble learning method for potential answers clas-
sification using 5 binary classifiers: 3 good-
potential classifiers trained using different training 
data; 1 bad-potential classifier and 1 dialogue-
potential classifier. The training data for good-
potential classifiers was gotten by random splitting 
good answers into 3 parts. Classifiers used for the 
contrastive1 submission were SVM trained with 
toolkit LIBLINEAR. 

Steps for getting the contrastive2 submission 
were similar to the primary submission. The differ-
ence was that the first level classifier was trained 
using Random Forest algorithm (Breiman, 2001). 
The training data good-potential classifier was re-
sampled to balance the instance distribution be-
tween good and potential class. 

Features employed for English subtask A in-
cludes 4044 features: the top 4000 frequent n-gram 
terms and the top 44 maximum gain ratio features 
of all the features described in section 2.1 except 
the “Frequent n-gram term features”. 

4.3 Results of English subtask B 

Three submissions were submitted for English sub-
task B including primary submission, contrastive1 
submission and contrastive2 submission. The eval-
uation results are presented in table 2. 

Submission Macro F1 Accuracy
primary 53.60 64.00 
contrastive1 42.50 60.00 
contrastive2 42.40 60.00 

Table 2. Macro F1 and accuracy of English subtask B. 

For the primary submission, answers in YES_NO 
question answer list were classified into 5 classes. 
Steps to classify answers in CGOLD_YN dimen-
sion were: first, a rule based method was used to 
classify answers; second, ensemble learning me-
thod was used to classify the answers that cannot 
be classified by rule based method. Classifiers used 
in ensemble learning method include: SMO (se-
quential minimal optimization algorithm for SVM) 
(Keerthi et al., 2001), Random Forest, DMNBtext 
(Discriminative Multinomial Naïve Bayes) (Su et 
al., 2008), Logistic Regression (Le Cessie and Van 
Houwelingen, 1992) and RBFNetwork (norma-
lized Gaussian radial basis function network). 
Those classifiers were the top 5 best of all classifi-
ers have been tried based on 10 folds cross valida-
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tion on training data. Features employed for the 
primary submission include 187 features, which 
were the top 187 maximum gain ratio features of 
the 4400 features used in English task A.  

The contrastive1 submission and contrastive2 
submission were based on the good answers in 
English subtask A primary submission. Only good 
answers of YES_NO question in subtask A primary 
submission were classified in CGOLD_YN dimen-
sion. Good answers of YES_NO question were 
classified into: yes, no and unsure. 

For the contrastive1 submission, good class an-
swers were classified with ensemble learning me-
thod. Classifiers used for the ensemble learning 
method included the top 5 best classifiers for an-
swer classification in CGOLD_YN dimension: 
SMO, Random Forest, DMNBtext, Logistic Re-
gression and LMT (logistic model tree) (Sumner et 
al., 2005).  

For the contrastive2 submission, only classifier 
LMT, which was the best classifier of all classifi-
ers tried based on 10 folds cross validation results 
on training data, was used to classify good answers.  

Features employed for the contrastive1 and con-
trastive2 submission include 110 features, which 
were the top 110 maximum gain ratio features of 
the 4400 features used in English task A. 

4.4 Results of Arabic task 

Answers were classified into 3 classes in Arabic 
task: direct, related, and irrelevant. Evaluation 
results for Arabic task are presented in table 3. 

The primary submission was gotten by ensemble 
learning method using 3 classifiers. The classifiers 
were top 3 classifiers chosen based on 10 folds 
cross validation results on training data: SMO, 
REPTree (decision/regression tree) and J48graft 
(grafted C4.5 decision tree) (Webb, 1999). 

Submission Macro F1 Accuracy
primary 67.70 74.53 
contrastive1 68.36 73.93 
contrastive2 67.98 73.23 

Table 3. Macro F1 and accuracy of Arabic task. 

The contrastive1 submission was gotten by two-
level hierarchical classification method: in the first 
level, answers were classified into irrelevant and 
not irrelevant; in the second level, not irrelevant 
answers were classified into direct and related. All 
classifiers were trained using SMO algorithm. 

The contrastive2 submission was gotten only by 
SMO classifier. The SMO classifier was trained as 
multi-class classifier to classify answers into direct, 
related and irrelevant. 

Features employed for Arabic task include 5049 
features: the top 5000 frequent n-gram terms and 
the top 49 maximum gain ratio features of all the 
features described in section 2.3 except “Frequent 
n-gram term features”. 

5 Discussion 

In English subtask A, performance of the submis-
sion contrastive1, the hierarchical classification 
method result, was better than other submissions. 
The performance of hierarchical classification me-
thod was also better than other submission in Arab-
ic task. This shows that the hierarchical 
classification method is effective for answer selec-
tion task.  

The performances on different class varied from 
each other remarkable for English subtask A and 
Arabic task as shown in table 4. It is difficult to 
distinguish the potentially useful class answers for 
all classification methods that have been tried. 
Analysis on feature extraction showed that, most 
features were extracted to judge whether the an-
swer was good or bad, but few features were ex-
tracted to judge whether the answer was potentially 
useful.  

Submission Class P R F1 
English 
subtask A 
contrastive1

Good 78.02 79.74 78.87
Bad 80.6 66.01 72.58
Pot. 14.04 24.55 17.86

English 
subtask B 
primary 

Yes 80 80 80 
No 28.57 50 36.36
Unsure 66.67 33.33 44.44

Arabic task 
contrastive1

direct 62.4 74.88 68.08
Irrel. 85.14 83.33 84.23
related 57.07 49.1 52.78

Table 4. Detailed evaluation results (P, R and F1) of the 
best performance result for each task. 

In English subtask B, performance on primary 
submission, which was result of one-step classifi-
cation method on all answers of YES_NO question, 
was much better than other submissions which 
were results of two-step classification method. The 
results showed that cascade error of piping clas-
sifiers for answer classification in CGOLD and 
answer classification in CGOLD_YN had great im-
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pact on final answer accuracy for YES_NO ques-
tion. The one-step classification method can avoid 
the cascade error for Yes_NO questions answering. 

We compared performance of SVM classifier 
using bag-of-word features, non-bag-of-word fea-
tures and all features for English subtask A, sub-
task B and Arabic task on macro-F1 scores.  The 
results are shown in table 5. 

Task bow non_bow bow+non_bow
Subtask A 0.39 0.48 0.50 
Subtask B 0.42 0.64 0.68 
Arabic Task 0.36 0.35 0.42 

Table 5. Macro F1 of SVM classifier using bag-of-word 
features, non-bag-of-word features and all features. 

Feature set bag-of-words (bow) includes Fre-
quent n-gram term features described in section 
2.1 and 2.3.  Feature set non-bag-of-words 
(non_bow) includes other features described in 
section 2.1 and 2.3 which were specially designed 
for answer selection task. Set bow+non_bow in-
cludes all features in set bow and non_bow.  

The performance of the classifier using 
bow+non_bow features is better than using the 
other two sets features in isolation, which means 
bow set features and non_bow set features are ef-
fective to improve performance of answer classifi-
er if used both. The contribution of different sets is 
different on different tasks. Performance of 
non_bow (44 features for English data and 49 fea-
tures for Arabic data) is better than bow (4000 for 
English and 5000 for Arabic) on Answer Selection 
task. It shows the features specially extracted for 
answer selection are more effective. But perfor-
mance of non_bow (22 features) is worse than bow 
(165 features) on YES_NO questions answering. 
The reason is that the non_bow features are not 
designed for opinion recognition. It shows that de-
signing special features for opinion recognition for 
task B is necessary. 

6 Conclusions and Future Work 

In this paper, we presented multi-classifier ensem-
ble method and hierarchical classification method 
proposed for each subtask in SemEval-2015 Task 3. 
Experimental results demonstrated that the pro-
posed classification methods were effective in both 
English and Arabic subtasks. 

In the next stage, syntax feature and deep se-
mantic feature will be exploited to further improve 

the performance of our approaches. Besides, more 
effective features for potential answers classifica-
tion will also be explored. 
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Lluı́s Màrquez2, Shafiq Joty2 and Walid Magdy2

1 University of Trento 2 Qatar Computing Research Institute 3 Cairo University
massimo.nicosia@unitn.it

{sfilice,albarron,hmubarak,wgao,pnakov,gmartino}@qf.org.qa
{amoschitti,kdarwish,lmarquez,sjoty,wmagdy}@qf.org.qa

iman.saleh@fci-cu.edu.eg

Abstract

This paper describes QCRI’s participation in
SemEval-2015 Task 3 “Answer Selection in
Community Question Answering”, which tar-
geted real-life Web forums, and was offered
in both Arabic and English. We apply a super-
vised machine learning approach considering
a manifold of features including among others
word n-grams, text similarity, sentiment anal-
ysis, the presence of specific words, and the
context of a comment. Our approach was the
best performing one in the Arabic subtask and
the third best in the two English subtasks.

1 Introduction

SemEval-2015 Task 3 “Answer Selection in Com-
munity Question Answering” challenged the partici-
pants to automatically predict the appropriateness of
the answers in a community question answering set-
ting (Màrquez et al., 2015). Given a question q ∈ Q
asked by user uq and a set of comments C, the main
task was to determine whether a comment c ∈ C
offered a suitable answer to q or not.

In the case of Arabic, the questions were ex-
tracted from Fatwa, a community question an-
swering website about Islam.1 Each question in-
cludes five comments, provided by scholars on the
topic, each of which has to be automatically la-
beled as (i) DIRECT : a direct answer to the ques-
tion; (ii) RELATED : not a direct answer to the ques-
tion but with information related to the topic; and
(iii) IRRELEVANT : an answer to another question,
not related to the topic. This is subtask A, Arabic.

1http://fatwa.islamweb.net

In the case of English, the dataset was extracted
from Qatar Living, a forum for people to pose ques-
tions on multiple aspects of daily life in Qatar.2

Unlike Fatwa, the questions and comments in this
dataset come from regular users, making them sig-
nificantly more varied, informal, open, and noisy. In
this case, the input to the system consists of a ques-
tion and a variable number of comments, each of
which is to be labeled as (i) GOOD : the comment
is definitively relevant; (ii) POTENTIAL : the com-
ment is potentially useful; and (iii) BAD : the com-
ment is irrelevant (e.g., it is part of a dialogue, unre-
lated to the topic, or it is written in a language other
than English). This is subtask A, English.

Additionally, a subset of the questions required a
YES /NO answer, and there was another subtask for
them, which asked to determine whether the over-
all answer to the question, according to the evidence
provided by the comments, is (i) YES , (ii) NO , or
(iii) UNSURE . This is subtask B, English.

Details about the subtasks and the experimental
settings can be found in (Màrquez et al., 2015).

Below we describe the supervised learning ap-
proach of QCRI, which considers different kinds of
features: lexical, syntactic and semantic similarities;
the context in which a comment appears; n-grams
occurrence; and some heuristics. We ranked first in
the Arabic, and third in the two English subtasks.

The rest of the paper is organized as follows: Sec-
tion 2 describes the features used, Section 3 dis-
cusses our models and our official results, and Sec-
tion 4 presents post-competition experiments and of-
fers some final remarks.

2http://www.qatarliving.com/forum
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2 Features

In this section, we describe the different features
we considered including similarity measures (Sec-
tion 2.1), the context in which a comment appears
(Section 2.2), and the occurrence of certain vocabu-
lary and phrase triggers (Sections 2.3 and 2.4). How
and where we apply them is discussed in Section 3.
Note that while our general approach is based on su-
pervised machine learning, some of our contrastive
submissions are rule-based.

2.1 Similarity Measures

The similarity features measure the similarity
sim(q, c) between the question and a target com-
ment, assuming that high similarity signals a
GOOD answer. We consider three kinds of similar-
ity measures, which we describe below.

2.1.1 Lexical Similarity
We compute the similarity between word n-gram

representations (n = [1, . . . , 4]) of q and c, using
the following lexical similarity measures (after stop-
word removal): greedy string tiling (Wise, 1996),
longest common subsequences (Allison and Dix,
1986), Jaccard coefficient (Jaccard, 1901), word
containment (Lyon et al., 2001), and cosine similar-
ity. We further compute cosine on lemmata and POS
tags, either including stopwords or not.

We also use similarity measures, which weigh the
terms using the following three formulæ:

sim(q, c) =
∑

t∈q∩c

idf(t) (1)

sim(q, c) =
∑

t∈q∩c

log(idf(t)) (2)

sim(q, c) =
∑

t∈q∩c

log

(
1 +

|C|
tf(t)

)
(3)

where idf(t) is the inverse document fre-
quency (Sparck Jones, 1972) of term t in the
entire Qatar Living dataset, C is the number of
comments in this collection, and tf(t) is the term
frequency of the term in the comment. Equations 2
and 3 are variations of idf; cf. Nallapati (2004).

For subtask B, we further considered the cosine
similarity between the tf -idf -weighted intersection
of the words in q and c.

2.1.2 Syntactic Similarity
We further use a partial tree kernel (Moschitti,

2006) to calculate the similarity between the ques-
tion and the comment based on their corresponding
shallow syntactic trees. These trees have word lem-
mata as leaves, then there is a POS tag node par-
ent for each lemma leaf, and POS tag nodes are in
turn grouped under shallow parsing chunks, which
are linked to a root sentence node; finally, all root
sentence nodes are linked to a super root for all sen-
tences in the question/comment.

2.1.3 Semantic Similarity
We apply three approaches to build word-

embedding vector representations, using (i) la-
tent semantic analysis (Croce and Previtali, 2010),
trained on the Qatar Living corpus with a word
co-occurrence window of size ±3 and producing
a vector of 250 dimensions with SVD (we pro-
duced a vector for each noun in the vocabulary);
(ii) GloVe (Pennington et al., 2014), using a model
pre-trained on Common Crawl (42B tokens), with
300 dimensions; and (iii) COMPOSES (Baroni et
al., 2014), using previously-estimated predict vec-
tors of 400 dimensions.3 We represent both q and c
as a sum of the vectors corresponding to the words
within them (neglecting the subject of c). We com-
pute the cosine similarity to estimate sim(q, c).

We also experimented with word2vec (Mikolov et
al., 2013) vectors pre-trained with both cbow and
skipgram on news data, and also with both word2vec
and GloVe vectors trained on Qatar Living data, but
we discarded them as they did not help us on top of
all other features we had.

2.2 Context

Comments are organized sequentially according to
the time line of the comment thread. Whether a
question includes further comments by the person
who asked the original question or just several com-
ments by the same user, or whether it belongs to
a category in which a given kind of answer is ex-
pected, are all important factors. Therefore, we con-
sider a set of features that try to describe a comment
in the context of the entire comment thread.

3They are available at http://nlp.stanford.edu/
projects/glove/ and http://clic.cimec.unitn.
it/composes/semantic-vectors.html
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We have boolean context features that explore the
following situations:

• c is written by uq (i.e., the same user behind q),
• c is written by uq and contains an acknowledg-

ment (e.g., thank*, appreciat*),
• c is written by uq and includes further ques-

tion(s), and
• c is written by uq and includes no acknowledg-

ments nor further questions.

We further have numerical features exploring
whether comment c appears in the proximity of a
comment by uq; the assumption is that an acknowl-
edgment or further questions by uq could signal a
bad answer:

• among the comments following c there is one
by uq containing an acknowledgment,
• among the comments following c there is one

by uq not containing an acknowledgment,
• among the comments following c there is one

by uq containing a question, and
• among the comments preceding c there is one

by uq containing a question.

The numerical value of these last four features is
determined by the distance k, in number of com-
ments, between c and the closest comment by uq

(k =∞ if no comments by uq exist):

f(c) = max (0, 1.1− (k · 0.1)) (4)

We also tried to model potential dialogues
by identifying interlacing comments between two
users. Our dialogue features rely on identifying con-
versation chains between two users:

ui → . . .→ uj → . . .→ ui → . . .→ [uj ]

Note that comments by other users can appear in
between the nodes of this “pseudo-conversation”
chain. We consider three features: whether a com-
ment is at the beginning, in the middle, or at the end
of such a chain. We have copies of these three fea-
tures for the special case when uq = uj .

We are also interested in modeling whether a user
ui has been particularly active in a question thread.
Thus, we add one boolean feature: whether ui wrote
more than one comment in the current thread.

Three more features identify the first, the mid-
dle and the last comments by ui. One extra feature
counts the total number of comments written by ui.
Moreover, we empirically observed that the likeli-
hood of a comment being GOOD decreases with its
position in the thread. Therefore, we also include
another real-valued feature: max(20, i)/20, where i
represents the position of the comment in the thread.

Finally, Qatar Living includes twenty-six differ-
ent categories in which one could request informa-
tion and advice. Some of them tend to include more
open-ended questions and even invite discussion on
ambiguous topics, e.g., Socialising, Life in Qatar,
Qatari Culture. Some other require more precise an-
swers and allow for less discussion, e.g., Visas and
Permits. Therefore, we include one boolean feature
per category to consider this information.

2.3 Word n-Grams

Our features include n-grams, independently ob-
tained from both the question and the comment:
[1, 2]-grams for Arabic, and stopworded [1, 2, 3]-
grams for English. That is, each n-gram appearing
in the texts becomes a member of the feature vector.
The value for such features is tf-idf, with idf com-
puted on the entire Qatar Living dataset.

Our aim is to capture the words that are as-
sociated with questions and comments in the dif-
ferent classes. We assume that objective and
clear questions would tend to produce objective
and GOOD comments. On the other hand, subjec-
tive or badly formulated questions would call for
BAD comments or discussion, i.e., dialogues, among
the users. This can be reflected by the vocabulary
used, regardless of the topic of the formulated ques-
tion. This is also true for comments: the occurrence
of particular words could make a comment more
likely to be GOOD or BAD , regardless of what ques-
tion was asked.

2.4 Heuristics

Exploring the training data, we noticed that many
GOOD comments suggested visiting a Web site or
contained an email address. Therefore, we included
two boolean features to verify the presence of URLs
or emails in c. Another feature captures the length
of c, as longer (GOOD ) comments usually contain
detailed information to answer a question.
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2.5 Polarity
These features, which we used for subtask B only,
try to determine whether a comment is positive or
negative, which could be associated with YES or
NO answers. The polarity of a comment c is

pol(c) =
∑
w∈c

pol(w) (5)

where pol(w) is the polarity of word w in the NRC
Hashtag Sentiment Lexicon v0.1 (Mohammad et al.,
2013). We disregarded pol(w) if its absolute value
was less than 1.

We further use boolean features that check the ex-
istence of some keywords in the comment. Their
values are set to true if c contains words like (i) yes,
can, sure, wish, would, or (ii) no, not, neither.

2.6 User Profile
With this set of features, we aim to model the
behavior of the different participants in previous
queries. Given comment c by user u, we con-
sider the number of GOOD , BAD , POTENTIAL , and
DIALOGUE comments u has produced before.4 We
also consider the average word length of GOOD ,
BAD , POTENTIAL , and DIALOGUE comments.
These features are computed both considering all
questions and taking into account only those from
the target category. 5

3 Submissions and Results

Below we describe our primary submissions for the
three subtasks; then we discuss our contrastive sub-
missions. Our classifications for subtask A, for both
Arabic and English, are at the comment level. Ta-
ble 1 shows our official results at the competition;
all reported F1 values are macro-averaged.

3.1 Primary Submissions
Arabic. We used logistic regression. The features
are lexical similarities (Section 2.1) and n-grams
(Section 2.3). In a sort of stacking, the output of
our cont1 submission is included as another feature
(cf. Section 3.2).

4About 72% of the comments in the test set were written by
users who had been seen in the training/development set.

5In Section 4.3, we will observe that computing these
category-level features was not a good idea.

This submission achieved the first position in the
competition (F1 = 78.55, compared to 70.99 for the
second one). It showed a particularly high perfor-
mance when labeling RELATED comments.

English, subtask A. Here we used a linear SVM,
and a one-vs.-rest approach as we have a multiclass
problem. The features for this submission consist
of lexical, syntactic, and semantic similarities (Sec-
tion 2.1), context information (Section 2.2), n-grams
(Section 2.3), and heuristics (Section 2.4). Similarly
to Arabic, the output of our rule-based system from
the cont2 submission is another feature.

This submission achieved the third position in
the competition (F1 = 53.74, compared to 57.19
for the top one). POTENTIAL comments proved
to be the hardest, as the border with respect to
the rest of the comments is very fuzzy. Indeed,
a manual inspection on some random comments
has shown that distinguishing between GOOD and
POTENTIAL comments is often impossible.

English, subtask B. Following the or-
ganizers’ manual labeling strategy for the
YES /NO questions (Màrquez et al., 2015), we
used three steps: (i) identifying the GOOD comments
for q; (ii) classifying each of them as YES , NO , or
UNSURE ; and (iii) aggregating these predictions to
the question level (majority). In case of a draw, we
labeled the question as UNSURE .6

Step (i) is subtask A. For step (ii) , we train a clas-
sifier as for subtask A, including the polarity and the
user profile features (cf. Sections 2.5 and 2.6).7

This submission achieved the third position in the
competition: F1 = 53.60, compared to 63.70 for the
top one. Unlike the other subtasks, for which we
trained on both the training and the testing datasets,
here we used the training data only, which was due
to instability of the results when adding the devel-
opment data. Post-submission experiments revealed
this was due to some bugs as well as to unreliability
of some of the statistics. Further discussion on this
can be found in Section 4.3.

6The majority class in the training and dev. sets (YES ) could
be the default answer. Still, we opted for a conservative deci-
sion: choosing UNSURE if no enough evidence was found.

7Even if the user profile information seems to fit for subtask
A rather than B, at development time it was effective for B only.
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ar DIRECT IRREL RELATED F1

primary 77.31 91.21 67.13 78.55
cont1 74.89 91.23 63.68 76.60
cont2 76.63 90.30 63.98 76.97

en A GOOD BAD POT F1

primary 78.45 72.39 10.40 53.74
cont1 76.08 75.68 17.44 56.40
cont2 75.46 72.48 7.97 51.97

en B YES NO UNSURE F1

primary 80.00 44.44 36.36 53.60
cont1 75.68 0.00 0.00 25.23
cont2 66.67 33.33 47.06 49.02

Table 1: Per-class and macro-averaged F1 scores for our
official primary and contrastive submissions to SemEval-
2015 Task 3 for Arabic (ar) and English (en), subtasks A
and B.

3.2 Contrastive Submissions

Arabic. We approach our contrastive submis-
sion 1 as a ranking problem. After stopword removal
and stemming, we compute sim(q, c) as follows:

sim(q, c) =
1
|q|

∑
t∈q∩c

ω(t) (6)

where we empirically set ω(t) = 1 if t is a 1-gram,
and ω(t) = 4 if t is a 2-gram. Given the 5 com-
ments c1, . . . , c5 ∈ C associated with q, we map the
maximum similarity maxC sim(q, c) to a maximum
100% similarity and we map the rest of the scores
proportionally. Each comment is assigned a class
according to the following ranges: [80, 100]% for
DIRECT , (20,80)% for RELATED , and [0,20]% for
IRRELEVANT . We manually tuned these threshold
values on the training data.

As for the contrastive submission 2, we built a bi-
nary classifier DIRECT vs. NO-DIRECT using lo-
gistic regression. We then sorted the comments
according to the classifier’s prediction confidence
and we assigned labels as follows: DIRECT for the
top ranked, RELATED for the second ranked, and
IRRELEVANT for the rest. We only included lexical
similarities as features, discarding those weighted
with idf variants.

The performance of these two contrastive submis-
sions was below but close to that of our primary sub-
mission (F1 of 76.60 and 76.97, vs. 78.55 for pri-
mary), particularly for IRRELEVANT comments.

English, subtask A. Our contrastive submis-
sion 1, uses the same features and schema as our
primary submission, but with SVMlight (Joachims,
1999), which allows us to deal with the class im-
balance by tuning the j parameter, i.e., the cost
of making mistakes on positive examples. This
time, we set the C hyper-parameter to the default
value. As we focused on improving the performance
on POTENTIAL instances, we obtained better re-
sults for this category (F1 of 17.44 vs. 10.40 for
POTENTIAL ), surpassing the overall performance
for our primary submission (F1 of 56.40 vs. 53.74).

Our contrastive submission 2 is similar to our
Arabic contrastive submission 1, using the same
ranges, but now for GOOD , POTENTIAL , and BAD .
We also have post-processing heuristics: c is clas-
sified as GOOD if it includes a URL, starts with an
imperative verb (e.g., try, view, contact, check), or
contains yes words (e.g., yes, yep, yup) or no words
(e.g., no, nooo, nope). Moreover, comments written
by the author of the question or including acknowl-
edgments are considered dialogues, and thus classi-
fied as BAD . The result of this submission is slightly
lower than for primary and contrastive 1: F1=51.97.

English, subtask B. Our contrastive submission 1
is like our primary, but is trained on both the training
and the development data. The reason for the low
results (an F1 of 25.23, compared to 53.60 for the
primary) were bugs in the polarity features (cf. Sec-
tion 2.5) and lack of statistics for properly estimating
the category-level user profiles (cf. Section 2.6).

The contrastive submission 2 is a rule-based sys-
tem. A question is answered as YES if it starts with
affirmative words: yes, yep, yeah, etc. It is labeled
as NO if it starts with negative words: no, nop, nope,
etc. The answer to q becomes that of the majority
of the comments: UNSURE in case of tie. It is worth
noting the comparably high performance when deal-
ing with UNSURE questions: F1=47.06, compared to
36.36 for our primary submission.

4 Post-Submission Experiments

We carried out post-submission experiments in or-
der to understand how different feature families con-
tributed to the performance of our classifiers; the re-
sults are shown in Table 2. We also managed to im-
prove our performance for all three subtasks.
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ar (only) DIR IRREL REL F1

n-grams 30.40 41.07 72.27 47.91
cont1 74.89 63.68 91.23 76.60
similarities 61.83 25.63 82.55 56.67
ar (without) DIR REL IRREL F1

n-grams 75.51 91.31 63.85 76.89
cont1 69.50 82.85 50.87 67.74
similarities 77.24 91.07 67.76 78.69
en A (only) GOOD BAD POT F1

context 67.65 45.03 11.51 47.90
n-grams 71.22 40.12 5.99 44.86
heuristics 76.46 41.94 7.11 52.57
similarities 62.93 44.58 9.62 46.16

lexical 62.25 41.46 8.66 44.82
syntactic 59.18 36.20 0.00 36.47
semantic 55.56 40.42 9.92 42.16

en A (without) GOOD BAD POT F1

context 76.05 41.53 8.98 51.50
n-grams 77.25 45.56 12.23 55.17
heuristics 73.84 65.33 6.81 48.66
similarities 78.02 71.82 9.88 53.24

lexical 78.23 72.81 9.91 53.65
syntactic 78.81 43.89 9.91 53.73
semantic 78.41 71.82 10.30 53.51

en B YES NO UNS F1

post1 78.79 57.14 20.00 51.98
post2 85.71 57.14 25.00 55.95
primary D/G/Y I/B/N R/P/U F1

ar 77.31 91.21 67.13 78.55
en A 78.45 72.39 10.40 53.74
en B 80.00 44.44 36.36 53.60

Table 2: Post-submission results for Arabic (ar) and En-
glish (en), for subtasks A and B. The lines marked with
only show results using a particular type of features only,
while those marked as without show results when using
all features but those of a particular type. The best results
for each subtask are marked in bold; the results for our of-
ficial primary submissions are included for comparison.

4.1 Arabic

We ran experiments with the same framework as in
our primary submission by considering the subsets
of features in isolation (only) or all features except
for a subset (without). The n-gram features together
with our cont1 submission (recall that we also use
cont1 as a feature in our primary submission) allow
for a slightly better performance than our —already
winning— primary submission (F1 = 78.69, com-
pared to F1 = 78.55). The cont1 feature turns out
to be the most important one, and, as it already con-
tains similarity, combining it with other similarity
features does not yield any further improvements.

4.2 English, Subtask A

We performed experiments similar to those we did
for Arabic. According to the only figures, the heuris-
tic features seem to be the most useful ones, fol-
lowed by the context-based ones. The latter explore
a dimension ignored by the rest: these features are
completely uncorrelated and provide a good perfor-
mance boost (as the without experiments show). On
the other hand, using all features but the n-grams
improves over the performance of our primary run
(F1 = 55.17 compared to F1 = 53.74). This is
an interesting but not very significant result as these
features had already boosted our performance at de-
velopment time. Further research is necessary.

4.3 English, Subtask B

Our post-submission efforts focused on investigat-
ing why learning from the training data only was
considerably better than learning from training+dev.
The output labels on the test set in the two learning
scenarios showed considerable differences: when
learning from training+dev, the predicted labels
were YES for all but three cases. After correcting
a bug in our implementation of the polarity-related
features, the result when learning on training+dev
became F1=51.98 (Table 2, post1). Further anal-
ysis showed that the features counting the number
of GOOD , BAD , and POTENTIAL comments within
categories by the same user (cf. Section 2.6) var-
ied greatly when computed on training and on train-
ing+dev, as the number of comments by a user in a
category was, in most cases, too small to yield very
reliable statistics. After discarding these three fea-
tures, the F1 raised to 55.95 (Table 2, post2), which
is higher than what we obtained at submission time.
Note that, once again, the UNSURE class is by far the
hardest to identify properly.

Surprisingly, learning with the bug-free imple-
mentation from the training set yielded a much
higher F1 of 69.35 on the test dataset (not shown
in the table). Analysis revealed that the difference
in performance was due to misclassifying just four
questions. Indeed, the differences seem to occur due
to the natural randomness of the classifier on a small
test dataset and they cannot be considered statisti-
cally significant (Màrquez et al., 2015).
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5 Conclusions and Future Work

We have presented the system developed by the team
of the Qatar Computing Research Institute (QCRI)
for participating in SemEval-2015 Task 3 on An-
swer Selection in Community Question Answering.
We used a supervised machine learning approach
and a manifold of features including word n-grams,
text similarity, sentiment dictionaries, the presence
of specific words, the context of a comment, some
heuristics, etc. Our approach was the best perform-
ing one in the Arabic task, and the third best in the
two English tasks.

We further presented a detailed study of which
kinds of features helped most for each language and
for each subtask, which should help researchers fo-
cus their efforts in the future.

In future work, we plan to use richer linguistic an-
notations, more complex kernels, and large semantic
resources.
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Abstract 

In this paper, we present a comment labeling 

system based on a deep learning strategy. We 

treat the answer selection task as a sequence 

labeling problem and propose recurrent 

convolution neural networks to recognize 

good comments. In the recurrent architecture 

of our system, our approach uses 

2-dimensional convolutional neural networks 

to learn the distributed representation for 

question-comment pair, and assigns the labels 

to the comment sequence with a recurrent 

neural network over CNN. Compared with 

the conditional random fields based method, 

our approach performs better performance on 

Macro-F1 (53.82%), and achieves the highest 

accuracy (73.18%), F1-value (79.76%) on 

predicting the Good class in this answer 

selection challenge. 

1 Introduction 

The community question answering site or system 

(CQA) is one kind of common platforms where 

people can freely ask questions, deliver comments 

and participate in discussions. The high-quality 

comments given a question are the important 

resources to generate useful question-answer pairs, 

which are of great value for knowledge base 

construction and information retrieval (IR). 

However, due to the unrestricted expressions in 

CQA, it still one problem to recognize the 

high-quality comments from the open domain data, 

which are involve in a large of noise information. 

Nevertheless, the semantic relevance between 

question and comment makes sense to predict the 

quality of comment by modeling the semantic 

matching for question-comment pair. 

Prior work on predicting the class of comment 

(or answer) mainly attempted to measure the 

semantic similarity between question and 

comment with typical classification approaches, 

such as LR and SVM. To achieve the semantic 

relevance matching for question-comment pair, a 

large number of works focus on constructing 

feature-engineering to extract the features of 

question and comment as the input of models. 

Beyond typical textual feature, some works 

integrate the structural information (Wang et al., 

2009; Huang et al., 2007) into the discrete 

representations of question-comment pairs to 

improve the performances of comment classifiers. 

Another option is extracting user metadata (Chen 

and Nayak, 2008; Shah and Pomerantz, 2010) 

from the question answering portal for enriching 

the feature-engineering. Empirically the 

approaches above have been shown to improve 

performances on recognizing positive answers, but 

they rely on large numbers of hand-crafted 

features, and require various external resources 

which may be difficult to obtain. Furthermore, 

they suffer from the limitation of requiring 

task-specific feature extraction for new domain. 

Recently the works about neural network-based 

distributed sentence models (Socher et al., 2012; 

Kalchbrenner et al., 2014) have achieved 

successes in natural language processing (NLP). 

As a consequence of this success, it appears 

natural to attempt to solve question answering 

using similar techniques. To recognize the 

high-quality answers, Hu et al. (2013) learned the 

joint representation for each question-answer pair 
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Figure 1. The architecture of comment labeling system based on deep learning

by taking both of the textual and non-textual 

features as the input of multi-DBN model. To 

achieve the answer sentence selection, Yu et al. 

(2014) proposed convolution neural networks 

based models to represent the question and answer 

sentences. For the semantic matching between 

question and answer, the methods based on deep 

learning generally exploit to learn the distributed 

representation of question-answer pair as the input. 

Instead of extracting a variety of features, these 

approaches learn the semantic features to 

represent question and answer. However, these 

approaches only focus on modeling the semantic 

relevance between question and answer, ignoring 

the semantic correlations in answer sequence. 

In this work, we present a novel comment 

labeling system based on deep learning. We 

propose the recurrent convolutional neural 

networks (R&CNN) approach to assign the labels 

to comments given a question. Based on the 

distributed representations learned form 

2-dimensional CNN (2D-CNN) matching, our 

approach achieves to comment sequence learning 

and predict the classes of comments. Using the 

word embedding trained by provided Qatar Living 

data, R&CNN not only models the semantic 

relevance for question and comment, but also 

captures the correlative context in comment 

sequence for predicting the class of comment. The 

experimental results show that our system 

performs better performances than the CRF based 

method (Ding et al., 2008) on recognizing good 

comments, and performs more adaptive on the 

development and test dataset. 

2 System Description 

The architecture of our comment labeling system 

is a recurrent architecture (shown in Figure 1) 

with a recurrent neural network over the 

convolutional neural networks. Given a question, 

our approach achieves to learn the semantic 

relevance between question and comment by 

2D-CNN matching and generate the distributed 

representation of each question-comment pair. 

After that, our approach uses the RNN to model 

the semantic correlations in comment sequence, 

and makes the quality predictions for the comment 

sequence with the captured context. 

2.1 Convolutional Neural Networks for 

question-comment matching 

Convolutional neural networks are a natural 

extension of neural networks for treating image. 

Hu et al. (2014) proposed the 2D-CNN model to 

do semantic matching between two sentences. In 

our work, we use 2D-CNN to learn the distributed 

representations for question-comment pairs. 

Unlike 1D-CNN, executing the interaction 

between question and answer in final multi-layer 

perception (MLP) with their individual 

representations, 2D-CNN maps question and 

comment into a common space for learning the 

representation of question-comment pair and 

captures the rich matching patterns between 

question and answer by layer-by-layer convolution 

and pooling. 

The first layer is 1D-convolution layer, whose 

role is converting word embedding of question 

and comment into one common space with the 

sliding window, whose size k is (3 × 3). For the 

word i on question 𝑞 and word j on comment 𝑐, 

1D-convolution can formulated as: 

�̂�𝑖,𝑗
(0)

= [𝑞𝑖:𝑖+𝑘−1
𝑇 , 𝑐𝑖:𝑖+𝑘−1

𝑇 ]      (1) 

where �̂�𝑖,𝑗
(0)

simply concatenates the vectors of 

sentence segments in question 𝑞 and comment 𝑐; 
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The 1D-convolution converts the concatenated 

matrix 𝐻0 of question and comment into the 

real-value matrix  𝐻1 . After that, 2D-CNN 

executes deep 2D-convolution and pooling, 

similar to that of traditional image input. The 

output of the mth hidden layer is computed as: 

𝐻𝑚 = 𝜎(𝑝𝑜𝑜𝑙(𝑤𝑚𝐻𝑚−1 + 𝑏𝑚))   (2) 

Here, 𝑤𝑚 is the parameter matrix for the feature 

maps on mth hidden layer and 𝑏𝑚 is the bias 

vector. 𝜎(. ) is the sigmoid activation function. 

The final distributed representation  𝑝𝑡 of 

question-comment pair learned from 2D-CNN 

represents the semantic relevance between 

question and comment, and provides the reliable 

evidences to make a quality prediction for the 

corresponding comment. 

2.2 Recurrent Neural Network for comment 

sequence labeling 

Recurrent neural network is a straightforward 

adaptation of the standard feed-forward neural 

network (Bengio et al., 2012) to allow it to model 

sequential data. The recurrent neural network in 

our work has one input layer X, one hidden layer 

H for updating the hidden state, and the output 

layer Y. For the time step t, the input to RNN 

includes the learned representation  𝑝(𝑡) and the 

previous hidden state  ℎ(𝑡 − 1) . The output is 

denoted as 𝑦(𝑡). The output of input, hidden and 

output layers are computed as: 

𝑥(𝑡) = 𝑤𝑖𝑝(𝑡) + 𝑤ℎℎ(𝑡 − 1) + 𝑏ℎ  (3) 

ℎ(𝑡) = 𝜎(𝑥(𝑡))                 (4) 

𝑦(𝑡) = 𝑔(𝑤𝑦ℎ(𝑡) + 𝑏𝑦)           (5) 

where 𝑤𝑖 is the matrix of connection between 

CNN and the input layer of RNN; 𝑤ℎ plays role 

in updating network state or context; and 𝑤𝑦 is 

the matrix of connection between hidden layer 

and output layer. Both of 𝑏ℎ and 𝑏𝑦 are bias 

vectors. Here, 𝜎(. ) is the sigmoid activation 

function; 𝑔(. ) is the softmax function. 𝑥(𝑡) is 

the joint representation of current pair and 

context. Our approach is able to capture the 

context by updating the hidden state ℎ(𝑡). 

To train the networks proposed here, we use the 

backpropagation through time with stochastic 

gradient descent (SGD) algorithm. At each 

training step, error vector is computed according 

to cross entropy criterion, weights are updated as: 

𝐸𝑟𝑟𝑜𝑟(𝑡; 𝜃) = 𝑅(𝑡) − 𝑦(𝑡)         (6) 

where 𝑦(𝑡) is the result from our system, and 

𝑅(𝑡) is the true class; and 𝜃 includes all the 

parameters of CNN and RNN. 

3 Experiments 

3.1 Experimental setup 

We evaluate our approach (R&CNN) on both the 

development and test data of this answer selection 

challenge. The statistics of experimental dataset 

are summarized in Table 1. In this dataset, there 

are 3,229 questions and 21,062 answers, and the 

percentage of good comments is about 50%. The 

average length of comment sequence is 6. 

data #question #comment #average % good 

Train 2600 16541 6.36 48.78 

Devel 300 1645 5.48 53.19 

Test 329 1976 6.00 50.46 

Table 1. Statistics of experimental dataset 

In our approach, we use 100-dimensional word 

embedding trained on the provided Qatar Living 

data with Word2vec (Mikolov et al., 2013). The 

maximum size of coding the sentences with word 

embedding is set to be 100, and we use 3-words 

sliding window for 1D-convolution. The learning 

rate is initialized to be 0.01 and adapted 

dynamically using ADADELTA Method (Matthew, 

2012). Based on the results on development set, 

all the hyperparameters of our approach are 

optimized on train set. 

Table 2 lists the experimental methods and the 

corresponding official results. The baselines of 

comment sequence labeling include the method 

based on CRF and the approach CRF+V, which 

integrates distributed representation learnt from 

our approach (R&CNN). In addition, we illustrate 

the best result achieved by the supervised 

feature-rich approach SFR1. 

Results Methods 

ICRC-HIT-primary CRF+V 

ICRC-HIT-contrastive1 R&CNN 

ICRC-HIT-contrastive2 CRF 

JAIST-contrasive1 SFR 

Table 2. The official results and experimental methods 

                                                           
1It is the approach of JAIST team in subtask-A English. 
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3.2 Results and analysis 

Table 3 and Table 4 illustrate the results in 

development and test dataset respectively. As can 

be seen, our proposed R&CNN outperforms CRF 

and CRF+V on whole performances. Specifically, 

R&CNN achieves the state-of-the-art with the 

accuracy 73.18%, and 79.76% in F1-value of 

predicting Good class while performs 53.82% in 

Macro-F1 on the test dataset. 

Methods Macro. Acc. P R F1 

CRF 50.56 59.82 72.41 77.37 74.81 

CRF+V 52.14 61.03 74.80 76.00 75.40 

R&CNN 52.10 60.85 75.09 75.09 75.09 

Table 3. Performances on development dataset (%) 

Methods Macro. Acc. P R F1 

CRF 40.54 60.12 57.90 95.89 72.21 

CRF+V 49.50 67.86 65.99 91.68 76.74 

R&CNN 53.82 73.18 74.39 85.96 79.76 

SFR 57.29 72.67 80.51 78.03 79.11 

Table 4. Performances on test dataset (%) 

Compared to CRF and CRF+V, our approach 

outperforms them in evolution metrics. There are 

several reasons for the unsatisfying performances 

of CRF and CRF+V. First, it is sparse to extract 

semantic features of question-comment pairs from 

short contents in baselines. In contrast, the 

distributed representation learned from our model 

is able to capture semantic relationship between 

words of question-comment pairs based on deep 

convolution and pooling. Secondly, there are large 

amount of noise information involved in CQA, 

such as various emotional symbols and the 

abbreviated words. The feature-engineering of 

CRF based method generally suffers from the 

quality of dataset. Besides of that, the divergences 

of class distribution between the development and 

test influence the effectiveness directly. Hence, 

our approach performs more powerful and 

adaptive to different dataset or new domain. We 

also can demonstrate this point by comparing the 

experimental results of CRF and CRF+V on the 

test (shown in Table 4). By integrating the 

distributed representation from our R&CNN, 

CRF+V improves 9% on Macro-F1, 7.74% on 

accuracy over CRF, and 4.53% in F1-value of 

predicting Good class. 

Taking only word embedding as the original 

features, our approach has achieved 53.82% in 

Macro-F1. In contrast, the supervised feature-rich 

(SFR) approach performs 57.29% in Macro-F1 by 

integrating multi-type features, such as word 

embedding, features from topic models and user 

metadata etc. The main reason for that is the low 

performance of our approach on predicting the 

answers of Potential class, which has a major 

import on Macro-F1 due to the effect of 

marcoaveraging. There are several factors for that 

result. The first is the imbalance distribution in 

training data, which is lacking of the train samples 

of Potential class. So the distributed models based 

purely on word embedding are not very well 

equipped to learn the meaningful representations 

for question and potential comments. Secondly, 

Potential class is an intermediate category 

(Màrquez et al., 2015) that was quite hard to 

human annotators. Hence, surface-form matching 

between the words of question-comment pair is 

hard to identify its correct class merely using word 

embedding.  

In addition, when considering the heavy 

reliance of feature-engineer of SFR in comparison 

to the simplicity of our approach, the Macro-F1 

our approach obtained is highly encouraging. 

What’s more, our model achieves the 

start-of-the-art in accuracy and F1-value of Good 

class. These promising results indicate the 

effectiveness of our approach in predicting the 

high-quality comments in CQA. 

4 Conclusion 

In this paper, we present a comment labeling 

system based on the deep learning architecture. 

Without the complicated feature-engineering and 

external semantic resources, the recurrent 

convolutional neural networks (R&CNN) 

approach proposed by us not only is able to 

capture semantic matching patterns between 

question and comments, but also learn the 

meaningful context in the comment sequence. In 

this answer selection task, our approach achieves 

the state-of-the-art on recognizing good comments, 

and performs better accuracy than baselines while 

obtains powerful results in Macro-F1. 

In the future, we would like to investigate the 

methods of training the imbalance data (e.g. the 

Potential class) to improve the performances of 

our approach, such as the typical oversampling 

and undersampling methods. 
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Abstract

In this paper, we describe our system for
SemEval-2015 Task 3: Answer Selection in
Community Question Answering. In this task,
the systems are required to identify the good
or potentially good answers from the answer
thread in Community Question Answering
collections. Our system combines 16 features
belong to 5 groups to predict answer quality.
Our final model achieves the best result in sub-
task A for English, both in accuracy and F1-
score.

1 Introduction

Nowadays, community question answering (cQA)
websites like Yahoo! Answers play a crucial role
in supporting people to seek desired information.
Users can post their questions on these sites for find-
ing help as well as personal advice. However, the
quality of these answers varies greatly. Typically,
only a few of the answers in an answer thread are
useful to the users and it may take a lot of efforts to
identify them manually. Thus, a system that auto-
matically identifies answer quality is much needed.

The task of identifying answer quality has been
studied by many researchers in the field of Question
Answering. Many methods have been proposed:
web redundancy information (Magnini et al., 2002),
non-textual features (Jeon et al., 2006), textual en-
tailment (Wang and Neumann, 2007), syntactic fea-
tures (Grundström and Nugues, 2014). However,
most of these works used independent dataset and
evaluation metrics; thus it is difficult to compare
the results of these methods. The SEMEVAL task

3 (Màrquez et al., 2015) addresses this problem by
providing a common framework to compare differ-
ent methods in multiple languages.

Our system incorporates a range of features:
word-matching features, special component fea-
tures, topic-modeling-based features, translation-
based features and non-textual features to achieve
the best performance in subtask A (Màrquez et al.,
2015). In the remainder of the paper, we will de-
scribe our system with the focus on the features.

2 System Description

For extracting the features, we first preprocess the
questions and the answers then build a number of
models based on training data or other sources (Fig-
ure 1).

2.1 Preprocessing

All the questions and the answers are preprocessed
through the following steps: Tokenization, POS-
tagging, Syntactic parsing, Dependency parsing,
Lemmatization, Stopword removal, Name-Entity
recognition. These preprocessing steps are com-
pleted using The Stanford CoreNLP Natural Lan-
guage Processing Toolkit (Manning et al., 2014).
Because of the noisy nature of community data, the
syntactic parsing, dependency parsing and Name-
Entity recognition steps do not produce highly ac-
curate results. Thus, we rely mainly on the bag-of-
word representation of text. Removing stopwords or
lemmatization can alter the meaning of the text, so in
the system, we keep both the original version and the
processed version of the text. The choice between
using the two versions is made using experiments in
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Figure 1: System components

development set.

2.2 Building models from data

In this section, we describe the resources we use,
or build for extracting features, these resources are:
Translation models, LDA models, Word vector rep-
resentation models, Word Lists. The translation
models are built to bridge the lexical chasm be-
tween the questions and the answers (Surdeanu et
al., 2008). In previous works (Jeon et al., 2005;
Zhou et al., 2011), monolingual translation mod-
els between questions have been successfully used
in finding similar questions in Question Answering
archive. We adapt the idea and build translation
models between the questions and their answers us-
ing the training data and the Qatar Living forum
data. We treat the question-answer pairs similar to
dual language sentence pairs in machine translation.
First, each question-answer pair is tokenized and all
special characters are removed. In the process, if any
answer has too few tokens (less than two tokens), it
is removed from the training data. Then the trans-
lation probabilities are calculated by IBM Model 1
(Brown et al., 1993) and Hidden Markov Model.
Each model is trained with 200 iterations. The cal-
culated translation probabilities help us to calculate
the probability that an answer is the translation of
the question. The translation feature will be detailed
in Section 2.3.

We build two topic models, the first one is trained
in the training data, the second one is trained in
Wikipedia data1 using Gensim toolkit (Řehůřek and
Sojka, 2010) and Mallet toolkit (McCallum, 2002).

1The compressed version of all article from Wikipedia
downloaded at http://dumps.wikimedia.org/enwiki/

These LDA models have 100 topics. The choice be-
tween which model will be used is based on experi-
ments in the development set.

We experiment with two word vector represen-
tation models built using Word2Vec tool (Mikolov
et al., 2013), the first one is pre-trained word2vec
model provided by the authors, and the second one
is trained from the Qatar Living forum data. Our
Word2Vec model was built with word vector size of
300, window size of 3 (n-skip-gram, n=3) and mini-
mum word frequency of 1. In Section 2.3, we detail
how to extract feature using these models.

We also build several word lists from the training
set to extract features:

• The words that usually appear on each type of
answers (Good, Bad, Potential).

• The words pairs (one from the question, one
from the good answers) that have high fre-
quency in the training set. We aim to extract the
information about word collocations through
this list.

2.3 Features
Word-matching feature group: This feature group
exploits the surface word-based similarity between
the Question and the Answer to assign score:

• Cosine similarity:

cosine sim =

n∑
i=1

ui×vi√
n∑

i=1

(ui)2×
√

n∑
i=1

(vi)2
(1)

With u and v are binary bag of words vectors
(with stopwords are removed), ui is the i-th di-
mension of vector u and n is vector size. This
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feature returns the cosine similarity between
question vector and answer vector.

• Dependency cosine similarity: We represent
the questions and the answers as bag of word-
dependency, with words are associated with
their dependency label in the dependency tree.
For example: a dependency arc in the depen-
dency tree: prep(buy-4, for-7) will generate the
following word-dependency: prep-by-for. We
consider the sentence to be the collection of
these word-dependencies. The cosine similar-
ity score is calculated similar to bag-of-word
cosine similarity.

• Word alignment: We also use the Meteor
toolkit (Denkowski and Lavie, 2014) to align
the words from the question and the answers,
and use the alignment score returned as a fea-
ture in the feature space

• Noun match: This feature is similar to Cosine
similarity feature, however; only nouns are re-
tained in the bag-of-word.

Special-component feature group: This feature
group identifies the special characteristics of the an-
swers that show the answer quality:

• Special words feature: This feature identifies if
an answer contains some of the special tokens
(question marks, laugh symbols). Typically, the
posts that contains this type of tokens are not
a serious answer (laugh symbols), or a further
question (question marks). The laugh symbols
are identified using a regular expression.

• Typical words feature: This feature identifies if
an answer contains some specific words that are
typical for an answer quality class (good, bad,
potential). The typical word lists are built using
training data and described in the previous sec-
tion. After the experiment step, however, only
the typical word list for bad answers was found
to be effective and was used in the final version
of the system.

Non-textual feature group: This feature group
exploits some non-textual information of the posts
in the answer thread to assign answer quality:

• Question author feature: This feature identifies
if an answer in the answer thread belongs to the
author of the question. If a post belongs to the
author of the question, it is very unlikely to be
an answer.

• Question category: We also include the ques-
tion category (27 categories) in the feature
space because we found out that the quality dis-
tribution of different types of question are very
different.

• The number of posts from the same user: We
include the number of posts from the same user
as a feature because we observe that if a user
has a large number of posts, most of them will
be non-informative, irrelevant to the original
question.

Topic model based feature: We use the previ-
ously mentioned LDA models to transform ques-
tions and answers to topic vectors and calculate the
cosine similarity between the topic vectors of the
question and its answers. We use this feature be-
cause a question and its correct answer should be
about similar topics. After experimenting on the de-
velopment set, only the LDA model built from train-
ing data is effective and thus, it is used in the final
system.

Word Vector representation based feature: We
use the word vector representation to model the
relevance between the question and the answer.
All the questions and answers are tokenized and
the words are transformed to vector using the pre-
trained word2vec model. Each word in the ques-
tion will then be aligned to the word in the answer
that has the highest vector cosine similarity. The re-
turned value will be the sum of the scores of these
alignments normalized by the question’s length:

align(wi) = max
0<j≤m

(cosine(wi, w
′
j)) (2)

word2vec sim =
∑n

i=1
align(wi)

n (3)

With cosine(wi, w
′
j) is the cosine similarity of two

vector representations of i-th word in the question
with the j-th word in the answer. n and m are the
length (in number of words) of the question and the
answer respectively.
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Translation based feature: We use the previ-
ously mentioned translation models to find the word
to word alignments between the question and the an-
swer. This feature is calculated similar to the Word
Vector representation based feature. Each word in
the question will be aligned with the word in the an-
swer with the highest translation score. The feature
value will be the sum of translation scores normal-
ized by question’ length.

2.4 System run configuration

The straightforward way to identify the quality
classes for answers is using a classification model.
However, the classification model has problem in
identifying the Potential class. In our experiments,
the classification model ignores the Potential class
entirely. This problem may be caused by our feature
design as the features actually aim to identify either
good or bad answers.

To solve this problem, we use another approach.
As we observe the data, most of the Potential an-
swers can be considered “Not good enough” and
“Not bad enough”. An answer which is not quite
good nor quite bad can be considered “Potential”,
thus using a regression model2 to score the quality
of the answer would probably be better. In our ex-
periment with the development data, the regression
model outperforms the classification model by 3.4
F-measure score.

Features are extracted from the answers (with
their questions treated as the context), and then
the feature values are passed through a regression
model. However, the provided data only has qual-
ity classes but not regression value, thus we need to
assign the regression value for each answer quality
class: 1.0 for Good answers, 0.5 for Potential an-
swers, and 0.0 for Bad answers.

Our system runs are different in the feature space.
Our best run (JAIST-contrastive1) uses all the fea-
tures described above. Our main run (JAIST-
primary) excludes the topic-modeling based feature
while the third run (JAIST-contrastive2) includes
several other experimental features that did not have
contribution when tested on the development set.

2We use SVM-regression model in WEKA toolkit (Hall et
al., 2009)

Table 1: System performance

Runs F1-score Accuracy Rank

primary 57.19 (%) 72.52 (%) 2

contrastive1 57.29 (%) 72.67 (%) 1

contrastive2 46.96 (%) 57.74 (%) 18

Table 2: Detail Class F1-score

Runs F1-score

Good 78.96 (%)

Bad 78.24 (%)

Potential 14.36 (%)

3 Result and Discussion

We only take part in subtask A for English. Our
system has the best accuracy and F1-score in sub-
task A (primary runs) shown in Table 1. Classifying
the Potential class is quite difficult (Màrquez et al.,
2015) and our system only achieve 14.36 % F1 score
on this class. Although the use of regression model
partly solves this problem, our feature space is not
adequate for identifying this class reliably (Table 2)

4 Conclusion

In this paper, we present our approach for the sub-
task A - English of the SEMEVAL 2015 task 3 - An-
swer Selection in Community Question Answering.
We propose an Answer quality scoring based ap-
proach for classifying answers in Community Ques-
tion Answering. Our system achieves high results
in the task, however, does not handle the Potential
class well. A possible explanation is that we still rely
heavily on the bag-of-word representation of text. In
the future, other semantically rich representations of
text would be employed to improve performance.
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Abstract

Answer Validation is an important step in
Automatic Question Answering systems and
nowadays by spreading Community Question
Answering systems it is known as an impor-
tant task by itself. Previous works just con-
sidered it as a binary classification problem in
which they try to find the best answer among
all the candidate answers for a question. Ac-
cordingly, they do not consider the possible
unique information which may have been in-
cluded other answers. This can be consid-
ered by having a multiclass label classification
problem, it is not only able to find the best
answer but also can find ”potentially good”,
”bad”, and etc. answers too. By doing so, it is
fully expected to extract and rate all the nec-
essary information from existing candidates to
help questioner to find the best and general an-
swer for his question. This work tries to con-
sider some features which are gained from im-
portance of comments of the questioner. Fi-
nally, by using a good classifier, we try to
overcome this problem. The designed system
participated in subtask A of the Semeval-2015
Task 3. The primary submission ranked at the
5th and 7th places in four class label and three
class label evaluation, accordingly.

1 Introduction

By spreading Community Question Answering
(CQA) systems, there have been created a new tax-
onomy for Question Answering (QA) systems: Reg-
ular QAs, and CQAs. A regular QA, accepts a natu-
ral language input and after searching into it’s avail-
able resources, returns the best shortest answer, it

could find. In these systems, answering to factoid
questions may be an easier challenge than the other
question types. One of the features of CQA systems
is its users. Once one asks a question, others try
to answer that question. Then these kinds of sys-
tems just try to use users knowledge to answer users
questions. Of course instead of finding the correct
answer of an asked question from some candidate
answers which must be done by questioner, system
tries to tell the questioner which answer is helpful
and which one is not. Then discussing about factoid
questions is maybe so hard and it could not be han-
dled just by using the answers and questions body,
rather, it should have access to a great knowledge
source to check if an answer is correct or not.

Community Question Answering systems’
spreaded over the internet, and accordingly, it made
researchers to be interested in getting involved to
the challenges related to these systems. One of the
main challenges which may be so important in the
aspect of all the people who are using these systems
is Answer Validation. More researches has been
done as CQA systems are getting more and more
popular. This challenge is a kind of classification
problem which classifies comments of a question
and by doing so, it can help questioner to find the
correct answer, sooner, and without spending so
much time to read all the comments. Alternately, it
can help other web users who had searched for the
similar question in a search engine and redirected
to our website, to find the answer they are looking
for. Next it can help us to find the questions without
any proper answer, and in addition it can be used for
question routing challenge (Gkotsis et al., 2014).
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Eventually its important to CQA systems owners to
attract more users and accordingly, attracting more
users means earning more money.

In this work a new type of features will be dis-
cussed which could be gained by considering the
information of questioner comments. Experiments
shows, this kind of features are more valuable in
contrast of the most valuable features of previous
works.

Some previous works focused on the deep tex-
tual features such as syntactic, lexical, and discourse
features to find the best answer. And some others
tried to overcome this problem using shallow fea-
tures such as word count in an answer, answer count
for a question, (Gkotsis et al., 2014; Toba et al.,
2014). Some others, tried to propose a solution by
using reputational features of such a system like user
rating (a high ranked user may produce a more reli-
able answer), Answer rating (an answer with more
ratings from other users may be more reliable), (An-
derson et al., 2012).

Of course previous works, mostly have just tried
to find the best answer (designed a binary classifier)
but present work classifies answers into six classes:
Good, Potential, Bad, Dialogue, Not English, and
Other. Good is a comment with a complete bunch
of relevant information. Potential is a comment with
some helpful information but is not a complete an-
swer. Bad is a comment with no helpful informa-
tion to answer the question. Dialogue is a comment
which shows a kind of discussion between users and
obviously contains no useful information. Not En-
glish is a comment in other languages. Other is a
comment which is not a kind of above mentioned
classes. Samples of English, and Other classes have
no valuable information as samples related to Bad
and Dialogue classes.

The remainder of the paper is organized as fol-
lows: related works are presented at section 2. There
is an introduction to the used dataset at section 3. At
section 4 the Features will be introduced. At sec-
tion 5 experiments are discussed. Finally, Section 6
would have a conclusion.

2 Related Works

In (Jeon et al., 2006) there was an attempt to
overcome this challenge using non-textual features.

Non-textual features are acclaimed to have lots of
information which can be helpful for finding class
label of an answer. Its pointed that a not properly
usage of these features is the cause to not have good
results. For feature selection they had estimated the
correlation between the feature values and the manu-
ally judged quality scores. Higher correlation means
the feature is a better indicator to predict the quality
of answers. Then because Maximum Entropy mod-
els need monotonic features a feature converter was
used. KDE (Kernel Density Estimation) is the one
which is used in this work. At last they could get a
better performance than the random ranker.

In (Shah and Pomerantz, 2010) the goal is to pre-
dict if an answer was chosen by the questioner as the
best answer. They have just used features related to
answers, because question’s features were not that
much effective. Experiments were done twice: first
by estimating features’ values using Amazon Turk,
and second by using values automatically generated
from source of questions and answers and users pro-
files. The results show that using second approach is
more useful. First approachs features are so corre-
lated and cannot model the variability in the data but
the second approachs model is quite good in terms
of its power to explain the variability in the data.

(Wang et al., 2009) proposed an analogical
reasoning-based approach to measure the analogy
between the new question-answer linkages and those
of previous relevant knowledge which only contains
positive links. And the most analogous link was as-
sumed to be the best answer. There is an assump-
tion that provides each answer is connected to its
question with various types of latent links. Positive
links indicating high-quality answers and Negative
links indicating incorrect answers or user-generated
spam. This work tried to solve problem of lexical
gap between questions and answers. To do so, sim-
ilar question and answer pairs from available ques-
tions and their correct answers in the system were
utilized.

In (Surdeanu et al., 2011) linguistic features were
used to represent content. The proposed method
is called FMIX (feature mix), that is a mixture of
four types of features: Similarity Features, Transla-
tion Features, Density/Frequency Features, and Web
Correlation Features. Value of these set of features
estimated using a generative model but a discrimi-
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native model (SVM, Perceptron are used) was used
to combine them.

In (Gkotsis et al., 2014) some shallow textual fea-
tures (like answer count, longest sentence length and
any other feature which does not need that much ef-
fort to retrieve from text like semantic or syntactic
features) had been mainly considered. Experimental
results for different mixtures of mentioned features
and some other types like reputational features (e.g.
answer rating, question rating) had been estimated
to confirm a suitable usage of shallow features can
result a prosper approach. This work’s main contri-
bution is proposing a discretization method to solve
language evolution, generality problems, and accu-
racy. The discretization method is consists of three
steps: grouping (group answers related to a ques-
tion), sorting (sort answers according to their value
for that feature), and discretization (assign a rank for
each answer, starting from 1 and incrementing this
rank by one).

In (Toba et al., 2014) a 2-layer classification
method has been proposed. The first layer just tries
to find the type of the question and the second layer
uses the result of the first layer to find the best an-
swer of the question. For each question type there
is a specific classifier at the second layer, and fur-
thermore a feature set which consists of a mixture of
shallow and deep textual features and reputational
features.

3 Dataset

The source of the corpus is the Qatar Living Forum
data1. Details of the method of extracting and la-
beling its content are described at (Màrquez et al.,
2015). This corpus was provided into three parts:
train set, development set, and test set. And for two
sub-tasks. Each of the mentioned sets is consists of
a number of questions and for each question, there
is some comments.

4 Features

In this section, features used for training and testing
the classifier are introduced. Some shallow textual
features are considered. Alternatively, we tried to
extract and use reputational features as well. Some
of the shallow features used, are the same as shallow

1http://www.qatarLiving.com/forum

features in (Gkotsis et al., 2014; Toba et al., 2014)
and some other features are from the available in-
formation in the corpus like: Creation Date, Cate-
gory, and Question Type. It was assumed Question-
ers comments can be so informative, experiments
show that, features which are using this fact can be
so effective.

4.1 Reputational Features

An important part of CQA systems is users reputa-
tional information. There are some previous works
used the authority of the users like Anderson (2012).
There is somehow no explicit information in our
train set to have features of this type. But by know-
ing that there is an overlap between user set whose
questions or comments are presented in train set and
in test set two features were added to cover this type:

• Which User Group: gives to all comments of
a certain user a unique identifier.

• Which User Category: gives to each comment
of a certain user in each category a unique iden-
tifier.

4.2 List Wise Features

Some approaches tried to use some kinds of prior
knowledge like previous available questions and
their comments in system. Some others without car-
ing about that knowledge just tried to overcome this
problem using the information exists in domain of
a question. In this work the most important ex-
tracted feature is presented in this type. Its ac-
cording to the fact that, valuable information can
be gained from differentiating questioner and com-
menters comments. At first we used 2 features to
use this information and we were hopeful that our
machine learning method can detect the relationship
between these two features:

• Questioner Id: questioner identifier which is
represented by QUSERID in dataset.

• Commenter Id: commenter identifier which is
represented by CUSERID in dataset.

But disappointingly, those methods could not detect
relationships. Then one aspect of their relationships
is used and ids eliminated:
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• Is Commenter Asker: its a binary feature.
Zero would be assigned to a comment if its
CUSERID is different from QUSERID of the
corresponding question. Then one would be as-
signed to a comment which its CUSERID is the
same as the QUSERID.

Emperical results show that, this feature can seper-
ate samples of ”Dialogue” class in an acceptable
rate. When a questioner make a comment, this
comment can be classified into different classes as
below:

• Dialogue: If questioner just wants to express
his opinion about previous comments to his
question or may be in another case, if ques-
tioner is comminicating with other users about
his question using comments, and may be some
other cases this comments can be classified as
Dialogue class.

• Good, Potential: If questioner himself had
found the correct answer or at least the his ex-
pected answer, he can make a comment to share
the answer to other and again in this case and
may be some other cases this kind of comment
can be classified into Good or Potential classes.

• Bad: Questioner even can make a bad com-
ment. It can has some reasons like: if he had
been hopeless of receiving any response from
other users then this situation can make him to
post a irrelevant comment which can not help
to find the answer of question.

Of course, its believed that this feature is not
the true complete potentiality of the mentioned fact.
There is a ranking between all the above discussed
features in Table 1 according to their Gain Ratio.
Answer Count is the feature with the best Informa-
tion Gain (IG) in Gkotsis (2014). But it’s obvious
that the ”Is Commenter Asker” which is a List Wise
feature has gained a much better Gain Ratio from
other features.

5 Experiments

5.1 Learning Method
Different kinds of learning methods had been tested
to find the best method. At last, J48 method could

Feature Gain Ratio

Is Commenter Asker 0.18002
Answer Count 0.0431

Type 0.03762
Category 0.01835
Length 0.01678

Avg Word Per Sentence 0.01671
Avg Char Per Sentence 0.01503

Longest Sentence 0.01296
Which User Group 0.00847

Creation Date 0.00817
Which User Category 0.0042

Table 1: General Features Gain Ration.

result better than the others. Then it used in a bag-
ging method. Weka (Hall et al., 2009) was used to
apply learning methods to extracted features. The
overall configurations in Weka are:

Bagging -P 100 -S 1 -I 10 -W
weka.classifiers.trees.J48 – -C 0.25 -M 10

Before test set release time, 10-Fold cross valida-
tion was used for system evaluation. (-I 10) Experi-
ments shown that the best minNumObj option in J48
method is 10 for this problem. (-M 10)

5.2 Discussion

As previously mentioned, CQA systems dataset are
unbalanced. According to this fact, two types of
train data has been generated from questions and
comments. First one has the same number of com-
ments and Second one is generated from the first set,
of course with additionally redundant smaples. For
each class, redundant samples have been added till
its samples number get equal to the majority class.
The first model was submitted as contrastive1 and
the second model was the primary submission.

There was two ways of evaluation in this task.
First one maps ”Dialogue”, ”Not English”, ”Other”
class labels to ”Bad” class label, and this was called
”COARSE EVALUATION” and official ranking of
teams was done according to this measurement.
And the second one maps just ”Not English”, and
”Other” class labels to ”Bad” class label, and it was
called ”FINE-GRAINED EVALUATION”.

Shiraz group’s primary submission has gained
two different ranking according to each of the eval-
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uation methods. According to fine-grained evalua-
tion, we were ranked as the 5th, and according to
coarse evaluation, were ranked as the 7th team, and
the latter ranking is our official ranking for subtask
A. For each of the groups two measure were esti-
mated: F1-Score and Accuracy. Groups were ranked
according to F1-Score. Shiraz’s two most important
submissions for each of the evaluation methods mea-
surements are shown in Table 2.

Most of previous works had just tried to improve
accuracy of their system, but using macro-F1 as the
measurement of official ranking has shown that con-
sidering accuracy in this problem which has multi
class labels, and data is imbalance can not be a good
idea. For example, there may be a system which just
tries to cover classes with majority samples in data
set then it is expected to improve accuracy but it can
not ensure that it could gain a suitable macro-F1. It’s
because that system may not be able to classify cor-
rectly samples of other classes. It means, the best
system is the one which could has the best behaviour
in all the classes not just some of them.

At last, it needs to be mentioned that the list wise
approach is not limited to a special kind of features
like textual or non-textual features. Of course, it can
help to extract some new features which are so help-
ful to improve the classifier.

F1-Score Accuracy

Prm2 Coarse 47.34 56.83
Contr3 Coarse 45.03 62.55

Prm Fine 40.06 48.53
Contr1 Fine 37.77 55.16

Table 2: System Evaluation Measure values.

The most important point in Gkotsis (2014) is dis-
cretization method. That method had been used for
some continuous shallow features, but as can be seen
in Table 3 F1-Score is not improved. Then the dis-
cretization method described in Gkotsis (2014) is
not useful for this problem on this dataset.

2Primary
3Contrastive

F1-Score Accuracy

UnBalanced Coarse 42.85 61.74
Balanced Coarse 25.89 36.84
UnBalanced Fine 36.61 52.83
Balanced Fine 21.09 23.48

Table 3: System evaluation measure value for discretized
Feature values.

6 Conclusion

By widely spreading of Community Question An-
swering systems, solving challenges of these sys-
tems is essential. The proposed system aims to im-
prove previous solutions for Answer Validation us-
ing some new valuable features. Moreover, ques-
tioners comments have been introduced as a source
of feature which can be used for extracting more
powerful features from it. Only one feature was ex-
tracted using this source in this work, but it was the
most valuable one. Using just a few number of fea-
tures Shiraz system could gain an acceptable rank-
ing.

As mentioned before in this kind of problems F1-
score is the main measurement which should be im-
proved in designig a system, but empirically it was
shown that discretization is not helpful to achieve
this goal.
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Abstract

This paper describes Al-Bayan team participa-
tion in SemEval-2015 Task 3, Subtask A. Task
3 targets semantic solutions for answer selec-
tion in community question answering systems.
We propose a knowledge-based solution for
answer selection of Arabic questions, special-
ized for Islamic sciences. We build a Semantic
Interpreter to evaluate the semantic similarity
between Arabic question and answers using
our Quranic ontology of concepts. Using su-
pervised learning, we classify the candidate
answers according to their relevance to the
users questions. Results show that our system
achieves 74.53% accuracy which is compara-
ble to the other participating systems.

1 Introduction

With the increase of the popularity of community
question answering (CQA) systems, answer selection
became more challenging. CQA systems are often
open for public to answer any questions with no re-
striction or review from field experts. This highlights
the importance of developing systems that automati-
cally detects the most relevant answers from the irrel-
evant ones. These systems might be open-domain or
closed-domain, causing a tradeoff between accuracy
and generality.

SemEval-2015 task 3 targets semantically oriented
solutions for answer selection in community question
answering data. We focus on Subtask A for the Ara-
bic language which provides questions and several
community answers from the Fatwa website1. The

1Fatwa is a question about the Islamic religion.

goal is to classify each answer as: Direct, Related or
Irrelevant.

In this paper, we propose a knowledge-based an-
swer selection system for Arabic. We use our Quranic
ontology, enriched with Quran verses and Tafseer
books, to convert each question and its candidate an-
swers into weighted vectors of ontology concepts.
We use these vectors to compute a semantic similar-
ity score between the question and each candidate
answer. We also compute a keyword matching score
and feed the two scores into a decision tree classifier
which predicts how much the answer is related to the
question.

The rest of the paper is organized as follows: Sec-
tion 2 shows some of the related work to the system.
Section 3 shows the details of the system architec-
ture. In Section 4, we show the results of the task
evaluation. Finally, we conclude the paper in Section
5.

2 Related Work

Our work is related to prior work in both Quranic
research and Question Answer Selection systems.

(a) Quranic Research: Several studies have been
made to understand the Quranic text and extract
knowledge from it using computational linguistics.
Saad et al. (2009) proposed a simple methodology for
automatic extraction of concepts based on the Quran
in order to build an ontology. In (Saad et al., 2010),
they developed a framework for automated gener-
ation of Islamic knowledge concrete concepts that
exist in the holy Quran. Qurany (Abbas, 2009) builds
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a Quran corpus augmented with a conceptual ontol-
ogy, taken from a recognized expert source ’Mushaf
Al Tajweed’. Quranic Arabic Corpus (Atwell et
al., 2011) also builds a Quranic ontology of con-
cepts based on the knowledge contained in traditional
sources of Quranic analysis, including the sayings
of the prophet Muhammad (PBUH), and the Tafseer
books. Khan et al. (2013) developed a simple ontol-
ogy for the Quran based on living creatures including
animals and birds that are mentioned in the Quran in
order to provide Quranic semantic search. AlMaayah
et al. (2014) proposed to develop a WordNet for the
Quran by building semantic connections between
words in order to achieve a better understanding of
the meanings of the Quranic words using traditional
Arabic dictionaries and a Quran ontology.

Other attempts for text-mining the Quran were
proposed such as: QurAna (Sharaf and Atwell,
2012) which is a corpus of the Quran annotated
with pronominal anaphora and QurSim (Sharaf and
Atwell, 2012) which is another corpus for extracting
the relations between Quran verses.

b) Question Answer Selection Systems: Few at-
tempts have been proposed for Arabic Answer Se-
lection. In CLEF 2012, the Arabic language was
introduced for the first time for selecting answers to
questions from multiple answer choices of short Ara-
bic texts. Abouenour et al. (2012) proposed a system
based on distance density N-gram model and Arabic
WordNet expansion. Trigui et al. (2012) proposed
another system that used inference rules on the CLEF
background collection. However, those systems have
low accuracy, 0.21 and 0.19 respectively. In CLEF
2013, Al-QASIM system (Ezzeldin et al., 2013) was
proposed which focused on answer selection and val-
idation. This approach divided the task into 3 phases:
(i) Document analysis, (ii) locating questions and an-
swers and (iii) answer selection. The overall accuracy
of the system is 0.36.

3 System Architecture

3.1 System Overview

The system architecture is shown in Figure 1. The
dataset consists of Arabic questions and their candi-
date answers. The goal is to classify each candidate
answer into: (Direct, Related or Irrelevant).

Inverted 
index

Term 1

Term i

Term N

Semantic 
Relatedness 

Score

Quranic 
Ontology

C1 C j C N

 Question

Tafseer

Answer

qVect
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Decision Tree 
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Keyword 
Matching

Score

Semantic Interpreter

Label
(Direct, Related,

 Irrelevant)

C1C1C1 C jC jC j C NC NC N

Preprocessing
MADA

Figure 1: System Architecture.

The question and the answers are preprocessed and
fed into the Semantic Interpreter. The Semantic Inter-
preter uses a Quranic ontology of concepts enriched
with Quran interpretation (Tafseer) books to build
an inverted index. The question is converted into a
weighted vector of concepts (qVect) and similarly the
candidate answer (aVect). A semantic relatedness
score and a keyword matching score are computed
and fed into a decision tree classifier which outputs
the label of the answer.

3.2 Preprocessing

First, we apply morphological analysis on the Ara-
bic text to identify its structure and remove the un-
wanted words (stopwords). For this purpose, we use
MADA (Morphological Analysis and Disambigua-
tion for Arabic) (Habash et al., 2009) which is one
of the most accurate Arabic preprocessing toolkits.
MADA can derive extensive morphological and con-
textual information from raw Arabic text, and then
use this information for high-accuracy part-of-speech
tagging, diacritization, lemmatization, disambigua-
tion, stemming, and glossing in one step.

Each term in the input text is represented by its
stem and POS tag using Buckwalter transliteration
(Buckwalter, 2002). We identify the stopwords ac-
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cording to their POS tags. Pronouns, prepositions,
conjunctions and other POS types are all removed.

3.3 Building the Ontology
We integrated the Quranic Corpus Ontology (Atwell
et al., 2011) and the Qurany Ontology (Abbas, 2009),
to form our Quranic conceptual ontology proposed
in (Abdelnasser et al., 2014). The Quranic Corpus
Ontology uses knowledge representation to define
the key concepts in the Quran, and shows the relation-
ships between these concepts using predicate logic.
The Qurany Ontology is a tree of concepts that in-
cludes all the abstract concepts covered in the Quran.
It is imported from ’Mushaf Al Tajweed’ list of top-
ics. This integration was difficult since we had to
resolve the overlapping between the two ontologies.
There were also some mistakes in the Qurany Con-
cept Tree. So, we had to manually revise the 1200
concepts and their verses.

The Holy Quran consists of 6236 verses. Each
verse has to be under at least one concept in our
Quranic ontology. After the previous integration pro-
cess, there were 621 verses without concepts, so we
added them under their most suitable concepts to
complete the ontology using a similarity measure
module. This module measures the similarity be-
tween classified and unclassified verses to determine
the concepts of unclassified verses. Now, our final
ontology contains 1217 leaf concepts and all verses
of the Quran. Under each concept in our ontology,
we save the related verses with their Tafseer, that is
used to build the inverted index. We use two Tafseer2

books: (Ibn-Kathir, 1370) and (Al-Jaza’iri, 1986),
which are two of the most traditional books used by
Islamic scholars. It is possible to add other books to
enrich our corpus data.

3.4 Building the Semantic Interpreter
We use machine-learning techniques to build a Se-
mantic Interpreter using the Explicit Semantic Anal-
ysis (Gabrilovich and Markovitch, 2007) approach.
The Semantic Interpreter maps the input Arabic text
into a weighted vector of Quranic concepts.

For each leaf concept Ci, we construct a document
Di such that Di contains all the verses related to

2Tafseer is the interpretation of the Quran.

this concept and their Tafseer. We used Lucene In-
dexer3 to build an inverted index on the constructed
documents where each term Tj is represented as a
weighted vector of concepts. Entries of this vector
are assigned weights using the TFIDF scheme which
quantifies the strength of association between terms
and concepts.

Any input query to the system can be represented
as a weighted vector of concepts by calculating the
mean of concept vectors of the query terms.

3.5 Semantic Relatedness Score

In order to evaluate the semantic relatedness between
two Arabic texts, we enter each text into the Seman-
tic Interpreter as a query. The Semantic Interpreter
represents each text as a weighted vector of concepts.
We compute the Cosine similarity between the two
weighted vectors which represents the semantic relat-
edness score. Therefore, if two texts are semantically
related, they will have similar weights for the same
concepts and consequently a high Cosine similarity
score, and vice versa.

3.6 Keyword Matching Score

In this mechanism, the answers of a question are
weighted based on the matched words between the
answers and the question. For answer k and question
term j, Scorekj

is the number of j repetitions in k
normalized by the maximum number of repetitions
of j in all answers. Scorek is the summation of
Scorekj

, (j = 1, .., n) where n is the number of the
question terms. Finally, we normalize all answers by
the maximum Scorek.

3.7 Answer Classification

We compute the semantic relatedness score and the
keyword matching score for each combination of
question and answer in the training data. The two
scores are normalized for each question. Now to
classify the answers as (Direct, Related, Irrelevant),
we train a decision tree classifier using the two nor-
malized scores with the gold-standard labels supplied
with the training data. The normalized scores are also
computed for the test data and the classifier predicts
the label of each answers. Results are shown in the
next section.

3http://lucene.apache.org/
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Class Direct Related Irrelevant Precision Recall F-measure
Direct 150 40 25 0.721 0.698 0.709
Related 43 94 85 0.519 0.423 0.467
Irrelevant 15 47 502 0.820 0.890 0.854
Macro - - - 0.687 0.6704 0.6765
Overall - - - 0.732 0.745 0.737

Table 1: The confusion matrix, and precision,recall and F-measure of the SemEval 2015 testset.

Training Testing
Questions 1300 200
Answers 6500 1001
Direct 1300 215
Related 1469 222
Irrelevant 3731 564

Table 2: Statistics of the training and testing data.

4 Evaluation

We evaluate our learning linguistic system by apply-
ing it on Fatwa questions/answers selection with a
supervised learning framework.

4.1 Dataset Description

We train our classifier on the provided benchmark
dataset in SemEval2015 (Màrquez et al., 2015). The
used data is from Fatwa website 4. Each question in
the dataset is provided with five different answers.
Each answer is labeled as Direct, Related, or Irrele-
vant. The distribution of the dataset we use is given
in Table 2.

4.2 Results

In this section, we provide the experimental results
of the training data and the SemEval 2015 test set.

Figure 2 shows the 10-folds cross validation results
of the system training data using the two scores (the
semantic relatedness and keyword matching scores).
From the figure, the Direct and Irrelevant classes
have better accuracies than the Related class. This is
intuitive as the Related class is more general than the
others (with few special marks), so it is more difficult
to be classified.

4http://fatwa.islamweb.net/
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Figure 2: The training data cross validation results.

Table 1 shows the confusion matrix of the SemEval
2015 test set results. The results also show that the
Related class has lower accuracy than the Direct and
Irrelevant. The overall system accuracy is 74.53%
and the system Macro-F1 is 67.65%

5 Conclusion

In this paper, we proposed our system to automate
the process of Arabic answer selection in Community
Question Answering systems where candidate an-
swers are classified into answers that directly answer
the question vs. those that can be helpful vs. those
that are irrelevant. We constructed our knowledge-
based system using a Quranic semantic ontology and
the provided dataset in (Màrquez et al., 2015). The
system first applies some preprocessing tasks over
the question and answers, then a Semantic Interpreter
converts the preprocessed sentences into weighted
vectors of concepts. Using those vectors the system
calculates a semantic score for each answer, which is
fed, with an additional keyword matching score, into
a decision tree classifier. The system has an overall
accuracy of 74.53%.
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Abstract

This paper reports the description and perfor-
mance of our system, FBK-HLT, participating
in the SemEval 2015, Task #3 "Answer Se-
lection in Community Question Answering"
for English, for both subtasks. We submit two
runs with different classifiers in combining typ-
ical features (lexical similarity, string similar-
ity, word n-grams, etc.) with machine transla-
tion evaluation metrics and with some ad hoc
features (e.g user overlapping, spam filtering).
We outperform the baseline system and achieve
interesting results on both subtasks.

1 Introduction

Answer selection is an important task inside the wider
task of question answering that represents at the mo-
ment a topic of great interest for research and busi-
ness as well. Analyzing social data like answers
given inside a forum is a way to maximize the value
of this type of knowledge source that is usually af-
fected by a very noisy information due to out of topic
spam, double posting, cross posting or other issues.
Recognizing useful posts from bad ones, and auto-
matically detecting the main polarity of answers to
a given question is a way to treat an amount of data
that otherwise might be difficult to handle.

A promising way to provide insight into these ques-
tions was brought forward as Shared Task #3 in the
SemEval-2015 campaign for "Answer Selection in
Community Question Answering" (Màrquez et al.,
2015) for English and Arabic languages. In the Sub-
task A, each system is given a set of questions in
which each one contains some data like posting date,

author’s Id, a set of comments, at least one, but usu-
ally more; then the participating the system has to
classify comments as good, bad or potential accord-
ing to their relevance with the question. In Subtask B,
a subset of these questions are predefined as yes/no
questions, system has to classify them into yes, no or
unsure classes based on the individual good answers.
We participate in this shared task (only in English)
with a system composing several different features
using a multiclass classifier. We are interested in
finding out whether similarity, machine translation
evaluation metrics and task specific techniques could
increase the accuracy of our system. In this paper,
we outline our method and present the results for
the answer selection task; the paper is organized as
follows: Section 2 presents the System Description,
Section 3 describes the Experiment Settings, Section
4 reports the Evaluations, Section 5 is the Error Anal-
ysis and finally, Section 6 presents the Conclusions
and Future Work.

2 System Description

In order to build our system, we extract and adopt
several different linguistic features from a Semantic
Textual Similarity (STS) system (Vo et al., 2015) and
then consolidate them by a multiclass classifier. Dif-
ferent features can be used independently or together
with others to measure the semantic similarity and
recognize the paraphrase of a given sentence pair as
well as to evaluate the significance of each feature
to the accuracy of system’s predictions. Hence, the
system is expandable and scalable for adopting more
useful features aiming for improving the accuracy.
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2.1 Data Preprocessing

As data preprocessing is a crucial step for preparing
useful information to be learned by the system, we
focus the beginning of our work trying to simplify
data without losing information. Our system is based
on semantic similarity, so it needs pairs of sentences
to compare; we pair-up every question with all of its
comments, one by one, e.g. a question with five com-
ments becomes five pairs of sentences composed by
the question and five different comments. Questions
and comments are composed by subject and body,
so for questions, we merge the subject and body to-
gether if the subject does not occur inside the body;
and for comments, we also check if the comment’s
subject is not identical to question’s subject with the
prefix RE:. As the forum data also contains lot of
informal writing, we normalize them by applying a
simple filter that substitutes common abbreviation:
"u - you", "r - are", "ur - your", "Iam - I am", "any1 -
anyone".

2.2 Syntactic Generalization

Given a pair of parse trees, the Syntactic Generaliza-
tion (SG) (Galitsky, 2013) finds a set of maximal com-
mon subtrees. The toolkit "relevance-based-on-parse-
trees" is an open-source project, which evaluates text
relevance by using syntactic, parse-tree-based simi-
larity measure.1 It measures the similarity between
two sentences by finding a set of maximal common
subtree for a pair of parse trees, using representa-
tion of constituency parse trees via chunking. Each
type of phrases (NP, VP, PRP etc.) will be aligned
and subject to generalization. It uses the OpenNLP
system to derive constituent trees for generalization
(chunker and parser).2 As it is an unsupervised ap-
proach, we apply the tool directly to the preprocessed
texts to compute the similarity of syntactic structure
of sentence pairs.

2.3 Machine Learning Evaluation Metric -
METEOR

We also use evaluation metrics for machine transla-
tion as suggested in (Madnani et al., 2012) for para-
phrase recognition on Microsoft Research paraphrase
corpus (MSRP) (Dolan et al., 2004). In machine

1https://code.google.com/p/relevance-based-on-parse-trees/
2https://opennlp.apache.org

translation, the evaluation metric scores the hypothe-
ses by aligning them to one or more reference trans-
lations. We take into consideration to use all the
eight metrics proposed, but we find that adding some
of them without a careful process of training on the
dataset may decrease the performance of the system.

We use the latest version of METEOR (Denkowski
and Lavie, 2014) that finds alignments between sen-
tences based on exact, stem, synonym and paraphrase
matches between words and phrases. We used the
system as distributed on its website, using only the
"norm" option that tokenizes and normalizes punctu-
ation and lowercase as suggested by documentation.3

We compute the word alignment scores between ques-
tions and comments.

2.4 Weighted Matrix Factorization (WMF)
WMF (Guo and Diab, 2012) is a dimension reduction
model to extract nuanced and robust latent vectors
for short texts/sentences. To overcome the sparsity
problem in short texts/sentences (e.g. 10 words on
average), the missing words, a feature that Latent Se-
mantic Analysis (LSA) and Latent Dirichlet Alloca-
tion (LDA) typically overlook, is explicitly modeled.
We use the pipeline to compute the similarity scores
for question-comment pairs.4

2.5 User Overlapping
We extract a simple binary feature focused on com-
ment’s author. We suppose that question’s author is
not usually as same as comment’s author, so if a ques-
tion has one or more comments associated with the
same question’s author, these comments are probably
descriptions or explanations about the question. We
label 1 for comments made by the same question’s
author and 0 otherwise.

2.6 Spam Filtering - JFilter
Recognizing good comments from bad comment is
a task somehow similar to spam filtering, to capture
this feature, we use a Java implementation, Jfilter
(Francesco Saverio Profiti, 2007), based on a fuzzy
version of the Rocchio algorithm (Rocchio, 1971).
This system uses a classifier that needs training, so
to avoid overfitting, from the training and develop-
ment datasets, we randomly choose a subset of good

3http://www.cs.cmu.edu/%7Ealavie/METEOR/index.html
4http://www.cs.columbia.edu/%7Eweiwei/code.html
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Accuracy F1 (G) F1 (B) F1 (D) F1 (P) F1 (NE) F1 (O) F1 WM

Baseline 53.19 0.694 0 0 0 0 0 0.369
1-against-all 60.06 0.731 0.189 0.545 0 0 0 0.523
Random Correction Code 59.02 0.722 0.319 0.540 0 0 0 0.539
Exhausted Correction Code 60.00 0.731 0.18 0.545 0 0 0 0.521

Table 1: Result obtained using different classification algorithms for Subtask A (G good; B bad; D dialog; P potential;
NE not-English; O other; WM Weighted Mean) on Development dataset.

Accuracy F1 (Yes) F1 (No) F1 (Unsure) F1 (Not-Applicable) F1 WM

Standard Features 44.4444 0.316 0 0.077 0.593 0.355
Standard Features
+ Subtask A output

45.4444 0.327 0 0.08 0.589 0.358

Standard Features
+ Subtask A
gold-standard labels

70.7071 0.667 0 0.069 1 0.635

Table 2: Subtask B system performances on Development dataset.

comments to use as non-spam dataset; in contrast, we
select a subset of bad and potential to use as spam
dataset to train JFilter. This configuration was used
to train our system during development; for the final
run with test dataset, we train JFilter with both devel-
opment and training datasets. JFilter gives a binary
judgment (HAM or SPAM) which is used as a feature
for our system in Subtask A.

3 Experiment Settings

We use the machine learning toolkit WEKA (Hall et
al., 2009) to obtain robust and efficient implemen-
tation of different classifiers, as well as to reduce
develop time of the system. For Subtask A, we build
one model using all the features described in Section
2. Table 1 reports some experiments in which we
select a good classifier to optimize both the Accuracy
and F1-score of the system. During the development,
we select the default implementation "1-against-all"
classification algorithm (with logistic regression) for
both subtasks.

For Subtask B, we make some modifications to the
system due to some important differences between
two subtasks. As the question classification depends
on the quality of its comments, we substitute the
spam filtering feature by the comments’ labels from
Subtask A system’s output. In order to examine this

hypothesis, we firstly use the gold-standard labels of
comments from Subtask A as a feature for the ques-
tion classification in Subtask B. The high Accuracy
and F1-score from this setting proves our hypothesis
correct. To avoid the overfitting, we again use only
the label predictions from Subtask A as a feature for
our Subtask B system. Table 2 shows that a precise
output from Subtask A can significantly benefit the
performance of Subtask B system.

As Subtask B does not focus on comment labeling,
but question labeling, to achieve this purpose after
classifying all comments as yes, no, unsure or Not
Applicable, we simply aggregate comments of every
question with a majority vote. We label a question as
yes if the majority of its comments are classified as
yes, the same for no; if there no major judgment of
either yes or no, the question is classified as unsure.

Subtask A Subtask B
Team Mac F1 Acc Mac F1 Acc
JAIST 57.19 72.52
VectorSlu 63.7 72.0
FBK-HLT 47.32 69.13 27.8 40.0

Table 3: Evaluation Results on Subtasks A and B.
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Team Accuracy F1 (G) F1 (B) F1 (D) F1 (P) Macro F1

JAIST (3-classes) 72.67 79.11 78.29 0 14.48 57.29
HLT-FBK (3-classes) 69.13 75.80 66.15 0 0 47.32
JAIST (4-classes) 59.62 76.52 40.38 57.21 18.41 48.13
HLT-FBK (4-classes) 62.40 75.80 43.42 51.23 0 42.61

Table 4: Subtask A - Comparison with best system for 3-classes and 4-classes evaluation (G good; B bad; D dialog; P
potential; Macro F1).

Team Accuracy F1 (Yes) F1 (No) F1 (Unsure) Macro F1

VectorSlu 72.0 83.87 57.14 50.0 63.67
FBK-HLT 40.0 50.0 0.0 33.33 27.78

Table 5: Subtask B - Comparison with best system.

4 Evaluations

We submit only one run for both subtasks (English
language) using the "1-against-all" classification al-
gorithms. In Subtask A, we achieve good results,
especially, we are ranked 4th out of 12 teams in Ac-
curacy. In Subtask B, as we only apply the simple
approach "majority vote", the result is reasonable as
expected. Table 3 shows our performance in both
subtasks in regard to the best systems, both in Macro
F1 and Accuracy measures.

5 Error Analysis

In this section, we conduct an analysis of our sys-
tem’s performance on test dataset. In Subtask A,
our analysis consists of some comparison between
our system and the best system, JAIST. According
to results in Table 4, for the evaluation on 3-classes
(good, bad, and potential), our system is dramati-
cally penalized by low performance on detecting bad
comments, besides, it is not able to classify the po-
tential ones. This particular class of comments is
very small in training dataset. There are 50.45% for
good comments, 41.09% for bad and only 8.25% for
potential. During the development, as we decide to
optimize the Accuracy and F1 weighted on the num-
ber of comments, this decision misleads our system
to ignore this small class. Hence, in order to improve
the system performance, we may need to search for
a specific feature for potential comments like what
we did with user overlapping for dialog ones. For the
evaluation on 4-classes (good, bad, dialog and po-

tential), our system performance rises significantly,
our system shows a good capability to distinguish
between dialog and other comments.

In Subtask B, the performance comparison in Ta-
ble 5 shows that our system achieves reasonable per-
formance on the Yes and Unsure classes, but has no
capability to capture the No class. Moreover, most
of the instances of No class have been misclassified
as Unsure class. This shows an unclear separation
between these two classes which confuses the system.
Thus, to fix this issue, we need to find more specific
features which may help to distinguish the No class
and others.

6 Conclusions and Future Work

In this paper, we describe our system participating
in the SemEval 2015, Task #3 "Answer Selection
in Community Question Answering" in English, for
both subtasks. We present a supervised system which
considers multiple linguistic features such as lexical,
string and some task-specific features. Our perfor-
mance is much above the baseline and shows some
interesting properties in specific scenarios. We also
show some error analysis in which we investigate
the limit and drawback of our system on specific
comment and question classes.

For future work, we expect to study to exploit more
useful features, especially, task-related features, to
improve the classification performance on potential
labeled comments and No labeled questions, which
will lead to a significant improvement of the overall
performance.
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Abstract

This paper reports our submissions to com-
munity question answering task in SemEval-
2015, which consists of two subtasks: (1) pre-
dict the quality of answers to given question
as good, bad, or potentially relevant and (2)
identify yes, no or unsure response to a given
YES/NO question based on the good answer-
s identified by subtask 1. For both subtasks,
we adopted supervised classification method
and examined the effects of heterogeneous
features generated from community question
answering data, such as bag-of-words, string
matching, semantic similarity, answerer in-
formation, answer-specific features, question-
specific features, etc. Our submitted primary
systems ranked the forth and the second for
the two subtasks of English data respectively.

1 Introduction

Community Question Answering (CQA) system-
s such as Yahoo!Answers rely on users to provide
answers (i.e., user generated content) for questions
posted. Generally such systems are quite open and
the answers provided by users are not always of high
quality. For example, a bad answer may present ir-
relevant opinions or issues, contain only URL links
without direct answer, or even be written informally.
Therefore, in order to achieve high-quality user ex-
perience and maintain high levels of adherence, it is
critical to present high-quality answers and provide
direct responses for users.

The CQA task in SemEval-2015 (Màrquez et al.,
2015) provides such a universal platform for re-

searchers to make a comparison between differen-
t approaches. This task consists of two subtasks:
(1) subtask A is to classify the quality of answers
as good, potential or bad, which also refers to the
task of answer quality prediction (Jeon et al., 2006;
Agichtein et al., 2008); (2) subtask B is to infer the
global answer of a YES/NO question to be yes, no
or unsure based on individual good answers.

Most of the previous research on answer quality
prediction has focused on extracting various features
to employ ranking or classification methods (Sur-
deanu et al., 2011; Shah and Pomerantz, 2010), such
as textual features (Agichtein et al., 2008; Blooma
et al., 2010) including the length of an answer, over-
lapped words between a question-answer (QA) pair,
etc. Another kind of widely used feature is extracted
from answerer profile information (Shah and Pomer-
antz, 2010), such as the number of best answers,
the achieved levels and the earned points. However,
such information is not often available in real world.
Moreover, a recent study (Toba et al., 2014) has tak-
en question type into consideration to make the an-
swers quality prediction.

In this paper, we built two classification systems
for the two tasks respectively. For Task A, we ex-
tracted six types of features from multiple sources of
CQA-based information to predict the answer qual-
ity, such as answer-, question-, answerer-specific
information, surface word similarity and semantic
similarity between question-answer pair, ect. For
Task B, the global answer of a YES/NO question is
summarized just from the individual good answer-
s identified by Task A. Specifically, we first built
a classifier to predict Yes/No/Unsure labels for each
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predicted good answer, then we performed a major-
ity voting to summarize the global answer for each
question.

The rest of this paper is structured as follows.
Section 2 describes our systems, including features,
algorithms, etc. Section 3 shows experiments on
training data and results on test data. Finally, con-
clusions and future work are given in Section 4.

2 Our Systems

For both tasks we adopted supervised classification
methods and extracted various features from mul-
tiple sources to predict answer quality and infer
YES/NO response.

2.1 Data Extraction

English data is extracted from Qatar Living Forum1

and provided with XML-format. Each data file con-
sists of a list of question tags, where each question
is followed by a list of answer tags to this question.
Each question or answer has a subject, a body, and
a list of attributes from which we can extract signifi-
cant features. For example, a question has attributes
of question category (overall 27 categories, e.g., Ed-
ucation, Cars, etc.), identifier of asker, question type
(GENERAL or YES/NO) and an answer also has an-
swerer identifier.

To obtain complete contents of a question or an
answer, we merged the contents extracted from sub-
ject and body. Exceptionally, if subject is substring
of body or subject of an answer starts with “RE:”,
we just extracted the contents from body.

Moreover, to reduce the influence of Not English
answers to the subsequent classification, we filtered
out the Not English answers from data. To discov-
er such answers we found out unusual words for
each answer by comparing word set of this answer
with an English vocabulary with 235, 887 words
from NLTK2 words corpus, if the number of unusual
words is over 10 and the ratio over answer length is
above 60% we then regarded it as Not English.

2.2 Pre-processing

After data extraction we performed the following
preprocessing operations. Firstly, HTML character

1http://www.qatarliving.com/forum
2http://www.nltk.org/

encodings are substituted by the actual characters
(e.g., “&amp;” is converted into whitespace). Then
HTML tags, URLs, emoticons, ending signatures
and repeating punctuation are removed from data.
After that, we collected a slang list from Internet and
replaced the informal words with formal words (e.g.,
“u r” is converted into “you are”). For the processed
data, we performed tokenization and POS tagging
using Penn Treebank tokenizer and POS tagger in
NLTK. The words are lemmatized using WordNet-
based lemmatizer implemented in NLTK.

2.3 Features of Task A

We extracted six types of features from multiple
sources of CQA-based information, i.e., bag-of-
words (BoW) and answer-specific features (AS)
from answer, string matching (SM) and semantic
similarity (SS) from QA pair, answerer informa-
tion features (AI) from answerer profile, question-
specific features (QS) from question.

2.3.1 Bag-of-Words for Answer (BoW)
We collected words from training and develop-

ment answer set and adopted binary BoW represen-
tation. To reduce the problem of data sparse, we
selected the words with frequency higher than four,
resulting in 5, 730 words.

2.3.2 Answer-Specific Features (AS)
For each question, we extracted three answer-

specific features. The first is answer length, which
is computed at three levels, i.e., word, sentence and
paragraph. We used L1 normalization on the glob-
al answer set. To gain insight on the effect of an-
swer length for each individual question, we also de-
signed a length ratio feature to record the ratio of the
length of each answer to the maximal answer length
for the same question.

A good answer is generally supposed to an-
swer a question explicitly instead of starting a new
question or suggesting other consulting approach-
es. Therefore, the second binary feature is to rep-
resent whether an answer contains a question mark
or not. In addition, we manually collected eight
words and phrases from training set, which contain-
s the meaning of suggestion (i.e., “suggest”, “rec-
ommend”, “advise”, “try”, “call”, “you may”, “may
be”, “you could”). Thus the third binary feature is to
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represent if there is at least one of above suggestion
words in a given answer.

2.3.3 String Matching between QA (SM)
The above two types of features are both extracted

from answer regardless of the question asked. How-
ever, the string matching features are to consider the
overlapped words from a given QA pair.

Word: This feature group records the proportions
of co-occurred words between a QA pair, which are
calculated using six measures: |A∩B|/|A|, |A∩B|/|B|,
|A−B|/|A|, |B−A|/|B|, |A∩B|/|A∪B|, 2∗|A∩B|/(|A|+
|B|), where |A| and |B| denote the number of non-
repeated words of question A and answer B. How-
ever, the same word appearing in different contex-
t could vary in word forms and normalizing words
may obtain more accurate overlapped proportions,
so we computed each measure at three word forms:
original, lemmatized and stem form.

POS: This POS feature is similar to the above
word feature. We use three measures: |A ∩ B|/|A|,
|A ∩ B|/|B|, |A ∩ B|/|A ∪ B| to compute overlapped
proportion of POS tags for nouns, verbs, adjectives
and adverbs.

n-gram: Unlike the above two features measuring
the overlap of single words or POS without consid-
ering multiple continuous words, the n-gram feature
is to calculate the Jaccard similarity of overlapped
n-grams between each QA pair. The n-grams are
obtained at word level (n = 2, 3) and character level
(n = 2, 3, 4). In addition, the n-grams at word lev-
el are obtained from original form and lemmatized
form respectively.

Longest Common Sequence (LCS): The LCS
feature is to measure the LCS similarity for a QA
pair on the original and lemmatized form. It is cal-
culated as the length of the LCS between each QA
pair at word level divided by the length of question.

2.3.4 Semantic Similarity between QA (SS)
The previous string matching feature only consid-

ers the overlapped surface words or substrings in a
QA pair and it may not capture the semantic infor-
mation between a QA pair. Therefore, we presented
the following semantic similarity features, which are
borrowed from previous work.

Determining semantic similarity of sentences
commonly uses measures of semantic similarity be-

tween individual words. We used knowledge-based
and corpus-based word similarity features. The
knowledge-based similarity estimation relies on a
semantic network of words such as WordNet. In
this work, we employed four WordNet-based word
similarity metrics: Path (Banea et al., 2012), WUP
(Wu and Palmer, 1994), LCH (Leacock and Chodor-
ow, 1998) and Lin (Lin, 1998) similarity. Following
(Zhu and Man, 2013), the best alignment strategy
and the aggregation strategy are employed to propa-
gate the word similarity to the text similarity. More-
over, Latent Semantic analysis (LSA) (Landauer et
al., 1997) is a widely used corpus-based measure
when evaluating textual similarity. We used the vec-
tor space sentence similarity proposed by (Šarić et
al., 2012), which represents each sentence as a s-
ingle distributional vector by summing up the LSA
vector of each word in the sentence. In this work,
two corpora are used to compute the LSA vector of
words: New York Times Annotated Corpus (NYT)
and Wikipedia.

Besides, following (Zhao et al., 2014), we adopt-
ed the weighted textual matrix factorization (WTM-
F) (Guo and Diab, 2012) to model the semantics
representations of sentences and then employed the
new representations to calculate the semantic simi-
larity between QA pairs using Cosine, Manhattan,
Euclidean, Person, Spearmanr, Kendalltau measures
respectively.

2.3.5 Answerer Information (AI)
Previous work (Zhou et al., 2012) showed that in-

formation about answerer has great impact on an-
swer ranking in CQA. Inspired by this work, we
designed two answerer-specific features to represent
answerer level and answerer expert domain informa-
tion. To calculate the answerer level feature, we used
the number of answers and the percentage of good
answers for each answerer. For expert domain fea-
ture, we employed the question categories where the
answerer is an expert. Specifically, for each answer-
er, let G be the number of good answers the answer-
er responses and Gi be the number of good answers
to the i-th question category (i<=27). Then we used
Gi/G to measure the answerer’s expert domain. Be-
sides, for each of the 27 question categories (e.g., E-
ducation, Cars), we recorded the maximal value Mi

over all values of Gi from each answerer and then
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calculated the Gi/Mi score to measure expert lev-
el of an answerer in current domain among all an-
swerers. Totally, we adopted 54 features to indicate
expert domain for each answerer.

2.3.6 Question-Specific Features (QS)
Since the domain of questions may also affect the

performance of answer selection, we considered to
use 27 binary features to indicate the question cate-
gory. In addition, we manually collected 9 question
words (i.e., where, what, when, which, who, whom,
whose, why and how) and used 9 binary features to
indicate if one of these question words occurs in the
question.

2.4 Features of Task B

To address task B, we performed two steps. Firstly,
we extracted features from good answers identified
from task A and trained a classifier to predict the Yes,
No or Unsure label for each good answer. Second-
ly, for each given YES/NO question, we counted the
answer labels of Yes, No or Unsure and used major-
ity voting to obtain the global answer.

We used three types of features for this task,
which are all extracted from answer: (1) Bag-of-
Words from answer (BoW), the same as in Task A;
(2) Semantic Word2Vec (W2V): this feature indi-
cates a vector representation of answer. We used
word2vec tool3 to get word vectors with dimension
d = 300 and then summed up all the word vectors
to obtain the answer vector. (3) Yes/No Word List
(YN): we manually collected 50 affirmative words
and 45 negation words by starting from several seed
words (e.g., “yes”, “sure”, “definitely”, “no”, “sel-
dom”, “never”, etc) and then expanding the list using
snowball with the aid of WordNet synset. Besides,
several phrases are manually added in the list (e.g.,
“beyond a doubt”, “beyond question”, “not at all”,
“only just”, etc). We utilized 2 binary features to
indicate whether an answer contains at least one of
these affirmative and negation words or not.

2.5 Classification Algorithms

We explored several widely-used supervised clas-
sification algorithms including Support Vector Ma-
chine (SVM), Random Forest (RF), and Gradien-

3https://code.google.com/p/word2vec/

Algorithm macro-F1(Task A) macro-F1(Task B)
SVM (linear) 54.25 58.60

SVM (rbf) 29.44 25.05
GB 49.70 39.05
RF 45.40 27.14

Table 1: Results on training data for different algorithms.

t Boosting(GB), which are implemented in scikit-
learn toolkit (Pedregosa et al., 2011).

2.6 Evaluation Measures
The official evaluation measures for both tasks is
macro-averaged F1. For Task A the official score
is calculated on three labels: Good, Bad, Poten-
tial (where Bad includes Dialogue, Not English and
Other).

3 Experiments and Results

3.1 English Data Set
The English training and development set contain
2, 900 questions with 18, 186 answers and the test
set contains 329 questions with 1, 976 answers, con-
sisting of around 50% good, 40% bad and 10% po-
tential answers. The YES/NO questions are about
10% of all the questions, which indicates that the
data for Task B is much less than Task A.

For both tasks we used training set with 2, 600
questions to build classifiers and validated the per-
formance on development set with 300 questions for
algorithms comparison and features choosing.

3.2 Algorithm Choosing Experiments
We performed algorithm choosing experiments us-
ing all designed features. All the parameters of algo-
rithms are set to be default values from scikit-learn
(Pedregosa et al., 2011). Table 1 lists the prelimi-
nary algorithm comparison experimental results. We
found SVM with linear kernel outperforms other al-
gorithm choices for both tasks. Moreover, we tuned
the trade-off parameter c of SVM and when set c to
0.8 we obtained a better score 54.78% and 58.82%
for Task A and B respectively. Therefore, in the fol-
lowing experiments on training and test data, we set
the algorithm to SVM with linear kernel.

3.3 Feature Comparison Experiments
We performed a series of experiments for both tasks
to explore the effects of various feature types using

239



SVM (linear). In Task B we always chose the pre-
dicted good answers from the system with the best
macro-F1 in Task A. Table 2 shows the results of
different feature combinations where for each time
we selected and added one best feature type. From
this table we found the following interesting obser-
vations.

Task A

BoW AS SM SS AI QS macro-F1(%)
+ 48.91
+ + 49.73(+0.82)
+ + + 51.85(+2.12)
+ + + + 52.03(+0.18)
+ + + + + 53.22(+1.19)
+ + + + + + 54.25(+1.03)

Task B

BoW W2V YN macro-F1(%)
+ 47.82
+ + 49.54(+1.72)
+ + + 58.60(+9.06)

Table 2: Results of feature combinations for Task A and
B, the numbers in the bracket are the performance incre-
ments compared with previous result.

First, for both tasks the most effective feature type
is bag-of-words from answer and this feature alone
achieves 48.91% for Task A and 47.82% for Task B,
which both outperforms the baseline system provid-
ed by organizers respectively. The baseline of Task
A which predicts all answers as good just achieves
22.36% and for Task B it achieves 25.0% which pre-
dict all answers as yes. Moreover, in Task A the
performance of other five feature types alone is far
lower than bag-of-words, ranging from 23% to 38%
approximately.

Second, for Task A, when combining all the fea-
tures together the system achieves the best perfor-
mance, which indicates that all types of features
make contribution more or less. Specially, among
the six types of features, answerer information and
semantic similarity between QA pairs make more
contribution than others. This indicates that answer-
er profile information is important, which is consis-
tent with the findings in (Zhou et al., 2012). Be-
sides, the semantic similarity captures deep relation-
ship between Q-A pair than the surface word, which
is helpful for performance improvement. In Task
B, we also observed the similar findings, i.e., the
system using all types of features achieves the best
performance. Moreover, the YES/NO word list fea-
ture makes great contribution to the performance im-
provement. This is consistent with our expectation.
Besides, although in this work the word vector fea-
ture improves the performance, this improvements is

not as much as our expectation. The possible reason
may be the simple way of using the vector by only
summing up.

3.4 Results on Test Data
According to the above experiments on training da-
ta, we configured one primary and two contrastive
systems for both tasks. The only difference between
these systems lies in the features and parameters in
SVM. Table 3 lists the configuration of three sys-
tems and their corresponding results on test data.
Besides, we also list the top three results officially
released by organizers.

Systems Task A Task B
features para. result features para. result

primary all c=0.8 53.47(9) all c=0.8 55.8(3)
contrastive1 all c=1.0 52.55(10) all c=1.0 50.6(4)
contrastive2 all-SS c=0.8 52.27(11) all-W2V c=0.8 53.9(6)

Top Systems Task A Result Task B Result
rank 1st 57.19 63.7
rank 2nd 56.41 55.8
rank 3rd 53.74 53.6

Table 3: Configurations and results of our three submitted
systems and top three results, the numbers in bracket are
the official ranking out of all submitted systems.

Our primary system ranked the 4th out of 12 par-
ticipants in Task A and the 2nd out of 7 participants
in Task B. For both tasks the performance of the pri-
mary system is higher than the two contrastive sys-
tems, which is consistent with the results on training
data.

4 Conclusion

We build two supervised classification systems for
answer selection and YES/NO response inference in
CQA. Specially, we extract heterogeneous features
from various information sources, i.e., answer, ques-
tion, answer-question pair and answerer. Our exper-
iments reveal that our designed features are all ef-
fective and when we combine all types of features
together the system achieves the best performance.

Although multiple features extracted from CQA,
the way of using these features are quite simple. Be-
sides, due to the huge number of bag-of-word fea-
ture, the effects of other specific features are im-
paired. For future work, we may explore other un-
derlying useful features and the advanced way of in-
tegrating these features to further improve the per-
formance, such as the fine-grained semantic rela-
tionship between question and answer, etc.
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Lluı́s Màrquez, James Glass, Walid Magdy, Alessandro
Moschitti, Preslav Nakov, and Bilal Randeree. 2015.

Semeval-2015 task 3: Answer selection in community
question answering. In SemEval 2015.
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Abstract

The purpose of this paper is to describe our
submission to the SemEval-2015 Task 3 on
Answer Selection in Community Question
Answering. We participated in subtask A,
where the systems had to classify community
answers for a given question as definitely rel-
evant, potentially useful, or irrelevant. For ev-
ery question-answer pair in the training data
we extract a vector with a variety of features.
These vectors are then fed to a MaxEnt classi-
fier for training. Given a question and an an-
swer the trained classifier outputs class proba-
bilities for each of the three desired categories.
The one with the highest probability is cho-
sen. Our system scores better than the average
score in subtask A of Task 3.

1 Introduction

Nowadays, text analysis and semantic similarity are
subject to a lot of research and experiments due to
the growth of social media influence, the increas-
ing usage of forums for finding a solution of com-
mon known problems and the Web upgrowth. As
beginners in the computational linguistics field, we
were very interested in dealing with these topics and
have found Answer Validation as a good start. Our
team chose to focus on subtask A of Task 3 in the
SemEval-2015 workshop, namely Answer selection
in community question answering data. In order
to achieve good results, we combined most of the
techniques familiar to us. We process the data as
question-answer pairs. The framework GATE (Cun-
ningham et al., 2002) was used for the preprocess-

ing in the system because it offers convenient natu-
ral language processing pipelines and has an API al-
lowing for system integration. For classification we
used the Maximum Entropy classifier provided by
MALLET (McCallum and Kachites, 2002). We use
a combination of surface, morphological, syntactic,
and contextual features as well as distance metrics
between the question and answer. Distance metrics
are based on word2vec (Mikolov et al., 2013a) and
DKPro Similarity (Bär, et al.), (de Castilho, 2014).

2 Related work

Several recent systems were created and used for
similar analysis. Although their applications have
some differences from the system described in this
paper, we consider them relevant because they deal
with semantic similarity.

(Başkaya, 2014) uses Vector Space Models which
have some similarity to our usage of word2vec cen-
troid metrics with the difference that we do not orga-
nize the whole text according to the structure of the
result matrix, as the VSMs do. The cosine similarity
is common for both systems. The big difference is
that we use only the input words while in his system
the words’ likely synonyms according to a language
model are also used. We believe this contributes to
the consistently higher scores of his system.

Another work of (Vilarin̋o et al., 2014) also uses
n-grams, cosine similarity and that is a common
feature with our system. Some differing features
are Jaccard coefficient, Latent Semantic Analysis,
Pointwise Mutual Information. Their results are
very close to ours.

Most of the works dealing with semantic similar-

242



ity use n-grams, metadata features and stop words
as we do. Our scores are not among the highest in
subtask A of Task 3, but they come close to and sub-
stantially differ from the average score in this field
of works.

3 Resources

The datasets we use to train our system are provided
from the SemEval-2015 organizers. The datasets
consist of 2600 training and 300 development ques-
tions including 16,541 training and 1,645 develop-
ment comments.
Also for the extraction of some features we use pre-
trained word and phrase vectors. They are trained
on part of Google News dataset (about 100 billion
words). The model contains 300-dimensional vec-
tors for 3 million words and phrases.

4 Method

The task at hand is to measure how appropriate
and/or informative a comment is with respect to a
question. Our approach is to measure the related-
ness of a comment to the question or, in other words,
to measure if a question-comment pair is consistent.
Therefore we attempt to classify each pair as Good,
Potential or Bad.

The main characteristic of a good comment is that
it is related to the corresponding question. Also, we
assume that when answering a question, people tend
to use the same words with which the question was
asked because that would make it easier for the ques-
tion author to understand. Therefore, similar word-
ing and especially similar phrases would be an indi-
cation of a more informative comment.

4.1 Features

We will call tokens that are not punctuation or stop
words meaningful, as they carry some information
regardless of exactly how a sentence is formulated.

4.1.1 Lexical Features
For every meaningful token, we extract its stem,

lemma and orthography.

4.1.2 N-gram Features
Bigrams and trigrams of tokens (even non-

meaningful ones) are also extracted since this

should capture similar phrases used in the question-
comment pair. We assume that n-grams of higher
order could contribute as well, however we believe
n = 2 and n = 3 would carry the most information
and n ≥ 4 would impact training time adversely.

4.1.3 Bad-answer-specific Features
Bad comments often include a lot of punctuation,

more than one question in the answer, questions, fol-
lowed by their obvious answer (when the expression
or its synonyms could be directly found in the an-
swer), more than two repeating letters next to each
other (i.e. exclamations such as ”ahaa”), greetings,
chat abbreviations, more than one uppercase word, a
lot of emoticons, exclamations and other very mean-
ingless words. Emphasizing such tokens helps to
distinguish bad comments specifically.

4.1.4 Structural Features
We include the comment’s length in meaning-

ful tokens, length in sentences and each sentence’s
length as features, since longer comments should in-
clude more information. Since named entities, such
as locations and organizations etc. would be es-
pecially indicative of the topic similarity between
question and comment, we give them greater weight
by again including named entities, recognized by
GATE’s built-in NER tools.

4.1.5 TF Vector Space Features
Another attempt to capture similar terms in the

question and comment is to convert each entry to a
local term-frequency vector and compute the cosine
similarity between the vectors for the question and
comment rounded to 0.1 precision. Similar word-
ing, regardless of term occurrence frequency, should
lead to a higher cosine similarity. We use DKPro’s
implementation of cosine similarity to achieve this
(Bär, et al.). The term ”local” refers to the fact that
TF vectors of distinct entries are not related, that is,
the vector space is specific to a question-comment
pair.

4.1.6 Word2vec Semantic Similarity
A good answer, however, does not necessarily

use the exact same words. Therefore we need
a way to capture the general ”topic” of a ques-
tion. We opted for the word2vec word vectors, pro-
posed by (Mikolov et al., 2013a), (Mikolov et al.,
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2013b), (Mikolov et al., 2013c). The general idea
of word2vec is to represent each word as a real vec-
tor that captures the contexts of word occurrences
in a corpus. For a given question-comment pair, we
extract word2vec vectors from a pre-trained set for
all tokens for which one is available. We compute
the centroids for the question and the comment, then
use the cosine between the two as a feature. The in-
tention is to capture the similarity between different
terms in the pair. The same procedure is then applied
once more for only NP-S, i.e. noun phrase, tokens
because they carry more information about the topic
than other parts of speech.

4.2 Classifier Model

After all described features are extracted, they form
a list of string values associated with each question-
answer pair. As explained above, some of them
are characteristic for bad answers, while others are
mainly found in good ones. Therefore, it makes
sense to consider the feature list for a given question-
answer pair as a document itself. Classifying these
documents with any standard approach will then
group pairs with similar features together and will
differentiate good from bad answers.

In our system, we use MALLET (McCallum and
Kachites, 2002) to perform classification on the ex-
tracted feature documents. For classification we
have chosen the default MALLET workflow that
calculates term-frequency feature vectors from its
input documents. These vectors are then fed to a
MaxEnt classifier, trained and evaluated using ten-
fold cross validation. For the final classification,
the trained classifier outputs class probabilities for
each of the three desired categories: Good, Potential
or Bad (which also includes Not English/Dialogue),
and the one with the highest score is chosen as the
label for the question-answer pair.

5 Experiments and results

Various experiments were conducted to analyse the
contribution of the chosen features. In each of them,
training was performed on the combined data from
the train and development datasets, provided by the
organizers. Testing was done on the official test
dataset used for evaluation of the task, after it was
released by the organizers. The analysis will only

focus on the coarse-grained evaluation in the three
main classes (Good, Potential, Bad) since our sys-
tem does not try to target the finer-grained classifi-
cation.

We defined our baseline system as the one that
uses only the lexical and structural features de-
scribed in the Method section, i.e. word tokens, sen-
tence, question and answer length, as well as the
bigrams and trigrams of the question-answer pair.
With only these features, the system is very weak -
the accuracy as reported by the scorer script against
the gold standard is 44.18% and the F1 score is
24.05%.

Next, we included the features that rely on GATE
gazetteers, such as the named entities features. This
improved the system’s performance by more than
1%, reaching accuracy of 45.14% and F1 score of
25.33%.

Another experiment we did was to add to the
baseline system only the DKPro cosine similarity.
This approach yielded a significant increase in the
scores on the test set over the baseline system,
around 4%.

Finally, we tested the baseline system with the
word2vec cosine values. This experiment was not as
successful as the others, offering no improvement.
The result may be attributed to the fact that we use
a set of vectors trained on generic Web data instead
of vectors specifically trained for the SemEval task.
However, the community generated datasets are not
sufficiently large and cannot be used for adequate
word2vec training.

When all features were combined, the scores were
boosted to 50% accuracy and 32.02% F1. The im-
provement from the baseline system is greater than
the accumulated improvement from adding the sin-
gle features because those features influence each
other.

All of the described experiments were done on the
data from the train and development sets. However,
when preparing our final submission for the compe-
tition, we trained our system on a training set that in-
cluded the development data twice. This way more
weight was given to those question-answer pairs.
The result was an impressive 14% increase in our
F1 score.

In order to further analyse this surprising result,
we did train a MaxEnt classifier using only the
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smaller development dataset. All described fea-
tures were combined here as well. The experiment
showed that indeed the larger train dataset provided
for the competition has less effect on the perfor-
mance of our system than the smaller development
dataset. We suspect that the contents of the test
dataset are closer to the development dataset because
that would mean more common n-gram features are
detected. This would explain the boost in the F1
score and the accuracy.

A summary of the results obtained in the experi-
ments can be seen in Tables 1 and 2

Accuracy F1 score
baseline 44.18% 24.05%
+ gazetteers 45.14% 25.33%
+ cosine similarity 47.87% 28.98%
+ word2vec 44.13% 24.03%
all combined 50.00% 32.02%
final system 62.35% 46.07%

Table 1: Accuracy and F1 score achieved using various
combinations of features

Training Data Accuracy F1 score
Train + Devel 50.00% 32.02%
Devel Only 57.74% 44.37%
Final System
(Train + 2*Devel) 62.35% 46.07%

Table 2: Accuracy and F1 score achieved using all fea-
tures, but extracted from different training datasets

It should be noted that the results are greatly im-
pacted by the low score we get on the Potential an-
swers class. The scores on this label are very close to
0 with all devised systems, which is to be expected
since none of our features were specifically targeted
at distinguishing Potential answers from Good and
Bad ones.

In all experiments, the highest precision and recall
were achieved on the Bad answers.

6 Conclusion

In this paper we introduced our system for answer
classification of question answering data. We de-
scribed the method of preprocessing and applying

features to the tokens and also mentioned the inter-
grated systems used for its implementation. All the
steps of the data preparation for analysis were ex-
haustively described in the method description. Lex-
ical and structural features proved to be insufficient
for achieving high results. The gazetteers helped in-
crease our scores but the most important part were
the vector calculations made after the preparation
process. The experiments showed that examining
cosine distance between question and answer can
lead to much greater performance. However, the
most dramatic improvement was caused by increas-
ing the size of the training data set and giving more
weight to some question-answer pairs. For future
work, we would try to add more syntactic features
into the preprocessing and to integrate language
models for the Good and Bad comments classifica-
tion. With this system, we achieved satisfactory re-
sults for the SemEval 2015 answer-validation task.
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Abstract

Open forum threads exhibit a great variabil-
ity in the quality and quantity of the answers
they attract, making it difficult to manually
moderate and separate relevant from irrelevant
content. The goal of SemEval 2015 Task 3
(Subtask A, English) is to build systems that
automatically distinguish between relevant and
irrelevant content in forum threads.

We extend a short answer assessment system to
build relations between forum questions and an-
swers with respect to similarity, question type,
and answer content. The features are used in
a sequence classifier to account for the conver-
sation character of threads. The performance
of this approach is modest in comparison to
the other task participants and also to the per-
formance the system usually reaches in short
answer assessment. However, the new features
implemented for this task are a first step in
developing more fine-grained question-answer
features and identifying relevant answers.

1 Introduction

In this paper, we discuss the adaptation of our Short
Answer Assessment (SAA) system CoMiC (Meurers
et al., 2011) to Task 3, Subtask A (English) of Sem-
Eval 2015, Answer Selection in Community Question
Answering. The aim in the task was to distinguish
helpful from unhelpful answers in a community fo-
rum given a question.

We enter the QA landscape from the perspective
of evaluating student answers to reading comprehen-
sion questions with respect to whether they contain
the targeted content. In such settings, one generally

has a reference answer to which a candidate answer
can be compared, making alignment-based systems a
natural solution. This is not the case for QA, where a
system has to select or rank candidate answers with
regard to a question posed. However, the present task
is still interesting to us because it shares a central
characteristic with SAA: one needs to identify the
relevant part of an answer, given a question. In theo-
retical linguistics, that relevant part is usually called
focus (cf., e.g., Krifka (2007)), and several research
groups have made efforts to annotate it in corpus data
(Hajičová and Sgall, 2001; Ritz et al., 2008; Calhoun
et al., 2010; Ziai and Meurers, 2014).

Automatic approaches to identifying focus have
however yet to be proposed, so for the current task,
we adapted and used our SAA system to align can-
didate answers with the forum question, identifying
whether and how question material was picked up,
which in turn should indicate whether answers are
on-topic. We then used a number of features to char-
acterize the unaligned answer material, from POS
classes to temporal expressions. We also encoded
which question words were present in the question in
the hope that the resulting classifier would pick up
connections between individual question words and
the different answer features in an approximation to
identifying the focus of the answer.

The paper is organized as follows: Section 2 briefly
discusses the data of the task before section 3 presents
the details of our system architecture and the features
we used. Section 4 then shows the results of our
efforts and a short error analysis, and finally section 5
concludes and discusses directions for further efforts.
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2 Data

The English dataset used in the task is a collection of
web-crawled forum1 texts where each item consists
of a question and responses to the question. Each
response has one of the six labels Good, Bad, Poten-
tial, Dialogue, non-English, or Other, describing its
potential for answering the corresponding question.
The correct label for every response had to be pre-
dicted by the systems at test time. The dataset is not
balanced since it contains more Good labelled an-
swers than answers with another label. The language
used in the questions and responses exhibits strong
deviations from standard English. For a detailed de-
scription, refer to (Màrquez et al., 2015).

3 System Details

In this section, we describe the CoMiC system and its
extensions for Task 3 of SemEval 2015. We begin by
going briefly over the baseline system and its features
and continue by describing in detail the new features
introduced for this task.
The baseline CoMiC system is an alignment-based
short answer assessment system. Alignments be-
tween a student and a target answer are computed
on different linguistic levels. The quantities of align-
ments of a certain quality are used as features and
given to a classifier that predicts a binary correctness
label for the student answer. A detailed description
can be found in (Meurers et al., 2011).
For this task, we adapt the system by making it es-
tablish alignments between forum questions and the
corresponding answers. Thus it is used primarily
as a text similarity system extended by features to
differentiate between given and new material.

3.1 Features
The system uses the standard features from the
CoMiC system and a range of new features. Al-
though the new features described here were used in
the context of Question Answering, we are planning
to explore to what extent the usage of these features
will improve the CoMiC system in the context of
short answer assessment. The following sections will
start with an overview about the standard CoMiC
features and will continue with a detailed description
of the new features.

1http://www.qatarliving.com/forum

3.1.1 CoMiC
As mentioned in the introduction, the CoMiC sys-

tem is designed to judge the contents of a short an-
swer to a reading comprehension question based on
alignment with a target answer (Meurers et al., 2011).
The features it uses express the linguistic unit and
nature of the successful alignments found between
candidate and target answer. In the present setting,
we used the standard CoMiC features to determine
the degree of similarity between the candidate answer
and the forum question, in order to find out whether
the answer does indeed pick up on question topic
material. These features are summarized in Table 1.

Feature Description
1. Keyword Overlap Percent of dependency heads

aligned (relative to question)
2./3. Token Overlap Percent of aligned

question/candidate tokens
4./5. Chunk Overlap Percent of aligned

question/candidate chunks (as
identified by OpenNLP2)

6./7. Triple Overlap Percent of aligned
question/candidate
dependency triples

8. Token Match Percent of token alignments
that were token-identical

9. Similarity Match Percent of token alignments
resolved using PMI-IR
(Turney, 2001)

10. Type Match Percent of token alignments
resolved using WordNet
hierarchy (Fellbaum, 1998)

11. Lemma Match Percent of token alignments
that were lemma-resolved

12. Synonym Match Percent of token alignments
sharing same WordNet synset

13. Variety of Match Number of kinds of
(0-5) token-level alignments

(features 8–12)

Table 1: Standard features in the CoMiC system

3.1.2 POS-Specific Weighting
The system uses four features that measure how

much of the material not given in the question be-
longs to a group of syntactically related categories.
The idea is to weight new material by estimating a
distribution of general syntactic classes over it. After

2http://opennlp.apache.org/
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the alignment process, the distribution of groups of
POS categories of non-aligned tokens is computed
with respect to all non-aligned tokens. As a basis,
the Penn Treebank POS tags from prior annotation
are used. Four groups are distinguished which are
composed in the following way:

• nouns: subsumes all nominal categories

• verbs: subsumes full verbs, auxiliaries, modals,
and participles

• adj/v: subsumes all adjectival and adverbial cat-
egories

• rest: subsumes all categories not listed above

For every of the four groups, the frequency of each
POS tag in this group in the non-aligned material is
computed, normalized against the frequency of all
POS tags in the non-aligned material, and summed up
to get the overall proportion of this group in the non-
aligned material. Previous experiments suggested
to prefer this approach with coarse groups over an
approach with more fine-grained POS classes due to
its overall robustness needed in this context.

3.1.3 Question Words
In an approximation to identifying question types,

we encoded the presence or absence of the wh-words
who, how, why, when, where, which, whom, whose
and what with a binary feature for each. We also
encode the presence of modal and auxiliary verbs in
the first three tokens of a sentence in order to detect
questions such as “Can anyone help me?”.

The idea behind these features was to enable asso-
ciations between them and the features characterizing
the new material in the answer.

3.1.4 Named Entity Recognition
We used the Stanford Named Entity Recognizer

(Finkel et al., 2005) to detect named entities in new
answer material. For each of the three standard
NE classes PERSON, ORGANIZATION and LO-
CATION, we encode its presence or absence in a
binary feature. Additionally, we encode the total
number of syntactic chunks found in the answer, of
which the named entities constitute a subset.

By detecting NEs, we wanted to enable the re-
sulting classifier to pick up connections between the
previously mentioned wh-features and the named en-
tities.

3.1.5 Temporal Expressions

The system uses a binary feature indicating the
presence or absence of one or more temporal ex-
pressions in every answer. In combination with the
question word features, the system can build relations
between questions asking for temporal content and
the presence of temporal expressions in the answer.
The system therefore makes use of an adapted ver-
sion of the HeidelTime temporal tagger (Strötgen and
Gertz, 2013) due to its ability to parse web content
with a high accuracy. No distinction is made between
different kinds of temporal expressions recognized
by the HeidelTime module.

3.2 Adaptation to Social Media Language

Since the CoMiC system is designed for the assess-
ment of short answers of language learners, several
adaptations were needed in order for the system to
be able to deal with the noisiness of social media
language. These adaptations consist of multiple steps
that will be described in this section.
The first step towards normalizing the language con-
sists of the removal of HTML markup present in
several answers. For this purpose, the CoMiC system
was extended by adding an additional module that
parses the raw input and recursively extracts the text
content while removing any HTML markup. The
jsoup module3 was used to accomplish this task.
The second step in the normalization process is driven
by the idea to exclude certain tokens from further
processing if they are recognized as being of a cate-
gory unlikely to contribute usefully in deeper analysis
by the system, such as emoticons, e-mail addresses,
hashtags, abbreviations, symbols, punctuation se-
quences, etc. Therefore we use an adapted version of
the ark-tweet-nlp module (Gimpel et al., 2011) in the
tokenization step which allows parallel tokenization
and POS tagging with a tagset tailored to cover the
specifics of social media language. The exclusion of
noisy material is done after sentence segmentation,
allowing to preserve sentences including all tokens
from the text, at the same time excluding unwanted
material from further analysis and alignment.

3http://jsoup.org/
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3.3 Model

We trained two different models based on separate
classification methods. We first experimented with
memory-based learning using TiMBL (Daelemans
et al., 2007), using the cosine as distance metric and
k = 5 nearest neighbors that each instance was com-
pared to. In order to take advantage of the fact that a
forum thread is in fact a conversation and the useful-
ness of a given forum answer may depend on previ-
ous answers, we also employed a CRF tagger (MAL-
LET, McCallum (2002)) to classify a sequence of
forum posts instead of a single instance. We used one
Markov order for the CRF. To our knowledge, this is
the only model in the competition that attempted to
classify answer sequences.

The CRF performed slightly better than the
memory-based approach on the development set,
which we attribute to its ability to take an answer’s
context into account. We submitted it as our primary
run and the memory-based one as the contrastive run.

4 Results

Evaluation was done using two scenarios: fine-
grained (Good, Potential, Dialogue, Bad) and coarse-
grained (Good, Potential, Bad), with missing classes
always collapsed into Bad. Table 2 shows the coarse-
grained accuracies and Macro F1 scores of our sys-
tem variants on development and test set for the En-
glish Subtask A. The CRF approach used in the pri-
mary system outperforms the contrastive memory-
based approach on both data sets in terms of accuracy.
In case of the primary system, the model seems to
transfer well since the accuracy on the test set is
even higher than on the development set. In case
of the contrastive system, the accuracy drops when
the model is applied to the test set. The table also
shows the accuracy for the best-performing system,
JAIST-contrastive, and the majority baseline.

These accuracies are rather modest, both in com-
parison to accuracy values of the CoMiC system
when used for the task of short answer assessment
for which the system is intended and designed, and
also in comparison to other task participants.

An error analysis showed several problems that
influenced the performance of the system. The nois-
iness of the input text on the syntactic and morpho-
logical level caused the POS tagger to assign incor-

System Dev. Set Test Set
Acc. F1 Acc. F1

Best system – – 73.76 57.29
CoMiC-prim. 54.89 28.41 54.20 30.63
CoMiC-contr. 53.37 24.36 50.56 23.36
Maj. baseline 53.19 23.15 50.46 22.36

Table 2: Coarse-grained accuracy and Macro F1 of sys-
tems on development and test set for Subtask A, English

rect POS tags. This led to problems for modules
that make use of POS information. The noisiness is
reflected also in the fact that not all lemmas are iden-
tified correctly. Another problem is that the spelling
correction component struggled with certain forms
and did not always find the spelling-corrected form.
The main problem was that too few tokens and hardly
any chunks could be aligned to the question, severely
influencing the alignment-based features. The sys-
tem also got mislead in cases where the person who
posed the question reformulated the question for oth-
ers, since the classifier failed to use the high similar-
ity between the question and the answer as a clear
indicator for an unhelpful answer.

5 Conclusion

We applied the short answer system CoMiC to the
task of question selection. The standard CoMiC sys-
tem was used to determine the similarity between a
question and an answer. We added new features to
the CoMiC system to enable the classifier to build re-
lations between the question type and certain answer
features. Extensions to the system were necessary
in order to deal with the noisiness of web texts. We
applied a CRF classifier that takes into account the
context of answers in the forum and found a posi-
tive effect on performance. The results of the task
show that our system performs rather moderately
when used for this task it is not designed or intended
for. However, the new features implemented for this
task are a first step in developing more fine-grained
question-answer features which eventually could be
useful for identifying the relevant part of an answer.
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Aitor Gonzalez-Agirrea, Weiwei Guof , Iñigo Lopez-Gazpioa, Montse Maritxalara∗,

Rada Mihalceab, German Rigaua, Larraitz Uriaa, Janyce Wiebeg

aUniversity of the Basque Country
Donostia, Basque Country

bUniversity of Michigan
Ann Arbor, MI

cCornell University
Ithaca, NY

dGoogle Inc.
Mountain View, CA

eGeorge Washington University
Washington, DC

fColumbia University
New York, NY

gUniversity of Pittsburgh
Pittsburgh, PA

Abstract

In semantic textual similarity (STS), systems
rate the degree of semantic equivalence be-
tween two text snippets. This year, the par-
ticipants were challenged with new datasets in
English and Spanish. The annotations for both
subtasks leveraged crowdsourcing. The En-
glish subtask attracted 29 teams with 74 sys-
tem runs, and the Spanish subtask engaged 7
teams participating with 16 system runs. In
addition, this year we ran a pilot task on in-
terpretable STS, where the systems needed to
add an explanatory layer, that is, they had to
align the chunks in the sentence pair, explicitly
annotating the kind of relation and the score
of the chunk pair. The train and test data were
manually annotated by an expert, and included
headline and image sentence pairs from previ-
ous years. 7 teams participated with 29 runs.

1 Introduction and Motivation

Given two snippets of text, semantic textual sim-
ilarity (STS) captures the notion that some texts
are more similar than others, measuring their de-
gree of semantic equivalence. Textual similarity can
range from complete unrelatedness to exact seman-
tic equivalence, and a graded similarity score intu-
itively captures the notion of intermediate shades of
similarity, as pairs of text may differ from some mi-
nor nuanced aspects of meaning to relatively impor-

∗Coordinators: e.agirre@ehu.eus, carmennb@umich.edu,
mtdiab@gwu.edu, montse.maritxalar@ehu.eus

tant semantic differences, to sharing only some de-
tails, or to simply unrelated in meaning (cf. Sect. 2).

One of the goals of the STS task is to create a
unified framework for combining several semantic
components that otherwise have historically tended
to be evaluated independently and without character-
ization of impact on NLP applications. By providing
such a framework, STS allows for an extrinsic eval-
uation of these modules. Moreover, such an STS
framework could itself be in turn evaluated intrin-
sically and extrinsically as a grey/black box within
various NLP applications.

STS is related to both textual entailment (TE) and
paraphrasing, but it differs in a number of ways and
it is more directly applicable to a number of NLP
tasks. STS is different from TE inasmuch as it as-
sumes bidirectional graded equivalence between a
pair of textual snippets. In the case of TE the equiv-
alence is directional, e.g. a car is a vehicle, but a ve-
hicle is not necessarily a car. STS also differs from
both TE and paraphrasing (in as far as both tasks
have been defined to date in the literature) in that
rather than being a binary yes/no decision (e.g. a ve-
hicle is not a car), we define STS to be a graded sim-
ilarity notion (e.g. a vehicle and a car are more sim-
ilar than a wave and a car). A quantifiable graded
bidirectional notion of textual similarity is useful for
many NLP tasks such as MT evaluation, information
extraction, question answering, summarization.

In 2012, we held the first pilot task at SemEval
2012, as part of the *SEM 2012 conference, with
great success (Agirre et al., 2012). In addition, we
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held a DARPA sponsored workshop at Columbia
University.1 In 2013, STS was selected as the offi-
cial shared task of the *SEM 2013 conference, with
two subtasks: a core task, which was similar to
the 2012 task, and a pilot task on typed-similarity
between semi-structured records. In 2014, new
datasets including new genres were used, and we
expanded the evaluations to address sentence simi-
larity in a new language, namely Spanish (Agirre et
al., 2014).

This year we presented three subtasks: the En-
glish subtask, the Spanish subtask and the inter-
pretable pilot subtask. The English subtask com-
prised pairs from headlines and image descriptions,
and it also introduced new genres, including answer
pairs from a tutorial dialogue system and from Q&A
websites, and pairs from a dataset tagged with com-
mitted belief annotations. For the Spanish subtask,
additional pairs from news and Wikipedia articles
were selected. The annotations for both tasks lever-
aged crowdsourcing. Finally, with the interpretable
STS pilot subtask, we wanted to start exploring
whether participant systems are able to explain why
two sentences are related/unrelated, adding an ex-
planatory layer to the similarity score.

2 Task Description

In this section, we will focus on each one of the sub-
tasks individually.

2.1 English Subtask

The English subtask dataset comprises pairs of sen-
tences from news headlines (HDL), image descrip-
tions (Images), answer pairs from a tutorial dialogue
system (Answers-student), answer pairs from Q&A
websites (Answers-forum), and pairs from a com-
mitted belief dataset (Belief).

For HDL, we used naturally occurring news head-
lines gathered by the Europe Media Monitor (EMM)
engine (Best et al., 2005) from several different news
sources (from April 2nd, 2013 to July 28th, 2014).
EMM clusters together related news. Our goal was
to generate a balanced dataset across the different
similarity ranges. Therefore, we built two sets of
headline pairs: a set where the pairs come from the
same EMM cluster and another set where the head-

1http://www.cs.columbia.edu/˜weiwei/
workshop/

year dataset pairs source
2012 MSRpar 1500 newswire
2012 MSRvid 1500 videos
2012 OnWN 750 glosses
2012 SMTnews 750 MT eval.
2012 SMTeuroparl 750 MT eval.
2013 HDL 750 newswire
2013 FNWN 189 glosses
2013 OnWN 561 glosses
2013 SMT 750 MT eval.
2014 HDL 750 newswire headlines
2014 OnWN 750 glosses
2014 Deft-forum 450 forum posts
2014 Deft-news 300 news summary
2014 Images 750 image descriptions
2014 Tweet-news 750 tweet-news pairs
2015 HDL 750 newswire headlines
2015 Images 750 image descriptions
2015 Answers-student 750 student answers
2015 Answers-forum 375 Q&A forum answers
2015 Belief 375 commited belief

Table 2: English subtask: Summary of train (2012, 2013,
2014) and test (2015) datasets.

lines come from a different EMM cluster. Then, we
computed the string similarity between those pairs.
Accordingly, we sampled 1000 headline pairs of
headlines that occur in the same EMM cluster, aim-
ing for pairs equally distributed between minimal
and maximal similarity using simple string similar-
ity as a metric. We sampled another 1000 pairs from
the different EMM cluster in the same manner.

The Images dataset is a subset of the PASCAL
VOC-2008 dataset (Rashtchian et al., 2010), which
consists of 1000 images with around 10 descriptions
each, and has been used by a number of image de-
scription systems. It was also sampled using string
similarity, discarding those that had been used in
previous years. We organized two bins with 1000
pairs each: one with pairs of descriptions from the
same image, and the other one with pairs of descrip-
tions from different images.

The source of the Answers-student pairs is the
BEETLE corpus (Dzikovska et al., 2010), which is
a question-answer dataset collected and annotated
during the evaluation of the BEETLE II tutorial di-
alogue system. The BEETLE II system is an in-
telligent tutoring engine that teaches students basic
electricity and electronics. The corpus was used in
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Score English (E) Spanish (S)
5(E)/ The two sentences are completely equivalent, as they mean the same thing.
4(S) The bird is bathing in the sink.

Birdie is washing itself in the water basin.
El pájaro se esta bañando en el lavabo.
El pájaro se está lavando en el aguamanil.

4(E)/ The two sentences are mostly equivalent, but some unimportant details differ.
3(S) In May 2010, the troops attempted to invade

Kabul.
The US army invaded Kabul on May 7th last
year, 2010.

3(E)/ The two sentences are roughly equivalent, but some important information differs/missing.
3(S) John said he is considered a witness but not a

suspect.
”He is not a suspect anymore.” John said.

John dijo que él es considerado como testigo, y
no como sospechoso.
“Él ya no es un sospechoso,” John dijo.

2 The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

Ellos volaron del nido en grupos.
Volaron hacia el nido juntos.

1 The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

La mujer está tocando el violı́n.
La joven disfruta escuchar la guitarra.

0 The two sentences are completely dissimilar.
John went horse back riding at dawn with a
whole group of friends.
Sunrise at dawn is a magnificent view to take
in if you wake up early enough for it.

Al amanecer, Juan se fue a montar a caballo con
un grupo de amigos.
La salida del sol al amanecer es una magnı́fica
vista que puede presenciar si usted se despierta
lo suficientemente temprano para verla.

Table 1: Similarity scores with explanations and examples for the English and Spanish subtasks, where the sentences
in Spanish are translations of the English ones. A similarity score of 5 in English is mirrored by a maximum score of
4 in Spanish; the definitions pertaining to scores 3 and 4 in English are collapsed under a score of 3 in Spanish, with
the definition ”The two sentences are mostly equivalent, but some details differ.”

the student response analysis task of Semeval-2013.
Given a question, a known correct ”reference an-
swer” and the ”student answer”, the goal of the task
was to assess whether student answers were correct,
contradictory or incorrect (partially correct, irrele-
vant or not in the domain). For STS, we selected
pairs of answers made up of single sentences. The
pairs were sampled from string similarity values be-
tween 0.6 and 1.

The Answers-forums dataset consists of paired
answers collected from the Stack Exchange question
and answer websites (http://stackexchange.com/).
Some of the paired answers are responses to the
same question, while others are responses to differ-
ent questions. Each answer in the pair consists of a
statement composed of a single sentence or sentence
fragment. For multi-sentence answers, we extracted

the single sentence from the larger answer that ap-
pears to best summarize the answer.

The Belief pairs were collected from the
DEFT Committed Belief Annotation dataset
(LDC2014E55). All source documents are English
Discussion Forum data. We sampled 2000 pairs
using string similarity values between 0.5 and 1.
It is worth noting that the similarity values were
skewed, with very few pairs above 0.8 similarity.

In an attempt to improve the quality of the data,
we selected 2000 pairs from each dataset and anno-
tated them. This ”raw” data was automatically fil-
tered in order to achieve the following three (par-
tially conflicting) goals: (1) to obtain a more uni-
form distribution across scores; (2) to select pairs
with high inter-annotator agreement; (3) to select
pairs which were difficult for a string-matching
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baseline. The filtering process was purely automated
and involved no manual selection of pairs. The raw
annotations and the Perl scripts that generated the
final gold standard are available at the task web-
site. See Table 2 for the number of selected pairs
per dataset.

Table 1 shows the explanations and values asso-
ciated with each score between 5 and 0. As in prior
years, we used Amazon Mechanical Turk (AMT)2

to crowdsource the annotation of the English pairs.
Five sentence pairs were presented to each annota-
tor at once, per human intelligence task (HIT), at
a payrate of $0.20. We collected five separate an-
notations per sentence pair. Annotators were only
eligible to work on the task if they had the Mechan-
ical Turk Master Qualification, a special qualifica-
tion conferred by AMT (using a priority statistical
model) to annotators who consistently maintain a
very high level of quality across a variety of tasks
from numerous requesters. Access to these skilled
workers entails a 20% surcharge.

To monitor the quality of the annotations, we used
a gold dataset of 105 pairs that were manually anno-
tated by the task organizers during STS 2013. We in-
cluded one of these gold pairs in each set of five sen-
tence pairs, where the gold pairs were indistinguish-
able from the rest. Unlike when we ran on Crowd-
Flower for STS 2013, the gold pairs were not used
for training purposes, neither were workers automat-
ically banned from the task if they made too many
mistakes annotating the pairs. Rather, the gold pairs
were only used to help in identifying and removing
the data associated with poorly performing annota-
tors. With few exceptions, 90% of the answers from
each individual annotator fell within +/-1 of the an-
swers selected by the organizers for the gold dataset.

The distribution of scores obtained from the AMT
providers in the all the datasets is roughly uniform
across the different grades of similarity, although the
scores are slightly lower for Belief. Compared to
the other datasets, the Answer-students dataset has
considerably fewer 0 scores.

In order to assess the annotation quality, we mea-
sure the correlation of each annotator with the aver-
age of the rest of the annotators, and then average
the results. This approach to estimate the quality
is identical to the method used for evaluations (see

2www.mturk.com

Section 3), and it can thus be considered as the upper
bound of the systems. The pre-filtering inter-tagger
correlation for each English dataset is as follows:
• Answer-forums; 64.7%
• Answer-students; 76.6%
• Belief: 73.8%
• Headlines: 82.1%
• Images: 84.6%

And post-filtering inter-tagger correlations:
• Answer-forums; 74.2%
• Answer-students; 82.2%
• Belief: 72.1%
• Headlines: 86.9%
• Images: 88.8%
The correlation figures are generally very high

(over 70%). The post-filtering process helps to in-
crease the inter-tagger correlation.

2.2 Spanish Subtask

The Spanish subtask follows a setup similar to the
English subtask, except that the similarity scores
were adapted to fit a range from 0 to 4 (see Table 1).
We thought that the distinction between a score of 3
and 4 for the English task would pose more difficulty
for us in conveying into Spanish, as the sole differ-
ence between the two lies in how the annotators per-
ceive the importance of additional details or missing
information with respect to the core semantic inter-
pretation of the pair. As this aspect entails a subjec-
tive judgement, we casted the annotation guidelines
into straightforward and unambiguous instructions,
and thus opted to use a similarity range from 0 to 4.

Prior to the evaluation window, the participants
had access to a trial dataset consisting of 65 sen-
tence pairs annotated for similarity and the test data
released as part of SemEval 2014 Task 10 (Agirre
et al., 2014), consisting of approximately 800 sen-
tence pairs extracted from Spanish newswire and
encyclopedic content. For the evaluations, we con-
structed two datasets, one extracted from the Span-
ish Wikipedia3 (December 2013 dump) consisting
of 251 sentence pairs, and the other one from con-
temporary news articles collected from news media
in Spanish (November 2014) of 500 pairs.
Spanish Wikipedia. The Wikipedia dump was pro-
cessed using the Parse::MediaWikiDump Perl li-
brary. We removed all titles, html tags, wiki tags and

3es.wikipedia.org
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hyperlinks (keeping only the surface forms). Each
article was split into paragraphs, where the first para-
graph was considered to be the article’s abstract,
while the remaining ones were deemed to be its con-
tent. Each of these were split into sentences us-
ing the Perl library Uplug::PreProcess::SentDetect,
and only the sentences longer than eight words were
used. We iteratively computed the lexical similar-
ity4 between every sentence in the abstract and ev-
ery sentence in the content, and retained those pairs
whose sentence length ratio was higher than 0.5, and
their similarity scored over 0.35.

The final set of sentence pairs was split into five
bins, and their scores were normalized to range from
0 to 1. The more interesting and difficult pairs were
found, perhaps not surprisingly, in bin 0, where syn-
onyms/short paraphrases were more frequent, and
251 sentence pairs were manually selected from this
bin in order to ensure a diverse and challenging set.

We then proceeded to annotate the sentence pairs
for textual similarity by designing an AMT task, fol-
lowing a similar structure as in 2014, namely creat-
ing HITs consisting of seven sentence pairs, where
six of them were a subset of the newly developed
dataset, and one of them was reused from 2014 data
with the purpose of control and to enable annotation
quality comparisons.5 As in the previous year, AMT
providers were eligible to complete a task if they had
more than 500 accepted HITs, with an over 90% ac-
ceptance rate. Each HIT was annotated by five AMT
providers, and the remuneration was of $0.30 per
HIT.6 The final sentence pair similarity scores was
computed by averaging over the judgments of the
five AMT providers.

In order to assess the robustness of the AMT an-
notations, we computed the Pearson correlation be-
tween the similarity scores newly assigned to the
control sentences, and those assigned in 2014. We
obtained a measure of over 0.92, indicating a high
resemblance between the two sets of judgements
and highlighting the consistency of crowd wisdom,
which is able to produce coherent outcomes irre-
spective of the individuals participating in the de-
cision process.

4Algorithm based on the Linux diff command (Algo-
rithm::Diff Perl module).

5The control pair appeared randomly within each HIT.
6For additional information, we refer the reader to (Agirre

et al., 2014).

Spanish News. The second Spanish dataset was
extracted from news articles published in Spanish
language media from around the world in Novem-
ber 2014. The hyperlinks to the articles were ob-
tained by parsing the ”International” page of Span-
ish Google News,7 which aggregates or clusters in
real time articles describing a particular event from
a diverse pool of news sites, where each grouping is
labeled with the title of one of the predominant arti-
cles. By leveraging these clusters of links pointing
to the sites where the articles were originally pub-
lished, we were able to gather raw text that had a
high probability to contain semantically similar sen-
tences. We encountered several difficulties while
mining the articles, ranging from each article hav-
ing its own formatting depending on the source site,
to advertisements, cookie requirements, to encoding
for Spanish diacritics. We used the lynx text-based
browser,8 which was able to standardize the raw arti-
cles to a degree. The output of the browser was pro-
cessed using a rule based approach taking into ac-
count continuous text span length, ratio of symbols
and numbers to the text, etc., in order to determine
when a paragraph is part of the article content. Af-
ter that, a second pass over the predictions corrected
mislabeled paragraphs if they were preceded and
followed by paragraphs identified as content. All
the content pertaining to articles on the same event
was joined, sentence split, and diff pairwise similar-
ities were computed. The set of candidate sentences
followed the same constraints as those enforced for
the Wikipedia dataset. From these, we manually ex-
tracted 500 sentence pairs, which were annotated
in an AMT task mirroring the same setup as used
for the encyclopedic data annotation. The correla-
tion between this year’s annotations and those of the
2014 STS task using the control sentence pairs re-
mained high, at 0.886.

Since historically many of the text-to-text similar-
ity algorithms have relied heavily on lexical match-
ing, this year’s Spanish datasets featured sentence
pairs with a higher degree of difficulty. This was
achieved by handpicking pairs which shared some
common vocabulary, yet carried completely differ-
ent meanings at the sentence level.

7news.google.es
8lynx.browser.org
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2.3 Interpretable Subtask

Given the setup of STS tasks to date, this year we
wanted to shift focus, and gauge the ability of par-
ticipating systems to explain why two sentences may
be related/unrelated, by supplementing the similar-
ity score with an explanatory layer. As a first step
in this direction, given a pair of sentences, systems
needed to align the chunks across both sentences,
and for each alignment, classify the type of relation,
and provide the corresponding similarity score.

In previous work, Brockett (2007) and Rus et
al. (2012) produced a dataset where corresponding
words (including some multiword expressions like
named-entities) were aligned. Although this align-
ment is useful, we wanted to move forward to the
alignment of segments, and decided to align chunks
(Abney, 1991). Brockett (2007) did not provide
any label to alignments, while Rus et al. (2012) de-
fined a basic typology. In our task, we provided a
more detailed typology for the aligned chunks as
well as a similarity/relatedness score for each align-
ment. Contrary to the mentioned works, we first
identified the segments (chunks in our case) in each
sentence separately, and then aligned them. In a dif-
ferent strand of work, Nielsen et al. (2009) defined a
textual entailment model where the “facets” (words
under some syntactic/semantic relation) in the re-
sponse of a student were linked to the concepts in
the reference answer. The link would signal whether
each facet in the response was entailed by the refer-
ence answer or not, but would not explicitly mark
which parts of the reference answer caused the en-
tailment. This model was later followed by Levy et
al. (2013). Our task was different in that we iden-
tified the corresponding chunks in both sentences.
We think that, in the future, the aligned facets could
provide complementary information to chunks.

For interpretable STS the similarity scores range
from 0 to 5, as in the English subtask. With re-
spect to the relation between the aligned chunks, the
present pilot only allowed 1:1 alignments. As a con-
sequence, we had to include a special alignment con-
text tag (ALIC) to simulate those chunks which had
some semantic similarity or relatedness in the other
sentence, but could not have been aligned because of
the 1:1 restriction. In the case of the aligned chunks,
the following relatedness tags were defined:
• EQUI, for chunks which are semantically

Listing 1: STS interpretable - annotation format
1 <sentence id="6" status="">
2 A woman riding a brown horse
3 A young girl riding a brown horse
4 ...
5 <alignment>
6 1 2 <==> 1 2 3 // SIMI // 4 // A woman <==>

A young girl
7 4 5 6 <==> 5 6 7 // EQUI // 5 // a brown

horse <==> a brown horse
8 3 <==> 4 // EQUI // 5 // riding <==> riding
9 </alignment>

10 </sentence>

equivalent in the context.
• OPPO, for chunks which are in opposition to

each other in the context.
• SPE1 and SPE2, for chunks which have similar

meanings, but which include different level of
detailed information, chunk in sentence1 more
specific than chunk in sentence2, or vice versa.
• SIMI, for chunks with similar meanings, but no

EQUI, OPPO, SPE1, or SPE2.
• REL, for chunks which have related meanings,

but no EQUI, OPPO, SPE1, SPE2, or SIMI.
In addition, a pair of chunks could be annotated

with factuality (FACT) and polarity (POL), if there
was a phenomena associated to those which made
the meaning of the two chunks different. Finally,
in the case of chunks which did not have any sim-
ilarity/relatedness in the other sentence, they were
tagged as NOALI.

The pilot presented two scenarios: sentence raw
text and gold standard chunks. In the first scenario,
given a pair of sentences, participants had to identify
the composing chunks, and then align them; after
that they would assign a relatedness tag and a simi-
larity score to each alignment. In the gold standard
scenario, participants were provided with the gold
standard chunks, which were based on those used in
the CoNLL 2000 chunking task (Tjong Kim Sang
and Buchholz, 2000), with some adaptations (see
annotation guidelines available at the task website).

The training and test datasets consisted of 1500
and 753 sentence pairs, respectively, extracted from
the HDL and Images datasets used in 2014. Listing
1 shows the annotation format for a given sentence
pair from the training set (note that each alignment
is reported in one line as follows: token-id-sent1
<==> token-id-sent2 // label // score // comment).
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3 System Evaluation for STS

This Section reports the results for the English and
Spanish subtasks. Note that participants could sub-
mit a maximum of three runs per subtask.

3.1 Evaluation Metrics
As in previous exercises, we used Pearson product-
moment correlation between the system scores
and the GS scores. In order to compute statis-
tical significance among system results, we use
a one-tailed parametric test based on Fisher’s z-
transformation (Press et al., , equation 14.5.10).

3.2 Baseline System
In order to provide a simple word overlap baseline
(Baseline-tokencos), we tokenized the input sen-
tences splitting on white spaces, and then each sen-
tence was represented as a vector in the multidimen-
sional token space. Each dimension had 1 if the to-
ken was present in the sentence, 0 otherwise. Vector
similarity was computed using cosine similarity.

We also ran the TakeLab system (Šarić et al.,
2012) from STS 2012, which yielded strong results
in previous years evaluations.9. The system was
trained on all previous datasets STS12, STS13 and
STS14, and tested on each subset of STS15.

3.3 Participation
29 teams participated in the English subtask, sub-
mitting 74 system runs. One team submitted fixes
on one run past the deadline, as explicitly marked
in Table 3. After the submission deadline expired,
the organizers published the gold standard, the eval-
uation script, the scripts to generate the gold stan-
dard from raw annotation files, and participant sub-
missions on the task website, in order to ensure a
transparent evaluation process. As regards the Span-
ish STS task, it attracted 7 teams, which participated
with 16 system runs.

3.4 English Subtask Results
Table 3 shows the results of the English subtask,
with runs listed in alphabetical order. The cor-
relation in each dataset is given, followed by the
weighted mean correlation (the official measure) and
the rank of the run. The Table also shows the results

9Code is available at http://ixa2.si.ehu.eus/
stswiki

of the baseline, which would rank 61st, and Take-
Lab, which was trained with all datasets from pre-
vious years. TakeLab would rank 42nd, 10 absolute
points below the best system, a larger difference than
in 2014.

The highest results are for images (87.1%, by
Samsung) and headlines (84.2%, by Samsung), fol-
lowed by answers-students (78.8%, by DLS@CU),
belief (77.2%, by IITNLP) and answers-forums
(73.9% by DLS@CU). Note that the highest results
are very close but below the inter-annotator corre-
lation, with the exception of belief, where the sys-
tems attain a better correlation than the annotators
(88.8%, 86.9%, 82.2%, 72.1% and 74.2%, respec-
tively).

The results of the best system run were signifi-
cantly different (p-value < 0.05) from the 11th top
scoring system run and below. The top 10 systems
did not show statistical significant variation among
them. None of these runs was significantly different
from any other in the top ten runs, indicating that the
best systems performed very close to each other.

Regarding the relative difficulty of headlines and
images in 2014 and 2015, both baseline and best sys-
tem perform better this year than in 2014, but the
differences between baseline and best system has in-
creased in headlines, while it is similar in images.

3.4.1 Analysing the Full Dataset
On a separate note, we felt filtering was specif-

ically needed for new datasets, in order to guaran-
tee a minimum quality. For datasets like images
and headlines, where the sampling strategy was al-
ready shown to work, it might not be as necessary.
For completeness, we also evaluated the systems on
the full set of annotations. The system scoring best
was the same as in the official test set (DLS@CU-
S1), with a mean correlation of 73.4%. The baseline
scored 49.6%, and it would rank in position 55. The
best results in each dataset decreased more or less
uniformly. The filtering ensured a test set of better
quality, but we interpret that the full set can also be
used for development. It’s available from the task
website.

3.5 Tools and Resources
Given the number of participants, for the sake of
space, we just give a broad overview. Aligning
words between sentences has been the most popular
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Run Name answers-forums answers-students belief headlines images Mean Rank
Baseline-tokencos 0.4453 0.6647 0.6517 0.5312 0.6039 0.5871 61
Baseline-TakeLab 0.5391 0.6176 0.6165 0.7790 0.8115 0.6965 42
A96T-RUN1 0.6686 0.7192 0.7117 0.7357 0.7896 0.7337 29
ASAP-FIRSTRUN 0.2304 0.6503 0.3928 0.6614 0.6548 0.5695 63
ASAP-SECONDRUN 0.2374 0.7095 0.3986 0.7039 0.7294 0.6152 56
*ASAP-THIRDRUN 0.2303 0.6719 0.4342 0.7156 0.7250 0.6112 57
AZMAT-RUNABS 0.3099 0.4282 0.3568 0.5280 0.5118 0.4503 70
AZMAT-RUNCAP 0.2932 0.4282 0.3526 0.5350 0.5186 0.4512 69
AZMAT-RUNSCALE 0.2933 0.4293 0.3587 0.5264 0.5145 0.4490 71
BLCUNLP-1stRUN 0.4231 0.5152 0.5510 0.5651 0.7163 0.5709 62
BLCUNLP-2ndRUN 0.5725 0.6586 0.5510 0.7238 0.8271 0.6928 44
BLCUNLP-3rdRUN 0.5725 0.5753 0.4462 0.7309 0.8070 0.6556 49
BUAP-RUN1 0.5564 0.6901 0.6473 0.7167 0.7658 0.6936 43
DalGTM-run1 0.2902 -0.0534 0.0625 0.0598 0.0663 0.0623 74
DalGTM-run2 0.3537 0.1189 0.0625 0.2354 0.2042 0.1917 72
DalGTM-run3 0.1533 0.1189 -0.1319 -0.0395 0.2021 0.0731 73
DCU-RUN1 0.5556 0.6582 0.5464 0.8284 0.8394 0.7192 34
DCU-RUN2 0.5628 0.6233 0.7549 0.8187 0.8350 0.7340 28
DCU-RUN3 0.6530 0.6108 0.6977 0.8181 0.8434 0.7369 26
DLS@CU-S1 0.7390 0.7725 0.7491 0.8250 0.8644 0.8015 1
DLS@CU-S2 0.7241 0.7569 0.7223 0.8250 0.8631 0.7921 3
DLS@CU-U 0.6821 0.7879 0.7325 0.8238 0.8485 0.7919 5
ECNU-1stSVMALL 0.7145 0.7122 0.7282 0.7980 0.8467 0.7696 19
ECNU-2ndSVMONE 0.6865 0.7329 0.6977 0.8196 0.8358 0.7701 18
ECNU-3rdMTL 0.6919 0.7515 0.6951 0.8049 0.8575 0.7769 16
ExBThemis-default 0.6946 0.7505 0.7521 0.8245 0.8527 0.7878 8
ExBThemis-themis 0.6946 0.7505 0.7482 0.8245 0.8527 0.7873 9
ExBThemis-themisexp 0.6946 0.7784 0.7482 0.8245 0.8527 0.7942 2
FBK-HLT-RUN1 0.7131 0.7442 0.7327 0.8079 0.8574 0.7831 12
FBK-HLT-RUN2 0.7101 0.7410 0.7377 0.8008 0.8545 0.7801 13
FBK-HLT-RUN3 0.6555 0.7362 0.7460 0.7083 0.8389 0.7461 23
FCICU-Run1 0.6152 0.6686 0.6109 0.7418 0.7853 0.7022 41
FCICU-Run2 0.3659 0.6460 0.5896 0.6448 0.6194 0.5970 59
FCICU-Run3 0.7091 0.7096 0.7184 0.7922 0.8223 0.7595 20
IITNLP-FirstRun 0.3728 0.6605 0.7717 0.5996 0.8523 0.6712 47
MathLingBudapest-embedding 0.7039 0.7004 0.7325 0.7690 0.8038 0.7478 22
MathLingBudapest-hybrid 0.7231 0.7513 0.7473 0.8037 0.8442 0.7836 11
MathLingBudapest-machines 0.6977 0.7455 0.7363 0.8046 0.8414 0.7771 15
MiniExperts-Run1 0.6781 0.7304 0.6294 0.6912 0.8109 0.7216 33
MiniExperts-Run2 0.6454 0.7093 0.5165 0.6084 0.7999 0.6746 45
MiniExperts-Run3 0.6179 0.6977 0.3236 0.5775 0.7954 0.6353 55
NeRoSim-R1 0.5260 0.7251 0.6311 0.8131 0.8585 0.7438 24
NeRoSim-R2 0.6940 0.7446 0.7512 0.8077 0.8647 0.7849 10
NeRoSim-R3 0.6778 0.7357 0.7220 0.8123 0.8570 0.7762 17
RTM-DCU-1stPLS.svr 0.5484 0.5549 0.6223 0.7281 0.7189 0.6468 50
RTM-DCU-2ndST.svr 0.5484 0.5549 0.6223 0.7281 0.7189 0.6468 51
RTM-DCU-3rdST.rr 0.5484 0.5549 0.6223 0.7281 0.7189 0.6468 52
Samsung-alpha 0.6589 0.7827 0.7029 0.8342 0.8701 0.7920 4
Samsung-beta 0.6586 0.7819 0.6995 0.8342 0.8713 0.7916 7
Samsung-delta 0.6639 0.7825 0.6952 0.8417 0.8634 0.7918 6
SemantiKLUE-RUN1 0.4913 0.7005 0.5617 0.6681 0.7915 0.6717 46
SopaLipnIimas-MLP 0.6178 0.5864 0.6886 0.8121 0.8184 0.7175 36
SopaLipnIimas-RF 0.6709 0.5914 0.7238 0.8123 0.8414 0.7356 27
SopaLipnIimas-SVM 0.5918 0.5718 0.7028 0.7985 0.8104 0.7070 39
T2a-TrWP-run1 0.6857 0.6618 0.6769 0.7709 0.7865 0.7251 31
T2a-TrWP-run2 0.6857 0.6618 0.7245 0.7709 0.7865 0.7311 30
T2a-TrWP-run3 0.6857 0.6612 0.6772 0.7710 0.7865 0.7250 32
TATO-1stWTW 0.6796 0.6853 0.7206 0.7667 0.8167 0.7422 25
UBC-RUN1 0.4764 0.5459 0.6788 0.6368 0.7852 0.6364 53
UMDuluth-BlueTeam-Run1 0.6561 0.7816 0.7363 0.8085 0.8236 0.7775 14
UQeResearch-AllRuns-run1 0.5923 0.6876 0.5904 0.7521 0.7817 0.7032 40
UQeResearch-AllRuns-run2 0.6132 0.6882 0.6229 0.7602 0.7855 0.7130 37
UQeResearch-AllRuns-run3 0.6188 0.6757 0.7178 0.7549 0.7769 0.7189 35
USAAR SHEFFIELD-modelx 0.3706 0.3609 0.4767 0.5183 0.5436 0.4616 68
USAAR SHEFFIELD-modely 0.6264 0.7386 0.7050 0.7927 0.8162 0.7533 21
USAAR SHEFFIELD-modelz 0.4237 0.6757 0.6994 0.5239 0.6833 0.6111 58
WSL-run1 0.3759 0.5269 0.6387 0.5462 0.5710 0.5379 66
WSL-run2 0.4287 0.6028 0.5231 0.6029 0.4879 0.5424 65
WSL-run3 0.3709 0.5437 0.6478 0.5752 0.6407 0.5672 64
Yamraj-1stRUNNAME 0.5634 0.6727 0.6387 0.6067 0.7425 0.6558 48
Yamraj-2ndRUNNAME 0.4367 0.4716 0.4890 0.5533 0.4799 0.4919 67
Yamraj-3rdRUNNAME 0.5168 0.5835 0.6540 0.5861 0.6097 0.5912 60
yiGou-midbaitu 0.5797 0.6571 0.6473 0.7115 0.8036 0.6964 42
yiGou-xiaobaitu 0.6102 0.6872 0.6065 0.7369 0.8133 0.7114 38
*UBC-RUN1 0.4764 0.5459 0.6788 0.6368 0.7852 0.6364 54

Table 3: Task 2a: English evaluation results in terms of Pearson correlation.
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approach for the top three participants (DLS@CU,
ExBThemis, Samsung). They use WordNet (Miller,
1995), Mikolov Embeddings (Mikolov et al., 2013;
Baroni et al., 2014) and PPDB (Ganitkevitch et al.,
2013). In general, generic NLP tools such as lemma-
tization, PoS tagging, distributional word embed-
dings, distributional and knowledge-based similar-
ity are widely used, and also syntactic analysis and
named entity recognition. Most teams add a ma-
chine learning algorithm to learn the output scores,
but note that Samsung team did not use it in their
best run.

3.6 Spanish Subtask Results
The official evaluation results of the Spanish sub-
task are presented in Table 4. The last row,
Baseline-tokencos, shows the results obtained us-
ing the same baseline as for the English STS task,
which 69% of the system runs were able to sur-
pass. Only about one fifth of the systems were un-
supervised, among which, the top performing sys-
tem, UMDuluth-BlueTeam-run1, was able to come
within 0.1 correlation points from the top perform-
ing system on Wikipedia and within 0.03 on the
Newswire dataset. This relatively narrow gap sug-
gests that unsupervised semantic textual similarity is
a viable option for languages with limited resources.

Statistical significance tests were performed
across the teams, by only considering their best run.
In the case of the Wikipedia dataset, all runs were
significantly different (at p-value < 0.05) with re-
spect to the other teams; the same behavior was en-
countered on the newswire dataset, with the excep-
tion of two pairs of system runs that were not sta-
tistically different (ExBThemis & RTM-DCU, and
MiniExperts & Yamraj).

Our efforts for generating closer to real-life tex-
tual similarity scenarios, and thus more difficult
cases to be discerned by automated systems, were
reflected in the lower correlations obtained on this
year’s datasets in comparison to those of 2014. For
Wikipedia, the highest ranking system, ExBThemis-
trainMini, achieved a correlation of 0.70, while in
2014, the highest correlation on the same dataset
type was of 0.78. This difference was even steeper
for the newswire data, where the top system,
ExBThemis-trainEs, scored 0.683 in comparison to
2014, where the top ranked system attained a corre-
lation of 0.845.

4 System Evaluation for Interpretable STS

4.1 Evaluation Metrics
Participating runs were evaluated using four differ-
ent metrics: F1 where alignment type and score are
ignored; F1 where alignment types need to match,
but scores are ignored; F1 where alignment type
is ignored, but each alignment is penalized when
scores do not match; and, F1 where alignment types
need to match, and each alignment is penalized
when scores do not match.

4.2 Baseline System
The baseline system used for the interpretable sub-
task consists of a cascade concatenation of several
procedures. First, we undertake a brief NLP step
in which input sentences are tokenized using sim-
ple regular expressions. Additionally, this step col-
lects chunk regions coming either from gold stan-
dard or from the chunking done by ixa-pipes-chunk
(Agerri et al., 2014). This is followed by a lower-
cased token aligning phase, which consists of align-
ing (or linking) identical tokens across the input sen-
tences. Then we use chunk boundaries as token re-
gions to group individual tokens into groups, and
compute all links across groups. The weight of the
link across groups is proportional to the number of
links counted between within-group tokens. The
next phase consists of an optimization step in which
groups x,y that have the highest link weight are iden-
tified, as well as the chunks that are linked to either
x or y but not with a maximum alignment weight
(thus enabling us to know which chunks were left
unaligned). Finally, in the last phase, the baseline
system uses a rule-based algorithm to directly as-
sign labels and scores: to chunks with the highest
link weight assign label = “EQUI” and score = 5,
to the rest of aligned chunks (with lower weights)
assign label = “ALIC” and score = NIL, and, to un-
aligned chunks assign label = “NOALI” and score =
NIL.

4.3 Participation
The interpretable subtask allowed up to a total of
three submissions for each team on each of the eval-
uation scenarios. As previously mentioned, the first
evaluation scenario provided gold standard chunks
for all input sentence pairs. This way, participat-
ing systems only had to worry about making cor-
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Run Name System Type Wikipedia Newswire Weighted Mean Rank
BUAP-run1 unknown 0.489 0.405 0.433 14
ExBThemis-trainEn supervised 0.676 0.671 0.672 3
ExBThemis-trainEs supervised 0.705 0.683 0.690 1
ExBThemis-trainMini supervised 0.706 0.681 0.689 2
RTM-DCU-1stST.tree supervised 0.582 0.525 0.544 8
RTM-DCU-2ndST.rr supervised 0.582 0.525 0.544 7
RTM-DCU-3rdST.SVR supervised 0.582 0.525 0.544 6
SopaLipnIimas-MLP supervised 0.253 0.534 0.440 12
SopaLipnIimas-RF supervised 0.564 0.565 0.565 5
SopaLipnIimas-SVM supervised 0.419 0.401 0.407 15
UMDuluth-BlueTeam-run1 unsupervised 0.594 0.655 0.634 4
MiniExperts-run1 supervised 0.524 0.508 0.513 11
MiniExperts-run2 supervised 0.467 0.544 0.518 9
MiniExperts-run3 supervised 0.440 0.552 0.515 10
Yamraj-1stNoConfidence unsupervised 0.577 0.365 0.436 13
Yamraj-1stWithConfidence unsupervised 0.532 0.342 0.405 16
Baseline-tokencos 0.529 0.495 0.506

Table 4: Task 2b: Spanish evaluation results in terms of Pearson correlation.

Run Name H ALI H TYPE H SCORE H T+S Rank I ALI I TYPE I SCORE I T+S Rank
NeRoSim R3 0.8976 0.6666 0.8157 0.6426 1 0.8834 0.6035 0.7837 0.5759 4
NeRoSim R2 0.8972 0.6558 0.8263 0.6401 2 0.8800 0.5854 0.7818 0.5619 6
NeRoSim R1 0.8984 0.6543 0.8262 0.6389 3 0.8870 0.6143 0.7877 0.5841 2
UMDuluth BlueTeam 1 0.8861 0.5962 0.7960 0.5887 4 0.8853 0.5842 0.7932 0.5729 5
UMDuluth BlueTeam 2 0.8861 0.5962 0.7968 0.5883 5 0.8853 0.6095 0.7968 0.5964 1
UMDuluth BlueTeam 3 0.8861 0.5900 0.7980 0.5834 6 0.8853 0.5964 0.7909 0.5822 3
SimCompass prefix 0.8360 0.5834 0.7474 0.5338 8 0.8361 0.4708 0.7269 0.4157 12
SimCompass word2vec 0.8716 0.5806 0.7654 0.5253 9 0.8624 0.4599 0.7405 0.4017 13
SimCompass combined 0.8710 0.5813 0.7651 0.5239 10 0.8490 0.4555 0.7294 0.3965 14
ExBThemis avgScorer 0.8146 0.4943 0.7171 0.4885 11 0.8057 0.4413 0.6992 0.4246 11
ExBThemis mostFreqScorer 0.8146 0.4943 0.7140 0.4884 12 0.8057 0.4413 0.7007 0.4296 9
ExBThemis regressionScorer 0.8146 0.4943 0.7158 0.4883 13 0.8052 0.4406 0.6989 0.4288 10
FCICU Run1 0.8455 0.4480 0.7160 0.4325 14 0.8457 0.4740 0.7273 0.4482 7
+RTM-DCU 1stIBM2Alignment 0.4914 0.3712 0.4550 0.3712 15 0.3540 0.2283 0.3187 0.2282 15
∗UBC RUN2 0.8991 0.6402 0.8211 0.6185 - 0.8846 0.6557 0.8085 0.6159 -
∗UBC RUN1 0.8991 0.5882 0.8031 0.5882 - 0.8846 0.4749 0.7709 0.4746 -
BASELINE 0.8448 0.5556 0.7551 0.5556 7 0.8388 0.4328 0.7210 0.4326 8

Table 5: STS interpretable results for the gold chunks scenario. Best results have been marked in bold. ’H’ stands
for Headlines data set and ’I’ stands for Images data set. + symbol denotes resubmissions and ∗ symbol denotes task
organizers.

rect alignments and providing them with appropri-
ate labels and scores. The second evaluation sce-
nario consisted of using only raw text as input, and
so, each system was also responsible for segmenting
the input.

Seven teams participated on the gold chunks sce-
nario, and out of them five teams also participated in
the system chunks scenario as it was more challeng-
ing. The UBC system participation, marked with a
∗, corresponds to the organizer team for the inter-
pretable STS subtask. However, it should be noted
that the actual participating team was an indepen-
dent subteam that was not involved in the task orga-

nization. Moreover, one more team is marked with
+ as their results reflect a resubmission.

4.4 Interpretable Subtask Results

Results for the gold chunks scenario and the system
chunks scenario are shown in Table 5 and Table 6,
respectively. Each row of the tables corresponds to
a run configuration named TeamID RunID, and each
column corresponds to a evaluation result.

Note that task results are separately written with
respect to the scenario, but distinct datasets that per-
tain to the same scenario have been collapsed in the
corresponding table so that ’H’ corresponds to the
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Run Name H ALI H TYPE H SCORE H T+S Rank I ALI I TYPE I SCORE I T+S Rank
UMDuluth BlueTeam 3 0.7820 0.5154 0.7024 0.5098 1 0.8336 0.5605 0.7456 0.5473 2
UMDuluth BlueTeam 2 0.7820 0.5109 0.6986 0.5049 2 0.8336 0.5759 0.7511 0.5634 1
UMDuluth BlueTeam 1 0.7820 0.5058 0.6968 0.5004 3 0.8336 0.5529 0.7498 0.5431 3
ExBThemis avgScorer 0.7032 0.4331 0.6224 0.4290 5 0.6966 0.3970 0.6068 0.3806 6
ExBThemis mostFreqScorer 0.7032 0.4331 0.6200 0.4288 6 0.6966 0.3970 0.6106 0.3870 4
ExBThemis regressionScorer 0.7032 0.4331 0.6209 0.4284 7 0.6966 0.3970 0.6092 0.3867 5
SimCompass word2vec 0.6461 0.4334 0.5619 0.3878 8 0.5428 0.2831 0.4561 0.2427 8
SimCompass prefix 0.6310 0.4284 0.5526 0.3872 9 - - - - -
SimCompass combined 0.6467 0.4333 0.5636 0.3870 10 0.5433 0.2854 0.4545 0.2421 9
+RTM-DCU 1stIBM2Alignment 0.4914 0.3712 0.4550 0.3712 11 0.3540 0.2283 0.3187 0.2282 10
∗UBC RUN2 0.7709 0.4865 0.7014 0.4705 - 0.8388 0.6019 0.7634 0.5643 -
∗UBC RUN1 0.7709 0.5019 0.6892 0.5019 - 0.8388 0.4450 0.7280 0.4447 -
BASELINE 0.6701 0.4571 0.6066 0.4571 4 0.7060 0.3696 0.6092 0.3693 7

Table 6: STS interpretable results for the system chunks scenario. Best results have been marked in bold. ’H’ stands
for Headlines data set and ’I’ stands for Images data set. + symbol denotes resubmissions and ∗ symbol denotes task
organizers.

Headlines dataset and ’I’ corresponds to the Images
dataset. A unique baseline was used for both eval-
uation scenarios and its performance is jointly pre-
sented with the scores obtained by participants.

Results clearly show that the system chunks sce-
nario was considerably more challenging than the
gold chunks scenario. Actually, the complexity of
the evaluation was incremental for the four available
metrics, and, the most challenging F Type+Score
metric performance seems bounded by the perfor-
mance obtained in the F alignment metric, which
obviously, was lower for the system chunks.

With regard to both datasets, the Images dataset
ended up being more challenging than the Headlines
dataset. For instance, in the gold chunks scenario,
the participant average F Type+Score metric reached
0.4748 for the Images dataset (compared to 0.5381
for Headlines).10 The maximum value obtained by
participants was also higher, as it reached 0.6426
and 0.5964 respectively for Headlines and Images.
Under the system chunks scenario, the average re-
sults followed the same tendency, as the participant
average F Type+Score metric reached 0.3912 for
the Images dataset and 0.4335 for Headlines (both
values lower than the ones obtained for the gold
chunks). In contrast, the maximum metric obtained
by participants was in this case greater for Images,
as it reached 0.5634, attaining 0.5098 for Headlines.

4.5 Tools and Resources
The majority of the systems used the same kind of
tools for both scenarios despite integrating an aux-

10The team pertaining to the organizers (marked by the sym-
bol ∗) is not taken into account in the ranking.

iliary chunker for system chunks runs. The most
used NLP tools for preprocessing are Stanford’s
NLP parser and the OpenNLP framework. Actu-
ally, all of the teams confirmed that they performed
some kind of input text processing such as lemma-
tization, part of speech tagging or syntactic parsing.
Additional resources such as named-entity recogni-
tion and acronym repositories, ConceptNet, NLTK,
time and date resolution or PPDB were also used by
most of the participants. Participants also revealed
that most of their systems were built using some
kind of distributional or knowledge-based similarity
metrics. We noticed, for instance, that WordNet or
Mikolov embeddings were used by several teams to
compute word similarity.

5 Conclusion

This year participants were challenged with new
datasets for English and Spanish, including image
captions, news headlines, Wikipedia articles, news,
and new genres like answers from a tutorial dia-
logue system, answers from Q&A websites, and
commited belief. The crowdsourced annotations had
a high inter-tagger agreement. The English subtask
attracted 29 teams, while the Spanish subtask had 7
teams.

In addition, we succesfully introduced a new sub-
task on interpretability, where systems add a ex-
planatory layer, in the form of alignments between
text segments, explicitly annotating the kind of rela-
tion and the score for each segment pair. The inter-
pretable subtask attracted 7 teams.
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Abstract

We present ExB Themis – a word alignment-
based semantic textual similarity system de-
veloped for SemEval-2015 Task 2: Semantic
Textual Similarity. It combines both string and
semantic similarity measures as well as align-
ment features using Support Vector Regres-
sion. It occupies the first three places on Span-
ish data and additionally places second on En-
glish data. ExB Themis proved to be the best
multilingual system among all participants.

1 Introduction

Semantic Textual Similarity (STS) is the task of
measuring the degree of semantic equivalence of a
sentence pair and is applicable to problems in Ma-
chine Translation and Summarization among others
(Agirre et al., 2012). STS has drawn a lot of atten-
tion in the last few years leading to the availabil-
ity of multilingual training and test data and to the
development of a variety of approaches. These ap-
proaches fall broadly into three categories (Han et
al., 2013):

Vector space approaches: Texts are represented as
bag-of-words vectors and a vector similarity –
e. g. cosine – is used to compute a similarity
score between two texts (Meadow et al., 1992).

Alignment approaches: Words and phrases in two
texts are aligned and the quality or coverage of
the resulting alignments are used as similarity
measure (Mihalcea et al., 2006; Sultan et al.,
2014).

Machine Learning approaches: Multiple similar-
ity measures and features are combined using
supervised Machine Learning (ML). This ap-
proach relies on the availability of training data
(Bär et al., 2012; Šarić et al., 2012).

ExB Themis combines advantages of all three cat-
egories: we implemented a complex alignment al-
gorithm focusing on named entities, temporal ex-
pressions, measurement expressions and dedicated
negation handling. Unlike other alignment-based
approaches, we extract a variety of features to better
model the properties of alignments instead of pro-
viding only one alignment feature (see Section 4.1).

Moreover, we employ a variety of similarity mea-
sures based on strings and lexical items (see Sec-
tion 4.2). Our system integrates two well-known
language resources – WordNet1 and ConceptNet
(Speer and Havasi, 2012). Additionally, it uses word
embeddings to cope with data sparseness and the in-
sufficiency of overlaps between sentences.

Finally, we train a Support Vector Regression
(SVR) model using these features (see Section 5).

2 Preprocessing

Our text preprocessing comprises tokenization, case
correction (e. g. US Flying Surveillance Missions
to Help Find Kidnapped Nigerian Girls is corrected
to US flying surveillance missions to help find kid-
napped Nigerian girls), unsupervised part-of-speech
(POS) tagging based on SVD2 (Lamar et al., 2010),

1English: we use the one described by Miller (1995); Span-
ish: we use the one presented in (González-Agirre et al., 2012).
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supervised POS tagging using the Stanford Maxi-
mum Entropy tagger2 as well as lemmatization using
Stanford CoreNLP3 for English and IXA Pipes4 for
Spanish. We also identify measurements (e. g. 55.8
g/mol) and temporal expressions (e. g. last week),
data set-specific stop words (e. g. A close-up of for
images dataset) using in-house algorithms as well as
named entities as described by Hänig et al. (2014)
and their titles (e. g. President Barack Obama).

3 ExB Themis Alignment

Our word alignment is direction-dependent and not
restricted to one-to-one alignments. Different map-
ping types are distinguished and handled differently
during feature extraction (see Section 4.1). We use
the same type labels as provided by the organizers
for the third subtask (interpretable STS) of this task
(Agirre et al., 2015): EQUI denotes semantically
equivalent chunks, oppositional meaning is labeled
with OPPO, SPE1/2 denote similar meaning of the
chunks, but the chunk in sentence 1/2 is more spe-
cific than the other one. SIM and REL denote sim-
ilar and related meanings, respectively. ALIC is not
used, because our algorithm is not restricted to one-
to-one alignments. Finally, all unaligned chunks are
labeled with NOALI.

Similar to Sultan et al. (2014), our alignment pro-
cess follows a strict chronological order:

Named entities are aligned to each other. Because
we did not observe text pairs with possibly am-
biguous name alignments (e. g. Michael in one
text and both Michael Jackson and Michael
Schumacher in the other) in the training data,
we simply aligned all name pairs that share at
least one identical token.

Normalized temporal expressions are aligned iff
they denote the same point in time or the same
time interval (e. g. 14:03 and 2.03 pm).

Measurement expressions are aligned iff they ex-
press the same absolute value (e. g. $100k and
100.000$ ).

2nlp.stanford.edu/software/tagger.shtml
3nlp.stanford.edu/software/corenlp.shtml
4ixa2.si.ehu.es/ixa-pipes/

Arbitrary token sequence alignment consists of
multiple steps and is very time consuming5.
We apply a high precision test for identical se-
quences based on Sultan et al. (2014): Our
test uses synonym-lookups and ignores case in-
formation, punctuation characters and symbols.
This enables us to match expressions like long
term and long-term6. If one of both sequences
consists of exactly one all-caps-token then we
test if it is the acronym of the other sequence
(e. g. US and United States).

We used WordNet and ConceptNet7 to ob-
tain information about synonymy, antonymy
and hypernymy and equip the resulting align-
ments with the corresponding type. We ad-
ditionally created a small database containing
high-frequency synonyms (e. g. does and do),
antonyms (e. g. doesn’t and does) and nega-
tions (e. g. don’t, never, no).

Negations can significantly effect the semantic sim-
ilarity of two sentences (e. g. You are a Chris-
tian. vs. Therefore you are not a Christian.).
Therefore, we explicitly model negations in our
alignment. Some negations are handled dur-
ing arbitrary token sequence alignment. We
resolve the scope of all remaining negations
using co-occurrence analysis: if exactly one
of both neighboring tokens w1/2

n−1 and w1/2
n+1 is

already aligned then the negation w
1/2
n is at-

tached to it and we inverse the alignment type
(e. g. EQUI becomes OPPO and vice versa).
If both neighboring tokens are aligned then we
pick the one contained in the co-occurence out
of
〈
w

1/2
n−1, w

1/2
n

〉
and

〈
w

1/2
n , w

1/2
n+1

〉
yielding

the highest co-occurrence significance score.

Remaining content words are aligned using co-
sine similarity on word2vec vectors (Mikolov
et al., 2013). Analogously to Han et al. (2013),
we align each content word to the content word
of the other sentence with the same POS tag
that yields the highest similarity score. To
prevent weak alignments, we reject alignments
with a similarity less than 1/3.

5Therefore, we restrict ourselves to a maximum of 5 tokens.
6A similar method was described by Han et al. (2013).
7From ConceptNet we only imported synonyms.
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4 Feature Extraction

Some approaches to STS relying on word align-
ment are unsupervised and extract a defined score
based on the alignment process (e. g. proportions of
aligned content words (Sultan et al., 2014)), others
extract a single feature from the alignment and use it
along with other features to train a regression model
(e. g. align-and-penalize approach (Han et al., 2013;
Kashyap et al., 2014)).

Unlike these approaches, we extract 40 features
from our alignment (see Section 4.1) to (a) build a
complex model that is capable of modeling phenom-
ena like alignments of different types and negations,
and (b) not be forced to combine alignment proper-
ties arbitrarily.

We additionally extract 51 non-alignment features
(see Section 4.2) leading to a total of 91 features.

4.1 Alignment Features

To encode the properties of a set of alignments A of
sentences s1 and s2 as comprehensive as possible,
we extract the following features8:

Proportion features describe the ratio of aligned
words of a specified group with respect to all
words of that group (Sultan et al., 2014)9:

propgroup = 2 · prop1
group · prop2

group

prop1
group + prop2

group
with

prop
1/2
group = |{i:[∃j:(i,j)∈Agroup] and w

1/2
i ∈C}|

|{i:w1/2
i ∈C}|

where C is the set of all content words. We
extract these features for alignments of type
EQUI, OPPO, SPE1/2, REL10 and NOALI
(5 features).

Frequency features are encoded in binary format.

We encode frequencies of alignments of type
OPPO (3 features), SPE1/2 (3), REL (3) and
NOALI (5). We also encode the frequency of
unaligned negations with 3 features.

UMBC align-and-penalize features: We also in-
clude two features11 based on Han et al.

8Type-filtered subsets of A are denoted by Atype.
9See Sultan et al. (2014) for details on the formulae.

10Each content word is weighted by the similarity score
achieved by word2vec for this type.

11Splitting STS = T − P ′ into two features T and P ′

achieves better results than keeping it in the original form.

(2013): we use their T as it is and inte-
grated a simplified version of P ′ with PA

i =∑
〈t,g(t)〉∈Ai

(1+wp(t))

2 · |si| and PB
i = |〈t,g(t)〉∈Bi|

2 · |si|
(2 features).

All proportion features, binary frequency features of
REL-alignments, unaligned content words and un-
aligned negations were additionally computed and
extracted for nouns only (16 features).

4.2 Non-Alignment Features

We use a variety of non-alignment features:

UKP: We use several features described in Bär et al.
(2012): longest common substring (1 feature),
longest common subsequence (1), longest com-
mon subsequence with and without normaliza-
tion (2), greedy string tiling (1), character n-
grams for n = 2, 3, 4 with and without stop
words (6), word n-grams Jaccard coefficient for
n = 1, 2, 3, 4 (4), word n-grams Jaccard coeffi-
cient without stop words for n = 2, 4 (2), word
n-grams containment measure for n = 1, 2 (2)
as well as pairwise word similarity (1).

TakeLab: We use several features described in
Šarić et al. (2012)12: PathLen similarity (1 fea-
ture), corpus-based word similarity (3), vec-
tor space sentence similarity (1), n-gram over-
lap of tokens and lemmas for n = 1, 2, 3 (6),
weighted word overlap for lowercased tokens
and lemmas (2), normalized sentence length
difference (1), shallow named entity features
(4) and numbers overlap (3).

UMBC: We use several features described in Han
et al. (2013): word n-gram similarity for n =
1, 2, 3, 4 (4 features). Moreover, we used word
n-gram similarity for n = 1 where only nouns
or only verbs where taken into account (2).

Readability Indicators: We use several features
that are typically used as indicators for read-
ability (Oelke et al., 2012): relative difference
in sentence length, average word length in char-
acters, number of nouns per sentence, number
of verbs per sentence and noun-verb-ratio (5).

12takelab.fer.hr/sts/
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5 STS Model

We compute STS scores using ν-SVR (Schölkopf
et al., 2000) as implemented by LibSVM13. We use
LibSVM’s default SVR parameter settings without
further optimization.

6 Interpretable STS Model

We align chunks using our word alignment (see Sec-
tion 3). Because our word alignment itself does not
rely on chunks, we extend its alignments using given
chunk boundaries. If alignments overlap, we choose
the longest alignment and discard the others. We do
not differentiate between SIMI and REL – all REL
alignments are considered as SIMI alignments.

For chunking we use the OpenNLP14 chunker
with the default model trained on CoNLL-2000
shared task data (Sang and Buchholz, 2000).

7 Results

For English we train on all available data sets from
STS challenges in 2012 (Agirre et al., 2012), 2013
(Agirre et al., 2013) and 2014 (Agirre et al., 2014).
For Spanish, each run trains on a different setting.
Mean Pearson correlation is employed as an evalua-
tion metric.

7.1 Subtask 2a – STS English
Table 1 presents the official scores of our system.
Run default uses our system as it is. Run themis
only relies on alignment features in the belief model,
all other models are the same as for default. Our
third run – themisexp – is identical to run themis ex-
cept for one improvement: it penalizes scores of the
answers-students dataset exponentially to cope with
the high ratio of common content words that lead to
over-estimation of similarity scores.

7.2 Subtask 2b – STS Spanish
Table 2 presents the official scores of our system.
Run trainEs was trained on both Spanish test sets of
2014. Run trainEn was trained on all available En-
glish data sets. Run trainMini uses different training
sets for each test set: Wikipedia model was trained
on the 2014 Wikipedia test set and the Newswire
model was trained on the News test set of 2014.

13www.csie.ntu.edu.tw/˜cjlin/libsvm/
14opennlp.apache.org

Dataset default themis themisexp
forum 0.6946 (10) 0.6946 (10) 0.6946 (10)
students 0.7505 (11) 0.7505 (11) 0.7784 (6)
belief 0.7521 (3) 0.7482 (6) 0.7482 (6)
headlines 0.8245 (7) 0.8245 (7) 0.8245 (7)
images 0.8527 (12) 0.8527 (12) 0.8527 (12)
Mean 0.7878 (8) 0.7873 (9) 0.7942 (2)

Table 1: Results (rank) of our three runs on English data.

Dataset trainEs trainMini trainEn
Wikipedia 0.7055 (2) 0.7055 (1) 0.6763 (3)
Newswire 0.6830 (1) 0.6811 (2) 0.6705 (3)
Mean 0.6905 (1) 0.6893 (2) 0.6725 (3)

Table 2: Results (rank) of our three runs on Spanish data.

7.3 Subtask 2c – Interpretable STS
Our three runs only differ regarding the applied
alignment scorer method: we use the average simi-
larity score per alignment type as observed in STSint
training data, the most frequent similarity score per
alignment type as observed in STSint training data,
and an STS regression model per alignment type
trained on all available English STS data sets.

For subtrack gold chunks, our runs score 0.4885
to 0.4883 (F1 TYPE + SCORE) on headlines (ranks
10 - 12 out of 14) and 0.4296 to 0.4246 on images
(ranks 8 - 10). Using system chunks we achieve
scores of 0.4290 to 0.4284 on headlines (ranks 4–
6 out of 10) and 0.3870 to 0.3806 on images (ranks
4–6).

8 Conclusions & Future Work

We presented our alignment-based STS system ExB
Themis. Our system outperformed all other partic-
ipants by a large margin on Spanish data. Further-
more, our system placed second on English data.
ExB Themis proved to be the best multilingual STS
system that easily can be adapted to further lan-
guages. We conclude that extensive feature extrac-
tion from word alignments is a very robust approach
– especially when being applied to languages that
lack high-quality resources.

In future work, we will investigate the influence
of particular features in more detail and we want to
enrich our model with structural information (Sev-
eryn et al., 2013; Sultan et al., 2014) and improved
phrase similarity computation.
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Abstract

Community Question Answering (cQA) pro-
vides new interesting research directions to
the traditional Question Answering (QA)
field, e.g., the exploitation of the interaction
between users and the structure of related
posts. In this context, we organized SemEval-
2015 Task 3 on Answer Selection in cQA,
which included two subtasks: (a) classifying
answers as good, bad, or potentially relevant
with respect to the question, and (b) answering
a YES/NO question with yes, no, or unsure,
based on the list of all answers. We set subtask
A for Arabic and English on two relatively
different cQA domains, i.e., the Qatar Liv-
ing website for English, and a Quran-related
website for Arabic. We used crowdsourcing
on Amazon Mechanical Turk to label a large
English training dataset, which we released to
the research community. Thirteen teams par-
ticipated in the challenge with a total of 61
submissions: 24 primary and 37 contrastive.
The best systems achieved an official score
(macro-averaged F1) of 57.19 and 63.7 for the
English subtasks A and B, and 78.55 for the
Arabic subtask A.

1 Introduction

Many social activities on the Web, e.g., in forums
and social networks, are accomplished by means
of the community Question Answering (cQA)
paradigm. User interaction in this context is seldom
moderated, is rather open, and thus has little restric-
tions, if any, on who can post and who can answer a
question.

On the positive side, this means that one can
freely ask a question and expect some good, hon-
est answers. On the negative side, it takes efforts to
go through all possible answers and to make sense
of them. It is often the case that many answers are
only loosely related to the actual question, and some
even change the topic. It is also not unusual for a
question to have hundreds of answers, the vast ma-
jority of which would not satisfy a user’s informa-
tion needs; thus, finding the desired information in a
long list of answers might be very time-consuming.

In our SemEval-2015 Task 3, we proposed two
subtasks. First, subtask A asks for identifying the
posts in the answer thread that answer the question
well vs. those that can be potentially useful to the
user (e.g., because they can help educate him/her on
the subject) vs. those that are just bad or useless.
This subtask goes in the direction of automating the
answer search problem that we discussed above, and
we offered it in two languages: English and Ara-
bic. Second, for the special case of YES/NO ques-
tions, we propose an extreme summarization exer-
cise (subtask B), which aims to produce a simple
YES/NO overall answer, considering all good an-
swers to the questions (according to subtask A).

For English, the two subtasks are built on a par-
ticular application scenario of cQA, based on the
Qatar Living forum.1 However, we decoupled the
tasks from the Information Retrieval component in
order to facilitate participation, and to focus on as-
pects that are relevant for the SemEval community,
namely on learning the relationship between two
pieces of text.

1http://www.qatarliving.com/forum/
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Subtask A goes in the direction of passage rerank-
ing, where automatic classifiers are normally applied
to pairs of questions and answer passages to derive
a relative order between passages, e.g., see (Radlin-
ski and Joachims, 2005; Jeon et al., 2005; Shen and
Lapata, 2007; Moschitti et al., 2007; Surdeanu et
al., 2008). In recent years, many advanced models
have been developed for automating answer selec-
tion, producing a large body of work.2 For instance,
Wang et al. (2007) proposed a probabilistic quasi-
synchronous grammar to learn syntactic transforma-
tions from the question to the candidate answers;
Heilman and Smith (2010) used an algorithm based
on Tree Edit Distance (TED) to learn tree transfor-
mations in pairs; Wang and Manning (2010) devel-
oped a probabilistic model to learn tree-edit oper-
ations on dependency parse trees; and Yao et al.
(2013) applied linear chain CRFs with features de-
rived from TED to automatically learn associations
between questions and candidate answers. One in-
teresting aspect of the above research is the need
for syntactic structures; this is also corroborated in
(Severyn and Moschitti, 2012; Severyn and Mos-
chitti, 2013). Note that answer selection can use
models for textual entailment, semantic similarity,
and for natural language inference in general.

For Arabic, we also made use of a real cQA por-
tal, the Fatwa website,3 where questions about Is-
lam are posed by regular users and are answered by
knowledgeable scholars. For subtask A, we used a
setup similar to that for English, but this time each
question had exactly one correct answer among the
candidate answers (see Section 3 for detail); we did
not offer subtask B for Arabic.

Overall for the task, we needed manual annota-
tions in two different languages and for two do-
mains. For English, we built the Qatar Living
datasets as a joint effort between MIT and the Qatar
Computing Research Institute, co-organizers of the
task, using Amazon’s Mechanical Turk to recruit hu-
man annotators. For Arabic, we built the dataset
automatically from the data available in the Fatwa
website, without the need for any manual annota-
tion. We made all datasets publicly available, i.e.,
also usable beyond SemEval.

2aclweb.org/aclwiki/index.php?title=
Question_Answering_(State_of_the_art)

3http://fatwa.islamweb.net/

Our SemEval task attracted 13 teams, who sub-
mitted a total of 61 runs. The participants mainly
focused on defining new features that go beyond
question-answer similarity, e.g., author- and user-
based, and spent less time on the design of com-
plex machine learning approaches. Indeed, most
systems used multi-class classifiers such as Max-
Ent and SVM, but some used regression. Overall,
almost all submissions managed to outperform the
baselines using the official F1-based score. In par-
ticular, the best system can detect a correct answer
with an accuracy of about 73% in the English task
and 83% in the easier Arabic task. For the extreme
summarization task, the best accuracy is 72%.

An interesting outcome of this task is that the
Qatar Living company, a co-organizer of the chal-
lenge, is going to use the experience and the tech-
nology developed during the evaluation excercise to
improve their products, e.g., the automatic search of
comments useful to answer users’ questions.

The remainder of the paper is organized as fol-
lows: Section 2 gives a detailed description of the
task, Section 3 describes the datasets, Section 4 ex-
plains the scorer, Section 5 presents the participants
and the evaluation results, Section 6 provides an
overview of the various features and techniques used
by the participating systems, Section 7 offers fur-
ther discussion, and finally, Section 8 concludes and
points to possible directions for future work.

2 Task Definition

We have two subtasks:

• Subtask A: Given a question (short title + ex-
tended description), and several community an-
swers, classify each of the answers as

(a) definitely relevant (good),
(b) potentially useful (potential), or
(c) bad or irrelevant (bad, dialog, non-

English, other).

• Subtask B: Given a YES/NO question (short
title + extended description), and a list of com-
munity answers, decide whether the global an-
swer to the question should be yes, no, or un-
sure, based on the individual good answers.
This subtask is only available for English.
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Figure 1: Annotated English question from the CQA-QL corpus.

3 Datasets

We offer the task in two languages, English and Ara-
bic, with some differences in the type of data pro-
vided. For English, there is a question (short title +
extended description) and a list of several commu-
nity answers to that question. For Arabic, there is
a question and a set of possible answers, which in-
clude (i) a highly accurate answer, (ii) potentially
useful answers from other questions, and (iii) an-
swers to random questions. The following subsec-
tions provide all the necessary details.

3.1 English Data: CQA-QL corpus

The source of the CQA-QL corpus is the Qatar
Living forum. A sample of questions and answer
threads was selected and then manually filtered and
annotated with the categories defined in the task.

We provided a split in three datasets: training,
development, and testing. All datasets were XML-
formated and the text was encoded in UTF-8.

A dataset file is a sequence of examples (ques-
tions), where each question has a subject and a body
(text), as well as the following attributes:

• QID: question identifier;
• QCATEGORY: the question category, accord-

ing to the Qatar Living taxonomy;
• QDATE: date of posting;
• QUSERID: identifier of the user asking the

question;
• QTYPE: type of question (GENERAL or

YES/NO);
• QGOLD YN: for YES/NO questions only, an

overall Yes/No/Unsure answer based on all
comments.
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Each question is followed by a list of comments
(or answers). A comment has a subject and a body
(text), as well as the following attributes:

• CID: comment identifier;
• CUSERID: identifier of the user posting the

comment;
• CGOLD: human assessment about whether the

comment is Good, Bad, Potential, Dialogue,
non-English, or Other.
• CGOLD YN: human assessment on whether

the comment suggests a Yes, a No, or an Un-
sure answer.

At test time, CGOLD, CGOLD YN, and
QGOLD YN are hidden, and systems are asked to
predict CGOLD for subtask A, and QGOLD YN
for subtask B; CGOLD YN is not to be predicted.

Figure 1 shows a fully annotated English
YES/NO question from the CQA-QL corpus. We
can see that it is asked and answered in a very in-
formal way and that there are many typos, incor-
rect capitalization, punctuation, slang, elongations,
etc. Four of the comments are good answers to the
question, and four are bad. The bad answers are ir-
relevant with respect to the YES/NO answer to the
question as a whole, and thus their CGOLD YN la-
bel is Not Applicable. The remaining four good an-
swers predict Yes twice, No once, and Unsure once;
as there are more Yes answers than the two alterna-
tives, the overall QGOLD YN is Yes.

3.2 Annotating the CQA-QL corpus
The manual annotation was a joint effort between
MIT and the Qatar Computing Research Institute,
co-organizers of the task. After a first internal la-
beling of a trial dataset (50+50 questions) by several
independent annotators, we defined the annotation
procedure and prepared detailed annotation guide-
lines. We then used Amazon’s Mechanical Turk to
collect human annotations for a much larger dataset.
This involved the setup of three HITs:

• HIT 1: Select appropriate example questions
and classify them as GENERAL vs. YES/NO
(QCATEGORY);

• HIT 2: For GENERAL questions, annotate
each comment as Good, Bad, Potential, Dia-
logue, non-English, or Other (CGOLD);

• HIT 3: For YES/NO questions, annotate the
comments as in HIT 2 (CGOLD), plus a label
indicating whether the comment answers the
question with a clear Yes, a clear No, or in an
undefined way, i.e., as Unsure (CGOLD YN).

For all HITs, we collected annotations from 3-5
annotators for each decision, and we resolved dis-
crepancies using majority voting. Ties led to the
elimination of some comments and sometimes even
of entire questions.

We assigned the Yes/No/Unsure labels at the
question level (QGOLD YN) automatically, us-
ing the Yes/No/Unsure labels at the comment
level (CGOLD YN). More precisely, we labeled a
YES/NO question as Unsure, unless there was a ma-
jority of Yes or No labels among the Yes/No/Unsure
labels for the comments that are labeled as Good, in
which case we assigned the majority label.

Table 1 shows some statistics about the datasets.
We can see that the YES/NO questions are about
10% of the questions. This makes subtask B gen-
erally harder for machine learning, as there is much
less training data. We further see that on average,
there are about 6 comments per question, with the
number varying widely from 1 to 143. About half
of the comments are Good, another 10% are Po-
tential, and the rest are Bad. Note that for the
purpose of classification, Bad is in fact a hetero-
geneous class that includes about 50% Bad, 50%
Dialogue, and also a tiny fraction of non-English
and Other comments. We released the fine grained
labels to the task participants as we thought that
having information about the heterogeneous struc-
ture of Bad might be helpful for some systems.
About 40-50% of the YES/NO annotations at the
comment level (CGOLD YN) are Yes, with the rest
nearly equally split between No and Unsure, with
No slightly more frequent. However, at the question
level, the YES/NO annotations (QGOLD YN) have
more Unsure than No. Overall, the label distribution
in development and testing is similar to that in train-
ing for the CGOLD values, but there are somewhat
larger differences for QGOLD YN.

We further released the raw text of all questions
and of all comments from Qatar Living, including
more than 100 million word tokens, which are useful
for training word embeddings, topic models, etc.
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Figure 2: Annotated Arabic question from the Fatwa corpus.

3.3 Arabic Data: Fatwa corpus
For Arabic, we used data from the Fatwa website,
which deals with questions about Islam. This web-
site contains questions by ordinary users and an-
swers by knowledgeable scholars in Islamic studies.
The user question can be general, for example “How
to pray?”, or it can be very personal, e.g., the user
has a specific problem in his/her life and wants to
find out how to deal with it according to Islam.

Each question (Fatwa) is answered carefully by a
knowledgeable scholar. The answer is usually very
descriptive: it contains an introduction to the topic
of the question, then the general rules in Islam on
the topic, and finally an actual answer to the spe-
cific question and/or guidance on how to deal with
the problem. Typically, links to related questions are
also provided to the user to read more about similar
situations and to look at related questions.

In the Arabic version of subtask A, a question
from the website is provided with a set of exactly
five different answers. Each answer of the provided
five ones carries one of the following labels:

• direct: direct answer to the question;
• related: not directly answering the question,

but contains related information;
• irrelevant: answer to another question not re-

lated to the topic.

Similarly to the English corpus, a dataset file is a
sequence of examples (Questions), where each ques-
tion has a subject and a body (text), as well as the
following attributes:

• QID: internal question identifier;
• QCATEGORY: question category;
• QDATE: date of posting.

Each question is followed by a list of possible an-
swers. An answer has a subject and a body (text), as
well as the following attributes:

• CID: answer identifier;
• CGOLD: label of the answer, which is one of

three: direct, related, or irrelevant.

Moreover, the answer body text can contain tags
such as the following:

• NE: named entities in the text, usually person
names;
• Quran: verse from the Quran;
• Hadeeth: saying by the Islamic prophet.

Figure 2 shows some fully annotated Arabic ques-
tion from the Fatwa corpus.
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Category Train Dev Test
Questions 2,600 300 329
– GENERAL 2,376 266 304
– YES/NO 224 34 25
Comments 16,541 1,645 1,976
– min per question 1 1 1
– max per question 143 32 66
– avg per question 6.36 5.48 6.01
CGOLD values 16,541 1,645 1,976
– Good 8,069 875 997
– Potential 1,659 187 167
– Bad 6,813 583 812

– Bad 2,981 269 362

– Dialogue 3,755 312 435

– Not English 74 2 15

– Other 3 0 0

CGOLD YN values 795 115 111
– Yes 346 62 –
– No 236 32 –
– Unsure 213 21 –
QGOLD YN values 224 34 25
– Yes 87 16 15
– No 47 8 4
– Unsure 90 10 6

Table 1: Statistics about the English data.

Category Train Dev Test Test30
Questions 1,300 200 200 30
Answers 6,500 1,000 1,001 151
– Direct 1,300 200 215 45
– Related 1,469 222 222 33
– Irrelevant 3,731 578 564 73

Table 2: Statistics about the Arabic data.

3.4 Annotating the Fatwa corpus

We selected the shortest questions and answers from
IslamWeb to create our training, development and
testing datasets. We avoided long questions and an-
swers since they are likely to be harder to parse,
analyse, and classify. For each question, we labeled
its answer as direct, the answers of linked questions
as related, and we selected some random answers
as irrelevant to make the total number of provided
answers per question equal to 5.

Table 2 shows some statistics about the resulting
datasets. We can see that the number of direct an-
swers is the same as the number of questions, since
each question has only one direct answer.

One issue with selecting random answers as ir-
relevant is that the task is too easy; thus, we manu-
ally annotated a special hard testset of 30 questions
(Test30), where we selected the irrelevant answers
using information retrieval to guarantee significant
term overlap with the questions. For the general test-
set, we used these 30 questions and 170 more where
the irrelevant answers were chosen randomly.

4 Scoring

The official score for both subtasks is F1, macro-
averaged over the target categories:

• For English, subtask A they are Good, Poten-
tial, and Bad.
• For Arabic, subtask A these are direct, related,

and irrelevant.
• For English, subtask B they are Yes, No, and

Unsure.

We also report classification accuracy.

Team ID Affiliation and reference
Al-Bayan Alexandria University, Egypt

(Mohamed et al., 2015)
CICBUAPnlp Instituto Politécnico Nacional, Mexico
CoMiC University of Tübingen, Germany

(Rudzewitz and Ziai, 2015)
ECNU East China Normal University, China

(Yi et al., 2015)
FBK-HLT Fondazione Bruno Kessler, Italy

(Vo et al., 2015)
HITSZ-ICRC Harbin Institute of Technology, China

(Hou et al., 2015)
ICRC-HIT Harbin Institute of Technology, China

(Zhou et al., 2015)
JAIST Japan Advance Institute of Science

and Technology, Japan
(Tran et al., 2015)

QCRI Qatar Computing Research Institute, Qatar
(Nicosia et al., 2015)

Shiraz Shiraz University, Iran
(Heydari Alashty et al., 2015)

VectorSLU MIT Computer Science and
Artificial Intelligence Lab, USA
(Belinkov et al., 2015)

Voltron Sofia University, Bulgaria
(Zamanov et al., 2015)

Yamraj Masaryk University, Czech Republic

Table 3: The participating teams.
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Submission Macro F1 Acc.

JAIST-contrastive1 57.29 72.67

1 JAIST-primary 57.19 72.521

HITSZ-ICRC-contrastive1 56.44 69.43

2 HITSZ-ICRC-primary 56.41 68.675
?QCRI-contrastive1 56.40 68.27

HITSZ-ICRC-contrastive2 55.22 67.91

ICRC-HIT-contrastive1 53.82 73.18

3 ?QCRI-primary 53.74 70.503

4 ECNU-primary 53.47 70.552

ECNU-contrastive1 52.55 69.48

ECNU-contrastive2 52.27 69.38
?QCRI-contrastive2 51.97 69.48

5 ICRC-HIT-primary 49.60 67.866
?VectorSLU-contrastive1 49.54 70.45

6 ?VectorSLU-primary 49.10 66.457

7 Shiraz-primary 47.34 56.839

8 FBK-HLT-primary 47.32 69.134

JAIST-contrastive2 46.96 57.74

9 Voltron-primary 46.07 62.358

Voltron-contrastive2 45.16 61.74

Shiraz-contrastive1 45.03 62.55

ICRC-HIT-contrastive2 40.54 60.12

10 CICBUAPnlp-primary 40.40 53.7411

CICBUAPnlp-contrastive1 39.53 52.33

Shiraz-contrastive2 38.00 60.53

11 Yamraj-primary 37.65 45.5012

Yamraj-contrastive2 37.60 44.79

Yamraj-contrastive1 36.30 39.57

12 CoMiC-primary 30.63 54.2010

CoMiC-contrastive1 23.35 50.56

baseline: always “Good” 22.36 50.46

Table 4: Subtask A, English: results for all submissions.
The first column shows the rank for the primary submis-
sions according to macro F1, and the subindex in the last
column shows the rank based on accuracy. Teams marked
with a ? include a task co-organizer.

5 Participants and Results

The list of all participating teams can be found in Ta-
ble 3. The results for subtask A, English and Arabic,
are shown in Tables 4-5 and 6-7, respectively; those
for subtask B are in Table 8. The systems are ranked
by their macro-averaged F1 scores for their primary
runs (shown in the first column); a ranking based on
accuracy is also shown as a subindex in the last col-
umn. We mark explicitly with an asterisk the teams
that had a task co-organizer as a team member. This
is for information only; these teams competed in the
same conditions as everybody else.

Submission Macro F1 Acc.

1 HITSZ-ICRC 48.13 59.624

2 ?QCRI 47.01 62.152

3 ECNU 46.57 61.343

4 FBK-HLT 42.61 62.401

5 Shiraz 40.06 48.5310

6 ICRC-HIT 39.93 59.515

7 ?VectorSLU 38.69 54.357

8 CICBUAPnlp 36.13 44.8911

9 JAIST 35.09 54.616

10 Voltron 29.15 50.059

11 Yamraj 24.48 35.9312

12 CoMiC 23.35 51.778

Table 5: Subtask A, English with Dialog as a separate
category: results for the primary submissions. The first
column shows the rank based on macro F1, the subindex
in the last column shows the rank based on accuracy.
Teams marked with a ? include a task co-organizer.

5.1 Subtask A, English

Table 4 shows the results for subtask A, English,
which attracted 12 teams, which submitted 30 runs:
12 primary and 18 contrastive. We can see that all
submissions outperform, in terms of macro F1, the
majority class baseline that always predicts Good
(shown in the last line of the table); for the primary
submissions, this is so by a large margin. However,
in terms of accuracy, one of the primary submissions
falls below the baseline; this might be due to them
optimizing for macro F1 rather than for accuracy.

The best system for this subtask is JAIST, which
ranks first both in the official macro F1 score (57.19)
and in accuracy (72.52); it used a supervised feature-
rich approach, which includes topic models and
word vector representation, with an SVM classifier.

The second best system is HITSZ-ICRC, which
used an ensemble of classifiers. While it ranked sec-
ond in terms of macro F1 (56.41), it was only fifth
on accuracy (68.67); the second best in accuracy was
ECNU, with 70.55.

The third best system, in both macro F1 (53.74)
and accuracy (70.50), is QCRI. In addition to the
features they used for Arabic (see the next subsec-
tion), they further added cosine similarity based on
word embeddings, sentiment polarity lexicons, and
metadata features such as the identity of the users
asking and answering the questions or the existence
of acknowledgments.
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Interestingly, the top two systems have contrastive
runs that scored higher than their primary runs both
in terms of macro F1 and accuracy, even though
these differences are small. This is also true for
QCRI’s contrastive run in terms of macro F1 but not
in terms of accuracy, which indicates that they op-
timized for macro F1 for that contrastive run. Note
that ECNU was very close behind QCRI in macro F1

(53.47), and it slightly outperformed it in accuracy.
Note that while most systems trained a four-way

classifier to distinguish Good/Bad/Potential/Dialog,
where Bad includes Bad, Not English and Other,
some systems targetted a three-way distinction
Good/Bad/Potential, following the grouping in Ta-
ble 1, as for the official scoring the scorer was merg-
ing Dialog with Bad anyway.

Table 5 shows the results with four classes. The
last four systems did not predict Dialog, and thus are
severely penalized by macro F1. Comparing Tables
4 and 5, we can see that the scores for the 4-way
classification are up to 10 points lower than for the
3-way case. Distinguishing Dialog from Bad turns
out to be very hard: e.g., HITSZ-ICRC achieved an
F1 of 76.52 for Good, 18.41 for Potential, 40.38 for
Bad, 57.21 for Dialog; however, merging Bad and
Dialog yielded an F1 of 74.32 for the Bad+Dialog
category. The other systems show a similar trend.

Finally, note that Potential is by far the hardest
class (with an F1 lower than 20 for all teams), and it
is also the smallest one, which amplifies its weight
with F1 macro; thus, two teams (CoMiC and FBK-
HLT) have chosen never to predict it.

5.2 Subtask A, Arabic
Table 6 shows the results for subtask A, Arabic,
which attracted four teams, which submitted a total
of 11 runs: 4 primary and 7 contrastive. All teams
performed well above a majority class baseline that
always predicts irrelevant.

QCRI was a clear winner with a macro F1 of
78.55 and accuracy of 83.02. They used a set of
features composed of lexical similarities and word
[1, 2]-grams. Most importantly, they exploited the
fact that there is at most one good answer for a given
question: they rank the answers by means of logis-
tic regression, and label the top answer as direct, the
next one as related and the remaining as irrelevant
(a similar strategy is used by some other teams too).

Submission Macro F1 Acc.

1 ?QCRI-primary 78.55 83.021
?QCRI-contrastive2 76.97 81.92
?QCRI-contrastive1 76.60 81.82
?VectorSLU-contrastive1 73.18 78.12

2 ?VectorSLU-primary 70.99 76.322

HITSZ-ICRC-contrastive1 68.36 73.93

HITSZ-ICRC-contrastive2 67.98 73.23

3 HITSZ-ICRC-primary 67.70 74.533

4 Al-Bayan-primary 67.65 74.533

Al-Bayan-contrastive2 65.70 72.53

Al-Bayan-contrastive1 61.19 71.33

baseline: always “irrelevant” 24.03 56.34

Table 6: Subtask A, Arabic: results for all submissions.
The first column shows the rank for the primary submis-
sions according to macro F1, and the subindex in the last
column shows the rank based on accuracy. Teams marked
with a ? include a task co-organizer.

Submission Macro F1 Acc.

1 ?QCRI-primary 46.09 48.34
?QCRI-contrastive1 43.32 46.36
?QCRI-contrastive2 43.08 49.67

Al-Bayan-contrastive1 42.04 47.02

HITSZ-ICRC-contrastive1 39.61 40.40

HITSZ-ICRC-contrastive2 39.57 40.40

2 HITSZ-ICRC-primary 38.58 39.74
?VectorSLU-contrastive1 36.43 43.05

3 ?VectorSLU-primary 36.75 37.09

4 Al-Bayan-primary 34.93 38.41

Al-Bayan-contrastive2 34.42 35.76

baseline: always “irrelevant” 21.73 48.34

Table 7: Subtask A, Arabic: results for the 30 manually
annotated Arabic questions.

Even though QCRI did not consider semantic
models for this subtask, and the second best team
did, the distance between them is sizeable.

The second place went to VectorSLU (F1=70.99,
Acc=76.32), whose feature vectors incorporated
text-based similarities, embedded word vectors from
both the question and answers, and features based
on normalized ranking scores. Their word embed-
dings were generated with word2vec (Mikolov et al.,
2013), and trained on the Arabic Gigaword corpus.
Their contrastive condition labeled the top scoring
response as direct, the second best as related, and
the others as irrelevant. Their primary condition did
not make use of this constraint.
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Then come HITSZ-ICRC and Al-Bayan, which
are tied on accuracy (74.53), and are almost tied on
macro F1: 67.70 vs. 67.65. HITSZ-ICRC trans-
lated the Arabic to English and then extracted fea-
tures from both the Arabic original and from the En-
glish translation. Al-Bayan had a knowledge-rich
approach that used MADA for morphological anal-
ysis, and then combined information retrieval scores
with explicit semantic analysis in a decision tree.

For all submitted runs, identifying the irrelevant
answers was easiest, with F1 for this class ranging
from 85% to 91%. This was expected, since most of
these answers were randomly selected and thus the
probability of finding common terms between them
and the questions was low. The F1 for detecting the
direct answers ranged from 67% to 77%, while for
the related answers, it was lowest: 47% to 67%.

Table 7 presents the results for the 30 manually
annotated Arabic questions, for which a search en-
gine was used to find possibly irrelevant answers.
We can see that the results are much lower than those
reported in Table 6, which shows that detecting di-
rect and related answers is more challenging when
the irrelevant answers contain many common terms
with the question. The decrease in performance can
be also explained by the different class distribution
in training and testing, e.g., on the average, there are
1.5 direct answers in Test30 vs. just 1 in training,
and the proportion of irrelevant also changed (see
Table 2). The team ranking changed too. QCRI re-
mained the best-performing team, but the worst per-
forming group now has one of its contrastive runs
doing quite well. VectorSLU, which relies heavily
on word overlap and similarity between the question
and the answer experienced a relatively higher drop
in performance compared to the rest. In future work,
we plan to study further the impact of selecting the
irrelevant answers in various challenging ways.

5.3 Subtask B, English

Table 8 shows the results for subtask B, English,
which attracted eight teams, who submitted a total
of 20 runs: 8 primary and 12 contrastive. As for
subtask A, all submissions outperformed the major-
ity class baseline that always predicts Yes (shown in
the last line of the table). However, this is so in terms
of macro F1 only; in terms of accuracy, only half of
the systems managed to beat the baseline.

Submission Macro F1 Acc.

1 ?VectorSLU-primary 63.7 721
?VectorSLU-contrastive1 61.9 68

2 ECNU-primary 55.8 682

ECNU-contrastive2 53.9 64

3 ?QCRI-primary 53.6 643

3 �HITSZ-ICRC-primary 53.6 643

ECNU-contrastive1 50.6 60
?QCRI-contrastive2 49.0 56

HITSZ-ICRC-contrastive1 42.5 60

HITSZ-ICRC-contrastive2 42.4 60

ICRC-HIT-contrastive2 40.3 60

5 CICBUAPnlp-primary 38.8 446

ICRC-HIT-contrastive1 37.6 56

6 ICRC-HIT-primary 30.9 525

7 Yamraj-primary 29.8 288

Yamraj-contrastive1 29.8 28

CICBUAPnlp-contrastive1 29.1 40

8 FBK-HLT-primary 27.8 407
?QCRI-contrastive1 25.2 56

Yamraj-contrastive2 25.1 36

baseline: always “Yes” 25.0 60

Table 8: Subtask B, English: results for all submissions.
The first column shows the rank for the primary submis-
sions according to macro F1, and the subindex in the last
column shows the rank based on accuracy. Teams marked
with a ? include a task co-organizer. The submission
marked with a � was corrected after the deadline.

For most teams, the features used for subtask B
were almost the same as for subtask A, with some
teams adding extra features, e.g., that look for pos-
itive, negative and uncertainty words from small
hand-crafted dictionaries.

Most teams designed systems that make
Yes/No/Unsure decisions at the comment level,
predicting CGOLD YN labels (typically, for the
comments that were predicted to be Good by the
team’s system for subtask A), and were then as-
signed a question-level label using majority voting.4

This is a reasonable strategy as it mirrors the human
annotation process. Some teams tried to extract
features from the whole list of comments and to
predict QGOLD YN directly, but this yielded drop
in performance.

4In fact, the authors of the third-best system HITSZ-ICRC
submitted by mistake for their primary run predictions for
CGOLD YN instead of QGOLD YN; the results reported in
Table 8 for this team were obtained by converting these pre-
dictions using simple majority voting.
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The top-performing system, in both macro F1

(63.7) and accuracy (72), is VectorSLU. It is fol-
lowed by ECNU with F1=55.8, Acc=68. The third
place is shared by QCRI and HITSZ-ICRC, which
have exactly the same scores (F1=53.6, Acc=64),
but different errors and different confusion matrices.
These four systems are much better than the rest; the
next system is far behind at F1=38.8, Acc=44.

Interestingly, once again there is a tie for the third
place between the participating teams, as was the
case for subtask A, Arabic and English. Note, how-
ever, that this time all top systems’ primary runs per-
formed better than their corresponding contrastive
runs, which was not the case for subtask A.

6 Features and Techniques

Most systems were supervised,5 and thus the main
efforts were focused on feature engineering. We can
group the features participants used into the follow-
ing four categories:

• question-specific features: e.g., length of the
question, words/stems/lemmata/n-grams in the
question, etc.

• comment-specific features: e.g., length of
the comment, words/stems/lemmata/n-grams
in the question, punctuation (e.g., does the
comment contain a question mark), proportion
of positive/negative sentiment words, rank of
the comment in the list of comments, named
entities (locations, organizations), formality
of the language used, surface features (e.g.,
phones, URLs), etc.

• features about the question-comment pair:
various kinds of similarity between the ques-
tion and the comment (e.g., lexical based on co-
sine, or based on WordNet, language modeling,
topic models such as LDA or explicit seman-
tic analysis), word/lemma/stem/n-gram/POS
overlap between the question and the com-
ment (e.g., greedy string tiling, longest com-
mon subsequences, Jaccard coefficient, con-
tainment, etc.), information gain from the com-
ment with respect to the question, etc.

5The only two exceptions were Yamraj (unsupervised) and
CICBUAPnlp (semi-supervised).

• metadata features: ID of the user who asked
the question, ID of the one who posted the com-
ment, whether they are the same, known num-
ber of Good/Bad/Potential comments (in the
training data) written by the user who wrote the
comment, timestamp, question category, etc.

Note that the metadata features overlap with the
other three groups as a metadata feature is about the
question, about the comment, or about the question-
comment pair. Note also that the features above
can be binary, integer, or real-valued, e.g., can be
calculated using various weighting schemes such as
TF.IDF for words/lemmata/stems.

Although most participants focused on engineer-
ing features to be used with a standard classifier such
as SVM or a decision tree, some also used more ad-
vanced techniques. For example, some teams used
sequence or partial tree kernels (Moschitti, 2006).
Another popular technique was to use word embed-
dings, e.g., modeled using convolution or recurrent
neural networks, or with latent semantic analysis,
and also vectors trained using word2vec and GloVe
(Pennington et al., 2014), as pre-trained on Google
News or Wikipedia, or trained on the provided Qatar
Living data. Less popular techniques included dia-
log modeling for the list of comments for a given
question, e.g., using conditional random fields to
model the sequence of comment labels (Good, Bad,
Potential, Dialog), mapping the question and the
comment to a graph structure and performing graph
traversal, using word alignments between the ques-
tion and the comment, time modeling, and senti-
ment analysis. Finally, for Arabic, some participants
translated the Arabic data to English, and then ex-
tracted features from both the Arabic and the En-
glish version; this is helpful, as there are many more
tools and resources for English than for Arabic.

When building their systems, participants used
a number of tools and resources for preprocessing,
feature extraction, and machine learning, includ-
ing Deeplearning4J, DKPro, GATE, GloVe, Google
translate, HeidelTime, LibLinear, LibSVM, MADA,
Mallet, Meteor, Networkx, NLTK, NRC-Canada
sentiment lexicons, PPDB, sklearn, Spam filtering
corpus, Stanford NLP toolkit, TakeLab, TiMBL,
UIMA, Weka, Wikipedia, Wiktionary, word2vec,
WordNet, and WTMF.
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There was also a rich variety of preprocess-
ing techniques used, including sentence splitting,
tokenization, stemming, lemmatization, morpho-
logical analysis (esp. for Arabic), dependency
parsing, part of speech tagging, temporal tag-
ging, named entity recognition, gazetteer match-
ing, word alignment between the question and the
comment, word embedding, spam filtering, remov-
ing some content (e.g., all contents enclosed in
HTML tags, emoticons, repetitive punctuation, stop-
words, the ending signature, URLs, etc.) substi-
tuting (e.g., HTML character encodings and some
common slang words), etc.

7 Discussion

The task attracted 13 teams and 61 submissions.
Naturally, the English subtasks were more popular
(with 12 and 8 teams for subtasks A and B, respec-
tively; compared to just 4 for Arabic): there are more
tools and resources for English as well as more gen-
eral research interest. Moreover, the English data
followed the natural discussion threads in a forum,
while the Arabic data was somewhat artificial.

We have seen that all submissions managed to
outperform, on the official macro F1 metric,6 a ma-
jority class baseline for both subtasks and for both
languages; this improvement is smaller for English
and much larger for Arabic. However, if we consider
accuracy, many systems fall below the baseline for
English in both subtasks.

Overall, the results for Arabic are higher than
those for English for subtask A, e.g., there is an
absolute difference of over 21 points in macro F1

(78.55 vs. 57.19) for the top systems. This suggests
that the Arabic task was generally easier. Indeed,
it uses very formal polished language both for the
questions and the answers (as opposed to the noisy
English forum data); moreover, it is known a priori
that each question can have at most one direct an-
swer, and the teams have exploited this information.

However, looking at accuracy, the difference be-
tween the top systems for Arabic and English is just
10 points (82.02 vs. 72.52). This suggests that part
of the bigger difference for F1 macro comes from
the measure itself.

6Curiously, there was a close tie for the third place for all
three subtask-language combinations.

Indeed, having a closer look at the distribu-
tion of the F1 values for the different classes be-
fore the macro averaging, we can see that the re-
sults are much more balanced for Arabic (F1 of
77.31/67.13/91.21 for direct/related/irrelevant; with
P and R very close to F1) than for English (F1 of
78.96/14.36/78.24 for Good/Potential/Bad; with P
and R very close to F1). We can see that the Poten-
tial class is the hardest. This can hurt the accuracy
but only slightly as this class is the smallest. How-
ever, it can still have a major impact on macro-F1

due to the effect of macro-averaging.
Overall, for both Arabic and English, it was much

easier to recognize Good/direct and Bad/irrelevant
examples (P, R, F1 about 80-90), and much harder
to do so for Potential/related (P, R, F1 around 67 for
Arabic, and 14 for English). This should not be sur-
prising, as this intermediate category is easily con-
fusable with the other two: for Arabic, these are an-
swers to related questions, while for English, this is
a category that was quite hard for human annotators.

We should say that even though we had used ma-
jority voting to ensure agreement between annota-
tors, we were still worried about the the quality of
human annotations collected on Amazon’s Mechan-
ical Turk. Thus, we asked eight people to do a man-
ual re-annotation of the QGOLD YN labels for the
test data. We found a very high degree of agree-
ment between each of the human annotators and the
Turkers. Originally, there were 29 YES/NO ques-
tions, but we found that four of them were arguably
general rather than YES/NO, and thus we excluded
them. For the remaining 25 questions, we had a dis-
cussion between our annotators about any potential
disagreement, and finally, we arrived with a new an-
notation that changed the labels of three questions.
This corresponds to an agreement of 22/25=0.88 be-
tween our consolidated annotation and the Turkers,
which is very high. This new annotation was the
one we used for the final scoring. Note that using
the original Turkers’ labels yielded slightly different
scores but exactly the same ranking for the systems.
The high agreement between our re-annotations and
the Turkers and the fact that the ranking did not
change makes us optimistic about the quality of the
annotations for subtask A too (even though we are
aware of some errors and inconsistencies in the an-
notations).
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8 Conclusion and Future Work

We have described a new task that entered SemEval-
2015: task 3 on Answer Selection in Community
Question Answering. The task has attracted a rea-
sonably high number of submissions: a total of 61
by 13 teams. The teams experimented with a large
number of features, resources and approaches, and
we believe that the lessons learned will be useful for
the overall development of the field of community
question answering. Moreover, the datasets that we
have created as part of the task, and which we have
released for use to the community,7 should be useful
beyond SemEval.

In our task description, we especially encouraged
solutions going beyond simple keyword and bag-
of-words matching, e.g., using semantic or com-
plex linguistic information in order to reason about
the relation between questions and answers. Al-
though participants experimented with a broad va-
riety of features (including semantic word-based
representations, syntactic relations, contextual fea-
tures, meta-information, and external resources), we
feel that much more can be done in this direc-
tion. Ultimately, the question of whether com-
plex linguistically-based representations and infer-
ence can be successfully applied to the very informal
and ungrammatical text from cQA forums remains
unanswered to a large extent.

Complementary to the research direction pre-
sented by this year’s task, we plan to run a follow-
up task at SemEval-2016, with a focus on answering
new questions, i.e., that were not already answered
in Qatar Living. For Arabic, we plan to use a real
community question answering dataset, similar to
Qatar Living for English.
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Abstract
Continuous word and phrase vectors have
proven useful in a number of NLP tasks. Here
we describe our experience using them as a
source of features for the SemEval-2015 task
3, consisting of two community question an-
swering subtasks: Answer Selection for cate-
gorizing answers as potential, good, and bad
with regards to their corresponding questions;
and YES/NO inference for predicting a yes, no,
or unsure response to a YES/NO question us-
ing all of its good answers. Our system ranked
6th and 1st in the English answer selection and
YES/NO inference subtasks respectively, and
2nd in the Arabic answer selection subtask.

1 Introduction

Continuous word and phrase vectors, in which sim-
ilar words and phrases are associated with similar
vectors, have been useful in many NLP tasks (Al-
Rfou et al., 2013; Bansal et al., 2014; Bowman et
al., 2014; Boyd-Graber et al., 2012; Chen and Rud-
nicky, 2014; Guo et al., 2014; Iyyer et al., 2014;
Levy and Goldberg, 2014; Mikolov et al., 2013c).

To evaluate the effectiveness of continuous vector
representations for Community question answering
(CQA), we focused on using simple features derived
from vector similarity as input to a multi-class linear
SVM classifier. Our approach is language indepen-
dent and was evaluated on both English and Arabic.
Most of the vectors we use are domain-independent.

CQA services provide forums for users to ask or
answer questions on any topic, resulting in high vari-
ance answer quality (Màrquez et al., 2015). Search-
ing for good answers among the many responses can

be time-consuming for participants. This is illus-
trated by the following example of a question and
subsequent answers.

Q: Can I obtain Driving License my QID is written
Employee?

A1: the word employee is a general term that refers
to all the staff in your company ... you are all
considered employees of your company

A2: your qid should specify what is the actual pro-
fession you have. I think for me, your chances
to have a drivers license is low.

A3: his asking if he can obtain. means he have the
driver license.

Answer selection aims to automatically catego-
rize answers as: good if they completely answer the
question, potential if they contain useful information
about the question but do not completely answer it,
and bad if irrelevant to the question. In the example,
answers A1, A2, and A3 are respectively classified
as potential, good, and bad. The Arabic answer se-
lection task uses the labels direct, related, and irrel-
evant.

YES/NO inference infers a yes, no, or unsure
response to a question through its good answers,
which might not explicitly contain yes or no key-
words. For example, the answer for Q is no with
respect to A2 that can be interpreted as a no answer
to the question.

The remainder of this paper describes our features
and our rationale for choosing them, followed by an
analysis of the results, and a conclusion.

282



Text-based features
Text-based similarities
yes/no/probably-like words existing
Vector-based features
Q&A vectors
OOV Q&A
yes/no/probably-based cosine similarity
Metadata-based features
Q&A identical user
Rank-based features
Normalized ranking scores

Table 1: The different types of features.

2 Method

Continuous vector representations, described by
Schütze (Schütze, 1992a; Schütze, 1992b), asso-
ciate similar vectors with similar words and phrases.
Most approaches to computing vector representa-
tions use the observation that similar words ap-
pear in similar contexts (Firth, 1957). The theses
of Sahlgren (Sahlgren, 2006), Mikolov (Mikolov,
2012), and Socher (Socher, 2014) provide extensive
information on vector representations.

Our system analyzes questions and answers with
a DkPro (Eckart de Castilho and Gurevych, 2014)
uimaFIT (Ogren and Bethard, 2009) pipeline. The
DkPro OpenNLP (Apache Software Foundation,
2014) segmenter and chunker tokenize and find sen-
tences and phrases in the English questions and an-
swers, followed by lemmatization with the Stanford
lemmatizer (Manning et al., 2014). In Arabic, we
only apply lemmatization, with no chunking, using
MADAMIRA (Pasha et al., 2014). Stop words are re-
moved in both languages.

As shown in Table 1, we compute text-based,
vector-based, metadata-based and rank-based fea-
tures from the pre-processed data. The features are
used for a linear SVM classifier for answer selection
and YES/NO answer inference tasks. YES/NO an-
swer inference is only performed on good YES/NO
question answers, using the YES/NO majority class,
and unsure otherwise. SVM parameters are set by
grid-search and cross-validation.

Text-based features These features are mainly
computed using text similarity metrics that mea-

sure the string overlap between questions and
answers: The Longest Common Substring mea-
sure (Gusfield, 1997) identifies uninterrupted com-
mon strings, while the Longest Common Subse-
quence measure (Allison and Dix, 1986) and the
Longest Common Subsequence Norm identify com-
mon strings with interruptions and text replace-
ments, while Greedy String Tiling measure (Wise,
1996) allows reordering of the subsequences. Other
measures which treat text as sequences of characters
and compute similarities include the Monge Elkan
Second String (Monge and Elkan, 1997) and Jaro
Second String (Jaro, 1989) measures. A Cosine
Similarity-type measure based on term frequency
within the text is also used. Sets of (1-4)-grams from
the question and answer are compared with Jaccard
coefficient (Lyon et al., 2004) and Containment mea-
sures (Broder, 1997).1

Another group of text-based features identifies an-
swers that contain yes-like (e.g., “yes”, “oh yes”,
“yeah”, “yep”), no-like (e.g., “no”, “none”, “nope”,
“never”) and unsure-like (e.g., “possibly”, “con-
ceivably”, “perhaps”, “might”) words. These word
groups were determined by selecting the top 20
nearest neighbor words to the words yes, no and
probably based on the cosine similarity of their
Word2Vec vectors. These features are particularly
useful for the YES/NO answer inference task.

Vector-based features Our vector-based features
are computed from Word2Vec vectors (Mikolov
et al., 2013a; Mikolov et al., 2013b; Mikolov et
al., 2013d). For English word vectors we use
the GoogleNews vectors dataset, available on the
Word2Vec web site,2 which has a 3,000,000 word
vocabulary of 300-dimensional word vectors trained
on about 100 billion words. For Arabic word vectors
we use Word2Vec to train 100-dimensional vec-
tors with default settings on a lemmatized version of
the Arabic Gigaword (Linguistic Data Consortium,
2011), obtaining a vocabulary of 120,000 word lem-
mas.

We also use Doc2Vec,3 an implementation
of (Le and Mikolov, 2014) in the gensim

1These features are mostly taken from the QCRI base-
line system: http://alt.qcri.org/semeval2015/
task3/index.php?id=data-and-tools.

2https://code.google.com/p/word2vec.
3http://radimrehurek.com/gensim/models/
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toolkit (Řehůřek and Sojka, 2010). Doc2Vec pro-
vides vectors for text of arbitrary length, so it allows
us to directly model answers and questions. The
Doc2Vec vectors were trained on the CQA English
data, creating a single vector for each question or
answer. These are the only vectors that were trained
specifically for the CQA domain.

We implemented a UIMA annotator that asso-
ciates a Word2Vec word vector with each in-
vocabulary token (or lemma). No vectors are as-
signed for out of vocabulary tokens. Another an-
notator computes the average of the vectors for the
entire question or answer, with no vector assigned if
all tokens are out of vocabulary.

We initially used the cosine similarity of the ques-
tion and answer vectors as a feature for the SVM
classifier, but we found that we had better results us-
ing the normalized vectors themselves. We hypothe-
size that the SVM was able to tune the importance of
the components of the vectors, whereas cosine sim-
ilarity weights each component equally. If the ques-
tion or answer has no vector, we use a 0 vector. To
make it easier for the classifier to ignore the vectors
in these cases, we add boolean features indicating
out of vocabulary, OOV Question and OOV Answer.

Even though the bag of words approach showed
encouraging results, we found it to be too coarse, so
we also compute average vectors for each sentence.
For English, we also compute average vectors for
each chunk. Then we look for the best matches be-
tween sentences (and chunks) in the question and
answer in terms of cosine similarity, and use the
pairs of (unnormalized) vectors as features.4 More
formally, given a question with sentence vectors
{qi} and an answer with sentence vectors {aj}, we
take as features the values of the vector pair (q̂, â)
defined as:

(q̂, â) = arg max
(qi,aj)

qi · aj

‖qi‖ ‖aj‖

We also have six features corresponding to the
greatest cosine similarity between the comment
word vectors and the vectors for the words yes, Yes,
no, No, probably and Probably. These features are
more effective for the YES/NO classification task.
doc2vec.html.

4Post-evaluation testing showed no significant difference be-
tween using normalized or unnormalized vectors.

Metadata-based features As a metadata-based
indicator, the Q&A identical user identifies if the
user who posted the question is the same user who
wrote the answer. This indicator is useful for detect-
ing irrelevant dialogue answers.

Rank-based features We employ SVM Rank5 to
compute ranking scores of answers with respect to
their corresponding questions. After generating all
other features, SVM Rank is run to produce rank-
ing scores for each possible answer. For training
SVM Rank, we convert answer labels to ranks ac-
cording to the following heuristic: good answers are
ranked first, potential ones second, and bad ones
third. Ranking scores are then used as features for
the classifier. The normalization of these scores can
be used as rank-based features to provide more in-
formation to the classifier, although these scores are
also used without any other features as explained in
Section 3.

3 Evaluation and Results

We evaluate our approach on the answer selection
and YES/NO answer inference tasks. We use the
CQA datasets provided by the Semeval 2015 task
that contain 2600 training and 300 development
questions and their corresponding answers (a total
number of 16,541 training and 1,645 development
answers). About 10% of these questions are of the
YES/NO type. We combined the training and de-
velopment datasets for training purposes. The test
dataset includes 329 questions and 1976 answers.
About 9% of the test questions are bipolar.

We also evaluate our performance on the Arabic
answer selection task. The dataset contains 1300
training questions, 200 development questions, and
200 test questions. This dataset does not include
YES/NO questions.

English answer selection Our approach for the
answer selection task in English ranked 6th out of
12 submissions and its results are shown in Table
2. VectorSLU-Primary shows the results when we
include all the features listed in Table 1 except the
rank-based features. VectorSLU-Contrastive shows
the results when we include all the features except

5http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html.
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Method Macro-F1 Accuracy
VectorSLU-Primary 49.10 66.45
VectorSLU-Contrastive 49.54 70.45
JAIST (best) 57.19 72.52
Baseline 22.36 50.46

Table 2: Results for the English answer selection task.

Method Macro-F1 Accuracy
VectorSLU-Primary 70.99 76.32
VectorSLU-Contrastive 73.18 78.12
QCRI (best) 78.55 83.02
Baseline 24.03 56.34

Table 3: Results for the Arabic answer selection task.

the rank-based and text-based features. Interest-
ingly, VectorSLU-Contrastive leads to a better per-
formance than VectorSLU-Primary. The lower per-
formance of VectorSLU-Primary could be due to the
high overlap between text-based features in differ-
ent classes that can clearly mislead classifiers. For
example, A1, A2 and A3 (see Section 1) all have a
considerable word overlap with their question, while
only A2 is a good answer. The last two rows of the
table are respectively related to the best performance
among all submissions and the majority class base-
line that always predicts good.

Arabic answer selection Our approach for an-
swer selection in Arabic ranked 2nd out of 4 sub-
missions. Table 3 shows the results. In these ex-
periments, we employ all features listed in Table 1
except for yes/no/probably-based features, since the
Arabic task does not include YES/NO answer infer-
ence. Vectors were trained from the Arabic Giga-
word (Linguistic Data Consortium, 2011). We found
lemma vectors to work better than token vectors.

We computed ranking scores with SVM Rank
for both VectorSLU-contrastive and VectorSLU-
Primary. In the case of VectorSLU-contrastive, we
used these scores to predict labels according to the
following heuristic: the top scoring answer is la-
beled as direct, the second scoring answer as re-
lated, and all other answers as irrelevant. This de-
cision mechanism is based on the distribution in the
training and development data, and proved to work
well on the test data. However, for our primary

Method Macro-F1 Accuracy
VectorSLU-Primary (best) 63.70 72.00
VectorSLU-Contrastive 61.90 68.00
Baseline 25.00 60.00

Table 4: Results for the English YES/NO inference task.

submission we were interested in a more principled
mechanism. Thus, in the VectorSLU-primary system
we computed 10 extra classification features from
the ranking scores. These features are used to pro-
vide prior knowledge about relative ranking of an-
swers with respect to their corresponding questions.
To compute these features, we first rank answers
with respect to questions and then scale the resul-
tant scores into the [0,1] range. We then consider
10 binary features that indicate whether the score of
each input answer is the range of [0,0.1), [0.1,0.2),
..., [0.9,1), respectively. Note that each feature vec-
tor contains exactly one 1 and nine 0s.

The last two rows of the table are related to the
best performance and the majority class baseline that
always predicts irrelevant.

English YES/NO inference For the indirect
YES/NO answer inference task, we achieve the best
performance and ranked 1st out of 8 submissions.
Table 4 shows the results. VectorSLU-Primary and
VectorSLU-Contrastive have the same definition as
in Table 2. Both approaches with or without the text-
based features outperform the baseline that always
predicts yes as the majority class and other submis-
sions. This indicates the effectiveness of the vector-
based features.

4 Related Work

We are not aware of any previous CQA work us-
ing continuous word vectors. Our vector features
were somewhat motivated by existing text-based
features, taken from the QCRI baseline system, re-
placing text-similarity heuristics with cosine simi-
larity. Some of the approaches to classifying an-
swers can be found in the general CQA literature,
such as (Toba et al., 2014; Bian et al., 2008; Liu et
al., 2008).
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5 Conclusion

In summary, we represented words, phrases, sen-
tences and whole questions and answers in vector
space, and computed various features from them for
a classifier, for both English and Arabic. We showed
the utility of these vector-based features for address-
ing the answer selection and the YES/NO answer
inference tasks in community question answering.
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Hal Daumé III. 2012. Besting the Quiz Master:
Crowdsourcing Incremental Classification Games. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,
pages 1290–1301.

Andrei Z. Broder. 1997. On the Resemblance and
Containment of Documents. In Proceedings of the
Compression and Complexity of Sequences 1997, SE-
QUENCES ’97, pages 21–, Washington, DC, USA.

Yun-Nung Chen and Alexander I. Rudnicky. 2014. Dy-
namically Supporting Unexplored Domains in Con-
versational Interactions by Enriching Semantics with
Neural Word Embeddings. In Proceedings of the 2014
Spoken Language Technology Workshop, December 7-
10, 2014, South Lake Tahoe, Nevada, USA, pages 590–
595.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Nancy Ide and Jens Grivolla, editors, Proceedings of
the Workshop on Open Infrastructures and Analysis
Frameworks for HLT (OIAF4HLT) at COLING 2014,
pages 1–11, Dublin, Ireland, August.

John Firth. 1957. A Synopsis of Linguistic Theory,
1930-1955. Studies in Linguistic Analysis, pages 1–
32.

Daniel (Zhaohan) Guo, Gokhan Tur, Wen-tau Yih, and
Geoffrey Zweig. 2014. Joint Semantic Utterance
Classification and Slot Filling with Recursive Neural
Networks. pages 554–559.

Dan Gusfield. 1997. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Bi-
ology. Cambridge University Press, New York, NY,
USA.

Mohit Iyyer, Jordan L. Boyd-Graber, Leonardo
Max Batista Claudino, Richard Socher, and
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Abstract

In this paper we present the Multilingual All-
Words Sense Disambiguation and Entity Link-
ing task. Word Sense Disambiguation (WSD)
and Entity Linking (EL) are well-known prob-
lems in the Natural Language Processing field
and both address the lexical ambiguity of lan-
guage. Their main difference lies in the kind
of meaning inventories that are used: EL uses
encyclopedic knowledge, while WSD uses
lexicographic information. Our aim with this
task is to analyze whether, and if so, how, us-
ing a resource that integrates both kinds of in-
ventories (i.e., BabelNet 2.5.1) might enable
WSD and EL to be solved by means of similar
(even, the same) methods. Moreover, we in-
vestigate this task in a multilingual setting and
for some specific domains.

1 Introduction

The Senseval and SemEval evaluation series rep-
resent key moments in the community of compu-
tational linguistics and related areas. Their focus
has been to provide objective evaluations of methods
within the wide spectrum of semantic techniques for
tasks mainly related to automatic text understanding.

Through SemEval-2015 task 13 we both continue
and renew the longstanding tradition of disambigua-
tion tasks, by addressing multilingual WSD and EL
in a joint manner. WSD (Navigli, 2009; Navigli,
2012) is a historical task aimed at explicitly assign-
ing meanings to single-word and multi-word occur-
rences within text, a task which today is more alive
than ever in the research community. EL (Erbs et

al., 2011; Cornolti et al., 2013; Rao et al., 2013) is
a more recent task which aims at discovering men-
tions of entities within a text and linking them to
the most suitable entry in a knowledge base. Both
these tasks aim at handling the inherent ambiguity
of natural language, however WSD tackles it from a
lexicographic perspective, while EL tackles it from
an encyclopedic one. Specifically, the main differ-
ence between the two tasks lies in the kind of inven-
tory they use. For instance, WordNet (Miller et al.,
1990), a manually curated semantic network for the
English language, has become the main reference in-
ventory for English WSD systems thanks to its wide
coverage of verbs, adverbs, adjectives and common
nouns. More recently, Wikipedia has been shown to
be an optimal resource for recovering named enti-
ties, and has consequently become - together with
all its semi-automatic derivations such as DBpedia
(Auer et al., 2007) and Freebase (Bollacker et al.,
2008) - the main reference inventory for EL systems.

Over the years, the research community has typi-
cally focused on each of these tasks separately. Re-
cently, however, joint approaches have been pro-
posed (Moro et al., 2014b). One of the reasons for
pursuing the unification of these tasks derives from
the current trend in knowledge acquisition which
consists of the seamless integration of encyclopedic
and lexicographic knowledge within structured lan-
guage resources (Hovy et al., 2013). A case in point
here is BabelNet1, a multilingual semantic network
and encyclopedic dictionary (Navigli and Ponzetto,
2012). Resources like BabelNet provide a common
ground for the tasks of WSD and EL.

1http://babelnet.org
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In this task our goal is to promote research in the
direction of joint word sense and named entity dis-
ambiguation, so as to concentrate research efforts on
the aspects that differentiate these two tasks with-
out duplicating research on common problems such
as identifying the right meaning in context. How-
ever, we are also interested in systems that perform
only one of the two tasks, and even systems which
tackle one particular setting of WSD, such as all-
words sense disambiguation vs. any subset of part-
of-speech tags. Moreover, given the recent upsurge
of interest in multilingual approaches, we developed
the task dataset in three different languages (En-
glish, Italian and Spanish) on parallel texts which
have been independently and manually annotated by
different native/fluent speakers. In contrast to the
SemEval-2013 task 12 on Multilingual Word Sense
Disambiguation (Navigli et al., 2013), our focus in
task 13 is to present a dataset containing both kinds
of inventories (i.e., named entities and word senses)
in different specific domains (biomedical domain,
maths and computer domain, and a broader domain
about social issues). Our goal is to further investi-
gate the distance between research efforts regarding
the dichotomy EL vs. WSD and those regarding the
dichotomy open domain vs. closed domain.

2 Task Setup

The task setup consists of annotating four tokenized
and part-of-speech tagged documents for which par-
allel versions in three languages (English, Italian
and Spanish) have been provided. Differently from
previous editions (Navigli et al., 2013; Lefever and
Hoste, 2013; Manandhar et al., 2010; Lefever and
Hoste, 2010; Pradhan et al., 2007; Navigli et al.,
2007; Snyder and Palmer, 2004; Palmer et al., 2001),
in this task we do not make explicit to the participat-
ing systems which fragments of the input text should
be disambiguated, so as to have, on the one hand,
a more realistic scenario, and, on the other hand,
to follow the recent trend in EL challenges such as
TAC KBP (Ji et al., 2014), MicroPost (Basave et al.,
2013) and ERD (Carmel et al., 2014).

2.1 Corpora

The documents considered in this task are taken
from the OPUS project (http://opus.lingfil.uu.se/),

more specifically from the EMEA (European
Medicines Agency documents), KDEdoc (the KDE
manual corpus) and “The EU bookshop corpus”,
which make available parallel and POS-tagged doc-
uments. We took four documents from these reposi-
tories. Two documents contain medical information
about drugs. One document consists of the man-
ual of a mathematical graph calculator (i.e., KAlge-
bra). The remaining document contains a formal dis-
cussion about social issues, like supporting elderly
workers and, more in general, about issues and so-
lutions to unemployment discussed by the members
of the European Commission.

2.2 Sense Inventory

As our sense inventory we use the BabelNet 2.5.1
(http://babelnet.org) multilingual semantic network
and encyclopedic dictionary (Navigli and Ponzetto,
2012), which is the result of the automatic in-
tegration of multiple language resources: Prince-
ton WordNet, Wikipedia, Wiktionary, OmegaWiki,
Wikidata, Open Multi WordNet and automatic trans-
lations. The meanings contained within this re-
source are organized in Babel synsets. Each of
these synsets can contain Wikipedia pages, Word-
Net synsets and items from the other integrated re-
sources. For instance, in BabelNet it is possible to
find the concept “medicine” (bn:00054128n), which
is represented by both the second word sense of
medicine in WordNet and the Wikipedia page Phar-
maceutical drug, among others, together with syn-
onyms such as drug and medication in English and
lexicalizations in other languages, such as farmaco
in Italian and medicamento in Spanish.

2.3 Dataset Creation

The manual annotation of documents was performed
in a language-specific manner, i.e., different taggers
worked on the various translated versions of the in-
put documents. More precisely, we had two taggers
for each language, who annotated each fragment
of text recognized as linkable with all the senses
deemed appropriate. During the annotation proce-
dure, for all languages, each tagger was shown an
HTML page containing the sentence within which
the target fragment was boldfaced. Then a table of
checkable meanings identified by their glosses (in
English or, if not available, in Spanish or Italian), to-
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Single Multi Named Mean senses Mean senses Mean senses per POS Wikipedia WordNet
Domain Language Instances words words Entities per instance per lemma N V R A pages keys

EN 623 534 41 48 8.0 7.0 8.8 10.0 2.4 3.8 295 549
Biomedical ES 628 552 30 46 6.2 6.5 5.6 9.0 3.1 5.9 251 -

IT 610 545 29 36 5.4 5.7 5.8 6.0 3.1 3.5 254 -
EN 325 292 11 22 9.0 9.5 10.1 10.3 2.9 5.9 135 276

Maths and ES 308 277 10 21 7.5 7.6 7.9 8.0 3.8 6.0 120 -
computer IT 313 275 15 23 6.9 6.8 7.3 7.6 3.3 4.4 136 -

EN 313 268 29 16 7.4 6.9 9.1 6.3 1.5 4.1 119 294
Social ES 303 259 27 17 7.4 7.4 8.1 7.3 3.2 5.9 102 -
issues IT 302 265 22 15 6.6 6.5 7.7 6.8 1.7 3.0 101 -

EN 1261 1094 81 86 8.1 7.6 9.1 9.5 2.4 4.4 549 1119
All ES 1239 1088 67 84 6.8 6.8 6.8 8.4 3.2 5.9 473 -

IT 1225 1085 66 74 6.1 5.9 6.6 6.7 2.8 3.5 491 -

Table 1: Statistics of the datasets.

gether with the available synonyms and hypernyms
(as found in WordNet and the Wikipedia Bitaxon-
omy (Flati et al., 2014)). The taggers agreed on
at least one meaning for 68% of the instances. A
third tagger acted as judge by going through all the
items and discarding overly general or irrelevant an-
notations, especially in the case of disagreement be-
tween the two taggers. To enforce coherence and
spot missing annotations, we projected the English
annotations to the other two languages. Finally, the
third tagger determined if the projected English an-
notations that were missing in one of the other two
languages were either correctly not included, or if
the taggers had actually missed a correct annotation.

As a result of this procedure we obtained a dataset
with around 1.2k items, but with only around 80
named entity mentions per language. Please refer
to Table 1 for general statistics about the dataset:
we show the number of annotated instances per lan-
guage and domain, together with their classification
as single- or multi-word expressions and named en-
tities. We then show the degree of ambiguity both
per POS and per instance and lemma (i.e., multiple
instances with the same lemma count as a single in-
stance) and, finally, we show how many of the in-
stances have Wikipedia pages or WordNet keys as
annotations2.

2.4 Evaluation Measures
To evaluate the performance of the participating sys-
tems we used the classical precision, recall and F1
measures:

2Please note that the sum of Wikipedia pages and WordNet
keys does not amount to the number of instances, as BabelNet
can have integrated synsets that contain both WordNet keys and
Wikipedia pages.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 · Precision ·Recall

Precision + Recall
(3)

To handle systems that output multiple answers for
a single instance we followed the standard scorer of
previous Senseval and SemEval challenges in uni-
formly weighting the multiple answers when com-
puting the TP counts. Moreover, we decided not to
take into account fragments annotated by the sys-
tems which were not contained in the gold standard,
similarly to the D2KB setting of the GERBIL eval-
uation framework for EL (Usbeck et al., 2015).

2.5 Baseline
As baseline we considered the performance of a
simple heuristic (called BabelNet first sense or
BFS) that exploits the default comparator integrated
within the BabelNet 2.5.1 API (i.e., the Babel-
SynsetComparator Java class). Babel synsets in Ba-
belNet can be viewed as nodes of a semantic net-
work and each of them can contain Wikipedia pages,
WordNet synsets and items from the other integrated
resources. The comparator takes as input the lemma
of the word for which we are ranking the Babel
synsets. There are three main cases managed by
the comparator. The first case is when both Babel
synsets contain a WordNet synset for the considered
word. If this is the case, then the WordNet sense
numbers are used to rank the synsets. The second
case is when only one of the Babel synsets contains
a WordNet synset: in this case the Babel synset that
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contains the WordNet synset gets ranked first. The
last case is when no WordNet synsets are contained
within the two Babel synsets. In this case a lexico-
graphic ordering of the Wikipedia pages contained
within the Babel synsets is taken into account. As is
well known, the first sense heuristic based on Word-
Net has always proved a really hard to beat baseline,
outperforming all the developed systems for the En-
glish language over almost all settings and system
combinations. In contrast, the BFS heuristic in the
other languages shows itself to be weaker, achieving
lower performances in almost all settings and system
combinations.

3 Participating Systems

DFKI (Supervised). This system exploits Babel-
Net as reference inventory and a CRF-based named
entity recognizer. The disambiguation system is
divided in two parts: one for nouns and another
for verbs. For nouns the approach is based on the
idea of maximizing multiple objectives at the same
time. Similarly to (Hoffart et al., 2011), the disam-
biguation objectives consist of a global (coherence,
unsupervised) part and a local (supervised) part.
The global objective makes sure that disambiguation
maximizes coherence of the selected synsets and it is
based on the semantic signature graph (Moro et al.,
2014b). The local objective ensures that the Word-
Net synset type fits the local context of the noun to
be disambiguated. One important aspect of this ap-
proach is that, unlike previous work (Hoffart et al.,
2011; Moro et al., 2014b), it does not apply dis-
crete optimization, but continuous optimization on
the normalized sum of all objectives. The disam-
biguation procedure aims to optimize the objective
function by iteratively updating the candidate prob-
abilities for each fragment. As far as verbs are con-
cerned, a feed-forward neural network is trained us-
ing local features such as arguments of the semantic
roles of a verb in a sentence, context words, and the
verb and its lemma.

EBL-Hope (Unsupervised + Sense relevance).
This approach uses a modified version of the Lesk
algorithm and the Jiang & Conrath similarity mea-
sure (Jiang and Conrath, 1997). It validates the out-
put from both techniques for enhanced accuracy and
exploits semantic relations and corpus (SemCor) in-

formation available in BabelNet and WordNet in an
unsupervised manner.

el92 (Systems mix). This system is a general-
domain system for entity detection and linking. It
does not perform WSD. The system combines, via
a weighted voting, Entity Linking outputs from four
publicly available services: Tagme (Ferragina and
Scaiella, 2010), DBpedia Spotlight (Mendes et al.,
2011), Wikipedia Miner (Milne and Witten, 2008)
and Babelfy (Moro et al., 2014b; Moro et al.,
2014a). The different runs correspond to different
settings in the weighting formula (De La Clergerie
et al., 2008; Fiscus, 1997).

LIMSI (Unsupervised + Sense relevance). The
system performs WSD by taking advantage of the
parallelism of the test data, a feature that was
not exploited by the systems that participated in
the SemEval-2013 Multilingual Word Sense Dis-
ambiguation task 12 (Navigli et al., 2013). The
system needs no training and is applied directly to
the test dataset, nor does it use distributional (con-
text) information. The texts are sentence- and word-
aligned pairwise, and content words are tagged by
their translations in another language. The align-
ments serve to retrieve the BabelNet synsets that are
relevant for each instance of a word in the texts (i.e.,
synsets that contain both the disambiguation target
and its aligned translation). If a Babel synset is re-
tained, this is used to annotate the instance of the
word in the test set. If more than one synset is
retained, these are ranked using the BabelSynset-
Comparator Java class available in the BabelNet API
(please refer to Section 2.5 for a detailed explana-
tion). The highest ranked synset among the ones that
contain the aligned translation is used to annotate the
instance. The system falls back to the BabelNet first
sense (BFS) provided by the BabelSynsetCompara-
tor for instances with no aligned translation, or in
cases where the translation was not found in any of
the synsets available for the word in BabelNet.

SUDOKU (Unsupervised). This deterministic
constraint-based approach relies on a reasonable
degree of “document monosemy” (percentage of
unique monosemous lemmas in a document) and ex-
ploits Personalised PageRank (Agirre et al., 2014)
to select the best candidate. The PPR is started with
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a surfing vector biased towards monosemous words
(i.e., their respective sense). Each submission dif-
fers by its imposed constraints: Run1 is the plain
approach (Manion and Sainudiin, 2014) applied at
the document level; Run2 is the iterative version of
the previous approach applied at the document level
and with words disambiguated in order of increasing
polysemy; Run3 is like Run2, but it is first applied
to nouns and then to verbs, adjectives, and adverbs.

TeamUFAL (Unsupervised). This system ex-
ploits Apache Lucene search engine to index
Wikipedia documents, Wiktionary entries and
WordNet senses. Then, to perform disambiguation,
the Lucene ranking method is used to query the
index with multiple queries (consisting of the text
fragment and context words). Finally, all query re-
sults are merged and the disambiguated meaning is
selected thanks to a simple threshold heuristic.

UNIBA (Unsupervised + Sense relevance). This
system3 extends two well-known variations of the
Lesk WSD method. The main contribution of the
approach relies on the use of a word similarity
function defined on a distributional semantic space
(Word2vec tool (Mikolov et al., 2013)) to compute
the gloss-context overlap. Entities are identified by
exploiting a list of possible surface forms extracted
from BabelNet synsets. Moreover, each synset has a
prior probability computed over an annotated cor-
pus. For WordNet synsets, SemCor is exploited,
while for Wikipedia entities the number of citations
in Wikipedia internal links is counted.

vua-background (Partially supervised). This
approach exploits the Named Entities contained in
the test data to generate a background corpus. This
is done by finding similar DBpedia entities for the
entities in the input documents. Using this back-
ground corpus, the system tries to find the predomi-
nant sense of the words in the test data (McCarthy et
al., 2004). If a predominant sense is recognized for
a specific lemma, then it is used, otherwise the sys-
tem falls back to the “It Makes Sense” WSD system
(Zhong and Ng, 2010).

3During the evaluation period the system did not return any
annotation for adjectives due to a misinterpretation of the POS
tag set. For full evaluations see the system paper.

WSD-games (Unsupervised). This approach is
formulated in terms of Evolutionary Game Theory,
where each word to be disambiguated is represented
as a node in a graph and each sense as a class. The
proposed algorithm performs a consistent class as-
signment of senses according to the similarity infor-
mation of each word with the others, so that sim-
ilar words are constrained to similar classes. The
propagation of the information over the graph is for-
mulated in terms of a non-cooperative multi-player
game, where the players are the data points, in or-
der to decide their class memberships, and equilibria
correspond to consistent labeling of the data.

4 Results and Discussion

The results obtained by the participating systems
are shown in Tables 2-6. In Table 2 we show the
precision, recall and F1 scores of the participating
systems that annotated all classes of items (named
entities, nouns, verbs, adverbs, adjectives) over the
whole dataset. Six out of the nine participating
teams annotated the full set of items. We also show
the F1 performance on each considered domain in-
dependently and for different kinds of subsets of the
item classes (i.e., we show the F1 score over all
items, then only on named entities, all open-class
word senses and individually).

4.1 Overall Performance

From Table 2 we can see that the best system for En-
glish (i.e., LIMSI) is able to obtain a performance
more than five percentage points higher than the
second ranked system. This is due to the good-
quality indirect supervision provided by the align-
ments combined with the use of the BabelSynset-
Comparator. However, on the other two languages
this system obtains lower performance than the other
competing systems. The performance of the SU-
DOKU system is of a particular interest, as it obtains
the second best scores on the English part of the
dataset and the top scores overall on the other two
languages. It exploits monosemous words within
the input documents to run Personalized PageRank.
The three runs differ mainly in respect of the order
in which the words get disambiguated.

In Table 3 we show the F1 scores of all the sys-
tems over the whole dataset for each class of the
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EN ES IT
System P R F1 P R F1 P R F1
LIMSI 68.7 63.1 65.8 47.9 42.4 45.0 51.3 45.7 48.4
SUDOKU-Run2 62.9 60.4 61.6 59.9 54.6 57.1 59.7 54.3 56.9
SUDOKU-Run3 61.9 59.4 60.7 59.5 54.2 56.8 59.7 54.3 56.9
vua-background 67.5 51.5 58.4 - - - - - -
SUDOKU-Run1 60.1 52.1 55.8 60.2 52.3 56.0 64.4 55.9 59.9
WSD-games-Run2 58.8 50.0 54.1 - - - - - -
WSD-games-Run1 57.4 48.9 52.8 - - - - - -
WSD-games-Run3 53.5 45.4 49.1 - - - - - -
EBL-Hope 48.4 44.4 46.3 - - - - - -
TeamUFAL 40.4 36.5 38.3 - - - - - -
BFS 67.9 67.2 67.5 38.9 36.2 37.5 41.7 38.8 40.2
# items 1261 1239 1225

Table 2: Precision, Recall and F1 on all domains.

manually annotated items and for each language.
In the English part of the datasets the DFKI sys-
tem performs best for verb, noun and named en-
tity disambiguation, thanks to precomputed random
walks called semantic signatures, along the lines of
Babelfy (Moro et al., 2014b), and supervised tech-
niques. The UNIBA system on the English dataset
obtains the best result on adverbs. Finally, in the
Spanish dataset the EBL-Hope system based on a
combination of a Lesk-based measure together with
the Jiang & Conrath similarity measure shows the
best performance for named entities.

4.2 Domain-based Evaluation
In Tables 4-6 we show the detailed performances
of all the systems over different classes of items,
and on different domains. One of the main goals
of this task is to investigate the performance of dis-
ambiguation methods over different domains. Our
documents derive from the biomedical domain, the
maths and computer domain, and a broader domain
(a document discussing social issues, especially for
elderly workers and possible solutions).

Biomedical domain. In Table 4 we show the per-
formance of the systems on the biomedical docu-
ments. The first thing to notice is the much higher
best score of the first ranked system (i.e., LIMSI),
which attains an F1 score of 71.3%. This is due
to the lower ambiguity of nouns and named enti-
ties (see Table 1) resulting from the greater num-
bers of domain-specific concepts used within this
kind of documents. This can also be seen from
the higher scores obtained by the BFS. Overall, all

systems obtained a better performance than in the
other domains, with a gain of more than four per-
centage points each. The second ranked system
(i.e., SUDOKU) shows its ability to exploit monose-
mous words obtaining a 0.1 difference from the first
ranked system and a 0.9 point distance from the BFS
baseline. This is of particular interest as the sys-
tem does not explicitly exploit any sense relevance
information. Moreover, the DFKI system obtains
the best scores for nouns and verbs, and is the only
system able to obtain a 100% F1 score on NE dis-
ambiguation. However, several other systems per-
formed above 90%, showing that in this particular
set of documents named entities are easy to disam-
biguate.

On the other two languages the performances are
a little bit lower, but the SUDOKU system confirms
its ability to exploit monosemous words at a qual-
ity comparable to the one obtained in the English
dataset. The LIMSI system, instead, obtains a re-
duction of around 20% due to its exploitation of the
BabelSynsetComparator, which performs badly in
these languages (see the BFS scores).

Maths and computer domain. In Table 5 we
show the results for the maths and computer do-
main. As can be seen in Table 1, this is the most am-
biguous domain and the best systems obtain much
lower performances than in the other domains. In-
terestingly, the DFKI system is not able to achieve
the best performance on any of the considered item
classes, while UNIBA and SUDOKU show the best
results for nouns and verbs. As regards named en-
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EN
Named Word Senses

System All Entities All N V R A
LIMSI 65.8 82.9 64.7 64.8 56.0 76.5 79.5
SUDOKU-Run2 61.6 87.0 59.9 62.5 49.6 70.4 71.7
SUDOKU-Run3 60.7 87.0 58.9 62.7 46.0 71.7 68.1
vua-background 58.4 14.9 60.3 53.8 55.2 77.2 72.5
SUDOKU-Run1 55.8 16.8 57.5 53.4 52.2 48.9 74.4
WSD-games-Run2 54.1 12.6 55.8 51.4 43.7 75.3 69.9
WSD-games-Run1 52.8 12.6 54.5 49.6 42.5 75.3 69.9
WSD-games-Run3 49.1 12.6 50.7 47.4 35.8 74.1 64.0
EBL-Hope 46.3 84.2 43.8 45.7 30.6 76.5 57.8
TeamUFAL 38.3 79.8 35.5 46.4 18.8 45.8 28.8
DFKI - 88.9 - 70.3 57.7 - -
el92-Run1 - 86.1 - - - - -
UNIBA-Run1 - 84.4 - 63.3 57.1 79.0 -
UNIBA-Run2 - 82.9 - 63.2 57.1 79.0 -
UNIBA-Run3 - 82.9 - 63.2 57.1 79.0 -
el92-Run3 - 79.7 - - - - -
el92-Run2 - 79.2 - - - - -
BFS 67.5 85.7 66.3 66.7 55.1 82.1 82.5

ES
Named Word Senses

System All Entities All N V R A
SUDOKU-Run2 57.1 36.9 58.0 56.3 55.6 61.9 61.1
SUDOKU-Run3 56.8 36.9 57.7 54.9 57.9 60.3 61.5
SUDOKU-Run1 56.0 17.4 57.6 54.0 56.4 61.4 62.0
LIMSI 45.0 30.8 45.6 48.3 28.6 64.6 49.7
EBL-Hope - 70.8 - 48.2 - - -
BFS 37.5 37.0 37.6 40.6 19.8 55.1 46.2

IT
Named Word Senses

System All Entities All N V R A
SUDOKU-Run1 59.9 21.7 61.3 56.6 62.7 62.5 68.3
SUDOKU-Run3 56.9 54.9 57.0 56.3 51.5 57.1 65.8
SUDOKU-Run2 56.9 54.9 57.0 54.1 60.9 61.2 62.0
LIMSI 48.4 46.5 48.4 43.9 44.2 56.0 69.6
UNIBA-Run3 - 50.0 - 53.7 61.1 60.0 -
UNIBA-Run2 - 48.5 - 53.8 61.1 60.0 -
UNIBA-Run1 - 48.5 - 53.7 61.1 60.0 -
EBL-Hope - 48.5 - 38.8 - - -
BFS 40.2 50.0 39.8 35.4 38.3 48.0 61.0

Table 3: F1 performance by item class and language on
all domains.

tities, the system EBL-Hope obtains the best results
in all languages. This system, in addition to exploit-
ing a Lesk-based measure combined with the Jiang
& Conrath similarity measure, uses the BabelNet se-
mantic relations, which have already been shown to
be useful for attaining state-of-the-art performances
in EL (Moro et al., 2014b). Interestingly, in the Ital-
ian dataset the system UNIBA (which is based on
an extended version of the Lesk measure and a se-
mantic relatedness measure) obtains the same per-
formance for NE as the EBL-Hope system.

Social issues domain. In Table 6 we show the per-
formance on our last domain. In this social issues
domain DFKI confirms its quality on disambiguat-
ing nouns and named entities, while for verbs the
best system is vua-background, which is based on

EN
Named Word Senses

System All Entities All N V R A
LIMSI 71.3 98.9 68.9 76.5 50.6 77.5 75.0
SUDOKU-Run3 71.2 98.9 68.8 75.8 50.6 75.3 77.8
SUDOKU-Run2 68.9 98.9 66.4 71.9 47.3 77.9 83.3
vua-background 63.6 4.1 66.4 62.7 53.8 76.9 77.4
SUDOKU-Run1 62.4 4.1 65.0 62.8 52.5 50.7 82.3
WSD-games-Run2 58.4 4.1 60.8 55.8 45.8 80.0 79.2
WSD-games-Run1 56.3 4.1 58.6 52.2 45.8 80.0 79.2
WSD-games-Run3 54.4 4.1 56.6 54.1 35.0 72.5 77.8
EBL-Hope 52.0 98.9 48.0 54.1 28.2 80.0 65.3
TeamUFAL 45.6 93.5 41.6 57.2 18.6 39.7 30.9
DFKI - 100.0 - 79.1 58.3 - -
UNIBA-Run3 - 98.9 - 72.1 52.3 80.0 -
UNIBA-Run1 - 98.9 - 71.9 52.3 80.0 -
UNIBA-Run2 - 98.9 - 71.9 52.3 80.0 -
el92-Run1 - 90.9 - - - - -
el92-Run2 - 81.5 - - - - -
el92-Run3 - 81.5 - - - - -
BFS 72.1 98.9 69.9 75.3 52.5 82.9 81.9

ES
Named Word Senses

System All Entities All N V R A
SUDOKU-Run1 62.7 8.3 65.1 65.5 54.3 65.7 62.1
SUDOKU-Run3 62.6 12.2 64.7 64.3 56.7 52.6 71.2
SUDOKU-Run2 60.8 12.2 62.9 64.5 51.2 52.6 63.2
LIMSI 51.0 12.2 52.7 59.6 28.3 59.7 40.7
EBL-Hope - 77.3 - 59.6 - - -
BFS 43.7 12.2 45.1 51.7 20.5 49.4 39.0

IT
Named Word Senses

System All Entities All N V R A
SUDOKU-Run1 65.1 10.5 67.0 65.9 64.2 48.0 64.3
SUDOKU-Run3 61.4 28.6 62.7 62.3 52.3 48.0 70.6
SUDOKU-Run2 58.8 28.6 60.0 56.7 61.5 56.0 64.7
LIMSI 53.1 24.4 54.1 54.2 42.2 38.5 63.5
UNIBA-Run3 - 28.6 - 62.4 63.6 46.2 -
UNIBA-Run1 - 24.4 - 62.2 63.6 46.2 -
UNIBA-Run2 - 24.4 - 62.2 63.6 46.2 -
EBL-Hope - 24.4 - 50.5 - - -
BFS 44.3 28.6 44.9 43.3 38.7 38.5 56.8

Table 4: F1 performance by item class and language on
biomedical domain.

the predominant sense algorithm (McCarthy et al.,
2004) and, as a fallback routine, on the “It Makes
Sense” supervised WSD system (Zhong and Ng,
2010). For the other two languages the SUDOKU
system obtains the best scores, with the exception
of adverbs in the Italian dataset where the UNIBA
system is able to reach an F1 score of 100%.

5 Conclusion and Future Directions

In this paper we described the organization and re-
sults obtained within the SemEval 2015 task 13:
Multilingual Word Sense Disambiguation. Our anal-
ysis of the results revealed interesting aspects of the
integration of WSD and EL tasks, such as the effec-
tiveness of techniques like semantic signatures, PPR
and similarity measures for noun and named entity
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EN
Named Word Senses

System All Entities All N V R A
LIMSI 54.1 57.1 53.9 39.3 59.4 71.7 90.0
SUDOKU-Run2 53.2 56.3 53.1 51.4 49.1 56.6 67.5
SUDOKU-Run3 49.4 56.3 49.1 48.9 42.3 64.2 57.5
EBL-Hope 41.7 74.3 39.8 42.5 28.6 67.9 50.0
TeamUFAL 29.8 54.5 28.4 35.8 12.6 37.8 39.2
el92-Run1 - 70.6 - - - - -
el92-Run3 - 66.7 - - - - -
el92-Run2 - 64.7 - - - - -
DFKI - 57.1 - 44.9 52.3 - -
UNIBA-Run1 - 57.1 - 44.1 60.6 75.5 -
UNIBA-Run2 - 57.1 - 44.1 60.6 75.5 -
UNIBA-Run3 - 57.1 - 44.1 60.6 75.5 -
WSD-games-Run2 - - 48.5 39.6 37.7 64.2 80.0
vua-background - - 47.7 30.5 49.7 70.6 73.0
WSD-games-Run1 - - 47.4 39.6 34.3 64.2 80.0
SUDOKU-Run1 - - 44.7 28.5 51.4 52.0 75.0
WSD-games-Run3 - - 43.4 36.2 35.4 67.9 58.2
BFS 55.3 57.1 55.2 43.6 55.7 77.8 87.5

ES
Named Word Senses

System All Entities All N V R A
SUDOKU-Run2 49.7 50.0 49.7 42.4 60.9 66.7 44.1
SUDOKU-Run3 48.4 50.0 48.3 39.2 58.7 66.7 52.9
SUDOKU-Run1 44.2 - 45.9 32.0 58.7 56.0 52.9
LIMSI 34.8 56.3 33.6 32.2 27.2 81.5 47.1
EBL-Hope - 68.8 - 45.4 - - -
BFS 28.7 62.5 26.8 27.1 16.3 74.1 50.0

IT
Named Word Senses

System All Entities All N V R A
SUDOKU-Run2 52.1 68.6 51.1 46.6 59.0 66.7 58.5
SUDOKU-Run3 49.1 68.6 47.9 43.0 53.0 66.7 63.4
SUDOKU-Run1 48.4 - 50.5 35.8 60.2 66.7 70.7
LIMSI 44.6 64.9 43.3 33.4 45.8 66.7 85.4
UNIBA-Run1 - 75.7 - 43.4 57.8 50.0 -
UNIBA-Run2 - 75.7 - 43.4 57.8 50.0 -
UNIBA-Run3 - 75.7 - 42.2 57.8 50.0 -
EBL-Hope - 75.7 - 37.1 - - -
BFS 36.7 64.9 34.8 27.4 37.3 66.7 70.7

Table 5: F1 performance by item class and language on
maths and computer domain.

disambiguation, and Lesk-based measures for verb,
adjective and adverb disambiguation. Another inter-
esting outcome that emerges from this task is that
supervised approaches are difficult to generalize in
a multilingual setting. In fact, the supervised sys-
tems that participated in this task took into account
only the English language. Moreover, the task con-
firms yet again that the WordNet first sense heuristic
is a hard baseline to beat. Unfortunately, no domain-
specific disambiguation system participated in the
task. However, in the biomedical domain, the par-
ticipating systems show higher quality performances
than in the other considered domains.

As future directions, we would like to continue to
investigate the nature of this novel joint task, and to
concentrate on the differences between named entity

EN
Named Word Senses

System All Entities All N V R A
LIMSI 67.2 54.5 67.7 63.7 63.6 82.8 77.8
vua-background 60.8 54.5 61.1 54.8 70.6 89.7 65.3
SUDOKU-Run1 56.4 60.9 56.2 56.4 52.9 36.4 63.6
SUDOKU-Run2 55.6 81.5 54.5 52.8 56.8 75.9 59.3
WSD-games-Run1 53.5 45.5 53.8 53.0 50.0 82.8 50.0
WSD-games-Run2 53.5 45.5 53.8 53.0 50.0 82.8 50.0
SUDOKU-Run3 51.1 81.5 49.7 48.2 40.9 75.9 63.0
WSD-games-Run3 46.7 45.5 46.7 44.2 38.6 89.7 50.0
EBL-Hope 39.5 36.4 39.6 31.5 40.9 82.8 53.7
TeamUFAL 32.5 64.2 31.0 33.6 31.8 72.4 18.4
DFKI - 90.3 - 73.4 66.7 - -
el92-Run1 - 89.7 - - - - -
el92-Run2 - 89.7 - - - - -
el92-Run3 - 89.7 - - - - -
UNIBA-Run1 - 66.7 - 63.0 63.6 82.8 -
UNIBA-Run2 - 54.5 - 62.3 63.6 82.8 -
UNIBA-Run3 - 54.5 - 61.9 63.6 82.8 -
BFS 70.8 77.4 70.5 69.2 61.4 87.5 79.6

ES
Named Word Senses

System All Entities All N V R A
SUDOKU-Run2 57.0 69.2 56.5 51.6 57.5 87.0 70.0
SUDOKU-Run1 54.2 52.2 54.3 49.7 57.5 52.6 68.0
SUDOKU-Run3 53.3 69.2 52.5 49.5 59.8 78.3 56.0
LIMSI 43.1 34.8 43.5 39.3 32.2 60.9 62.0
EBL-Hope - 52.2 - 26.6 - - -
BFS 34.0 51.9 33.1 30.2 25.0 52.2 52.0

IT
Named Word Senses

System All Entities All N V R A
SUDOKU-Run1 61.0 63.6 60.9 56.0 63.4 90.9 72.4
SUDOKU-Run2 57.9 80.0 56.9 55.6 63.4 66.7 60.3
SUDOKU-Run3 55.8 80.0 54.7 56.1 46.3 66.7 60.3
LIMSI 42.9 57.1 42.4 33.1 46.3 83.3 67.2
UNIBA-Run3 - 47.6 - 47.1 61.0 100.0 -
UNIBA-Run2 - 47.6 - 46.7 61.0 100.0 -
UNIBA-Run1 - 47.6 - 46.3 61.0 100.0 -
EBL-Hope - 47.6 - 16.7 - - -
BFS 35.7 64.0 34.5 27.0 39.0 50.0 60.3

Table 6: F1 performance by item class and language on
social issues domain.

disambiguation and word sense disambiguation with
a special focus on non-European languages.

Acknowledgments

The authors gratefully acknowl-
edge the support of the ERC Start-
ing Grant MultiJEDI No. 259234.

The organization of this task could not have been
possible without the help of many people. In partic-
ular, we would like to thank José Camacho Collados,
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Abstract

We present the LIMSI submission to the Mul-
tilingual Word Sense Disambiguation and En-
tity Linking task of SemEval-2015. The sys-
tem exploits the parallelism of the multilin-
gual test data and uses translations as source of
indirect supervision for sense selection. The
LIMSI system gets best results in English
in all domains and shows that alignment in-
formation can successfully guide disambigua-
tion. This simple but effective method can
serve to generate high quality sense annotated
data for WSD system training.

1 Introduction

This paper describes the LIMSI system at the Multi-
lingual Word Sense Disambiguation (WSD) and En-
tity Linking (EL) task of SemEval-2015 (Moro and
Navigli, 2015). The system performs sense selec-
tion by combining translation information obtained
through alignment of the multilingual test set with
sense ranking. It can thus be described as semi-
supervised given the indirect supervision provided
by the translations. The alignment correspondences
serve as constraints for reducing the search space
for each word to BabelNet synsets (hereafter, Ba-
belSynsets) containing the translation and the re-
tained synsets are sorted according to the BabelNet
sense ranking. Our goal is to test the contribution of
translations in multilingual WSD with no recourse
to context information. The system needs no train-
ing and can be applied directly to parallel data.

The evaluation results show that the LIMSI sys-
tem outperforms all systems in all domains in En-

glish and highlight the important role of translations
in guiding disambiguation. This simple yet effective
approach can serve to generate high quality sense
annotations for WSD system training. In what fol-
lows, we provide a detailed description of the sys-
tem, an analysis of the results and a discussion of the
factors that determine the efficiency of the method.

2 Task Description

The SemEval-2015 Multilingual WSD and EL task
(Moro and Navigli, 2015) aims to promote joint re-
search in these two closely-related topics. WSD
refers to the task of assigning meanings to occur-
rences of words in texts (Navigli, 2009) and its
multilingual counterpart involves the identification
of semantically adequate translations (Resnik and
Yarowsky, 1997; Ide et al., 2002; Apidianaki, 2009).
EL, on the other side, aims at linking entities in a
text to the most suitable entry in a knowledge base.
The systems participating in the Multilingual WSD
and EL task can make a choice between different
options (WSD, EL or both) and one or several WSD
settings (all-words or specific part-of-speech disam-
biguation). Contrary to previous tasks (Navigli et
al., 2013), the SemEval-2015 task addresses the dis-
ambiguation of words of all content parts of speech.
No training data is provided and the test set con-
sists of parallel texts in three languages (English,
Italian and Spanish) pertaining to both open and
closed domains (biomedical, math and computer,
and a broader (social issues) domain). For evalua-
tion, the data is manually annotated with senses from
BabelNet (version 2.5.1), a wide-coverage multilin-
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gual semantic network.1 Senses in BabelNet are
described by synsets which contain lexicographic
and encyclopedic knowledge extracted from various
sources2 in many languages, and are linked between
them with different types of relations (Navigli and
Ponzetto, 2012). The LIMSI system disambiguates
words of all parts of speech in the three languages.
No multi-word units are extracted. However, al-
though only WSD is addressed explicitly, the system
is also assigned EL scores as it manages to annotate
several Named Entities with the correct synset.

3 System Description

3.1 Alignment of the Evaluation Dataset

The test data contains four parallel documents in En-
glish, Spanish and Italian. Our system exploits the
parallelism of the test set, a feature overlooked by
previous systems (Navigli et al., 2013). In order
to avoid some discrepancies observed at the level
of sentence correspondences, we first align the texts
pairwise using the Hunalign sentence aligner (Varga
et al., 2005). Then we run GIZA++ (Och and Ney,
2003) in both directions at the lemma level and re-
tain only intersecting alignments to rule out spurious
correspondences. For each instance of an English
content word in the test set we identify its Spanish
translation in context and, alternatively, the English
translations of Spanish and Italian words. We use
the lemma and part-of-speech information provided
by the task organizers.

3.2 Sense Selection

The established alignment correspondences serve as
constraints to retrieve the BabelSynsets that are rel-
evant for words in the test set, based on the as-
sumption of a semantic correspondence between a
word and its translation in context (Diab and Resnik,
2002). BabelSynsets group synonymous English
words and their translations in different languages.
Polysemous words are found in different synsets, as
in WordNet (Miller et al., 1990), and are associated
to different translations.

The procedure for selecting the most adequate Ba-
belSynset for an occurrence of a word (w) in context
is described in Figure 1. First, we find the synsets of

1The resource is available at http://babelnet.org/
2WordNet, wiki resources and automatic translations.

Notation:
Sw: the set of BabelSynsets for w
t: a translation of w in context
St

w: the set of synsets in which t appears

The Sense Selection Algorithm:
St

w ← ∅
Sw ← getBabelSynsets(w)
for each BabelSynset s ∈ Sw do

if t ∈ s then
add s to St

w

if |St
w| ≥ 1 then

return getBFS(St
w)

else
return getBFS(Sw)

Figure 1: The getBabelSynsets function retrieves
the synsets available for w in BabelNet. The getBFS
function ranks synsets according to importance. If the
aligned translation is contained in different synsets of w,
the most frequent one among this set of synsets is re-
turned. If no synset is retained through alignment, the
system falls back to the BFS baseline.

w (Sw) in BabelNet 2.0 and filter them to keep only
synsets that contain both w and its aligned transla-
tion t in this context (St

w ⊆ Sw).3 If more than one
synsets are retained, we rank them using the default
sense comparator integrated within the BabelNet-
API 2.5 (BabelSynsetComparator) and keep
the highest ranked synset. Otherwise, if t is found in
only one synset, this constitutes the sense tag for the
word. The system falls back to the BabelNet First
Sense (BFS)4 for unaligned instances or in cases
where t is not found in any synset. As the align-
ment constraint does not apply in this case, the BFS
corresponds to the highest ranked among all synsets
of w. Note that the sense selected by our method for
a word might correspond to its BFS or not. As selec-
tion is done among the subset of senses that satisfy
the alignment constraint, if this is the case for the
BFS it remains among the candidate synsets and can

3In these experiments, we only use translations in one lan-
guage. We would expect the use of translations in different lan-
guages to increase the accuracy of the filtering but as a down-
side, it could reduce the recall as synsets should contain all
translations.

4The most frequent sense (MFS) for a word in BabelNet.
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All domains Biomedical Math & computer Social issues

System All WSD System All WSD System All WSD System All WSD

LIMSI 65.8 64.7 LIMSI 71.3 68.9 LIMSI 54.1 53.9 LIMSI 67.2 67.7
SUDOKU-2 61.6 59.9 SUDOKU-3 71.2 68.8 SUDOKU-2 53.2 53.1 vua-background 60.8 61.1
SUDOKU-3 60.7 58.9 SUDOKU-2 68.9 66.4 SUDOKU-3 49.4 49.1 SUDOKU-1 56.4 56.2
vua-background 58.4 60.3 vua-background 63.6 66.4 EBL-Hope 41.7 39.8 SUDOKU-2 55.6 54.5
SUDOKU-1 55.8 57.5 SUDOKU-1 62.4 65.0 TeamUFAL 29.8 28.4 WSD-games-1-2 53.5 53.8

BFS 67.5 66.3 BFS 72.1 69.9 BFS 55.3 55.2 BFS 70.8 70.5

Table 1: Best performing systems at the SemEval-2015 Multilingual WSD and Entity Linking task for English.

All domains Biomedical Math & computer Social issues

System ES IT ES IT ES IT ES IT

LIMSI 45.0 48.4 51.0 53.1 34.8 44.6 43.1 42.9
SUDOKU 1/2 57.1 59.9 62.7 65.1 49.7 52.1 57.0 61.0

BFS 37.5 40.2 43.7 44.3 28.7 36.7 34.0 35.7

Table 2: LIMSI, best system and BFS scores in Spanish and Italian.

be selected, otherwise it is discarded. For instance,
the noun side has 21 BabelSynsets but its Spanish
translation in this context:

The tablets are pale-orange and have a score line
on both sides so that they can be halved.

cara, is found in only two synsets: 00032604n and
00071434n. These are semantically close and de-
scribe fine-grained nuances of the “outer surface of
an object” meaning of side, also expressed by cara.5

Sense ranking correctly suggests 00032604n (“a
surface forming part of the outside of an object”)
as the most adequate sense annotation for this in-
stance of the word. In this case our method improves
over the BFS baseline which proposes 00071431n
(“a place within a region identified relative to a cen-
ter or reference location”), a synset that our system
rules out from the beginning as it does not contain
the translation cara.

4 Evaluation Results

Table 1 gives an overview of the results obtained
for English.6 The systems are evaluated using stan-
dard WSD evaluation metrics. Precision measures
the percentage of the sense assignments provided by

5BabelSynsets often correspond to WordNet synsets de-
scribing fine-grained nuances of meaning.

6A full presentation of the results is available in the task
description paper (Moro and Navigli, 2015).

the system that are identical to the gold standard;
recall measures the percentage of instances that are
correctly labeled by the system. Results in the table
are reported in F1 score. The five best performing
systems in both tasks (WSD & EL) and WSD only
are compared to the BFS baseline.

The LIMSI alignment-based system yields the top
performance in English among the 17 submitted sys-
tems, in all domains. This result is very interesting
given that our method is very simple: it needs no
training and is very easy to compute as it only re-
lies on alignment and sense ranking. Note that the
BFS baseline for English is a very strong one that
none of the systems manages to beat. As the test set
is very small (∼ 138 parallel sentences), we expect
the method to perform even better on larger corpora
where the automatic alignment will have higher ac-
curacy and coverage.

Our system performs poorly in Spanish and Ital-
ian in comparison to English, and is ranked in the
fourth position. The scores obtained in these lan-
guages are given in Table 2 and are compared to the
best performing system and the baseline. A close
analysis of the results reveals that the weaker sys-
tem performance is due to the way the BabelNet
API carries out sense ranking in these languages.
In English, WordNet senses are ranked first sorted
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System EN ES IT

LIMSI 596 596 592

LIMSI = BFS
both X 396 231 236
both × 150 218 198

LIMSI 6= BFS
LIMSI X 37 136 142

BFS X 13 11 16

BFS 563 500 499
X 363 158 182
× 200 342 317

Table 3: The top part of the table gives the # of cor-
rect/wrong annotations made by the LIMSI system. The
lower part shows the # of correct/wrong predictions when
the system falls back to the BFS.

by sense number7 and are followed by Wikipedia
senses in lexicographic order (Navigli, 2013). For
languages other than English where frequency in-
formation is not available, senses are sorted in lex-
icographic order,8 a criterion that often fails to re-
flect their relevance (i.e. rare senses might be placed
higher than more frequent ones). This certainly af-
fects our system which relies on sense ranking a)
when multiple senses are retained after filtering by
alignment, and b) when the BFS is needed.9

The low values of the Spanish and Italian BFS
baseline reported by the task organizers confirm this
finding. As the first sense retained by the Babel-
Net API in these languages often is not the most fre-
quent sense, the baseline is outperformed by almost
all participating systems. The higher scores obtained
by our system compared to the baseline show that
the alignment-based filtering remains beneficial in
spite of the problematic sense ranking, as the aligned
translation might occur in only one BabelSynset.
Table 3 provides a detailed analysis of the results.
The top part of the table shows the accuracy of the
alignment-based predictions, which might coincide
with the BFS or not. Our system improves over the
BFS in 37 cases in English, 136 in Spanish and 142
in Italian. On the contrary, the BFS does better only

7Sense numbers in WordNet reflect the frequency of the
senses in the SemCor corpus (Miller et al., 1993).

8An additional criterion applies to Wikipedia senses accord-
ing to which pages that contain a parenthetical explanation, as
in disambiguation pages, are ranked lower than ones that do not.

9For exemple, in cases of unaligned words or where the
aligned translation is not found in some synset.

13, 11 and 16 times in the three languages. The sys-
tem falls back to the BFS in case of unaligned words
or when the translations are not found in some Ba-
belNet synset. As shown in the lower part of Table
3, the BFS predictions are often wrong, especially
in Spanish and Italian (342 and 317 wrong predic-
tions, respectively). This analysis shows the limited
impact of the BFS on the performance of the LIMSI
system which manages to improve over the baseline
in numerous cases.

The system fails to provide the correct sense in
cases of parallel ambiguities where a word and its
translation carry the same senses. For exemple, this
instance of window:

Here’s a screenshot of kalgebra main window.

is aligned to ventana in the Spanish text, which
translates both the “opening” and the “computer”
sense of the word. Although the Spanish transla-
tion helps to rule out 11 of the 15 BabelSynsets
of window, ranking the remaining four synsets
puts forward the more frequent “opening” sense
(00081285n) which is incorrect for this instance.
Using translations in multiple languages could im-
prove accuracy in these cases.

5 Conclusion

We have described the LIMSI system submitted
to the SemEval-2015 Multilingual All-Words Sense
Disambiguation and Entity Linking task. The sys-
tem is based on automatic translation alignment and
sense ranking, it needs no training and is directly
applied to the evaluation data. By exploiting the in-
direct supervision provided through alignment, this
simple approach gives top performance in English.
The high quality semantic annotations provided by
our system can serve as training data for supervised
WSD algorithms.

Based on these encouraging results, we see a
number of research directions for future work. As
the method in its current form is bound to be used
on parallel data, we would like to experiment with
alignments provided by Machine Translation sys-
tems and disambiguate monolingual texts. More-
over, we intend to explore alternative sense ranking
solutions to improve the performance of the method
in languages other than English.
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Abstract

We describe two tasks—named entity recog-
nition (Task 1) and template slot filling (Task
2)—for clinical texts. The tasks leverage an-
notations from the ShARe corpus, which con-
sists of clinical notes with annotated men-
tions disorders, along with their normaliza-
tion to a medical terminology and eight addi-
tional attributes. The purpose of these tasks
was to identify advances in clinical named en-
tity recognition and establish the state of the
art in disorder template slot filling. Task 2
consisted of two subtasks: template slot fill-
ing given gold-standard disorder spans (Task
2a) and end-to-end disorder span identifica-
tion together with template slot filling (Task
2b). For Task 1 (disorder span detection and
normalization), 16 teams participated. The
best system yielded a strict F1-score of 75.7,
with a precision of 78.3 and recall of 73.2.
For Task 2a (template slot filling given gold-
standard disorder spans), six teams partici-
pated. The best system yielded a combined
overall weighted accuracy for slot filling of
88.6. For Task 2b (disorder recognition and
template slot filling), nine teams participated.
The best system yielded a combined relaxed F
(for span detection) and overall weighted ac-
curacy of 80.8.

1 Introduction

Patient records are abundant with reports, narratives,
discussions, and updates about patients. This un-
structured part of the record is dense with mentions
of clinical entities, such as conditions, anatomical
sites, medications, and procedures. Identifying the

different entities discussed in a patient record, their
status towards the patient, and how they relate to
each other is one of the core tasks of clinical natural
language processing. Indeed, with robust systems
to extract such mentions, along with their associated
attributes in the text (e.g., presence of negation for
a given entity mention), several high-level applica-
tions can be developed such as information extrac-
tion, question answering, and summarization.

In biomedicine, there are rich lexicons that can
be leveraged for the task of named entity recogni-
tion and entity linking or normalization. The Uni-
fied Medical Language System (UMLS) represents
over 130 lexicons/thesauri with terms from a va-
riety of languages. The UMLS Metathesaurus in-
tegrates standard resources such as SNOMED-CT,
ICD9, and RxNORM that are used worldwide in
clinical care, public health, and epidemiology. In
addition, the UMLS also provides a semantic net-
work in which every concept in the Metathesaurus is
represented by its Concept Unique Identifier (CUI)
and is semantically typed (Bodenreider and McCray,
2003).

The SemEval-2015 Task 14, Analysis of Clinical
Text is the newest iteration in a series of community
challenges organized around the tasks of named en-
tity recognition for clinical texts. In SemEval-2014
Task 7 (Pradhan et al., 2014) and previous challenge
2013 (Pradhan et al., 2013), we had focused on the
task of named entity recognition for disorder men-
tions in clinical texs, along with normalization to
UMLS CUIs. This year, we shift focus on the task
of identifying a series of attributes describing a dis-
order mention. Like for previous challenges, we use
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the ShARe corpus1 and introduce a new set of anno-
tations for disorder attributes.

In the remainder of this paper, we describe the
dataset and the annotations provided to the task par-
ticipants, the subtasks comprising the overall task,
and the results of the teams that participated along
with notable approaches in their systems.

2 Dataset

Train Dev Test
Notes 298 133 100
Words 182K 153K 109K

Table 1: Notes, words, and disorder distributions in the
training, development, and testing sets.

The dataset used is the ShARe corpus (Pradhan et
al., 2015). As a whole, it consists of 531 deidentified
clinical notes (a mix of discharge summaries and ra-
diology reports) selected from the MIMIC II clinical
database version 2.5 (Saeed et al., 2002). Part of the
ShARe corpus was released as part of Semeval 2014
Task 7. In fact, to enable meaningful comparisons
of systems performance across years, the 2015 Se-
mEval training set combines the 2014 training and
development sets, while the 2015 SemEval devel-
opment set consists of the 2014 test set. The 2015
test set is a previously unseen set of clinical notes
from the ShARe corpus. Table 2 provides descrip-
tive statistics about the different sets. In addition
to the ShARe corpus annotations, task participants
were provided with a large set of unlabeled deiden-
tified clinical notes, also from MIMIC II (400,000+
notes).

The ShARe corpus contains gold-standard anno-
tations of disorder mentions and a set of attributes, as
described in Table 2. We refer to the nine attributes
as a disorder template. The annotation schema for
the template was derived from the established clini-
cal element model2. The complete guidelines for the
ShARe annotations are available on the ShARe web-
site3. Here, we provide a few examples to illustrate
what each attribute captures.

1share.healthnlp.org
2www.clinicalelement.com
3share.healthnlp.org

Train Dev
Disorder mentions 11,144 7,967
CUI=CUI-less 30% 24%
CUI 70% 76%
Unique CUIs 1,352 1,139
Negation = yes 19.6% 20.1%
Negation = no 80.4% 79.9%
Subject = patient 99.2% 98.4%
Subject = family member <1% 1.4%
Subject = other <1% <1%
Subject = donor other <1% 0%
Uncertainty = yes 8.9% 5.9%
Uncertainty = no 91.1% 94.1%
Course = changed <1% <1%
Course = resolved <1% <1%
Course = worsened < 1% <1%
Course = improved < 1% 1%
Course = decreased 1.6% <1%
Course = increased 2% 1.7%
Course = unmarked 94.1% 95.2%
Severity = slight 1.1% <1%
Severity = severe 3.5% 2.6%
Severity = moderate 5.9% 2.3%
Severity = unmarked 89.49% 94.2%
Conditional = true 4.9% 6.2%
Conditional = false 95.1% 93.8%
Generic = true <1% 1%
Generic = false 99.1 99%
Body Location = CUI 55.3% 44.7%
Body Location = null 44.4% 54.6%
Body Location = CUI-less <1% <1%
Unique BL CUIs 734 511

Table 3: Distribution of different attribute values in the
training and testing sets.

• In the statement “patient denies numbness,” the
disorder numbness has an associated negation at-
tribute set to “yes.”
• In the sentence “son has schizophrenia”, the dis-

order schizophrenia has a subject attribute set to
“family member.”
• The sentence “Evaluation of MI.” contains a dis-

order (MI) with the uncertainty attribute set to
“yes”.
• An example of disorder with a non-default course

attribute can be found in the sentence “The cough
got worse over the next two weeks.”, where its
value is “worsened.”
• The severity attribute is set to “slight” in “He has

slight bleeding.”
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Slot Description Possible Values
CUI CUI; indicates normalized disorder CUI, CUI-less
NEG Negation; indicates whether disorder is negated no∗, yes
SUB Subject; indicates who experiences the disorder patient∗, null, other, family member,

donor family member, donor other
UNC Uncertainty; indicates presence of doubt about the disorder no∗, yes
COU Course; indicates progress or decline of the disorder unmarked∗, changed, increased, de-

creased, improved, worsened, resolved
SEV Severity; indicates how severe the disorder is unmarked∗, slight, moderate, severe
CND Conditional; indicates conditional existence of disorder un-

der specific circumstances
false∗, true

GEN Generic; indicates a generic mention of a disorder false∗, true
BL Body Location; represents normalized CUI of body loca-

tion(s) associated with disorder
null∗, CUI, CUI-less

Table 2: Disorder attributes and their possible values. Default values are indicated with an *.

• In the sentence “Pt should come back if any rash
occurs,” the disorder rash has a conditional at-
tribute with value “true.”
• In the sentence “Patient has a facial rash”, the

body location associated with the disorder “facial
rash” is “face” with CUI C0015450. Note that the
body location does not have to be a substring of
the disorder mention, even though in this example
it is.

The ShARe corpus was annotated following a rig-
orous process. Annotators were professional coders
who trained for the specific task of ShARe annota-
tions. The annotation process consisted of a double
annotation step followed by an adjudication phase.
For all annotations, in addition to all the values for
the attributes, their corresponding character spans in
the text were recorded and are available as part of
the ShARe annotations. Table 3 shows the distri-
bution of the different attributes in the training and
development sets.

3 Tasks

The Analysis of Clinical Text Task is split into two
tasks, one on named entity recognition, and one on
template slot filling for the named entities. Partici-
pants were able to submit to either or both tasks.

3.1 Task 1: Disorder Identification
For task 1, disorder identification, the goal is to rec-
ognize the span of a disorder mention in input clin-
ical text and to normalize the disorder to a unique
CUI in the UMLS/SNOMED-CT terminology. The

UMLS/SNOMED-CT terminology is defined as the
set of CUIs in the UMLS, but restricted to concepts
that are included in the SNOMED-CT terminology.

Participants were free to use any publicly avail-
able resources, such as UMLS, WordNet, and
Wikipedia, as well as the large corpus of un-
annotated clinical notes.

The following are examples of input/output for
Task 1.

1 In “The rhythm appears to be atrial fibrillation.”
the span “atrial fibrillation” is the gold-standard
disorder, and its normalization is CUI C0004238
(preferred term atrial fibrillation). This is a

2 In “The left atrium is moderately dilated.” the dis-
order span is discontiguous: “left atrium...dilated”
and its normalization is CUI C0344720 (preferred
term left atrial dilatation).

3 In “53 year old man s/p fall from ladder.” the
disorder is “fall from ladder” and is normalized
to C0337212 (preferred term accidental fall from
ladder).

Example 1 represents the easiest cases. Example
2 represents instances of disorders as listed in the
UMLS that are best mapped to discontiguous men-
tions. In Example 3, one has to infer that the
description is a synonym of the UMLS preferred
term. Finally, in some cases, a disorder mention
is present, but there is no good equivalent CUI in
UMLS/SNOMED-CT. The disorder is then normal-
ized to “CUI-less”.
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3.2 Task 2: Disorder Slot Filling

This task focuses on identifying the normalized
value for the nine attributes described above: the
CUI of the disorder (very much like in Task 1), nega-
tion indicator, subject, uncertainty indicator, course,
severity, conditional, generic indicator, and body lo-
cation.

We describe Task 2 as a slot-filling task: given a
disorder mention (either provided by gold-standard
or identified automatically) in a clinical note, iden-
tify the normalized value of the nine slots. Note that
there are two aspects to slot filling: cues in the text
and normalized value. In this task, we focus on nor-
malized value and ignore cue detection.

To understand the state of the art for this new task,
we considered two subtasks. In both cases, given a
disorder span, participants are asked to identify the
nine attributes related to the disorder. In Task 2a,
the gold-standard disorder span(s) are provided as
input. In Task 2b, no gold-standard information is
provided; systems must recognize spans for disorder
mentions and fill in the value of the nine attributes.

4 Evaluation Metrics

4.1 Task 1 Evaluation Metrics

Evaluation for Task 1 is reported according to a F-
score, that captures both the disorder span recogni-
tion and the CUI normalization steps. We compute
two versions of the F-score:
• Strict F-score: a predicted mention is considered

a true positive if (i) the character span of the dis-
order is exactly the same as for the gold-standard
mention; and (ii) the predicted CUI is correct. The
predicted disorder is considered a false positive if
the span is incorrect or the CUI is incorrect.
• Relaxed F-score: a predicted mention is a true

positive if (i) there is any word overlap between
the predicted mention span and the gold-standard
span (both in the case of contiguous and discon-
tiguous spans); and (ii) the predicted CUI is cor-
rect. The predicted mention is a false positive if
the span shares no words with the gold-standard
span or the CUI is incorrect.
Thus, given, Dtp, the number of true positives

disorder mentions, Dfp, the number of false posi-
tive disorder mentions, and Dfn, the number of false

negative disorder mentions

Precision = P =
Dtp

Dtp + Dfp
(1)

Recall = R =
Dtp

Dtp + Dfn
(2)

F =
2× P ×R

P + R
(3)

4.2 Task 2 Evaluation Metrics
We introduce a variety of evaluation metrics, which
capture different aspects of the task of disorder tem-
plate slot filling. Overall, for Task 2a, we reported
average unweighted accuracy, weighted accuracy,
and per-slot weighted accuracy for each of the nine
slots. For Task 2b, we report the same metrics, and
in addition report relaxed F for span identification.

We now describe per-disorder evaluation met-
rics, and then describe the overall evaluation metrics
which provide aggregated system assessment. Given
the K slots (s1, ..., sK) to fill (in our task the nine
different slots), each slot sk has nk possible normal-
ized values (si

k)i ∈ 1..nk. For a given disorder, its
gold-standard value for slot sk is denoted gsk, and
its predicted value is denoted psk.

4.2.1 Per-Disorder Evaluation Metrics
Per-disorder unweighted accuracy The un-
weighted accuracy represents the ability of a system
to identify all the slot values for a given disorder.
The per-disorder unweighted accuracy is simply
defined as: ∑K

k=1 I(gsk, psk)
K

where I is the identity function: I(x, y) = 1 if x = y
and 0 otherwise.

Per-disorder weighted accuracy The weighted
per-disorder accuracy takes into account the preva-
lence of different values for each of the slots. This
metric captures how good a system is at identifying
rare values of different slots. The weights are thus
defined as follows:
• The CUI slot’s weight is set to 1, for all CUI val-

ues.
• The body location slot’s weight is defined as

weight(NULL) = 1-prevalence(NULL), and the
weight for any non-NULL value (including CUI-
less) is set to weight(CUI) = 1-prevalence(body
location with a non-NULL value).
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• For each other slot sk, we define nk weights
weight(si

k) (one for each of its possible normal-
ized values) as follows:

∀i ∈ 1..nk, weight(si
k) = 1− prevalence(si

k)

where prevalence(si
k) is the prevalence of value

si
k in the overall corpus(training, development, and

testing sets). The weights are such that highly preva-
lent values have smaller weights and rare values
have bigger weight.

Thus, weighted per-disorder accuracy is defined
as ∑K

k=1 weight(gsk) ∗ I(gsk, psk)∑K
k=1 weight(gsk)

(4)

where, like above, gsk is the gold-standard value of
slot sk and psk is the predicted value of slot sk, and
I is the identity function: I(x, y) = 1 if x = y and 0
otherwise.

4.2.2 Overall Evaluation Metrics
Weighted and Unweighted Accuracy. Armed
with the per-disorder unweighted and weighted ac-
curacy scores, we can compute an average across all
true-positive disorders. For task 2a, the disorders are
provided, so they are all true positive, but for task 2b,
it is important to note that we only consider the true-
positive disorders to compute the overall accuracy.

Accuracy =
∑#tp

i=1 per disorder acc(tpi)
#tp

(5)

Per-Slot Accuracy. Per-slot accuracy are useful in
assessing the ability of a system to fill in a particu-
lar slot. For each slot, an average per-slot accuracy
is defined as the accuracy for each true-positive dis-
order to recognize the value for that particular slot
across the true-positive spans. Thus, for slot sk, the
per-slot accuracy is:

∑#tp
i=1 weight(gsi,k) ∗ I(gsi,k, psi,k)∑#tp

i=1 weight(gsi,k)
(6)

where for each true-positive span there is a gold-
standard value gsi,k and a predicted value psi,k for
slot sk.

Figure 1: Task 1 results.

Disorder Span Identification. This overall met-
ric is only meaningful for Task 2b, where the sys-
tem has to identify disorders prior to filling in their
templates. Like in Task 1, we report an F-score met-
ric to assess how good the system is at identifying
disorder span. Note that unlike in Task 1, this F
score does not consider CUI normalization, as this
is captured through the accuracy in the template fill-
ing task. Thus, a true disorder span is defined as
any overalp with a gold-stand disorder span. In the
case of several predicted spans that overlap with a
gold-standard span, then only one of them is chosen
to be true positive (the longest ones), and the other
predicted spans are considered false positives.

5 Results

5.1 Task 1

16 teams participated in Task 1. Strict and relaxed
precision, recall, and F metrics are reported in Fig-
ure 1. We relied on the strict F to rank different sub-
missions. The best system from team ezDI reported
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75.7 strict F, also reporting the highest relaxed F
(78.7) (Pathak et al., 2015).

For disorder span recognition, most teams used
a CRF-based approach. Features explored included
traditional NER features: lexical (bag of words
and bigrams, orthographic features), syntactic fea-
tures derived from either part-of-speech and phrase
chunking information or dependency parsing, and
domain features (note type and section headers of
clinical note). Lookup to dictionary (either UMLS
or customized lexicon of disorders) was an essential
feature for performance. To leverage further these
lexicons, for instance, Xu and colleagues (Xu et al.,
2015) implemented a vector-space model similar-
ity computation to known disorders as an additional
feature in their appraoch.

The best-performing teams made use of the large
unannotated corpus of clinical notes provided in the
challenge (Pathak et al., 2015; Leal et al., 2015; Xu
et al., 2015). Teams explored the use of Brown clus-
ters (Brown et al., 1992) and word embeddings (Col-
lobert et al., 2011). Pathak and colleagues (Pathak et
al., 2015) note that word2vec (Mikolov et al., 2013)
did not yield satisfactory results. Instead, they report
better results clustering sentences in the unannotated
texts based on their sequence of part-of-speech tags,
and using the clusters as feature in the CRF.

Teams continued to explore approaches for rec-
ognizing discontiguous entities. Pathak and col-
leagues (Pathak et al., 2015), for instance, built a
specialized SVM-based classifier for that purpose.

For CUI normalization, the best performing teams
focused on augmenting existing dictionaries with
lists of unambiguous abbreviations (Leal et al.,
2015) or by pre-processing UMLS and breaking
down existing lexical variants to account for high
paraphrasing power of disorder terms (Pathak et al.,
2015).

5.2 Task 2
Six teams participated in Task 2a. Evaluation met-
rics are reported in Figure 2. We relied on the
Weighted Accuracy (WA) to rank the teams (high-
lighted in the Figure is F*WA, but since in Task
2a gold-standard disorders are provided, F is 1).
The best system (team UTH-CCB) yielded a WA of
88.6 (Xu et al., 2015).

For Task 2b, nine teams participated. Evaluation

metrics are reported in Figure 3. We relied on the
combination of F score for disorder span identifica-
tion and Weighted Accuracy for template filling to
rank the teams (F*WA in the figure). The best sys-
tem (team UTH-CCB) yielded a F*WA of 80.8.

Approaches to template filling focused on build-
ing classifiers for each attribute. Specialized lex-
icons of trigger terms for each attribute (e.g., list
of negation terms) along with distance to disorder
spans was a helpful feature. Overall, like in Task
1, a range of feature types from lexical to syntactic
proved useful in the template filling task.

The per-slot accuracies (columns BL, CUI, CND,
COU, GEN, NEG, SEV, SUB, and UNC in Figures 2
and 3) indicate that overall some attributes are eas-
ier to recognize than others. Body Location, per-
haps not surprisingly, was the most difficult after
CUI normalization, in part because it also requires
a normalization to an anatomical site.

6 Conclusion

In this task, we introduced a new version of the
ShARe corpus, with annotations of disorders and a
wide set of disorder attributes. The biggest improve-
ments in the task of disorder recognition (both span
identification and CUI normalization) come from
leveraging large amounts of unannotated texts and
using word embeddings as additional feature in the
task. The detection of discontiguous disorder seems
to still be an open challenge for the community,
however.

The new task of template filling (identifying nine
attributes for a given disorder) was met with enthu-
siasm by the participating teams. We introduced a
variety of evaluation metrics to capture the differ-
ent aspects of the task. Different approaches show
that while some attributes are harder to identify than
other, overall the best performing teams achieved
excellent results.

Acknowledgments

This work was supported by the Shared Annotated
Resources (ShARe) project NIH R01 GM090187.
We greatly appreciate the hard work of our program
committee members and the ShARe annotators.

308



Figure 2: Task 2a results.
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Abstract 

This paper describes the system developed by 

the University of Texas Health Science Center 

at Houston (UTHealth), for the 2015 SemEval 

shared task on “Analysis of Clinical Text” 

(Task 14). We participated in both sub-tasks: 

Task 1 for “Disorder Identification”, which 

aims to detect disorder entities and encode 

them to UMLS (Unified Medial Language 

System) CUI (Concept Unique Identifier) and 

Task 2 for Disorder Slot Filling, where the task 

is to identify normalized value for modifiers of 

disorders. For Task 1, we developed an 

ensemble approach that combined machine 

learning based named entity recognition 

classifiers with MetaMap, an existing symbolic 

biomedical NLP system, to recognize disorder 

entities, and we used a general Vector Space 

Model-based approach for disorder encoding to 

UMLS CUIs. To identify modifiers of 

disorders (Task 2), we developed Support 

Vector Machines-based classifiers for each 

type of modifier, by exploring various types of 

features. Our system was ranked 3rd for Task 1 

and 1st for the Task 2 (both 2A and 2B), 

demonstrating the effectiveness of machine 

learning-based approaches for extracting 

clinical entities and their modifiers from 

clinical narratives.  

1 Introduction 

Natural language processing (NLP) plays a critical 

role in unlocking important patient information 

from narrative clinical texts, to support various 

clinical applications such as decision support 

systems and translational research. One of the very 

important tasks for clinical NLP research is to ex-

tract clinical concepts such as diseases and treat-

ments. Many clinical NLP systems such as  

MedLEE system (Friedman et al., 1994), MetaMAP 

system (Aronson and Lang, 2010) and cTAKES 

system (Savova et al., 2010), have been developed 

to extract these important clinical concepts from 

text. 

 A number of shared tasks for clinical concepts 

extraction have been organized by different entities, 

including i2b2 (The Center for Informatics for 

Integrating Biology and the Bedside), 

ShARe/CLEF eHealth Evaluation Lab, and 

SemEval (International Workshop on Semantic 

Evaluation) (Kelly et al., 2014; Pradhan et al., 2014; 

Suominen et al., 2013; Uzuner et al., 2011). These 

challenges have greatly promoted clinical NLP 

research by building benchmark datasets and 

innovative methods. The 2015 SemEval Shared 

Task 14, entitled “Analysis of Clinical Text”, is to 

identify disorders and their modifiers from clinical 

text, which is an extension of the SemEval-2014 

challenge. The 2015 SemEval challenge consists of 

two subtasks: Task 1 - disorder recognition, where 

disorder entities need to be detected and normalized 

to UMLS CUIs, and Task 2 - disorder slot filling, 

where the normalized value for nine types of 

modifiers of disorders are to be identified. Task 2 is 

further divided into two subtasks: 1) Task 2A – 

identifying modifiers based on gold standard 

disorders; and 2) Task 2B – identifying modifiers 

based on disorders recognized by our system, an 

end-to-end evaluation. In this paper, we describe 

our approaches and results for both tasks.  

2 Methods 

2.1 Datasets 

For this shared task, organizers prepared three da-

tasets: 1) training set - 298 clinical documents, 2) 

development set - 133 documents and 3) test set – 

100 documents. We developed our models using the 
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training set and optimized parameters using the de-

velopment set. For final submissions on the test set, 

we combined training and development sets to build 

the machine learning classifiers. 

2.2 Task 1 – Disorder Identification 

The disorder identification consists of two subtasks: 

1) recognize disorder entities, and 2) encode recog-

nized disorder entities to concept IDs (CUIs) in 

UMLS (limited to SNOMED-CT). We describe our 

approaches for both steps below: 

Disorder Entity Recognition - The disorder 

recognition task is a typical named entity recogni-

tion (NER) task. We developed two machine 

learning based NER models, including the 

Conditional Random Fields (CRFs) (Lafferty et al., 

2001) and the Structural Support Vector Machines 

(SSVMs). The CRFsuite package (Okazaki, 2007) 

and SVMhmm * are used for CRFs and SSVMs im-

plementations, respectively. In addition, we also 

developed hybrid models that combine the two 

machine learning models with an existing symbolic 

biomedical NLP system – MetaMap. We developed 

hybrid systems for disorder recognition by adopting 

two previously developed ensemble learning strate-

gies, including ensembleML and ensembleMV, which 

were originally developed in our participation of the 

SemEval-2014 (Zhang et al., 2014). The ensem-

bleMV approach follows the majority voting strategy 

to combine the three systems. The ensembleML ap-

proach trains an SVM classifier to combine the pre-

dictions from the three systems. 

We adopted the features engineered in the 

previous participation of SemEval 2014 (Zhang et 

al., 2014), including: word-level features, such as 

bag-of-word; linguistic features; and discourse 

features, such as section name in the clinical notes 

and type of the notes (e.g. ‘DISCHARGE_ SUMM 

ARY’). In this challenge, we further explored the 

deep neural network (DNN) based word embed-

dings. We obtained word embeddings by training a 

deep neural network (Collobert et al., 2011) from 

the unlabeled MIMIC II corpus (about 3G clinical 

notes) provided by the SemEval organizers. 

 Disorder Entity Encoding - We adopted the 

same Vector Space Model (VSM) approach devel-

oped for the SemEval-2014 to encode the disorder 

to UMLS/SNOMED-CT CUIs (Zhang et al., 2014). 

                                                           
* http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html 

This is a general approach to encode clinical entities 

to UMLS CUIs, without utilizing training samples 

provided by this task.   

2.3 Task 2 – Disorder Slot Filling  

The task is to identify eight types of disorder 

modifiers, including negation indicator (NI), subject 

class (SC), uncertainty indicator (UI), course class 

(CC), severity class (SV), conditional class (CO), 

generic class (GC) and body location (BL). For each 

of the first seven types of modifiers, we built SVMs-

based individual classifiers. The implementation of 

SVMs in LibShortText package (Yu et al., 2013) 

was used for this purpose. The LibShortText pack-

age is an open source library for large-scale short-

text classification. 

We systematically extracted the following fea-

tures to train SVMs classifiers, including: 

1). N-gram features. All unigrams and bigrams 

in the sentence were extracted as features.  

2). Context words with position and direction 

(left or right) information. Here we describe the fea-

tures using the following sentence: “patient said he 

has no acute distress before”. There is one disorder 

(‘distress’) in this sentence.  

 Group-1 features: context words within the 

window size of 1 to disorder: [‘acute_L1’, ‘be-

fore_R1’] 

 Group-2 features: context words within the 

window size of 4 to disorder: [‘he_L4’, ‘has_L4’, 

‘no_L4’, ‘acute_L4’, ‘before_R4’] 

 Group-3 features: context words within 

window size range of 5 to 8: [‘patient_L8’, 

‘said_L8’] 

3). Lexicon features, including word lists for ne-

gation, pseudo-negation, conjunction, condition, 

uncertainty, subject, severity, and course.  

4). Dependency relation features. We used the 

Stanford Parser to generate dependency relations of 

a sentence. We only counted dependency relations 

where a target disorder is the governor or the de-

pendent in the relation. We extracted all these syn-

tactic relations as features.  

5). Section names, e.g. ‘Family History’.  

The final set of features was optimized based on 

the performance of cross-validation of the training 

set for each modifier.  
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The body location modifiers require specification 

of the text spans and the corresponding UMLS 

CUIs. Therefore, we first built a NER system for 

body location entities and then applied the same en-

coding approach, similar to the methods used in dis-

order identification task. We also constructed a 

comprehensive body location dictionary from 

UMLS and WordNet (Miller, 1995). The relative 

positions of the target disorder and the candidate 

body location were extracted as features (e.g., 

whether the body location is part of the target 

disorder). For body location encoding, we extended 

VSM-based lookup method by adding a regression-

based re-ranking layer trained from the training cor-

pus. 

2.4 Submissions and Evaluation 

We combined training and development datasets to 

build our final models for all tasks. Since each task 

allows for three submissions, we tried different 

strategies for the three runs.  For Task 1, run 0 and 

run 1 used the ensembleMV method to get better F1; 

while run 2 used the ensembleML method to get 

higher precision, in disorder entity recognition. For 

Task 2A and Task 2B, run 0 and run 2 used two sets 

of parameters optimized for better weighted 

performances; while run 1 used a set of parameters 

optimized for un-weighted performance. For body 

location recognition, only run 2 of Task 2A used 

SSVMs model, all other runs used CRFs models for 

better prediction. 

The evaluation metrics for this task include F-1 

score (strict vs. relaxed), un-weighted accuracy, and 

weighted accuracy etc., as defined by the organiz-

ers. For more details, please refer to the task de-

scription paper or the task website†.  

3 Results and Discussion  

For Task 1, the main evaluation scores were strict 

F1. Table 1 shows the overall performance of three 

runs of our system in Task 1 as reported by the 

organizer, where ‘P’, ‘R’, ‘F’ denotes precision, 

recall, and F1 score respectively. Our best run of 

Task 1 ranked 3rd among all participants. Our disor-

der entity recognition step actually achieved the 

highest F1 of 0.927 under ‘relaxed’ criterion (please 

see Table 2). The performance of disorder encoding 

was not as good as other top performed teams in task 

                                                           
† http://alt.qcri.org/semeval2015/task14/index.php 

1, because we used a general encoding module that 

did not use the CUI annotations in the 

training/development set for training.  

 

Run 
Strict Relaxed 

P R F P R F 

0 .748 .713 .730 .777 .741 .759 

1 .748 .713 .730 .777 .741 .759 

2 .778 .696 .735 .797 .714 .753 
 

Table 1. The performances of the three runs of our system 

on Task 1. 
 

As reported by the organizers, our system 

achieved the best performance in Task 2, both for 

Task 2A - slot filling given gold-standard disorder 

spans and Task 2B - end-to-end system for disorder 

span identification and slot filling. Table 2 shows 

the overall performance of our systems in Task 2A 

and Task 2B.  ‘F,’ ‘A’, and ‘WA’ denotes ‘relaxed’ 

F1 score for disorder entity recognition, overall un-

weighted and weighted accuracy respectively.  

 
Task Run F A F*A WA F*WA 

2A 

0 1.00 .943 .943 .886 .886 

1 1.00 .953 .953 .876 .876 

2 1.00 .943 .943 .886 .886 

2B 

0 .927 .940 .872 .872 .808 

1 .927 .949 .880 .862 .800 

2 .907 .943 .855 .880 .798 
 

Table 2. The overall performances of our system on Task 

2.  

4 Conclusion 

In this paper, we described our participation in the 

SemEval-2015 challenge – Task 14 “Analysis of 

Clinical Text”. Our system was among the top 

ranked systems (ranked 3rd for Task 1, 1st for Task 

2A and Task 2B). These results show that machine 

learning based methods, integrated with medical do-

main specific features, could reasonably identify 

disorders and associated modifiers from clinical 

narratives. 
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Abstract

This paper describes the first SemEval task to
explore the use of Natural Language Process-
ing systems for building dictionary entries,
in the framework of Corpus Pattern Analysis.
CPA is a corpus-driven technique which pro-
vides tools and resources to identify and rep-
resent unambiguously the main semantic pat-
terns in which words are used. Task 15 draws
on the Pattern Dictionary of English Verbs
(www.pdev.org.uk), for the targeted lexi-
cal entries, and on the British National Corpus
for the input text.

Dictionary entry building is split into three
subtasks which all start from the same con-
cordance sample: 1) CPA parsing, where ar-
guments and their syntactic and semantic cate-
gories have to be identified, 2) CPA clustering,
in which sentences with similar patterns have
to be clustered and 3) CPA automatic lexicog-
raphy where the structure of patterns have to
be constructed automatically.

Subtask 1 attracted 3 teams, though none
could beat the baseline (rule-based system).
Subtask 2 attracted 2 teams, one of which beat
the baseline (majority-class classifier). Sub-
task 3 did not attract any participant.

The task has produced a major semantic multi-
dataset resource which includes data for 121
verbs and about 17,000 annotated sentences,
and which is freely accessible.

1 Introduction

It is a central vision of NLP to represent the mean-
ings of texts in a formalised way, amenable to au-
tomated reasoning. Since its birth, SEMEVAL (or

SENSEVAL as it was then; (Kilgarriff and Palmer,
2000)) has been part of the programme of enrich-
ing NLP analyses of text so they get ever closer
to a ’meaning representation’. In relation to lexi-
cal information, this meant finding a lexical resource
which

• identified the different meanings of words in
a way that made high-quality disambiguation
possible,
• represented those meanings in ways that were

useful for the next steps of building meaning
representations.

Most lexical resources explored to date have
had only limited success, on either front. The
most obvious candidates—published dictionaries
and WordNets—look like they might support the
first task, but are very limited in what they offer to
the second.

FrameNet moved the game forward a stage. Here
was a framework with a convincing account of how
the lexical entry might contribute to building the
meaning of the sentence, and with enough meat in
the lexical entries (e.g. the verb frames) so that
it might support disambiguation. Papers such as
(Gildea and Jurafsky, 2002) looked promising, and
in 2007 there was a SEMEVAL task on Frame Se-
mantic Structure Extraction (Baker et al., 2007) and
in 2010, one on Linking Events and Their Partici-
pants (Ruppenhofer et al., 2010).

While there has been a substantial amount of
follow-up work, there are some aspects of FrameNet
that make it a hard target.

• It is organised around frames, rather than
words, so inevitably its priority is to give a co-
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herent account of the different verb senses in
a frame, rather than the different senses of an
individual verb. This will tend to make it less
good for supporting disambiguation.

• Frames are not ‘data-driven’: they are the work
of a theorist (Fillmore) doing his best to make
sense of the data for a set of verbs. The
prospects of data-driven frame discovery are,
correspondingly, slim.

• While FrameNet has worked hard at being sys-
tematic in its use of corpus data, FrameNetters
looked only for examples showing the verb be-
ing used in the relevant sense. From the point
of view of a process that could possibly be au-
tomated, this is problematic.

An approach which bears many similarities to
FrameNet, but which starts from the verb rather than
the frame, and is more thoroughgoing in its empiri-
cism, is Hanks’s Corpus Pattern Analysis (Hanks
and Pustejovsky, 2005; Hanks, 2012; Hanks, 2013).

2 Corpus Pattern Analysis

Corpus Pattern Analysis (CPA) is a new technique
of language analysis, which produces the main pat-
terns of use of words in text. Figure 1 is a sample
lexical entry from the main output of CPA, the Pat-
tern Dictionary of English Verbs1 (PDEV).

This tells us that, for the verb abolish, three pat-
terns were found. For each pattern it tells us the per-
centage of the data that it accounted for, its gram-
matical structure and the semantic type (drawn from
a shallow ontology of 225 semantic types2) of each
of the arguments in this structure. For instance,
pattern 1 means: i) that the subject is preferably
a word referring to [[Human]] or [[Institution]] (se-
mantic alternation), and ii) that the object is prefer-
ably [[Action]], [[Rule]] or [[Privilege]].

It also tells us the implicature (which is simi-
lar to a “definition” in a traditional dictionary) of
a sentence exemplifying the pattern: that is, if
we have a sentence of the pattern [[Institution | Hu-
man]] abolish [[Action=Punishment | Rule | Privilege]],
then we know that [[Institution | Human]] formally

1http://pdev.org.uk
2http://pdev.org.uk/#onto

declares that [[Action=Punishment | Rule | Privi-
lege]] is no longer legal or operative. Abol-
ish has only one sense. For many verbs, there will
be multiple senses, each with one or more pattern.

There are currently full CPA entries for more than
1,000 verbs with a total of over 4,000 patterns. For
each verb a random sample of (by default) 250 cor-
pus instances was examined, used to build the lex-
ical entry, and tagged with the senses and patterns
they represented. For commoner verbs, more cor-
pus lines were examined. The corpus instances were
drawn from the written part of the British National
Corpus3 (BNC).

PDEV has been studied from different NLP per-
spectives, all mainly involved with Word Sense Dis-
ambiguation and semantic analysis (Cinková et al.,
2012a; Holub et al., 2012; El Maarouf et al., ;
El Maarouf and Baisa, 2013; Kawahara et al., ;
Popescu, 2013; Popescu et al., ; Pustejovsky et al.,
2004; Rumshisky et al., ). For example, (Popescu,
2013) described experiments in modeling finite state
automata on a set of 721 verbs taken from PDEV.
The author reports an accuracy of over 70% in pat-
tern disambiguation. (Holub et al., 2012) trained
several statistical classifiers on a modified subset
of 30 PDEV entries (Cinková et al., 2012c) using
morpho-syntactic as well as semantic features, and
obtained over 80% accuracy. On a smaller set of 20
high frequency verbs (El Maarouf and Baisa, 2013)
reached a similar 0.81 overall F1 score with a super-
vised SVM classifier based on dependency parsing
and named entity recognition features.

The goal of Task 15 at SemEval 2015 are i) to ex-
plore in more depth the mechanics of corpus-based
semantic analysis and ii) to provide a high-quality
standard dataset as well as baselines for the advance-
ment of semantic processing. Given the complexity
and wealth of PDEV, a major issue was to select rel-
evant subtasks and subsets. The task was eventually
split into three essential steps in building a CPA lex-
ical entry, that systems could tackle separately:

1. CPA parsing: all sentences in the dataset to be
syntactically and semantically parsed.

2. CPA clustering: all sentences in the dataset to
be grouped according to their similarities.

3http://www.natcorp.ox.ac.uk/
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1
Pattern Institution or Human abolishes Action or Rule or Privilege

58.8%
Implicature

Institution or Human formally declares that Action = Punishment or Rule or Privilege
is no longer legal or operative

2
Pattern Institution 1 or Human abolishes Institution 2 or Human Role

24.4%
Implicature Institution 1 or Human formally puts an end to Institution 2 or Human Role

3
Pattern Process abolishes State of Affairs

14.4%
Implicature Process brings State of Affairs to an end

Figure 1: PDEV Entry for abolish.

Tag Definition
subj Subject
obj Object
iobj Indirect Object

advprep Adverbial Preposition or other
Adverbial/Verbal Link

acomp Adverbial or Verb Complement
scomp Noun or Adjective complement

Table 1: Syntactic tagset used for subtask 1.

3. CPA lexicography: all verb patterns found in
the dataset to be described in terms of their syn-
tactic and semantic properties.

3 Task Description

In order to encourage participants to design sys-
tems which could successfully tackle all three sub-
tasks, all tasks were to be evaluated on the same
set of verbs. As opposed to previous experiments
on PDEV, it was decided that the set of verbs from
the test dataset would be different from the set of
verbs given in the training set. This was meant to
avoid limiting tasks to supervised approaches and to
encourage innovative approaches, maybe using pat-
terns learnt in an unsupervised manner from very
large corpora and other resources. This also im-
plied that the dataset would be constructed so as to
make it possible for systems to generalize from the
behaviour and description of one set of verbs to a
set of unseen verbs used in similar structures, as hu-
man language learners do. Although this obviously
makes the task harder, it was hoped that this would
put us in a better position to evaluate current limits
of automatic semantic analysis.

3.1 Subtask 1: CPA Parsing
The CPA parsing subtask focuses on the detection
and classification (syntactic and semantic) of the

arguments of the verb. The subtask is similar to
Semantic Role Labelling (Carreras and Marquez,
2004) that arguments will be identified in the de-
pendency parsing paradigm (Buchholz and Marsi,
2006), using head words instead of phrases.

The syntactic tagset was designed specially for
this subtask and kept to a minimum, and the seman-
tic tagset was based on the CPA Semantic Ontology.

In Example (1), this would mean identify-
ing government as subject of abolish, from the
[[Institution]] type, and tax as object belonging to
[[Rule]]. The expected output is represented in XML
format in Example (2).

(1) In 1981 the Conservative government abol-
ished capital transfer tax capital transfer tax and
replaced it with inheritance tax.

(2) In 1981 the Conservative <entity syn=‘subj’
sem=‘Institution’> government </entity> <entity
syn=‘v’ sem=‘-’> abolished </entity> capital
transfer <entity synt=‘obj’ sem=‘Rule’> tax
</entity> capital transfer tax and replaced it with
inheritance tax

The only dependency relations shown are those
involving the node verb. Thus, for example, the de-
pendency relation between Conservative and gov-
ernment is not shown. Also only the relations in
Table 1 are shown. The relation between abolished
and replaced is not shown as it is not one of the tar-
geted dependency relations. The input text consisted
of individual sentences one word per line with both
ID and FORM fields, and in which only the target
verb token was pre-tagged.

3.2 Subtask 2: CPA Clustering

The CPA clustering subtask is similar to a Word
Sense Discrimination task in which systems have to
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Layer Annotator dataset observations categories Kappa (Cohen) F-score

Syn
Annotator 1 both 3,662 5 0.898 0.924
Annotator 2 train 4,106 5 0.752 0.789
Annotator 3 test 1,518 5 0.931 0.942

Sem
Annotator 1 both 3,662 108 0.649 0.693
Annotator 2 train 4,106 113 0.444 0.498
Annotator 3 test 1,518 75 0.765 0.782

Table 2: Inter-annotator figures where annotators are compared to the expert (annotator 4) who reviewed all the
annotations (Microcheck Task 1).

predict which pattern a verb instance belongs to.
With respect to abolish (Figure 1), it would in-

volve identifying all sentences containing the verb
abolish which belonged to the same pattern (one of
the patterns in Figure 1) and tagging them with the
same number.

3.3 Subtask 3: CPA Automatic Lexicography

The CPA automatic lexicography subtask aims to
evaluate how systems can approach the design of a
lexicographical entry within CPA’s framework.

The input was, as for the other tasks, plain text
with node verb identified. The output format was
a variant of that shown in Figure 1, simplified to
a form which would be more tractable by systems
while still being a relevant representation from the
lexicographical perspective.

Specifically, contextual roles were discarded and
semantic alternations were decomposed into seman-
tic strings4 so that pattern 1 in Figure 1 would give
rise to six strings (with V for the verb, here abolish):

[[Human]] V [[Action]]

[[Human]] V [[Rule]]

[[Human]] V [[Privilege]]

[[Institution]] V [[Action]]

[[Institution]] V [[Rule]]

[[Institution]] V [[Privilege]]

This transformation from the PDEV format as in
Figure 1 was done automatically and checked man-
ually. These strings are different to (and generally
more numerous than) the patterns evaluated in sub-
task 2. The goal of this subtask was to general-
ize sentence examples for each verb and create a
list of possible semantic strings. This subtask was
autonomous with respect to other subtasks in that
participants did not have to return the set of sen-

4See (Bradbury and El Maarouf, 2013).

tences which matched their candidate patterns, pat-
terns were evaluated independently.

4 Task Data

4.1 The Microcheck and Wingspread Datasets

All subtasks (except the first) include two setups and
their associated datasets: the number of patterns for
each verb is disclosed in the first dataset but not in
the second. This setup was created to see whether it
would influence the results.

The two datasets were also created in the hope
that system development would start on the first
small and carefully crafted dataset (Microcheck) and
only then be tested on a larger and more varied sub-
set of verbs (Wingspread)5.

4.2 Annotation Process

Both Microcheck and Wingspread start from data
extracted from PDEV and the manually pattern-
tagged BNC. We took only verbs declared as com-
plete and started by the same lexicographer, so that
each verb had been checked twice: once by the
lexicographer who compiled the entry and once by
the editor-in-chief. Some tagging errors may have
slipped in but the tagging is generally of high quality
(Cinková et al., 2012a; Cinková et al., 2012b). Addi-
tional checks have been performed on Microcheck,
since this was the dataset chosen for subtask 1, for
which data had to be created. This section describes
the annotation process.

PDEV contains only one kind of link between a
given pattern and a given corpus instance: each verb
token found in the sample is tagged with a pattern
identifier, and the pattern then specifies syntactic

5The datasets as well as the systems’ outputs will soon be
made publicly available on the task website.
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V P I IMP %MP V P I IMP %MP
boo 2 36 27 0.769 ascertain 2 7 4 0.676
teeter 2 28 23 0.828 totter 2 19 12 0.697
begrudge 2 19 11 0.678 tense 3 37 23 0.628
avert 2 240 230 0.958 belch 3 24 14 0.612
breeze 2 12 7 0.679 attain 3 240 200 0.833
wing 2 22 19 0.867 avoid 3 242 176 0.728
brag 2 29 18 0.692 adapt 4 182 98 0.583
sue 2 247 242 0.980 advise 8 230 84 0.391
bluff 2 25 14 0.673 ask 9 573 299 0.518
afflict 2 179 172 0.961 SUM 59 2,423 1,689 —
bludgeon 2 32 16 0.667 AVERAGE 2.95 121.15 84.45 0.721

Table 3: Statistics on the Wingspread test dataset with V standing for verb, P for patterns, I for instances, IMP for
instances of majority pattern, and %MP for proportion of the majority pattern.

V P I IMP %MP V P I IMP %MP
appreciate 2 160 215 0.765 apprehend 3 77 123 0.652
crush 5 62 170 0.413 decline 3 135 201 0.690
continue 7 71 203 0.401
undertake 2 204 228 0.896 SUM 30 749 1,280 —
operate 8 40 140 0.300 AVERAGE 4.286 107 182.857 0.588

Table 4: Statistics on the Microcheck test dataset; abbreviations as for previous table.

roles and their semantic types. The job in subtask 1
annotation consists of tagging the arguments of each
token in the sample, both syntactically and semanti-
cally (see Table 1 for tagsets of each layer). The
syntactic information was the same as for subtask 3
except that category names were shortened and pairs
of categories were merged in two places.6

The annotation was carried out by 4 annotators,
with 3 for the training data and 3 for test data, and
2 annotators annotating both training and test data,
one of them being an expert PDEV annotator. An-
notators could ask for feedback on the task at any
moment, and any doubts were cleared by the ex-
pert annotator. Each pair of annotators annotated
one share of the dataset, and their annotation was
double-checked by the expert annotator. The agree-
ment was not very high (e.g. Annotator 2, see Ta-
ble 2) in some cases so the double-check by the ex-
pert annotator was crucial. Table 2 reports the agree-
ment in terms of F-score and Cohen’s Kappa (Co-
hen, 1960) between each annotator and the expert
annotator.7

6See http://alt.qcri.org/semeval2015/
task15/index.php?id=appendices

7The expert did not start from scratch, but from other anno-

4.3 Statistics on the Data
Strict rules were implemented to develop a high-
quality and consistent dataset:

1. PDEV patterns discriminate exploited8 uses of
a pattern using a different tag; these were left
aside for the CPA task.

2. For the test set, when patterns contained at
least one semantic type or grammatical cate-
gory which was not covered in the training set,
they were discarded.

3. Only patterns which contained more than 3 ex-
amples were kept in the final dataset.

Applying these filters led to the Microcheck
dataset, containing 28 verbs (train: 21; test: 7),
378 patterns (train: 306; test: 72) with 4,529 anno-
tated sentences (train: 3,249; test: 1,280) and to the
Wingspread dataset set containing 93 verbs (train:

tators’ work. Since his target was the conformity of the tagging
with guidelines as well as with CPA’s principles, we maintain
that the expert would have produced a very similar output had
he not started from the product of other annotators, who them-
selves used the output of a system to speed up their work.

8An exploitation corresponds to an anomalous use of a pat-
tern, as in a figurative use.
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73; test: 20), 856 patterns (train: 652; test: 204),
and 12,440 annotated sentences (train: 10,017; test:
2,423). More detailed figures for the test datasets are
provided in Tables 3 and 4.

4.4 Metrics

The final score for all subtasks is the average of F-
scores over all verbs (Eq. 1). What varies across sub-
tasks is the way Precision and Recall are defined.

F1verb =
2× Precisionverb × Recallverb

Precisionverb + Recallverb

ScoreTask =
∑nverb

i=1 F1verbi

nverb

(1)

Subtask 1. Equation 2 illustrates that Precision
and Recall are computed on all tags, both syntactic
and semantic. To count as correct, tags had to be set
on the same token as in the gold standard.

Precision =
Correct tags

Retrieved tags

Recall =
Correct tags

Reference tags

(2)

Subtask 2. Clustering is known to be difficult
to evaluate. Subtask 2 used the B-cubed definition
of Precision and Recall, first used for coreference
(Bagga and Baldwin, 1999) and later extended to
cluster evaluation (Amigó et al., 2009). Both mea-
sures are averages of the precision and recall over
all instances. To calculate the precision of each in-
stance we count all correct pairs associated with this
instance and divide by the number of actual pairs
in the candidate cluster that the instance belongs to.
Recall is computed by interchanging Gold and Can-
didate clusterings (Eq. 3).

Precisioni =
Pairsi in Candidate found in Gold

Pairsi in Candidate

Recalli =
Pairsi in Gold found in Candidate

Pairsi in Gold
(3)

Subtask 3. This task was evaluated as a slot-filling
exercise (Makhoul et al., 1999), so the scores were
computed by taking into account the kinds of errors

that systems make over the 9 slots: errors of Inser-
tion, Substitution, Deletion. Equation 4 formulates
how Precision and Recall are computed.

Precision =
Correct

Correct + Subst + Ins

Recall =
Correct

Correct + Subst + Del

(4)

In order not to penalize systems, the best match
was computed for each Candidate pattern, and one
candidate pattern could match more than one Gold
pattern. When a given slot was filled both in the
Gold data and the Candidate data, this counted as a
“match”. When not, it was a Deletion. If a slot was
filled in the run but not in the gold, it was counted
as an Insertion. When a match (aligned slots) was
also a semantic type match, it was Correct (1 point).
When not, it was a Substitution; the CPA ontology
was used to allow for partial matches, allowing hy-
pernyms and hyponyms. For that particular task, the
maximum number of Candidate patterns was limited
to 150% with respect to the number in the Gold set.

5 Evaluation

The evaluation was split into 2 phases (one week for
each): a feedback phase and a validation phase. The
reason for this was to allow for the detection of un-
foreseen issues in the output of participants’ systems
so as to prepare for any major problem. However,
this was not put to use by participants since only one
team submitted their output in the first phase which
also happened to be their final submission.

5 teams9 participated in the task, but none partic-
ipated in more than one subtask. Subtask 1 attracted
3 teams and subtask 2 attracted 2, while subtask 3
did not receive any submissions. Systems were al-
lowed 3 runs on each subtask and each dataset, and
were asked to indicate which would be the official
one. The following subsections report in brief on
the main features of their systems (for more details
see relevant papers in SemEval proceedings).

5.1 Subtask 1
All systems for this subtask used syntactic depen-
dencies and named entities as features. Since the

9Unfortunately, teams BOB90 and FANTASY did not sub-
mit articles, so it is difficult to analyze their results.
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Category #Gold CMILLS FANTASY BLCUNLP baseline
subj 1,008 0.564 0.694 0.739 0.815
obj 777 0.659 0.792 0.777 0.783
Human 580 0.593 0.770 0.691 0.724
Activity 438 0.450 0.479 0.393 0.408
acomp 308 0.545 0.418 0.702 0.729
LexicalItem 303 0.668 0.830 0.771 0.811
advprep 289 0.621 0.517 0.736 0.845
State Of Affairs 192 0.410 0.276 0.373 0.211
Institution 182 0.441 0.531 0.483 0.461
Action 115 0.421 0.594 0.526 0.506

Table 6: Detailed scores for subtask 1 (10 most frequent categories).

Team Score
baseline 0.624
FANTASY 0.589
BLCUNLP 0.530
CMILLS 0.516

Table 5: Official scores for subtask 1.

subtask allowed it, some systems used external re-
sources such as Wordnet or larger corpora.

BLCUNLP (Feng et al., 2015) used the Stanford
CoreNLP package10 to get POS, NE and basic de-
pendency features. These features were used to pre-
dict both syntax and semantic information. The
method did not involve the use of a statistical classi-
fier.

CMILLS (Mills and Levow, 2015) used three
models to solve the task: one for argument detec-
tion, and the other two for each layer. Argument de-
tection and syntactic tagging were performed using
a MaxEnt supervised classifier, while the last was
based on heuristics. CMILLS also reported the use
of an external resource, the enTentTen12 (Jakubı́ček
et al., 2013) corpus available in Sketch Engine (Kil-
garriff et al., 2014).

FANTASY approached the subtask in a super-
vised setting to predict first the syntactic tags, and
then the semantic tags. The team used features from
the MST parser11, as well as Stanford CoreNLP for
NE, Wordnet12, they also applied word embedding

10http://nlp.stanford.edu/software/
corenlp.shtml

11http://www.seas.upenn.edu/˜strctlrn/
MSTParser/MSTParser.html

12http://wordnet.princeton.edu/

representations to predict the output of each layer.
The baseline system was a rule-based system tak-

ing as input the output of the BLLIP parser (Char-
niak and Johnson, 2005), and mapping heads of rel-
evant dependency relations to the most probable tags
from subtask 1 tagset. The semantic tags were only
then added to those headwords based on the most
frequent semantic category found in the training set.

5.2 Subtask 2
As opposed to subtask 1, systems in subtask 2 used
very few semantic and syntactic resources.

BOB90 used a supervised approach to tackle the
clustering problem. The main features used were
preposition analyses.

DULUTH (Pedersen, 2015) used an unsupervised
approach and focused on lexical similarity (both
first and second order representations) based on uni-
grams and bigrams (see SenseClusters13). The num-
ber of clusters was predicted on the basis of the
best value for the clustering criterion function. The
team also performed some corpus pre-processing,
like conversion to lower case and conversion of all
numeric values to a string.

The baseline system clusters everything together,
so its score depends on the distribution of patterns:
the more a pattern covers all instances of the data
(majority class), the higher the baseline score.

6 Results

6.1 Subtask 1
As previously noted, subtask 1 provided only one
dataset, Microcheck. The results on the test set are

13http://senseclusters.sourceforge.net
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described in Table 5: FANTASY is the best system
with 0.589 average F1 score, but does not beat the
baseline (0.624).

It is worth noting that, on the same set of verbs,
BLCUNLP and FANTASY are almost on a par, but
since the former did not submit one verb file, the
score gap is more significant. FANTASY is a more
precise system while BLCUNLP has higher recall.

To get a better picture of the results, Table 6 pro-
vides the F-scores for the ten most frequent cate-
gories in the test set. We can see that FANTASY
has the best semantic model since it gets the high-
est scores on most semantic categories (except for
State Of Affairs) and systematically beats the base-
line, which assigns a word the most frequent seman-
tic category in the training set. The baseline and
BCUNLP however get higher scores on most syn-
tactic relations except on obj, where the difference
is low. The gap is much more significant on ad-
vprep and acomp, which suggests that FANTASY
does not properly handle prepositional complements
correctly (and/or causal complements). This could
be due to the choice of parser or to model param-
eters. Overall, it seems that progress can still be
made, since systems can benefit from one another.

6.2 Subtask 2

Subtask 2 was evaluated on both datasets. BOB90
only submitted one run while DULUTH submit-
ted three. The results are displayed on Table 7.
For this task, only BOB90 beat the baseline with a
higher amplitude on Microcheck (+0.153) than on
Wingspread (+0.071). This high score welcomes
a more detailed evaluation of the system, since it
would seem that, as also found for subtask 1, prepo-
sitions play a substantial role in CPA patterns and
semantic similarity.

It can also be observed that overall results are bet-
ter on Wingspread. This seems to be mainly due
to the higher number of verbs with a large majority
class in Wingspread (see Table 3), since the base-
line system scores 0.72 on Wingspread, and 0.588
on Microcheck. This shows that when the distri-
bution of patterns is highly skewed, the evaluation
of systems is difficult, and tends to underrate poten-
tially useful systems.

Team Scores
Microcheck Wingspread

BOB90 0.741 0.791
baseline 0.588 0.720
DULUTH-1 (off) 0.525 0.604
DULUTH-2 0.439 0.581
DULUTH-3 0.439 0.615

Table 7: Official scores for subtask 2.

7 Conclusion

This paper introduces a new SemEval task to explore
the use of Natural Language Processing systems for
building dictionary entries, in the framework of Cor-
pus Pattern Analysis. Dictionary entry building is
split into three subtasks: 1) CPA parsing, where ar-
guments and their syntactic and semantic categories
have to be identified, 2) CPA clustering, in which
sentences with similar patterns have to be clustered
and 3) CPA automatic lexicography where the struc-
ture of patterns have to be constructed automatically.

Drawing from the Pattern Dictionary of English
Verbs, we have produced a high-quality resource for
the advancement of semantic processing: it contains
121 verbs connected to a corpus of 17,000 sentences.
This resource will be made freely accessible from
the task website for more in depth future research.

Task 15 has attracted 5 participants, 3 on subtask 1
and 2 on subtask 2. Subtask 1 proved to be more
difficult for participants than expected, since no sys-
tem beat the baseline. We however show that the
submissions possess interesting features that should
be put to use in future experiments on the dataset.
Subtask 2’s baseline was beaten by one of the par-
ticipants on a large margin, despite the fact that the
baseline is very competitive.

It seems that splitting the task into 3 subtasks
has had the benefit of attracting different approaches
(supervised and unsupervised) towards the common
target of the task, which is to build a dictionary entry.
Lexicography is such a complex task that it needs
major efforts from the NLP community to support
it. We hope that this task will stimulate more re-
search and the development of new approaches to
the automatic creation of lexical resources.
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Abstract 

We implemented a syntactic and 
semantic tagging system for SemEval 
2015 Task 15: Corpus Pattern Analysis. 
For syntactic tagging, we present a 
Dependency Chain Search Algorithm that 
is found to be effective at identifying 
structurally distant subjects and objects. 
Other syntactic labels are identified using 
rules defined over dependency parse 
structures and the output of a verb 
classification module. Semantic tagging 
is performed using a simple lexical 
mapping table combined with post-
processing rules written over phrase 
structure constituent types and named 
entity information. The final score of our 
system is 0.530 F1, ranking second in this 
task. 

1 Introduction 

    Corpus Pattern Analysis (CPA) is an important 
language analysis technique, which attempts to 
describe the patterns of word usage in text. In this 
paper, we present the system we developed for 
SemEval-2015 Task 15: CPA, Subtask1: CPA 
parsing. The system operates in two stages: 
syntactic tagging and semantic tagging. We first 
search for the syntactic roles of a verb’s arguments 
in a sentence. We use the following tag set for the 
syntactic roles: “subj” is for subject, “obj” is for 
object, “iobj” is for indirect object, “advprep” is 
for adverbial preposition or other adverbial/verbal 
link, “acomp” is for adverbial or verb complement, 
and “scomp” is for noun or adjective complement. 
For example, take a sentence whose core verb is 
“plan”: “Mr Eigen plans to wage his war 
diplomatically”. The correct tagging of syntactic 

and semantic roles is: Mr [subj/Human Eigen] 
plans [advprep/LexicalItem to] [acomp/Activity 
wage] his war diplomatically.  

Due to time constraints, we put more effort into 
improving the accuracy of syntactic tagging. We 
rely on simpler techniques for semantic tagging. 
For syntactic tagging, we use Stanford CoreNLP 
to extract linguistic attributes, deduce dependency 
chains through dependency relations and to 
classify verbs. When performing semantic tagging, 
we use a data driven mapping of words to their 
most frequent semantic tag in the task's training 
data in conjunction with a small number of post-
processing rules. 

2 Our Methods  

2.1 System  Framework 

Our system consists of five modules (Figure 1). 
The first module is Preprocessing, which generates 
input files with the correct format for Stanford 
CoreNLP to extract linguistic attributes.    
    The second module is Linguistic Attributes. For 
the syntactic layer, tagged arguments must have 
direct or indirect dependency relations with the 
core verb. Dependency relations are thus a critical 
attribute for correctly selecting tagged units and 
types. We employ a number of additional 
linguistic attributes for our tagging rules: parts of 
speech (POS) provide useful information for 
syntactic tagging; direct dependency relations and 
phrase type are helpful in identifying and 
following a dependency chain. Last, named entity 
(NE) tags and phrase-structure constituent types 
contribute to semantic tagging. In general, we 
extract four categories of attributes from sentences: 
dependency relations, POS tags, phrase-structure 
parse, and NE. 

The third module is Verb Classification. Even 
when a verb's dependency relations with related
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Input file

Processed file

Preprocessing

Stanford CoreNLP

Direct dependency,
Parse tree, POS NELinguistic Attributes

Similar structure based on statistics

Classification results

Verb Classification

subj, obj iobj advprep

acompscomp

Syntactic tagging

Rules

Basic token-semantic 
type table

Semantic tagging

Dependency Chain

  
Figure 1.  The system has five modules: Preprocessing, Linguistic Attributes, Verb classification, Syntactic tagging, and 

Semantic tagging. First, it preprocesses input files and extracts 4 attributes: direct dependency, parse tree, POS, and NE. Second, 
it uses the first three attributes for syntactic tagging, during which indirect dependencies are deduced for “subj” and “obj” 
relations, and verbs are classified as candidates for “advprep” tagging. Last, our system uses all four attributes and some post-
processing rules to do semantic tagging. 
 
prepositions are the same, we find that different 
verbs have varying degrees of preference for an 
"advprep" argument. For example, both “abandon” 
and “account” can be followed by “for”, yet only 
“account” is tagged as “advprep”. According to 
corpus statistics, “account” frequently co-occurs 
with prepositions. The Verb Classification module 
is designed to decide whether a verb is strongly 
related to prepositions, allowing the use of this 
information in our tagging rules. 

The fourth module is the Syntactic Tagging. 
This module assigns syntactic tags using a set of 
rules that operate over the annotations provided by 
the Linguistic Attributes module. When tagging 
“subj” and “obj” with basic dependency relations, 
we observed that many of the tagged arguments 
have no direct dependency relation with the core 
verb. We handle these arguments by performing a 
heuristic search for the subj or obj of the nearest 
ancestor having the missing relation. We find that 
this is an effective approach. 

The last module is Semantic Tagging. The 
training data provides us with plenty of 
semantically tagged words, and most of the tagged 
words have only one corresponding semantic type. 
We construct a word to semantic tag mapping 
heuristic based on the most frequent tag for each 
word in the training set. Semantic tags are related 
to certain NE tags and phrase-structure constituent 
types. For instance, person name is normally 
tagged as “Human”, and a place is often tagged as 
“Location”. To capture this, we augment our 

mapping table with a small number of semantic 
tagging rules.  

2.2 Linguistic Attribute Extraction 

We use the Stanford CoreNLP toolkit to get word-
to-word dependency relations, phrase-structure 
parse trees, POS, and NE attributes. Our system 
rewrites some of the syntactic tags. For example, 
the CoreNLP tag “nsubj” is replaced by “subj” in 
train data. Table 1 shows the aggregation of all of 
the linguistic attributes used by the tagging 
modules in our system.  

 
Attributes Description 

dependent ID Sequence number in dependency 
tree 

dependent Dependent token 
phrase type Phrase type 
POS Part of speech 
NE Named entity type 
governor-
dependent 
type 

Dependency relation 

governor Governor token 
governor ID Sequence number of the governor 
Table 1. Attributes used for syntactic and semantic tagging. 

2.3 Verb Classification  

Before tagging, we divide verbs into two 
categories according to the relationship between 
the verb and its related prepositions, which leads 
to better “advprep” tagging. Our system gathers 
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corpus statistics that cue the affinity of each verb 
for the advprep relation. Specifically, we compute 
how often the verb takes a direct prepositional 
argument and how often the direct prepositional 
argument is adjacent to the verb: 

cnt(DirectPrep and )(DirectPrep | )
cnt( )

VP V
V

=  

cnt(Adjacent,DirectPrep and )(Adjacent|DirectPrep, )=
cnt(DirectPrep and )

VP V
V

 
Here, cnt(V) is the total number of sentences that 
contain the verb V, cnt(DirectPrep and V) is the 
number of sentences where the verb V has a direct 
prepositional argument, and cnt(Adjacent, 
DirectPrep and V) counts sentences where the 
verb not only has a direct dependency relation but 
is also directly adjacent to the preposition. Take 
the verb “account” as an example, according to 
our statistics, P(DirectPrep|V) of “account” is 
0.9241, and P(Adjacent|DirectPrep, V) is 0.8425. 
Therefore, we can tell that “account” is strongly 
related to prepositions. Through considerable 
experiments, we set up two threshold values to 
decide whether one verb is related to certain 
prepositions. When P(DirectPrep|V)>=0.45 and 
P(Adjacent|DirectPrep, V)>=0.5, the current verb 
is considered to be related to prepositions. 

2.4 Syntactic Tagging 

2.4.1 subj and obj 
For both subj and obj tagging, we first check 
whether the verb has any direct subj and obj 
dependencies. When such dependencies exist, we 
use them directly to assign the subj or obj tag. If a 
subj or obj is not contained in the direct 
dependency relations, we carry out our 
Dependency Chain Search Algorithm to attempt to 
find and tag a near-by possibly related subj or obj. 
Figure 2 illustrates this algorithm for subj relations.  
 
1 goverWordID = GetGoverWordID(verbID); 
2 for goverWordID != TREE_ROOT_NODE 
3    POS = GetPOSofID(goverWordID);  
4    if POS == "VP" 
5          subjID = GetDirectSubjID(goverWordID); 
6          if subjID != "null"   
7                Tagging(subjID, "subj");  
8     break;    
9    goverWordID = GetGoverWordID(goverWordID); 

Figure 2. Dependency Chain Search Algorithm. 
 

Figure 3 illustrates the operation of this 
algorithm. The first column of the table is the 
dependent word with its id, the second is POS, the 
third is dependency relation, and the forth is 
govern id. 

 
(8)    Court NP nsubj 16

(9)    of PP prep 8

(10)  law NP pobj 9

(11)  in PP prep 10

(14)  Kingdom NP pobj 11

(15)  would VP aux 16

(16)  need VP ccomp 5

(18)  evidence NP dobj 16

(19)  before PP prep 16

(20)  becoming VP pcomp 19

(21) willing ADJP scomp 20

(23)  abandon VP xcomp 21

5

4

3

2

1
 

Figure 3. An example of the Dependency Chain Search 
algorithm at work. The algorithm traverses five dependency 
relations to find that “court” is the subject of “abandon”. 
 
2.4.2 iobj 
For tokens whose indirect dependency relation 
with the verb is “iobj”, we tag it directly. To 
increase coverage, we build a table which contains 
common double object verbs. If the core verb 
belongs to this table, we replace the original tag 
“obj” with “iobj”. 
2.4.3 advprep 
As for prepositions which have direct dependency 
relations with core verbs and their POS are “PP”, 
we check the category of the verb generated by the 
Verb Classification module. We produce the 
"advprep" tag only if the verb is heuristically 
identified as a good candidate for this relation, 
otherwise we abandon tagging. 
2.4.4 acomp 
As for tokens whose dependency type with verb is 
ccomp” or “xcomp”, and if its POS is “VP” or its 
governor’s POS is “VP”, we tag it with “acomp”. 
For tokens whose tag is “advprep”, we search 
downward for a near-by word whose dependency 
type is “pobj” and then tag it with “acomp”. 
2.4.5 scomp 
When a token has the dependency type “acomp” 
within the dependency relations produced by 
Stanford CoreNLP, it is tagged with “scomp”. 
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2.5 Semantic Tagging 

We extract words and their semantic types from 
the SemEval2015 training data, and populate a 
word-to-semantic-type mapping table with the 
most frequent semantic type for each word. We 
then apply the following semantic tagging rules: 

1) If the phrase type of the current token is 
“WHNP”, we tag it as “Anything”, or if the 
token itself is “who”, “whom”, then we tag it 
as “Human”. 

2) If the phrase type of the current token is 
“SBAR” or “WHADVP”, then we tag its 
semantic type as “LexicalItem”. 

3) If the NE type of the current token is 
“NUMBER”, we tag it as “Numerical Value”. 

4) If the NE type of the current token is 
“PERSON”, we tag it as “Human”. 

5) Else, we tag it according to the word-to-
semantic-type mapping table. 

3 Evaluation Results 

Our syntactic and semantic tagging results from 
the official evaluation are shown in Table 2. 
During the official evaluation, we failed to upload 
the “undertake” file, which lead to a 
comparatively lower score on this task. 
 

Verbs syntactic tagging semantic tagging 
P R F P R F 

operate .462 .635 .535 .348 .278 .309 
apprehend .749 .634 .687 .669 .403 .503 
appreciate .795 .735 .764 .718 .489 .581 

continue .857 .776 .814 .701 .495 .580 
crush .788 .679 .729 .561 .296 .388 

decline .862 .862 .862 .660 .474 .552 
undertake .000 .000 .000 .000 .000 .000 

Table 2.   Syntactic and semantic tagging results. 
 

    The final overall F-score of our system is 0.53, 
ranking second on the task, with the baseline 
system achieving 0.624. This F-score is calculated 
by averaging the F-scores achieved on syntactic 
and semantic tagging. On the evaluation data, if 
we ignore the "undertake" file that we failed to 
upload, the average F-score of syntactic tagging 
increases to 0.732, and the combined overall score 
increases to 0.619. Similar to our work, the 
baseline methods are also rule based, but we 
observe that our rules underperform the baseline. 
We believe this is because we used a simpler rule 

set that we spent less time refining for the 
semantic task. 

4  Conclusions 

In this paper, we propose simple but reliable 
techniques for syntactic and semantic tagging. 
These techniques were shown to perform well 
within SemEval 2015 Task 15: Corpus Pattern 
Analysis. We find that an effective way to 
accomplish “subj” and “obj” syntactic tagging is 
to utilize our simple Dependency Chain Search 
algorithm. We also incorporated verb 
classification using simple rules based on corpus 
statistics to increase syntactic tagging accuracy. 
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Abstract

In this paper we present an unsupervised ap-
proach to word sense disambiguation based on
evolutionary game theory. In our algorithm
each word to be disambiguated is represented
as a node on a graph and each sense as a class.
The algorithm performs a consistent class as-
signment of senses according to the similarity
information of each word with the others, so
that similar words are constrained to similar
classes. The dynamics of the system are for-
mulated in terms of a non-cooperative multi-
player game, where the players are the data
points to decide their class memberships and
equilibria correspond to consistent labeling of
the data.

1 Introduction

Word sense disambiguation (WSD) is the task to
identify the intended sense of a word in a compu-
tational manner based on the context in which it
appears (Navigli, 2009). It has been studied since
the beginning of NLP (Weaver, 1955) and also to-
day it is a central topic of this discipline. Many
algorithms have been proposed during the years,
based on supervised (Zhong and Ng, 2010; Tratz
et al., 2007), semi-supervised (Pham et al., 2005)
and unsupervised (Mihalcea, 2005; McCarthy et al.,
2007) learning models. Nowadays, even if super-
vised methods perform better in general domains,
unsupervised and semi-supervised models are gain-
ing attention from the research community with per-
formances close to the state of the art (Ponzetto and
Navigli, 2010). In particular Knowledge-based and

graph based algorithms are emerging as interesting
ways to face the problem (Agirre et al., 2009; Sinha
and Mihalcea, 2007). The peculiarities of those al-
gorithms are that they do not require any corpus evi-
dence and use only the structural properties of a lex-
ical database to perform the disambiguation task.

An unsupervised algorithm which has been im-
plemented in different ways by the community (Mi-
halcea et al., 2004; Haveliwala, 2002; Agirre et al.,
2014; De Cao et al., 2010) is the PageRank (Page
et al., 1999). This algorithm is similar in spirit to
ours but we instead of using the graph to compute
the most important nodes (senses) in it, we use the
network to model the geometry of the data and the
interactions among the data points. In our system
the nodes of the graph are interpreted as players, in
the game theoretic sense (see Section 2), which play
a game in order to maximize their utility. The con-
cept of utility has been used in different ways in the
game theory (GT) literature and in general it refers
to the satisfaction that a player derives from the out-
come of a game (Szabó and Fath, 2007). From our
point of view increasing the utility of a word means
increasing the textual coherence, in a distributional
semantics perspective (Firth, 1957). In fact, in our
framework a word always tries to chose a sense close
to the senses which the other words in the text are
likely to choose.

The starting point of our research is based on the
assumption that the meaning of a sentence emerges
from the interaction of the components which are in-
volved in it. In our study we tried to model this inter-
action and to develop a system in which it is possible
to map lexical items onto concepts. For this reason
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we decided to use a powerful tool, derived from Evo-
lutionary Game Theory (EGT): the non-cooperative
games (see Section 2). EGT and GT have been used
in different ways to study the language use (Pietari-
nen, 2007; Skyrms, 2010) and evolution (Nowak et
al., 2001) but as far as we know, our is the first at-
tempt to use it in a specific NLP task. This choice
is motivated by the fact that GT models are able
to perform a consistent labeling of the data (Hum-
mel and Zucker, 1983; Pelillo, 1997), taking into ac-
count the contextual information. These features are
of great importance for an unsupervised algorithm
which tries to perform a WSD task, because them
can be obtained without any supervision and help
the system to adapt to different contextual domains.

2 Game Theory

In this section we briefly introduce some concepts
of GT and EGT, for detailed analysis of these top-
ics we refer to (Weibull, 1997; Leyton-Brown and
Shoham, 2008; Sandholm, 2010).

GT provides predictive power in interactive deci-
sion situations. It has been introduced by Von Neu-
mann and Morgenstern (1944) and in its normal
form representation (which is the one we will use
in our algorithm) it consists in: a finite set of play-
ers I = (1, .., n), a set of pure strategies for each
player Si = (s1, ..., sn) and an utility function ui :
S1×...×Sn → R which associates strategies to pay-
offs. The utility function depends on the combina-
tion of two strategies played together, not just on the
strategy of a single player. An important assumption
in GT is that the players are rational and try to maxi-
mize the value of ui; furthermore in non-cooperative
games the players choose their strategies indepen-
dently. A strategy s∗i is said to be dominant if and
only if ui(s∗i , s−i) > ui(si, s−i), ∀s−i ∈ S−i. As
an example we can consider the famous Prisoner’s
Dilemma (in Table 1) where the strategy confess is
a dominant strategy for both players and this strategy
combination is the Nash equilibrium of the game.
Nash equilibria are those strategy profiles which are
best response to the strategy of the co-player and no
player has the incentive to unilaterally deviate from
his strategy, because there is no way to do better.

1 \ 2 confess don’t confess
confess -5,-5 0,-6
don’t confess -6,0 -1,-1

Table 1: The Prisoner’s Dilemma.

2.1 Evolutionary Game Theory
EGT has been introduce by Smith and Price (1973)
overcoming some limitations of traditional GT such
as the hyper-rationality imposed on the players, in
fact in real life situations the players choose a strat-
egy according to heuristics or social norms (Szabó
and Fath, 2007). Another important aspect of EGT
is the introduction of an inductive learning process,
in which the agents play the game repeatedly with
their neighborhood, updating their believes on the
state of the game and choosing their strategy accord-
ingly. The strategy space of each player is defined
as a probability distribution over its pure strategies.
It is represented as a vector xi = (xi1, . . . , xim)
where m is the number of pure strategies and each
component xih denotes the probability that player i
choose its hth pure strategy. The strategy space lies
on the m-dimensional standard simplex ∆m where:∑m

h=1 xih = 1 and xih ≥ 0 for all h. The ex-
pected payoff of a pure strategy eh in a single game
is u(eh, x) = eh · Ax where A is the m×m payoff
matrix. The average payoff of all the player strate-
gies is u(x, x) =

∑
h∈S xhu(eh, x). In order to find

the Nash equilibria of the game it is used the repli-
cator dynamic equation (Taylor and Jonker, 1978)

ẋ = [u(eh, x)− u(x, x)] · xh ∀h ∈ S (1)

which allows better than average strategies (best
replies) to grow. As in (Erdem and Pelillo, 2012)
we used the discrete time version of the replicator
dynamic equation:

xh(t+ 1) = xh(t)
u(eh, x)
u(x, x)

∀h ∈ S (2)

where at each time step t the players update their
strategies until the system converges and the Nash
equilibria are found.

3 WSD Games

In this section we will show how we created the data
necessary for our framework and how the games are
played.
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3.1 Graph Construction

We model the geometry of the data as a graph,
with nodes corresponding to the words to be disam-
biguated, denoted by I = {ij}Nj=1, where ij corre-
sponds to the j-th word and N is the number of tar-
get words in a specific text. From I we construct a
N ×N similarity matrixW where each element wij
is the similarity value assigned for the words i and
j. W can be exploited as an useful tool for graph-
based algorithms since it is treatable as weighted ad-
jacency matrix of a weighted graph.

A crucial factor for the graph construction is the
choice of the similarity measure, sim(·, ·) → R
to weights the edges of the graph. For our ex-
periments we used similarity measures which com-
pute the strength of co-occurrence between any two
words ii and ij

wij = sim(ii, ij) ∀i, j ∈ I : i 6= j (3)

Specifically we used the modified Dice coheffi-
cient (mDice) (Dice, 1945), the pointwise mu-
tual information (PMI) (Church and Hanks, 1990)
and the log likelihood ratio (D2) (Dunning, 1993)
These measure have been calculate using the Google
Web1T corpus (Brants and Franz, 2006), a large col-
lection of n-grams (with a window of max 5 words)
occurring in one terabyte of Web documents as col-
lected by Google.

At this point we have the similarity graph W ,
we recall that we will use this matrix in order to
allow the words to play the games only with sim-
ilar words. The higher the similarity among two
words, the higher the reciprocal influence and the
possibility that they belong to a similar class. For
this reason, at first we smooth the data in W and
then choose only the most significant js for each
j ∈ W . The first point is solved using a gaussian

kernel on W , wij = exp (−w2
ij

2σ2 ), where σ is the
kernel width parameter; the second point is solved
applying a k − nearest neighbor algorithm to W ,
which allows us to remove the edges which are less
significant for each i ∈ I . In our experiments we
used σ = 0.5 and k = 25. Moreover, this opera-
tion reduces the computational cost of the algorithm,
which will focus only on relevant similarities.

3.2 The Strategy Space

In order to create the strategy space of the game,
we first use WordNet (Mallery, 1995) to collect the
sense inventories Mi = 1, . . . ,m of each word,
wherem is the number of synsets associated to word
i. Then we set all the sense inventories and obtain
the list of all possible senses, C = 1, . . . , c.

We can now define the strategy space S of the
game in matrix form as:

si1 si2 · · · sic
...

... · · · ...
sn1 sn2 · · · snc

where each row corresponds to the strategy space of
a player and each column corresponds to a sense.
Formally it is a c-dimensional space ∆c and each
mixed strategy profile lives in the mixed strategy
space of the game, given by the Cartesian product
Θ = ×i∈I∆i.

At this point the strategy space can be initialized
with the following formula in order to follow the
constraints described in Section 2.1

sij =

{
|Mi|−1, if sense j is in Mi.

0, otherwise.
(4)

for all i ∈ I and j ∈ S.

3.3 The Payoff Matrix

We encoded the payoff matrix of a WSD game as
a sense similarity matrix among all the senses in
the strategy spaces of the game. In this way the
higher the similarity among two sense candidates,
the higher the incentive for a player to chose that
sense, and play the strategy associated to it.

The c × c sense similarity matrix Z is defined as
follows:

zij = ssim(si, sj) ∀i, j ∈ C : i 6= j (5)

In our experiments we used the GlossV ector mea-
sure (Patwardhan and Pedersen, 2006) in order to
compute the semantic relatedness ssim(·, ·). This
measure calculates the cosine similarity among two
second order context vectors. Each vector is ob-
tained from a WordNet super-glosse, which is the
gloss of a synset plus the glosses of the synsets re-
lated to it.
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run sim P R F1 math med. gen.
1 PMI 57.4 48.9 52.8 47.4 56.3 53.5
2 mDice 58.8 50.0 54.1 48.5 58.4 53.5
3 D2 53.5 45.4 49.1 43.4 54.4 46.7

Table 2: The results of the WSD-games team at SemEval-
2015 task 13. Precision, Recall and F1 in all domains and
F1 in specific domains.

From Z we can obtain the partial semantic simi-
larity matrix for each pair of player, Zij = m × n,
where m and n are the senses of i and j in Z.

In a previous work (Tripodi et al., 2015) we did
not use this information, instead we used labeled
data points to propagate the class membership in-
formation over the graph. In this new version the
use of the semantic information made the algorithm
completely unsupervised.

3.4 System Dynamics
Now that we have the topology of the data W , the
strategy space of the game S and the payoff matrix
Z we can compute the Nash equilibria of the game
according to equation (2). So in each iteration of
the system each player gain its payoffs according to
equation (6) which allows each payoff to be propor-
tional to the similarity (wij) and to the affinity that
player j has to the hs strategy of player i.

ui(eh, x) =
∑
j∈Ni

((wijZij)xj)h (6)

When the system converges each player chooses the
strategy with the highest value.

4 Results and Analysis

The dataset proposed by the organizers of SemEval-
2015 Task 13 (Moro and Navigli, 2015) consists of
five texts from three different domains: math and
computer, biomedical and general. The english cor-
pus is composed of 1426 instances to disambiguate
and 1262 of them have been used in the evalua-
tion. For our experiments we used only the instances
whose lemma has an entry in WordNet 3.0 without
looking up multi-words or trying to link the enti-
ties to other sources such as Wikipedia or BabelNet
(Navigli and Ponzetto, 2012)

We submitted three runs for our system with 1227
single words disambiguated for each run. The only

difference for each run is the similarity measure that
we used to construct the graph W . For run-1 we
used the PMI measure, for run-2 the mDice coef-
ficient and for run-3 the D2. As we expected from
previous experiments on similar datasets, the best
results have been achieved using the mDice coef-
ficient (see Table 2). We obtained low recall values
for all our runs and this because we did not search
multi-words and did not use other sources of infor-
mation for the named entities, in fact the number of
named entities is limited in WordNet.

Looking more closely at the results, we noticed
that we obtained a very low precision (48.5%) in the
math and computer domain and this because even if
the lexical entry of certain instances (eg. in text2:
tab, dialog, script) have an entry in WordNet, their
intended meaning is not present; it can only be ac-
cessible to those systems which use BabelNet to col-
lect the sense inventories. This unexpected problem
affects the performances of the system because even
if those instances will not be considered in the eval-
uation, they have been used by other instances in our
system to play the disambiguation games, compro-
mising the dynamics of the system.

5 Conclusions and Future Works

We have presented an unsupervised system for WSD
based on EGT which takes into account contextual
similarity and semantic similarity information in or-
der to perform a consistent labeling of the data. Its
performances are below those of supervised systems
and are comparable with unsupervised and semi-
supervised systems even if on the Semeval-2015
task 13 dataset we did not use other source of infor-
mation except WordNet, did not search multi-words
and did not aspect that the intended meaning of some
instances is not present in WordNet.

As future work we are planning to do a detailed
evaluation of the system in order to find the most
appropriate measures to use and to incorporate in
the framework other sources of information like Ba-
belNet. Furthermore we are also thinking to test
the system as supervised and semi-supervised, im-
plementing a new initialization of the strategy space
and to test new graph construction techniques.
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Abstract

We introduce an approach to word sense dis-
ambiguation and entity linking that combines
a set of complementary objectives in an exten-
sible multi-objective formalism. During dis-
ambiguation the system performs continuous
optimization to find optimal probability dis-
tributions over candidate senses. Verb senses
are disambiguated using a separate neural net-
work model. Our results on noun and verb
sense disambiguation as well as entity linking
outperform all other submissions on the Se-
mEval 2015 Task 13 for English.

1 Introduction

The task of assigning the correct meaning to a given
word or entity mention in a document is called word
sense disambiguation (WSD) (Navigli, 2009) or en-
tity linking (EL) (Bunescu and Pasca, 2006), respec-
tively. Successful disambiguation requires not only
an understanding of the topic or domain a document
is dealing with (global), but also an analysis of how
an individual word is used within its local context.
E.g., the meanings of the word “newspaper” as the
company or the physical product, often cannot be
distinguished by the topic, but by recognizing which
type of meaning fits best into the local context of its
occurrence. On the other hand, for an ambiguous
entity mention such as “Michael Jordan” it is impor-
tant to recognize the topic of the wider context to
distinguish, e.g., between the basketball player and
the machine learning expert.

The combination of the two most commonly used
reference knowledge bases for WSD and EL, e.g.,

WordNet (Fellbaum, 1998) and Wikipedia, by Ba-
belNet (Navigli and Ponzetto, 2012) has enabled a
new line of research towards the joint disambigua-
tion of words and named entities. Babelfy (Moro
et al., 2014) has shown the potential of combining
these two tasks in a purely knowledge-driven ap-
proach that jointly finds connections between po-
tential word senses in the global context. On the
other hand, typical supervised methods (Zhong and
Ng, 2010) trained on sense-annotated corpora are
usually quite successful in dealing with individual
words in a local context. Hoffart et al. (2011) rec-
ognize the importance of combining both local con-
text and global context for robust disambiguation.
However, their approach is limited to EL, where op-
timization is performed in a discrete setting.

We present a system that combines disambigua-
tion objectives for both global and local contexts
into a single multi-objective function. In contrast
to prior work we model the problem in a continuous
setting based on probability distributions over can-
didate meanings. Our approach exploits lexical and
encyclopedic knowledge, local context information
and statistics of the mapping from text to candidate
meanings. Furthermore, we introduce a deep learn-
ing approach to verb sense disambiguation based on
semantic role labeling.

2 Approach

The SemEval-2015 task 13 (Moro and Navigli,
2015) requires a system to jointly detect and dis-
ambiguate word and entity mentions given a refer-
ence knowledge base. The provided input to the sys-
tem are tokenized, lemmatized and POS-tagged doc-
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uments; the output are sense-annotated mentions.
Our system employs BabelNet 1.1.1 as reference

knowledge base (KB). BabelNet is a multilingual se-
mantic graph of concepts and named entities that are
represented by synonym sets, called Babel synsets.

2.1 Mention Extraction & Entity Detection

We define a mention to be a sequence of tokens in
a given document for which there exists at least one
candidate meaning in the KB. The system considers
all content words (nouns, verbs, adjectives, adverbs)
as mentions including also multi-token words of up
to 5 tokens that contain at least one noun. In ad-
dition, we apply a pre-trained stacked linear-chain
CRF (Lafferty et al., 2001) using the FACTORIE
toolkit of version 1.1 (McCallum et al., 2009) to
identify named entity (NE) mentions. In our ap-
proach, we distinguish NEs from common nouns
and treat them as two different classes because there
are many common nouns also referring to NEs mak-
ing disambiguation unnecessarily complicated.

2.2 Candidate Search

After potential mentions are extracted the system
tries to identify their candidate meanings, i.e., the
appropriate synsets. Mentions without such can-
didates are discarded. The mapping of candi-
date mentions to synsets is based on similarities
of their surface strings or lemmas. If the surface
string or lemma of a mention matches the lemma
of a synonym in a synset that has the same part
of speech, the synset will be considered a candi-
date meaning. We allow partial matches for Ba-
belNet synonyms derived from Wikipedia titles or
redirections. A partial match allows the surface
string of a mention to differ by up to two tokens
from the Wikipedia title (excluding everything in
parentheses) if the partial string was used at least
once as an anchor for the corresponding Wikipedia
page. For example, for the Wikipedia title Arm-
strong School District (Pennsylvania), the follow-
ing surface strings would be considered matches:
“Armstrong School District (Pennsylvania)”, “Arm-
strong School District”, “Armstrong”, but not
“School”, since “School” was never used as an an-
chor. If there is no match we try the same procedure
applied to the lowercased text or lemma.

Because of the distinction between nouns and

named entities we treat NE as a separate POS tag.
Candidate synsets for NEs are Babel synsets con-
sidered NEs in BabelNet, and additionally Babel
synsets of all Wikipedia senses that are not consid-
ered NEs. Similarly, candidate synsets for nouns are
noun synsets that are not considered NEs in addi-
tion to all synsets of WordNet senses in BabelNet.
We add synsets of Wikipedia senses and WordNet
senses, respectively, because the distinction of NEs
and simple concepts is not always clear in BabelNet.
For example the synset for “UN” (United Nations) is
considered a concept whereas it could also be con-
sidered a NE. Finally, if there is no candidate for a
potential noun mention we try to find NE candidates
for it and vice versa.

2.3 Disambiguation of Nouns and Named
Entities

We formulate the disambiguation problem in a con-
tinuous setting by using probability distributions
over candidates. This has several advantages over
a discrete setting. First, we can exploit well estab-
lished continuous optimization algorithms, such as
conjugate gradient or LBFGS, which guarantee to
converge to a local optimum. Second, by optimiz-
ing upon probability distributions we are optimizing
the actually desired result in contrast to densest sub-
graph algorithms where such probabilities need to
be calculated artificially afterwards, e.g., Moro et al.
(2014). Third, discrete optimization usually works
on a single candidate per iteration whereas in a con-
tinuous setting, probabilities are adjusted for each
candidate, which is computationally advantageous
for highly ambiguous documents.

Given a set of objectives O the overall objective
function O is defined as the sum of all normalized
objectives O ∈ O given a set of mentions M :

O(M) =
∑
O∈O

O(M)
Omax(M)−Omin(M)

. (1)

We normalize each objective using the difference
of their maximum and minimum value for the given
document. For disambiguation we optimize the
multi-objective function using Conjugate Gradient
(Hestenes and Stiefel, 1952) with up to 1000 iter-
ations per document.
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Coherence Jointly disambiguating all mentions
within a document has been shown to have a large
impact on disambiguation quality. We adopt the idea
of semantic signatures and the idea of maximizing
the semantic agreement among selected candidate
senses from Moro et al. (2014). We define the con-
tinuous objective function based on probability dis-
tributions pm(c) over the candidate set Cm of each
mention m ∈M in a document as follows:

Ocoh(M) =
∑
m∈M
c∈Cm

∑
m′∈M
m′ 6=m
c′∈Cm′

s(m, c,m′, c′)

s(m, c,m′, c′) = pm(c) · pm′(c′) · 1((c, c′) ∈ S)

pm(c) =
eλm,c∑

c′∈Cm
eλm,c′ , (2)

where S denotes the semantic interpretation graph,
1 the indicator function and pm(c) is a softmax
function. The only free, optimizable parameters are
the softmax weights λm,c. This objective can be
interpreted as finding the densest subgraph of the
semantic interpretation graph where each node is
weighted by its probability and therefore each edge
is weighted by the product of its adjacent vertex
probabilities.

Type Classification One of the biggest problems
of supervised approaches to WSD is the size and
synset coverage of training corpora such as Sem-
Cor (Miller et al., 1993). One way to circum-
vent this problem is to use a coarser set of seman-
tic classes that groups synsets together. Previous
studies on using semantic classes for disambigua-
tion showed promising results (Izquierdo-Beviá et
al., 2006). WordNet provides a mapping, called lex-
names, of synsets into 45 types based on the syntac-
tic categories of synsets and their logical groupings1.

A multi-class logistic (softmax) regression model
was trained that calculates a probability distribution
qm(t) over lexnames t given a potential WordNet
mention m. The features used as input to the model
are the following: embedding of the mention’s text,
sum of embeddings of all sentence words, embed-
ding of the dependency parse parent, collocations

1http://wordnet.princeton.edu/man/
lexnames.5WN.html

of surrounding words (Zhong and Ng, 2010), sur-
rounding POS tags and possible lexnames. We used
pre-trained embeddings from Mikolov et al. (2013).

Type classification is included in the overall ob-
jective in the following form:

Otyp(M) =
∑
m∈M
c∈Cm

qm(tc) · pm(c) (3)

Priors Another advantage of working with proba-
bility distributions over candidates is the easy inte-
gration of prior information. E.g., the word “Paris”
without further context has a strong prior on its
meaning as a city instead of a person. Our approach
utilizes prior information in form of frequency
statistics over candidate synsets for a mention’s sur-
face string. These priors are derived from annota-
tion frequencies provided by WordNet for Babel-
synsets containing the respective WordNet sense
and from occurrence frequencies in Wikipedia ex-
tracted by DBpedia Spotlight(Daiber et al., 2013) for
synsets containing only Wikipedia senses. Laplace-
smoothing is applied to all prior frequencies. This
prior is used to initialize the probability distribution
over candidate synsets. Note that the priors are used
“naturally”, i.e., as actual priors and not during con-
text based optimization itself.

Furthermore, because candidate priors for NE
mentions can be very high we add an additional
L2-regularization objective for NE mentions with
λ = 0.001, which we found to work best on de-
velopment data. Finally, named entities were fil-
tered out if they were included in another NE, had
no connection in the semantic interpretation graph
with another candidate sense of the input document
or were overlapping with another NE but were con-
nected worse.

2.4 Disambiguation of Verbs
The disambiguation of verbs requires an approach
that focuses more on the local context and especially
the usage of a verb within a sentence. Therefore, we
train a neural network based on semantic role label-
ing (SRL) and sentence words. Figure 1 illustrates
an example network. The input is composed of the
word embeddings (Turian et al., 2010) for each fea-
ture (word itself, its lemma, SRLs and bag of sen-
tence words). All individual input embeddings are
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Figure 1: Disambiguation neural network for “won”
in the sentence “Obama won the Nobel Prize.”

50-dimensional and connected to a 100-dimensional
hidden layer. The output layer consists of all can-
didate synsets of the verb. The individual output
weights Wc are candidate specific. To ensure bet-
ter generalization and to deal with the sparseness of
training corpora,Wc is defined as the following sum:

Wc = Ws(c) +
∑

sp∈Ps(c)

Wsp +
∑

se∈Es(c)

Wse , (4)

where s(c) is the respective synset of c, Ps is the set
of all hypernyms of s (transitive closure) and Es are
the synsets entailed by s. We used ClearNLP2(Choi,
2012) for extracting SRLs.

3 Results

The results of our system are shown in Table 1.
Our approaches to the disambiguation of English
nouns, named entities and verbs generally outper-
formed all other submissions across different do-
mains as well as the strong baseline provided by
the most-frequent-sense (MFS). This demonstrates
the system’s capability to adapt to different domains.
However, results on the math and computer domain
also reveal that performance strongly depends on
the document topic. The results for this domain are
worse compared to the other domains for almost all
participating systems, which may indicate that exist-
ing resources do not cover this domain as well as the
others. Another potential explanation is that enforc-
ing only pairwise coherence does not take the hidden

2http://clearnlp.wikispaces.com

bio math gen all
MFS 75.3 43.6 69.2 66.7

best other 76.5 51.4 63.7 64.8
DFKI 79.1 44.9 73.4 70.3

(a) Nouns
bio math gen all

MFS 98.9 57.1 77.4 85.7
best other 98.9 74.3 89.7 87.0

DFKI 100.0 57.1 90.3 88.9

(b) Named Entities
bio math gen all

MFS 52.5 55.7 61.4 55.1
best other 53.8 60.6 70.6 57.1

DFKI 58.3 52.3 66.7 57.7

(c) Verb

Table 1: F1 scores of our system, the best other sys-
tem and an MFS baseline on the disambiguation of
English nouns, named entities and verbs for all do-
mains of the SemEval 2015 task 13. bio- biomedi-
cal; math- math & computer; gen- general

topics computer and maths into account that connect
all concepts in the specific document. This might be
an interesting point for further research.

4 Conclusion

We have presented a robust approach for disam-
biguating nouns and named entities as well as a neu-
ral network for verb sense disambiguation that we
used in the SemEval 2015 task 13. Our system
achieved an overall F1 score of 70.3 for nouns, 88.9
for NEs and 57.7 for verbs across different domains,
outperforming all other submissions for these cate-
gories of English. The disambiguation of nouns and
named entities performs especially well compared
to other systems and can still be extended through
the introduction of additional, complementary ob-
jectives. Disambiguating verbs remains a very chal-
lenging task and the promising results of our model
still leave much room for improvement.
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Abstract

We present a hybrid knowledge-based ap-
proach to multilingual word sense disam-
biguation using BabelNet. Our approach is
based on a hybrid technique derived from the
modified version of the Lesk algorithm and
the Jiang & Conrath similarity measure. We
present our system's runs for the word sense
disambiguation subtask of the Multilingual
Word Sense Disambiguation and Entity Link-
ing task of SemEval 2015. Our system ranked
9th among the participating systems for En-
glish.

1 Introduction

The computational identification of the meaning of
words in context is called Word Sense Disambigua-
tion (WSD), also known as Lexical Disambigua-
tion. There have been a significant amount of re-
search on WSD over the years with numerous differ-
ent approaches being explored. Multilingual word
sense disambiguation aims to disambiguate the tar-
get word in different languages. This, however, in-
volves a different scenario compared to monolingual
WSD in the sense that a single word in a language
might have varying number of senses in other lan-
guages with significant differences in the semantics
of some of the available senses.

Approaches to word sense disambiguation may
be: (1) knowledge-based which depends on some
knowledge dictionary or lexicon (2) supervised ma-
chine learning techniques which train systems from
labelled training sets and (3) unsupervised which

is based on unlabelled corpora, and do not exploit
any manually sense-tagged corpus to provide a sense
choice for a word in context.

We present a hybrid knowledge-based approach
based on the Modified Lesk algorithm and the Jiang
& Conrath similarity measure using BabelNet (Nav-
igli and Ponzetto, 2012). The system presented here
is an adaptation of our earlier work on monolingual
word sense disambiguation in English (Ayetiran et
al., 2014).

2 Methodology

Figure 1 illustrates the general architecture of our
hybrid disambiguation system.

Figure 1: The Hybrid Word Sense Disambiguation Sys-
tem - A system that combines two distinct disambigua-
tion submodules.
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2.1 The Lesk Algorithm

Micheal Lesk (1986) invented this approach named
gloss overlap or the Lesk algorithm. It is one of the
first algorithms developed for the semantic disam-
biguation of all words in unrestricted texts. The only
resource required by the algorithm is a set of dictio-
nary entries, one for each possible word sense, and
knowledge about the immediate context where the
sense disambiguation is performed. The idea behind
the Lesk algorithm represents the seed for today's
corpus-based algorithms. Almost every supervised
WSD system relies one way or the other on some
form of contextual overlap, with the overlap being
typically measured between the context of an am-
biguous word and contexts specific to various mean-
ings of that word, as learned from previously anno-
tated data.

The main idea behind the original definition of
the algorithm is to disambiguate words by finding
the overlap among their sense definitions. Namely,
given two words, W1 and W2, each with NW1 and
NW2 senses defined in a dictionary, for each pos-
sible sense pair W1i and W2j , i = 1, ......, NW1,
j = 1, ......, NW2, we first determine the over-
lap of the corresponding definitions by counting the
number of words they have in common. Next, the
sense pair with the maximum overlap is selected,
and therefore the sense is assigned to each word in
the text as the appropriate sense. Several variations
of the algorithm have been proposed after the initial
work of Lesk. Ours follow the work of Banerjee and
Pedersen (2002) who adapted the algorithm using
WordNet (Miller, 1990) and the semantic relations
in it.

2.2 Jiang & Conrath Similarity Measure

Jiang & Conrath similarity (Jiang & Conrath, 1997)
is a similarity metric derived from corpus statistics
and the WordNet lexical taxonomy. The method
makes use of information content (IC) scores de-
rived from corpus statistics (Reisnik 1995) to weight
edges in the taxonomy. Edge weights are set to the
difference in IC of the concepts represented by the
two connected notes.

For this algorithm, Reisnik (1995)’s IC measure
is augmented with the notion of path length between

concepts. This approach includes the information
content of the concepts themselves along with the
information content of their lowest common sub-
sumer. A lowest common subsumer is a concept
in a lexical taxonomy which has the shortest dis-
tance from the two concepts compared. They argue
that the strength of a child link is proportional to the
conditional probability of encountering an instance
of the child sense si given an instance of its parent
sense. The resulting formula can be expressed in
Equation (1) below:

Dist(w1, w2) = IC(s1) + IC(s2)
−2× IC(Lsuper(s1, s2))

(1)

Where s1 and s2 are the first and second senses
respectively and LSuper (lowest common subsumer)
is the lowest super-ordinate of s1 and s2. IC is the
information content given by equation (2):

IC(c) = log−1P (s) (2)

P(s) is the probability of encountering an instance of
sense s.

3 The Hybrid WSD System

For monosemous words, the sense is returned as dis-
ambiguated based on the part of speech. For poly-
semous words, we followed the Adapted Lesk ap-
proach of Banerjee and Pederson (2002) but instead
of a limited window size used by Banerjee and Ped-
erson, we used all context words as the window size.

Most prior work has not made use of the
antonymy relation for WSD. But according to Ji
(2010), if two context words are antonyms and be-
long to the same semantic cluster, they tend to rep-
resent the alternative attributes for the target word.
Furthermore, if two words are antonymous, the gloss
and examples of the opposing senses often con-
tain many words that are mutually useful for dis-
ambiguating both the original sense and its oppo-
site. Therefore, we added the glosses of antonyms
in addition to hypernyms, hyponyms, meronyms etc.
used by Banerjee and Pedersen (2002). Also, for
verbs we have added the glosses of entailment and
causes relations of each word sense to their vectors.
For adjectives and adverbs, we added the morpho-
logically related nouns to the vectors of each word
sense in computing the similarity score.
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The similarity score for the Modified Lesk al-
gorithm is computed using the Cosine similarity.
The vectors are composed using the glosses of the
word senses, that of their hypernyms, hyponyms,
and antonyms. We then compute the cosine of the
angle between the two vectors. This metric is a
measurement of orientation and not magnitude. The
magnitude of the score for each word is normalized
by the magnitude of the scores for all words within
the vector. The resulting normalized scores reflect
the degree the sense is characterized by each of the
component words.

Cosine similarity can be trivially computed as the
dot product of vectors normalized by their Euclidean
length:

~a = (a1, a2, a3, ....an) and ~b = (b1, b2, b3, ....bn)

Here an and bn are the components of vectors con-
taining length normalized TF-IDF scores for either
the words in a context window or the words within
the glosses associated with a sense being scored.
The dot product is then computed as follows:

~a.~b =
∑n

i=1 aibi = a1b1 + a2b2 + .....+ anbn

The dot product is a simple multiplication of each
component from the both vectors added together.
The geometric definition of the dot product given by
equation (3):

~a.~b =‖~a‖ ||~b||cosθ (3)

Using the the cummutative property, we have equa-
tion (4):

~a.~b = ||~b||‖~a‖ cosθ (4)

where‖~a‖ cosθ is the projection of ~a into~b in which
solving the dot product equation for cosθ gives the
cosine similarity in equation (5):

cosθ =
~a.~b

‖~a‖ ||~b||
(5)

where a.b is the dot product and‖a‖ and ||b|| are the
vector lengths of a and b, respectively.

We disambiguated each target word in a sentence
using the Jiang & Conrath similarity measure using
all the context words as the window size. We did this
by computing Jiang & Conrath similarity score for
each candidate senses of the target word and select
the sense that has the highest sum total similarity
score to all the words in the context window.

For each context word w and candidate word
senses ceval, we compute individual similarity
scores using equation (6):

sim(w, ceval) = maxc∈sen(w)[sim(c, ceval)] (6)

where sim(w, ceval) function computes the maxi-
mum similarity score obtained by computing Jiang
& Conrath similarity for all the candidate senses in
a context word. The aggregate summation of the in-
dividual similarity scores is given in equation (7):

argmaxceval∈sen(W) =
∑

w∈context(W)

maxc∈sen(w)

[sim(c, ceval)]
(7)

An agreement between the results produced by
each of the two algorithms means the word un-
der consideration has been likely correctly disam-
biguated and the sense on which they agreed is re-
turned as the correct sense. Whenever one module
fails to produce any sense that can be applied to a
word but the other succeeds, we just return the sense
computed by the successful module. Module fail-
ures occur when all of the available senses receive
a score of 0 according to the module’s underlying
similarity algorithm (e.g., due to lack of overlapping
words for Modified Lesk).

Finally, in a situation where the two modules
select different senses, we heuristically resolved
the disagreement. Our heuristic first computes the
derivationally related forms of all of the words in
the context window and adds each of them the vec-
tor representation of the word being assessed. Then
for the senses produced by the Modified Lesk and
Jiang & Conrath algorithms, we obtain the similar-
ity score between the vector representations of the
two competing senses and the new expanded con-
text vector. The algorithm returns the sense selected
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by the module whose winning vector is most similar
to the augmented context vector.

The intuition behind this notion of validation is
that the glosses of a word sense, and that of their se-
mantically related ones in the WordNet lexical tax-
onomy should share words in common as much as
possible with words in context with the target word.
Adding the derivationally related forms of the words
in the context window increases the chances of over-
lap when there are mismatches caused by changes in
word morphology. When both modules fail to iden-
tify a sense, the Most Frequent Sense (MFS) in the
Semcor corpus is used as the appropriate sense.

4 Experimental Setting

The SemEval 2015 Multilingual Word Sense Disam-
biguation and Entity Linking task provides datasets
in English, Spanish and Italian. BabelNet (Navigli
and Ponzetto, 2012) which provides automatic trans-
lation of each word sense in other languages have
been employed. To enrich the glosses used by the
Modified Lesk algorithm, the glosses provided by
BabelNet from Wikipedia in the 3 subtask languages
have been used to extend the initial glosses available
in WordNet (Miller, 1990).

Furthermore, BabelNet contains some word
senses which are not available in WordNet. These
senses and their glosses were used directly with-
out any reference to WordNet translation since it
does not have any. For English, we disambiguate
all the open target words while for Spanish and Ital-
ian, we disambiguate all noun target words. Due
to some challenges we faced close to our task’s
evaluation deadline, we were unable to obtain Ba-
belNet 2.5 which is the official resource for the
task. Instead, we used BabelNet 1.1.1 from the Se-
mEval 2013 Multilingual Word Sense Disambigua-
tion Task, which we initially used to develop our
system but unfortunately contains only noun words
for Spanish and Italian and does not include some
English words found in the test set.

5 Results and Discussion

Table 1 compares the performance of our system
with other participating systems on the English sub-
task. Table 2 shows the result of our system for the

System Precision Recall F1
LIMSI 68.7 63.1 65.8
SUDOKU-Run2 62.9 60.4 61.6
SUDOKU-Run3 61.9 59.4 60.6
vua-background 67.5 51.4 58.4
SUDOKU-Run1 60.1 52.1 55.8
WSD-games-Run2 58.8 50.0 54.0
WSD-games-Run1 57.4 48.8 52.8
WSD-games Run3 53.5 45.4 49.1
EBL-Hope 48.4 44.4 46.3
TeamUFAL 40.4 36.5 38.3

Table 1: Performance of All Participating Systems for
English Subtask. Our EBL-Hope System ranked 9th out
of the submitted systems.

Spanish and Italian subtask where we submitted a
run for only nouns and named enitities.

Subtask Precision Recall F1
Spanish 52.5 44.6 48.2
Italian 43.1 35.3 38.8

Table 2: EBL-Hope’s hybrid system performance on the
Spanish and Italian subtasks.

Our system performs noticeably better in Spanish
than Italian. Further analysis shows that the weak-
est area of our system for the English subtask are
the verbs, which achieve 35.8 F1 score. We achieve
high scores on named-entities with an F1 scores of
80.2 in English, 48.5 in Italian and the highest F1
score across all participating systems on Spanish
with 70.8.

Table 3 and Table 4 give the performance obtained
when using the Modified Lesk and Jiang & Con-
rath modules independently. Our hybrid system out-
performs the individual component modules on both
English and Spanish. On Italian, the Hybrid system
performs comparably to Jiang & Conrath, which is
the best individual module.

Subtask Precision Recall F1
English 43.6 41.3 42.4
Spanish 48.1 41.2 44.3
Italian 46.3 33.5 38.9

Table 4: Performance of the Jiang & Conrath module in
isolation on the 3 subtasks.
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Subtask Precision Recall F1
English 44.2 40.6 42.3
Spanish 47.6 40.1 43.5
Italian 40.3 31.7 35.4

Table 3: Performance of the Modified Lesk module in
isolation on the 3 subtasks.

6 Conclusion

In this work, we have combined two algorithms for
word sense disambiguation, Modified Lesk and an
approach based on Jiang & Conrath similarity. The
resulting hybrid system improves performance by
heuristically resolving disagreements in the word
sense assigned by the individual algorithms. We
observe the results of the combined algorithm do
consistently outperform each of the individual algo-
rithms used in isolation. However, our poor perfor-
mance on the official evaluation could likely have
been improved by making use of the more recent 2.5
version of BabelNet as recommended by the task or-
ganizers.
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Abstract

We present in this paper our submission to
task 13 of SemEval2015, which makes use
of background information and external re-
sources (DBpedia and Wikipedia) to automat-
ically disambiguate texts. Our approach fol-
lows two routes for disambiguation: one route
is proposed by a state–of–the–art WSD sys-
tem, and the other one by the predominant
sense information extracted in an unsuper-
vised way from an automatically built back-
ground corpus. We reached 4th position in
terms of F1-score in task number 13 of Se-
mEval2015: “Multilingual All-Words Sense
Disambiguation and Entity Linking” (Moro
and Navigli, 2015). All the software and code
created for this approach are publicly available
on GitHub1.

1 Introduction

Word Sense Disambiguation is still an unsolved
problem in Natural Language Processing. Many
different approaches have been proposed through-
out the years to tackle this task from different per-
spectives. In addition, competitions have been or-
ganized to compare the performance of these ap-
proaches. Our hypothesis is that, in general, the
context is not being modelled properly by the sys-
tems, which usually consider very narrow contexts
and do not pay any attention to the background in-
formation or information that is not explicitly in-
cluded in the text. We conducted an in-depth er-
ror analysis of previous all-words tasks (Senseval–2
: English all words (Palmer et al., 2001), Senseval–
3 : English all words (Snyder and Palmer, 2004),
Semeval–2007 : all words task 17 (Pradhan et al.,
2007), Semeval–2010 : all words task 17 (Agirre et
al., 2010), Semeval–2013 : all words task 12 (Nav-
igli et al., 2013)) in order to gain better insight as to

1https://github.com/cltl/
vua-wsd-sem2015

why some approaches perform better than others, to
detect problems not properly addressed and to try to
overcome them. 2

We observed that most systems tend to rely on lo-
cal features (words surrounding the words in ques-
tion) to perform word sense disambiguation. Be-
sides this, there is a very acute trend by all WSD
systems to assign in most cases the most frequent
sense, regardless the domain under consideration, as
can be seen in Figure 1:
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Figure 1: The average accuracy of all systems per com-
petition is shown.

Figure 1 shows the average accuracy of all the
systems per competition. We clearly observe the
trend that systems perform well when the sense is
the most frequent sense, but not in other cases. Fur-
thermore, when the sense is not the most frequent
one, the systems still propose the most frequent
sense. For instance in Senseval–2, out of 799 tokens
for which the correct sense is not the most frequent
one, systems still wrongly assign the most frequent
sense in 84% of the cases.

Based on these observations, we designed a sys-
tem that creates background corpora starting from
a set of seed documents, from now on SD (prefer-
ably from a specific and unique domain). From this

2The error analysis can be found here: https://
github.com/cltl/WSD_error_analysis.
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corpus, we use the entities automatically detected to
access DBpedia and create the first background cor-
pus, which will be called Entity Article (EA) corpus.
By applying different techniques, we expand this EA
corpus with more domain related documents, which
results in the Entity Expanded (EE) corpus. Once
the whole background corpus (EA+EE) has been
created, we use this information to automatically de-
rive the specific predominant sense of each word in
our target domain (the domain of the starting docu-
ments and also the domain of the background cor-
pus).

The rationale behind this approach starts with the
observation that the predominant sense of a lemma
is very dominant in a document. Hence, by focus-
ing on when to use or not to use this predominant
sense, a high performance seems plausible. In addi-
tion, we observed that local features are not always
enough to determine the correct sense of a lemma
and we should only rely on these features when they
are necessary.

The structure of this paper is as follows. We in-
troduce our approach in section 2. followed by the
results in section 3. Finally we discuss and conclude
our results in section 4.

2 Our Approach

Figure 2 shows the overall architecture of our sys-
tem, that will be explained more in detail in this sec-
tion.

Figure 2: Overall architecture

Seed documents: We focused on the WSD part of
the task. The input for our approach is a collection of
seed documents, which represent the target domain
that is used for calculating the predominant domain
information. These documents can either be the task
test documents (online approach) or a different set
of documents that we could compile in advance if

the target domain is known (offline approach). We
first converted these documents to the NAF format
(Fokkens et al., 2014).3. We then applied a POS–
tagger to get the lemmas and part-of-speech labels
for all the tokens. As explained before, two differ-
ent approaches were followed: online and offline.
We experimented with both approaches and finally
the online approach was selected for our participa-
tion due to the mixed-domain nature of the test doc-
uments. The documents follow two different and
parallel routes of analysis: one route which favors
the domain predominant sense by using the back-
ground knowledge and one route which favors the
most frequent sense (in a general domain) by using
one of the state–of–the–art WSD systems that per-
forms very well in such domains. Finally, a voting
heuristic of the two routes is applied to assign the
final senses.

2.1 Route 1: Background knowledge

Extract entities from collection of documents
We started with one corpus of documents (the test
documents in the online approach or a pre–compiled
set in the offline version): the seed documents (SD).
Then we applied the statistical implementation of
DBPedia Spotlight (Daiber et al., 2013) in order
to obtain entities and their corresponding links to
DBPedia4. With this we compile the EA corpus,
which contains all the Wikipedia texts associated
to the DBpedia links extracted5. We experimented
with some filtering techniques on the list of DBPe-
dia links in order to keep just domain specific ones,
such as considering only those DBPedia links tagged
with an ontological concept which is a leaf of the
ontology tree. Nevertheless, we found a better per-
formance when using all the DBpedia links without
any filtering.

3http://www.newsreader-project.eu/files/
2013/01/techreport.pdf

4We developed our own module that calls automatically
the DBPedia Spotlight end–point and allows to work with
NAF files: http://github.com/rubenIzquierdo/
dbpedia_ner

5We also created our own modules to query DBPpe-
dia (http://github.com/rubenIzquierdo/
dbpediaEnquirerPy based on SPARQL) and
WikiPedia: https://github.com/rubenIzquierdo/
wikipediaEnquirerPy
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Expansion The EA corpus generated in the pre-
vious section represents the domain of our test data
(online/offline), but probably suffers from a low cov-
erage, especially for our idea of applying a predomi-
nant sense algorithm which relies on the availability
of a large domain corpus. In order to expand this
EA corpus, we developed two strategies to gener-
ate the EE corpus: a) Latent Dirichlet Allocation–
based (LDA), targeting a high recall and low preci-
sion/quality, and b) Entity overlapping (EO), aiming
a high quality and medium/low recall.

The LDA technique first obtains a topic model
using LDA on the EA corpus6. This is our domain
model for comparison. Moreover, we obtain the DB-
Pedia ontology classes for all the documents in the
EA corpus (one example could be HumanGene). For
each of these labels, DBPedia is queried to get all
the entities belonging to that label (following our ex-
ample, all the entities that are HumanGene)7. The
Wikipedia text for every of these entities is gathered
and compared against the LDA model obtained pre-
viously. Only those reaching a certain similarity are
selected to be part of the EE corpus. The whole
process is highly time consuming and the result in
terms of quality is not as good as expected, proba-
bly related to the fact that the number of documents
retrieved is very high, the domains are very diverse
and in many cases different to our reference domain.

The EO expansion follows a different approach.
On the one hand, all the DBpedia entities in the EA
corpus are extracted, which makes up our set of do-
main entities (DE). On the other hand, each of the
Wikipedia pages that can be reached from these DE
is processed to extract all the possible wiki–links.
All these wiki–links are possible candidates for the
EE corpus. To select the final set of candidates, the
similarity is obtained by measuring the overlap be-
tween the wiki–links of the candidate with our ini-
tial domain set DE. Only those surpassing a certain
overlapping threshold are selected.

Predominant sense algorithm Our background
corpus is considered the union of the EA and the EE

6We have used the Python library GenSim for this purpose
http://radimrehurek.com/gensim/

7This process can be quite time consuming (there are a total
of 15 entries in DBpedia for HumanGene, but there are 1.65
million entries for Person)

corpus, which usually is a large collection of NLP-
processed documents. For each lemma in these doc-
uments, we extract all the sentences containing this
lemma. If there are at least 100 sentences, we feed
the sentences for this specific lemma into the pre-
dominant sense algorithm. The predominant sense
algorithm we use is based on topic modeling (Lau et
al., 2012; Lau et al., 2014). The algorithm first tries
to induce senses using a Hierarchical Dirichlet Pro-
cess and then tries to determine the sense ranking of
all senses of a lemma according to the documents.
The output of this step is a list of sense confidences
for each lemma for which we had enough training
data. 8

2.2 Route 2: it–makes–sense WSD system
Our idea is to start from the output of a state-of-the-
art WSD system, and combine it with the predomi-
nant sense information automatically gathered with
our approach, in order to obtain an overall WSD ap-
proach specific to our target domain. We selected
the it–makes–sense system (Zhong and Ng, 2010)
that has proved to be one of the best performing
WSD systems in general domains. Similarly, we
have created our own wrapper around the it–makes–
sense system that allows the use of NAF format as
input/output for this tool9. Following our purpose,
we did not only select the most likely sense in each
case according to the WSD engine, but we stored all
the possible senses for each lemma along with the
probability returned by it–makes–sense.

2.3 Voting
For each token in the test data, we first check if we
have predominant sense output for this lemma. In
addition, we check if the sense ranking is skewed,
which we determine by checking if the two senses
with the highest confidence have a combined confi-
dence of higher than 85%. If this is the case, we cal-
culate the average of the sense rankings of the pre-
dominant sense output and the it-makes-sense sys-

8we created a wrapper around the GitHub repositories
that were created to run the predominant sense algorithm
(https://github.com/jhlau/hdp-wsi, https://
github.com/jhlau/predom\_sense). This github can
be found at https://github.com/MartenPostma/
predominantsense

9This wrapper module can be found at http://github.
com/rubenIzquierdo/it_makes_sense_WSD
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tem and choose the sense with the highest confi-
dence. If we do not have predominant sense out-
put, we assign the sense with the highest confidence
according to the it-makes-sense system. Finally, we
did not provide answers to all instances in the test set
due to the fact we used an older version of WordNet,
which did not contain all the gold senses. These lem-
mas mainly consisted of computer related senses.

3 Results

The results can be found in Table 1:

All domains
Measure all n v
Precision 67.5 (2) 64.7 56.6
Recall 51.4 (5) 42.9 53.9
F1 58.4 (4) 51.6 55.2

Social issues domain
Measure all n v
F1 61.1 (2) 54.8 (7) 70.6 (1)

Math Computer domain
Measure all n v
F1 47.7 (5) 30.5 (13) 49.7 (7)

Biomedical domain
Measure all n v
F1 66.4 (4) 62.7 (9) 53.8 (2)

Table 1: Results of VUA-background are shown for the
domains: ’All’, ’Social issues’, ’Math Computer, and
’Biomedical’. The results per domain are presented for
all part of speeches, as well as for nouns and verbs. The
numbers in parentheses are competition ranks.

As can be seen in Table 1, our system finished
4nd in terms of F1-score, 2nd in terms of precision,
and 5th in terms of recall. In particular. our sys-
tem performed well on the biomedical domain and
the Social Issues domain, and mainly for verbs. In
addition, running the evaluation using only the pre-
dominant sense output led to an improvement in the
precision for nouns (69.1% versus 64.7%) and verbs
(61.6% versus 56.6%), but also a drop in recall for
both nouns (20.1% versus 42.9% ) and verbs (17.7%
versus 53.9%).

4 Discussion and Conclusion

A number of reasons have attributed to the fact that
our system performed relatively well in terms of pre-

cision, but not so well in terms of recall.

Firstly, our system, and in particular our offline
approach, is built around the notion of one dominant
theme or topic. The domain of this evaluation was
announced to be the biomedical domain, but the test
documents ended up belonging to several domains,
which has hurt the performance of our algorithm.
We believe that adapting our system to work with
multiple domains is the next step in improving the
algorithm.

In addition, our system was built around WordNet
1.7.1. This means that we did not provide answers to
all instances, which has had an impact on the recall.

Finally, we claim that size is an issue in obtaining
good results. Especially our online approach could
have benefited from more data.

We presented a WSD framework that exploits
both information available in a document or a set
of documents, and background information from
different external resources. We believe the re-
sults achieved in this evaluation task are promis-
ing, despite the problems and issues mentioned in
the previous paragraphs. Our approach is espe-
cially suited to deal with one single domain, or
with a domain that is known in advance. We
will continue working on the adaptation of the
whole framework to a multi–domain scenario. Fur-
thermore, all software developed is publicly avail-
able on different GitHub repositories. Our system
can be found at https://github.com/cltl/
vua-wsd-sem2015. Scripts are included, which
will run the whole process step by step starting
from the official test documents and apply: linguistic
processors (tokenizer, lemmatizer), entity detection,
linking to DBpedia, call to it–makes–sense system,
creation of the background corpus and expansion,
creation of the predominant sense information and
final voting heuristic.
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Abstract

This paper describes our system for SemEval-
2015 Task 13: Multilingual All-Words Sense
Disambiguation and Entity Linking. We have
participated with our system in the sub-task
which aims at monolingual all-words disam-
biguation and entity linking. Aside from sys-
tem description, we pay closer attention to the
evaluation of system outputs.

1 Introduction

Word sense disambiguation (WSD, i.e. picking the
right sense for a given word from a fixed inventory)
and entity linking (EL, i.e. identifying a particular
named entity listed in a database given its mention
in a text) are among the fashionable tasks in com-
putational linguistics and natural language process-
ing these days. WSD has been, after some debate,
shown to help machine translation (Carpuat and Wu,
2007), other applications include knowledge discov-
ery or machine reading in general (Etzioni et al.,
2006; Schubert, 2006). WSD and EL are usually
applied with large and rich context available (Nav-
igli, 2009), but the arguably harder setting of short
context has a wider range of applications, including
text similarity measurements (Abdalgader and Sk-
abar, 2011), Named Entities Extraction and Named
Entities Disambiguation (Habib and Keulen, 2012)

∗This research was supported by the grants FP7-ICT-2013-
10-610516 (QTLeap). This research was partially supported by
SVV project number 260 224. This work has been using lan-
guage resources developed, stored and distributed by the LIN-
DAT/CLARIN project of the Ministry of Education, Youth and
Sports of the Czech Republic (project LM2010013).

or handling data from social networks, such as at-
tempts to translate tweets (Šubert and Bojar, 2014).

Our attempt at WSD and EL can be classified as
unsupervised, corpus-based and our implementation
relies on an information retrieval tool. We do not
take longer context into account.

2 Task Description

As participants of SemEval-2015 Task 13 (Moro and
Navigli, 2015), we were given only a very brief in-
structions, effectively just one example of a POS-
tagged sentence:

The/X European/J/european Medicines/N/medicine
Agency/N/agency (/X EMA/N/ema )/X is/V/be ,. . .
We were expected to provide such input

with labels indicating that e.g. the words
“European Medicines Agency” refer to the
entity described in the English Wikipedia
under the title European Medicines Agency
(“wiki:European Medicines Agency”), the
word “Medicines” refers to the BabelNet concept
00054128n etc. The repertoire of word sense and
entities came from BabelNet 2.5 which included:
Wikipedia page titles (2012/10 dump), WordNet
3.0 synsets, OmegaWiki senses (2013/09 dump)
and Open Multilingual WordNet synsets (2013/08
dump). The output format accepted Wikipedia
titles, BabelNet IDs and Wordnet sense keys.

The test set for SemEval-2015 task 13 was re-
leased for three languages: English, Italian and
Spanish. We joined only the English task. All the
data was gathered from 3 domains: biomedicine,
mathematics and computers and general domain.

At the time of the shared task, neither a scoring
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script, nor any development set with annotations was
provided. It was also not very clear how the dif-
ferent allowed ID sources (Wikipedia, BabelNet and
Wordnet) will be used concurrently.

The official scoring script and golden annotation
was provided later, and we use it here to report the
scores of our submission and a few variations of it.

3 Our System

Our system is unsupervised and relies on an infor-
mation retrieval (IR) tool applied to a large collec-
tion of documents. We thus call it corpus-based.

Given an input sentence, we remove all stop-
words (as defined by the IR tool) and punctuation,
putting together even words which were originally
not adjacent. For each span up to a given length in
this abridged sentence, the system tries to find a doc-
ument in the database. If found, this document im-
plies the sense or entity ID for the given span.

The words in the span and (separately) other
words in the sentence are used to construct the query
for the IR engine. We construct multiple queries and
merge their results in a candidate selection process,
possibly returning no document at all.

Due to the different nature of our sources (see
Section 3.1), we run sub-systems with different con-
figurations for each of them. We return the union of
responses from these sub-systems.

3.1 Data Sources

BabelNet alone is not a good resource for our ap-
proach, because it does not include textual data. We
resort to the original sources of BabelNet and map
them back to BabelNet. Our sources are thus the En-
glish Wikipedia, English Wiktionary and WordNet.
Short of the original versions as used in BabelNet
2.5, we used Wiki dumps from November 2014 and
WordNet 3.0, facing some ID mismatches.

3.2 Indexing

For each source, we create a full text index using
Apache Lucene search engine which provides sev-
eral ranking models. We experiment with models
based on TF-IDF (Salton et al., 1975) and Okapi
BM25 (Robertson et al., 1995), selecting the better
one for each subsystem in our submission.

All indexes have a similar structure, they contain:

Score Document ID (ie. Wikipedia Title)
8.201 Medical condition→ Disease
8.201 Medical conditions→ Disease
6.561 Frostbite (medical condition)→ Frostbite

Figure 1: Query results (→ means redirection closure).

ID of the element in the given source (Wikipedia
ID, Wiktionary ID or Wordnet sense key),

Title of Wikipedia or Wiktionary article or word
from WordNet,

Body text of articles from Wiki sources (markup re-
moved) or all textual data from Wordnet synset
(including other words in the synset),

POS tag (only in WordNet index).
The Title and the Body field are stemmed by Porter
stemmer implemented in Lucene.

3.3 Proposing Candidates
We use different sets of queries for each source.
We query Wiktionary and Wordnet for single-word
spans only, while Wikipedia seems suitable for both,
single and multi-word spans.

The queries typically require all the words from
the span to appear in the Title field of the document
and the words from the context to appear in the Body
field of the document. A number of slightly differ-
ent queries, incl. queries that use n-grams of words
or some boosting for some of the terms, is run in
parallel, giving us multiple lists scored by the se-
lected IR model (see Section 3.2). The results for
a simple query +TITLE:medical +TITLE:condition
for Wikipedia documents are shown in Figure 1.

3.4 Final Candidate Selection
Final candidates are picked from the results of the
queries. Before this selection, the results for each
span are grouped and scores for the same ID (com-
ing from different lists or redirection) are summed.

For Wikipedia, we select the highest-scoring can-
didate and it is returned only if its score is greater
than double the score of the second candidate. After
this selection, the system checks if there are over-
lapping spans labeled with same ID and returns only
the span with the best score.

For Wordnet and Wiktionary, we simply return
the highest-scoring candidate for each span. Since
Wiktionary IDs are not expected in the shared task,
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Official Offic+penalty Our Exact Our Partial Bag of IDs
System P R F1 P P R F1 P R F1 P R F1
Submitted 40.4 36.5 38.3 30.4 25.9 48.2 33.7 26.6 49.4 34.6 24.0 50.5 32.5
Submitted-fix 41.2 37.3 39.1 30.7 25.7 49.6 33.9 26.3 50.8 34.7 23.4 52.0 32.3
DFKI 67.4 52.6 59.1 55.2 51.5 49.2 50.3 52.1 49.8 50.9 51.3 49.2 50.2
EBL-Hope 48.4 44.4 46.3 40.4 36.8 40.4 38.5 37.1 40.8 38.9 37.3 41.0 39.0
el92-Run1 69.9 21.4 32.8 62.6 59.9 20.4 30.5 61.2 20.9 31.1 62.2 21.2 31.7
el92-Run2 71.9 19.1 30.2 64.8 61.8 18.2 28.2 62.5 18.4 28.5 62.9 18.5 28.6
el92-Run3 75.2 18.5 29.6 69.6 66.0 17.5 27.7 66.8 17.7 28.0 66.9 17.8 28.1
LIMSI 68.7 63.1 65.8 57.3 55.4 60.9 58.0 55.6 61.2 58.3 55.6 61.2 58.2
SUDOKU-Run1 60.1 52.1 55.8 50.3 47.0 48.6 47.8 47.2 48.8 48.0 47.0 48.6 47.8
SUDOKU-Run2 62.9 60.4 61.6 53.0 49.2 56.1 52.4 49.7 56.6 52.9 49.3 56.2 52.5
SUDOKU-Run3 61.9 59.4 60.6 52.2 48.6 55.4 51.8 49.0 55.8 52.1 48.7 55.5 51.9
UNIBA-Run1 66.2 52.3 58.4 54.3 51.6 49.8 50.7 51.9 50.0 50.9 51.9 50.0 50.9
UNIBA-Run2 66.1 52.1 58.3 53.5 50.9 49.6 50.2 51.5 50.2 50.8 51.4 50.1 50.7
UNIBA-Run3 66.1 52.1 58.3 53.0 50.5 49.7 50.1 51.3 50.4 50.8 51.1 50.2 50.7
vua-background 67.5 51.4 58.4 56.3 52.1 47.5 49.7 52.3 47.8 50.0 52.3 47.7 49.9
WSD-games-Run1 57.4 48.8 52.8 47.9 44.1 45.0 44.6 44.3 45.2 44.7 44.3 45.2 44.7
WSD-games-Run2 58.8 50.0 54.0 49.0 45.3 46.2 45.7 45.5 46.4 45.9 45.5 46.4 45.9
WSD-games-Run3 53.5 45.4 49.1 44.6 40.7 41.5 41.1 41.0 41.8 41.4 41.0 41.8 41.4
MFS 67.9 67.1 67.5 67.9 65.2 64.5 64.9 65.5 64.8 65.2 65.2 64.5 64.9

Table 1: All submissions evaluated on all domains using various official and our scorings.

we map them to BabelNet IDs prior to picking the
highest-scoring one. (Wiktionary IDs that cannot be
mapped are discarded.)

4 Evaluation

Having thoroughly reviewed the official scoring
script, we find some of its features unusual:
• The precision of a system is not penalized for

spans, which don’t occur in the golden set.
• The recall should consider only to what extent the

expected answers are covered by the system’s an-
swers. The official scoring script reduces the re-
call score for any ’unexpected’ answers.
• An exact match in span is needed to give any

credit to the system answer.
We thus propose a slightly different evaluation pro-
cedure and apply it to all submitted systems.

4.1 Our Proposed Scoring
Our scoring is based on a credit for partially overlap-
ping spans, similarly to Cornolti et al. (2013), who
however disregard the overlap size. We call a ‘label’
l = (l1, l2) the pair of a span (a range of words in the
sentence; denoted l1) and an ID attached to the span,
l2. For a label s in the system output and a label g in
the golden annotation, we define their match as:

match(s, g) =

{ |g1∩s1|
|g1∪s1| if |g1 ∩ s1| > 0 ∧ g2 = s2

0 otherwise

In other words overlapping spans labeled with the
same ID get a credit proportional to the size of the
overlap. We define precision and recall as follows:

precision =

∑
s∈S,g∈G match(s, g)

|S|

recall =

∑
s∈S,g∈G match(s, g)

|G|
where G and S are sets of labels from the gold
standard and a system output, respectively. Our ap-
proach gives a partial credit for inexact, but overlap-
ping, spans with correct identifiers.

Our precision and recall are only meaningful, if
all IDs come from a single source. We pick Babel-
Net IDs for this purpose and map all system out-
puts as necessary. Note that the mapping from the
Wikipedia IDs to the BabelNet IDs is ambiguous but
not in more than 1 h cases.
WSD-games and vua-background report only

WordNet sense keys. We map them unambigu-
ously to BabelNet IDs.

el92 produces lowercase Wikipedia titles so the am-
biguous mapping to BabelNet IDs is slightly
worse.

DFKI and our system produce both Wikipedia ti-
tles and WordNet IDs, we map both as above
and union the results.

SUDOKU produces BabelNet IDs but some spans
have no ID at all. We ignore these spans.
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Fix Wikt→BN Model for Use context
mapping Wikipedia Wiktionary in Wikt. search Precision Recall F1

Submitted - TF-IDF BM25 no 40.4% 36.5% 36.5%
Submitted fix yes TF-IDF BM25 no 41.2% 37.3% 39.1%
Wiki BM25 no BM25 BM25 no 38.4% 35.0% 36.7%
Wikt+context BM25 no TF-IDF BM25 yes 38.4% 35.3% 36.8%
Wikt+context TF-IDF no TF-IDF TF-IDF yes 40.3% 37.0% 38.6%

Table 2: Our system outputs.

4.2 Results
Table 1 reports systems’ scores using these evalua-
tion metrics:
Official Precision and recall as reported by the offi-

cial scoring script.
Official+penalty A modified version of the official

scoring script which treats spans in system out-
put and no counterpart in the golden set in the
same way as if the golden set assigned a differ-
ent ID to the span.

Our Exact Our method (Section 4.1), but round-
ing the ‘match’ down to zero, so only exactly
matching spans get the credit (of 1).

Our Partial Our method (Section 4.1).
Bag of IDs disregards spans altogether, checking

just the match of the BabelNet IDs needed and
produced. Precision is the fraction of correct
(confirmed by the golden data) IDs among all
labels produced by the system. Recall is the
number of correct IDs divided by the number
of labels in the gold set. This scoring gives an
idea of how well the system guesses the “mean-
ing” (bag of concepts) of the whole sentence.

The Table 1 documents that the official scoring
heavily boosted our precision and hurt our recall.
The performances of other systems are affected as
well, but fortunately, the overall impression is simi-
lar across the scoring techniques.

4.3 Variants of Our Submission
As the official scores in the overview paper (Moro
and Navigli, 2015) show, our system performed ac-
ceptably on Named Entities Recognition task, but it
clearly failed on word senses disambiguation.

Table 2 reports the scores (official scoring) of a
few variations of our approach. The first row is
the submitted system, the second row is a correc-
tion which allows Wiktionary results to map to Ba-
belNet senses of all parts of speech, not just nouns.

The remaining rows use a different IR model or in-
clude sentence context in Wiktionary search but no
improvement is obtained.

4.4 Recommendations for Future Evaluation

For future shared tasks, we recommend:
• Define precision and recall to better match the

common meaning, e.g. as in our proposal.
• Preserve letter case in IDs to avoid ambiguity in

Wikipedia to BabelNet mapping.
• Use only one repertoire of IDs in the gold set.

4.5 Future Work

In future we want to evaluate other heuristics such as
weighted words picking instead of first one, offered
by search algorithms. Also we’ll examine possi-
bilities to enhance Wordnet and Wiktionary records
to make search results more reliable. Another way
of improvement is using Named Entities Recogni-
tion systems to define correct span boundaries and
to achieve better results for Named Entities.

5 Conclusion

We described our system for SemEval Task 13 based
on information retrieval. The system performs ac-
ceptably in Named Entity Linking (NEL) but fails
in Word Sense Disambiguation. One of the reasons
is that we used small information records for Wik-
tionary and especially for Wordnet and little or no
sentence context in WSD queries, so the informa-
tion retrieval algorithms performed poorly.

Additionally, we proposed different scoring tech-
niques that, in our opinion, better reflect the perfor-
mance of the systems. Fortunately, the overall rank-
ing of systems ends up similar to the official scor-
ing. We nevertheless recommend a few changes for
future shared tasks.
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Abstract 

Our participation at SemEval’s Multilingual 

All-Words Sense Disambiguation and Entity 

Linking task is described. An English entity 

linking (EL) system is presented, which com-

bines the annotations of four public open 

source EL services. The annotations are com-

bined through a weighted voting scheme in-

spired on the ROVER method, which had not 

been previously tested on EL outputs. Results 

on the task’s EL items were competitive.  

1 Introduction 

The paper describes our participation at SemEval 

2015, Task 13 (Moro and Navigli, 2015): Multilin-

gual all-words Sense Disambiguation (WSD) and 

Entity Linking (EL). Systems performing both 

tasks, or either one, can participate. The preferred 

word-sense and entity inventory is Babelnet (Navi-

gli and Ponzetto, 2012); other inventories are al-

lowed. Our system performs English EL to 

Wikipedia, combining the output of open-source, 

publicly available EL systems via weighted voting. 

The system is relevant to the task’s interest in 

comparing the results of EL systems that apply 

encyclopedic knowledge only, like ours, and sys-

tems that jointly exploit encyclopedic and lexico-

graphic resources for EL.  

The paper’s structure is the following: Section 2 

discusses related work, and Section 3 describes the 

system. Sections 4 and 5 present the results and a 

conclusion. 

2 Related Work 

General surveys on EL can be found in (Cornolti et 

al., 2013) and (Rao et al., 2013). Work on combin-

ing NLP annotators and on evaluating EL systems 

is particularly relevant for our submission.  

The goal of combining different NLP systems is 

obtaining combined results that are better than the 

results of each individual system. Fiscus (1997) 

created the ROVER method, with weighted voting 

to improve speech recognition outputs. A ROVER 

was found to improve parsing results by De la 

Clergerie et al. (2008). Rizzo et al. (2014) im-

proved Named Entity Recognition results, combin-

ing systems via different machine learning 

algorithms. Our approach is inspired on the 

ROVER method, which had not been previously 

attempted for EL to our knowledge. Systems that 

combine entity linkers exist (NERD, Rizzo and 

Troncy, 2012). However, a difference in our sys-

tem is that the set of linkers we combine is public 

and open-source. A second difference is the set of 

methods we employed to combine annotations.  

EL evaluation work (Cornolti et al., 2013), 

(Usbeck et al., 2015) has highlighted to what an 

extent EL systems’ performance can differ depend-

ing on characteristics of the corpus. This motivates 

testing whether different EL systems, properly 

combined, can complement each other.   
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3 System Description 

The system performs English EL to Wikipedia, 

combining the outputs of the following EL sys-

tems: Tagme 2
1
 (Ferragina and Scaiella, 2010), 

DBpedia Spotlight
2
 (Mendes et al. 2011), Wikipe-

dia Miner
3
 (Milne and Witten, 2008) and Babelfy

4
 

(Moro et al. 2014). Babelfy outputs were only con-

sidered if they started with a WIKI prefix or their 

first character was uppercase.
5
 Details about each 

of our workflow’s steps follow.  

3.1 Individual Systems’ Thresholds 

First of all, a client requests the annotations for a 

text from each linker’s web-service, using the ser-

vices’ default settings except for the confidence 

threshold, which is configured in our system. An-

notations whose confidence is below a threshold 

are eliminated. 

All of the linkers used, except Babelfy, output 

confidence scores for their annotations. Cornolti et 

al., (2013) reported optimal confidence-score 

thresholds for all our linkers (except Babelfy). Us-

ing Cornolti’s BAT Framework, we verified that 

the thresholds are still valid.
6
 We adopted the 

weak-annotation match thresholds for the IITB 

dataset, since we consider the IITB corpus close to 

the task’s data, in text-length and topical variety. 

Our thresholds were 0.102 for Tagme, 0.023 for 

Spotlight, and 0.219 for Wikipedia Miner. Since 

Babelfy does not output confidence scores, all of 

its annotations were accepted to the next step in the 

workflow.  

3.2 Ranking the Systems to Combine 

Our method for combining annotators’ outputs re-

quires the annotators to be previously ranked for 

precision on an annotated reference set. It is not 

viable to annotate a reference set for each new cor-

pus. To help overcome this issue, we adopt the fol-

lowing heuristic: We have ranked the annotators 

                                                           
1 http://tagme.di.unipi.it/tagme_help.html 
2 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki 
3 http://wikipedia-miner.cms.waikato.ac.nz/ 
4 http://babelfy.org/download.jsp 
5 Babelfy was a late addition to our pipeline; the reader will 

note that we made some ad-hoc decisions to benefit from its 

outputs while complying with previously defined features in 

our workflow. 
6 https://github.com/marcocor/bat-framework 

on a series of very different reference corpora. To 

perform EL on a new corpus, our heuristic consid-

ers the following criteria: First, the types of EL 

annotations needed by the user. Second, how simi-

lar the new corpus is (along dimensions described 

below) to the reference corpora on which we have 

pre-ranked the annotators. To apply the workflow 

to a new corpus, the heuristic chooses the annota-

tor-ranking obtained with the reference corpus that 

is most similar to that new corpus, while still re-

specting the annotation-types needed by the user.  

The reference corpora on which we pre-ranked 

the annotators are AIDA/CoNLL Test B (Hoffart 

et al., 2011), and IITB (Kulkarni et al., 2009). 

These corpora are very different to each other, in 

terms of character length, topical variety, and re-

garding whether they annotate common-noun men-

tions or not. Moreover, some EL systems obtain 

opposite results when evaluated on AIDA/CoNLL 

B vs. IITB, as tests by Cornolti et al. (2013) and on 

the GERBIL platform
7
 have shown.  

The heuristic’s first criterion is the types of an-

notations needed: If the user needs annotations for 

common-noun mentions, the IITB ranking is used, 

since IITB is the only one in our reference-datasets 

that was annotated for such mentions. If the user 

does not need common noun annotations, our heu-

ristic compares the user’s corpus with our two ref-

erence corpora in terms of character length and of 

a measure of lexical cohesion. Both factors have 

been argued to influence linkers’ uneven results 

across corpora (Cornolti et al., 2013). 

We accepted common-noun annotations for the 

task, as they were relevant for the task’s domains 

(e.g. disease names for the biomedical texts). Ac-

cordingly, the heuristic ranked annotators as per 

their IITB results: 1
st
 Wikipedia Miner (0.568 pre-

cision), 2
nd

 Babelfy (0.493), 3
rd

 Spotlight (0.462), 

4
th
 Tagme (0.452).

8
 

3.3 Weighting and Selecting Annotations 

Using the linker ranking from the previous step, 

the annotations are voted, and selected for final 

output or rejected based on the vote. We used two 

                                                           
7 See http://gerbil.aksw.org/gerbil/overview at the site for the 

GERBIL platform (Usbeck et al., 2015):  
8 The precision is from tests in Cornolti et al., 2013, using 

weak-annotation-match. Babefly was not tested. In order to be 

able to rank it, instead of its precision we assigned it the aver-

age of all other annotators’ precisions.  
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voting schemes. The first one relies on each anno-

tation’s confidence score, weighted by the annota-

tor’s rank and precision on the ranking datasets 

from 3.2. The rationale is that a high-confidence 

annotation for a low-ranked annotator can be better 

than a low-confidence annotation for a higher-

ranked annotator. The definition is in Figure 1: For 

each annotation (m, e) in the results, m is its men-

tion,
9
 e is the entity paired with m, and Ωm is the 

set of annotations in the results whose mentions 

overlap
10

 with m. If the size of Ωm is 1, the scaled 

confidence
11

 oscf of Ωm’s unique annotation ο must 

reach threshold tuniq in order for ο to be accepted. 

Threshold tuniq is the average of the scaled confi-

dence scores for all annotations in the corpus. If 

Ωm has more than one annotation, the voting is 

thus: For each annotation ο in Ωm, ο’s vote is a 

product determined by several factors: oscf is o’s 

scaled confidence.
12

 N is the total number of anno-

tators we combine (i.e. 4). Operand roant is the rank 

of annotator oant, which produced annotation o. 

Poant is that annotator’s precision on the ranking 

reference corpus (3.2 above). For roant, 0 is the best 

rank and N – 1 the worst. Parameter α influences 

the distance between the annotations’ votes based 

on their annotators’ rank, and was set at 0. The 

annotation with the highest vote in Ωm is accepted; 

the rest are rejected. 
 

for each set Ωm of overlapping annotations: 

   if |Ω
m

| = 1 

       for o ∊ Ωm:  if oscf  ≥  tuniq    accept o 

                          else                    reject o 

   else  

       select max
 o ∊ Ωm

[(o
scf 

 ∙ (N − ( roant − α )) ∙ Poant] 

Figure 1: Annotation voting scheme used in Run 1. 

                                                           
9 The string of characters in the text that the annotation is 

based on (the term mention is often used in EL for this notion). 
10 Assume two mentions (p1, e1) and (p2, e2), where p1 and 

p2 are the mentions’ first character indices, and e1 and e2 are 

the mentions’ last character indices. The mentions overlap iff 

((p1 = p2) ˄ (e1 = e2)) ˅ ((p1 = p2) ˄ (e1 < e2)) ˅ ((p1 = p2) ˄ 

(e2 < e1)) ˅ ((e1 = e2) ˄ (p1 < p2)) ˅ ((e1 = e2) ˄ (p2 < p1)) ˅ 

((p1 < p2) ˄ (p2 < e1)) ˅ ((p2 < p1) ˄ (p1 < e2)). 
11 Since the range of confidence-scores output by each annota-

tor was different, we minmax-scaled all original (orig) confi-

dence scores to a 0-1 range: scaled_confidence  =  

(orig_confidence – corpus_min_orig_confidence) /  

(corpus_max_orig_confidence – corpus_min_orig_confidence) 
12 As Babelfy does not provide confidence scores, its annota-

tions were assigned the average over the whole result-set of 

the scaled confidence-scores output by the other annotators. 

The second voting scheme is similar to the 

ROVER method in (De la Clergerie et al., 2008). 

The method assesses annotations based on how 

many linkers have produced them, using the link-

ers’ rank, and their precision on the ranking-sets, 

as weights. If enough lower-ranked annotators 

have linked to an entity, this entity can win over an 

entity proposed by a higher-ranked annotator.  

The voting is defined in Figure 2. For each an-

notation (mention m, entity e), Ωm is the set of an-

notations whose mentions overlap
10

 with m. Based 

on the different entities in Ωm’s annotations, Ωm is 

divided into disjoint subsets, each of which con-

tains annotations linking to a different entity. Each 

of these subsets L is voted by vote(L). In vote(L), 

for each annotation o in L, terms N, roant, α, Poant 

have the same meaning as the terms bearing the 

same names in Figure 1, and are described above. 

 

for each set Ωm of overlapping annotations: 
 

 for L ∊ Ωm: 

      vote(L) = 
∑  (N −  ( roant −  α )) ∙ Poanto ∈ L

N
 

 if max
  L ∊ Ωm

(vote(L) ) > Pmax  : select argmax
  L ∊ Ωm

(vote(L)) 

Figure 2: Entity voting scheme used in Runs 2 and 3. 

The entity for the subset L which obtains the 

highest vote among Ωm’s subsets is selected if its 

vote is higher than Pmax, i.e. the maximum preci-

sion in the ranking dataset (0.568, see Section 3.2). 

After selecting the winning entity, we still need to 

select a mention for it. The mention is selected at 

random among the mentions of the annotations in 

the winning subset L. This implementation of men-

tion selection is meant as a baseline that can be 

refined in the future. Two initial factors to consider 

in mention selection would be mention length and 

the annotators having chosen each mention.  

3.4 Entity Classification 

After the vote, entities in the selected annotations 

are classified before final output. The classification 

is rule-based. It exploits the category or type labels 

output by the EL services we combined—except 

Babelfy, which does not output such information.  

The classification-rules are based on type labels 

in the NERD ontology (Rizzo and Troncy, 2012)
13

 

                                                           
13 http://nerd.eurecom.fr/ontology/nerd-v0.5.n3 
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and on a subset of the DBpedia ontology classes 

(Mendes et al. 2011)
14

 relevant for the task’s do-

mains. For types Person, Location, Organization, 

Wikipedia category labels were also exploited.  

Some rules involve an exact match against the 

annotations’ categories or types, e.g. “Assign type 

Location if the annotation has type DBpe-

dia:Place”. Some rules involve a partial match, 

e.g. “Assign type Person if one of the Wikipedia 

category labels for the entity contains births”. 

For Babelfy outputs, Wikipedia category labels 

and DBpedia types were obtained through Wikipe-

dia Miner’s
3
 and DBpedia’s

15
 APIs. 

4 Results and Discussion 

Since the task was open to systems doing either 

WSD or EL, or both, the corpus targeted both 

WSD and EL. Participant systems were evaluated 

on a different set of items depending on their na-

ture (EL only, WSD only, both). The corpus con-

tained 4 generic and domain-specific documents 

with 1094 single-word instances, 82 multi-words 

and 86 named entities (NE). 

Our system was conceived and evaluated as an 

EL system. Table 1 shows our precision, recall and 

F1 for all three runs. Column TopF1 is the maxi-

mum F1 attained by a participant on the EL items.  

 

EL P R F1 TopF1 

Run1 100 75.6 86.1 

88.9 Run2 98.3 66.3 79.2 

Run3 100 66.3 79.7 

Table 1: English EL results for all domains. 

Run 1 results were competitive, ranking 3
rd

 of 10, 

if we compare all participants’ best runs. Runs 2 

and 3 lag behind, due to lower recall. Run 1 em-

ployed the voting scheme in Figure 1. Runs 2 and 

3 correspond to the scheme defined in Figure 2, 

with parameter α set to 0 in Run 2 and to 1 in 

Run 3. In spite of its results, the voting scheme 

from Figure 2 has advantages over the first one: It 

does not require confidence scores, so it accom-

modates linkers that don’t score their annotations. 

Also, it does not need a separate threshold to de-

cide on annotations produced by one annotator on-

ly. More work is needed to determine the reason 

                                                           
14 http://mappings.dbpedia.org/server/ontology/classes/ 
15 http://dbpedia.org/sparql 

for this difference in results, i.e. whether the sec-

ond approach itself is not useful to combine EL 

annotations, or whether its worse results were re-

lated to our implementation. 

One of the task’s purposes was to compare sys-

tems’ performance across domains. Table 2 shows 

our best run’s results per domain. Column N re-

flects the number of EL items in the corpus for 

each domain. All other columns have the same 

meaning as in Table 1, but considering the per-

domain results.  
 

 N P R F1 TopF1 

Biomedical 48 100 83.3 90.9 100 

Math & Computer 22 100 54.4 70.6 74.3 

General 16 100 81.3 89.7 90.3 

Table 2: English EL Run 1 results by domain. 

Note that the small number of EL items availa-

ble for each domain limits in our opinion the relia-

bility of interpretations for these results. 

Since our workflow combines several EL sys-

tems, it would be interesting to compare results for 

each individual system by itself vs. the results for 

the combined system. In later work (Ruiz and 

Poibeau, 2015), using an improved version of the 

system described here, and larger EL golden-sets, 

we performed such comparisons, finding signifi-

cant improvements in the combined system vs. the 

individual ones.  

5 Conclusion 

The entity linking (EL) system presented was 

ranked 3rd (out of 10) on the task’s EL items. The 

system combines the outputs of four public open 

source EL services. Two weighted voting methods 

were described to combine the outputs. The first 

method relies on annotations’ confidence scores; 

the second one is a weighted majority vote. The 

first method obtained better results, but the second 

one has the advantage of being easily applicable to 

non-scored annotations. More work is needed to 

assess the reasons for the methods’ differential per-

formance. Future work also includes adding other 

public open source systems to the workflow.  
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Abstract

This paper describes the participation of the
UNIBA team in the Task 13 of SemEval-2015
about Multilingual All-Words Sense Disam-
biguation and Entity Linking. We propose
an algorithm able to disambiguate both word
senses and named entities by combining the
simple Lesk approach with information com-
ing from both a distributional semantic model
and usage frequency of meanings. The results
for both English and Italian show satisfactory
performance.

1 Introduction

SemEval-2015 Task 13 (Moro and Navigli, 2015)
aims to evaluate systems that provide a compre-
hensive representation of text through linking of
both words and entities with concepts in a knowl-
edge base. Besides the traditional difficulties of
word sense disambiguation, this task requires spe-
cific methods able to tackle the challenges posed by
the named entity recognition, disambiguation and
linking steps.

This paper proposes a unified strategy for word
sense and named entity disambiguation which lever-
ages BabelNet, a multilingual resource that encom-
passes both encyclopedic and lexicographic knowl-
edge (Navigli and Ponzetto, 2012). Our approach
relies on the Distributional Lesk (DL-WSD) algo-
rithm (Basile et al., 2014), which is able to disam-
biguate a word occurrence by computing the similar-
ity between word context and the glosses associated
with all possible word meanings. Such a similarity is

computed through a Distributional Semantic Model
(DSM) (Sahlgren, 2006).

In this work we describe an extension of the
DL-WSD algorithm that exploits a specific module
for entity discovery given a list of possible surface
forms. In particular, we build an index in which each
surface form (i.e. candidate entity) is paired to the
list of all its possible meanings in a semantic net-
work. This index of surface forms is exploited to
look up all candidate entities in a text.

The rest of this paper is structured as follows:
Section 2 provides details about the adopted strat-
egy, and describes the two main steps: 1) Entity
Recognition and 2) Disambiguation. An experimen-
tal evaluation, along with details about results, is
presented in Section 3, while conclusions close the
paper.

2 Methodology

Our methodology is a two-step algorithm consist-
ing in an initial identification of all possible entities
mentioned in a text followed by the disambiguation
of both words and named entities through the DL-
WSD algorithm. The semantic network is exploited
twice in order to 1) extract all the possible surface
forms related to entities, and 2) retrieve glosses used
in the disambiguation process.

2.1 Entity Recognition
In order to speed up the entity recognition step we
build an index in which for each surface form (en-
tity) the set of all its possible meanings in the se-
mantic network is reported. Lucene1 is exploited to

1http://lucene.apache.org/
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build the index, specifically for each surface form
(lexeme) occurring in BabelNet, a document com-
posed of two fields is created. The first field stores
the surface form, while the second one contains the
list of all possible BabelSynsets that refer to the sur-
face form in the first field. The index is built sep-
arately for each language, Italian and English. The
entity recognition module exploits this index in or-
der to find entities in a text. Given a text fragment,
the module performs the following steps:

• Building all n-grams up to five words;

• Querying the index and retrieving the list of the
top t matching surface forms for each n-gram.
It is possible to enable a multi-match strat-
egy; for example the 3-gram “European Union
Commission” can match two entities: “Euro-
pean Union” and “European Union Commis-
sion”. The multi-match strategy provides dis-
ambiguation for all the possible entities, other-
wise the longest surface form is selected;

• Scoring each surface form by exploiting two
different approaches:

EXACT MATCH computes the linear combi-
nation between the score provided by the
search engine and a string similarity func-
tion based on the Levenshtein Distance
between the n-gram and the candidate sur-
face form in the index;

PARTIAL MATCH computes the linear
combination between the two scores
provided by the EXACT MATCH and the
Jaccard Index in terms of common words
between the n-gram and the candidate
surface form;

• Filtering the candidate entities recognized in
the previous steps; entities are removed if the
score computed in the previous step is below
a given threshold and/or the sequence of PoS-
tags related to the n-gram does not match a set
of defined patterns;

• Assigning to each candidate entity two addi-
tional scores according to the percentage of: 1)
stop words, and 2) words that do not contain
at least one upper-case character. A threshold

can be fixed for each score to filter out some
entities.

Moreover, for each entity we build a set of alterna-
tives. For example, given the candidate entity “Euro-
pean Union” we create the set of alternative surface
forms {European, Union, EU, E.U.}. Then, we add
all the BabelSynsets of “European Union” to the list
of possible meanings of those words that follow the
candidate entity and belong to the set of alternative
forms.

The output of the entity recognition module is a
list of candidate entities in which a set of possible
meanings (BabelSynset) is assigned to each surface
form in the list. The set of named entities extracted
by this module and the list of all the words in the text
are the input to the DL-WSD algorithm.

2.2 DL-WSD
We exploit the distributional Lesk algorithm pro-
posed by Basile et al. (2014) for disambiguating
words and named entities. The algorithm replaces
the concept of word overlap initially introduced
by (Lesk, 1986) with the broader concept of se-
mantic similarity computed in a distributional se-
mantic space. Let w1, w2, ...wn be a sequence of
words/entities, the algorithm disambiguates each
target word/entity wi by computing the semantic
similarity between the glosses of senses associated
with the target word/entity and its context. This sim-
ilarity is computed by representing in a DSM both
the gloss and the context as the sum of words they
are composed of; then this similarity takes into ac-
count the co-occurrence evidences previously col-
lected through a corpus of documents. The corpus
plays a key role since the richer it is the higher is
the probability that each word is fully represented
in all its contexts of use. We exploit the word2vec
tool2(Mikolov et al., 2013) in order to build a DSM,
by analyzing all the pages in the last English/Italian
Wikipedia Dump. The correct sense for a word is
the one whose gloss maximizes the semantic simi-
larity with the word/entity context. The sense de-
scription can still be too short for a meaningful com-
parison with the word/entity context. Following this
observation, we adopted an approach inspired by the
adapted Lesk (Banerjee and Pedersen, 2002), and

2https://code.google.com/p/word2vec/
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we decided to enrich the gloss of the sense with
those of related meanings, duly weighted to reflect
their distances with respect to the original sense.
The algorithm consists of the following steps.

Building the glosses. We retrieve the set
Si = {si1, si2, ..., sik} of senses associated to the
word/entity wi. For named entities such a set is
provided by the entity recognition module, while
for words the set is obtained by firstly looking up to
the WordNet portion of BabelNet, then if no sense is
found we seek for senses from Wikipedia. For each
sense sij , the algorithm builds the extended gloss
representation g∗ij by adding to the original gloss gij

the glosses of related meanings retrieved through
the BabelNet function getRelatedMap, with the
exception of antonym senses. Each word in g∗ij is
weighted by a function inversely proportional to the
distance d between sij and the related glosses where
the word occurs. Moreover, in order to emphasize
discriminative words among the different senses, in
the weight we introduce a variation of the inverse
document frequency (idf ) for retrieval that we
named inverse gloss frequency (igf ). The igf for a
word wk occurring gf∗k times in the set of extended
glosses for all the senses in Si (the sense inventory
of wi) is computed as IGFk = 1 + log2

|Si|
gf∗

k
. The

final weight for the word wk appearing h times in
the extended gloss g∗ij is given by:

weight(wk, g
∗
ij) = h× IGFk × 1

1 + d
(1)

Building the context. The context C for the word
wi is represented by all the words that occur in the
text.

Building the vector representations. The con-
text C and each extended gloss g∗ij are represented
as vectors in the SemanticSpace built through the
DSM.

Sense ranking. The algorithm computes the co-
sine similarity between the vector representation of
each extended gloss g∗ij and that of the context C.
Then, the cosine similarity is linearly combined with
a function which takes into account the usage of
the meaning in the language. We analyse a func-
tion that computes the probability assigned to each
synset given a word/named entity as follows:

Word. We exploit a synset-tagged corpus and we
attempt to map each word occurrence to Word-
Net (Miller, 1995). Then, we select the Word-
Net sysnet with the maximum probability.

Named Entity. We retrieve from BabelNet the
Wikipedia title pages related to the Babel-
Synset and count the number of times a
Wikipedia page is linked from another page. In
this way we use Wikipedia as a synset-tagged
corpus.

We define the probability p(sij |wi) that takes
into account the sense distribution of sij given the
word/entity wi. The sense distribution is computed
as the number of times the word/entity wi is tagged
with the sense. Zero probabilities are avoided by
introducing an additive (Laplace) smoothing. The
probability is computed as follows:

p(sij |wi) =
t(wi, sij) + 1
#wi + |Si| (2)

where t(wi, sij) is the number of times the
word/entity wi is tagged with the sense sij .

3 Evaluation

The evaluation aims at comparing the system result
against a gold standard manually annotated using
synsets from BabelNet 2.5.1. Test data consists of
four documents that belong to three different do-
mains: biomedical, maths and computer science,
and general. The idea is to evaluate the algorithm
performance both in general and specific domains.
We submitted three runs with different parameter
settings that mainly affected the entity recognition
module. System settings are reported in Table 1.

Run Match PoS-Tag Threshold
Run1 EXACT YES 1.0
Run2 PARTIAL YES 0.75
Run3 PARTIAL NO 0.75

Table 1: System settings.

The Match column indicates the type of match-
ing used during the entity recognition step, PoS-Tag
reports the usage of the filter based on PoS-Tag pat-
terns, and finally the table reports the Threshold used
by the matching filter. Moreover, we set the number
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EN IT
Run all NE WSD n v r a all NE WSD n v r a
best 65.8 88.9 64.6 70.3 57.7 79.0 79.5 59.9 54.9 61.3 56.6 62.7 62.5 69.6
Run1 58.4 84.4 56.5 63.3 57.1 79.0 - 50.8 48.5 51.0 53.7 61.1 60.0 -
Run2 58.3 82.9 56.5 63.2 57.1 79.0 - 50.9 48.5 51.0 53.8 61.1 60.0 -
Run3 58.3 82.9 56.5 63.2 57.1 79.0 - 50.9 50.0 51.0 53.7 61.1 60.0 -

Table 2: Official task results.

EN IT
Run all NE WSD a all NE WSD a
Run1 61.3 88.1 59.5 48.2 59.5 51.0 59.9 77.7
Run2 61.0 85.2 59.3 47.6 59.6 51.0 60.0 77.7
Run3 60.8 84.4 59.2 47.6 59.5 51.0 59.9 77.7

Table 3: Task results after the adjective fix.

of entities retrieved by the search engine to 25, and
the thresholds for stop-word and lower-case filters to
0.3.

Table 2 reports the official results released by the
task organizers. Our best system ranks 4th among
17 submissions for English, and 4th among 8 for
Italian. As reported in Table 2, our system is not
scored for adjective. This issue is due to a problem
with PoS-tag: in trial data adjectives are tagged with
‘A’, while in the test data with ‘J’. Inadvertently, we
did not report this modification in our system during
the testing. After the release of the gold standard,
we fixed that issue in our system and performed a
new experiment whose results are reported in Table
3. Since results for noun, verbs and adverbs are not
affected by the fix, they are not reported again in the
table. Considering the new results reported in Table
3, our system is able to rank 3rd for English, and 2nd
for Italian.

Another goal of the task is to evaluate system per-
formance on different domains. In particular three
domains were provided: biomedical (bio), maths
and computer science (math), and general domain
(gnr). Results for each domain and language are re-
ported in Table 4. Our performance on each domain
shows a trend very similar to the best system for
each language: the math/computer science domain
is the hardest to disambiguate, while the biomedi-
cal one seems to be the easiest. A deep analysis of
domain results shows that our system is the best to
disambiguate named entities for Italian biomedical

EN IT
Run bio math gnr bio math gnr
best 71.2 54.1 67.2 65.5 52.1 61.0
Run1 66.6 50.8 62.0 64.4 51.2 58.4
Run2 66.4 50.8 60.7 64.4 51.2 58.7
Run3 66.4 50.8 60.2 64.4 51.2 58.4

Table 4: System performance for each domain.

and math/computer science domains, while it pro-
vides the lowest performance in the general domain
for both Italian and English. It is important to note
that the system settings seem not to affect the over-
all performance, while a deep analysis focused on
the only named entities reveals slight differences be-
tween settings. This behaviour is due to the different
methods used to recognize named entities. The task
description paper reports more details about results
(Moro and Navigli, 2015).

4 Conclusions

We presented a unified approach to entity linking
and word sense disambiguation which relies on a
distributional extension of the simple Lesk disam-
biguation algorithm. This algorithm has been ex-
tended with an entity recognition module able to rec-
ognize candidate named entities. We evaluated three
different configurations of such recognition module
within the Task 13 of SemEval-2015. Experimental
evaluation showed competitive results, with our best
run ranked among the top systems.
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Abstract

SUDOKU’s submissions to SemEval Task 13
treats Word Sense Disambiguation and Entity
Linking as a deterministic problem that ex-
ploits two key attributes of open-class words
as constraints – their degree of polysemy and
their part of speech. This is an extension and
further validation of the results achieved by
Manion and Sainudiin (2014). SUDOKU’s
three submissions are incremental in the use
of the two aforementioned constraints. Run1
has no constraints and disambiguates all lem-
mas in one pass. Run2 disambiguates lemmas
at increasing degrees of polysemy, leaving the
most polysemous until last. Run3 is identical
to Run2, with the additional constraint of dis-
ambiguating all named entities and nouns first
before other types of open-class words (verbs,
adjectives, and adverbs). Over all-domains,
for English Run2 and Run3 were placed sec-
ond and third. For Spanish Run2, Run3, and
Run1 were placed first, second, and third re-
spectively. For Italian Run1 was placed first
with Run2 and Run3 placed second equal.

1 Introduction & Related Work

Almost a decade ago, Agirre and Edmonds (2007)
suggested the promising potential for WSD that
could exploit the interdependencies between senses
in an interactive manner. In other words, this would
be a WSD system which allows the disambiguation
of word a to directly influence the consecutive dis-
ambiguation of word b. This is analogous to treating
WSD as a deterministic problem, much like the Su-
doku puzzle in which the final solution is reached by

adhering to a set of pre-determined constraints. Con-
ventional approaches to WSD often overlook the po-
tential to exploit sense interdependencies, and sim-
ply disambiguate all senses in one pass based on a
context window (e.g. a sentence or document). For
this task the author proposes an iterative approach
which makes several passes based on a set of con-
straints. For a more formal distinction between the
conventional and iterative approach to WSD, please
refer to this paper (Manion and Sainudiin, 2014).

Yr %NE %N %V %R %A F ∆F

’04 - 37.7 34.0 12.6 15.6 27.1 +16.8
’10 - 73.8 26.2 - - 26.8 +11.1
’13 17.1 82.9 - - - 58.3 +6.1
’15 6.0 44.9 28.9 6.5 13.7 55.8 +5.8

Table 1: Parts of Speech disambiguated (as percent-
ages) for each SemEval Task (denoted by its year).
In-Degree Centrality as implemented in (Manion
and Sainudiin, 2014) observes F-Score improvement
(F + ∆F) by applying the iterative approach.

The author found in the investigations of his
thesis (Manion, 2014) that the iterative approach
performed best on the SemEval 2013 Multilingual
WSD Task (Navigli et al., 2013), as opposed to ear-
lier tasks such as SensEval 2004 English All Words
WSD Task (Snyder and Palmer, 2004) and the Se-
mEval 2010 All Words WSD task on a Specific Do-
main (Agirre et al., 2010). While these earlier tasks
also experienced improvement, F-Scores remained
lower overall. Table 1 above and Figures 1(a) to (i)
help highlight what changed between these tasks.
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Degree of Polysemy−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 1: Depicted above are distributions for each domain and language, detailing the probability (y-axis)
of specific parts of speech at increasing degrees of polysemy (x-axis). These distributions were produced
from the gold keys (or synsets) of the test documents by querying BabelNet for the polysemy of each word.
Each distribution was normalised with one sense per discourse assumed, therefore duplicate synsets were
ignored. Lastly the difference in F-Score between the conventional Run1 and the iterative Run2 and Run3
is listed beside each distribution.
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Firstly WSD tasks before 2013 generally relied on
only a lexicon, such as WordNet (Fellbaum, 1998)
or an alternative equivalent, whereas SemEval 2013
Task 12 WSD and this task (Moro and Navigli,
2015) included Entity Linking (EL) using the en-
cyclopaedia Wikipedia via BabelNet (Navigli and
Ponzetto, 2012). Secondly, as shown by Manion and
Sainudiin (2014) with a simple linear regression, the
iterative approach increases WSD performance for
documents that have a higher degree of document
monosemy - the percentage of unique monosemous
lemmas in a document. As seen in Figures 1(a) to
(i) on the previous page, named entities (or unique
rather than common nouns) are more monosemous
compared to other parts of speech, especially for
more technical domains. Lastly, the SemEval 2013
WSD task differs in that only nouns and named en-
tities required disambiguation. This simplifies the
WSD task, as shown in the experiments on local
context by Yarowsky (1993), nouns are best disam-
biguated by directly adjacent nouns (or modifying
adjectives). Based on these observations, the author
hypothesized the following implementations of the
iterative approach should perform well.

2 System Description & Implementation

Run1 (SUDOKU-1) is the conventional approach –
no constraints are applied. Formalised in (Manion
and Sainudiin, 2014), this run can act as a baseline
to gauge any improvement for Run2 and Run3 that
apply the iterative approach. Run2 (SUDOKU-2)
has the constraint of words being disambiguated in
order of increasing polysemy, leaving the most pol-
ysemous to last. Run3 (SUDOKU-3) is an untested
and unpublished version of the iterative approach. It
includes Run2’s constraint plus a second constraint
– that all nouns and named entities must be disam-
biguated before other parts of speech.

For each run, a semantic subgraph is constructed
from BabelNet (version 2.5.1). Then for disam-
biguation the graph centrality measure PageRank
(Brin and Page, 1998) is used in conjunction with
a surfing vector that biases probability mass to cer-
tain sense nodes in the semantic subgraph. This
idea is taken from Personalised PageRank (PPR)
(Agirre and Soroa, 2009), which applies the method
put forward by Haveliwala (2003) to the field of

WSD. In the previous SemEval WSD task (Nav-
igli et al., 2013) team UMCC DLSI (Gutierrez et
al., 2013) implemented this method and achieved
the best performance by biasing probability mass
based on SemCor (Miller et al., 1993) sense fre-
quencies. As the winning method for this task, PPR
was selected to test the iterative approach on. For
SUDOKU’s implementation to be unsupervised, all
runs biased probability mass towards senses from
monosemous lemmas. Additionally for Run2 and
Run3, once a lemma is disambiguated it is consid-
ered to be monosemous. Therefore with each it-
eration of Run2 and Run3, probability mass is re-
distributed across the surfing vector to acknowledge
these newly appointed monosemous lemmas.

All system runs are applied at the document level,
across all languages and domains, for all named en-
tities, nouns, verbs, adverbs, and adjectives. Se-
mantic subgraphs are constructed from BabelNet via
a Depth First Search (DFS) up to 2 hops in path
length. PageRank’s damping factor is set to 0.85,
with a maximum of 30 iterations1. In order to avoid
masking the effect of using the iterative approach, a
back-off strategy (see (McCarthy et al., 2004)) was
not used. Multiword units were found by finding
lemma sequences that contained at least one noun
and at the same time could return a result from
BabelNet. Lemma sequences beginning with defi-
nite/indefinite articles (e.g. the, a, il, la, and el) were
removed as they induced too much noise, given they
almost always returned a result from BabelNet (such
as a book or movie title).

3 Results, Discussions, & Conclusions

As seen in Figures 1(a) to (i) on the previous page,
the Biomedical and Math & Computers domains in-
clude a substantial degree of monosemy, no doubt
increased by the monosemous technical terms and
named entities present. Given the importance of
document monosemy for the iterative approach, it
is of no surprise that Run2 and Run3 in most cases
performed much better than Run1 for these technical
domains. Equally so, Run2 and Run3 were outper-
formed by Run1 for the less technical Social Issues

1PageRank iterations remain at the atomic level, i.e. they
do not influence the construction of the semantic subgraph, see
(Manion and Sainudiin, 2014) Section 3.1 for more details.
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All Domains Biology Math & Comp Social Issues
Part of
Speech (1) ∆(2-1) ∆(3-1) (1) ∆(2-1) ∆(3-1) (1) ∆(2-1) ∆(3-1) (1) ∆(2-1) ∆(3-1)

Named Ents 16.8 +70.2 +70.2 4.1 +94.8 +94.8 0.0 +56.3 +56.3 60.9 +20.6 +20.6
Nouns 53.4 +9.1 +9.3 62.8 +9.1 +13.0 28.5 +22.9 +20.4 56.4 -3.6 -8.2
Verbs 52.2 -2.6 -6.2 52.5 -5.2 -1.9 51.4 -2.3 -9.1 52.9 +3.9 -12.0

Adverbs 48.9 +21.5 +22.8 50.7 +27.2 +24.6 52.0 +4.6 +12.2 36.4 +39.5 +39.5
Adjectives 74.4 -2.7 -6.3 82.3 +1.0 -4.5 75.0 -7.5 -17.5 63.6 -4.3 -0.6

Table 2: The difference in F-Scores over each Domain and Part of Speech for English SUDOKU Runs.

domain in which many of the named entities are pol-
ysemous rather than monosemous.

While the iterative approach achieved reasonably
competitive results in English, this success did not
translate as well to Spanish and Italian. The Ital-
ian Biomedical domain had the highest document
monosemy, observable in Figure 1 (g), yet this did
not help the iterative Run2 and Run3. Yet it is worth
noting the results of the task paper (Moro and Nav-
igli, 2015) report that SUDOKU Run2 and Run3
achieved very low F-Scores for named entity disam-
biguation (<28.6) in Spanish and Italian. Given that
more than half of the named entities were monose-
mous in Figure 1(d) and (g), the WSD system either
did not capture them in text or filtered them out dur-
ing subgraph construction (see BabelNet API). This
underscores the importance of named entities being
included in disambiguation tasks. To further support
this evidence, while the iterative approach is suited
to domain based WSD, recall that the 2010 domain
based WSD task in Table 1 also had no tagged
named entities (and thus scores were lower than for
successive named entity inclusive WSD tasks).

As seen in Table 2, the iterative approach has a
varied effect on different parts of speech. Always
improved is the disambiguation of named entities
and adverbs. This is also the case for nouns in tech-
nical domains (e.g. Biomedical as opposed to Social
Issues). On the other hand the disambiguation of
verbs and adjectives suffers under the iterative ap-
proach. In hindsight, the iterative approach could
be restricted to the parts of speech it is known to
improve, while remaining with the conventional ap-
proach on others. To the right in Table 3 the author’s
SUDOKU runs are compared against the team with
the most competitive results – LIMSI. The author
could not improve on their superior results achieved

in English, however for Spanish and Italian the Ba-
belNet First Sense (BFS) baseline was much lower
since it often resorted to lexicographic sorting in the
absence of WordNet synsets – see (Navigli et al.,
2013). The author’s baseline-independent submis-
sions were unaffected by this, which on reviewing
results in (Moro and Navigli, 2015) appears to have
helped SUDOKU do best for these languages.

Team Run All Bio Mat Soc
(E

N
)

LIMSI 65.8 71.3 54.1 67.2
SUDOKU-2 61.6 68.9 53.2 55.6
SUDOKU-3 60.7 71.2 49.4 51.1
SUDOKU-1 55.8 62.4 43.0 56.4

BFS 67.5 72.2 55.3 70.8

(E
S)

SUDOKU-2 57.1 60.8 49.7 57.0
SUDOKU-3 56.8 62.6 48.4 53.3
SUDOKU-1 56.0 62.7 44.2 54.2

LIMSI 45.0 51.0 34.8 43.1

BFS 37.5 43.7 28.7 34.0

(I
T

)

SUDOKU-1 59.9 65.1 48.4 61.0
SUDOKU-3 56.9 64.1 49.1 55.8
SUDOKU-2 56.9 58.8 52.1 57.9

LIMSI 48.4 53.1 44.6 42.9

BFS 40.2 44.3 36.7 35.7

Table 3: F1 scores for each domain/language for
SUDOKU and LIMSI.

In summary, the inclusion of named entities in
disambiguation tasks certainly improves results, as
well as the effectiveness of the iterative approach.
Furthermore in Table 3 above, the iterative Run3
for the English Biomedical domain is 0.1 short of
achieving the best result of 71.3. Investigating ex-
actly which factors contributed to the success of this
unsupervised result is a top priority for future work.
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Resources

Codebase and resources are at the author’s home-
page: http://www.stevemanion.com.
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Abstract 

We developed a system to participate in 

shared tasks on the analyzing clinical text. 

Our system approaches are both machine 

learning-based and rule-based. We applied 

the machine learning-based approach for 

Task 1: disorder identification, and the 

rule-based approach for Task 2: template 

slot filling for the disorder. In Task 1, we 

developed a supervised conditional random 

fields model that was based on a rich set of 

features, and used for predicting disorder 

mentions. In Task 2, we based on the de-

pendency tree to build a rule set. This rule 

set was extracted from the training data and 

applied to fill values of disorder attribute 

types on the test data. The evaluation on the 

test data showed that our system achieved 

the F-score of 0.656 (0.685 in case of re-

laxed score) for Task 1 and the F*WA of 

0.576 for Task 2A and the F*WA of 0.671 

for Task 2B. 

1 Introduction 

SemEval-2015 Task 14 is a continuation of pre-

vious tasks such as: CLEF eHealth Evaluation 

Labs 2013
1
 (Hanna Suominen et al., 2013), 

CLEF eHealth Evaluation Labs 2014
2
 (Liadh 

Kelly et al., 2014), and SemEval-2014 task 7
3
 

(Sameer Pradhan et al., 2014). The aim of the 

tasks is to improve the methods of natural lan-

guage processing (NLP) of the clinical domain 

                                                           
1 https://sites.google.com/site/shareclefehealth/ 
2 http://clefehealth2014.dcu.ie/ 
3 http://alt.qcri.org/semeval2014/task7/ 

and to widely introduce the clinical text pro-

cessing to the community of NLP research.  

The clinical narrative is abundant in mentions 

of clinical conditions, anatomical sites, medica-

tions and procedures. It is completely different 

from the newswire domain where text is domi-

nated by mentions of countries, locations and 

people. Many surface forms represent the same 

concept. Unlike the general domain, in biomedi-

cine which are rich lexical and ontology re-

sources that can be leveraged when applications 

are built. 

The SemEval-2015 Task 14 is split into two 

tasks: 1) Task 1 is disorder identification, and its 

goal is to recognize the span of disorder men-

tions, the named entity recognition, and the 

normalization to a unique CUI in a SNOMED-

CT terminology in a set of clinical notes. The 

SNOMED-CT is a resource provided by the or-

ganizers for the normalization of Task 1; and 2) 

Task 2 is disorder slot filling; it focuses on iden-

tifying the normalized value for nine modifiers 

in a disorder mentioned in a clinical note: the 

CUI of the disorder (much similar to Task 1), as 

well as the potential attributes (e.g. negation in-

dicator, subject, uncertainty indicator, course, 

severity, conditional, generic indicator, and body 

location). Participants can submit to either or 

both of the tasks. We participated in both tasks. 

In this paper, we describe a combined ma-

chine learning and rule-based approach for the 

two tasks. 

2 Our Approach  

2.1 Data Analysis 
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The Organizing Committee provided a data set 

including one on-set of training data (train) and 

one on developing data (devel). The training 

data set contains 298 files, including radiology 

reports, discharge summaries, and ECG/ECHO 

reports. The developing data set contains 133 

files being discharged summaries. 

Processing the data shows that there are 3 

forms to represent disorder mentions: 1) disorder 

with a continuous bundle of words (Form 1); 2) 

disorder with two separated chunks (Form 2); 3) 

disorder with three separated chunks (Form 3). 

Figure 1 illustrates the three forms. The statistics 

of the appearing rate of disorder representable 

forms on the training and the developing data 

sets are shown in Table 1. 
 

Data Form 1 Form 2 Form 3 Totals 

T
ra

in
 

#disorder 10077 1028 62 11167 

Percentage  91.8% 7.9% 0.3%  

D
ev

el
 

#disorder 7374 608 16 7998 

Percentage  92.2% 7.6% 0.2%  
 

Table 1. The statistics of the number and percentage 

of each disorder expressed in the sets of training and 

developing data. 

 

Form 1: “The rhythm appears to be atrial fibrilla-

tion.” 

Form 2: “The left atrium is moderately dilated.” 

Form 3: “Heart: VI systolic murmur, irregular rate 

and rhythm.” 
 

Figure 1. Examples of disorder representable forms. 

 

The analysis results help us develop a more 

effective disorder extraction approach in solving 

problems.  

2.2 Disorder Identification 

In disorder identification, the system is based 

on the machine-learning approach, the set of 

training data is converted into a BIO format, in 

which each word is assigned into one of three 

labels: B means the beginning of a disorder, I 

means the inside of a disorder, and O means the 

outside of a disorder. These labels can be used 

for a disorder only when it has consecutive 

words (Form 1) and cannot work when the dis-

order has nonconsecutive words (Form 2 or 

Form 3) as mentioned in Section 2.1. Therefore, 

we developed different strategies for the disor-

der forms with consecutive and nonconsecutive 

words. For the disorder with consecutive words, 

we labeled words using the traditional BIO. For 

discontinuous disorder mentions, we created two 

addition sets of tags: 1) {B2, I2} which is used 

to assign to the words of disorder with two sepa-

rate chunks (Form 2); 2) {B3, I3} is used to la-

bel the disorder with 3 separate chunks (Form 

3). Figure 2 shows some examples of labeling 

disorders with consecutive and nonconsecutive 

words using our new tagging sets. In this ap-

proach, we assigned one of seven tags {B, I, O, 

B2, I2, B3, I3} to each word. Thus, the disorder 

identification problem was converted into a clas-

sification problem to assign one of the seven 

labels to each word. 

 

Form 1: “The/O rhythm/O appears/O to/O be/O atri-

al/B fibrillation/I ./O” 

Form 2: “The/O left/B2 atrium/I2 is/O moderately/O 

dilated/I2 ./O” 

Form 3: “Heart/B3 :/O VI/O systolic/O murmur/O 

,/O irregular/I3 rate/O and/O rhythm/I3 

./O” 
 

Figure 2. Examples of labeling for the consecutive 

and nonconsecutive disorder words. 

 

The algorithms machine learning and feature 

set offered by Stanford Named Entity Recogniz-

er
4
 was used. The Stanford CoreNLP

5
 was used 

for splitting sentences and tokenizers from the 

training and test data. Also, some simple rules 

were used for labeling disorder words, i.e. {B, 

B2, B3) labeled to the begin-token of disorders, 

and {I, I2, I3} labeled to the inside-tokens of 

disorders as indicated in Figure 2. The Stanford-

NER tool and the feature set offered by the Stan-

ford NLP were used to build a supervised condi-

tional random fields model on the training data. 

Then, this model was used to assign a label to 

each token in the test data. Some of our rules 

                                                           
4  http://nlp.stanford.edu/software/CRF-NER.shtml 
5 http://nlp.stanford.edu/software/corenlp.shtml 
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were built to identify disorders. For sentences, 

we identified each disorder in turn based on the 

label sets consisting of {B, I}, {B2, I2}, and 

{B3, I3}.  

In disorder normalization to a unique CUI in 

the UMLS/SNOMED-CT terminology, we ex-

tracted a list of annotated disorder from the 

training and developing date with disorder enti-

ties and CUI. This list was a primary  search 

source for each of the recognized disorder enti-

ties. When a disorder was not found on the list, 

we used the MetaMap
6
 (Willie, 2013) and 

UMLS
7
 to continue the search. Then, when the 

disorder was not defined as CUI, it was defined 

as “CUI–less”. 

2.3 Disorder Slot Filling 

Huu Nghia Huynh et al. (2014) developed a sys-

tem to participate in Task 2 of the CLEF eHealth 

Evaluation Labs 2014. They used the rule-based 

and machine learning methods for the task of 

disease/disorder template filling. The result of 

the system achieved the accuracy of 0.827. 

Our system was developed based on the rule-

based approach. The rules are based on the rep-

resentation of the dependency tree. One rule is 

established when there is a path from the node 

containing disorder to the node containing Cue 

word on the dependency tree. Each of these at-

tributes has a rule set and a handling difference 

because of the data representation. For example, 

to fill values for the Uncertainty Indicator (UI) 

attribute, in the segment as illustrated in Figure 

3, there are three disorders “Congestive heart 

failure”, “Coronary artery disease” and “Aortic 

valve disease” whose all of the cue words are 

“Indication”. This segment are split into 3 sen-

tences as shown in Figure 4, and Sent 2 and Sent 

3 lost the Cue word information. Then when we 

based on the dependency tree, it  is impossible to 

determine Normalized Values for an attribute. 

 
Indication: Congestive heart failure.  Coronary ar-

tery disease.  Aortic valve disease. 

Figure 3. Example of a text segment in discharge 

summary. 

                                                           
6 http://metamap.nlm.nih.gov/JavaApi.shtml  
7 https://uts.nlm.nih.gov/home.html 

 

Sent 1: Indication: Congestive heart failure.   

Sent 2: Coronary artery disease.   

Sent 3: Aortic valve disease. 

Figure 4. Example of separating the text segment 

result. 

 

The attributes of Negation Indicator, Subject 

Class, Uncertainty Indicator, Course Class, Sev-

er-ity Class, Conditional Class, and Generic 

Class are processed with the same method as 

follows: From the training and developing data, 

the system extracts lists, including a list of dis-

orders and trigger and lists of the Normalized 

Values and the Cue word for each attribute. Eve-

ry trigger list consists of two columns: the first 

column contains the Normalized Values, and the 

2nd column contains the Cue Word of the re-

spective disorder slot. The lists of disorder and 

trigger are the input parameters to define the sets 

of rules based on the dependency tree. Figure 5 

is the illustration of the dependency tree in the 

sentence “Gastric lavage shown maroon/ black 

but no fresh blood” in which  “blood” is a disor-

der, “no” is the Cue word of “blood” and the 

Normalized Value of “blood” to be determined is 

“yes”. 

A rule is set up to the Negation Indicator at-

tribute type as follows: ({relation = “neg”} 

{governor = “blood”} {dependent = “no”}) → 

(“blood”: yes). Each attribute has its own sepa-

rated rule set. 

 

 
 

Figure 5. An example illustrates the dependency tree 

of the sentence “Gastric lavage showed ma-

roon/black but no fresh blood.” 

 

The disorder CUI attribute type is analyzed 

in the method similar to that of normalization of 

disorders mentioned above. For the Body Loca-
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tion attribute type, the system determines the 

Cue word candidates by searching the list of 

triggers and UMLS, and then uses the rule set to 

identify the Cue word related to the disorder.  

3 Results  

We used data that was provided by the organ-

izers as training data for the system including 

298 files (train) and 133 files (devel). The Or-

ganizing Committee provided the test data in-

cluding 100 files (text) used to run Tasks 1 and 

2b, followed by 100 files (pipe) used to run Task 

2a. In task 2, there are two subtasks. In Task 2a, 

the gold-standard spans of disorder are given, 

and the participant has to fill the slots (including 

the CUI of the disorder). In Task 2b End-to-end: 

no gold-standard information is provided, and 

the participant has to (i) identify disorders (i.e. 

span recognition), and (ii) fill the slots for the 

disorders (including normalized disorders). 
 

 Strict score Relaxed score 

Precision 0.680 0.711 

Recall 0.633 0.662 

F-score 0.656 0.685 

Table 2. The system results of Task 1. 

 

Accuracy 0.195 

F*Accuracy 0.195 

Wt_Accuracy 0.576 

F*Wt_Accuracy 0.576 

Table 3. The system results of Task 2a. 

 

Accuracy 0.884 

F*Accuracy 0.756 

Wt_Accuracy 0.784 

F*Wt_Accuracy 0.671 
 

Table 4. The system results of Task 2b. 

 

Attribute types Weighted Accuracy 

Body Location 0.603 

Disorder CUI 0.801 

Conditional Class 0.725 

Course Class 0.851 

Generic Class 0.904 

Negation Indicator 0.935 

Severity Class 0.843 

Subject Class 0.931 

Uncertainty Indicator 0.802 

Table 5. The results of the attribute types in Task 2b. 

 

Assessing the results in Task 2a, we made a 

mistake in filling out the default values for the 

slots of the disorders in the results submitted to 

the Organizing Committee. Therefore, the re-

sults are very low (see Table 3) and cannot re-

flect the effectiveness of our system. 

The following metrics are computed with the 

F-measure for span identification: A true posi-

tive disorder span is defined as any overlap with 

a gold-standard span. If there are several pre-

dicted spans overlapping with a gold-standard 

one, then only one of them is chosen to be a true 

positive (the longest span), and the other pre-

dicted spans are considered as false positives. 

 

#TP 5078 

#FP 644 

#FN 1070 

Precision 88.7% 

Recall 82.6% 

F-score 85.6% 

Table 6. The F-measure for span identification. 

 

Table 6 illustrates the results obtained on the 

F-measure for span identification. On observing 

the results, a lot of predicted spans contain sev-

eral tokens that were not part of disorders. If 

these tokens are removed, the results of span 

identification will be more accurate. 

4 Discussion 

The disorder identification task has a lot of chal-

lenges in the clinical domain. It was shown 

through the results in CLEF 2013 (Souminen, 
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H., et al., 2013), SemEval 2014 (Sameer Pra-

dhan et al., 2014), and SemEval 2015. 

 

 
 

Figure 6. Different representable forms of Disorders 

 

In Section 2.1 we presented three representa-

ble forms of disorder in the clinical text. In addi-

tion, it shows the other representable forms as 

illustrated in Figure 6, and the different disor-

ders sharing a word in the sentence. For exam-

ple, the sentence 2 has 3 disorders containing the 

same word “Allergies”. 

The diversity and complexity of representa-

tion of disorders in clinical documents lead to a 

major challenge in the problem of extracting 

concepts in the clinical domain. 

5 Conclusion 

We described the system which realized the 

recognition, normalization and template filling 

of disorders in clinical docments. The system 

used the rule-based and machine learning-based 

approaches. The results of system will be able to 

serve a good foundation for our further research 

and propose enhancements to improve the effi-

ciency for conceptual extraction problems. Spe-

cifically, we will study the proposal of more 

appropriate label sets for different representable 

forms of disorders as we presented in Sections 

2.1 and 4, and conduct more pieces of research 

to supplement new features for disorder identifi-

cation. In addition, we will propose a solution to 

remove several tokens which are not parts of 

disorder in the future. 

 

References  

Hanna Suominen, Sanna Salanterä, Sumithra Velupil-

lai, Wendy W. Chapman, Guergana Savova, Noe-

mie Elhadad, Sameer Pradhan, Brett R. South, 

Danielle L. Mowery, Gareth J. F. Jones, Johannes 

Leveling9, Liadh Kelly, Lorraine Goeuriot, David 

Martinez, and Guido Zuccon. Overview of the 

shARe/CLEF eHealth evaluation lab 2013. In: 

Proceedings of ShARe/CLEF eHealth Evaluation 

Labs. (2013). 

Huu Nghia Huynh and Bao Quoc Ho (2014). A Rule-

based Approach for Relation Extraction from 

Clinical Documents. In Proceedings of Asian Con-

ference 2014 on Information Systems, pp. 314-

317. 

Huu Nghia Huynh, Son Lam Vu, and Bao Quoc Ho 

(2014). ShARe/CLEFeHealth: A Hybrid Approach 

for Task 2. In Working Notes for CLEF 2014 Con-

ference Sheffield, UK, pp. 103-110. 

Liadh Kelly, Lorraine Goeuriot, Hanna Suominen, 

Tobias Schreck, Gondy Leroy, Danielle L. 

Mowery, Sumithra Velupillai, Wendy W. Chap-

man, David Martinez, Guido Zuccon, João Palotti 

(2014). Overview of the ShARe/CLEF eHealth 

Evaluation Lab 2014. In Information Access 

Evaluation. Multilinguality, Multimodality, and 

Interaction Lecture Notes in Computer Science 

Volume 8685, pp. 172-191. 

Olivier Bodenreider and Alexa T. McCray (2003). 

Exploring Semantic Groups through Visual Ap-

proaches. Journal of Biomedical Informatics 36 

(2003), pp. 414-432. 

Sameer Pradhan, Noémie Elhadad, Wendy Chapman, 

Suresh Manandhar and Guergana Savova (2014). 

SemEval-2014 Task 7: Analysis of Clinical Text. 

In Proceedings of the 8th International Workshop 

on Semantic Evaluation (SemEval 2014), pp.54-

62. 

Willie Rogers (2013). Installing and Running the 

Public Version of MetaMap. 

 

 

374



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 375–379,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

UTU: Adapting Biomedical Event Extraction System to Disorder Attribute
Detection

Kai Hakala
University of Turku Graduate School (UTUGS), University of Turku, Finland

Dept. of Information Technology, University of Turku, Finland
kahaka@utu.fi

Abstract

In this paper we describe our entry to the Se-
mEval 2015 clinical text analysis task. We
participated only in the disorder attribute de-
tection task 2a. Our main goal was to as-
sess how well an information extraction sys-
tem originally developed for a different task
and domain can be utilized in this task. Our
system, based on SVM and CRF classifiers,
showed promising results, placing 3rd out of
6 participants in this task with performance of
0.857 measured in weighted accuracy, the of-
ficial evaluation metric.

1 Introduction

SemEval 2015 introduced a new subtask for the clin-
ical text analysis track focusing on disorder mention
attribute detection. These attributes describe the rel-
evant information extracted from the textual context
of the given disease mention, such as the severity
or body location of the disease. The attributes were
grouped into 9 separate categories, each with a pre-
defined set of valid attribute classes. The task was
defined as a template filling task where the textual
cue words for the attributes have to be first identi-
fied and then normalized to the correct class. Similar
task with slightly different definition has previously
been organized as part of the ShARe/CLEF eHealth
shared task (Mowery et al., 2014).

Due to time limitations we participated only in the
task 2a in which the gold standard disorder mentions
were given and only the attribute values had to be
predicted. Our main motivation for this years en-
try was to evaluate the performance of an existing

information extraction system, TEES (Björne and
Salakoski, 2013), previously developed for a dif-
ferent domain and to assess how easily it can be
adapted to a new task.

2 System Description

Turku Event Extraction System (TEES) was origi-
nally developed in 2009 for the BioNLP Shared Task
on Event Extraction (Kim et al., 2009). This task fo-
cused on the extraction of biological processes and
interactions between genes and proteins (GGPs) de-
scribed in biomedical literature. In this task each
event, i.e. biological process or interaction, is rep-
resented by a trigger word, which also describes the
type of the event, and a set of argument GGP men-
tions. The argument GGPs may also act in various
roles, i.e. each argument is also typed. The par-
ticipants were thus required to detect these trigger
words, their types from a predefined set and the ar-
guments, i.e. the relations between the trigger words
and GGPs. Gold standard gene and protein mentions
were provided by the organizers and consequently
TEES does not include tools for named entity recog-
nition, but presumes these to be given as input data.
An example sentence along with the extracted event
is illustrated in figure 1.

TEES was the best performing system in the 2009
BioNLP Shared Task as well as in various subtasks
in subsequent years (Björne and Salakoski, 2011;
Nédellec et al., 2013) showing state-of-the-art per-
formance in biomedical event extraction. Whereas
the event extraction task requires the detection of
trigger words and argument relations, the disorder
attribute detection can be solved by first finding the
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Figure 1: Visualization of an extracted event. In BioNLP Shared Task on Event Extraction the GGP mentions are
given and the participants are asked to detect the trigger words, here activates and phosphorylation, as well as the
relation between these entities.

cue words and then relating them to the correct dis-
ease mentions, making TEES applicable also for this
task.

2.1 Cue Word and Relation Detection

TEES consists of two main processing stages. The
first step, called trigger detection, resembles com-
mon NER classification task, and classifies each to-
ken in the text to either negative class or one of the
positive classes, i.e. the predefined trigger types. In
this task the trigger detector is used to detect the at-
tribute cue words and their classes.

The second step detects relations between the
known named entities and trigger words. This is im-
plemented by generating all plausible entity pairs in
a sentence in which case the task becomes a simple
classification problem: each pair is classified to ei-
ther negative class or a positive class resembling the
type of the relation.

As trigger and relation detection tasks are both
multiclass classification problems, they have been
implemented with a multiclass SVM (Tsochan-
taridis et al., 2004) using the SVMmulticlass software,
bundled with TEES. TEES generates a vast amount
of classification features from the examined words
as well as their context. The relation detection, in
particular, relies heavily on syntactic dependencies.

The optimal value for C-parameter is selected in-
dependently for each step. However, the indepen-
dently optimized trigger detection model may not re-
sult in the optimal overall system. This is due to the
fact that the relation detector is able to discard un-
wanted triggers, but cannot recover from low trigger
detection recall. To overcome this issue, the recall of
the trigger detector is artificially increased and the
final verdict is made by the relation detector. The
amount of overgeneration is selected by evaluating
the overall performance of the system.

Whereas TEES relies on graph based data repre-
sentation with textual entities and the relations be-

tween them, the disorder attribute detection task in
SemEval 2015 is defined as a slot filling problem.
The main issue in the conversion between these two
formats is that the default normalization slot values
with the corresponding cue defined as null cannot
be represented in TEES format. Due to this, the de-
fault value was decided to be the negative class. In
this definition, our system is only aiming to predict
the non-default values and if no cue word and a re-
lation between the cue word and disorder entity can
be found the default value is preserved. As the slot
filling format defines different categories and prede-
fined normalization classes inside these categories,
whereas TEES uses a single class for each trigger,
the category and normalization classes are concate-
nated into a single class. E.g. our system is not
aware that cue word classes SV slight and SV severe
are both normalization values of the severity cate-
gory, but sees them as independent classes. The rela-
tions between cue words and disorder mentions are
predicted to only exist or not, i.e. the relations are
not typed.

2.2 Body Location Detection

In our evaluation on the development set, the perfor-
mance of the TEES trigger detector was extremely
poor for the body location attributes. This might be
due to various reasons. Firstly, whereas the other
attribute categories are rather closed sets of expres-
sions, the body locations are named entities. Sec-
ondly, TEES does not use any features tailored for
the clinical domain and thus generalizes poorly to
body location mentions not seen on the training data,
resulting in a high precision and low recall system.

As the first attempt to adapt TEES to this task and
generalize better for the body locations, we included
dictionary features for the trigger detection stage.
The used dictionary was composed of the UMLS
concepts included in the semantic categories “Body
Part, Organ, or Organ Component”, “Body Loca-

376



tion or Region”, “Body System”, “Body Space or
Junction”, “Body Substance”, “Tissue”, “Cell” and
“Embryonic Structure”. These semantic types cover
98.9% of the body locations seen in the training data.
For each concept, the preferred term as well as the
synonyms were included in the dictionary.

The addition of these features did not improve our
performance significantly and thus in the final sys-
tem, the TEES trigger detector was replaced with a
CRF classifier for the body locations. In this ap-
proach we used the NERsuite software based on the
CRFsuite implementation (Okazaki, 2007). In addi-
tion to the standard features such as the word form,
lemma, part-of-speech tag and text chunk we in-
corporated the same dictionary features used in the
TEES trigger detector. Moreover, we trained an-
other CRF using the AnatomyTagger software and
AnatEM corpus (Pyysalo and Ananiadou, 2013).
These two models were stacked, i.e. the predictions
from the AnatEM model were given as features for
the other classifier.

As the gold standard data includes only attributes
related to a disease mention, the annotation is in-
complete for NER purposes, and thus using the
whole data resulted in poor performance. To pre-
vent this, we trained the body location NER system
with only the sentences including at least one anno-
tated body location mention. The development set
was filtered in similar fashion for evaluation pur-
poses. The feature set which resulted in the best
performance in this evaluation set was used in the fi-
nal system. This approach boosted the performance
on sentences which included at least one annotated
body location mention, but the impact on other sen-
tences is hard to assess without complete evaluation
data. However, this approach leads to a similar out-
come as the aforementioned trigger word overgen-
eration and shifts the responsibility of removing the
excessive body location mentions to the relation de-
tector.

2.3 Disorder and Body Location Normalization

The body location attribute differs from the other
categories in that the cue spans were required to be
normalized into the corresponding UMLS concepts.
As TEES does not include tools for this type of nor-
malization and the normalization was not our main
focus in this year’s entry, we used a simple tfidf-

weighted vector space model. As the first attempt
the model was created from the same UMLS con-
cepts used in the body location NER features, but
due to high amount of ambiguity this led to poor re-
sults. Consequently, we naively generated the model
from the gold standard body location annotations
and a given entity was then mapped to the UMLS
identifier of the most similar entity seen on the train-
ing set. If an entity was annotated with various iden-
tifiers in different contexts, we used the most fre-
quently occurring identifier.

The entities were predicted to be “CUI-less” if the
most similar gold standard entity was annotated as
such or if the maximum cosine similarity was zero.
Thus in this naive approach there was no need for
more complex “CUI-less” value identification as is
necessary in our previously suggested normalization
method (Kaewphan et al., 2014).

The disorder mention normalization was not part
of the original slot filling task, but was later on added
to the task definition. For simplicity we used the
same naive method as with the body location enti-
ties.

3 Results

We submitted three separate runs to the final eval-
uation. Runs 1 and 2 used the same approach, but
run 2 includes a last-minute bug fix which we were
not able to thoroughly test. This bug caused some
of the attribute mentions to be duplicated during the
conversion between SemEval and TEES data for-
mats, misleading the system. These runs use the
method described in this paper, but the system was
only allowed to predict one value for each slot. This
was forced by only selecting the value with highest
classification confidence for the relation detection;
the confidence of the trigger word detection was ig-
nored. In run 3 we allowed the system to predict
multiple body location values for each disorder men-
tion. This is beneficial in statements such as “Os-
teophytes are seen along the medial tibial plateau
as well as the superior aspect of the patella” where
both body locations tibial plateau and patella are re-
lated to the same disorder mention Osteophytes. The
results for these runs are shown in table 1 along with
the best runs from the other participated groups.

Our best performance was obtained from the run
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Team WA A
UTH-CCB 0.886 0.943
ezDI 0.880 0.934
UTU run3 0.857 0.945
UTU run2 0.855 0.944
UTU run1 0.846 0.939
UWM 0.818 0.859
TeamHCMUS 0.576 0.195
UtahPOET 0.446 0.744

Table 1: Official test set results for our 3 submissions and
the other 5 participating teams. Only the best runs mea-
sured in weighted accuracy are shown for other teams.
WA = weighted accuracy, A = non-weighted accuracy.

3 with weighted accuracy of 0.857, resulting in the
third best performing system in the task. Measured
on the non-weighted accuracy which was not the
main evaluation metric, but still included in the of-
ficial results, we achieved score 0.945, the second
best performance in the task.

Runs 1 and 2 which did not allow multiple body
locations to be predicted performed slightly worse,
run 2 achieving weighted accuracy of 0.855. This
difference between runs 2 and 3 is solely caused by
the body location category in which the difference
between these two runs is 1.1pp. The category-wise
performance is shown in table 2.

The comparison of our results to the best per-
forming system by team UTH-CCB reveals that our
system performs consistently weaker in every cate-
gory. Worth noticing is that our naive normalization
approach is not affecting our performance dramat-
ically, showing weighted accuracy of 0.827 in dis-
order normalization category (CUI), where as UTH-
CCB system achieved score of 0.854. As the gold
standard disorder mentions were given in this task,
this score is only measuring the normalization per-
formance.

Our submitted runs were all trained with the com-
bination of training and development data sets. The
overall results on development and test sets are fairly
similar showing that the system is not overfitting to
the development data. On the other hand it seems
that combining the training and development sets for
the final models does not improve the performance
significantly, although we cannot confirm this specu-
lation before the gold standard annotation for the test

data is released. As an exception to this is our nor-
malization method, which greatly benefits from the
added training data as can be seen from the +5.5pp
improvement in the CUI category. This shows that
the naive approach does not generalize well and is
applicable only when the training data covers most
of the disorder mentions seen in the test data.

4 Discussion and Future Work

The current implementation of TEES induces some
limitations for this task. Firstly, the current data for-
mat used in TEES does not allow the representation
of discontiguous entities, which are not common in
various other tasks. In this submission we thus rep-
resented the discontiguous disorder entities with a
single span during the cue word and relation detec-
tion. As the discontiguous entities are much less
frequent in the attribute entities, we discarded them
completely. As a future work we would like to allow
TEES to support this type of entities. This will re-
quire not only altering the used data format, but also
modifying the feature extraction process to be able
to fully express the characteristics of these entities.

Secondly, TEES uses micro-averaged F-score of
positive classes as the internal evaluation metric for
parameter optimization, which may be suboptimal
for tasks evaluated in different metrics. Due to this,
we plan to modify TEES to accept various user-
defined evaluation metrics.

To improve our performance in this task specifi-
cally, we need to first perform a detailed error anal-
ysis. This might reveal for instance whether some
domain specific features could improve the accuracy
of our system.

5 Conclusions

We have demonstrated that an information extrac-
tion system originally developed for scientific lit-
erature can be easily adapted to the clinical do-
main. The described system shows competitive per-
formance being the third best system in the disor-
der attribute slot filling task. We have also discussed
some of the limitations of the system and suggested
multiple future improvements for better suitability
to new task definitions and domains.
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Team WA A BL CUI CND COU GEN NEG SEV SUB UNC
UTH-CCB 0.886 0.943 0.862 0.854 0.903 0.887 0.911 0.975 0.936 0.975 0.911
Run3 0.857 0.945 0.825 0.827 0.823 0.798 0.888 0.970 0.915 0.920 0.853
Run2 0.855 0.944 0.814 0.827 0.823 0.798 0.888 0.970 0.915 0.920 0.853
Run3 devel 0.830 0.933 0.798 0.772 0.862 0.848 0.864 0.941 0.940 0.920 0.872

Table 2: Performance of our system in each attribute category compared to the best performing system. Run 3 devel
shows our best results for the development set evaluated with the evaluation tool provided by the organizers.
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Abstract 

This paper describes clinical disorder 

recognition and encoding system submit-

ted by IHS R&D Belarus team at the 

SemEval-2015 shared task related to 

analysis of clinical texts. Our system is 

based on IHS Goldfire Linguistic Proces-

sor and uses a rich set of lexical, syntac-

tic and semantic features. The proposed 

system consists of two components: a 

CRF-based approach to recognize disor-

der entities and empirical ranking to en-

code disorders to UMLS CUIs. Evalua-

tion on the test data set showed that our 

system achieved the F-measure of 0.898 

for entity recognition and the F-measure 

of 0.794 for UMLS CUI. The combined 

score for whole task is 0.690 (rank 17 out 

of 40 submissions). 

1 Introduction 

Named entity recognition (NER) is an infor-

mation extraction task where the aim is to identi-

fy mentions of specific types of entities in text. 

This task has been one of the main focuses in the 

biomedical text mining research field, especially 

when applied to the scientific literature. Such 

efforts have led to the development of various 

tools for the recognition of diverse entities, in-

cluding species names, genes and proteins, 

chemicals and drugs, anatomical concepts and 

diseases. These tools use methods based on dic-

tionaries, rules, and machine learning, or a com-

bination of those depending on the specificities 

and requirements of each concept type (Campos 

et al., 2013). After identifying entities occurring 

in texts, it is also relevant to disambiguate those 

entities and associate each occurrence with a 

specific concept, using a univocal identifier from 

a reference database such as Uniprot1 for pro-

teins, or OMIM2 for genetic disorders. This is 

usually performed by matching the identified 

entities  against a knowledge-base, possibly 

evaluating the textual context in which the entity 

occurred to identify the best matching concept. 

 In this paper, we describe a system 

(IHS_RD_Belarus in official results) developed 

to participate in the international shared task    

organized by the Conference on Semantic Evalu-

ation Exercises (SemEval-2015) and focused on 

the analysis of clinical notes. This task is  the 

repetition of task 7 at SemEval-2014 (Pradhan, et 

al., 2014) and aims at the recognition of entities 

belonging to the ‘disorders’ semantic group of 

the Unified Medical Language System (UMLS) 

(Bodenreider, 2004) and normalization of these 

entities to a specific UMLS Concept Unique 

Identifier (CUI). Specifically, the task definition 

required that concepts should only be normalized 

to CUIs that could be mapped to the SNOMED 

CT3 terminology. 

2 System description 

2.1 Dataset 

The dataset for Tasks 1 consists of de-identified 

clinical notes of 4 different types (Discharge 

summary, ECG, Echo, Radiology) from MIMIC 

corpus (Lee et al., 2011). The organizer annotat-

ed 298 clinical notes with disorder entities on a 

predefined guideline and then mapped them to 

SNOMED-CT concepts represented by the 

UMLS CUIs. If a disorder entity cannot be found 

in SNOMED-CT, it was marked as “CUI-less”. 

These notes were used as training dataset. The 

unlabelled notes are provided for exploring semi-

supervised and unsupervised methods. 
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Two types of disorder mentions are annotated: 

consecutive and discontiguous. The discontigu-

ous dirorder mentions consist of multiple tokens 

with some distance between each other, for ex-

ample, “The left atrium is moderately dilated”. 

Table 1 shows the counts of words, annotated 

disorders and unique CUIs in the training dataset. 

 

 Train data 

Documents 298 

Words count 162,511 

Disorder mentions 11,141 

                      consecutive 10,050 

                   discontiguous 1,091 

Unique UMLS CUI 1,355 

CUI-less entities 3,471 
Table 1. Distribution of the training data. 

2.2 Lexicon 

The disorder lexicon was created using the 

UMLS Metathesaurus, where each disorder con-

cept is represented by set of synonymous terms. 

 To satisfy the annotation guidelines, the con-

cept identifiers (CUIs) were restricted to the 11 

recommended disorder semantic types: 

 Congenital Abnormality 

 Acquired Abnormality 

 Injury or Poisoning 

 Pathologic Function 

 Disease or Syndrome 

 Mental or Behavioural Dysfunction 

 Cell or Molecular Dysfunction 

 Experimental Model of Disease 

 Anatomical Abnormality 

 Neoplastic Process 

 Signs and Symptoms 

The disorder lexicon was enriched using au-

tomatically generated lists of synonymous words. 

For this purpose we used 3 techniques: 

 lexical derivations, for example, “optical, 

optically”;  

 synonymous words based on the Leven-

stein distance within a set of synonymous 

terms representing one UMLS disorder 

concept, for example, “hyperchromasia, 

hyperchromatism, hyperchromia”; 

 similar noun phrases suggested by our in-

house autocorrection and autocompletion 

module that indexed UMLS terms, includ-

ing correction of typing errors (“carotic 

artery” = “carotid artery”) and similar 

terms (“tick disease” = “tick-borne dis-

ease”). 

2.3 Evaluation 

Evaluation was to be carried out according to the 

following F-scores: 

 Strict F-score: a predicted mention is con-

sidered a true positive if:  

1. its predicted span is exactly the same as 

for the gold-standard mention; 

2. the predicted CUI is correct. 

The predicted disorder is considered a false 

positive if the span is incorrect or the CUI is in-

correct. 

 Relaxed F-score: a predicted mention is a 

true positive if: 

1. there is any word overlap between the 

predicted mention span and the gold-

standard span (both in the case of con-

tiguous and discontinuous spans);  

2. the predicted CUI is correct. 

The predicted mention is a false positive if the 

span shares no words with the gold-standard 

span or the CUI is incorrect. 

2.4 Disorder identification 

We formulated disorder mention identification as 

a sequence labeling problem at token level and 

used Conditional Random Fields (CRF) (Laffer-

ty, 2001). CRFs have shown empirical successes 

recently in named entity recognition (McCallum 

and Li, 2003), opinion target extraction (Cher-

nyshevich, 2014), noun phrase segmentation 

(Sha and Pereira, 2003). 

To facilitate feature generation for supervised 

CRF learning, sentences were pre-processed with 

IHS Goldfire Linguistic Processor that performs 

the following operations: word splitting, part-of-

speech tagging, parsing, noun phrase extraction, 

semantic role labeling within expanded  Subject-

Action-Object (eSAO)  relations (Todhunter et 

al., 2010). We removed all footers and headers, 

which are associated with the whole document 

and are irrelevant for the task. The notes are de-

identified: the private data, e.g. names, data and 

places, are replaced by placeholders, for exam-

ple, “[**Location**]”. We replaced these 

placeholders with natural language expressions 

to assure correct POS-tagging and parsing.  

Two separate CRF models were trained to 

identify consecutive and discontiguous disorder 

mentions with the same tagging scheme and 

same set of features. 
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2.4.1 CRF labels 

We conducted several experiments with dif-

ferent tagging conventions and decided to use the 

ILO (Inside-Last-Outside) tagging scheme, 

where tag I represents the beginning and the in-

side token of an entity, L represents the last word 

of entity and O not a member of a disorder struc-

ture. The following is an example of our tagging 

for consecutive and discontiguous disorder men-

tions: 

The/O rhythm/O appears/O to/O be/O atrial/I 

fibrillation/L 

The/O left/I atrium/I is/O moderately/O dilat-

ed/L 

The BIO (Begin-Inside-Outside) tagging 

scheme showed the classification accuracy lower 

by 5.5%. 

2.4.2 Features 

Given a sentence s and a token under considera-

tion wk, we define features over wk and window 

of 5 tokens: wk-2, wk-1, wk, wk+1, wk+2. 

Token: This feature represents the string of 

the token wk. 

Context features: This feature has been used 

with a window of five tokens (the 2 tokens be-

fore and the 2 tokens after the target token). The 

surrounding words usually convey useful infor-

mation about a token which help in predicting 

the correct tag for each token.  

Part of speech: This feature represents the 

POS tag of the token wk. It can provide some 

means of lexical disambiguation and help in de-

termining the boundaries of instances. 

Word letter case feature: This feature in-

cludes one of the three case tags for lowercase, 

uppercase and capitalized words corresponding-

ly. 

Letter n-grams:  3- and 4-letter n-grams start-

ing and ending the token wk. 

Word frequency in out-of-domain corpus: 

we used social media texts as an out-of-domain 

corpus. 

Part of a longer noun phrase:  whether the 

word belongs to the same noun group as the next 

word. 

Semantic category: This feature represents 

the semantic class to which the token wk belongs, 

for example, body part, process, units of meas-

ure, drug, and animal being. We used two 

sources of semantic information: WordNet and 

the UMLS. The UMLS provides a set of seman-

tic groups like anatomic terms, chemical sub-

stances and drugs, devices, disorders, etc. The 

WordNet was used to define semantic category 

of words not found in the UMLS. We selected 

the most representative nodes, for example, 

physical property, human, process etc. and all 

subordinate terms were assumed to belong to the 

appropriate category. 

Document section: This unigram feature as-

signs the id of the section in which the token wk 

belongs. Many clinical notes are divided into 

sections. These section headers provide very use-

ful information, for example, the section “Past 

Medical History” or “Diagnosis” contains a lot 

of disorder mentions, while “Medications” do 

not. We created list of section headers, mapped 

to about 80 different unified names. 

UMLS Features: We performed lookup in the 

disorder lexicon at two levels: word level and 

phrase level.  

 The word-level feature represents the proba-

bility of a separate word to occur in a disor-

der mention. For this purpose, we collected 

all words contained in the UMLS disorders 

and calculated their probabilities of being a 

part of a disorder mention using the TF-IDF 

weighting. The TF of each word in the train-

ing set is calculated as the number of times 

the corresponding token appears in the 

UMLS disorder terminology. The IDF for 

each word is calculated from the number of 

unlabelled notes, which contain the word. 

These weighted metrics show how important 

the word is for disorder identification and 

help to exclude a lot of common words like 

frequent adjectives or conjunctions that often 

appear both in disorder terms and other 

terms. 

 The phrase-level feature marks all phrases 

(with more than 2 words) that match a disor-

der term. 

2.5 Disorder normalization 

We propose a simple sieve-based algorithm that 

applies tiers of string matching for selecting the 

candidates with further candidates ranking.  

2.5.1 Candidates selection 

We applied following string matching rules to 

select candidate UMLS concepts for a disorder 

entity identified on the previous stage. Each rule 

assigns the score of confidence. 

 Exact match: disorder and UMLS con-

cept contain exactly the same extent text, 

excluding modifiers and determiners, with 

the same word order. 
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 Relaxed match: all informative words 

(excluding preposition, conjunctions, stop 

words etc.) from disorder are included in 

the UMLS concept. 

 Partial match: at least one informative 

word from disorder is included in the 

UMLS concept. 

 Variants match: all possible variants are 

generated for the disorder entity using 

synonyms, corrections and suggestions 

from our in-house autocorrection and au-

tocompletion module and selected candi-

date UMLS concepts by relaxed matching 

rule. 

2.5.2 Candidates ranking 

All found candidate UMLS concepts were 

ranked on basis of a set of empirical parameters: 

 score of match confidence; 

 TF-IDF of the intersecting words; 

 total number of disorder variants in the 

UMLS presenting the same CUI; 

 number of times the UMLS concepts was 

already mentioned in this document; 

 number of occurrences of the UMLS con-

cept in the unlabelled corpus. 

The top ranked UMLS concepts were selected 

as the system’s output. If some concepts have the 

same ranking score, the first one by CUI number 

was selected. 

2.6 Results and error analysis 

The Table 2 summarizes the results separated by 

subtasks, disorder identification and disorder 

normalization, where the first column contains 

results obtained on development corpus and the 

second column shows the results on test corpus. 

 Dev corpus Test corpus 

Disorder identification 
    precision: 0.904 0.940 
    recall: 0.868 0.859 
    F1 measure: 0.886 0.898 
Disorder normalization: 
   accuracy: 0.794 0.794 

Table 2: Separated results of disorder identification 

and normalization. 

Our best performance on task 1 combining the 

disorder identification and normalization sub-

tasks is shown in Table 3. 

 

 Precision Recall F1 measure 

Strict 0.722 0.662 0.690 

Relaxed 0.746 0.684 0.714 

Table 3: Combined result of disorder identification 

and normalization. 

In this work we did not address the problem of 

discontiguous disorder mentions and correctly 

identified only about 10% of all discontiguous 

disorder mentions. Another source of errors are 

the one-, two-letters disorder acronyms, for ex-

ample, “N”, “V”, “BM”, etc. They remain un-

tagged as diseases, as they may also refer to   

other entities, for example, chemicals.  

As for disorder normalization task, the most 

challenging problem is the abbreviation disam-

biguation. The primary reason is a lack of abbre-

viations in UMLS terminology and their high 

ambiguity, for example, “AS” can refer to “An-

gelman Syndrome”, “Aortic Stenosis”, “Alz-

heimer Sclerosis” etc. 

3 Conclusion 

In this paper, we presented a clinical analysis 

system designed for participation in Task 1a of 

the SemEval 2015 Task 14 challenge. Our sys-

tem performance was at 0.69 F-measure in the 

strict evaluation context and 0.714 F-measure in 

the relaxed evaluation context, obtaining a mid-

range position. Our disorder recognition system 

presents good precision but performs worse in 

terms of recall, especially in discontiguous men-

tions identification. In order to improve our dis-

order normalization we plan to develop context 

similarity measures and improve the abbreviation 

disambiguation.  
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Abstract 

In this paper the system that was developed 

by Team UWM for the Task 14 of SemEval 

2015 competition is described. Task 14 

included two tasks: Task 1 was identification 

of disorder mentions and their normalization, 

and Task 2 was identification of the following 

attributes for  disorder mentions: the CUI of 

the disorder, negation indicator, subject, 

uncertainty indicator, course, severity, 

conditional, generic indicator, and body 

location. For Task 1, an earlier system was 

applied that uses Conditional Random Fields 

(CRFs) for disorder recognition and learned 

edit distance patterns for normalization. Task 

2 was implemented by a simple method that 

finds the attribute terms around the disease 

mentions by matching them in the training 

data. Among all participants Team UWM was 

ranked fourth in Task 1, fourth in Task 2A 

(over gold-standard mentions) and third in 

Task 2B (over extracted mentions). 

1 Introduction  

Automated extraction tools are crucial for 

managing huge amount of clinical texts. These 

tools have the potential to enable many automated 

applications in healthcare. The Task 14 of 

SemEval 2015 was designed to serve as a platform 

for evaluating one such extraction tool. Its Task 1 

involved extracting and normalizing disorder 

mentions from clinical text and its Task 2 involved 

assertion identification for the mentions.  

 

Task 1 is challenging because there is a lot of 

variability in which diseases and disorders are 

mentioned in clinical text and hence a pre-defined 

list of mentions is not sufficient to extract them. 

The task also required normalizing the extracted 

mentions by mapping them to UMLS CUIs if they 

exist in the SNOMED-CT part of UMLS and are 

marked as disease/disorder, otherwise they were to 

be declared as “CUI-less.” This normalization 

process is also challenging because disorder names 

are frequently mentioned in modified forms which 

prevents them from exactly matching the concepts 

in UMLS. Task 2 required finding certain 

attributes for the mentions and finding the spans of 

these attributes in text. This task is also 

challenging due to the variability in which 

attributes are attributed to disease and disorder 

mentions in clinical text.  

Our team, UWM, participated in both Task 1 

and Task 2. For Task 1, we used the same system 

that we had previously developed for the Task 7 of 

SemEval 2014 (Ghiasvand and Kate 2014).  For 

Task 2, we used a simple method that finds 

attributes of mentions by first collecting lists of 

attribute terms from the training data and then 

matching in this list. The nearest attribute terms to 

a mention are assigned to that mention. The 

attribute terms are normalized by finding their 

normalized values in the training data. Despite 

being simple, this method gave competitive results. 

The methods used in this paper are described in 

more details in the next section.  
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2 Methods 

2.1 Task 1 

We briefly describe the system we had developed 

for Task 7 of SemEval 2014 (Ghiasvand and Kate 

2014) which we used for Task 1. We treated 

disorder mention extraction as a standard sequence 

labeling task with “BIO” (Begin, Inside, Outside) 

labeling scheme. The model was trained using 

Conditional Random Fields (Lafferty et al., 2001) 

with various types of lexical and semantic features 

that included MetaMap (Aronson and Lang 2010) 

matches. These features are fully described in 

(Ghiasvand, 2014). This model was also inherently 

capable of extracting discontinuous disorder 

mentions. To normalize disorder mentions, our 

system first looked for exact matches with disorder 

mentions in the training data and then in the 

UMLS. If no exact match was found, then suitable 

variations of the disorder mentions were generated 

based on possible variations of disorder mentions 

learned from UMLS synonyms. These variations 

were learned in the form of edit distance patterns 

(Levenshtein 1966) using a novel method 

described in (Ghiasvand and Kate 2014).  

2.2 Task 2 

In this task, attributes related to disease or disorder 

mentions were to be identified along with their 

normalized values and spans in the text 

(Bodenreider, 2003). There were nine attributes 

related to each disorder mention for this task which 

were: the CUI of the disorder (same as Task 1), 

negation indicator, subject, uncertainty indicator, 

course, severity, conditional, generic indicator, and 

body location.  

For identifying CUI attribute, we used the same 

normalization method that we had used for Task 1. 

For identifying the rest of the attributes, we used a 

simple matching method based on the training data 

for Task 2. The method first collects a list of 

attribute terms from the training data for each 

attribute type. For example, if “likely arising 

from”, “lower suspicion of”, and “possibly 

secondary” are marked as uncertainty terms in the 

training data then they will be included in our list 

of attribute terms for uncertainty. Table 1 lists the 

number of attribute terms thus collected from the 

training data for each of the attribute type. The 

only attribute that has many more values than other 

attributes is body location. For this attribute we 

used not only training data but also UMLS matches 

of body locations. Our training dataset consisted of 

combined training and development dataset parts, 

but when we collected these terms from only the 

training part, we found that a majority of these 

match in the development part. Thus we 

determined that only a small list of terms are 

frequently used to indicate most of the attributes of 

disease and disorder mentions and decided to use 

the simple matching method. 

Our method identifies attributes of disease and 

disorder mentions as follows. Using the list of 

attribute terms, it first identifies attribute terms in 

the same sentence in which the mention is 

included. For each attribute type, the nearest 

attribute term (if present) is associated with the 

mention. The normalized value of the attribute is 

then simply obtained from the training data. For 

example the term “increasingly” in the course 

attribute type has normalized value “increased” in 

the training data, and the term “maternal aunt” in 

the subject attribute type has the normalized value 

“family_member”. Hence if “increasingly” is the 

course attribute term found nearest to a disease 

mention in the test data then its course attribute 

will be assigned the value “increased”. Similarly if 

“maternal aunt” is found as the nearest subject 

attribute term then its value will be assigned as 

“family_member”. 

Task 2 had two subtasks. In Subtask 2A, gold-

standard disease and disorder mentions were 

provided and in Subtask 2B the mentions were to 

be first extracted by the system, hence it combined 

Task 1 and Subtask 2A.  

 
Attribute Number of attribute 

terms in training data 

Conditional (CND) 154 

Course (COU) 168 

Generic (GEN) 45 

Negation (NEG) 139 

Severity (SEV) 92 

Subject (SUB) 33 

Uncertainty (UNC) 295 

Body Location (BL) 1108 

Table 1: Number of attribute terms for each attribute 

type in the training data. 

386



3 Results 

The training, development and test datasets of 

SemEval 2015 Task 14 had 298, 133 and 100 

clinical notes respectively. We formed our training 

dataset by combining training and development 

datasets. The clinical notes contained different 

types of notes including de-identified discharge 

summaries, electrocardiogram, echocardiogram 

and radiology reports (Pradhan et al., 2013). The 

extraction and normalization performance in Task 

1 was evaluated in terms of precision, recall and F-

measure for strict (exact boundaries) and relaxed 

(overlapping boundaries) settings. Table 2 shows 

the results of this task. In this task, based on 

relaxed F-score, we got second rank, and based on 

strict F-score we got fourth rank considering only 

the best run of each participating team. 

 
 Precision Recall F-score 

Strict 0.773 0.699 0.734 

Relaxed 0.809 0.731 0.768 

Table 2: Results of Task1 (mention extraction and 

normalization). 

For the Task 2A, unweighted and weighted 

accuracies were used as evaluation measures. For 

each disorder, a per-disorder, unweighted accuracy 

is computed, which represents the ability to 

identify all the slots for that disorder. The 

unweighted accuracy is the average of the per-

disorder unweighted accuracy over all the 

disorders in the test set. For each disorder, a 

weighted per-disorder accuracy is computed, 

which represents the ability to identify all the slots 

for that disorder.  

For Task 2B, the following evaluation measures 

were used: F-score for span identification, 

unweighted accuracy (which is same as the 

unweighted accuracy described in Task 2A 

computed over the true-positive identified 

disorders), and weighted accuracy (which is same 

as the weighted accuracy described in Task 2A 

computed over the true-positive identified 

disorders).  

In Table 3 and 4, the results of these two 

subtasks are shown. Table 5 shows the results 

separately for each attribute type for both the 

subtasks. In Task 2A, except for the body location 

attribute our method got above eighty percent 

accuracy on all other attributes and above ninety 

percent on three of them. We also want point out 

that for the attribute type CUI we got 0.911 

accuracy in Task 2A which is only slightly behind 

the best accuracy of 0.918 got by another team.  

The reason our system got a very low accuracy 

for the body location attribute is because we forgot 

to include the CUI values for this attribute during 

the competition. This then also adversely affected 

our overall performance scores. Overall, in Task 

2A our team ranked fourth and in Task 2B our 

team ranked third considering the best run of each 

participating team. 

Our method for Task 2 was found to be 

competitive despite being very simple. For 

example, this simple matching scheme got 92.4% 

accuracy for negation attribute while the best team 

got 97.5% accuracy in Task 2A. Hence this method 

forms a very good baseline for comparing more 

sophisticated methods. It can also serve as a 

method that provides potential attributes which 

then can be tested and filtered by machine learning 

methods.  

 
F-Score Accuracy F*A Weighted-

Accuracy 

F*WA 

1.00 0.859 0.859 0818 0.818 

Table 3: Results of Task 2A. 

F-Score Accuracy F*A Weighted-

Accuracy 

F*WA 

0.893 0.852 0.761 0.798 0.713 

Table 4: Results of Task 2B. 

Attribute Accuracy 

(Task 2A) 

Accuracy 

(Task 2B) 

BL 0.531 0.551 

CUI 0.911 0.858 

CND 0838 0.839 

COU 0.802 0.793 

GEN 0.836 0.845 

NEG 0.924 0.931 

SEV 0.895 0.905 

SUB 0.933 0.929 

UNC 0.831 0.837 

Table 5: Accuracy for each attribute type in Task 2A 

and Task 2B. 

4 Conclusion and future work 

We participated in Task 14 of SemEval 2015 

which involved disorder mention extraction, 

normalization, and attribute identification. Our 

system used conditional random fields to extract 
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disorder mentions and edit distance patterns for 

normalization of the extracted mentions. For 

identifying attributes, we used a simple matching 

based method using the training data. Our team 

preformed competitively on all the subtasks. In 

future, we plan to combine machine learning 

methods with our simple matching method for 

attribute identification.  
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Abstract

Medical texts are filled with mentions of dis-
eases, disorders, and other clinical conditions,
with many different surface forms relating to
the same condition. We describe MINERAL, a
system for extraction and normalization of dis-
ease mentions in clinical text, with which we
participated in the Task 14 of SemEval 2015
evaluation campaign. MINERAL relies on a
conditional random fields-based model with a
rich set of features for mention detection, and
a semantic textual similarity measure for entity
linking. MINERAL reaches joint extraction
and linking performance of 75.9% relaxed F1-
score (strict score of 72.7%) and ranks fourth
among 16 participating teams.

1 Introduction

Clinical narratives contain numerous mentions of
diseases and disorders. Recognizing these mentions
in text and normalizing the different superficial forms
of a disorder to the same canonical form could enable
new types of analyses that would be beneficial for
both medical professionals and patients.

Detection and normalization of various concepts
such as named entities (McCallum and Li, 2003; Kr-
ishnan and Manning, 2006) or events (Bethard, 2013;
Glavaš and Šnajder, 2014) has long been in the focus
of the NLP community. Disorder mentions in clini-
cal text, however, have some peculiarities not typical
for traditional information extraction tasks such as
discontinuity or distributivity of a single token to
multiple disorder mentions. For example, the snippet

“Patient’s extremities were turned in and
clinched together as a consequence of. . . ”

contains two mentions of medical conditions, “ex-
tremities turned in” and “extremities clinched to-
gether”, which share the token “extremities”, with
the latter mention being discontinuous.

In this paper we present the MINERAL (Medi-
cal INformation ExtRAction and Linking) system
for recognizing and normalizing mentions of clinical
conditions, with which we participated in Task 14
of SemEval 2015 evaluation campaign. The system
recognizes disorder mentions via the supervised con-
ditional random fields (CRF) model with a rich set of
lexical, gazetteer-based, and informativeness-based
features. We apply a set of post-processing rules to
construct disorder mentions from token-level anno-
tations which follow the BEGIN-INSIDE-OUTSIDE

scheme. We utilize a measure of semantic textual
similarity to link recognized disorder mentions to
entries in the SNOMED-CT medical database. Our
approach is resource light in the sense that, except for
SNOMED-CT which is necessary for normalization,
it does not rely on medical NLP resources.

We ranked fourth (relaxed evaluation setting)
among 16 teams in the official evaluation, with 3%
lower performance than the best-performing system.
Such a result suggests that coupling sequence la-
belling for mention recognition with an STS measure
for concept normalization poses a viable solution for
entity recognition in the clinical domain. We make
the MINERAL system freely available.1

1http://takelab.fer.hr/mineral
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2 Clinical Information Extraction

Clinical concept extraction is an essential task in
medical natural language processing. While early
approaches heavily relied on domain-specific vocab-
ularies (Friedman et al., 1994; Aronson, 2001; Zeng
et al., 2006), more recent efforts leverage the human-
annotated corpora to develop machine learning mod-
els for the extraction of medical concepts (Tang et al.,
2013; Uzuner et al., 2010). The rise in the number
of data-driven efforts in the medical domain was par-
ticularly motivated by the shared tasks such as i2b2
challenges (Uzuner et al., 2010) and ShARe/CLEF
eHealth Evaluation Lab (Suominen et al., 2013).

The first subtask of the SemEval Task 14, in which
we participated, was essentially the same as the first
task in the ShARe/CLEF eHealth campaign. We did
not participate in the second subtask on extracting
arguments of disorder mentions. The best performing
system of the ShARe/CLEF eHealth task on disor-
der extraction and normalization (Tang et al., 2013)
employed CRF and structured SVM models for men-
tion extraction and the traditional vector-space model
from information retrieval (Salton et al., 1975) for
disorder normalization.

Similar to (Tang et al., 2013), we employ the CRF
model for extraction of disorder mentions, but we
leverage recent findings in word vector representa-
tions (Mikolov et al., 2013) for feature computation.
We make use of the state-of-the-art measure of se-
mantic similarity of short texts (Šarić et al., 2012) for
concept normalization.

3 MINERAL

MINERAL consists of two subsystems: one for ex-
tracting disorder mentions and the other for normal-
izing extracted mentions by assigning them a Con-
cept Unique Identifier (CUI) from the SNOMED-CT
database (Stearns et al., 2001).

3.1 Disorder Mention Extraction

At the core of the extraction subsystem is the
CRF model with lexical, gazetteer-based, and
informativeness-based features. We decided to use
the BEGIN-INSIDE-OUTSIDE annotation scheme for
the CRF model, although this scheme does not ac-
count for token-sharing disorder mentions. Thus,
we apply a set of postprocessing rules to derive dis-

order mentions from token-level outputs produced
by the CRF model and to handle most frequent
cases of token-sharing mentions (e.g., “abdomen non-
disturbed and non-distended”).

3.1.1 Features
We feed the CRF model with a rich set of features

that can be divided into (1) token-based features, (2)
gazetteer-based features, and (3) information content-
based features. All of the features are templated on
the symmetric window of size two, i.e., computed
for two preceding tokens, current token, and two
subsequent tokens.

Token-based features (TK). Token-based fea-
tures group all features which can be computed just
from the token at hand. These include the surface
form, lemma, stem, POS-tag, and shape (encoding of
the capitalization of the word, e.g., “UL” for “Atrial”)
of the word. We also encode the first and the last char-
acter bigram and trigram of the word as features.

Gazetter-based features (GZ). Features in this
group rely on comparison of tokens in text with en-
tries in the SNOMED-CT database and with disease
annoations on the training set. For each token we
compute: the maximum similarity with any of the
words (1) starting a SNOMED-CT entry, (2) inside
a SNOMED-CT entry, and (3) ending a SNOMED-
CT entry. We compute the same three features only
considering gold annotations in the training set as
gazetteer entries. We compute the semantic similarity
between two words as the cosine between their cor-
responding word embedding vectors. We trained the
embedding vectors with the word2vec tool (Mikolov
et al., 2013) on the large unlabeled corpus of clini-
cal texts (with over 400K documents) provided by
the task organizers. We also counted the number of
gazetteer entries that start with, contain, and end with
the token at hand.

Information content-based features (IC). These
features compute the informativeness of ngrams
within the clinical domain and compare it their gen-
eral informativeness. We use information content
as a measure of the informativeness of the word w
within a corpus C:

ic(w) = − log
freq(w) + 1∑

w′∈C freq(w′) + 1
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where freq(w) is the frequency of the word w in
corpus C. We compute three different information
content-based features. First, we compute the infor-
mation content of the word within a large corpus of
clinical narratives. Secondly, we compute the ratio
of the information content of the word computed on
the clinical corpus and the information content of the
same word computed on a large general corpus. We
used Google Books ngrams (Michel et al., 2011) as
the general corpus. The rationale here is that the clin-
ical concepts such as diseases and disorders will have
a higher relative frequency and, consequently, lower
information content in the clinical corpus than in the
general corpus. Finally, the third feature we com-
pute is the mutual information of the bigrams in the
clinical corpus, which we define via the information
content:

mi(w1, w2) =
ic(w1w2)

ic(w1) · ic(w2)

where ic(w1w2) is the information content of the bi-
gramw1w2. Mutual information score indicates pairs
of words that often appear together (e.g., “atrial di-
latation”). For each word wi we compute the mutual
information of the bigrams it constitues with the pre-
vious word (i.e., wi−1wi) and the subsequent word
(i.e., wiwi+1).

3.1.2 Postprocessing
The only reasonable postprocessing strategy with

the B-I-O scheme is to join each INSIDE token with
the closest preceding BEGIN token. However, this
strategy requires rule-based fixes for common situa-
tions in which two disorder mentions share a token.
We designed postprocessing rules by observing the
most frequent mistakes our CRF model made on the
development set provided by the organizers. This led
to three particular fixes: (1) mentions of abdomen
condition typically correspond to two disorder men-
tions sharing the token “abdomen” (e.g., processing

“abdomen non-tender and non-distended” results with
two disorder mentions – “abdomen non-tender” and

“abdomen non-distended”); (2) mentions of allergies
typically share the token “allergies” (e.g., process-
ing “Allergies: Roxicet / Penicillins / Aspirin” pro-
duces three mentions – “Allergies Roxicet”, “Aller-
gies Penicillins”, and “Allergies Aspirin”); and (3)
the CRF model rather frequently fails to recognize

the type of the hepatitis. We associate the type of the
hepatitis (e.g., “B”) found in the proximity of the
token “hepatitis” when CRF fails to do so.

3.2 Mention Normalization
The normalization subsystem assigns a CUI to each
extracted disorder mention by comparing the seman-
tic similarity of the mention with the SNOMED-CT
entries. Given that SNOMED-CT has over 650K
entries, it is infeasible to compute the similarity
of the disorder mentions with all database entries.
Therefore, we first filtered out only the entries which
contain at least one lemma from the extracted men-
tion. E.g., for the mention “melena due to gastroin-
testinal haemorrhage” we would consider only the
SNOMED-CT entries containing either “melena”,

“gastrointestinal”, or “haemorrhage”.
We compute the similarity as the modified variant

of the greedy weighted alignment overlap (GWAO)
measure from (Šarić et al., 2012). To compute this
score, we iteratively pair the words – one from ex-
tracted mention and the other from the database entry
– according to their semantic similarity. In each iter-
ation we greedily select the pair of words with the
largest semantic similarity, and remove these words
from their corresponding text snippets. The similarity
between words is computed as the cosine between
their embedding vectors obtained with word2vec
(Mikolov et al., 2013) on the large unlabeled corpus
of clinical narratives. Let P (m, s) be the set of word
pairs obtained through the alignment between the
extracted mention m and the SNOMED-CT entry s
and let vec(w) be the embedding vector of the word
w. The GWAO score is then computed as follows:

gwao(m, s) =
∑

(wm,ws)
∈P (m,s)

α · cos (vec(wm), vec(ws))

where α is the larger of the information contents
of the two words, α = max (ic(wm), ic(ws)). The
gwao(m, s) score is normalized with the sum of in-
formation contents of words from m and s, respec-
tively, and the harmonic mean of the two normalized
scores is the final similarity score. We assign to
the extracted mention the CUI of the most similar
SNOMED-CT entry, assuming the similarity is above
some treshold λ (otherwise, the label “CUI-less” is
assigned to the mention). The optimal value of λ is
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Strict Relaxed

Model P R F1 P R F1

TK 75.6 65.6 70.2 90.0 80.4 84.9
TK + GZ 75.1 66.1 70.3 89.6 80.9 85.0
TK + IC 76.4 66.3 71.0 90.2 80.4 85.1
All feat. 76.3 66.9 71.3 90.1 81.1 85.4

All + PPR 77.4 69.1 73.0 90.1 82.2 86.0

Table 1: Model selection results.

determined by maximizing the CUI prediction accu-
racy on the training and development set. A useful
add-on to the normalization step is the memorization
of CUIs for all disorder mentions observed in the
training set. In other words, a memorized mention
observed in the test set will be assigned the CUI it
had in the training set.

4 Evaluation

Participants were provided with a training set consist-
ing of 298 clinical documents and a development set
with 133 documents. We used the training and devel-
opment set to optimize the model (features, postpro-
cessing rules, and the similarity treshold λ). A test
set of 100 clinical documents was used for official
evaluation.

4.1 Model Optimization

We trained the CRF model with different combina-
tions of feature groups (TK, GZ, and IC) and eval-
uated the performance of these models on the de-
velopment set. We also evaluated the contribution
of the postprocessing rules (PPR) on the develop-
ment set. The extraction performance of the differ-
ent models is shown in Table 4.1. The model using
only token-based features alone (model TK) achieves
solid performance. Information content-based fea-
tures (model TK + IC) seem to have a more positive
impact on the performance than the gazetteer-based
features (model TK + GZ). Still, the model with all
features displays the best performance. Applying
postprocessing rules further boosts the performance
on the development set, which is expected, because
the rules were designed precisely to fix the most fre-
quent errors on that dataset. We submitted the model
All + PPR for official evaluation. We also optimized

Strict Relaxed

Team P R F1 P R F1

ezDI 78.3 73.2 75.7 81.5 76.1 78.7
ULisboa 77.9 70.5 74.0 80.6 72.9 76.5
UTH-CCB 77.8 69.6 73.5 79.7 71.4 75.3
UWM 77.3 69.9 73.4 80.9 73.1 76.8
TakeLab 76.1 69.6 72.7 79.4 72.7 75.9
Bioinf.-UA 69.0 73.6 71.2 71.9 76.6 74.2

Table 2: Official SemEval Task 14 (subtask 1) evaluation.

the similarity treshold λ to maximize the normaliza-
tion accuracy on the development set, selecting the
optimal value of λ = 0.83.

4.2 Official Results

A subset of the official ranking on the test set is
shown in Table 4.2. MINERAL ranks fourth among
16 teams in relaxed evaluation and fifth in strict eval-
uation, with only 3% lower F1 performance than the
best performing system.

Like most other systems, MINERAL displays
higher precision than recall. This would suggest a
non-negligible amount of obdurate disorder mentions
which appear rarely in clinical documents and which
are not semantically similar with more frequent dis-
orders.

5 Conclusion

We described MINERAL, a system for extraction
and normalization of disorder mentions in clinical
text, with which we participated in Task 14 of Se-
mEval 2015. At the core of the mention extraction
approach is the CRF model built on B-I-O annota-
tion scheme and a rich set of lexical, gazetteer-based,
and informativeness-based features. We link the dis-
ease mentions to the SNOMED-CT entries using a
measure of semantic textual similarity of short texts.

MINERAL achieved performance of almost 76%
F1 (relaxed evaluation setting), ranking us fourth
out of 16 teams participating in the task, with 3%
lower performance than the best-performing team.
Such a result suggests that a resource light approach
with sequence labeling (with semantic features) for
mention extraction and STS measures for concept
normalization offers competitive performance in the
clinical domain.
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Abstract 

Unstructured clinical notes are rich sources 

for valuable patient information. Information 

extraction techniques can be employed to 

extract this valuable information, which in 

turn can be used to discover new knowledge. 

Named entity recognition and normalization 

are the basic tasks involved in information 

extraction. In this paper, identification of 

disorder named entities and the mapping of 

identified disorder entities to SNOMED-CT 

terminology using UMLS Metathesaurus is 

presented. A supervised linear chain 

conditional random field model based on sets 

of features to predict disorder mentions is 

used in conjunction with MetaMap to 

identify and normalize disorders. Error 

analysis conclude that recall of the developed 

system can be significantly increased by 

adding more features during model 

development and also by using a frame based 

approach for handling disjoint entities. 

1 Introduction * 

Electronic health record (EHR) also referred to as 

electronic medical record (EMR), electronic 

patient record (EPR), or personal health record 

(PHR) store or capture patients’ medical history. 

                                                           
* Corresponding author  

This work is licensed under a Creative Commons 

Attribution 4.0 International License. Page numbers and 

proceedings footer are added by the organizers. License 

details: http://creativecommons.org/licenses/by/4.0/ 

EHR data typically contains demographics, 

medications, administrative and billing data. The 

contents of EHR can be either in structured, semi-

structured or unstructured. Clinical notes 

contribute to majority of the unstructured data in 

EHR. 

    Clinical notes in EHR are often plain text 

records and valuable resources to obtain patient 

information (Denny, 2012). Clinical notes are rich 

in content and may include information on a 

patient’s demographics, medical history, family 

history, medications prescribed and lab test 

results. Information extraction tools can be used 

to extract the aforementioned unstructured data to 

discover new knowledge (Jensen, Jensen, & 

Brunak, 2012).   

     Named entity recognition (NER) is an 

important subtask of information extraction to 

identify the boundaries of named entities. Clinical 

notes often include a wide variety of entities like 

diseases, disorders, anatomical sites, symptoms 

and procedures. However, often these entities are 

expressed in various forms and formats. 

Normalization is another sub-task of information 

extraction where the entities identified during 

NER are accurately mapped to concepts of 

standard terminologies or ontologies.  Rich tools 

and resources are available to access various 

 

 

 

394



standard terminologies and ontologies. Unified 

Medical Language System (UMLS) 

Metathesaurus and National Center for 

Biomedical Ontology (NCBO) BioPortal are two 

resources that are very useful for normalization in 

the biomedicine domain. The UMLS 

Metathesaurus provides access to medical 

standard terminologies such as SNOMED-CT, 

ICD9, and RxNorm (Bodenreider, 2004). In this 

paper, the authors presented an information 

extraction system to i) identify the disorders in 

clinical notes using conditional random fields 

(CRFs) (Lafferty, McCallum, & Pereira, 2001), 

and ii) normalize the identified disorders to 

SNOMED-CT terminology concepts (Spackman, 

Campbell, & CÃ, 1997) using MetaMap (Aronson 

& Lang, 2010). 

2 Materials and Methods  

2.1 Dataset 

The authors used SemEval 2015 ShARe corpus to 

develop a CRF based information extraction 

system (Suominen et al., 2013). The ShARe 

corpus included training, development and test 

sets which were prepared using clinical notes 

from the MIMICII database (Saeed, Lieu, Raber, 

& Mark, 2002). The clinical notes were manually 

annotated by the annotators for disorder mentions 

and were normalized to SNOMED-CT concepts 

using UMLS concept unique identifiers (CUIs). 

Details on the corpus development are available 

                                                           
1http://alt.qcri.org/semeval2015/task14/data/uploads/share_a

nnotation_guidelines.pdf 

in the annotation guideline1. Table 1 summarizes 

the details of training, development and test sets. 
In this paper, disorder refers to SNOMED-CT 

concepts that belong to the eleven UMLS 

semantic types: Congenital Abnormality; 

Acquired Abnormality; Injury or Poisoning; 

Pathologic Function; Disease or Syndrome; 

Mental or Behavioral Dysfunction; Cell or 

Molecular Dysfunction; Experimental Model of 

Disease; Anatomical Abnormality; Neoplastic 

Process; and Signs and Symptoms. In other 

words, an entity which is not part of these eleven 

UMLS semantic types or is not possible to map to 

a SNOMED-CT is not a disorder. These kinds of 

disorders are annotated as CUI-less in the corpus.  
 

Type of clinical 

notes 

Trai-

ning 

Develo-

pment 

Test 

Discharge 136 133 100 

Electro 

Cardiogram 

54 0 0 

Echo Cardiogram 54 0 0 

Radiology 54 0 0 
Table 1: Summary of SemEval 2015 ShARe Corpus 

2.2 System Design 

The authors developed a CRF-based classifier to 

identify disorder concepts and normalize the 

identified concepts to UMLS CUIs using 

MetaMap (Aronson & Lang, 2010). The pre-

processing involves sentence detection, 

Figure 1: TMUNSW system design for SemEval-2014 Task 7 
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tokenization, part of speech tagging and shallow 

parsing. For pre-processing, the authors used 

apache OpenNLP2 library which is a machine 

learning based toolkit. The output from 

preprocessing was used to extract several features 

which were used to train a Conditional Random 

Field based model. An overview of the developed 

system is schematized in figure 1. 

2.3 Disorder Identification 

The authors used discharge summaries from both 

training and development sets to develop the CRF 

model. Mallet implementation of CRF was used 

for disorder recognition using BIO tagging 

method (McCallum, 2002). The authors 

developed the CRF-model using BIO tagging 

method where each word token is assigned one of 

three tags "B","I","O". The “B” tag corresponds to 

beginning of a disorder entity, “I” tag corresponds 

to Inside disorder entity and “O” tag corresponds 

to outside (not a disorder entity). For example, let 

us consider this sentence - "The patient had 

headache with neck stiffness and was unable to 

walk for minutes." The classifier will produce the 

following token annotation “The/O patient/O 

had/O headache/B with/O neck/B stiffness/I 

and/O was/O unable/B to/I walk/I for/O 

minutes/O. /O”. The disorder identification CRF 

classifier uses word, syntactic features like POS 

tags and shallow parser tags. Authors also used 

previous word, its POS tags and next word and its 

POS tags as feature. Also, the authors developed 

a custom dictionary by extracting all disorder 

mentions in the training set, tokenized them and 

labelled each tokens as B-dict and I-dict. The 

developed custom dictionary was also used as 

features to build the classifier.  

2.4 Disorder Normalization 

Each disorder recognized by the CRF model was 

passed through MetaMap to find normalized 

concepts. For normalization of disorder concepts 

to UMLS SNOMED-CT CUIs, MetaMap 2013 

version with UMLS 2013AB as data source was 

used. MetaMap server (also known as mmserver) 

is configured to process the output from the CRF 

model using Java API. MetaMap was configured 

to normalize entities that can be mapped to 

SNOMED-CT terminology only. No additional 

rules or logic is used to handle one entity mapped 

to multiple UMLS CUIs from different UMLS 

semantic types. Entity with the highest MetaMap 

                                                           
2 https://opennlp.apache.org/ 

score is considered. In situations where MetaMap 

failed to assign a CUI, they are automatically 

annotated as CUI-less.   

2.5 Evaluation Metrics 

The system developed (disorder identification and 

normalization) was evaluated using the test set. 

The official evaluation script provided by the 

SemEval 2015 Task 14 organizers was used to 

evaluate performance of the developed system 

using precision (P), recall (R) and F score (F). 

Evaluation was carried using strict (St) and 

relaxed (Re) F-scores. In strict setting, the official 

evaluation script identified the predicted disorder 

mention as a true positive if the spans (start and 

end offsets) are exactly the same as in the gold 

standard and the predicted CUI is correct. The 

predicted disorder is evaluated as false positive if 

spans are incorrect or the identified CUI is 

incorrect. In relaxed setting, the official 

evaluation script identified the predicted disorder 

mention as a true positive if there is any overlap 

between the predicted  (start and end offsets) and 

gold standard spans. The predicted disorder is 

evaluated as false positive if spans are incorrect or 

identified CUI is incorrect. It is important to note 

that the evaluation metrics for both NER and 

normalization are calculated together.  

3 Results 

3.1 Individual Runs 

The performance of the developed system using 

different configurations is presented in table 2. 

Run1 (r1) is the output from the CRF model with 

markov order as 1, Run2 (r2) is the output from 

the CRF model with markov order 2 and custom 

dictionary for disjoint annotation, Run3 (r3) is the 

output from the CRF model with markov order as 

1 with custom dictionary for disjoint annotation. 

In terms of normalization, Run1 and Run2 had 

default MetaMap configuration and Run3 

included Word sense disambiguation (WSD). The 

results displayed for training set are based on 10 

fold cross validation.  
 

St 

Training Development 

P R F P R F 

r1 0.42 0.46 0.44 0.41 0.38 0.39 

r2 0.44 0.47 0.45 0.40 0.39 0.39 

r3 0.43 0.42 0.42 0.41 0.42 0.41 
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Re Training Development 

P R F P R F 

r1 0.48 0.46 0.47 0.46 0.44 0.45 

r2 0.51 0.48 0.49 0.49 0.47 0.48 

r3 0.49 0.46 0.47 0.48 0.42 0.45 
Table 2: Performance of system with different 

configurations on training and development sets 

 

3.2 Official Evaluation 

Table 3 presents the official evaluation results of 

the three different runs on the test set. The official 

evaluation results are provided by the SemEval 

2015 shared task 14 organizers. Under both strict 

and relaxed setting, Run1 performed better than 

the other two runs. Run1 achieved an overall F-

measure of 0.338 under strict settings, while under 

relaxed settings it achieved an F-measure of 

0.408. Run2 and Run3 under both relaxed and 

strict settings had similar F-scores. The 

performance of the system on the test set is not so 

different from its performance on the training and 

the development sets. The gold set used to 

calculate the performance of the system by the 

organizers is not accessible to the authors.  

 

 

 

St Re 

r1 r2 r3 r1 r2 r3 

P 0.32 0.32 0.32 0.39 0.38 0.38 

R 0.34 0.34 0.34 0.42 0.41 0.41 

F 0.33 0.33 0.33 0.40 0.39 0.39 
Table 3: Official evaluation results on SemEval 2015 

ShARe corpus test set 

4 Discussion 

The authors developed the current system based 

on their previous work (Jonnagaddala, Kumar, 

Dai, Rachmani, & Hsu, 2014). A custom built 

dictionary to handle disjoint disorders is 

integrated into the current system. With this 

addition, the system was able to find most of the 

disjoint mentions in the development set. The 

official evaluation results of the performance of 

the developed system on NER and normalization 

was not reported independently. A thorough error 

analysis was performed on the output generated 

by the developed system. Unfortunately, it is 

found that the authors misinterpreted the UMLS 

semantic types covered in the training, 

development and test sets. The authors used the 

default disease disorder semantic group which 

consists of twelve semantic types including 

“Findings” type. However, in the ShARe corpus 

“Findings” semantic type was ignored. The 

concepts related to this type should have been 

normalized as CUI-less. This significantly made 

an impact on the overall system performance. 

Implementing additional rules to filter out CUIs 

belonging to “Findings” semantic type and 

labelling them as CUI-less have significantly 

improved the system performance. During CRF 

model development, the authors experimented 

with various n-grams on the training set and found 

that trigrams performed best, so trigram of word 

and trigram of word POS tags as a feature. The 

identification of disorder might have been 

improved further with post processing if custom 

dictionaries to handle abbreviations, acronyms 

and misspelled entities were employed 

(Jonnagaddala, Liaw, Ray, Kumar, & Dai, 2014).   

5 Conclusion 

In conclusion, the authors presented an 

information extraction system based on CRF and 

MetaMap to identify disorder mentions in clinical 

notes and normalize the identified entities to 

SNOMED CT terminology using UMLS CUIs. 

The performance of the developed system was not 

as expected mainly due to the fact that system 

included “findings” semantic type in the 

normalized entities, when they were supposed to 

be normalized as CUI-less. In future, the authors 

would like to improve the performance of the 

system by employing semi-supervised techniques 

and custom dictionaries for abbreviations, 

acronyms and misspellings.  
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Abstract 

We describe the performance of UtahPOET 

on SemEval 2015 Task 14. UtahPOET is a 

cognitively inspired system designed to ex-

tract semantic content from general clinical 

texts. We find that our system performs much 

better on the context slot-filling aspects of 

Tasks 2A and 2B than the disorder CUI map-

ping of Tasks 1 and 2B or the body location 

CUI mapping of Task 2B. Our problems with 

CUI mapping suggested several possible sys-

tem improvements. An alteration in the corre-

spondence between the system architecture 

and psycholinguistic findings is also indicat-

ed. 

1 Introduction 

We note at the outset that our team approaches 

clinical NLP using a new, cognitively inspired ar-

chitecture. We value dataset independence, so our 

design priorities do not completely overlap those 

encompassed by the goals of Task 14. We share 

the SemEval vision of extracting the full semantic 

content of clinical text. Our short-term goal, how-

ever, was to field test an early prototype of our 

new architecture and Task 14 provided a conven-

ient and well-designed use case.  

1.1 Cognitive inspirations 

Only the human brain is currently able to extract 

full semantic content from text. We propose an 

intermediate step between artificial neurons (Mer-

olla et al., 2014; Sowa, 2010) and statistical ma-

chine learning (ML). We use ML and rule-based 

NLP components with demonstrated success in 

clinical information extraction arranged in an ar-

chitecture inspired by well-documented findings 

with respect to cortical processing.  

Briefly, UtahPOET is inspired by findings re-

lated to: layered cognitive processes, the distinc-

tion between the dorsal and ventral language 

processing streams, and the phenomenon of itera-

tive refinement. The type of layered (i.e., staged or 

hierarchical) processing we use shares much in 

common with traditional NLP and biologically 

inspired cognitive architectures (Chella, Cossenti-

no, Gaglio, & Seidita, 2012; Indurkhya & 

Damerau, 2010; Sowa, 2010). We will discuss our 

system’s layering in the system description below.  

Our distinctive model of dorsal-ventral pro-

cessing streams comes from psycholinguistic find-

ings. The interpretation of unfamiliar or 

ungrammatical constructions, rule-based pro-

cessing, and learning have been linked to dorsal 

processing streams in the brain. Ventral processing 

streams handle familiar, expected, regular con-
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structions as well as heuristic-type processing  

(Dominey & Inui, 2009; Hickok & Poeppel, 2004; 

Kellmeyer et al., 2013; Levy et al., 2009; Price, 

2013; Yeatman, Rauschecker, & Wandell, 2013). 

Iterative refinement is the repeated application of 

top-down processing during bottom-up processing. 

In Cognitive Science top-down and bottom-up re-

fer, in essence, to processes that rely on previous 

knowledge and those that do not, respectively 

(Traxler, 2012). 

Top-down processing is evident in each stage of 

an NLP pipeline, e.g., “knowing” how the end of a 

sentence is marked. We see combining world 

knowledge with the outcome of one processing 

stage and then using that to update the outcome of 

a previous stage as iterative refinement. This re-

sembles how humans ‘re-parse’ garden path sen-

tences (McKoon & Ratcliff, 2007). 

The UtahPOET approaches solving semantic 

extraction problems by enabling dependency pars-

ing. However, ungrammatical text is common in 

clinical notes (Fan et al., 2013; Meystre, Savova, 

Kipper-Schuler, & Hurdle, 2008). This text often 

“breaks” dependency parsers, so we process 

grammatical and ungrammatical text separately. 

Dependency parsing is useful because it exploits 

world knowledge about the structure of English 

sentences. As such, it simplifies the processing of 

conjunctions and the aggregation of words and re-

lationships, particularly those separated in the text, 

without supervised training. Retaining sentence 

structure allows dataset independence and latitude 

in future relationship finding. 

1.2 Considerations for evaluation 

We propose a couple of considerations useful for 

evaluating NLP systems’ results under Task 14. 

The current evaluation includes strict matching to a 

Gold Standard set of Unified Medical Library Sys-

tem (UMLS) Metathesaurus (Browne, Divita, Ar-

onson, & McCray, 2003) CUIs. We think this 

standard leads to over-fitting the data, which leads 

to less generally useful systems. Clinical terms do 

not guarantee a one-to-one correspondence be-

tween term and referent. A point demonstrated by 

inter-annotator agreement of anything less than 

100%.  

The redundancy of the UMLS Methathesaurus 

further undermines strict CUI mapping. Redundan-

cy is best illustrated by body location mapping. 

Within the UMLS semantic types relevant to body 

location are T023 (Body part, organ or organ com-

ponent) and T029 (Body location or region). We 

notice inconsistency in the Gold Standard in the 

use of these semantic types. For one document an-

notators chose ‘Pericardial sac structure (T023)’ 

over “Pericardial body location (T029)’, while in 

another annotators preferred ‘Neck (T029)’ over 

‘Entire neck (T023).’  

Partial matches create problems as well. The 

Task evaluation only considers partial span match-

es correct if the CUI for the full match is reported. 

However, if the span is only partially matched the 

correct CUI should change. For example, the map-

ping ‘Left ventricular hypertrophy’ to C0149721, 

when partially matched with ‘Ventricular hyper-

trophy’ would seem to be more correctly mapped 

to C0340279. 

2 System description 

The UtahPOET system is built in Apache UIMA 

(Ferrucci & Lally, 1999). It has the layered struc-

ture common to NLP pipelines (see Figure 1). The 

pre-processing stage finds sentence boundaries 

(stages A), breaks the sentence into tokens (stage 

B), and assigns each token a part-of-speech (POS) 

tag (stage B).  

2.1 Dorsal-ventral stream separation and it-

erative refinement 

After preprocessing, we add stages to begin dorsal 

and ventral separation and iterative refinement. In 

stage C, we divide dorsal and ventral streams by 

separating ungrammatical and grammatical text. 

We refer to ungrammatical text as nonprose 

qs_segments. Nonprose is differentiated from prose 

(well-formed sentences) by two rules. First, well-

formed sentences contain at least one verb. Sec-

ond, well-formed sentences do not contain more 

than four numbers (e.g., labs) per verb.  

Iterative refinement occurs in Stage D. Realiz-

ing that standard sentence segmentation may not 

perform well with nonprose (e.g., consider com-

mon lists like medications with no periods), we 

then re-segment the text breaking each nonprose 

qs_segment at the next carriage return, line break, 

or end-of-line character. The dotted line in Figure 

1 signifies that it is a repeated process. 
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Figure 1. The overall UIMA pipeline for UtahPOET (please zoom for readability). 

 

2.2 UtahPOET specific parallel ‘prepro-

cessing’ 

UtahPOET has section header identification and 

short-form expansion processes that run parallel to 

the ‘pre-processing’ stages. These stages are E and 

F in Figure 1. 

In stage E regular expressions are used to identi-

fy section headers. The regular expression rules are 

found using automatic regular expression extrac-

tion (Bui & Zeng-Treitler, 2014). 

In stage F, a series of SVMs are used to expand 

short forms. The feature vectors for these SVMs 

include context vectors as bags-of-words and sec-

tion headers. The short form-long form pairs are 

extracted from the ADAM dataset (Zhou, Torvik, 

& Smalheiser, 2006) but limited to clinical terms. 

One classifier is trained for each ambiguous nor-

malized short form that has multiple corresponding 

long forms. Classifiers are trained using the UMN 

clinical abbreviation and acronym sense inventory 

(Moon, Pahkhomov, Liu, Ryan, & Melton, 2014) 

and context information retrieved from PubMed 

case reports. The features are built on LVG 

(Browne et al., 2003) normalized bag of word, sec-

tion header and short form string. The expanded 

short forms are inserted into the original text, pre-

serving the original span information in UIMA 

annotations for span matching back to original text 

in the final stage. 

2.3 Disorder detection in dorsal and ventral 

streams 

Stage G has two purposes: to identify single-word 

disorder terms and to limit the number of words 

that will be looked up in later stages. After stop-

words are removed, each word in the document is 

stemmed using LVG (Browne et al., 2003) and 

fetched from a Lucene index made from the UMLS 

Metathesaurus restricted to the clinical sources 

indicated in (Wu et al., 2012), including 

SNOMEDCT, MSH, NCI, RDC, MTH, SNMI, 

MDR, SCTSPA, CHV, CCPS. The sematic types 

included reflect disorders, body locations, and 

modifiers. Modifiers include qualitative, quantita-

tive and spatial concepts.  

For the identification of multi-word terms and 

context slot filling in stages H and I, we split the 

text segments based on the previously described 

nonprose (stage H) prose (stage I) distinction. The 

dorsal stream is associated with rule-based pro-

cessing. In this case the rule associated with 

nonprose qs_segments, is that adjacent unigram 

disorder terms are likely to be part of a multi-word 

term. Equivalently, the body location and severity 

relevant to a disorder will be adjacent to the disor-

der mention. The ventral processing stream ex-

ploits world knowledge about regularity of 

construction by dependency parsing. Unigram 

matches that share dependencies are likely to be 

part of a multi-word term and reflect relevant body 

locations and severities.  

In both stages (H and I), we build as long a mul-

ti-word term as possible then attempt to match the 

term to a Lucene index into the UMLS Metathe-

saurus restricted to the clinical sources listed above 

and only the disorder semantic types. If the term 

does not match, it is incrementally reduced token-

by-token, with all combinations of words checked 

for a match at each step. 

Context slots are filled by overwriting entries in 

a default template: the mention is not negated, the 
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subject is the patient, the mention is not uncertain, 

severity and course are unmarked, the mention is 

not conditional or generic, and there is no body 

location given.  

Negation, uncertainty, subject, and generic 

mention are found at the sentence level in nonprose 

and the dependency level in prose by looking for 

specific text. The remaining slot values were locat-

ed by adjacency (nonprose) or dependency (prose).  

2.4 Post-processing 

Stage K takes place outside of UIMA. It collapses 

expanded short-forms back to their original spans 

and updates spans of all the other annotations in 

the file so our output spans reflect those from the 

SemEval gold standard. Stage L (SemEval clean 

up) is the final stage of the pipeline in Figure 1. 

Here we map, where possible, disorder CUIs from 

SNOMED CT. This stage also incorporates a pro-

cess for identifying terms matched to the UMLS 

Metathesaurus semantic type finding (T033) that 

are considered CUI-less disorders in the SemEval 

gold standard. We use a structured SVM to classify 

the spans of findings to CUI-less disorder or not. 

We used the Cornell SVM
struct

 SVM
hmm

 model. 

(Joachims, n.d.) Feature vectors are 4-word con-

text-window (2 before and 2 after), bag-of-words 

stemmed with stopwords removed using NLTK 

(Bird, Loper, & Klein, 2009). The SVM parame-

ters were slack vs. weight vector magnitude (-c) of 

25000 and epsilon (-e) of 0.5.  

This stage also removes all disorders found 

within section headers as well as annotations that 

reflect either spurious UMLS Metathesaurus map-

pings or problems with short-form expansion. 

3 Results  

UtahPOET was not expected to perform well on 

either Task 1 or Task 2A. In both cases, our un-

willingness to adhere to the gold standard CUIs 

caused us to score at the bottom of the pack. Six-

teen teams competed in Task 1. We were 15th. On-

ly 6 teams competed in Task 2A, we were last. 

Considering the context slot filling, apart from CUI 

and body location, in Task 2A would have moved 

us up one rank.  

We were mainly focused on Task 2B where we 

scored in the middle of the pack until many of the 

teams withdrew. Nine teams remain in the Task 2B 

competition. Our three runs come second to the 

last. Again looking at only slot filling, we would 

have moved up three ranks. 

Our results for the development set closely mir-

rored those on the test set; so will not be described. 

3.1 Difference between runs 

We were unsure whether scoring favored F-scores 

or accuracy so we submitted runs favoring one or 

the other. For both tasks, we submitted 2 copies of 

our best run in case there was a problem creating 

one of the submissions. If one failed, there would 

still be one left. In tasks 1 and 2A runs 1 and 2 

were the same. Run 3 had a stricter Lucene match 

leading to higher accuracy and lower F-score (i.e., 

reduced numbers of true positive, false positive 

and false negative concepts). The stricter match 

required that only the words found in the document 

appear in the matched term, no extra words were 

allowed. Thus, “hypertension” would not match 

the UMLS Metathesaurus entry “hypertensive dis-

ease.” In task 2B, runs 2 and 3 are the same. This 

time run 1 has a slightly higher accuracy, but lower 

F-score due to change in Lucene matching. 

For task 2A, we also realized that we could use 

the gold standard spans to match the context found 

by UtahPOET without finding an associated con-

cept, if we reported the span as a CUI-less disor-

der. 

 
Table 2. Examples of CUI mapping error for dis-

orders (please zoom for readability). 

3.2 CUI and body location error analysis 

Tables 2 and 3 list examples of the CUI mapping 

errors made by UtahPOET. For disorders, they fall 

into three increasingly large groups, system prob-

lems, UMLS diffuseness, and disagreement with 

the gold standard. 
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CUI-mapping errors in body location assign-

ment were, in increasing order of size, due to sys-

tem problems, disagreement with the gold standard 

and near misses or equivalences. 

 

 
Table 3. Examples of CUI mapping error for body 

locations.  

4 Discussion 

The UtahPOET system can successfully extract 

semantic information from clinical text. The sys-

tem construction has slightly different priorities 

than the Task organizers. Our priority of creating a 

dataset agnostic solution for semantic extraction 

problems prompted us to offer considerations for 

the evaluation and to look to cognitive findings for 

system design inspiration. 

4.1 Implications for system improvement 

Necessary system alterations are revealed by dis-

order CUI mapping error analysis in Table 3. CUI-

less disorders are the most error prone. We will be 

adding features to the CUI-less disorder SVM to 

improve performance. Two mapping mistakes 

‘CT’ and ‘he’ that may be fixed by a walk back to 

the most common form. We will investigate a 

method to implement a walk back. Standardizing 

the expanded long-forms would catch the missed 

‘SOB’ mappings. Checking for phrase ‘secondary 

to’ would also be helpful. 

We find support for our evaluation considera-

tions above in CUI and body location mappings, 

which disagree with the gold standard. For exam-

ple, if ‘shortness of breath’ is given the body loca-

tion ‘breath,’ giving ‘vomiting’ to body location 

‘vomitus’ and ‘drainage’ to location ‘body fluid 

discharge’ should be acceptable. 

UtahPOET is prone to near misses. We see 

these near misses as a type of graceful degradation, 

which is a hallmark of cognitive systems. Graceful 

degradation is the ability to function despite mak-

ing errors. Ferreira and Patson call this “good 

enough” processing (Ferreira & Patson, 2007). 

4.2 Implications for cognitive architecture 

The hierarchical layers from psycholinguistics are 

lexical, syntactic and semantic processing, which 

proceed in that order. We do not adhere strictly to 

this hierarchy. Many cognitive scientists think a 

proper hierarchy is unlikely (Frank, Bod, & Chris-

tiansen, 2012).  

We were inspired to separate prose and 

nonprose based on the ventral-dorsal distinction 

between grammatical and ungrammatical text. It is 

tempting to equate heuristics with ML and rules 

with specific if…then statements. The cognitive 

science literature indicates that this is a mistake 

(Hahn & Chater, 1998). All heuristics are thought 

to start as rule-based. The rule-based decision is 

overlearned to the point of automaticity and called 

a heuristic. Therefore we do not use ML compo-

nents in only one path. 

Currently, UtahPOET leverages iterative re-

finement for sentence segmentation only. Once we 

implement greater integration with long-term 

memory (LTM) representation, we will have the 

facility to recognize clashes and implement more 

extensive iterative refinement. With our ML com-

ponents, we can clearly see how learning requires 

its own pathway. Each of these systems is trained 

outside the UtahPOET pipeline and would require 

retraining, if new information were introduced. 
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Abstract

This paper describes a system developed for
the disorder identification subtask within task
14 of SemEval 2015. The developed sys-
tem is based on a chain of two modules, one
for recognition and another for normaliza-
tion. The recognition module is based on an
adapted version of the Stanford NER system
to train CRF models in order to recognize dis-
order mentions. CRF models were build based
on a novel encoding of entity spans as token
classifications to also consider non-continuous
entities, along with a rich set of features based
on (i) domain lexicons and (ii) Brown clus-
ters inferred from a large collection of clinical
texts. For disorder normalization, we (i) gen-
erated a non ambiguous dictionary of abbrevi-
ations from the labelled files, using it together
with (ii) an heuristic method based on similar-
ity search and (iii) a comparison method based
on the information content of each disorder.
The system achieved an F-measure of 0.740
(the second best), with a precision of 0.779, a
recall of 0.705.

1 Introduction

Clinical notes are an important source of informa-
tion recorded by medical professionals. However,
this information, when available, is not easily acces-
sible within automated procedures. Clinical notes
are inherently complex, due to their lack of struc-
ture (i.e., narrative language) and due to the need for
contextual interpretation. To address this complex-
ity, text mining approaches represent an effective so-
lution to assist the users in retrieving and extracting
the required information.

This paper presents a text mining system for pro-
cessing clinical text, that we developed for SemEval
based on a pipeline with two modules, one for entity
recognition and another for normalization.

The entity recognition module is based on the
Stanford NER tool (Finkel et al., 2005), and it uses
CRF models trained on annotated biomedical notes.
The module tags the text according to an SBIEON
encoding of entities as token classes, supporting the
recognition of non-continuous entities (Leal et al.,
2014). We relied on features based on Brown clus-
ters and domain specific lexicons. Thus, this ap-
proach combines both supervised (Stanford NER)
and unsupervised methods (Brown Clusters).

For practical applications, entity recognition is
incomplete without performing normalization, i.e.
without mapping each entity to an identifier (CUI) in
a controlled vocabulary like SNOMED CT (Cornet
and Keizer, 2008), that defines its semantic meaning.
One of the main challenges in this task consists in re-
solving the ambiguous cases, where the same entity
can have distinct semantic meanings (i.e., mapped to
distinct CUIs) depending on the context.

Our normalization module relies on the follow-
ing components: (i) a procedure for the automatic
generation of auxiliary dictionaries from the la-
belled training data (e.g, abbreviations) and from
SNOMED CT, to be used as mapping dictionaries,
(ii) an heuristic for similarity search, and (iii) an in-
formation content measure for each concept.

Our system is an extension of the one used in the
2014 edition of SemEval (Leal et al., 2014). Both
systems used the same approach for entity recogni-
tion but, in terms of the normalization component,
the system from 2014 was entirely based on a lex-
ical similarity approach using NGram, Levenstein
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and JaroWinkler distances. The current system is in-
stead based on a pipeline were the information con-
tent was also incorporated. Besides SNOMED CT,
the current system also integrated dictionaries auto-
matically generated from the training data.

2 The SemEval Task

Task 14 of SemEval 2015 was composed of two
subtasks: recognition and normalization of medical
concepts (subtask 1) and disorder slot filling (sub-
task 2). We only participated in subtask 1.

The recognition part of subtask 1 consisted on
performing the recognition of medical concepts,
who belong to the UMLS semantic group disor-
ders, within unstructured clinical notes. The disor-
ders group of UMLS corresponds to concepts de-
fined within SNOMED CT (Cornet and Keizer,
2008). Recognized entities can be continuous, non-
continuous or even overlapped in the text.

The normalization part consisted on the mapping
of an unique UMLS CUI (Concept Unique Identi-
fier) to each previously recognized entity, or none
at all (CUI-Less) for the cases where there is no
suitable CUI for the recognized entity within the
SNOMED CT database. Ambiguous entities repre-
sent the main challenge of this task, since identifying
the correct CUI depends on their context.

Task 14 evaluated the recognition and normaliza-
tion parts as one single task, by measuring the final
system’s precision, recall and F-measure. The eval-
uation could also be performed in a strict or relaxed
way. In strict evaluation, a predicted mention is con-
sidered a true positive if the predicted span is ex-
actly the same as the gold-standard. On the relaxed
evaluation, the predicted spans only need to overlap
the gold-standard spans to be considered a true pos-
itive. On both evaluation methods the CUI must be
correctly identified to be considered a true positive.
Thus, even with a perfect recognition system, it is
possible to achieve low results on the task, depend-
ing on the normalization performance

3 Datasets

Similarly to the last edition of the competition
(Zhang et al., 2014), two sets of labelled data were
given to the participants, which were separated into
two categories (training and development). They

were used for training and testing of our system,
respectively. Unlabelled clinical notes from the
MIMIC corpus were also provided. Later, an un-
labelled test set was released to evaluate the final
system. Unlabelled clinical notes consisted on plain
text without any additional information, while la-
belled clinical notes consist on plain text together
with a list of disorder mentions contained on them.
Table 1 summarizes each dataset.

Train Devel Test Unlabelled
Notes 298 133 100 404k
Words 182k 154k 8k 123M
Disorder
Mentions 11.5k 8k - -

CUI-ied 8k (88%) 6k (76%) - -
CUI-less 3.5k (12%) 2k (24%) - -

Table 1: Statistical characterization of the datasets.

4 Entity Recognition

We applied the same type of approach used in our
system from last year (Leal et al., 2014) for entity
recognition. The Stanford NER software (Finkel
et al., 2005) was used to train Conditional Random
Fields (CRF) models using labelled data as input.

All input text had to be tokenized and encoded
according to a named entity recognition scheme that
encodes entities as token classifications. To be able
to recognize non-continuous entities, an SBIEON
(Leal et al., 2014) encoding was used. Besides the
tags defined in the SBIEO encoding (Ratinov and
Roth, 2009), a new tag N was added to identify
words that do not belong to the entity but are inside
the continuous span that contains the recognized en-
tity. The remain tags are used to identify Single enti-
ties, the Begin, Inside and End token of a non-single
token entity, and the Other tag for words which
are neither entities nor related to them. For over-
lapped entities we did not develop any approach, i.e.
we only recognize the first entity in an overlapping
group of entities. Thus, handling overlapping enti-
ties remains an open issue in our system.

4.1 Recognition Features

We generated 2nd-order CRF models by using, as
training data, the labelled notes together with a rich
set of features. In 2nd-order models, the features
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Figure 1: Overview on the normalization approach.

are computed from representations composed by the
current class and the two previous/next classes.

Training Data: Two different sets of data were
employed: one with notes belonging to the training
set only, and another with notes from both the train-
ing and devel sets.

Brown Clusters: We inferred word representa-
tions in the form of Brown clusters (Brown et al.,
1992) from all data that was made available, i.e.
from MIMIC, train and devel. According to (Turian
et al., 2009), this technique reduces the data sparsity,
generating lower-dimensional representations of the
word vocabulary, and therefore increasing the accu-
racy. Each word cluster contains a group of words,
and clusters are formed by maximizing the mutual
information of bi-grams, according to a class-based
language model. We used a total of 404k documents,
containing an approximate total of 123M tokens, to
infer 100 different clusters using the implementation
provided by (Turian et al., 2010). The number of
clusters was chosen through a separate set of exper-
iments as the one that maximized the F-measure.

Encoding: The aforementioned SBIEON encod-
ing was employed in all recognition models.

Features: The CRF models rely on a set of fea-
tures that includes (i) word tokens within a window
of size 2, (ii) token shape (upper-cased, numeric,
etc), (iii) token position in a sentence and (iv) token
prefixes and suffixes. This basic set of features was
also extended with features based on Brown clusters,
and domain-specific lexicons.

Domain-specific lexicon: We built lexicons for
the medical domain that include (i) SNOMED CT
disorders, (ii) drugs and diseases from DBPedia and
(iii) a list of disorders from the labelled data.

5 Normalization

Each recognized entity needs to be normalized, if
possible, with a unique identifier (CUI) from an ex-
isting controlled vocabulary. This way, a semantic
meaning is associated to each entity. Since ambigu-
ous entities can have multiple identifiers depending
on the context, one of the main challenges in this
task consists in the disambiguation of these cases.

To address this challenge, we developed a
pipeline framework (Figure 1) composed of several
modules. First, a recognized entity will be looked up
in an abbreviation dictionary. If it is unambiguously
present there, then the associated CUI is assigned,
otherwise the entity moves on to the next module
(i.e. lookup on the golden dictionary). The CUI-
less tag is assigned to the entity if no suitable CUI is
found at the end of this process, or if the most simi-
lar SNOMED CT candidate found is not a disorder.

5.1 Resources

Abbreviation dictionary: This dictionary con-
tains the small (up to 4 letters) upper-cased non-
ambiguous concept descriptors found in the labelled
data. For instance, the entity ASD is an abbrevia-
tion of atrial septal defect with the CUI C0018817.
Since this descriptor is unique in SNOMED CT, it is
considered non-ambiguous.

Golden disorders dictionary: All entity spans
(ambiguous included) retrieved from the labelled
notes are used to form this dictionary. This dic-
tionary is thus composed by all concept descriptors
which were dropped by the abbreviation dictionary,
for their length or because they were ambiguous.

SNOMED CT dictionary: All concepts from
SNOMED CT are included.
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5.2 Methods

Similarity Search: This module was implemented
using a Lucene index (MacCandless et al., 2010).
NGram (Kondrak, 2005) and Levenshtein distances
were used to retrieve the best SNOMED CT candi-
dates. An extended Levenshtein distance, based on
a best-token-match approach, was developed. This
distance gives the similarity between a target (rec-
ognized entity descriptor) and a candidate descriptor
(SNOMED CT concept), regardless of their token’s
orders. First, both target and candidate descriptors
are split into tokens. For each target’s token, we
compute the Levenshtein distance with all candidate
tokens, and we finally pick the token corresponding
to the minimum value. Each token in the candidate
can only be compared to a single token in the tar-
get. The distance is represented by the following
formula:

Sdt = SplitTokens(dt)

Sdc = SplitTokens(dc)

Sim(dt, dc) =


−1, if|Sdt| > |Sdc|∑
wdt∈Sdt

BestMatch(wdt, Sdc)

|Sdt|
, otherwise

In the formula, we have that

BestMatch(wdt, Sdc) = Min{LevDist(wdt, wdc) : wdc ∈ Sdc}

In the previous expressions, dt is the target and dc

the candidate descriptor. SplitTokens is the func-
tion responsible for splitting the descriptor into to-
kens. BestMatch returns the minimum Levenshtein
distance between the token wdt and all available to-
kens in Sdc. The token in Sdc which minimizes the
Levenshtein distance is removed from the list for
posterior iterations against the remain tokens in St.

Information Content (IC): The Information
Content (IC) was calculated for each disorder entity
using the UMLS-Similarity (McInnes et al., 2009)
software implementation. This measure enabled us
to disambiguate entities by choosing, from the list
of candidates, the ones with the lowest IC. This
assumes that more general concepts have a higher
probability to appear on a text. The intrinsic method
by (Sánchez et al., 2012) was chosen to calculate

the IC of each concept, using the following formula
where leaves(c) represents the number of leaves of
c, subsumers(c) represents the number of parents of
c, and max.leaves is the number of nodes which are
leaves in the SNOMED CT taxonomy:

IC(c) = − log

 |leaves(c)|
|subsumers(c)| − 1

max.leaves + 1


5.3 Approach

We implemented a lookup method in each dictio-
nary. If the entity was found, then the associated
identifier was immediately assigned. Ambiguous
cases were resolved using the information content,
choosing the concept with the lowest IC value. For
descriptions not found in the considered dictionar-
ies, we used Lucene to retrieve the top 300 most
similar candidates from SNOMED CT and, for each
candidate, we applied the following formula to ob-
tain the final similarity measure:

Sim(dc, dt) = 0.15 ∗ Lev(dc, dt) + 0.15 ∗NGram(dc, dt)

+ 0.7 ∗ LevExt(dc, dt)

In the previous expression, Sim represents the simi-
larity between the target dt and candidate dc descrip-
tor. Lev, NGram and LevExt represent the Leven-
shtein, NGram5 and Extended Levenshtein distance,
respectively. The constant values were chosen ac-
cording to a separate empirical evaluation using the
devel dataset, although in future work we intent to
use systematic approaches based on learning to rank.
For each CUI associated to the chosen candidate de-
scriptor (higher similarity with target descriptor), the
one with the lowest IC was chosen.

6 Evaluation Experiments

Three runs were submitted to the SemEval 2015
competition:

Run 1: A 2nd-order CRF model was trained using
the SBIEON encoding, and a rich set of fea-
tures that includes the domain lexicons and 100
Brown clusters. For training, we only used
notes from the training set. For assigning a
UMLS identifier to each entity, we used the
framework that was previously described.
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Strict Evaluation Relaxed Evaluation
Run Precision Recall F-measure Precision Recall F-measure

1 0.748 0.676 0.710 0.782 0.706 0.742
2 0.749 0.681 0.713 0.780 0.709 0.743
3 0.779 0.705 0.740 0.806 0.729 0.765

Best System
SemEval 2015 0.783 0.732 0.757 0.815 0.762 0.788

Table 2: The official results for Task 1 of the SemEval 2015 challenge on clinical NLP.

Run 2: This run is identical to Run 1 with the
exception of the domain lexicon features that
were not included. Normalization followed the
same strategy as in Run 1.

Run 3: Identical to Run 1, with the exception that
both train and devel documents were used as
training data, resulting in the addition of 133
notes to the training set.

7 Results and Discussion

We present our official results in Table 2, highlight-
ing our best results in comparison to those of the best
participating system in the competition.

Our best run achieved the second best F-measure
in the competition, with an F-measure of 0.740 in the
strict evaluation and 0.765 in the relaxed evaluation.
As previously said, the predicted mention can only
be correct if and only if the mapped CUI is correct.

One of the first things to notice when comparing
the runs is the difference on the results between the
third run and the others. As expected, the addition of
133 notes (devel set) to the training data produced a
better recognition model, thus improving the global
performance of the system.

The addition of domain lexicon features to the
recognition model resulted in a lower precision on
the strict evaluation. On the relaxed evaluation a
small improvement was achieved.

The small difference between the strict and re-
laxed evaluation modes can be associated to a really
precise recognition model or, more likely, with the
normalization pipeline having trouble in normaliz-
ing the concepts when they are not fully recognized.
For example, if an entity E was only partially recog-
nized, then it will be harder to normalize it.

In what concerns normalization, all runs were
produced using the same pipeline and with the same
features. Since our approach for the recognition

task is similar to the one used in the SemEval 2014
edition, and since a significant improvement in the
overall performance was obtained, we can conclude
that our recent developments in the normalization
part of the system were particularly effective.

8 Conclusions and Future Work

This paper describes our participation in Task 14 of
the SemEval 2015 competition. Although this task
was divided into two subtasks, our work only ad-
dressed on the recognition and normalization of en-
tity disorders on clinical notes.

For the recognition part, we used a similar ap-
proach to the one followed in the 2014 edition of
SemEval. Specifically, a 2nd-order CRF model was
generated using the Stanford NER software, consid-
ering different sets of features. All models used the
SBIEON encoding (Leal et al., 2014) to support the
recognition of non-continuous entities. Overlapped
entities continue to be an open issue.

For the normalization part, we developed a
pipeline that takes advantage of the existing labelled
data to generate and explore auxiliary dictionaries
(e.g., an abbreviation dictionary). For the recog-
nized entities that do not match to any dictionary, we
employ a similarity search based on Lucene’s imple-
mentation of Levenshtein and NGram distances. An
extension of the Levenshtein distance was developed
to compare descriptors independently of the order
of their words. Ambiguous cases were resolved by
choosing the concepts with the lowest information
content, which was calculated using the approach
proposed by (Sánchez et al., 2012);

As expected, results show that a more compre-
hensive training set enables the generation of bet-
ter recognition models, maintaining the same set of
features. We also saw that the addition of a do-
main lexicon increased the precision, although not
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significantly and with almost no impact on the F-
measure. Our normalization framework was likely
the main reason for the large improvement in our re-
sults, when comparing to the results from SemEval
2014.

In our opinion, the evaluation method followed
in this year’s competition is good for evaluating the
system as a whole, but on the other hand it also lim-
its the evaluation of the two tasks separately, which
we believe would bring some advantages while de-
veloping the system and when comparing results.

For future work, we intend to evaluate both tasks
individually, to better understand which components
are performing well, and which ones need to be
improved. In the normalization task, we intend to
improve the framework that was presented, explor-
ing semantic similarity based on ontology relations
(Couto et al., 2006). By assuming that concepts
within the same text are semantically related to each
other, we intend also to disambiguate entities based
on their semantic similarity towards all other previ-
ously normalized entities (Lamurias et al., 2015).

To improve the module related to similarity search
for disambiguation, we also intend to develop a
learning to rank approach similar to the one pre-
sented by (Leaman et al., 2013).
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Abstract

This paper describes the approach used by
ezDI at the SemEval 2015 Task-14: ”Anal-
ysis of Clinical Text”. The task was di-
vided into two embedded tasks. Task-1 re-
quired determining disorder boundaries (in-
cluding the discontiguous ones) from a given
set of clinical notes and normalizing the dis-
orders by assigning a unique CUI from the
UMLS/SNOMEDCT1. Task-2 was about find-
ing different type of modifiers for given disor-
der mention. Task-2 was divided further into
two subtasks. In subtask-2a, gold set of disor-
der was already provided and system needed
to just fill modifier types into the pre-specified
slots. Subtask 2b did not provide any gold set
of disorders and both the disorders and its re-
lated modifiers are to be identified by the sys-
tem itself. In Task-1 our system was ranked
first with F-score of 0.757 for strict evalua-
tion and 0.788 for relaxed evaluation. In both
Task-2a and 2b our system was placed second
with weighted F-score of 0.88 and 0.795 re-
spectively.

1 Introduction

Extracting medical information from clinical natural
text has gained a lot of attraction over the past few
years. Approximately 80% of patient related infor-
mation resides under unstructured transcribed text.
Amount of this unstructured text is increasing con-
stantly and automated methods of extracting crucial
information is of paramount interest to health care
informatics industry. Task-14 of SemEval 2015 on

1http://www.nlm.nih.gov/research/umls/

”analysis of clinical text” addresses the same con-
cern.

Task-14 of SemEval-2015 was in continuation of
the 2013 ShaRe/CLEF Task-1 (Suominen, H. et al.,
2013) and task-7 of SemEval 2014. The task was
divided into two parts. In continuation of last year,
task-1 was about finding disorder mentions from the
clinical text and associating them with their related
CUIs (concept unique identifiers) as given in the
UMLS (Unified Medical Language System). This
year one additional task (Task-2) of disorder modi-
fier slot filing was added. Task-2 was further sub-
divided into two parts. In subtask-2a, a gold set of
disorder mentions was provided and the participants
had to only fill the pre-specified slots with the nor-
malized modifiers. In task 2b, no gold set of disorder
mentions was provided. Figure1 provides detailed
overview about task 1 and 2.

Clinical NLP has evolved a lot in the tasks re-
lated to medical entity detection. NLP systems
like cTAKES (Savova, Guergana K., et al., 2010),
MetaMap (A. Aronson, 2001) and MedLEE (C.
Friedman et al., 1994) have focused on rule based
and dictionary look-up approaches for thid task. Re-
cently a few attempts have been made to use su-
pervised and semi-supervised learning models. In
2009, Yefang Wang (Wang et al., 2009) used cas-
cading classifiers on manually annotated data and
achieved around 83.2% accuracy. In 2010, i2b2
shared task challenge focused on finding test, treat-
ment and problem mentions from clinical document.
From 2013 on-words, entity detection task is regu-
larly featuring in Share/CLEF and SemEval tasks.

Tasks related to modifier slot filling are relatively
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new and no extensive research has been done yet.
However for negation modifier, negEx (Chapman
et al., 2011) or various other variants of negEx have
been used in the last 10 years. These are keyword
based dictionary look-up algorithms, but still gives
around 92% of accuracy. However, these algorithms
are not scalable because there is no proper mecha-
nism defined to detect boundary for given negated
keyword. In 2010 i2b2 challenge, there was a sepa-
rate task for detecting 5 categories of negation. Sys-
tems used in this task showcase various statistical
approaches and the accuracy numbers were in the
range of 90 to 93%.

In this paper we have proposed a hybrid super-
vised learning approach based on CRF and SVM
to find out disorder mentions from clinical doc-
uments, a dictionary look-up approach on a cus-
tomized UMLS meta-thesaurus to find correspond-
ing CUIs and a SVM based generic approach to find
out all different disorder modifiers.

Figure 1: Task-2 with Examples.

2 Data Set

The SemEval-2015 corpus comprises of de-
identified plain text from MIMIC2 version 2.5
database. A disorder mention was defined as any
span of text which can be mapped to a concept in
UMLS and which belongs to the disorder semantic
group. Some other disorders which were not present
in the UMLS were marked as CUI-less. The train-
ing and development data sets of the previous year’s

2http://mimic.physionet.org/database/
releases/70-version-25.html

task were combined to be used as training set (298
documents) while the test data set of the previous
year was used as development set. There were 100
documents used as test data set. Same set of 4 hun-
dred thousand unlabelled documents were added to
encourage use of unsupervised learning methods.

3 Disorder Detection and Normalization

For Task-1 our system was very similar to the sys-
tem we developed last year (Pathak, et al, 2014).
Entity detection task was converted into sequence
labelling task using BIO format. A Conditional Ran-
dom Fields (CRF) was used to detect continuous en-
tity using CRF++3 toolkit. To detect discontiguous
entities, a binary SVM classifier was used to detect
whether relationship existed between two disorder
mentions or not. For contiguous entity detection
task, our feature set was very similar to the one we
used last year:

• Standard features like bag of words (for win-
dow +2 to -2), word stemmer (snowball stem-
mer) 4, prefix and suffix of length 1 to 5.

• Orthographic features like word contains digit,
contains slash, contains special character and
word shape (ezDI becomes aA).

• Grammatical features like parts of speech
(PoS) tags for which we used an internally de-
veloped PoS tagger (Choudhary et al. , 2014),
chunk (using Charniak’s parser (Charniak and
Johnson , 2005)) and head of noun and verb
phrases.

• Dictionary look-up matches for window +2 to
-2, stop words

• Section header and document type information
and sentence cluster id

Support Vector Machine (LibSVM5) was used to
identify disjoint entities. For all the possible combi-
nation of entities within a sentence, we ran a binary
SVM classifier to find whether a relationship existed
between those two entities or not. Feature set con-
sisted of following features:

3http://crfpp.googlecode.com/
4http://snowball.tartarus.org/
5http://www.csie.ntu.edu.tw/\˜cjlin/

libsvm/
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• Bag of words, PoS tags and chunk labels for all
the tokens appearing in between two entities.

• Few simple rules were implemented on Char-
niak parse output to find relationship between
two entities. A binary feature was used stating
whether relationship was found using rules or
not.

• Position of preposition, conjunction, main verb
and special characters like colon (:), hyphen (-
) and semi colon (;) in the context of the first
entity.

• Binary feature stating whether any of the de-
tected entity contained head of a noun phrase.

This hybrid approach was very helpful in detect-
ing disjoint entities. We got around 70% accuracy in
detecting disjoint entities using this approach.

3.1 CUI Detection

CUI detection task was divided into three separate
steps:

1) Direct dictionary search: In the first step, for
each word found in an entity we found all of its lexi-
cal variants using LVG 6. After that, for all the possi-
ble permutations we tried searching the string in the
UMLS. If the string matched any UMLS entry, we
associated the corresponding CUI with that entity.

2) Dictionary search on modified entities: For a
better mapping of the entities detected by NLP in-
side the given input text, we found it to be a bet-
ter approach to divide the UMLS entities into vari-
ous phrases. This was done semi-automatically by
splitting the strings based on function words such
as prepositions, particles and non-nominal word
classes such as verbs, adjectives and adverbs. While
most of the disorder entities in UMLS can be con-
tained into a single noun phrase (NP) there are also
quite a few that contain multiple NPs related with
prepositional phrases (PPs), verb phrases (VPs) and
adjectival phrases (ADJPs).

This exercise gave us a modified version of the
UMLS disorder entities along with their CUIs. Table
4 gives a snapshot of what this customized UMLS
dictionary looked like.

6http://lexsrv2.nlm.nih.gov/

CUI Text P1 P2 P3

C001
3132

Dribbling
from
mouth

Dribbling from mouth

C001
4591

Bleeding
from nose

Bleeding from nose

C002
9163

Hemorr-
hage from
mouth

Hemo-
rrhage

from mouth

C039
2685

Chest pain
at rest

Chest pain at rest

C026
9678

Fatigue
during
pregnancy

Fatigue during
pregn
ancy

Table 1: An example of the modified UMLS disorder en-
tities split as per their linguistic phrase types.

3) String similarity algorithm: If an entity was not
found even after the first two steps, then we gener-
ated a list of possible text span from UMLS which
can possibly match with the given entity. After
that, Levenshtein edit distance algorithm was used
to find best string match. If the best string match
was greater than a certain threshold value, the corre-
sponding CUI was associated with the entity other-
wise the entity was marked as ”CUI-less”.

4 Modifier Detection:

For this task we tried to develop a generic approach
so that it can be applied to any type of modifier. We
divided the task of modifier detection into two parts:
1) Modifier keywords detection 2) Relating detected
keywords with entity.

1) Modifier keywords detection: For each modi-
fier type, an extensive dictionary was prepared hav-
ing different possible keywords with its normalized
values. A simple dictionary look-up algorithm was
used to calculate a baseline accuracy. On train-
ing data set, accuracy ranged from 60% to 85% for
different modifier types. This baseline algorithm
achieved great recall but much less precision. To
counter this, we used CRF algorithm with common
features like bag of words, stem value and other or-
thographic features. CRF helped significantly in im-
proving precision for modifier keyword detection.

2) Relating detected modifier with entities: We
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treated this task similar to the task of finding re-
lationship between two entities. So a binary clas-
sifier was used to check if relationship existed be-
tween a modifier keyword and an entity or not. Fea-
ture set consisted of: Bag of Words between entity
and modifier keyword, PoS tags, a binary flag stat-
ing whether the modifier keyword and the entity ap-
peared in the same chunk or not, relative position
of entity and modifier, special characters appearing
in the sentence, section header (for subject modifier
type).

5 System Accuracy

For Task-1, the accuracy was defined as the number
of pre-annotated spans with correctly generated
code divided by the total number of pre-annotated
spans.

Strict Accuracy = #of CUIs with Exact span match
Total annotation in gold standard

Relaxed Accuracy = #of CUIswithpartialspanmatch
Total annotation in gold standard

Both training and development data sets were
used for training purpose. We used only 1 run with
above mentioned system set up. We were ranked
first for this task with results shown in Table 3.

Precision Recall Accuracy
Strict 0.783 0.732 0.757
Relaxed 0.815 0.761 0.787

Table 2: Task-1 Results.

For Task 2, weighted and unweighted accura-
cies were calculated. The unweighted accuracy is
the average of the per-disorder unweighted accuracy
over all the disorders in the test set. Each gold-
standard slot value is pre-assigned a weight based
on its prevalence in the training set. The weighted
accuracy is the average of the per-disorder weighted
accuracy over all the disorders in the test set.

Ranks for task-2 were given based on weighted
accuracy. ezDI was ranked second in both Task-2a
and Task-2b. The results were as given below:

6 Error Analysis

Abbreviations and disjoint entities still cause a lot
of error in CUI normalization task. Dictionary re-

F A F*A WA F*WA
Task-2A 1 0.934 0.934 0.880 0.880
Task-2B 0.915 0.935 0.856 0.868 0.795

Table 3: Task-2 Results.

lated features are still not very helpful. Accuracy de-
creases significantly if medical domain is changed.
Probably more sophisticated approach will be re-
quired to fully utilize UMLS dictionary. There is
still a lot to explore in modifier detection. Statisti-
cal approaches are still not out-performing baseline
dictionary based approaches. Modifier boundary de-
tection is still a bigger challenge to be solved.

7 Conclusion

In this paper we have proposed a CRF and SVM
based hybrid approach to find disorder mentions
from a given clinical text, a novel dictionary look-up
approach for discovering CUIs from UMLS meta-
thesaurus and a generic statistical approach for mod-
ifier slot filling. Our system did produce competitive
results and was best among all the participants for
task 1. In future, we would like to explore semi-
supervised learning approaches to take advantage of
large amount of available un-annotated free clinical
text.
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Abstract

We implemented an end-to-end system for dis-
order identification and slot filling. For iden-
tifying spans for both disorders and their at-
tributes, we used a linear chain conditional
random field (CRF) approach coupled with
cTAKES for pre-processing. For combining
disjoint disorder spans, finding relations be-
tween attributes and disorders, and attribute
normalization, we used l2-regularized l2-loss
linear support vector machine (SVM) classifi-
cation. Disorder CUIs were identified using a
back-off approach to YTEX lookup (CUAB1)
or NLM UTS API (CUAB2) if the target text
was not found in the training data. Our best
system utilized UMLS semantic type features
for disorder/attribute span identification and
the NLM UTS API for normalization. It was
ranked 12th in Task 1 (disorder identification)
and 6th in Task 2b (disorder identification and
slot filling) with a weighted F Measure of
0.711.

1 Introduction

One of the core problems in the field of clinical text
processing is the identification and normalization
of medical disorders (Pradhan et al., 2014). A sec-
ondary problem is the identification of attributes for
the identified disorders such as their severity or body
location. Attribute identification and normalization
helps to better describe the disorder context, allowing
for a better determination of the appropriateness of
the discovered disorder for the task at hand.

SemEval-2015 Task 14 addresses these problems
as separate tasks, assessing end to end systems capa-

ble of identifying both disorders and attributes from
unlabeled clinical text. The first task requires par-
ticipants to identify discontinuous disorder spans in
clinical text and normalize them to a UMLS Con-
cept Unique Identifier (CUI) that is both within the
disorder Semantic Group and present in SNOMED
CT. The second task requires identification of disor-
der CUIs as well as 8 additional attributes associated
with each disorder as shown in Table 1 on the shared
task page1. For each attribute, the span offset of the
lexical cue must also be identified, which may be
discontinuous.

2 Approach

We combined and extended our previous work (Gung,
2014; Osborne et al., 2014) for the ShARe/CLEF
2013 eHealth Evaluation Lab (Suominen et al.,
2013). Both previous systems and our base system
for this task are based on the clinical Text Analy-
sis and Knowledge Extraction System (cTAKES)
(Savova et al., 2010), an open source pipeline for
the natural language processing (NLP) of clinical
text that utilizes the Unstructured Information Man-
agement Architecture (UIMA) (Ferrucci and Lally,
2004) framework. Our combined system is avail-
able for download at https://github.com/
jgung/ClearClinical.

We developed two systems for this task that dif-
fered in their method of CUI lookup and the presence
of UMLS semantic type features. The first system
(CUAB1) uses YTEX (Garla et al., 2011) to disam-
biguate CUIs returned from the cTAKES dictionary

1http://alt.qcri.org/semeval2015/task14/
index.php?id=task-description
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Raw Clinical Text

cTAKES Preprocessing

Disorder Span
Annotator

Discontinuous Dis-
order Discovery

Attribute Identification

Attribute-Disorder
Association

Disorder Normalization Attribute Normalization

Figure 1: Pipeline of the system components

annotator. The second system (CUAB2) uses UMLS
Terminology Services (UTS) for the same task and
additional UMLS features for disorder/attribute span
annotation. For both of these systems, we relied
on cTAKES for pre-processing, using the default
pipeline from the cTAKES ClinicalPipelineFactory
class to perform tokenization, sentence segmentation,
part of speech (POS) tagging and chunking.

2.1 Task 1 - Disorder Identification and
Normalization

We broke down Task 1 into 3 different tasks as shown
in Figure 1: identification of disorder spans, linking
of disjoint disorder spans into single discontinuous
disorders, and association of the final (dis)continuous
disorder spans with CUIs.

2.1.1 Disorder Span Annotation

Span identification in Task 1 was accomplished
with the same begin-inside-outside (BIO) token clas-
sification methodology as in previous work (Gung,
2014) but using the updated training data. Spans of
putative disorders were labeled using a linear chain
CRF with features identical to those used in previ-
ous work. Examples of these features are shown
in Table 1. The disorder span tagger was imple-
mented using the ClearTK machine learning frame-
work (Bethard et al., 2014) which presents a UIMA
interface for machine learning models and wraps clas-
sifiers such as CRFSuite (Okazaki, 2007).

Feature Type Example Feature
Token First token of each of the two

annotations
POS Part-of-speech tags (e.g, NN)

of each of the two annotations
Phrase-chunk Phrase chunks (e.g., NP, VP)

between the two annotations
Dependency path Max distance to common an-

cestor of the two annotations
Dependency tree Concatenation of head word

and governing word for each
of the two annotations

Named entity Number of named entity men-
tions between the two annota-
tions

Table 1: Feature types and examples for features used to
associated disjoint spans into a discontinuous disorder and
to associate attributes with a candidate disorder

2.1.2 Discontinuous Disorder Discovery
In a departure from previous work (Gung, 2014),

we trained our own relation extractor for the dis-
covery of discontinuous spans, rather than relying
on existing models used by ClearNLP’s SRL sys-
tem and the cTAKES relation extractor. We used
a l2-regularized l2-loss linear SVM classifier (via
the ClearTK wrapper to LibLinear) to predict when
two disorder spans identified in the previous step
should be combined into a single disorder. We used
a subset of features from the cTAKES relation ex-
tractor including token features (e.g., last word in
disjoint span), POS features, phrase chunks (e.g.,
phrase chunk between first head), dependency tree
information (e.g., dependencies on POS tags, words),
dependency path information (e.g., mean distance to
common ancestor) and the number of named enti-
ties between the disjoint spans. A list of these fea-
tures with examples is shown in Table 1 and more
interested readers can review the source code made
available.

We explored some additional features to improve
span detection including pointwise mutual informa-
tion from the provided unlabeled MIMIC notes and
CUI-normalized segment header information. Nei-
ther feature provided a performance improvement on
the training data and thus they were excluded from
our final systems.
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System Rank TP FP FN P R F
Strict Results

CUAB1 23 3514 1381 2634 0.718 0.572 0.636
CUAB2 12 4202 1516 1946 0.735 0.683 0.708
ezDI 1 - - - 0.783 0.732 0.757

Relaxed Results
CUAB1 - 3632 1263 2516 0.742 0.591 0.658
CUAB2 - 4357 1361 1791 0.762 0.709 0.734
ezDI - - - - 0.815 0.761 0.787

Table 2: Performance on disorder identification and normalization (Task 1), including rank among the 39 competing
systems (Rank), true positives (TP), false positives (FP), false negatives (FN), precision (P), recall (R) and F-measure
(F). Task ranking was only given for strict scoring.

2.1.3 Disorder Normalization

Disorder normalization in both systems used a
dictionary of text-to-CUI mappings from the training
data as the primary attempt to normalize the disorders.
In CUAB2, any text not normalized by this training
dictionary was assigned a CUI using UMLS UTS
web services whereas in CUAB1 the assignment was
made using the cTAKES dictionary annotator with
YTEX to resolve ambiguous terms. In both systems
text that failed all of these methods was designated
as CUI-less.

2.2 Task 2 - Attribute Identification and
Normalization

We broke this task down into 3 different steps as
shown in Figure 1: detection of attribute spans, asso-
ciation of those spans to the disorders already identi-
fied, and the normalization of the attribute spans (slot
filling).

2.2.1 Attribute Identification

To detect attribute spans we used the same linear
chain CRF model with the same features that we used
to detect disorder spans in Task 1.

As in disorder identification, we labeled tokens as
either the beginning, inside, or outside (BIO) of an
attribute. Contiguous non-outside chunks were as-
sembled and marked as possible candidate attributes.

2.2.2 Associating Attributes with Disorders

We again used a l2-regularized l2-loss linear SVM
classifier model to link our candidate attributes to the
disorders discovered by our system in Task 1. This

System Accuracy
YTEX 0.650
UTS 0.644

Table 3: Accuracy of Disorder Normalization on Training
Data

classifier used the same feature set as was used for
merging disorder spans (see Table 1).

2.2.3 Attribute Normalization
Attributes for disorders were normalized using a

l2-regularized l2-loss linear SVM classifier using as
features the full text of the attribute, the text of the
tokens within the attribute annotation, and the text of
the tokens appended with the attribute type.

3 Results

3.1 Task 1
Table 2 shows the performance of the CUAB systems
on disorder identification and normalization (Task 1),
as well as the performance of the top system in the
shared task. The best CUAB system (CUAB2) used
UMLS semantic type features for disorder span iden-
tification and UMLS Terminology Services (UTS)
for CUI lookup and ranked 12th out of 39 systems,
achieving precision and recall that were both about
0.05 below the top system. CUAB1 was ranked 23rd
but not because the system was less able to normal-
ize disorder CUIs. As shown by the training data in
Table 3, both UTS and YTEX had similar accuracy
in predicting CUIs. A more plausible explanation
for the relatively higher performance of CUAB2 is
a result of more accurate span detection due to its
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System Rank TP FP FN P R F A WA F*A F*WA
CUAB1 17 4627 258 1521 0.947 0.753 0.839 0.873 0.669 0.732 0.561
CUAB2 6 5376 328 772 0.942 0.874 0.907 0.908 0.784 0.824 0.711
UTH-CCB 1 - - - - - 0.926 0.941 0.873 0.871 0.808

Table 4: Performance on disorder identification, normalization and slot-filling (Task 2b), including rank among the
23 competing systems (Rank), true positives (TP), false positives (FP), false negatives (FN), precision (P), recall (R),
F-measure (F), accuracy (A), weighted accuracy (WA).

Slot CUAB1 CUAB2
BodyLoc - 0.656
Disorder CUI 0.783 0.808
Conditional - 0.661
Course - 0.773
Generic - 0.885
Negation - 0.850
Severity - 0.861
Subject - 0.846
Uncertainty - 0.750

Table 5: Weighted accuracy by attribute type on slot-filling

incorporation of additional UMLS lookup features
for span detection that were unintentionally left ab-
sent in CUAB1. Given the nearly identical results in
training between UTS and YTEX, the much better
performance of CUAB2 in Task 1 is best explained
by the importance of vocabulary features in disorder
normalization. Unfortunately the test dataset is not
available for us to re-run and confirm this.

Table 4 shows the performance of the CUAB sys-
tems on the combined task of disorder identification,
normalization and slot-filling (Task 2b). The best
CUAB system (CUAB2) again used UMLS features
for disorder span and attribute annotation and UTS
for CUI lookup and ranked 6th out of 23 systems,
achieving an F-measure, accuracy and weighted ac-
curacy about 0.02, 0.03 and 0.09, respectively, below
the top system.

Table 5 shows the performance of the CUAB sys-
tems broken down by attribute type. The CUAB1
system made only disorder predictions for Task 2b,
hence all other results are omitted.

4 Discussion

One strength of our system is that it took exactly the
same approach (classifier and feature set) to the prob-

lem of merging disjoint disorder spans and the prob-
lem of associating attributes with disorder mentions.
Our CUAB2 system ranked well and was close to the
top systems, which suggests that treating these two
problems in the same way was a reasonable approach.
This lends credence to the notion that deriving new
features for either the merging of disjoint disorder
spans or the association of attributes with disorders
could be useful for either problem.

One issue of concern is that the accuracy of CUI
prediction is still very dependent on training data.
Our submitted systems used a direct string lookup
from a dictionary built on the training data, before
falling back to UTS or YTEX if the example was not
found in the training data. This approach achieved
a disorder CUI accuracy of up to nearly 81%. But
when the training data isn’t used for CUI identifica-
tion, as shown in an experiment on the task training
data (Table 3), we only achieve about 65% accuracy.
This suggests that approximately 15%+ additional ac-
curacy is entirely a result of having already seen the
concept in the training data and that our system (and
others relying on the training data) would likely see
close to a 15% drop off in disorder CUI prediction
accuracy when applied to a new medical sub-domain.

Our scheme uses two classifiers, one to detect and
another to merge entities. Future work may include
investigating the possibility of employing a single
classifier with a more complex tagging schema than
BIO to perform these tasks jointly.
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Abstract

Natural language processing and text analy-
sis methods offer the potential of uncovering
hidden associations from large amounts of un-
processed texts. The SemEval-2015 Analy-
sis of Clinical Text task aimed at fostering re-
search on the application of these methods in
the clinical domain. The proposed task con-
sisted of disorder identification with normal-
ization to SNOMED-CT concepts, and disor-
der attribute identification, or template filling.

We participated in both sub-tasks, using a
combination of machine-learning and rules
for recognizing and normalizing disease men-
tions, and rule-based methods for template
filling. We achieved an F-score of 71.2% in
the entity recognition and normalization task,
and a slot weighted accuracy of 69.5% in the
template filling task.

1 Introduction

Biomedical text mining offers the promise of lever-
aging the huge amounts of information available
on scientific documents to help raise new hypothe-
ses and uncover hidden knowledge. Biomedical
text mining (TM) has been an important focus of
research during the last years, sustained by the
high volumes of data, the diverse computational
and multi-disciplinary challenges posed, and by the
potential impact of new discoveries (Simpson and
Demner-Fushman, 2012). These benefits have been
demonstrated in recent studies in which text mining
methods were used to suggest biomarkers for diag-
nosis and for measuring disease progression, targets

for new drugs, or new uses for existing drugs (Fri-
jters et al., 2010). Likewise, clinical information
stored as natural language text in discharge notes
and reports could be exploited to identify important
associations, and this has led to an increased interest
in applying text mining techniques to such texts, in
order to extract information related to diseases, med-
ications, and adverse drug events, for example (Zhu
et al., 2013).

Research efforts in biomedical text mining have
led to the development of various methods and tools
for the recognition of diverse entities, including
species names, genes and proteins, chemicals and
drugs, anatomical concepts and diseases. These
methods are based on dictionaries, rules, and ma-
chine learning, or a combination of those depend-
ing on the specificities and requirements of each
concept type. After identifying entity mentions in
text, it becomes necessary to perform entity normal-
ization, which consists in assigning a specific con-
cept identifier to each entity. This is usually per-
formed by matching the identified entities against
a knowledge-base, possibly evaluating the textual
context in which the entity occurred to identify the
best matching concept.

Following up on the 2014 task, in which the ob-
jective was the identification and normalization of
disease concepts in clinical texts (Pradhan et al.,
2014), two subtasks were defined for the SemEval-
2015 Analysis of Clinical Text task. Task 1 con-
sisted of recognizing concepts belonging to the
‘disorders’ semantic group of the Unified Medical
Language System (UMLS) and normalizing to the
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Figure 1: Neji’s processing pipeline used for annotating the documents. Dashed boxes indicate optional modules.

SNOMED CT1 terminology, and Task 2 consisted
of identifying and normalizing specific attributes for
each disorder mention, including negation, severity,
and body location, for example. The task made use
of the ShARe corpus (Pradhan et al., 2013), which
contains manually annotated clinical notes from the
MIMIC II database2 (Saeed et al., 2011). The task
corpus comprised 531 documents, divided into a
training portion with 298 documents, a development
portion with 133 documents, and a test portion with
100 documents.

In this paper, we present a combined machine-
learning and rule-based approach for these tasks,
supported by a modular text analysis and annotation
pipeline.

2 Methods

Our approach consists of three sequential steps,
namely: entity recognition, rule-based span adjust-
ment and normalization, and rule-based template
filling. For entity recognition we used Gimli (Cam-
pos et al., 2013b), an open-source tool for training
machine learning (ML) models that includes simple
configuration of the feature extraction process, and
Neji, a framework for biomedical concept recogni-
tion, integrating modules for natural language pro-
cessing (NLP) and information extraction (IE), spe-

1http://www.ihtsdo.org/snomed-ct/
2http://mimic.physionet.org/database.html

cially tuned for the biomedical domain (Campos et
al., 2013a). Figure 1 shows the complete processing
pipeline.

2.1 Entity Recognition

We applied a supervised machine-learning ap-
proach, based on Conditional Random Fields
(CRFs) (Lafferty et al., 2001; McCallum, 2002).
The BIO (Beginning, Inside, Outside) scheme was
used to encode the entity annotations. To select the
best combination of features, we performed back-
ward feature elimination using the supplied train-
ing and development data to create and evaluate the
models. We then used all the data to train a first-
order CRF model with the final feature set, which
consisted of the following features:

• NLP features:

– Token and lemma

• Orthographic features:

– Capitalization (e.g., “StartCap” and “All-
Caps”);

– Digits and capitalized characters counting
(e.g., “TwoDigit” and “TwoCap”);

– Symbols (e.g., “Dash”, “Dot” and
“Comma”);

• Morphological features:
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– Suffixes and char n-grams of 2, 3 and 4
characters;

• Local context:

– Conjunctions of lemma and POS features,
built from the windows {-1, 0}, {-2, -1},
{0, 1}, {-1, 1} and {-3, -1} around the
current token.

Apart from the ML model, documents were also
annotated with dictionaries for the UMLS ‘Dis-
orders’ semantic group and a specially compiled
acronyms dictionary, as used in the 2014 edition of
the task (Matos et al., 2014). In total, these dictio-
naries contain almost 1.5 million terms, of which
525 thousand (36%) are distinct terms, for nearly
293 thousand distinct concept identifiers. Including
this dictionary-matching step produced a small im-
provement in terms of F-score.

2.2 Normalization

According to the task description, only those UMLS
concepts that could be mapped to a SNOMED-CT
identifier should be considered in the normalization
step, while all other entities should be added to the
results without a concept identifier. To achieve this
step, we indexed the terms of the UMLS concepts
that included a SNOMED-CT identifier in a Solr 3

instance. Additionally, we also indexed each term
that occurred in the training and development data,
together with the corresponding identifier.

To perform normalization of an identified entity
mention, we follow a series of steps. First we search
the index for the exact term and, if it is found as a
gold-standard annotation on the training data, we as-
sign the same identifier to the new mention. If multi-
ple identifiers were used on the training data for the
same term, we keep the most commonly assigned
one. If the exact mention is not found on the train-
ing data, we try to remove a set of 162 prefix (e.g.
‘chronic’, ‘acute’, ‘large’) and 48 suffix terms (e.g.
‘changes’, ‘episodes’) obtained from an error analy-
sis on the development data. We then look for this
adjusted term on the gold standard annotations and
on the UMLS concept synonyms, and use the cor-
responding identifier and the adjusted mention span.

3http://lucene.apache.org/solr/

Finally, we try to expand the term to include anatom-
ical regions occurring before or after the identified
disorder mention, in order to identify more specific
concepts. If such a concept is found on the index,
the corrected span is used, together with the corre-
sponding identifier.

2.3 Template Filling
This subtask consists of identifying various at-
tributes of the disorders, such as negation or un-
certainty, and normalizing their values according to
the nomenclature specified by the task. To address
this task, we followed a rule-based approach. For
each type of attribute, or slot, we compiled the cue
words and the corresponding normalized value from
the training and development data. We then created
patterns, implemented through regular expressions,
to locate these possible cues in the vicinity of each
disorder term. To apply the regular expressions, we
replace each entity mention in the texts by a generic
placeholder, adjusting the cue word spans accord-
ingly when a match is found. For example, to fill the
‘Severity’ attribute we look for the occurrence of a
cue word, associated to this attribute in the training
data, that occurs up to n4 characters before or after
a disorder mention. This can be expressed by the
following regular expression, in which only two al-
ternative cue words are shown for brevity:

(mild|sharp|...)\s.{0,15}?__DISO__ |
__DISO__\s.{0,15}?(mild|sharp|...)

3 Results and Discussion

3.1 Evaluation Metrics
Task 1 was evaluated by strict and relaxed F-scores.
In the first case, the identified text span has to be ex-
actly the same as the gold-standard annotation, and
the predicted concept identifier has to match the gold
annotation. In the second case, a prediction is con-
sidered a true-positive is there is any word overlap
between the predicted span and the gold-standard,
as long as the identified is correctly predicted.

Task 2 was evaluated in terms of weighted accu-
racy, which is calculated using a pre-assigned weight
for each slot based on its prevalence in the training
set.

4n was empirically set as 5 for the body location attribute,
and 15 for all other attributes
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Task 1 performance (P / R / F)
Development Test

Run Strict Relaxed Strict Relaxed
1 48.1 / 54.4 / 51.0 51.8 / 58.0 / 54.7 0.669 / 0.738 / 0.702 0.698 / 0.769 / 0.732
2 62.3 / 70.6 / 66.2 67.5 / 74.7 / 70.9 0.690 / 0.736 / 0.712 0.719 / 0.766 / 0.742
3 62.3 / 70.5 / 66.1 67.4 / 74.5 / 70.8 0.691 / 0.735 / 0.712 0.720 / 0.765 / 0.742

Table 1: Development results and official results on the test dataset, for Task 1. P: Precision; R: Recall; F: F-score.

3.2 Test Results

We submitted three runs of annotations for the doc-
uments in the test set, as described below:

• Run 1: In this run, the identified disorder men-
tions were not first checked against the training
data annotations;

• Run 2: The identified disorder mentions were
first checked against the training data annota-
tions and the corresponding identifier was used;

• Run 3: Same as Run 2, but the machine learn-
ing model was trained only on discharge doc-
uments, that is, other document types were not
used in the training.

Table 1 shows the results obtained on the devel-
opment set, and the official results obtained on the
test set for each submitted run in Task 1.

As can be observed from the results, using the
identifiers assigned in the training data for disease
mentions that re-occur in the test data has a very
positive impact on the results, increasing precision
by 2%. Although this approach may be considered
to artificially improve the results, the rationale for
using it is that human annotators tend to re-use the
same identifier in the case of a ambiguous term. The
same might also be true for clinical coders when pro-
cessing the patient notes.

Comparing our results to the best submitted runs,
we verify that we obtain the best recall rates when
considering both strict and relaxed scores, but with a
significant drop in precision when compared to those
results.

Figure 2 illustrates the results obtained on the
template filling task. We achieved a slot weighted
accuracy of 69.5%. Comparing the results, we
achieved the best accuracy for the disease CUI slot.

On the other hand, we achieved considerable lower
accuracies on the body location and conditional
slots, when compared to the top performing runs.

4 Conclusions

We present results for the recognition, normalization
and template filling of disorder concepts in clinical
texts, using a machine-learning and rule-based ap-
proach. We achieved a strict F-score of 71.2% and
a relaxed F-score of 74.2%, and obtained the best
recall under both evaluation modes. One of the rea-
sons for the lower precision is related to the normal-
ization method. As future work, we will continue
developing this step.

We applied a simple rule-based approach for the
template filling task, and achieved a weighted accu-
racy of 69.5%. We aim to continue improving this
information extraction step, by acquiring a larger set
of possible cue words and revising some of the ex-
traction rules.
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Abstract

This paper describes our participation in task
14 of SemEval 2015. This task focuses on
the analysis of clinical texts and includes: (i)
the recognition of the span of a disorder men-
tion and (ii) its normalization to a unique
concept identifier in the UMLS/SNOMED-
CT terminology. We propose a two-step ap-
proach which relies first on Conditional Ran-
dom Fields to detect textual mentions of dis-
orders using different lexical, syntactic, or-
thographic and semantic features such as on-
tologies and, second, on a similarity measure
and SNOMED to determine the relevant CUI.
We present and discuss the obtained results
on the development corpus and the official
test corpus.

1 Introduction

With the exponential growth of clinical texts, rec-
ognizing named entities becomes more and more
important for several applications such as infor-
mation retrieval, question answering or scientific
analysis. The task of identifying mentions to
medical concepts in free text and mapping these
mentions to a knowledge base was recently pro-
posed in ShARe/CLEF eHealth Evaluation Lab
2013 (Suominen et al., 2013).

The task 7 in SemEval 2014 (Pradhan et al.,
2014) elaborates in that previous effort focusing on
the recognition and normalization of named entity
mentions belonging to the UMLS semantic group
“Disorders”. Similarly, task 14-1 of SemEval 20151

1http://alt.qcri.org/semeval2015/task14/

targets the identification of disorder mentions and
their association to the relevant concept identifiers
(CUI) in the UMLS/SNOMED CT terminology. A
disorder is normalized to “CUI-less” if the disor-
der mention is present, but there is no good equiv-
alent CUI in UMLS/SNOMED-CT. Task 14-2b of
SemEval 2015 specifically addresses Disorder Slot
Filling. The aim is to identify the values of nine
slots (negation indicator, subject, uncertainty indi-
cator, course, severity, conditional, generic indica-
tor and body location), given the span of disorder
mentions from task 14-1.

In this paper we focus on task 1, i.e. disorder
identification. In the following section we describe
our approach to the detection of disorder mentions
in clinical texts and their categorization with the rel-
evant UMLS/SNOMED-CT CUI. In section 3 we
present and discuss the obtained results on the de-
velopment corpus and the official results before giv-
ing our concluding remarks in section 4.

2 Two-Step Approach for Disorder
Identification

Our method includes two main steps: (1) the detec-
tion of disorder mentions using Conditional Ran-
dom Fields (CRFs) and (2) the extraction of the as-
sociated CUI from SNOMED based on similarity
measures. These two steps are described in more
details in the following sections.

2.1 Step I - Disorder Mention Detection

The goal in this first step is to recognize the span of
disorder mentions in a target clinical text. A men-
tion can be a set of consecutive words, e.g. “atrial
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fibrillation”, or disjoint, e.g. “left atrium is mod-
erately dilated”. In order to tackle the disjoint-
mention problem, we annotated the data with the
BIESTO format that is introduced by (Cogley et al.,
2013).

2.1.1 BIESTO Labels
According to BIESTO format, the first word of a

mention is tagged with B (beginning), the follow-
ing words with I (inside), the last word with E (end)
and the words between mention’s words with T (be-
Tween). The mentions that have one word are an-
notated as S (single) and the words that are not re-
lated to disorder mentions are annotated as O (out-
side). Furthermore, in the training and test corpus
there are disorder mentions that end or start with the
same word. In such case, when two serial B labels
are followed by one E label, we consider two disor-
der mentions that start with different words and end
with the same word. Similarly, if there is one B la-
bel followed by two different E labels, we consider
two disorder terms that start with the same word and
end with different words.

It is also observed that there is collision of
BIESTO labels when one word exists into multiple
disorder mentions and is annotated with different la-
bels. In this case, we gather all the mentions which
contain the common word and select the longest
disorder mention (has the most words). If two men-
tions have the maximum length, the common word
is annotated with two labels such as I/E.

Some examples of BIESTO labels are the follow-
ing:

1. Disorder mentions that start with the same
word, e.g.:

• “The nasal septum deviates to the left
with a rather large spur.”
• The nasal/B septum/I deviates/E to/T

the/T left/T with/T a/T rather/T large/T
spur/E.
• “nasal septum deviates” and “nasal sep-

tum spur” are two disorder mentions with
the same start word.

2. Collision between BIESTO labels, e.g.:

• “osteophytes at C3/4 resulting in com-
pression of the spinal cord with associ-

ated cord edema;”
• Osteophytes/S at/O C3/O //O 4/O re-

sulting/O in/O compression/B of/T the/T
spinal/I/B cord/E/I with/T associated/T
cord/T edema/E.
• There are three disorder mentions: “Os-

teophytes” , “compression spinal cord”
and “spinal cord edema”.

2.1.2 CRF Algorithm
We use the Conditional Random Fields (CRFs)

learning algorithm (Lafferty et al., 2001) in order
to annotate the words with BIESTO labels. Ac-
cording to (McCallum and Li, 2003), suppose x =
{x1, x2, x3, ..., xT } is a set of input values (e.g. a
sequence of words) and s = {s1, s2, s3, ..., sT } is a
set of states that are assigned to named entity labels,
CRF estimates the conditional probability of a state
sequence given an input sequence as follows:

P (s|x) =
1
Z
exp

(
T∑

t=1

K∑
k=1

λkfk(st−1, st, x, t)

)

where 1, ..., T represent the word positions,
1, ...,K represent the positions of the weighted fea-
tures, the fk represents the feature function and the
λk is the weight of each feature function.

Using the CRF algorithm, the decision on a
word’s label can be influenced by the decision on
the label of the preceding word. This dependency
is taken into account in sequential models such as
Hidden Markov Models (HMMs). However, the
CRF model maximizes the conditional probability,
unlike the HMM model which maximizes the joint
probability. Therefore, the CRF model can use a
number of features that are related to other words
of the target texts in order to achieve better accu-
racy in its predictions. In our implementation we
used the CRF++ tool2.

2.1.3 Feature Set
In each experiment, we discard all the predicted

disorder-mentions beyond 50 characters. In the last
2http://crfpp.googlecode.com/svn/trunk/doc/index.html
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run, the “[**.......**]” and “:[** ....... **]” expres-
sions as well as their lemmas and pos-tags were re-
placed by a sequence of “$”.

We define a set of token and semantic features to
train the CRF model.

Token features: The word, the part-of-speech
tag (pos-tags) and the lemma; two tokens after and
two tokens before the word, their lemmas and their
pos-tags. We used StanfordTagger3 to obtain the
words of clinical texts as well as their lemmas and
their part-of-speech tags.

StanfordTagger recognizes the word 1/word 2
token as one word. Since, many UMLS terms
contain either the word 1 or the word 2, we sep-
arate the word 1/word 2 phrase into three words:
word 1, / and word 2. For instance, given the fol-
lowing sentence: “There is left lower lobe consol-
idation/volume loss.”, the system recognizes two
disorder mentions that are: “consolidation” and
“volume loss”.

Linguistic and orthographic features: Indicat-
ing whether a word (i) is capitalized, (ii) contains
digits, (iii) contains only lowercase characters with-
out digits, the word length, suffixes and prefixes up
to 4 characters.

2.2 Semantic Features

We use regular expressions to find the phrases
which represent dates or time values (such as
“2014-09-26”, “4:07”, “TUE”, “Jan”) and annotate
them with the keyword DATE.

Stopwords (such as prepositions, conjunctions,
articles) are annotated using a binary feature
(yes/no). Precisely, if a word exists in the stop-
words list4, it is tagged with “YES”, otherwise it
is tagged with “NO”.

Two features are derived from the Symptom On-
tology5 in order to annotate the words as SYMP-
TOM. We constructed a list of symptoms that con-
tains the names of the ontology classes. If a
word/phrase exists in the list of symptoms, then it
is annotated as SYMPTOM. Since the names of on-
tology classes describe either a symptom or a group
of symptoms, it is important to annotate only the

3http://nlp.stanford.edu/software/tagger.shtm
4http://www.ranks.nl/stopwords
5http://bioportal.bioontology.org/ontologies/SYMP

names of symptoms. Consequently we added an-
other feature which is the number of descendants
for each class. The classes with no descendants
(leaves) are likely to be symptoms and not a group
of symptoms.

Following this same method, we annotate the
words as DISEASES if they correspond to classes
in the Human Disease Ontology6.

One feature is derived from Human Develop-
ment Anatomy Ontology7 to annotate the words as
anatomical structure. We create a list of anatomi-
cal structures that contain the names of the ontology
classes. If a word/phrase is in the list, it is tagged
as Anatomical Structure. We did not consider the
number of descendants in this case because most
of the names of ontology classes describe specific
parts of the human body (anatomical structures).

Many phrases are frequent in clinical
texts (e.g. headlines) and are not related to
UMLS/SNOMED CT terms. In order to improve
the performance of the CRF algorithm, we gather
and annotate them as OUTLINE. First, we extract
all the phrases that end with colon and are located
in the beginning of each sentence (such as “date of
birth:”, “review of symptoms:”, “family history:”)
and we remove the phrases that contain digits
(such as “Calcium 500 500 mg Tablet Sig:” and
“[**2017-05-23**] 2:48 pm SWAB”).

2.3 Step II - CUI Identification

In a second step we tackle the categorization of
the detected disorder mentions with UMLS concept
identifiers (CUI). The UMLS-Metathesaurus con-
cept structure includes concept names, their identi-
fiers, and some key characteristics of these concept
names such as language and vocabulary source. In
the Rich Release Format of the UMLS Metathe-
saurus, the important tables for this step are MR-
CONSO and MRSTY, which contain information
about concepts and semantic types. The entire con-
cept structure appears in MRCONSO while seman-
tic types are obtained from the MRSTY.

A disorder mention is defined as any span of text
that can be mapped to a concept in the SNOMED-

6http://www.obofoundry.org/cgi-
bin/detail.cgi?id=disease ontology

7http://www.obofoundry.org/cgi-bin/detail.cgi?id=human-
dev-anat-abstract2
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CT terminology, which belongs to the Disorder se-
mantic group. A concept is in the Disorder se-
mantic group if it belongs to one of 11 specific
UMLS semantic types (87,412 concepts associated
to disorders from 1,190,741 concepts of UMLS-
2012AB) :

1. Congenital Abnormality (6130 concepts)

2. Acquired Abnormality (1746 concepts)

3. Injury or Poisoning (26607 concepts)

4. Pathologic Function (5115 concepts)

5. Disease or Syndrome (34213 concepts)

6. Mental or Behavioral Dysfunction (2710)

7. Cell or Molecular Dysfunction (383 concepts)

8. Experimental Model of Disease (3 concepts)

9. Anatomical Abnormality (1455 concepts)

10. Neoplastic Process (9050 concepts)

11. Sign or Symptom (2708 concepts)

We use SQL queries to construct our own ta-
ble containing only disorders from the source
“SNOMED” and related to the 11 semantic types
(for a total of 348,760 rows). The proposed method
then identifies the associated CUI for each disorder
mention detected in step 1.

We start by performing an exact string compar-
ison between the recognized disorder and the pre-
ferred terms and synonyms from the concepts of our
table. If no exact match exists, we explore a similar-
ity measure to calculate the relatedness between the
detected mention and the available concepts. We
use the bigram similarity measure following the ob-
servations of Cheatham and Hitzler (2013) on its
suitability for ontology matching tasks. The se-
lected CUI is the one with the highest similarity
value. We fixed the word-based similarity threshold
to 0.8 which led to the best results in our exper-
iments (among different tested threshold values).
If no exact match exists and all compared con-
cepts have a similarity value under the threshold,
the CUI-less class is associated to the detected men-
tion.

3 Runs and Results

3.1 Evaluation Metrics
The results of our systems for task 14-1 are com-
pared with the annotations of the gold-standard
dataset using the F-measure, Precision and Recall
metrics which are measured under strict and relaxed
settings. In the strict setting, a disorder mention
is correctly recognized, if its span and CUI code
match exactly with a mention in the gold-standard
dataset. In the relaxed setting, a disorder mention is
correctly recognized if (i) there is an overlap with
only one gold-standard mention from the same sen-
tence, and (ii) the assigned CUI is correct.

In the following we present our results on the DE-
Velopment corpus (DEV) and the results on the of-
ficial TEST corpus.

3.2 Experiments on the DEV Corpus
Table 1 presents the recall, precision and F-measure
values for the strict and relaxed settings when dif-
ferent sets of features are used. More precisely, we
consider the following sets:

• S1: Only Lexical features.

• S2: S1 + prefixes and suffixes.

• S3: S2 + labels of Symptoms ontology.

• S4: S3 + number of descendants for each
symptom.

• S5: S4 + labels of Human Anatomy ontology.

• S6: S5 + number of descendants for each dis-
ease.

3.3 Configuration of the Submitted Runs
For the final evaluation we considered the two fol-
lowing sets of features: Set1 = {current word,
2 next words, 2 previous words lemmas, pos-tags,
capital letters without digits, lower letters with-
out digits, length of words, stop words, suffixes &
prefixes [1,4], Dates/Time format } and Set2 =
Set1 ∪ {labels from Symptom Ontology, number
of descendants for each symptom, labels of Hu-
man Anatomy Ontology, labels from Human Dis-
ease Ontology, number of descendants for each dis-
ease } and we submitted 3 runs:
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LIST-LUX, TASK1 strict P strict R strict F relax P relax R relax F
S1 0.607 0.492 0.543 0.641 0.515 0.571
S2 0.601 0.544 0.571 0.633 0.568 0.599
S3 0.604 0.544 0.572 0.637 0.569 0.601
S4 0.604 0.544 0.572 0.638 0.570 0.602
S5 0.606 0.546 0.575 0.638 0.570 0.602
S6 0.609 0.547 0.576 0.641 0.572 0.604

Table 1: Results on the DEV corpus.

• Run 1: Feature Set1, similarity threshold fixed
to 0.8 for the CUI identification.

• Run 2: Feature Set1, similarity threshold fixed
to 0.83.

• Run 3: Feature Set2, similarity threshold fixed
to 0.8.

3.4 Official Results
Table 2 presents the final results on the TEST cor-
pus8. When comparing the 3 runs we observe that
increasing the similarity threshold had a slight neg-
ative impact on precision and a slight positive im-
pact on recall. In a second observation, semantic
features have a slight positive impact on both preci-
sion and recall which suggests their relevance, but
also the need for larger ontologies and vocabularies.

Matching Run Precision Recall F-measure
Strict 1 0.649 0.577 0.611

2 0.648 0.579 0.612
3 0.649 0.580 0.613

Relaxed 1 0.677 0.602 0.637
2 0.674 0.602 0.636
3 0.675 0.603 0.637

Table 2: Task1: Official Results on the TEST corpus.

In order to evaluate the results in the second sub-
task, the metrics of F-measure, Precision, Recall,
unweighted accuracy, weighted accuracy and per-
slot weighted accuracy are estimated (c.f. table 3).
Both unweighted and weighted accuracy are mea-
sures that show how well our system identifies all
the slots for each disorder. The difference between
them is that before estimating the weighted accu-
racy, each gold-standard slot value is assigned a

8http://alt.qcri.org/semeval2015/task14/index.php?id=results

TASK2b Run 1 Run 2 Run 3
F 0.884 0.882 0.881
A 0.865 0.866 0.866
F*A 0.765 0.763 0.763
WA 0.641 0.642 0.641
F*WA 0.567 0.566 0.565
BL 0.515 0.517 0.517
CUI 0.719 0.720 0.720
CND 0.496 0.500 0.497
COU 0.575 0.578 0.575
GEN 0.870 0.873 0.873
NEG 0.529 0.528 0.530
SEV 0.544 0.543 0.543
SUB 0.751 0.749 0.749
UNC 0.559 0.560 0.557

Table 3: Task 2b: Official Results on the TEST corpus.

weight based on its prevalence in the training cor-
pus. The last metric is the Per-slot weighted accu-
racy that shows how well our system identifies the
different values of each slot for all the disorders.

3.5 Discussion

Table 4 presents the results of the first step (disor-
der detection) on the DEV corpus. It shows that F-
measure decreased, in run 3, from 75,3% to 57,6%
between mention detection (step 1) and CUI detec-
tion (step 2) in strict matching. Precision and Re-
call decreased with approximately the same factor.
F-measure decreased, with a slightly higher factor
in relaxed matching, from 86,1% to 60,4% between
step 1 and step 2 (on the DEV corpus). Each match-
ing setting shows a different estimation of the lim-
itation related to similarity-based detection of CUI.
This may be due to the additional noise when com-
paring partially-detected mentions with SNOMED
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labels and synonyms. Our similarity-based detec-
tion of CUI allowed reaching 57,6% F-measure on
the DEV corpus and 61,3% F-measure on the TEST
corpus (in strict matching, run 3), but it can still be
enhanced further by taking into account additional
features from the words surrounding the mentions
and the concepts related to the candidate concepts
in SNOMED (e.g. in the scope of global coherence
maximization).

Matching Run (Set) P R F
Strict R2 (S2) 0.792 0.717 0.752

R3 (S6) 0.795 0.715 0.753
Relaxed R2 (S2) 0.910 0.818 0.861

R3 (S6) 0.913 0.814 0.861

Table 4: Task1: Results of the step 1 on the DEV corpus
(disorder mention detection without CUI identification).
P: Precision, R: Recall, F: F-measure.

4 Conclusion

In this article, we described our participation on
two subtasks of the SemEval 2015 focused on dis-
order mention identification. We proposed a two-
step approach suited to recognize spans of disor-
der mentions as a first step using a CRF learning
algorithm with a set of features representing rele-
vant aspects selected for the task. The method in-
cluded a second step which accounted for the de-
tection of adequate CUI from UMLS/SNOMEDCT
concepts that might correspond to the recognized
disorders from the target clinical texts. This re-
search investigated the use of word-based similar-
ity measures in the detection of CUI. The experi-
ments running the method on two distinct corpora
examined the influence of the defined features and
configurations. Our approach based on CRF and
similarity measures achieved 61.3% F-measure on
the official TEST corpus. Using labels from ontol-
ogy classes as semantic features was relevant for
this task. In future work, we are planning to im-
prove our CUI identification method. We are par-
ticularly considering the combination of supervised
detection and categorization methods with semantic
annotations obtained from unsupervised tools such
as KODA(Mrabet et al., 2015) which allows an-
notating texts with both open-domain and domain-
specific ontologies.
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Abstract 

We describe a system for semantic role label-

ing adapted to a dependency parsing frame-

work. Verb arguments are predicted over nodes 

in a dependency parse tree instead of nodes in 

a phrase-structure parse tree. Our system par-

ticipated in SemEval-2015 shared Task 15, 

Subtask 1: CPA parsing and achieved an F-

score of 0.516. We adapted features from prior 

semantic role labeling work to the dependency 

parsing paradigm, using a series of supervised 

classifiers to identify arguments of a verb and 

then assigning syntactic and semantic labels. 

We found that careful feature selection had a 

major impact on system performance. How-

ever, sparse training data still led rule-based 

systems like the baseline to be more effective 

than learning-based approaches. 

1 Introduction 

We describe our submission to the SemEval-2015 

Task 15, Subtask 1 on Corpus Pattern Analysis 

(Baisa et al. 2015). This task is similar to semantic 

role labeling but with arguments based on nodes in 

dependency parses instead of a syntactic parse tree.  

The verb’s arguments are identified and labeled 

with both their syntactic and semantic roles. 

For example, consider the sentence “But he 

said Labour did not agree that Britain could or 

should abandon development, either for itself or for 

the developing world.” This subtask involves taking 

that sentence and making the following determina-

tions relative to the given verb “abandon”: 

 “Britain” is the syntactic subject of “abandon” 

and falls under the “Institution” semantic type 

 “development” is the syntactic object of “aban-

don” and is of semantic type “Activity” 

We organize the remainder of our paper as fol-

lows: Section 2 describes our system, Section 3 

presents experiments, and Section 4 concludes.  

2 System Description  

Our system consists of a pipelined five-component 

system plus source data and resources. A system di-

agram is shown in Figure 1. A cascading series of 

MaxEnt classifiers are used to identify arguments, 

their syntactic labels, and then their semantic labels.  

Each token in an input sentence was a training ex-

ample. 

Sketch Engine (Kilgarriff 2014) was used to help 

with featurization. All sentences in the training data 

were parsed and POS tagged using the Stanford 

CoreNLP tools (Manning et al. 2014). This data was 

used to generate features which are then supplied to 

an Argument Identification Classifier (AIC) that 

identifies whether or not a particular token is one of 

the relevant verb’s arguments. 

For the tokens identified as arguments to the verb, 

a Syntax Classifier identifies the syntactic role of 

the token. This is done using a multi-class MaxEnt 

model with the same features as the AIC plus fea-

tures derived from the AIC’s predictions. A similar 

Semantics Classifier follows, taking the Syntax 
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Classifier’s features and output. Finally, a Seman-

tics Consistency Heuristic Filter is applied to clean 

up some of the predictions using a series of heuris-

tics to ensure the system is outputting semantic pre-

dictions that are consistent with the syntax 

predictions for the same token.   

 

Stanford Parser

Featurization

Argument 
Identification 

Classifier

Sketch Engine

Syntax Classifier

Semantics Classifier

Semantics 
Consistency 

Heuristic Filter

Task Data

 
Figure 1: System Architecture Diagram. The input data 

is parsed by the Stanford Parser and the argument heads 

are expanded using the Sketch Engine thesaurus. This 

data is then featurized and passed through three succes-

sive classifiers: the Argument Identification Classifier 

identifies verb arguments, the Syntax Classifier assigns 

syntax labels to the arguments, and the Semantics Clas-

sifier assigns semantic labels to the arguments. Finally, 

the Semantics Consistency Heuristic Filter eliminates 

some systematic errors in the Semantics Classifier. 

2.1 Featurization 

Many of the features used in our system were in-

spired by the system produced by Toutanova et al. 

(2008), which used many features from prior work. 

This was a top-performing system and we incorpo-

rated each of the features that applied to the depend-

ency parsing framework adopted in this task. We 

then augmented this feature set with a number of 

novel additional features. Many of these were adap-

tations of Semantic Role Labeling (SRL) features 

from the phrase-structure to dependency parsing 

paradigm (Gildea and Jurafsky 2002, Surdeanu et 

al. 2003, Pradhan et al. 2004). Others were added to 

generalize better to unseen verbs, which is critical 

for our task. 

Some of our features depend on having a phrase-

structure parse node corresponding to the candidate 

dependency parse node. Since dependency parse 

nodes each correspond to a token in the sentence, 

the tokens corresponding to the candidate node and 

its descendants in the dependency parse tree were 

identified. Then, in the phrase-structure parse tree, 

the lowest ancestor to all of these tokens was taken 

to be the phrase-structure parse node best corre-

sponding to the candidate dependency parse node. 

The baseline features included some inspired by 

Gildea and Jurafsky (2002): 

 Phrase Type: the syntactic label of the corre-

sponding node in the parse tree 

 Predicate Lemma: lemma of the verb 

 Path: the path in the parse tree between the can-

didate syntax node and the verb including the 

vertical direction and syntactic parse label of 

each node (e.g. “--up-->S--down-->NP”) 

 Position: whether the candidate is before or af-

ter the verb in the sentence 

 Voice: whether the sentence is active or passive 

voice; due to sparse details in Gildea and Juraf-

sky this was based on tgrep search pattern heu-

ristics found in Roland and Jurafsky (2001) 

 Head Word of Phrase: the highest token in the 

dependency parse under the syntax parse tree 

node corresponding to the candidate token 

 Sub-Cat CFG: the CFG rule corresponding to 

the parent of the verb, defined by the syntactic 

node labels of the parent and its children 

Additional baseline features were obtained from 

Surdeanu et al. (2003) and Pradhan et al. (2004): 

 First/Last Word/POS: For the syntactic parse 

node corresponding to the candidate node, this 

includes four separate features: the first word in 

the linear sentence order, its part of speech, the 

last word, and its part of speech 

 Left/Right Sister Phrase-Type: The Phrase Type 

of each of the left and right sisters 

 Left/Right Sister Head Word/POS: The word 

and POS of the head of the left and right sisters  

 Parent Phrase-Type: The Phrase Type of the 

parent of the candidate parse node  

 Parent POS/Head-Word: The word and part of 

speech of the parent of the parse node corre-

sponding to the candidate node 
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 Node-LCA Partial Path: The Path between the 

candidate node and the lowest common ances-

tor between the candidate node and the verb 

 PP Parent Head Word: The head word of the 

parent node in the syntax tree, if that parent is a 

prepositional phrase. 

 PP NP Head Word/POS: If the syntax parse 

node representing the candidate node is a PP, 

the head word and POS of the rightmost NP di-

rectly under the PP. 

Finally, baseline features that consisted entirely 

of pairs of already-mentioned features were also 

taken from Xue and Palmer (2004): 

 Predicate Lemma & Path 

 Predicate Lemma & Head Word of Phrase 

 Predicate Lemma & Phrase Type 

 Voice & Position 

 Predicate Lemma & PP Parent Head Word 

We added additional features adapted from the 

aforementioned features to generalize better given 

the sparse training data relative to other SRL tasks: 

 Head POS of Phrase: the tagged POS of the 

Head Word of Phrase 

 Head Lemma of Phrase: the lemma of the Head 

Word of Phrase 

 First/Last Lemma: the lemma of the first and 

last word under the candidate parse node 

 Left/Right Sister Head Lemma: the lemmas of 

the Left/Right Sister Head Words 

 Parent Head Lemma: the lemma of the Parent 

Head Word 

 PP Parent Head Lemma/POS: the lemma and 

part of speech of the PP Parent Head Word  

 PP NP Head Lemma: the lemma of the PP NP 

Head Word 

 Candidate CFG: the context-free grammar rule 

rooted at the syntax parse node corresponding 

to the candidate node (one step down from Sub-

Cat CFG) 

Additional features were added to extend these 

features or to adapt them to dependency parsing: 

 Candidate DP CFG: a CFG-like expansion of 

the dependency parse of the candidate node plus 

children, each represented by its POS (e.g. 

“NNS->PRP$” or “NNS->DT JJ NNS”) 

 Sub-Cat DP CFG: a similar CFG expansion of 

the dependency parse of the parent of the verb  

 First/Last DP Word/Lemma/POS – of all of the 

descendants of the candidate node in the de-

pendency parse, inclusive, the first/last 

word/lemma/POS from the linear sentence 

 Dependency Path: the path in the dependency 

parse from the candidate node to the verb 

 Dependency Node-LCA Partial Path: path in 

the dependency parse from the candidate node 

to its lowest common ancestor with the verb 

 Dependency Depth: the depth in the depend-

ency parse of the candidate node 

 Dependency Descendant Coverage: of all of the 

tokens under the candidate syntax parse node, 

the percentage of those also under the candidate 

node in the dependency parse tree. This 

measures the candidate syntax and dependency 

parse node alignment. 

Additionally, due to the importance of the Pred-

icate Lemma feature in prior SRL work and the need 

to generalize entirely to unseen verbs for evaluation 

in this task, we used Sketch Engine (Kilgarriff 

2014) word sketches for each verb. A word sketch 

is obtained for each unseen test verb and the most 

similar verb from the training data is used as the 

Similar Predicate Lemma feature.  

We use a novel similarity function to identify 

similar verbs. A word sketch for each verb vi identi-

fies an ordered set of n grammatical relations r1i, r2i, 

r3i, ..., rni that tend to co-occur with vi. These are re-

lations like “object”, “subject”, prepositional 

phrases head by “of”, etc. The word sketch for each 

relation rji associated with vi also includes a signifi-

cance value si(rji). For a given verb vi we calculate a 

directional similarity dik with verb vk as: 

𝑑𝑖𝑘 =∑(0.8)𝑗−1|𝑠𝑖(𝑟𝑗𝑖) − 𝑠𝑘(𝑟𝑗𝑖)|

𝑛

𝑗=1

 

|𝑠𝑖(𝑟𝑗𝑖) − 𝑠𝑘(𝑟𝑗𝑖)| is defined as zero if the rela-

tion rji doesn’t appear in both word sketches. The 

final similarity score uik between vi and vk is then: 

𝑢𝑖𝑘 = 𝑢𝑘𝑖 =
𝑑𝑖𝑘 + 𝑑𝑘𝑖

2
 

2.2 Classifiers 

We used a series of three classifiers with similar 

features, each trained using the mallet implementa-

tion of MaxEnt (McCallum 2002). 

First, the AIC is a binary model predicting if a 

given candidate token is an argument of the verb. In 

the dependency parsing framework used for this 
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task, a single token in the dependency parse would 

represent a verbal argument. This was different 

from previous SRL tasks where a node in the parse 

tree was taken as the argument; this is more similar 

to identifying the headword of the phrase that’s an 

argument rather than identifying the full phrase. 

Each token was treated as one example, with all of 

the features described in Section 2.1 calculated for 

each example. We filtered out features that did not 

appear at least five times in the training data, and 

trained with the default learning parameters. 

Next, the multi-class Syntax Classifier uses the 

same features as the AIC plus a binary feature of 

AIC’s score rounded to the nearest tenth, the AIC’s 

predicted class, and these last two combined.  The 

labels predicted were the syntactic label associated 

with the argument in the train data. 

Finally, the multi-class Semantics Classifier pre-

dicts the semantic label of the argument using the 

features from the Syntax Classifier plus its output 

score rounded to the nearest tenth as a binary fea-

ture, its output label, and these last two combined. 

2.3 Semantics Consistency Heuristic Filter 

After running the classifiers, overgeneration by the 

semantic component was cleaned up using heuris-

tics. Semantic predictions for tokens without a syn-

tactic prediction were removed. For tokens with a 

syntactic but not semantic label prediction, if the to-

ken appeared in the train data with a semantic label 

the most common one was taken; if not, the most 

prominent distributional synonym (determined by 

the Sketch Engine thesaurus) found in the training 

data that has a semantic label was used. 

3 Experiments 

The system was evaluated using leave-one-out 

cross-validation on each verb in the train data. For 

the initial baseline configuration, only the features 

present in prior work were included, with a total of 

31 feature classes. This configuration achieved an f-

score of 0.238. The system was then run with our 

new features added, which outperformed the base-

line by a relative 4% with an f-score of 0.248. In 

                                                           
1 Predicate Lemma is a critical feature in prior SRL work. In 

the test data, which only included unseen verbs, we used Sketch 

Engine data to identify the verb in the train data most similar to 

the verb in the test sentence, the Similar Predicate Lemma fea-

these cross-validation experiments, for each train-

ing example we used its Similar Predicate Lemma 

in place of its Predicate Lemma feature. This was a 

pessimistic assumption that we did not apply to the 

final system submitted for evaluation.1 We suspect 

this explains why the final f-score on the test data 

was twice as good as that of the cross-validation ex-

periments. The argument identification module per-

formed well on its own with an f-score of 0.627, 

which is an upper bound on our overall system per-

formance.  

We used a hill climbing heuristic search for the 

best possible subset of the available features. This 

was a time-consuming process that involved run-

ning cross-validation for each feature class being 

evaluated with our three-stage classifier resulting in 

63 classifiers being trained per iteration. All the fea-

ture removals or additions that improved perfor-

mance were greedily accepted, yielding 22% feature 

churn. The best individual feature changes predicted 

0.5% improvements to overall performance, but to-

gether they produced only a 0.9% improvement.  

We repeated this a second time but only made the 

five most valuable changes, yielding a 0.8% point 

improvement. We did not have time to continue this 

greedy search, leaving further performance gains 

from searching for the best collection of features un-

realized. We ended our search with 39 feature clas-

ses included, with only 21 of these from the original 

set. Through the course of these experiments, 10 of 

the original feature classes were removed while 18 

new feature classes were added in our best model. 

A final series of experiments were used to heuris-

tically improve the semantic component which was 

significantly overgenerating. This yielded the Se-

mantics Consistency Heuristics Filter which results 

in a 5% improvement to the overall system perfor-

mance. 

The final results on the test data are shown in Ta-

ble 1. The baseline system still outperformed all 

teams including ours. The baseline was a heuristic 

system that used two dependency parsers to be more 

robust to parsing errors.  It mapped dependency 

parse relations to syntax output directly, with logic 

to handle conjunctions, passives, and other phenom-

ena.  Semantic labels were a mixture of hard-coded 

ture. In an attempt to mirror the features and avoid the possibil-

ity of cheating during our experiments, we repeated the same 

process during the cross-validation experiments, treating the 

other most similar verb in the training data as the Similar Pred-

icate Lemma. 
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values for particular syntactic predictions and the 

most common value in the train data for the corre-

sponding word or syntactic label.  

 
Team F-score 

Baseline 0.624 

FANTASY 0.589 

BLCUNLP 0.530 

CMILLS (our system) 0.516 

Table 1: Performance on Test Data. Systems were evalu-

ated on predicting the syntactic and semantic labels for 

the arguments of seven test verbs not present in the train 

data. Each system was evaluated by independently meas-

uring the f-scores of its syntactic and semantic label pre-

dictions on each verb, averaged together by verb and then 

across verbs to arrive at the final f-score. 

4 Conclusion 

The experiments suggest that more iterations of the 

search for the best possible collection of features 

could yield significant additional improvements in 

system performance. However, we ran out of time 

before being able to complete more iterations of the 

search. While we trailed the second-place system by 

only 1.4% in overall f-score, the first-place system 

was ahead by 7.3% indicating significant improve-

ments are still possible. 

Additionally, the heuristic baseline outperformed 

all systems including ours, indicating that important 

patterns and intuitions were not encoded into fea-

tures effectively. Given the sparsity of training data, 

it is possible that having more data could have also 

helped our approach based on pipelined classifiers. 

In the future, we will evaluate using a single dev 

set instead of using cross-validation to reduce the 

computational cost of experiments. We were con-

cerned about the sparse training data, but given the 

missed opportunity to further optimize the feature 

sets used by our models due to computational re-

source constraints, a single dev set could have been 

a much better approach. We would also like to use 

features from the semantic ontology rather than 

treating the semantic labels as unrelated tokens. 

With our precision and recall within 2% of one 

another and relatively low, it would be challenging 

to reliably generate real-world lexical entries using 

this system, even with a delimited scope. However, 

approaches like this could be valuable at giving lex-

icographers a starting point to verify or modify, ra-

ther than starting from scratch. 

This was a valuable learning experience, and 

while our efforts improved performance over our 

own baseline by nearly 12%, there is still plenty of 

room to improve and we have a clear path to do so 

by incorporating more features and improving ex-

perimental design. 
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Abstract

This paper describes the Duluth systems that
participated in Task 15 of SemEval 2015. The
goal of the task was to automatically construct
dictionary entries (via a series of three sub-
tasks). Our systems participated in subtask
2, which involved automatically clustering the
contexts in which a target word occurs into
its different senses. Our results are consis-
tent with previous word sense induction and
discrimination findings, where it proves diffi-
cult to beat a baseline algorithm that assigns
all instances of a target word to a single sense.
However, our method of predicting the num-
ber of senses automatically fared quite well.

1 Introduction

A Corpus Pattern Analysis (CPA) dictionary en-
try building task (SemEval 2015 Task 15) included
three subtasks, the combination of which creates a
dictionary entry based on CPA (Hanks, 2013). The
Duluth systems participated in the second subtask,
which sought to cluster the contexts in which tar-
get words occur based on their underlying sense or
meaning. Note that for this task all of the target
words are verbs. This is unusual for a word sense
shared task, since nouns are much more commonly
studied.

The task input includes two sets of words : the
Microcheck includes 8 target verbs, where the num-
ber of senses for each are given to task participants,
while the Wingspread includes 20 target verbs where
the number of senses are withheld. Both sets of tar-
get verbs and their frequencies are shown in Tables
3.2 and 3.2.

The CPA method is based on finding patterns of
use in corpora, and definitions of word senses re-
fer explicitly to these patterns. For example, the
verb totter has three senses, where a person (sense
1), building (sense 2), or institution (sense 3) may
be what totters. The verbundertakehas two senses,
where a person or institution embarks on an activity
(sense 1) or promises to do so (sense 2).

There is certainly a role for syntactic information
in defining such senses – direct and indirect objects
are clearly important, and chunking would in gen-
eral be quite useful. It also seems that incorporating
semantic features, for example, those based on se-
lectional restrictions or constraints, might be fruit-
ful. In fact, subtask 1 focuses on shallow parsing
and is said to be similar to semantic role labeling.
Given different syntactic and semantic features dis-
covered in subtask 1, it would be possible to pursue
subtask 2 using a more rule based approach.

However, the Duluth systems do not explicitly ac-
count for syntax or semantics and do not try to iden-
tify these kinds of patterns. While we believe such
approaches are extremely useful, we are primarily
interested in exploring the limits of methods that de-
pend on purely lexical features.

As a result, the Duluth systems rely on clustering
target verbs based on the context in which they oc-
cur (e.g., (Scḧutze, 1998), (Purandare and Pedersen,
2004), (Pedersen, 2007)). This follows from the dis-
tributional hypothesis (Harris, 1954). Simply put,
words that are used in similar contexts may often
have similar meanings. However, words with dif-
ferent meanings can also be used in similar contexts
(e.g., antonyms) so results are often noisy.
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The Duluth systems take a knowledge-lean ap-
proach (Pedersen, 1997), and treat this task as an un-
supervised word sense discrimination or induction
problem, and use the freely available open-source
software package SenseClusters1.

2 Systems

We submitted three runs for subtask 2 : run1, run2,
and run3. These three systems share a few basic
characteristics, but differ in important respects. All
use SenseClusters, and all utilize the same relatively
simple pre–processing. Text was converted to lower
case, and numeric values were all converted to a sin-
gle string. Also, all three runs automatically deter-
mined the number of clusters (senses) using the PK2
measure (Pedersen and Kulkarni, 2006). This mea-
sure looks at the degree of change in the clustering
criterion function, and stops the clustering process
when the criterion function begins to plateau. This
indicates that additional clustering of the data is not
improving the quality of the clusters, and that further
divisions will break apart relatively homogeneous
senses.

There are however important differences between
the systems. Runs run1 and run2 rely on second–
order co–occurrences, run1 uses words that co–
occur near the target verb as features, and run2 uses
words that occur anywhere in the contexts to be clus-
tered. Both run1 and run2 represent these features
using second–order co–occurrences, where run1 de-
rives these from the contexts to be clustered, and
run2 uses the WordNet 3.0 glosses2 as a 1.46 mil-
lion word corpus for building these features. run3
use first–order unigrams found in the contexts to be
clustered as features.

While the Microcheck data provided the number
of senses, the Duluth systems elected not to use this.
We felt that in most realistic use cases the number
of senses is not known, and we were curious to see
how well our systems could perform at identifying
the number of senses automatically.

2.1 First and Second–Order Co–Occurrences

A first–order representation simply looks for fea-
tures that directly occur in the contexts to be clus-

1http://senseclusters.sourceforge.net
2http://www.d.umn.edu/˜tpederse/Code/glossExtract-

v0.03.tar.gz

tered and uses their occurrence (or not) as the ba-
sis for making clustering decisions. First–order un-
igrams depend on having multiple occurrences of
the same words in various different contexts, and as
such often do not perform well with smaller num-
bers of contexts. Among our systems, run3 is the
only to take a first order unigram approach.

A second–order representation takes a somewhat
fuzzier approach, and allows for a more flexible sort
of feature matching. Rather than looking for the
same features in multiple contexts, this represen-
tation seeks features that co–occur with the same
words in different contexts. This can be thought of
as a kind of afriend of a friendapproach to feature
matching.

For example, suppose thatcar andauto occur in
two different contexts. They do not match (as first–
order features) but if both are known to occur with
repairs then that second–order co–occurrence can
be the basis for considering them as matching fea-
tures that could then be used to cluster the contexts
in whichcar andautooccur in together.

This is operationalized by replacing words in the
context to be clustered with a co–occurrence vector.
For run1, the only word that is replaced is the tar-
get verb, which is instead represented by a vector of
words that occur within 8 positions of that target in
that particular context.

For run2, all the words in the contexts to be clus-
tered that are used in a WordNet gloss (version 3.0)
are replaced by a vector representing all the words in
WordNet glosses that immediately follow that word
in a definition.

As a simple example, imagine a gloss corpus with
two definitions : a vehicle powered by an internal
combustion engineanda medication used to speed
up the internal clock. If the wordinternaloccurs in a
context, it would be replaced by a vector consisting
of combustionandclock.

Then, all the vectors associated with the words in
a context are averaged together (although in the case
of run1 this might just be a single vector). Each con-
text is represented now by its averaged vector, and
the closeness or distance of contexts to or from each
other is based on the number of second–order fea-
ture matches.
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Microcheck Wingspread
run1 0.525 0.604
run2 0.440 0.581
run3 0.439 0.615
baseline 0.588 0.720

Table 1: B–Cubed F–Scores.

2.2 Lexical Feature Selection

run1 finds what are known in SenseClusters as target
co–occurrences (tco) in the contexts to be clustered,
and run2 finds bigrams in the WordNet 3.0 gloss
corpus. While there are many methods for identi-
fying statistically significant or associated pairs of
words in corpora, the number of contexts in the
Wingspread data is relatively small – 12 of 20 tar-
get verbs have fewer than 40 contexts, so we sim-
ply relied on frequency counts when selecting fea-
tures. Given this, run1 used a long distance defini-
tion of co–occurrence to help overcome the smaller
numbers of contexts, and so any word that occurs
anywhere within 8 positions of the target word 2 or
more times is considered a target co–occurrence. In
run2 any bigram that occurred 5 or more times in the
WordNet 3.0 gloss corpus was used as a feature. In
run3 any unigram that occurred 2 or more times in
the contexts to be clustered was used as a feature.

We used the nearly 400 word stoplist from the
Ngram Statistics Package3 (Banerjee and Pedersen,
2003) for all three of our runs. Any bigram or co–
occurrence where both words are stop words was not
used as a feature, and any unigram in the stoplist was
likewise discarded.

3 Results and Analysis

Official results from task 15 are based on the B–
cubed F–score (Bagga and Baldwin, 1998). In addi-
tion to reporting those values, we also carried out our
own analysis using the SenseClusters F–measure.

3.1 B–cubed F–score

Table 3.1 shows the B–Cubed F–scores as reported
by the task organizers. Note that the baseline system
assigns all contexts to a single cluster or sense.

Prior to the evaluation we designated run1 as our
official submission, since we felt that this system

3http://ngram.sourceforge.net

was likely to be most successful with this task. This
was based on our pre–evaluation tuning with the
training data which had been made available by the
task organizers. This prediction was largely con-
firmed – run1 was easily our most accurate system
with the Microcheck data, and was only narrowly
exceeded by run3 for the Wingspread data.

There were several hundred contexts available for
each target verb in the Microcheck data. This is large
enough to generate a rich second–order representa-
tion of context. Given that we focused on somewhat
localized target co–occurrences in run1, the number
of spurious features will be somewhat less than if
we had looked more generally at features that occur
anywhere in a context (as is the case with run2 and
run3). This is why we believe that run1 had a fairly
significant advantage in the Microcheck data.

However, in the Wingspread data run3 slightly
outperformed run1, although not to a significant
degree. We believe this occurred because the
Wingspread data has a majority of target verbs with
less than 40 contexts. This small amount of data will
result in very sparse second–order co–occurrences.
Given that run1 seeks target co–occurrences, when
these are very sparse they essentially reduce to first–
order co–occurrences, leading to very similar perfor-
mance between run1 and run3.

3.2 SenseClusters F–Measure

Tables 3.2 and 3.2 provide results for run1 using
the SenseClusters F-Measure (F) (Pedersen, 2007).
This measure first assigns the discovered clusters to
gold standard senses in whatever way optimizes the
agreement between them using the (Munkres, 1957)
algorithm. Then any senses or clusters that are not
aligned are discarded, and precision and recall are
computed in the usual way. In these experiments all
contexts are assigned to clusters, so recall and preci-
sion are the same, and the F-measure can be viewed
as accuracy. In this case the F-measure is the per-
centage of contexts that were assigned to the correct
cluster.

These tables also show the most frequent sense
baseline (M). This is the percentage of contexts that
belong to the most frequent sense. This is a well
known baseline in supervised approaches to word
sense disambiguation, and also proves to be the
same for unsupervised approaches. Given the defini-
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N C D M F
appreciate 215 2 2 .744 .693
apprehend 123 3 5 .626 .435
continue 203 7 4 .350 .291
crush 170 5 5 .365 .324
decline 201 3 4 .672 .439
operate 140 8 4 .286 .250
undertake 228 2 2 .895 .750
total (w) 4.1 3.5 .585 .478
total 1,280 4.3 3.7 .562 .455

Table 2: Microcheck run1, N is number of instances, C
is number of actual clusters, D is number of discovered
clusters, M is majority sense baseline, F is SenseClusters
F-Measure, total (w) are weighted averages.

tion of the SenseClusters F-Measure, if all contexts
are assigned to a single cluster, then the F-Measure
will be equal to the most frequent sense percentage.
As can be seen in Tables 2 and 3, in general this
baseline outperformed the Duluth systems for nearly
every target verb.

We were pleased that in general the PK2 method
of identifying the number of clusters was reasonably
successful. While it did not always predict exactly
the same number of clusters as found in the gold
standard data, in general there were no cases where
it differed radically. On average the Microcheck data
had 4.3 senses, while run1 discovered 3.7. For the
Wingspread data there were 3.0 senses, while run1
discovered 2.7. While the results show that the clus-
ters themselves are noisy, in general we are pleased
that our ability to predict the number of clusters is
reasonably accurate.

4 Conclusions

SenseClusters has participated in numerous SensE-
val and SemEval shared tasks that have included
word sense discrimination and induction (Pedersen,
2007; Pedersen, 2010; Pedersen, 2013). In all of
these prior events, the most frequent sense baseline
has proven hard to beat. In general assigning all in-
stances of a target verb to a single cluster replicates
most frequent sense performance. The results in this
subtask are similar, and suggest that for the moment,
automatic word sense discrimination is still not a vi-
able replacement for human lexicographic expertise.

N C D M F
adapt 182 4 1 .539 .539
advise 230 8 2 .365 .365
afflict 179 2 2 .961 .687
ascertain 7 2 1 .571 .571
ask 573 9 2 .522 .470
attain 240 3 4 .833 .627
avert 240 2 7 .958 .374
avoid 242 3 2 .727 .566
begrudge 19 2 4 .579 .581
belch 24 3 4 .583 .468
bludgeon 32 2 2 .500 .500
bluff 25 2 2 .560 .520
boo 36 2 2 .750 .640
brag 29 2 2 .621 .586
breeze 12 2 1 .583 .583
sue 247 2 2 .980 .846
teeter 28 2 2 .821 .750
tense 37 3 2 .622 .432
totter 19 2 5 .632 .533
wing 22 2 4 .474 .864
total (w) 4.6 2.7 .694 .548
total 2,421 3.0 2.7 .659 .575

Table 3: Wingspread run1, N is number of instances, C
is number of actual clusters, D is number of discovered
clusters, M is majority sense baseline, F is SenseClusters
F-Measure, total (w) are weighted averages.

However, we are encouraged by the accurate re-
sults from the PK2 method in identifying the num-
ber of senses automatically. If the discovered clus-
ters themselves can be made less noisy (through im-
proved feature selection), our overall results could
improve significantly since we are already able to
identify the number of distinct senses accurately. We
believe that the incorporation of more grammatical
and semantic features will certainly help improve
the quality of the clustering, and so plan to pursue
that in future work.
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Abstract

Sentiment analysis tends to focus on the po-
larity of words, combining their values to de-
tect which portion of a text is opinionated.
CLIPEval wants to promote a more holistic
approach, looking at psychological researches
that frame the connotations of words as the
emotional values activated by them. The im-
plicit polarity of events is just one aspect of
connotative meaning and we address it with a
task that is based on a dataset of sentences an-
notated as instantiations of pleasant and un-
pleasant events previously collected in psy-
chological research as the ones on which hu-
man judgments converge.

1 Introduction

Current research in sentiment analysis (SA, hence-
forth) is mostly focused on lexical resources
that store polarity values. For bag-of-words ap-
proaches the polarity of a text depends on the pres-
ence/absence of a set of lexical items. This method-
ology is successful to detect opinions about entities
(such as reviews) but it shows mixed results when
complex opinions about events - involving perspec-
tives and points of view - are expressed.

In terms of parts of speech involved, SA ap-
proaches tend to focus on lexical items that explic-
itly convey opinions - mainly adjectives, adverbs
and several nouns - leaving verbs on the foreground.
Improvements have been proposed by taking into ac-
count syntax (Greene and Resnik 2009) and by in-
vestigating the connotative polarity of words (Cam-
bria et al., 2009; Akkaya et al., 2009, Balhaur et

al., 2011; Russo et al. 2011; Cambria et al., 2012,
Deng et al., 2013 among others). One of the
key aspects of sentiment analysis, which has been
only marginally tackled so far, is the identification
of implicit polarity. By implicit polarity we refer
to the recognition of subjective textual units where
no polarity markers are present but still people are
able to state whether the text portion under analy-
sis expresses a positive or negative sentiment. Re-
cently, methodologies trying to address this aspect
have been developed, incorporating ideas from lin-
guistic and psychological studies on the subjective
aspects of linguistic expressions.

Aiming at promoting a more holistic approach
to sentiment analysis, combining the detection of
implicit polarity with the expression of opinions
on events, we propose CLIPEval, a task based on
a dataset of events annotated as instantiations of
pleasant and unpleasant events (PE/UPEs hence-
forth) previously collected in psychological research
as the ones that correlate with mood (both good
and bad feelings) (Lewinsohn and Amenson, 1978;
MacPhillamy and Lewinsohn, 1982).

2 Measuring Emotional Connotations:
Psychological Studies

For a long time research in psychology has been
interested in a subjective cultural and/or emotional
coloration in addition to the explicit or denotative
meaning of any specific word or phrase. Starting
with the work of Charles E. Osgood, who in the 50s
developed a technique for measuring the connotative
meaning of concepts and analyzed human attitudes
(Osgood et al., 1957), psychologists have experi-
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mented with emotional values activated by words,
often through the evaluation of their pleasantness.
Osgood and his colleagues proposed a factor anal-
ysis based on semantic differential scales measur-
ing three basic attitudes that people display cross-
culturally: evaluation (along the scale of adjectives
“good-bad”), potency (along “strong-weak”) and ac-
tivity (“active-passive”).

This line of research continued with studies eval-
uating Osgood’s findings with different population
and the pleasantness of words became also a dimen-
sion to correlate with other dimensions reported in
semantic norms studies, such as familiarity and im-
agery. We know today that pleasantness is a se-
mantic factor influencing short and long term mem-
ory (Monnier et al., 2008); similarly, (Hadley and
MacKay, 2006) showed that STM for certain un-
pleasant emotional words (i.e., taboo words) was
better than that for neutral words. Emotional words
are better recalled because they are related to long-
term representations of autobiographical and self-
reference units (Ochsner, 2000). Other factors have
a role: depressed subjects, for example, recalled
more unpleasant words than pleasant words.

Osgood’s studies were revised for the production
of the Affective Norms for English Words (ANEW)
(Bradley et al, 1999), a set of normative emotional
ratings for 1034 words in American English. This
set of verbal materials have been rated in terms of
pleasure, arousal, and dominance in order to create
a standard for use in studies of emotion and attention
(the same three basic dimensions used by Osgood).
Affective valence (or pleasure, ranging from pleas-
ant to unpleasant) and arousal (ranging from calm to
excited) were the two primary dimensions. A third,
less strongly-related dimension, was called “domi-
nance” or “control”.

Connotative meaning emerges as a complex and
stratified concept and only psychological studies can
guide in this maze, especially when they are sup-
ported by significant experimental outputs such as
list of words evaluated by human subjects.

All these studies are relevant for NLP because
connotative meanings of words can help to refine au-
tomatic sentiment analysis on social media, where
shared contents are often just short reports on pleas-
ant or unpleasant events and activities. For example,
(Fenf et al., 2013) report that connotation lexicon

guarantees better performance than other sentiment
analysis lexicons that do not encode connotations on
Twitter data.

That said, when psychological experiments ask
for judgments about single words they oversimplify:
we experience the meanings of single words as aris-
ing from compositionality, in expressions and sen-
tences. Even neutral words in specific contexts
can acquire a polarity as effect of semantic prosody
(Louw 1993).

When subjects are asked for the pleasantness of
an event they need to evaluate not just single words
but complete sentences; for this reason (Lewinsohn
and Amenson, 1978; MacPhillamy and Lewinsohn,
1982) developed two psychometric instruments, the
Pleasant Events Schedule and the Unpleasant Events
Schedule, by sampling events that were reported to
be source of pleasure or distress by highly diverse
samples of people that rated the frequency of event’s
occurrence during past month plus a complete mood
ratings.

3 CLIPEval Annotation

The CLIPEval exercise provides the NLP com-
munity with a newly developed dataset grounded
on psychological studies about the pleasantness of
events. Dedicated annotation specifications and
guidelines for the release of the dataset have been
developed.

The starting point for the development of the an-
notation guidelines was the PE/UPEs lists, the set
of 640 pleasant and unpleasant events (320 pleas-
ant events and 320 unpleasant events, respectively)
collected by (Lewinsohn and Amenson, 1978) and
(MacPhillamy and Lewinsohn, 1982). The dataset
could not be used as it is since it is a list of generic
sentences describing either states or actions which
are labeled as pleasant or unpleasant events. To clar-
ify this, we report two examples extracted from the
original dataset. Example 1.) is a pleasant event
while example 2.) is an an unpleasant event. The
numbers in brackets at the beginning of the sentence
refer to the PE/UPEs number in the original dataset.

1.) (9) Planning trips or vacations.

2.) (10) Getting separated or divorced from my
spouse.
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Furthermore, a closer examination of PE/UPEs
has shown that ambiguity occurs, with the same
events considered both as a pleasant and an unpleas-
ant one (e.g. Being alone), since this is plausible
from a psychological point of view. To overcome
these issues and to make the task relevant for sen-
tences from news articles, we have applied the fol-
lowing strategies:

• all ambiguous PE/UPEs have been removed
from the original dataset;

• PE/UPEs have been grouped into classes
whose labels describe and aggregate different
PE/UPEs, referring often to a more general
event class with respect to the one the single
instance of a PE/UPE event describes. This
choice has been necessary because the event
instances in the original psychological dataset
are conceptually similar but using the original
descriptions would result either in too generic
cases (e.g. Being with children) or too simple
(e.g. Washing my hair).

The grouping of PE/UPEs in classes has been
conducted in two phases by two annotators. In the
first phase, both annotators have worked indepen-
dently: for each PE/UPE the annotators had to de-
cide which of them could be clustered in a more
generic class and which were to be excluded, either
because it describes a too specific (or a too generic)
event or because it explicitly express the pleasante-
ness of the event (e.g. (25) Driving skillfully). As
a measure of agreement for this task, we preferred
not to use kappa score, because it’s not a standard
classification task, but we computed the percentage
of agreement. The first evaluation shown a relatively
low agreement, only 59.06% of the 640 events were
considered as belonging to a cluster. An analysis on
the cases of disagreement has highlighted some in-
consistencies. Thus, a second clusterization task has
been performed by asking to the same annotators to
go over the same data following new additional rules
that were developed during the analysis. The evalua-
tion of this second phase shown a clear improvement
with a percentage agreement of 68.25%. As a result
of these annotation phases, we had a set of clusters
that the annotators were allowed to discuss, finding

a joint solution in cases of disagreements and iden-
tifying the best labels for the PE/UPEs clusters. The
final output of these two phases resulted in 8 classes
of PE/UPEs (see Table 1 column “Event Class”). It
is important to point out that most of these classes
contain PE/UPEs both from the 320 pleasant events
and the 320 unpleasant events and as a consequence
the polarities of their occurrences in the training data
are mixed(see Table 1). Due to the novelty of the
task, we could not re-use available datasets for SA.
For this reason, the second step concerns the identifi-
cation and manual annotation of real sentences from
the Annotated English Gigaword corpus (Napoles
et al., 2012), an automatically-generated syntactic
and discourse structure annotated version of the En-
glish Gigaword corpus Fifth Edition, which contains
a large English corpus of newspaper articles (four
billion words ca.). To facilitate the sentence extrac-
tion phase, we manually identified the verbal and the
nominal keywords from the event mentions compos-
ing the classes. We used WN30 and the Oxford Dic-
tionary to extract all verb and noun synonyms of the
PE/UPEs in each class. We then queried the Giga-
word corpus with this extended set of keywords to
extract sentences which contain self-reported events
by means of following patterns:

• “I|we + [verbal keyword]”

• “I|we + [nominal keyword]”

• “I|we + [verbal keyword] + [nomi-
nal keyword]”.

The sentences thus extracted were manually fil-
tered and annotated with respect to the 8 classes and
to their polarity. The annotation has been conducted
at sentence level. To provide homogeneous data and
annotations, the following guidelines have been de-
veloped for the assignment of the class label:

• the class label and the polarity value must be
assigned on the basis of the event that corre-
spond syntactically to the main verb in the sen-
tence;

• in case of coordinated main clauses, only the
first main clause is taken into account to assign
the class label and the polarity value;
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Table 1: CLIPEval corpus: Training data.

Event Class POSITIVE NEGATIVE NEUTRAL Tot. Instances
(FEAR OF) PHYSICAL PAIN 19 131 10 160
ATTENDING EVENT 83 35 42 160
COMMUNICATION ISSUE 21 120 19 160
GOING TO PLACES 55 72 33 160
LEGAL ISSUE 24 115 21 160
MONEY ISSUE 20 109 31 160
OUTDOOR ACTIVITY 125 18 17 160
PERSONAL CARE 88 40 32 160

Table 2: CLIPEval corpus: Test data.

Event Class POSITIVE NEGATIVE NEUTRAL Tot. Instances
(FEAR OF) PHYSICAL PAIN 10 30 5 45
ATTENDING EVENT 29 5 11 45
COMMUNICATION ISSUE 8 29 7 44
GOING TO PLACES 22 23 3 48
LEGAL ISSUE 5 27 13 45
MONEY ISSUE 12 27 12 51
OUTDOOR ACTIVITY 34 4 8 46
PERSONAL CARE 24 10 13 43

• subordinated clauses are not annotated with
class labels and polarity values.

Although all event mentions in the selected clus-
ters have either a positive (pleasant events) or neg-
ative (unpleasant events) polarity that could be re-
versed by negation, during the annotation phase a
third value, namely neutral, has been introduced to
cope with those sentences containing self-reporting
events whose occurrence is uncertain

We are referring here to the notion of event fac-
tuality (Saurı́and Pustejovsky, 2009), i.e. the de-
grees of certainty (e.g. possible, probable, certain)
associated to an event description along the cate-
gory of epistemic modality. In the annotation we
focused on the syntactic information between tar-
get events instances and factuality markers, such as
modal auxiliaries and negation cues (including ad-
verbs, adjectives, prepositions, pronouns and deter-
miners). Events which are in the scope of factuality
markers signaling uncertainty or improbability have
been marked as neutral.

4 CLIPEval Tasks

The CLIPEval evaluation exercise is composed of
two tasks described as follows:

• Task A: identification of the polarity value as-
sociated to the event instance. Participants are

required to associate each sentence with a po-
larity value (POSITIVE, NEGATIVE or NEU-
TRAL);

• Task B: identification of the event men-
tions with respect to one of the 8 event
class labels plus identification of the po-
larity value. The class labels used are:
ATTENDING EVENT, COMMUNICA-
TION ISSUE, GOING TO PLACES;
LEGAL ISSUE, MONEY ISSUE, OUT-
DOOR ACTIVITIES, PERSONAL CARE,
(FEAR OF) PHYSICAL PAIN. As in Task A
the polarity values are (POSITIVE, NEGA-
TIVE or NEUTRAL).

5 Dataset Description

The CLIPEval evaluation exercise is based on the
CLIPEval dataset, which consists of two parts: a
training set and a test set. The final size of the dataset
is 1,651 sentences, divided in 1,280 sentences for the
training and 371 for the test. Each event class in the
training data contains 160 sentences.

Each class in the training set is available in a sep-
arate file composed of four tab separated fields: a
sentence id, the sentence extracted from the Giga-
word corpus, the polarity value and the class label.
Each file is named with the class label. Some exam-
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ples of the training data are provided in the examples
below (examples from 3.) to 5.)):

3.) 8 I had just gone to a concert with my par-
ents and I identified with the conductor a lot
Dudamel said in Spanish during a recent in-
terview in Caracas. POSITIVE ATTEND-
ING EVENT

4.) 14 “It’s too cold and I can’t ride my
bike” he lamented. NEGATIVE OUT-
DOOR ACTIVITY

5.) 4 “I could take the boys to the sports museum’
says James. NEUTRAL GOING TO PLACES

The test data has been provided in a single file
with only two fields: the sentence id and the sen-
tence extracted from the Gigaword corpus:

6.) 12 After having given a friend a lift home I was
stopped by police.

7.) 23 And then we went to a library.

Table 1 and Table 2 report the figures for polarity
values per class in the training and in the test set, re-
spectively.

The division of the training data for the three po-
larity values is not balanced due to the event men-
tions composing the clusters. Only three clusters,
namely GOING TO PLACES, PERSONAL CARE
and ATTENDING EVENT, present a relatively bal-
anced distribution for the polarity values. This
lack of balance reflects real language data: the
prevalence of positive or negative values is due to
the classes which may have more PEs or UPEs
(e.g. OUTDOOR ACTIVITY and COMMUNICA-
TION ISSUE, respectively). Including more sen-
tences which reverse the polarity of the PEs or UPEs
to balance the occurrences per polarity value would
mean to force the data from real language toward an
artificial equilibrium.

6 Evaluation

Since both Task A and Task B of CLIPEval are es-
sentially classification tasks (classification of the po-
larity value for Task A and classification of the event
instance and the polarity value for Task B), we have
used Precision, Recall and F1-measure to evaluate

the system results against the test set. Furthermore,
since this is a multi-classification task (3 possible
values for Task A and 24 possible values for Task
B), we have computed micro average Precision, Re-
call and F1-measure per class. This latter measure
has been used for the final ranking of the systems.
We have adopted standard definitions for these mea-
sures, namely:

• Precision: the number of correctly classified
positive examples, tpi per class Ci, divided by
number of examples labeled by the system as

positive (tpi plus false positive fpi):
∑l

i=1 tpi

tpi+fpi

• Recall: the number of correctly classified pos-
itive examples tpi per class Ci divided by the
number of positive examples in the data (tpi
plus false negatives fni) :

∑l
i=1 tpi

tpi+fni

• F-measure: the mean of Precision and Recall
calculated as follows: (β2+1)PrecisionRecall

β2Precision+Recall

To better evaluate systems’ performances, we
have developed three baselines, one per Task A and
two per Task B. In particular:

• Task A baseline has been obtained by assign-
ing to each sentence in the test set the most fre-
quent polarity value on the basis of the data in
the training set. This resulted in marking all
371 sentences in the test set with NEGATIVE
polarity;

• Task B baseline 1 has been obtained in two
steps: first, for each class in the training data
we have selected the most frequent nouns and
verbs lemmas. This has provided us with a list
of keywords representing each class. We have
then compared each sentence in the test set with
each group of keywords and assigned as cor-
rect the class which scored the higher number
of matches. In case of a draw, a random class
between the classes with the highest scores is
assigned. If no match is found, a random class
is assigned. As for the polarity, we have used
the absolute most frequent polarity values, like
in task A (i.e. all test set entries have been as-
signed to NEGATIVE value).
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• Task B baseline 2 has been obtained follow-
ing the approach in Task B baseline 1 for the
class assignment and we have assigned the
most frequent polarity value per class accord-
ing to training data (e.g. for items classified as
ATTENDING EVENTS the assigned polarity
value is POSITIVE).

6.1 Participant Systems
Overall 26 different teams registered for the task,
only two submitted the output of their system for
a total of 3 runs: SHELLFBK (Fondazione Bruno
Kessler) and SIGMA2320 (Peking Univeristy).
Only SHELLFBK submitted results for both tasks.
Furthermore, we can provide a short description just
for SHELLFBK since the SIGMA2320 team has
not submitted a system description paper.

SHELLFBK system implements a supervised
approach based on information retrieval techniques
for representing polarized information. During
the training phase, each sentence is analyzed by
applying the parser contained in the Stanford NLP
Library. From the results of the parsing activity,
both the list of the dependency relations and the
parsed trees are used for populating an inverted
index data structure containing the relationships
between each relation extracted from the sentences
and the corresponding information about its polar-
ization. The result of the training phase is a set of
three indexes containing, respectively, the positive,
negative, and neutral information analyzed in the
training set. When the polarity of a new sentence
has to be computed, the new sentence is given as
input to the Stanford NLP Library by obtaining
the list of its dependency relations, as well as,
the corresponding parsed tree. Such information
are built together for composing a query that is
afterwards performed on the indexes built during
the training phase. For each of the built indexes, a
retrieval score value is retrieved by the system and,
based on this, the polarity of the new sentence is
assigned.

6.2 Evaluation Results
We report in Table 3 the results of both systems for
Task A and the Task A baseline. In Table 4 we report
the results for Task B and both baseline for Task B

(baseline 1 and baseline 2, respectively).

Table 3: Evaluation for Task A : polarity identification.

System Precision Recall F1-measure
SIGMA2320 0.41 0.42 0.38
SHELLFBK 0.56 0.56 0.54
baseline 0.17 0.42 0.25

Table 4: Evaluation for Task B : event instance and polar-
ity identification.

System Precision Recall F1-measure
SHELLFBK 0.36 0.27 0.29
baseline 1 0.02 0.04 0.02
baseline 2 0.03 0.05 0.04

SHELLFBK outperforms SIGMA2320 for the
Task A; both systems improve the baseline. The
results are not as good as in classification tasks
concerning the polarities of tweets (Rosental et al.,
2014) or reviews (Pontiki et al., 2014) but since this
is a novel task about implicit polarity we think they
are promising.

For task B SHELLFBK has a better performance
both in terms of precision and recall if compared
with the two baselines. At the moment we do not
know if the results are due to SHELLFBK method-
ology or if data sparseness in the classes has an influ-
ence on the classification task: maybe classes more
cohesive from conceptual and lexical point of view
could be easier to detect.

7 Conclusions and Future Work

The implicit polarity of words concerns the aris-
ing of occasional polarized meanings in specific ex-
pressions/linguistic contexts. Labeled as semantic
prosody in corpus studies and part of what psycholo-
gists call connotative meanings, the implicit polarity
is a quite marginal concept in sentiment analysis. It
requires a dynamic representation for the polarity of
words (i.e. a verb can be neutral in the vast majority
of case but can be clearly positive in some contexts)
and a compositional approach to sentiment values
that goes beyond the oversimplifying assumptions of
bag-of-words approaches.

With the CLIPEval task we asked the NLP com-
munity to look at these complexities, considering
the detection of a set of events as relevant for SA
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analyses because they have been judged as pleas-
ant or unpleasant by subjects in psychological ex-
periments conducted by (Lewinsohn and Amenson,
1978; MacPhillamy and Lewinsohn, 1982). As fu-
ture work we plan to extend the dataset, including
new classes of events and annotating instances from
blogs and tweets. Also, we want to integrate the de-
tection of polarized events with the work on stance
and perspectives in news, going toward a theoretical
model for SA that takes into account the interplay of
linguistic means used by humans to express opinions
and feelings.
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Abstract

In this paper, we describe the 2015 iteration of
the SemEval shared task on Sentiment Analy-
sis in Twitter. This was the most popular sen-
timent analysis shared task to date with more
than 40 teams participating in each of the last
three years. This year’s shared task competi-
tion consisted of five sentiment prediction sub-
tasks. Two were reruns from previous years:
(A) sentiment expressed by a phrase in the
context of a tweet, and (B) overall sentiment
of a tweet. We further included three new sub-
tasks asking to predict (C) the sentiment to-
wards a topic in a single tweet, (D) the over-
all sentiment towards a topic in a set of tweets,
and (E) the degree of prior polarity of a phrase.

1 Introduction

Social media such as Weblogs, microblogs, and dis-
cussion forums are used daily to express personal
thoughts, which allows researchers to gain valuable
insight into the opinions of a very large number of
individuals, i.e., at a scale that was simply not pos-
sible a few years ago. As a result, nowadays, sen-
timent analysis is commonly used to study the pub-
lic opinion towards persons, objects, and events. In
particular, opinion mining and opinion detection are
applied to product reviews (Hu and Liu, 2004), for
agreement detection (Hillard et al., 2003), and even
for sarcasm identification (González-Ibáñez et al.,
2011; Liebrecht et al., 2013).

Early work on detecting sentiment focused on
newswire text (Wiebe et al., 2005; Baccianella et al.,
2010; Pang et al., 2002; Hu and Liu, 2004). As later
research turned towards social media, people real-
ized this presented a number of new challenges.

Misspellings, poor grammatical structure, emoti-
cons, acronyms, and slang were common in these
new media, and were explored by a number of re-
searchers (Barbosa and Feng, 2010; Bifet et al.,
2011; Davidov et al., 2010; Jansen et al., 2009;
Kouloumpis et al., 2011; O’Connor et al., 2010;
Pak and Paroubek, 2010). Later, specialized shared
tasks emerged, e.g., at SemEval (Nakov et al., 2013;
Rosenthal et al., 2014), which compared teams
against each other in a controlled environment us-
ing the same training and testing datasets. These
shared tasks had the side effect to foster the emer-
gence of a number of new resources, which eventu-
ally spread well beyond SemEval, e.g., NRC’s Hash-
tag Sentiment lexicon and the Sentiment140 lexicon
(Mohammad et al., 2013).1

Below, we discuss the public evaluation done as
part of SemEval-2015 Task 10. In its third year, the
SemEval task on Sentiment Analysis in Twitter has
once again attracted a large number of participants:
41 teams across five subtasks, with most teams par-
ticipating in more than one subtask.

This year the task included reruns of two legacy
subtasks, which asked to detect the sentiment ex-
pressed in a tweet or by a particular phrase in a
tweet. The task further added three new subtasks.
The first two focused on the sentiment towards a
given topic in a single tweet or in a set of tweets,
respectively. The third new subtask focused on de-
termining the strength of prior association of Twit-
ter terms with positive sentiment; this acts as an in-
trinsic evaluation of automatic methods that build
Twitter-specific sentiment lexicons with real-valued
sentiment association scores.

1http://www.purl.com/net/lexicons
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In the remainder of this paper, we first introduce
the problem of sentiment polarity classification and
our subtasks. We then describe the process of creat-
ing the training, development, and testing datasets.
We list and briefly describe the participating sys-
tems, the results, and the lessons learned. Finally,
we compare the task to other related efforts and we
point to possible directions for future research.

2 Task Description

Below, we describe the five subtasks of SemEval-
2015 Task 10 on Sentiment Analysis in Twitter.

• Subtask A. Contextual Polarity Disambigua-
tion: Given an instance of a word/phrase in the
context of a message, determine whether it ex-
presses a positive, a negative or a neutral senti-
ment in that context.

• Subtask B. Message Polarity Classification:
Given a message, determine whether it expresses
a positive, a negative, or a neutral/objective senti-
ment. If both positive and negative sentiment are
expressed, the stronger one should be chosen.

• Subtask C. Topic-Based Message Polarity
Classification: Given a message and a topic, de-
cide whether the message expresses a positive, a
negative, or a neutral sentiment towards the topic.
If both positive and negative sentiment are ex-
pressed, the stronger one should be chosen.

• Subtask D. Detecting Trend Towards a Topic:
Given a set of messages on a given topic from
the same period of time, classify the overall sen-
timent towards the topic in these messages as
(a) strongly positive, (b) weakly positive, (c) neu-
tral, (d) weakly negative, or (e) strongly negative.

• Subtask E. Determining Strength of Associa-
tion of Twitter Terms with Positive Sentiment
(Degree of Prior Polarity): Given a word/phrase,
propose a score between 0 (lowest) and 1 (high-
est) that is indicative of the strength of association
of that word/phrase with positive sentiment. If a
word/phrase is more positive than another one, it
should be assigned a relatively higher score.

3 Datasets

In this section, we describe the process of collect-
ing and annotating our datasets of short social me-
dia text messages. We focus our discussion on the
2015 datasets; more detail about the 2013 and the
2014 datasets can be found in (Nakov et al., 2013)
and (Rosenthal et al., 2014).

3.1 Data Collection

3.1.1 Subtasks A–D
First, we gathered tweets that express sentiment

about popular topics. For this purpose, we ex-
tracted named entities from millions of tweets, us-
ing a Twitter-tuned NER system (Ritter et al., 2011).
Our initial training set was collected over a one-year
period spanning from January 2012 to January 2013.
Each subsequent Twitter test set was collected a few
months prior to the corresponding evaluation. We
used the public streaming Twitter API to download
the tweets.

We then identified popular topics as those named
entities that are frequently mentioned in association
with a specific date (Ritter et al., 2012). Given this
set of automatically identified topics, we gathered
tweets from the same time period which mentioned
the named entities. The testing messages had differ-
ent topics from training and spanned later periods.

The collected tweets were greatly skewed towards
the neutral class. In order to reduce the class im-
balance, we removed messages that contained no
sentiment-bearing words using SentiWordNet as a
repository of sentiment words. Any word listed in
SentiWordNet 3.0 with at least one sense having a
positive or a negative sentiment score greater than
0.3 was considered a sentiment-bearing word.2

For subtasks C and D, we did some manual prun-
ing based on the topics. First, we excluded top-
ics that were incomprehensible, ambiguous (e.g.,
Barcelona, which is a name of a sports team and also
of a place), or were too general (e.g., Paris, which is
a name of a big city). Second, we discarded tweets
that were just mentioning the topic, but were not re-
ally about the topic. Finally, we discarded topics
with too few tweets, namely less than 10.

2Filtering based on an existing lexicon does bias the dataset
to some degree; however, note that the text still contains senti-
ment expressions outside those in the lexicon.
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Instructions: Subjective words are ones which convey an opinion or sentiment. Given a Twitter message, identify
whether it is objective, positive, negative, or neutral. Then, identify each subjective word or phrase in the context of the
sentence and mark the position of its start and end in the text boxes below. The number above each word indicates its
position. The word/phrase will be generated in the adjacent textbox so that you can confirm that you chose the correct
range. Choose the polarity of the word or phrase by selecting one of the radio buttons: positive, negative, or neutral.
If a sentence is not subjective please select the checkbox indicating that “There are no subjective words/phrases”. If
a tweet is sarcastic, please select the checkbox indicating that “The tweet is sarcastic”. Please read the examples and
invalid responses before beginning if this is your first time answering this hit.

Figure 1: The instructions we gave to the workers on Mechanical Turk, followed by a screenshot.

3.1.2 Subtask E

We selected high-frequency target terms from the
Sentiment140 and the Hashtag Sentiment tweet cor-
pora (Kiritchenko et al., 2014). In order to re-
duce the skewness towards the neutral class, we
selected terms from different ranges of automati-
cally determined sentiment values as provided by
the corresponding Sentiment140 and Hashtag Sen-
timent lexicons. The term set comprised regular En-
glish words, hashtagged words (e.g., #loveumom),
misspelled or creatively spelled words (e.g., parla-
ment or happeeee), abbreviations, shortenings, and
slang. Some terms were negated expressions such
as no fun. (It is known that negation impacts the
sentiment of its scope in complex ways (Zhu et al.,
2014).) We annotated these terms for degree of sen-
timent manually. Further details about the data col-
lection and the annotation process can be found in
Section 3.2.2 as well as in (Kiritchenko et al., 2014).

The trial dataset consisted of 200 instances, and
no training dataset was provided. Note, however,
that the trial data was large enough to be used as a
development set, or even as a training set. More-
over, the participants were free to use any additional
manually or automatically generated resources when
building their systems for subtask E. The testset in-
cluded 1,315 instances.

3.2 Annotation

Below we describe the data annotation process.

3.2.1 Subtasks A–D
We used Amazon’s Mechanical Turk for the an-

notations of subtasks A–D. Each tweet message was
annotated by five Mechanical Turk workers, also
known as Turkers. The annotations for subtasks
A–D were done concurrently, in a single task. A
Turker had to mark all the subjective words/phrases
in the tweet message by indicating their start and
end positions and to say whether each subjective
word/phrase was positive, negative, or neutral (sub-
task A). He/she also had to indicate the overall po-
larity of the tweet message in general (subtask B)
as well as the overall polarity of the message to-
wards the given target topic (subtasks C and D). The
instructions we gave to the Turkers, along with an
example, are shown in Figure 1. We further made
available to the Turkers several additional examples,
which we show in Table 1.

Providing all the required annotations for a given
tweet message constituted a Human Intelligence
Task, or a HIT. In order to qualify to work on our
HITs, a Turker had to have an approval rate greater
than 95% and should have completed at least 50 ap-
proved HITs.
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Authorities are only too aware that Kashgar is 4,000 kilometres (2,500 miles) from Beijing but only a tenth of
the distance from the Pakistani border, and are desperate to ensure instability or militancy does not leak over the
frontiers.
Taiwan-made products stood a good chance of becoming even more competitive thanks to wider access to overseas
markets and lower costs for material imports, he said.
“March appears to be a more reasonable estimate while earlier admission cannot be entirely ruled out,” according
to Chen, also Taiwan’s chief WTO negotiator.
friday evening plans were great, but saturday’s plans didnt go as expected – i went dancing & it was an ok club,
but terribly crowded :-(

WHY THE HELL DO YOU GUYS ALL HAVE MRS. KENNEDY! SHES A FUCKING DOUCHE
AT&T was okay but whenever they do something nice in the name of customer service it seems like a favor, while
T-Mobile makes that a normal everyday thin

obama should be impeached on TREASON charges. Our Nuclear arsenal was TOP Secret. Till HE told our enemies
what we had. #Coward #Traitor

My graduation speech: “I’d like to thanks Google, Wikipedia and my computer!” :D #iThingteens

Table 1: List of example sentences and annotations we provided to the Turkers. All subjective phrases are italicized
and color-coded: positive phrases are in green, negative ones are in red, and neutral ones are in blue.

I would love to watch Vampire Diaries :) and some Heroes! Great combination 9/13
I would love to watch Vampire Diaries :) and some Heroes! Great combination 11/13
I would love to watch Vampire Diaries :) and some Heroes! Great combination 10/13
I would love to watch Vampire Diaries :) and some Heroes! Great combination 13/13
I would love to watch Vampire Diaries :) and some Heroes! Great combination 12/13
I would love to watch Vampire Diaries :) and some Heroes! Great combination

Table 2: Example of a sentence annotated for subjectivity on Mechanical Turk. Words and phrases that were marked
as subjective are in bold italic. The first five rows are annotations provided by Turkers, and the final row shows their
intersection. The last column shows the token-level accuracy for each annotation compared to the intersection.

We further discarded the following types of mes-
sage annotations:

• containing overlapping subjective phrases;
• marked as subjective but having no annotated

subjective phrases;
• with every single word marked as subjective;
• with no overall sentiment marked;
• with no topic sentiment marked.

Recall that each tweet message was annotated by
five different Turkers. We consolidated these anno-
tations for subtask A using intersection as shown in
the last row of Table 2. A word had to appear in 3/5
of the annotations in order to be considered subjec-
tive. It further had to be labeled with a particular
polarity (positive, negative, or neutral) by three of
the five Turkers in order to receive that polarity la-
bel. As the example shows, this effectively shortens
the spans of the annotated phrases, often to single
words, as it is hard to agree on long phrases.

Corpus Pos. Neg. Obj. Total
/ Neu.

Twitter2013-train 5,895 3,131 471 9,497
Twitter2013-dev 648 430 57 1,135
Twitter2013-test 2,734 1,541 160 4,435
SMS2013-test 1,071 1,104 159 2,334
Twitter2014-test 1,807 578 88 2,473
Twitter2014-sarcasm 82 37 5 124
LiveJournal2014-test 660 511 144 1,315
Twitter2015-test 1899 1008 190 3097

Table 3: Dataset statistics for subtask A.

We also experimented with two alternative meth-
ods for combining annotations: (i) by computing
the union of the annotations for the sentence, and
(ii) by taking the annotations by the Turker who has
annotated the highest number of HITs. However,
our manual analysis has shown that both alternatives
performed worse than using the intersection.
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Corpus Pos. Neg. Obj. Total
/ Neu.

Twitter2013-train 3,662 1,466 4,600 9,728
Twitter2013-dev 575 340 739 1,654
Twitter2013-test 1,572 601 1,640 3,813
SMS2013-test 492 394 1,207 2,093
Twitter2014-test 982 202 669 1,853
Twitter2014-sarcasm 33 40 13 86
LiveJournal2014-test 427 304 411 1,142
Twitter2015-test 1040 365 987 2392

Table 4: Dataset statistics for subtask B.

Corpus Topics Pos. Neg. Obj. Total
/ Neu.

Train 44 142 56 288 530
Test 137 870 260 1256 2386

Table 5: Twitter-2015 statistics for subtasks C & D.

For subtasks B and C, we consolidated the tweet-
level annotations using majority voting, requiring
that the winning label be proposed by at least three
of the five Turkers; we discarded all tweets for which
3/5 majority could not be achieved. As in previous
years, we combined the objective and the neutral la-
bels, which Turkers tended to mix up.

We used these consolidated annotations as gold
labels for subtasks A, B, C & D. The statistics for all
datasets for these subtasks are shown in Tables 3, 4,
and 5, respectively. Each dataset is marked with the
year of the SemEval edition it was produced for. An
annotated example from each source (Twitter, SMS,
LiveJournal) is shown in Table 6; examples for sen-
timent towards a topic can be seen in Table 7.

3.2.2 Subtask E
Subtask E asks systems to propose a numerical

score for the positiveness of a given word or phrase.
Many studies have shown that people are actually
quite bad at assigning such absolute scores: inter-
annotator agreement is low, and annotators strug-
gle even to remain self-consistent. In contrast, it
is much easier to make relative judgments, e.g., to
say whether one word is more positive than another.
Moreover, it is possible to derive an absolute score
from pairwise judgments, but this requires a much
larger number of annotations. Fortunately, there are
schemes that allow to infer more pairwise annota-
tions from less judgments.

One such annotation scheme is MaxDiff (Lou-
viere, 1991), which is widely used in market surveys
(Almquist and Lee, 2009); it was also used in a pre-
vious SemEval task (Jurgens et al., 2012).

In MaxDiff, the annotator is presented with four
terms and asked which term is most positive and
which is least positive. By answering just these two
questions, five out of six pairwise rankings become
known. Consider a set in which a judge evaluates A,
B, C, and D. If she says that A and D are the most
and the least positive, we can infer the following:
A > B,A > C,A > D,B > D,C > D. The re-
sponses to the MaxDiff questions can then be easily
translated into a ranking for all the terms and also
into a real-valued score for each term. We crowd-
sourced the MaxDiff questions on CrowdFlower, re-
cruiting ten annotators per MaxDiff example. Fur-
ther details can be found in Section 6.1.2. of (Kir-
itchenko et al., 2014).

3.3 Lower & Upper Bounds

When building a system to solve a task, it is good
to know how well we should expect it to perform.
One good reference point is agreement between an-
notators. Unfortunately, as we derive annotations by
agreement, we cannot calculate standard statistics
such as Kappa. Instead, we decided to measure the
agreement between our gold standard annotations
(derived by agreement) and the annotations pro-
posed by the best Turker, the worst Turker, and the
average Turker (with respect to the gold/consensus
annotation for a particular message). Given a HIT,
we just calculate the overlaps as shown in the last
column in Table 2, and then we calculate the best,
the worst, and the average, which are respectively
13/13, 9/13 and 11/13, in the example. Finally, we
average these statistics over all HITs that contributed
to a given dataset, to produce lower, average, and
upper averages for that dataset. The accuracy (with
respect to the gold/consensus annotation) for differ-
ent averages is shown in Table 8. Since the overall
polarity of a message is chosen based on majority,
the upper bound for subtask B is 100%. These aver-
ages give a good indication about how well we can
expect the systems to perform. We can see that even
if we used the best annotator for each HIT, it would
still not be possible to get perfect accuracy, and thus
we should also not expect it from a system.
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Source Message Message-Level
Polarity

Twitter Why would you [still]- wear shorts when it’s this cold?! I [love]+ how Britain
see’s a bit of sun and they’re [like ’OOOH]+ LET’S STRIP!’

positive

SMS [Sorry]- I think tonight [cannot]- and I [not feeling well]- after my rest. negative
LiveJournal [Cool]+ posts , dude ; very [colorful]+ , and [artsy]+ . positive
Twitter Sarcasm [Thanks]+ manager for putting me on the schedule for Sunday negative

Table 6: Example annotations for each source of messages. The subjective phrases are marked in [. . .], and are
followed by their polarity (subtask A); the message-level polarity is shown in the last column (subtask B).

Topic Message Message-Level Topic-Level
Polarity Polarity

leeds united Saturday without Leeds United is like Sunday dinner it doesn’t
feel normal at all (Ryan)

negative positive

demi lovato Who are you tomorrow? Will you make me smile or just bring
me sorrow? #HottieOfTheWeek Demi Lovato

neutral positive

Table 7: Example of annotations in Twitter showing differences between topic- and message-level polarity.

Corpus Subtask A Subtask B
Low Avg Up Avg

Twitter2013-train 75.1 89.7 97.9 77.6
Twitter2013-dev 66.6 85.3 97.1 86.4
Twitter2013-test 76.8 90.3 98.0 75.9
SMS2013-test 75.9 97.5 89.6 77.5
Livejournal2014-test 61.7 82.3 94.5 76.2
Twitter2014-test 75.3 88.9 97.5 74.7
Sarcasm2014-test 62.6 83.1 95.6 71.2
Twitter2015-test 73.2 87.6 96.8 75.7

Table 8: Average (over all HITs) overlap of the gold an-
notations with the worst, average, and the worst Turker
for each HIT, for subtasks A and B.

3.4 Tweets Delivery

Due to restrictions in the Twitter’s terms of service,
we could not deliver the annotated tweets to the par-
ticipants directly. Instead, we released annotation
indexes and labels, a list of corresponding Twitter
IDs, and a download script that extracts the corre-
sponding tweets via the Twitter API.3

As a result, different teams had access to differ-
ent number of training tweets depending on when
they did the downloading. However, our analysis
has shown that this did not have a major impact and
many high-scoring teams had less training data com-
pared to some lower-scoring ones.

3https://dev.twitter.com

4 Scoring

4.1 Subtasks A-C: Phrase-Level,
Message-Level, and Topic-Level Polarity

The participating systems were required to perform
a three-way classification, i.e., to assign one of the
folowing three labels: positive, negative or objec-
tive/neutral. We evaluated the systems in terms of a
macro-averaged F1 score for predicting positive and
negative phrases/messages.

We first computed positive precision, Ppos as fol-
lows: we found the number of phrases/messages
that a system correctly predicted to be positive,
and we divided that number by the total number
of examples it predicted to be positive. To com-
pute positive recall, Rpos, we found the number of
phrases/messages correctly predicted to be positive
and we divided that number by the total number
of positives in the gold standard. We then calcu-
lated an F1 score for the positive class as follows
Fpos = 2PposRpos

Ppos+Rpos
. We carried out similar computa-

tions for the negative phrases/messages, Fneg. The
overall score was then computed as the average of
the F1scores for the positive and for the negative
classes: F = (Fpos + Fneg)/2.

We provided the participants with a scorer that
outputs the overall score F , as well as P , R, and
F1 scores for each class (positive, negative, neutral)
and for each test set.
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4.2 Subtask D: Overall Polarity Towards a
Topic

This subtask asks to predict the overall sentiment of
a set of tweets towards a given topic. In other words,
to predict the ratio ri of positive (posi) tweets to the
number of positive and negative sentiment tweets in
the set of tweets about the i-th topic:

ri = Posi/(Posi +Negi)

Note, that neutral tweets do not participate in the
above formula; they have only an indirect impact on
the calculation, similarly to subtasks A–C.

We use the following two evaluation measures for
subtask D:

• AvgDiff (official score): Calculates the abso-
lute difference betweeen the predicted r′

i and
the gold ri for each i, and then averages this
difference over all topics.

• AvgLevelDiff (unofficial score): This calcula-
tion is the same as AvgDiff, but with r′

i and
ri first remapped to five coarse numerical cat-
egories: 5 (strongly positive), 4 (weakly pos-
itive), 3 (mixed), 2 (weakly negative), and 1
(strongly negative). We define this remapping
based on intervals as follows:

– 5: 0.8 < x ≤ 1.0

– 4: 0.6 < x ≤ 0.8

– 3: 0.4 < x ≤ 0.6

– 2: 0.2 < x ≤ 0.4

– 1: 0.0 ≤ x ≤ 0.2

4.3 Subtask E: Degree of Prior Polarity

The scores proposed by the participating systems
were evaluated by first ranking the terms accord-
ing to the proposed sentiment score and then com-
paring this ranked list to a ranked list obtained
from aggregating the human ranking annotations.
We used Kendall’s rank correlation (Kendall’s τ )
as the official evaluation metric to compare the
ranked lists (Kendall, 1938). We also calculated
scores for Spearman’s rank correlation (Lehmann
and D’Abrera, 2006), as an unofficial score.

Team ID Affiliation
CIS-positiv University of Munich
CLaC-SentiPipe CLaC Labs, Concordia University
DIEGOLab Arizona State University
ECNU East China Normal University
elirf Universitat Politècnica de València
Frisbee Frisbee
Gradiant-Analytics Gradiant
GTI AtlantTIC Center, University of Vigo
IHS-RD IHS inc
iitpsemeval Indian Institute of Technology, Patna
IIIT-H IIIT, Hyderabad
INESC-ID IST, INESC-ID
IOA Institute of Acoustics, Chinese Academy of Sciences
KLUEless FAU Erlangen-Nürnberg
lsislif Aix-Marseille University
NLP NLP
RGUSentimentMiners123 Robert Gordon University
RoseMerry The University of Melbourne
Sentibase IIIT, Hyderabad
SeNTU Nanyang Technological University, Singapore
SHELLFBK Fondazione Bruno Kessler
sigma2320 Peking University
Splusplus Beihang University
SWASH Swarthmore College
SWATAC Swarthmore College
SWATCMW Swarthmore College
SWATCS65 Swarthmore College
Swiss-Chocolate Zurich University of Applied Sciences
TwitterHawk University of Massachusetts, Lowell
UDLAP2014 Universidad de las Amèricas Puebla, Mexico
UIR-PKU University of International Relations
UMDuluth-CS8761 University of Minnesota, Duluth
UNIBA University of Bari Aldo Moro
unitn University of Trento
UPF-taln Universitat Pompeu Fabra
WarwickDCS University of Warwick
Webis Bauhaus-Universität Weimar
whu-iss International Software School, Wuhan University
Whu-Nlp Computer School, Wuhan University
wxiaoac Hong Kong University of Science and Technology
ZWJYYC Peking University

Table 9: The participating teams and their affiliations.

5 Participants and Results

The task attracted 41 teams: 11 teams participated in
subtask A, 40 in subtask B, 7 in subtask C, 6 in sub-
task D, and 10 in subtask E. The IDs and affiliations
of the participating teams are shown in Table 9.

5.1 Subtask A: Phrase-Level Polarity

The results (macro-averaged F1 score) for sub-
task A are shown in Table 10. The official
results on the new Twitter2015-test dataset are
shown in the last column, while the first five
columns show F1 on the 2013 and on the 2014
progress test datasets:4 Twitter2013-test, SMS2013-
test, Twitter2014-test, Twitter2014-sarcasm, and
LiveJournal2014-test. There is an index for each re-
sult showing the relative rank of that result within
the respective column. The participating systems
are ranked by their score on the Twitter2015-test
dataset, which is the official ranking for subtask A;
all remaining rankings are secondary.

4Note that the 2013 and the 2014 test datasets were made
available for development, but it was explicitly forbidden to use
them for training.
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2013: Progress 2014: Progress 2015: Official
# System Tweet SMS Tweet Tweet Live- Tweet

sarcasm Journal
1 unitn 90.101 88.602 87.121 73.655 84.462 84.791

2 KLUEless 88.562 88.621 84.993 75.594 83.944 84.512

3 IOA 83.907 84.187 85.372 71.586 85.611 82.763

4 WarwickDCS 84.086 84.405 83.895 78.032 83.185 82.464

5 TwitterHawk 82.878 83.648 84.054 75.623 83.973 82.325

6 iitpsemeval 85.813 85.863 82.736 65.719 81.767 81.316

7 ECNU 85.284 84.704 82.097 70.967 82.496 81.087

8 Whu-Nlp 79.769 81.789 81.698 63.1411 80.879 78.848

9 GTI 84.645 84.376 79.489 81.531 81.618 77.279

10 whu-iss 74.0210 70.2611 72.2010 69.338 73.5710 71.3510

11 UMDuluth-CS8761 72.7111 71.8010 69.8411 64.5310 71.5311 66.2111

baseline 38.1 31.5 42.2 39.8 33.4 38.0

Table 10: Results for subtask A: Phrase-Level Polarity. The systems are ordered by their score on the Twitter2015
test dataset; the rankings on the individual datasets are indicated with a subscript.

There were less participants this year, probably
due to having a new similar subtask: C. Notably,
many of the participating teams were newcomers.

We can see that all systems beat the majority
class baseline by 25-40 F1 points absolute on all
datasets. The winning team unitn (using deep con-
volutional neural networks) achieved an F1 of 84.79
on Twitter2015-test, followed closely by KLUEless
(using logistic regression) with F1=84.51.

Looking at the progress datasets, we can see that
unitn was also first on both progress Tweet datasets,
and second on SMS and on LiveJournal. KLUE-
less won SMS and was second on Twitter2013-test.
The best result on LiveJournal was achieved by IOA,
who were also second on Twitter2014-test and third
on the official Twitter2015-test. None of these teams
was ranked in top-3 on Twitter2014-sarcasm, where
the best team was GTI, followed by WarwickDCS.

Compared to 2014, there is an improvement on
Twitter2014-test from 86.63 in 2014 (NRC-Canada)
to 87.12 in 2015 (unitn). The best result on
Twitter2013-test of 90.10 (unitn) this year is very
close to the best in 2014 (90.14 by NRC-Canada).
Similarly, the best result on LiveJournal stays ex-
actly the same, i.e., F1=85.61 (SentiKLUE in 2014
and IOA in 2015). However, there is slight degra-
dation for SMS2013-test from 89.31 (ECNU) in
2014 to 88.62 (KLUEless) in 2015. The results
also degraded for Twitter2014-sarcasm from 82.75
(senti.ue) to 81.53 (GTI).

5.2 Subtask B: Message-Level Polarity

The results for subtask B are shown in Table 11.
Again, we show results on the five progress test
datasets from 2013 and 2014, in addition to those
for the official Twitter2015-test datasets.

Subtask B attracted 40 teams, both newcomers
and returning, similarly to 2013 and 2014. All
managed to beat the baseline with the exception
of one system for Twitter2015-test, and one for
Twitter2014-test. There is a cluster of four teams
at the top: Webis (ensemble combining four Twit-
ter sentiment classification approaches that partici-
pated in previous editions) with anF1 of 64.84, unitn
with 64.59, lsislif (logistic regression with special
weighting for positives and negatives) with 64.27,
and INESC-ID (word embeddings) with 64.17.

The last column in the table shows the results for
the 2015 sarcastic tweets. Note that, unlike in 2014,
this time they were not collected separately and did
not have a special #sarcasm tag; instead, they are a
subset of 75 tweets from Twitter2015-test that were
flagged as sarcastic by the human annotators. The
top system is IOA with an F1 of 65.77, followed by
INESC-ID with 64.91, and NLP with 63.62.

Looking at the progress datasets, we can see that
the second ranked unitn is also second on SMS and
on Twitter2014-test, and third on Twitter2013-test.
INESC-ID in turn is third on Twitter2014-test and
also third on Twitter2014-sarcasm. Webis and lsislif
were less strong on the progress datasets.
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2013: Progress 2014: Progress 2015: Official
# System Tweet SMS Tweet Tweet Live- Tweet Tweet

sarcasm Journal sarcasm
1 Webis 68.4910 63.9214 70.867 49.3312 71.6414 64.841 53.5922

2 unitn 72.792 68.372 73.602 55.445 72.4812 64.592 55.0119

3 lsislif 71.344 63.4217 71.545 46.5722 73.0110 64.273 46.0033

4 INESC-ID? 71.973 63.7815 72.523 56.233 69.7822 64.174 64.912

5 Splusplus 72.801 67.165 74.421 42.8631 75.341 63.735 60.997

6 wxiaoac 66.4316 64.0413 68.9611 54.387 73.369 63.006 52.2226

7 IOA 71.325 68.143 71.864 51.489 74.522 62.627 65.771

8 Swiss-Chocolate 68.809 65.566 68.7412 48.2216 73.954 62.618 54.6620

9 CLaC-SentiPipe 70.427 63.0518 70.1610 51.4310 73.596 62.009 58.559

10 TwitterHawk 68.4411 62.1220 70.649 56.024 70.1719 61.9910 61.246

11 SWATCS65 68.2112 65.498 67.2314 37.2339 73.378 61.8911 52.6424

12 UNIBA 61.6629 65.507 65.1125 37.3038 70.0520 61.5512 48.1632

13 KLUEless 70.646 67.664 70.896 45.3626 73.507 61.2013 56.1917

14 NLP 66.9614 61.0525 67.4513 39.8734 66.1231 60.9314 63.623

15 ZWJYYC 69.568 64.7211 70.778 46.3423 71.6015 60.7715 52.4025

16 Gradiant-Analytics 65.2922 61.9721 66.8717 59.111 72.6311 60.6216 56.4516

17 IIIT-H 65.6820 62.2519 67.0416 57.502 69.9121 59.8317 62.755

18 ECNU 65.2523 68.491 66.3720 45.8725 74.403 59.7218 52.6723

19 CIS-positiv 64.8224 65.1410 66.0521 49.2314 71.4716 59.5719 57.7411

20 SWASH 63.0727 56.4934 62.9331 48.4215 69.4324 59.2620 54.3021

21 GTI 64.0325 63.5016 65.6522 55.386 70.5017 58.9521 57.0213

22 iitpsemeval 60.7831 60.5626 65.0926 47.3219 73.705 58.8022 58.1810

23 elirf 57.0532 60.2028 61.1735 45.9824 68.3328 58.5823 43.9134

24 SWATAC 65.8619 61.3024 66.6419 39.4535 68.6727 58.4324 50.6627

25 UIR-PKU? 67.4113 64.6712 67.1815 52.588 70.4418 57.6525 59.438

26 SWATCMW 65.6721 65.439 65.6223 37.4836 69.5223 57.6026 56.6914

27 WarwickDCS 66.5715 61.9222 65.4724 45.0328 68.9825 57.3227 56.5815

28 SeNTU 63.5026 60.5327 66.8518 45.1827 68.7026 57.0628 49.5329

29 DIEGOLab 62.4928 58.6030 63.9928 47.6218 63.7434 56.7229 55.5618

30 Sentibase 61.5630 59.2629 63.2930 47.0720 67.5529 56.6730 62.964

31 Whu-Nlp 65.9718 61.3123 63.9329 46.9321 71.8313 56.3931 22.2540

32 UPF-taln 66.1517 57.8431 65.0527 50.9311 64.5032 55.5932 41.6335

33 RGUSentimentMiners123 56.4134 57.1432 59.4436 44.7229 64.3933 53.7333 48.2131

34 IHS-RD? 55.0635 57.0833 61.3932 37.3237 66.9930 52.6534 36.0237

35 RoseMerry 52.3337 53.0036 61.2734 49.2513 62.5435 51.1835 49.6228

36 Frisbee 49.3738 46.5938 53.9238 42.0732 57.9438 49.1936 48.2630

37 UMDuluth-CS8761 54.1736 50.6437 55.8237 43.7430 60.2337 47.7737 34.4038

38 UDLAP2014 41.9339 39.3539 45.9339 41.0433 50.1139 42.1038 40.5936

39 SHELLFBK 32.1440 26.1440 32.2040 35.5840 34.0640 32.4539 25.7339

40 whu-iss 56.5133 54.2835 61.3133 47.7817 61.9836 24.8040 57.7312

baseline 29.2 19.0 34.6 27.7 27.2 30.3 30.2

Table 11: Results for subtask B: Message-Level Polarity. The systems are ordered by their score on the Twitter2015
test dataset; the rankings on the individual datasets are indicated with a subscript. Systems with late submissions for
the progress test datasets (but with timely submissions for the official 2015 test dataset) are marked with a ?.

Compared to 2014, there is improvement on
Twitter2013-test from 72.12 (TeamX) to 72.80
(Splusplus), on Twitter2014-test from 70.96
(TeamX) to 74.42 (Spluplus), on Twitter2014-

sarcasm from 58.16 (NRC-Canada) to 59.11
(Gradiant-Analytics), and on LiveJournal from
74.84 (NRC-Canada) to 75.34 (Splusplus), but not
on SMS: 70.28 (NRC-Canada) vs. 68.49 (ECNU).
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# System Tweet Tweet
sarcasm

1 TwitterHawk 50.511 31.302

2 KLUEless 45.482 39.261

3 Whu-Nlp 40.703 23.375

4 whu-iss 25.624 28.904

5 ECNU 25.385 16.206

6 WarwickDCS 22.796 13.577

7 UMDuluth-CS8761 18.997 29.913

baseline 26.7 26.4

Table 12: Results for Subtask C: Topic-Level Polarity.
The systems are ordered by the official 2015 score.

# Team avgDiff avgLevelDiff
1 KLUEless 0.202 0.810
2 Whu-Nlp 0.210 0.869
3 TwitterHawk 0.214 0.978
4 whu-iss 0.256 1.007
5 ECNU 0.300 1.190
6 UMDuluth-CS8761 0.309 1.314

baseline 0.277 0.985

Table 13: Results for Subtask D: Trend Towards a
Topic. The systems are sorted by the official 2015 score.

5.3 Subtask C: Topic-Level Polarity

The results for subtask C are shown in Table 12.
This proved to be a hard subtask, and only three
of the seven teams that participated in it managed
to improve over a majority vote baseline. These
three teams, TwitterHawk (using subtask B data
to help with subtask C) with F1=50.51, KLUEless
(which ignored the topics as if it was subtask B) with
F1=45.48, and Whu-Nlp with F1=40.70, achieved
scores that outperform the rest by a sizable margin:
15-25 points absolute more than the fourth team.

Note that, despite the apparent similarity, subtask
C is much harder than subtask B: the top-3 teams
achieved an F1 of 64-65 for subtask B vs. an F1 of
41-51 for subtask C. This cannot be blamed on the
class distribution, as the difference in performance
of the majority class baseline is much smaller: 30.3
for B vs. 26.7 for C.

Finally, the last column in the table reports the
results for the 75 sarcastic 2015 tweets. The win-
ner here is KLUEless with an F1 of 39.26, fol-
lowed by TwitterHawk with F1=31.30, and then by
UMDuluth-CS8761 with F1=29.91.

5.4 Subtask D: Trend Towards a Topic

The results for subtask D are shown in Table 13.
This subtask is closely related to subtask C (in fact,
one obvious way to solve D is to solve C and then
to calculate the proportion), and thus it has attracted
the same teams, except for one. Again, only three
of the participating teams managed to improve over
the baseline; not suprisingly, those were the same
three teams that were in top-3 for subtask C. How-
ever, the ranking is different from that in subtask
C, e.g., TwitterHawk has dropped to third position,
while KLUEless and Why-Nlp have each climbed
one position up to positions 1 and 2, respectively.

Finally, note that avgDiff and avgLevelDiff
yielded the same rankings.

5.5 Subtask E: Degree of Prior Polarity

Ten teams participated in subtask E. Many chose
an unsupervised approach and leveraged newly-
created and pre-existing sentiment lexicons such as
the Hashtag Sentiment Lexicon, the Sentiment140
Lexicon (Kiritchenko et al., 2014), the MPQA Sub-
jectivity Lexicon (Wilson et al., 2005), and Sen-
tiWordNet (Baccianella et al., 2010), among oth-
ers. Several participants further automatically cre-
ated their own sentiment lexicons from large collec-
tions of tweets. Three teams, including the winner
INESC-ID, adopted a supervised approach and used
word embeddings (supplemented with lexicon fea-
tures) to train a regression model.

The results are presented in Table 14. The last row
shows the performance of a lexicon-based baseline.
For this baseline, we chose the two most frequently
used existing, publicly available, and automatically
generated sentiment lexicons: Hashtag Sentiment
Lexicon and Sentiment140 Lexicon (Kiritchenko et
al., 2014).5 These lexicons have real-valued senti-
ment scores for most of the terms in the test set.
For negated phrases, we use the scores of the cor-
responding negated entries in the lexicons. For each
term, we take its score from the Sentiment140 Lex-
icon if present; otherwise, we take the term’s score
from the Hashtag Sentiment Lexicon. For terms not
found in any lexicon, we use the score of 0, which
indicates a neutral term in these lexicons. The top
three teams were able to improve over the baseline.

5http://www.purl.com/net/lexicons
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Team Kendall’s τ Spearman’s ρ
coefficient coefficient

INESC-ID 0.6251 0.8172
lsislif 0.6211 0.8202
ECNU 0.5907 0.7861
CLaC-SentiPipe 0.5836 0.7771
KLUEless 0.5771 0.7662
UMDuluth-CS8761-10 0.5733 0.7618
IHS-RD-Belarus 0.5143 0.7121
sigma2320 0.5132 0.7086
iitpsemeval 0.4131 0.5859
RGUSentminers123 0.2537 0.3728

Baseline 0.5842 0.7843

Table 14: Results for Subtask E: Degree of Prior Po-
larity. The systems are ordered by their Kendall’s τ
score, which was the official score.

6 Discussion

As in the previous two years, almost all systems used
supervised learning. Popular machine learning ap-
proaches included SVM, maximum entropy, CRFs,
and linear regression. In several of the subtasks, the
top system used deep neural networks and word em-
beddings, and some systems benefited from special
weighting of the positive and negative examples.

Once again, the most important features were
those derived from sentiment lexicons. Other impor-
tant features included bag-of-words features, hash-
tags, handling of negation, word shape and punctua-
tion features, elongated words, etc. Moreover, tweet
pre-processing and normalization were an important
part of the processing pipeline.

Note that this year we did not make a distinc-
tion between constrained and unconstrained sys-
tems, and participants were free to use any addi-
tional data, resources and tools they wished to.

Overall, the task has attracted a total of 41 teams,
which is comparable to previous editions: there were
46 teams in 2014, and 44 in 2013. As in previous
years, subtask B was most popular, attracting almost
all teams (40 out of 41). However, subtask A at-
tracted just a quarter of the participants (11 out of
41), compared to about half in previous years, most
likely due to the introduction of two new, very re-
lated subtasks C and D (with 6 and 7 participants,
respectively). There was also a fifth subtask (E,
with 10 participants), which further contributed to
the participant split.

We should further note that our task was part of
a larger Sentiment Track, together with three other
closely-related tasks, which were also interested in
sentiment analysis: Task 9 on CLIPEval Implicit Po-
larity of Events, Task 11 on Sentiment Analysis of
Figurative Language in Twitter, and Task 12 on As-
pect Based Sentiment Analysis. Another related task
was Task 1 on Paraphrase and Semantic Similarity in
Twitter, from the Text Similarity and Question An-
swering track, which also focused on tweets.

7 Conclusion

We have described the five subtasks organized as
part of SemEval-2015 Task 10 on Sentiment Anal-
ysis in Twitter: detecting sentiment of terms in con-
text (subtask A), classifiying the sentiment of an
entire tweet, SMS message or blog post (subtask
B), predicting polarity towards a topic (subtask C),
quantifying polarity towards a topic (subtask D),
and proposing real-valued prior sentiment scores for
Twitter terms (subtask E). Over 40 teams partici-
pated in these subtasks, using various techniques.

We plan a new edition of the task as part of
SemEval-2016, where we will focus on sentiment
with respect to a topic, but this time on a five-
point scale, which is used for human review ratings
on popular websites such as Amazon, TripAdvisor,
Yelp, etc. From a research perspective, moving to an
ordered five-point scale means moving from binary
classification to ordinal regression.

We further plan to continue the trend detection
subtask, which represents a move from classification
to quantification, and is on par with what applica-
tions need. They are not interested in the sentiment
of a particular tweet but rather in the percentage of
tweets that are positive/negative.

Finally, we plan a new subtask on trend detection,
but using a five-point scale, which would get us even
closer to what business (e.g. marketing studies), and
researchers, (e.g. in political science or public pol-
icy), want nowadays. From a research perspective,
this is a problem of ordinal quantification.
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Abstract

This paper describes our deep learning system
for sentiment analysis of tweets. The main
contribution of this work is a process to ini-
tialize the parameter weights of the convolu-
tional neural network, which is crucial to train
an accurate model while avoiding the need to
inject any additional features. Briefly, we use
an unsupervised neural language model to ini-
tialize word embeddings that are further tuned
by our deep learning model on a distant super-
vised corpus. At a final stage, the pre-trained
parameters of the network are used to initialize
the model which is then trained on the super-
vised training data from Semeval-2015. Ac-
cording to results on the official test sets, our
model ranks 1st in the phrase-level subtask A
(among 11 teams) and 2nd on the message-
level subtask B (among 40 teams). Interest-
ingly, computing an average rank over all six
test sets (official and five progress test sets)
puts our system 1st in both subtasks A and B.

1 Introduction

In this work we describe our deep convolutional neu-
ral network for sentiment analysis of tweets. Its
architecture is most similar to the deep learning
systems presented in (Kalchbrenner et al., 2014;
Kim, 2014) that have recently established new state-
of-the-art results on various NLP sentence clas-
sification tasks also including sentiment analysis.
While already demonstrating excellent results, train-
ing a convolutional neural network that would beat
hand-engineered approaches that also rely on multi-
ple manual and automatically constructed lexicons,

e.g. (Mohammad et al., 2013; Xiaodan Zhu, 2014;
Severyn and Moschitti, 2015), requires careful at-
tention. This becomes an even harder problem espe-
cially in cases when the amount of labelled data is
relatively small, e.g., thousands of examples.

Turns out, providing the network with good ini-
tialisation parameters makes all the difference in
training an accurate model. We propose a three-step
process we follow to train our deep learning model
for sentiment classification. It can be summarized as
follows: (i) word embeddings are initialized using
a neural language model (Ronan Collobert, 2008;
Mikolov et al., 2013) which is trained on a large un-
supervised collection of tweets; (ii) we use our con-
volutional neural network to further refine the em-
beddings on a large distant supervised corpus (Go
et al., 2009); (iii) the word embeddings and other
parameters of the network obtained at the previous
stage are used to initialize the network that is then
trained on a supervised corpus from Semeval-2015.

We apply our deep learning model on two sub-
tasks of Semeval-2015 Twitter Sentiment Analysis
(Task 10) challenge (Rosenthal et al., 2015): phrase-
level (subtask A) and message-level (subtask B).
Our system ranks 1st on the official test set of the
phrase-level and 2nd on the message-level subtask.
In addition to the test set used to establish the fi-
nal ranking in Semeval-2015, all systems were also
evaluated on the progress test set which consists of
five test sets, where our system also shows strong re-
sults. In particular, we rank all systems according to
their performance on each test set and compute their
average ranks. Interestingly, our model appears to
be the most robust across all six test sets ranking 1st
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according to the average rank in both subtasks A and
B.

In the following, we describe the architecture of
our convolutional neural network and the parameter
initialization process process we follow to train it.

2 Our Deep Learning model for sentiment
classification

The architecture of our convolutional neural net-
work for sentiment classification is shown on Fig. 1.
It is mainly inspired by the architectures used in
(Kalchbrenner et al., 2014; Kim, 2014) for per-
forming various sentence classification tasks. Given
that our training process (described in Sec. 3.3) re-
quires to run the network on a rather large corpus,
our design choices are mainly driven by the com-
putational efficiency of our network. Hence, differ-
ent from (Kalchbrenner et al., 2014) that presents
an architecture with several layers of convolutional
feature maps, we adopt a single level architecture,
which has been shown in (Kim, 2014) to perform
equally well.

Our network is composed of a single convolu-
tional layer followed by a non-linearity, max pooling
and a soft-max classification layer.

In the following we give a brief explanation of the
main components of our network architecture: sen-
tence matrix, activations, convolutional, pooling and
softmax layers. We also describe how to adapt the
network for predicting sentiment of phrases inside
the tweets.

2.1 Sentence matrix

The input to our model are tweets each treated as a
sequence of words: [wi, .., w|s|], where each word
is drawn from a vocabulary V . Words are repre-
sented by distributional vectors w ∈ Rd looked
up in a word embeddings matrix W ∈ Rd×|V |.
This matrix is formed by concatentating embeddings
of all words in V . For convenience and ease of
lookup operations in W, words are mapped to in-
dices 1, . . . , |V |.

For each input tweet s we build a sentence matrix
S ∈ Rd×|s|, where each column i represents a word
embedding wi at the corresponding position i in a

sentence (see Fig. 1):

S =

 | | |
w1 . . . w|s|
| | |


To learn to capture and compose features of individ-
ual words in a given sentence from low-level word
embeddings into higher level semantic concepts, the
neural network applies a series of transformations to
the input sentence matrix S using convolution, non-
linearity and pooling operations, which we describe
next.

2.2 Convolutional feature maps
The aim of the convolutional layer is to extract
patterns, i.e., discriminative word sequences found
within the input tweets that are common throughout
the training instances.

More formally, the convolution operation ∗ be-
tween an input matrix s ∈ Rd×|s| and a filter F ∈
Rd×m of width m results in a vector c ∈ R|s|+m−1

where each component is computed as follows:

ci = (S ∗ F)i =
∑
k,j

(S[:,i−m+1:i] ⊗ F)kj (1)

where ⊗ is the element-wise multiplication and
S[:,i−m+1:i] is a matrix slice of size m along the
columns. Note that the convolution filter is of the
same dimensionality d as the input sentence matrix.
As shown in Fig. 1, it slides along the column di-
mension of S producing a vector c ∈ R1×(|s|−m+1)

in output. Each component ci is the result of com-
puting an element-wise product between a column
slice of S and a filter matrix F, which is then
summed to a single value.

So far we have described a way to compute a con-
volution between the input sentence matrix and a
single filter. To form a richer representation of the
data, deep learning models apply a set of filters that
work in parallel generating multiple feature maps
(also shown on Fig. 1). A set of filters form a fil-
ter bank F ∈ Rn×d×m sequentially convolved with
the sentence matrix S and producing a feature map
matrix C ∈ Rn×(|s|−m+1).

In practice, we also need to add a bias vector b ∈
Rn to the result of a convolution – a single bi value
for each feature map ci. This allows the network to
learn an appropriate threshold.
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Figure 1: The architecture of our deep learning model for sentiment classification.

2.3 Activation units

To allow the network learn non-linear decision
boundaries, each convolutional layer is typically
followed by a non-linear activation function α()
applied element-wise. Among the most common
choices of activation functions are: sigmoid (or lo-
gistic), hyperbolic tangent tanh, and a rectified lin-
ear (ReLU) function defined as simplymax(0,x) to
ensure that feature maps are always positive.

We use ReLU in our model since, as shown
in (Nair and Hinton, 2010), it speeds up the train-
ing and sometimes produces more accurate results.

2.4 Pooling

The output from the convolutional layer (passed
through the activation function) are then passed to
the pooling layer, whose goal is to aggregate the in-
formation and reduce the representation. The result
of the pooling operation is:

cpooled =

pool(α(c1 + b1 ∗ e))
. . .

pool(α(cn + bn ∗ e))


where ci is the ith convolutional feature map with
added bias (the bias is added to each element of ci

and e is a unit vector of the same size as ci) and
passed through the activation function α().

Among the most popular choices for pooling op-
eration are: max and average pooling. Recently,
max pooling has been generalized to k-max pool-
ing (Kalchbrenner et al., 2014), where instead of a
single max value, k values are extracted in their orig-
inal order. We use max pooling in our model which
simply returns the maximum value. It operates on
columns of the feature map matrix C returning the
largest value: pool(ci) : R1×(|s|+m−1) → R (also
shown schematically in Fig. 1).

Convolutional layer passed through the activation
function together with pooling layer acts as a non-
linear feature extractor. Given that multiple feature
maps are used in parallel to process the input, deep
learning networks are able to build rich feature rep-
resentations of the input.

2.5 Softmax

The output of the penultimate convolutional and
pooling layers x is passed to a fully connected soft-
max layer. It computes the probability distribution
over the labels:

P (y = j|x, s,b) = softmaxj(xTw + b)

= ex
T wj+bj∑K

k=1 ex
T wk+bk

,

where wk and bk are the weight vector and bias of
the k-th class.
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2.6 Phrase-level sentiment analysis

To perform phrase-level sentiment analysis, we feed
the network with an additional input sequence indi-
cating the location of the target phrase in a tweet.
The elements are encoded using only two word
types: tokens spanning the phrase to be predicted
are encoded with 1s and all the other with 0s. Each
word type is associated with its own embedding. So,
when tackling the phrase-level sentiment classifica-
tion, we form a sentence matrix S as follows: for
each token in a tweet we have to look up its corre-
sponding word embedding in the word matrix W,
and the embedding for one of the two word types.
Hence, the input sentence matrix is augmented with
an additional set of rows from the word type em-
beddings. Other than that, the architecture of our
network remains unchanged.

This ends the description of our convolutional
neural network for sentiment classification of
tweets.

3 Our approach to train the network

Convolutional neural networks can be tricky to train
often severely overfitting on small datasets. In the
following we describe our approach to train our deep
learning model.

3.1 Network Parameters and Training

We use stochastic gradient descent (SGD) to
train the network and use backpropogation algo-
rithm to compute the gradients. We opt for the
Adadelta (Zeiler, 2012) update rule to automatically
tune the learning rate.

The following parameters are optimized by our
network:

θ = {W;F;b;ws;bs},

namely the word embeddings matrix W, filter
weights and biases of the convolutional layer, the
weight and bias of the softmax layers.

3.2 Regularization

While neural networks have a large capacity to learn
complex decision functions they tend to easily over-
fit especially on small and medium sized datasets.
To mitigate the overfitting issue we augment the cost

function with l2-norm regularization terms for the
parameters of the network.

We also adopt another popular and effective tech-
nique to improve regularization of the NNs —
dropout (Srivastava et al., 2014). Dropout prevents
feature co-adaptation by setting to zero (dropping
out) a portion of hidden units during the forward
phase when computing the activations at the soft-
max output layer. As suggested in (Goodfellow et
al., 2013) dropout acts as an approximate model av-
eraging.

3.3 Initializing the model parameters

Convolutional neural networks live in the world of
non-convex function optimization leading to locally
optimal solutions. Hence, starting the optimization
from a good point can be crucial to train an accurate
model. We propose the following 3-step process to
initialize the parameter weights of the network:

1. Given that the largest parameter of the network
is the word matrix W, it is crucial to feed
the network with the high quality embeddings.
We use a popular word2vec neural language
model (Mikolov et al., 2013) to learn the word
embeddings on an unsupervised tweet corpus.
For this purpose, we collect 50M tweets over the
two-month period. We perform minimal prepro-
cessing tokenizing the tweets, normalizing the
URLs and author ids. To train the embeddings
we use a skipgram model with window size 5 and
filtering words with frequency less than 5.

2. When dealing with small amounts of labelled
data, starting from pre-trained word embeddings
is a large step towards successfully training an
accurate deep learning system. However, while
the word embeddings obtained at the previous
step should already capture important syntactic
and semantic aspects of the words they repre-
sent, they are completely clueless about their sen-
timent behaviour. Hence, we use a distant su-
pervision approach (Go et al., 2009) using our
convolutional neural network to further refine the
embeddings.

3. Finally, we take the the parameters θ of the net-
work obtained at the previous step and use it to
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Table 1: Semeval-2015 data.
Dataset Subtask A Subtask B

Twitter’13-train 5,895 9,728
Twitter’13-dev 648 1,654
Twitter’13-test 2,734 3,813
LiveJournal’14 660 1,142
SMS’13 1,071 2,093
Twitter’14 1,807 1,853
Sarcasm’14 82 86
Twitter’15 3,092 2,390

# Teams 11 40

initialize the network which is trained on a super-
vised training corpus from Semeval-2015.

4 Experiments and evaluation

Data and setup. We test our model on two subtasks
from Semeval-2015 Task 10: phrase-level (subtask
A) and message-level (subtask B). The datasets use
in Semeval-2015 are summarized in Table 1. We
use train and dev from Twitter’13 for training and
Twitter’13-test as a validation set. The other datasets
are used for testing, whereas Twitter’15 is used to
establish the official ranking of the systems.

Additionally, to pre-train the weights of our net-
work, we use a large unsupervised corpus containing
50M tweets for training the word embeddings and a
10M tweet corpus for distant supervision. The lat-
ter corpus was built similarly to (Go et al., 2009),
where tweets with positive emoticons, like ’:)’, are
assumed to be positive, and tweets with negative
emoticons, like ’:(’, are labeled as negative. The
dataset contains equal number of positive and nega-
tive tweets.

The parameters of our model were (chosen on the
validation set) as follows: the width m of the convo-
lution filters is set to 5 and the number of convolu-
tional feature maps is 300. We use ReLU activation
function and a simple max-pooling. The L2 regular-
ization term is set to 1e − 4, dropout is applied to
the penultimate level with p = 0.5. The dimension-
ality of the word embeddings d is set to 100. For the
phrase-level subtask the size of the word type em-
beddings, which encode tokens that span the target
phrase or not, is set to 10.
Pre-training the network. To train our deep learn-

Table 2: Testing the model on the progress test sets
from Semeval-2015 with different parameter initializion
schemes: Random (random word embeddings); Unsup
(word2vec embeddings); Distant (all parameters from
a network trained on a distant supervised dataset).

Dataset Random Unsup Distant

LiveJournal’14 63.58 73.09 72.48
SMS’13 58.41 65.21 68.37
Twitter’13 64.51 72.35 72.79
Twitter’14 63.69 71.07 73.60
Sarcasm’14 46.10 52.56 55.44

ing model we follow our 3-step process as described
in Sec. 3.3. We report the results for training the
network on the official supervised dataset from Se-
meval’15 using parameters that were initialized: (i)
completely at random (Random); (ii) using word
embeddings from the neural language model trained
on a large unsupervised dataset (Unsup) with the
word2vec tool and (iii) initializing all the parame-
ters of our model with the parameters of the network
which uses the word embeddings from the previous
step and are further tuned on a distant supervised
dataset (Distant).

Table 2 summarizes the performance of our model
on five test sets using three parameter initialization
schemas. First, we observe that training the network
with all parameters initialized completely at random
results in a rather mediocre performance. This is due
to a small size of the training set. Secondly, using
embeddings pre-trained by a neural language model
considerably boosts the performance. Finally, using
a large distant supervised corpus to further tune the
word embeddings to also capture the sentiment as-
pect of the words they represent results in a further
improvement across all test sets (except for a small
drop on LiveJournal’14).
Official rankings. The results from the official
rankings for both subtasks A and B are summarized
in Table 3. As we can see our system performs par-
ticularly well on subtask A ranking 1st on the official
Twitter’15 set, while also showing excellent perfor-
mance on all other test sets.

On subtask B our system ranks 2nd also show-
ing high rankings on the other test sets (apart from
the LiveJournal’14). In fact, no single system at
Semeval-2015 performed equally well across all test
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Table 3: Results on Semeval-2015 for phrase and tweet-
level subtasks. Rank shows the absolute position of our
system on each test set. AveRank is the averaged rank
across all test sets.

Dataset Score Rank

Phrase-level subtask A
LJournal’14 84.46 2
SMS’13 88.60 2
Twitter’13 90.10 1
Twitter’14 87.12 1
Sarcasm’14 73.65 5
Twitter’15 84.79 1

AveRank 2.0 1

Message-level subtask B
LJournal’14 72.48 12
SMS’13 68.37 2
Twitter’13 72.79 3
Twitter’14 73.60 2
Sarcasm’14 55.44 5
Twitter’15 64.59 2

AveRank 4.3 1

sets. For example, a system that ranked 1st on the
official Twitter’15 dataset performs much worse on
the progress test sets ranking {14, 14, 11, 7, 12} on
{LiveJournal’14, SMS’13, Twitter’13,
Twitter’14, and Sarcasm’14} correspond-
ingly. It has an AveRank of 9.8, which is only 6th
best result if systems were ranked according to this
metric. In contrast, our system shows robust re-
sults across all tests having the best AveRank of 4.3
among all 40 systems.

5 Conclusions

We described our deep learning approach to Twit-
ter sentiment analysis on both message and phrase
levels. We gave a detailed description of our 3-
step process to train the parameters of the network
that is the key to our success. The resulting model
demonstrates state-of-the-art performance on both
the phrase-level and message-level subtasks. Con-
sidering the average rank across all test sets (includ-
ing progress test sets) our system is 1st on both sub-
tasks.
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Abstract 
This report summarizes the objectives and 
evaluation of the SemEval 2015 task on the 
sentiment analysis of figurative language on 
Twitter (Task 11). This is the first sentiment 
analysis task wholly dedicated to analyzing 
figurative language on Twitter. Specifically, 
three broad classes of figurative language are 
considered: irony, sarcasm and metaphor. 
Gold standard sets of 8000 training tweets and 
4000 test tweets were annotated using workers 
on the crowdsourcing platform CrowdFlower. 
Participating systems were required to provide 
a fine-grained sentiment score on an 11-point 
scale (-5 to +5, including 0 for neutral intent) 
for each tweet, and systems were evaluated 
against the gold standard using both a Cosine-
similarity and a Mean-Squared-Error measure. 

1 Introduction 

The limitations on text length imposed by micro-
blogging services such as Twitter do nothing to 
dampen our willingness to use language creatively. 
Indeed, such limitations further incentivize the use 
of creative devices such as metaphor and irony, as 
such devices allow strongly-felt sentiments to be 
expressed effectively, memorably and concisely. 
Nonetheless, creative language can pose certain 
challenges for NLP tools that do not take account 
of how words can be used playfully and in original 
ways. In the case of language using figurative 
devices such as irony, sarcasm or metaphor – when 

literal meanings are discounted and secondary or 
extended meanings are intentionally profiled – the 
affective polarity of the literal meaning may differ 
significantly from that of the intended figurative 
meaning. Nowhere is this effect more pronounced 
than in ironical language, which delights in using 
affirmative language to convey critical meanings. 
Metaphor, irony and sarcasm can each sculpt the 
affect of an utterance in complex ways, and each 
tests the limits of conventional techniques for the 
sentiment analysis of supposedly literal texts. 

Figurative language thus poses an especially 
significant challenge to sentiment analysis systems, 
as standard approaches anchored in the dictionary-
defined affect of individual words and phrases are 
often shown to be inadequate in the face of indirect 
figurative meanings. It would be convenient if such 
language were rare and confined to specific genres 
of text, such as poetry and literature. Yet the reality 
is that figurative language is pervasive in almost 
any genre of text, and is especially commonplace 
on the texts of the Web and on social media 
platforms such as Twitter. Figurative language 
often draws attention to itself as a creative artifact, 
but is just as likely to be viewed as part of the 
general fabric of human communication. In any 
case, Web users widely employ figures of speech 
(both old and new) to project their personality 
through a text, especially when their texts are 
limited to the 140 characters of a tweet. 

Natural language researchers have attacked the 
problems associated with figurative interpretations 
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at multiple levels of linguistic representation. 
Some have focused on the conceptual level, of 
which the text is a surface instantiation, to identify 
the schemas and mappings that are implied by a 
figure of speech (see e.g. Veale and Keane (1992); 
Barnden (2008); Veale (2012)). These approaches 
yield a depth of insight but not a robustness of 
analysis in the face of textual diversity. More 
robust approaches focus on the surface level of a 
text, to consider word choice, syntactic order, 
lexical properties and affective profiles of the 
elements that make up a text (e.g. Reyes and Rosso 
(2012, 2014)). Surface analysis yields a range of 
discriminatory features that can be efficiently 
extracted and fed into machine-learning algorithms. 

When it comes to analyzing the texts of the Web, 
the Web can also be used as a convenient source of 
ancillary knowledge and features. Veale and Hao 
(2007) describe a means of harvesting a common-
sense knowledge-base of stereotypes from the Web, 
by directly targeting simile constructions of the 
form “as X as Y” (e.g. “as hot as an oven”, “as 
humid as a jungle”, “as big as a mountain”, etc.). 
Though largely successful in their efforts, Veale 
and Hao were surprised to discover that up to 20% 
of Web-harvested similes are ironic (examples 
include “as subtle as a freight train”, “as tanned as 
an Irishman”, “as sober as a Kennedy”, “as private 
as a park bench”). Initially filtering ironic similes 
manually – as irony is the worst kind of noise 
when acquiring knowledge from the Web – Hao & 
Veale (2010) report good results for an automatic, 
Web-based approach to distinguishing ironic from 
non-ironic similes. Their approach exploits specific 
properties of similes and is thus not directly 
transferrable to the detection of irony in general. 
Reyes, Rosso and Veale (2013) and Reyes, Rosso 
and Buscaldi (2012) thus employ a more general 
approach that applies machine learning algorithms 
to a range of structural and lexical features to learn 
a robust basis for detecting humor and irony in text.  

The current task is one that calls for such a 
general approach. Note that the goal of Task 11 is 
not to detect irony, sarcasm or metaphor in a text, 
but to perform robust sentiment analysis on a fine-
grained 11-point scale over texts in which these 
kinds of linguistic usages are pervasive. A system 
may find detection to be a useful precursor to 
analysis, or it may not. We present a description of 
Task 11 in section 2, before presenting our dataset 

in section 3 and the scoring functions in section 4. 
Descriptions of each participating system are then 
presented in section 5, before an overall evaluation 
in reported in section 6. The report then concludes 
with some general observations in section 7. 

2 Task Description  
The task concerns itself with the classification of 
overall sentiment in micro-texts drawn from the 
micro-blogging service Twitter. These texts, called 
tweets, are chosen so that the set as a whole 
contains a great deal of irony, sarcasm or metaphor, 
so no particular tweet is guaranteed to manifest a 
specific figurative phenomenon. Since irony and 
sarcasm are typically used to criticize or to mock, 
and thus skew the perception of sentiment toward 
the negative, it is not enough for a system to 
simply determine whether the sentiment of a given 
tweet is positive or negative. We thus use an 11-
point scale, ranging from –5 (very negative, for 
tweets with highly critical meanings) to +5 (very 
positive, for tweets with flattering or very upbeat 
meanings). The point 0 on this scale is used for 
neutral tweets, or those whose positivity and 
negativity cancel each other out. While the 
majority of tweets will have sentiments in the 
negative part of the scale, the challenge for 
participating systems is to decide just how negative 
or positive a tweet seems to be. 
   So, given a set of tweets that are rich in metaphor, 
sarcasm and irony, the goal is to determine 
whether a user has expressed a positive, negative 
or neutral sentiment in each, and the degree to 
which this sentiment has been communicated.  

3 Dataset Design and Collection  
Even humans have difficulty in deciding whether a 
given text is ironic or metaphorical. Irony can be 
remarkably subtle, while metaphor takes many 
forms, ranging the dead to the conventional to the 
novel. Sarcasm is easier for humans to detect, and 
is perhaps the least sophisticated form of non-
literal language. We sidestep problems of detection 
by harvesting tweets from Twitter that are likely to 
contain figurative language, either because they 
have been explicitly tagged as such (using e.g. the 
hashtags #irony, #sarcasm, #not, #yeahright) or 
because they use words commonly associated with 
the use of metaphor (ironically, the words 
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“literally” and “virtually” are reliable markers of 
metaphorical intent, as in “I literally want to die ”). 
   Datasets were collected using the Twitter4j API 
(http://twitter4j.org/en/index.html), which supports 
the harvesting of tweets in real-time using search 
queries. Queries for hashtags such as #sarcasm, 
#sarcastic and #irony, and for words such as 
“figuratively”, yielded our initial corpora of 
candidate tweets to annotate. We then developed a 
Latent Semantic Analysis (LSA) model to extend 
this seed set of hashtags so as to harvest a wider 
range of figurative tweets (see Li. et. al., 2014). 
This tweet dataset was collected over a period of 4 
weeks, from June 1st to June 30th, 2014. Though 
URLs have been removed from tweets, all other 
content, including hashtags – even those used to 
retrieve each tweet – has been left in place. Tweets 
must contain at least 30 characters when hashtags 
are not counted, or 40 characters when hashtags 
are counted. All others are eliminated as too short. 

3.1 Dataset Annotation on an 11-point scale 

A trial dataset, consisting of 1025 tweets, was first 
prepared by harvesting tweets from Twitter users 
that are known for their use of figurative language 
(e.g. comedians). Each trial tweet was annotated by 
seven annotators from an internal team, three of 
whom are native English speakers, the other four 
of whom are competent non-native speakers. Each 
annotator was asked to assign a score ranging from 
-5 (for any tweets conveying disgust or extreme 
discontent) to +5 (for tweets conveying obvious 
joy and approval or extreme pleasure), where 0 is 
reserved for tweets in which positive and negative 
sentiment is balanced. Annotators were asked to 
use ±5, ±3 and ±1 as scores for tweets calling for 
strong, moderate or weak sentiment, and to use ±4 
and ±2 for tweets with nuanced sentiments that fall 
between these gross scores. An overall sentiment 
score for each tweet was calculated as a weighted 
average of all 7 annotators, where a double 
weighting was given to native English speakers. 

Sentiment was assigned on the basis of the 
perceived meaning of each tweet – the meaning an 
author presumably intends a reader to unpack from 
the text – and not the superficial language of the 
tweet. Thus, a sarcastic tweet that expresses a 
negative message in language that feigns approval 
or delight should be marked with a negative score 
(as in “I just love it when my friends throw me 

under the bus.”). Annotators were explicitly asked 
to consider all of a tweet's content when assigning 
a score, including any hashtags (such as #sarcasm, 
#irony, etc.), as participating systems are expected 
to use all of the tweet's content, including hashtags.  

Tweets of the training and test datasets – 
comprising 8000 and 4000 tweets respectively –  
were each annotated on a crowd-sourcing platform, 
CrowdFlower.com, following the same annotation 
scheme as for the trial dataset. Some examples of 
tweets and their ideal scores, given as guidelines to 
CrowdFlower annotators, are shown in Table 1. 

Tweet Content Score 
@ThisIsDeep_ you are about as deep as a 
turd in a toilet bowl. Internet culture is 
#garbage and you are bladder cancer. 

-4 

A paperless office has about as much chance 
as a paperless bathroom -3 

Today will be about as close as you'll ever 
get to a "PERFECT 10" in the weather 
world! Happy Mother's Day! Sunny and 
pleasant! High 80. 

3 

I missed voting due to work. But I was 
behind the Austrian entry all the way, so to 
speak. I might enter next year. Who knows? 

1 

Table 1: Annotation examples, given to Annotators 

Scammers tend to give identical or random scores 
for all units in a task. To prevent scammers from 
abusing the task, trial tweets were thus interwoven 
as test questions for annotators on training and test 
tweets. Each annotator was expected to provide 
judgments for test questions that fall within the 
range of scores given by the original members of 
the internal team. Annotators are dismissed if their 
overall accuracy on these questions is below 70%. 
The standard deviation stdu(ui) of all judgments 
provided by annotator ui also indicates that ui is 
likely to be a scammer when stdu(ui)=0. Likewise, 
the standard deviation stdt(tj) of all judgments 
given for a tweet tj allows us to judge that 
annotation Ai,j as given by ui for tj is an outlier if: 

 , ,avg( ) ( )i j i j t j
i

A A std tʹ′
ʹ′

− >   

If 60% or more of an annotator’s judgements are 
judged to be outliers in this way then the annotator 
is deemed a scammer and dismissed from the task. 

Each tweet-set was cleaned of all annotations 
provided by those deemed to be scammers. After 
cleaning, each tweet has 5 to 7 annotations. The 
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ratio of in-range judgments on  trial tweets, which 
was used to detect scammers on the annotation of 
training and test data, can also be used to assign a 
reliability score to each annotator. The reliability 
of an annotator ui is given by R(ui)=mi/ni, where ni 
is the number of judgments contributed by ui on 
trial tweets, and mi is the number of these 
judgments that fall within the range of scores 
provided by the original annotators of the trial 
data. The final sentiment score for tweet S(tj) is the 
weighted average of scores given for it, where the 
reliability of each annotator is used as a weight. 
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The weighted sentiment score is a real number 
in the range [-5 … +5], where the most reliable 
annotators contribute most to each score. These 
scores were provided to task participants in two 
CSV formats: tweet-ids mapped to real number 
scores, and tweet-ids to rounded integer scores. 

3.2 Tweet Delivery 

The actual text of each tweet was not included in 
the released datasets due to copyright and privacy 
concerns that are standard for use of Twitter data. 
Instead, a script was provided for retrieving the 
text of each tweet given its released tweet-id.  

Tweets are a perishable commodity and may be 
deleted, archived or otherwise made inaccessible 
over time by their original creators. To ensure that 
tweets did not perish in the interval between their 
first release and final submission, all training and 
test tweets were re-tweeted via a dedicated account 
to give them new, non-perishable tweet-ids. The 
distributed tweet-ids refer to this dedicated account. 
 

Type # Tweets Mean Sentiment 
Sarcasm 746 -1.94 
Irony 81 -1.35 
Metaphor 198 -0.34 
Overall 1025 -1.78 

Table 2:  Overview of the Trial Dataset  

3.3 Dataset Statistics 
The trial dataset contains a mix of figurative tweets 
chosen manually from Twitter. It consists of 1025 

tweets annotated by an internal team of seven 
members. Table 2 shows the number of tweets in 
each category. The trial dataset is small enough to 
allow these category labels to be applied manually.  
 The training and test datasets were annotated by 
CrowdFlower users from countries where English 
is spoken as a native language. The 8,000 tweets of 
the training set were allocated as in Table 3. As the 
datasets are simply too large for the category labels 
Sarcasm, Irony and Metaphor to be assigned 
manually, the labels here refer to our expectations 
of the kind of tweets in each segment of the dataset, 
which were each collated using harvesting criteria 
specific to different kinds of figurative language. 

Type # Tweets Mean Sentiment 
Sarcasm 5000 -2.25 
Irony 1000 -1.70 
Metaphor 2000 -0.54 
Overall 8000 -1.99 

Table 3: Overview of the Training Dataset 

To provide balance, an additional category Other 
was also added to the Test dataset. Tweets in this 
category were drawn from general Twitter content, 
and so were not chosen to capture any specific 
figurative quality. Rather, the category was added 
to ensure the ecological validity of the task, as 
sentiment analysis is never performed on texts that 
are wholly figurative. The 4000 tweets of the Test 
set were drawn from four categories as in Figure 4. 

Type # Tweets Mean Sentiment 
Sarcasm 1200 -2.02 
Irony 800 -1.87 
Metaphor 800 -0.77 
Other 1200 -0.26 
Overall 4000 -0.50 

Table 4: Overview of the Test Dataset  

4 Scoring Functions 
The Cosine-similarity scoring function represents 
the gold-standard annotations for the Test dataset 
as a vector of the corresponding sentiment scores. 
The scores provided by each participating system 
are represented in a comparable vector format, so 
that the cosine of the angle between these vectors 
captures the overall similarity of both score sets. A 
score of 1 is achieved only when a system provides 
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all the same scores as the human gold-standard. A 
script implementing this scoring function was 
released to all registered participants, who were 
required in turn to submit the outputs of their 
systems as a tab-separated file of tweet-ids and 
integer sentiment scores (as systems may be based 
either on a regression or a classification model).  

A multiplier pcos is applied to all submissions, to 
penalize any that do not give scores for all tweets.  

Thus, cos
#submitted-entries
#all-entries

p =   

E.g., a cherry-picking system that scores just 75% 
of the test tweets is hit with a 25% penalty.  

Mean-Squared-Error (MSE) offers a standard 
basis for measuring the performance of predictive 
systems, and is favored by some developers as a 
basis for optimization. When calculating MSE, in 
which lower measures indicate better performance, 
the penalty-coefficient pMSE is instead given by: 

 
#all-entries

#submitted-entriesMSEp =    

5 Overview of Participating Systems  
A total of 15 teams participated in Task 11, 
submitting results from 29 distinct runs. A clear 
preference for supervised learning methods can be 
observed, with two types of approach – SVMs and 
regression models over carefully engineered 
features – making up the bulk of approaches.  

 Team UPF used regression with a Random-
Sub-Space using M5P as a base algorithm. They 
exploited additional external  resources such as 
SentiWordnet, Depeche Mood, and the American 
National Corpus. Team ValenTo used a regression 
model combined with affective resources such as 
SenticNet (see Poria et al., 2014) to assign polarity 
scores. Team Elirf used an SVM-based approach, 
with features drawn from character N-grams (2 < N 
< 10) and a bag-of-words model of the tf-idf 
coefficient of each N-gram feature. Team BUAP 
also used an SVM approach, taking features from 
dictionaries, POS tags and character n-grams. 
Team CLaC used four lexica, one that was 
automatically generated and three than were 
manually crafted.  Term frequencies, POS tags and 
emoticons were also used as features. Team 
LLT_PolyU used a semi-supervised approach with 

a Decision Tree Regression Learner, using word-
level sentiment scores and dependency labels as 
features. Team CPH used ensemble methods and 
ridge regression (without stopwords), and is 
notable for its specific avoidance of sentiment 
lexicons. Team DsUniPi combined POS tags and 
regular expressions to identify useful syntactic 
structures, and brought sentiment lexicons and 
WordNet-based similarity measures to bear on 
their supervised approach. Team RGU’s system 
learnt a sentiment model from the training data, 
and used a linear Support Vector Classifier to 
generate integer sentiment labels. Team ShellFBK 
also used a supervised approach, extracting 
grammatical relations for use as features from 
dependency tree parses. 
 Team HLT also used an SVM-based approach, 
using lexical features such as negation, intensifiers 
and other markers of amusement and irony. Team 
KElab constructed a supervised model based on 
term co-occurrence scores and the distribution of 
emotion-bearing terms in training tweets. Team 
LT3 employed a combined, semi-supervised SVM- 
and regression-based approach, exploiting a range 
of lexical features, a terminology extraction system 
and and both WordNet and DBpedia. Team 
PRHLT used a deep auto-encoder to extract 
features, employing both words and character 3-
grams as tokens for the autoencoder. Their best 
results were obtained with ensembles of Extremely 
Random Trees with character n-grams as features.  

6 Results and Discussions 

For comparison purposes, we constructed three 
baseline systems, each implemented as a naïve 
classifier with shallow bag-of-word features. The 
results of these baseline systems for both the MSE 
and Cosine metrics are shown in Table 5. 

Baseline Cosine MSE 
Naïve Bayes 0.390 5.672 

MaxEnt 0.426 5.450 

Decision Tree 0.547 4.065 

Table 5: Performance of Three Baseline approaches   

Table 6 shows the results for each participating 
system using these metrics. Team CLaC achieves 
the best overall performance on both, achieving 
0.758 on the Cosine metric and 2.117 on the MSE 
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metric. Most of the other systems also show a clear 
advantage over the baselines reported in Table 5. 

Team Cosine MSE 
CLaC 0.758 2.117 
UPF 0.711 2.458 
LLT_PolyU 0.687 2.6 
elirf 0.658 3.096 
LT3 0.658 2.913 
ValenTo 0.634 2.999 
HLT 0.63 4.088 
CPH 0.625 3.078 
PRHLT 0.623 3.023 
DsUniPi 0.602 3.925 
PKU 0.574 3.746 
KELabTeam 0.552 4.177 
RGU 0.523 5.143 
SHELLFBK 0.431 7.701 
BUAP 0.059 6.785 

Table 6: Overall results, sorted by cosine metric. 
Scores are for last run submitted for each system. 
 
The best performance on sarcasm and irony tweets 
was achieved by teams LLT_PolyU and elirf, who 
ranked 3rd and 4th respectively. Team ClaC came 
first on tweets in the Metaphor category. One run 
of team CPH excelled on the Other (non-figurative) 
category, but scored poorly on figurative tweets.  
Most teams performed well on sarcasm and irony 
tweets, but the Metaphor and Other categories 
prove more of a challenge. Table 7 presents the 
Spearman’s rank correlation between the ranking 
of a system overall, on all tweet categories, and its 
ranking of different categories of tweets. The right 
column limits this analysis to the top 10 systems.  

 Spearman 
Correl – All 

Spearman 
Correl – Top10 

Sarcasm 0.854 0.539 
Irony 0.721 0.382 
Metaphor 0.864 0.939 
Other 0.857 0.624 

Table 7. How well does overall performance correlate 
with performance on different kinds of tweets? 

When we consider all systems, their performance 
on each category of tweet is strongly correlated to 

their overall performance. However, looking only 
at the top 10 performing systems, we see a 
strikingly strong correlation between performance 
overall and performance on the category Metaphor. 
Performance on Metaphor tweets is a bellwether 
for performance on figurative language overall. 
Then category Other also plays an important role 
here. Both the trail data and the training datasets 
are heavily biased to negative sentiment, given 
their concentration of ironic and sarcastic tweets. 
In contrast, the distribution of sentiment scores in 
the test data is more balanced due to the larger 
proportion of Metaphor tweets and the addition of 
non-figurative Other tweets. To excel at this task, 
systems must not treat all tweets as figurative, but 
learn to spot the features that cause figurative 
devices to influence the sentiment of a tweet. 

7 Summary and Conclusions 

This paper has described the design and evaluation 
of Task 11, which concerns the determination of 
sentiment in tweets which are likely to employ 
figurative devices such as irony, sarcasm and 
metaphor. The task was constructed so as to avoid 
questions of what specific device is used in which 
tweet: a glance at Twitter, and the use of the #irony 
hashtag in particular, indicates that there are as 
many folk theories of irony as there are users of the 
hashtag #irony. Instead, we have operationalized 
the task to put it on a sound and more ecologically 
valid footing. The effect of figurativity in tweets is 
instead measured via an extrinsic task: measuring 
the polarity of tweets that use figurative language. 

The task is noteworthy in its use of an 11-point 
sentiment scoring scheme, ranging from -5 to +5. 
The use of 11 fine-grained categories precludes the 
measurement of inter-annotator agreement as a 
reliable guide to  annotator/annotation quality, but 
it allows us to measure system performance on a 
task and a language type in which negativity 
dominates. We expect the trial, training and test 
datasets will prove useful to future researchers who 
wish to explore the complex relation between 
figurativity and sentiment. To this end, we have 
taken steps to preserve the tweets used in this task, 
to ensure that they do not perish through the 
actions of their original creators. Detailed results of 
the evaluation of all systems and runs are shown in 
Tables 9 and 10, or can be found online here:  

http://alt.qcri.org/semeval2015/task11/ 
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Team Name Name of Run Rank Overall Sarcasm Irony Metaphor Other 

ClaC  1 0.758 0.892 0.904 0.655 0.584 

UPF  2 0.711 0.903 0.873 0.520 0.486 

LLT_PolyU  3 0.687 0.896 0.918 0.535 0.290 

LT3  
run 1 4 0.6581 0.891 0.897 0.443 0.346 

run 2  0.648 0.872 0.861 0.355 0.357 

elirf  5 0.6579 0.904 0.905 0.411 0.247 

ValenTo  6 0.634 0.895 0.901 0.393 0.202 

HLT  7 0.630 0.887 0.907 0.379 0.365 

CPH 

ridge 8 0.625 0.897 0.886 0.325 0.218 

ensemble  0.623 0.900 0.903 0.308 0.226 

special-ensemble  0.298 -0.148 0.281 0.535 0.612 

PRHLT 

ETR-ngram 9 0.623 0.891 0.901 0.167 0.218 

ETR-word  0.611 0.890 0.901 0.294 0.129 

RFR-word  0.613 0.888 0.898 0.282 0.170 

RFR-ngram  0.597 0.888 0.898 0.135 0.192 

BRR-word  0.592 0.883 0.880 0.280 0.110 

BRR-ngram  0.593 0.886 0.879 0.119 0.186 

DsUniPi  10 0.601 0.87 0.839 0.359 0.271 

PKU  11 0.574 0.883 0.877 0.350 0.137 

KELabTeam 

  0.531 0.883 0.895 0.341 0.117 

content based 12 0.552 0.896 0.915 0.341 0.115 

emotional pattern based  0.533 0.874 0.900 0.289 0.135 

RGU 

test-sent-final 13 0.523 0.829 0.832 0.291 0.165 

test-sent-warppred  0.509 0.842 0.861 0.280 0.090 

test-sent-predictions  0.509 0.842 0.861 0.280 0.090 

SHELLFBK 

run3 14 0.431 0.669 0.625 0.35 0.167 

run2  0.427 0.681 0.652 0.346 0.146 

run1  0.145 0.013 0.104 0.167 0.308 

BUAP  15 0.058 0.412 -0.209 -0.023 -0.025 

 
Table 9. Detailed evaluation of each submitted run of each system (using the Cosine similarity metric).  
 
Key:  CLaC= Concordia University; UPF= Universitat Pompeu Fabra; LLT_PolyU=Hong Kong Polytechnic 
University; LT3= Ghent University; elirf= Universitat Politècnica de València; ValenTo= Universitat Politècnica 
de València; HLT= FBK-Irst, University of Trento; CPH= Københavns Universitet; PRHLT= PRHLT Research 
Center; DsUniPi= University of Piraeus; PKU= Peking University; KELabTeam= Yeungnam University; RGU= 
Robert Gordon University; SHELLFBK= Fondazione Bruno Kessler; BUAP= Benemérita Universidad Autónoma 
de Puebla 
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Team Name Name of Run Rank Overall Sarcasm Irony Metaphor Other 

ClaC  1 2.117 1.023 0.779 3.155 3.411 

UPF  2 2.458 0.934 1.041 4.186 3.772 

LLT_PolyU  3 2.600 1.018 0.673 3.917 4.587 

LT3 
run1  3.398 1.287 1.224 5.670 5.444 

run2 4 2.912 1.286 1.083 4.793 4.503 

elirf  8 3.096 1.349 1.034 4.565 5.235 

ValenTo  5 2.999 1.004 0.777 4.730 5.315 

HLT  11 4.088 1.327 1.184 6.589 7.119 

CPH 

ridge  3.079 1.041 0.904 4.916 5.343 

ensemble 7 3.078 0.971 0.774 5.014 5.429 

special-ensemble  11.274 19.267 9.124 7.806 7.027 

PRHLT 

ETR-ngram 6 3.023 1.028 0.784 5.446 4.888 

ETR-word  3.112 1.041 0.791 5.031 5.448 

RFR-word  3.107 1.060 0.809 5.115 5.345 

RFR-ngram  3.229 1.059 0.811 5.878 5.243 

BRR-word  3.299 1.146 0.934 5.178 5.773 

BRR-ngram  3.266 1.100 0.941 5.925 5.205 

DsUniPi  10 3.925 1.499 1.656 7.106 5.744 

PKU  9 3.746 1.148 1.015 5.876 6.743 

KELabTeam 

  5.552 1.198 1.255 7.264 9.905 

content based  6.090 1.756 1.811 8.707 11.526 

emotional pattern  12 4.177 1.189 0.809 6.829 7.628 

RGU 

test-sentfinal 13 5.143 1.954 1.867 8.015 8.602 

test-sent-warppred  5.323 1.855 1.541 8.033 9.505 

test-sent-predictions  5.323 1.855 1.541 8.033 9.505 

SHELLFBK 

run3 15 7.701 4.375 4.516 9.219 12.16 

run2  9.265 5.183 5.047 11.058 15.055 

run1  10.486 12.326 9.853 10.649 8.957 

BUAP  14 6.785 4.339 7.609 8.93 7.253 

 
Table 10. Detailed evaluation of each submitted run of each system (using the Mean-Squared-Error metric).  
 
Key: CLaC= Concordia University; UPF= Universitat Pompeu Fabra; LLT_PolyU=Hong Kong Polytechnic 
University; LT3= Ghent University; elirf= Universitat Politècnica de València; ValenTo= Universitat Politècnica 
de València; HLT= FBK-Irst, University of Trento; CPH= Københavns Universitet; PRHLT= PRHLT Research 
Center; DsUniPi= University of Piraeus; PKU= Peking University; KELabTeam= Yeungnam University; RGU= 
Robert Gordon University; SHELLFBK= Fondazione Bruno Kessler; BUAP= Benemérita Universidad Autónoma 
de Puebla  
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Abstract

CLaC Labs participated in two shared tasks
for SemEval2015, Task 10 (subtasks B and
E) and Task 11. The underlying system con-
figuration is nearly identical and consists of
two major components: a large Twitter lex-
icon compiled from tweets that carry cer-
tain selected hashtags (assumed to guaran-
tee a sentiment polarity) and then inducing
that same polarity for the words that occur
in the tweets. We also use standard senti-
ment lexica and combine the results. The lex-
ical sentiment features are further differenti-
ated according to some linguistic contexts in
which their triggers occur, including bigrams,
negation, modality, and dependency triples.
We studied feature combinations comprehen-
sively for their interoperability and effective-
ness on different datasets using the exhaustive
feature combination technique of (Shareghi
and Bergler, 2013a; Shareghi and Bergler,
2013b). For Subtask 10B we used a SVM, and
a decision tree regressor for Task 11. The re-
sulting systems ranked ninth for Subtask 10B,
fourth for Subtask 10E, and first for Task 11.

1 Introduction

The field of Sentiment Analysis is in its second
phase: initially, the task was defined, annotation
standards, corpora, and feature resources were iden-
tified and provided to the research community (see
(Pang and Lee, 2008)). Now, we have regular com-
munity challenges such as the SemEval Twitter Sen-
timent shared tasks which allow us to compare dif-
ferent feature choice and combination across re-

search labs and across successive data sets. We de-
scribe here the systems we submitted to SemEval15
for Twitter Sentiment Analysis at the tweet level
(Task 10B) and Figurative Language in Twitter
(Task 11). The tasks and the design of the datasets
is described in detail in (Rosenthal et al., 2015) for
Task 10 and in (Ghosh et al., 2015) for Task 11. We
also submitted a sentiment lexicon transformed from
our in-house lexical resource for Task 10E.

Our system is based on a pipeline design in 5
major phases, described below. Following standard
text preprocessing, we use Stanford dependencies
(De Marneffe et al., 2006) and linguistic features
negation, modality and their scope in connection
with standard sentiment lexica from the literature
and an in-house lexical resource compiled with the
technique used for the NRC lexicon (Mohammad et
al., 2013). These features were successful in both
Task 10B (rank 9 on 40 for Twitter 2015 data, sev-
enth on 40 for Twitter 2015 sarcasm data) and Task
11 (rank 1 of 35 runs by 15 teams). Our sentiment
lexicon submitted to Task 10E ranked fourth of ten.

2 Pipeline Design

CLaCSentiPipe is a pipeline system that attempts to
test the interoperability of different sentiment lexica
and a selected set of linguistic annotations.

The lexical resources used are aFinn (Nielsen,
2011), MPQA (Wilson et al., 2005), BingLiu (Hu
and Liu, 2004), and Gezi, our own lexical resource
described below.

Third party processing resources in our GATE en-
vironment (Cunningham et al., 2013) include a hy-
brid of Annie and CMU tokenizers (Cunningham
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et al., 2002; Gimpel et al., 2011), named entity
recognition (Ritter et al., ), Stanford Parser Version
3.4.1 (Socher et al., 2013) and dependency module
(De Marneffe et al., 2006).

Linguistic notions used are negation and modal-
ity triggers (Kilicoglu, 2012; Rosenberg, 2013) and
scope (Rosenberg, 2013) as well as dependency re-
lations (De Marneffe et al., 2006).

Phase 1 Following tokenization, sentence split-
ting, POS tagging, and named entity recognition
(Ritter et al., ) (to fuse multi-word names into a sin-
gle token) and lookup in the sentiment lexica used,
we ignore Twitter-specific items (@name, URLs
. . . ) when parsing with the Stanford parser.

Phase 2 Using POS tags information for disam-
biguation, the prior polarity (value positive, neg-
ative, neutral and score where available) is deter-
mined for each token from each of the lexical re-
sources.

Phase 3 Based on the Stanford dependencies pro-
duced in Phase 1, we identify negation and modality
triggers and their scope (Rosenberg, 2013) and look
up PMI scores (Church and Hanks, 1990) for depen-
dency triples in the Gezi dependency resource.

Phase 4 The resulting features are the polarity
class according to each lexical resource, embedded-
ness in modality or negation, as well as sentiment
scores for each lexical token according to appro-
priate lexical resources; dependency score features
using PMI scores of dependency triples and their
types; dependency count features mapping PMI
scores into discrete polarity classes; ad hoc features
from specific annotations observed on training data.

Phase 5 The resulting feature space is grouped
into subsets of features in order to create fea-
ture combinations (Shareghi and Bergler, 2013a;
Shareghi and Bergler, 2013b) and processed with
Weka (Witten and Frank, 2011) libSVM (Chang
and Lin, 2011) with RBF kernel and parameters of
cost=5, gamma=0.001 and weights=[neutral=1; pos-
itive=2; negative=2.9] for Subtask 10B and M5P
(Wang and Witten, 1997), a decision tree regressor,
to predict continuos values1 for Task 11.

1http://www.opentox.org/dev/
documentation/components/m5p

3 Lexica

In the past two years, the team that developed the
NRC lexicon (Mohammad et al., 2013) dominated
the Twitter sentiment task and our first question was:
is the NRC lexicon itself the ultimate resource, or is
the technique that derived it the essential lesson, and
can that technique be reused to similar effect. We
compiled a similar resource, Gezi, and compared it
with the NRC lexicon, but also much smaller tradi-
tional resources, namely Bing Liu’s dictionary (Hu
and Liu, 2004), MPQA (Wiebe et al., 2006), and
aFinn (Nielsen, 2011), a manually compiled dic-
tionary. Extensive ablation studies showed that all
the resulting dictionaries contributed to the best per-
forming feature combination, but that the contribu-
tion of the lexica was not proportional to size (sug-
gesting significant overlap). Surprisingly, aFinn, the
smallest lexicon, by itself performs better than any
of the other dictionaries by themselves and it is the
one stable component in all our top performing fea-
ture combinations. In our competition system, we
did not use the NRC lexicon, in order to assess
whether Gezi, derived in a similar manner, was per-
forming as well.

4 Gezi Lexical Resources

Gezi corpus To assess whether the strong perfor-
mance of the NRC lexicon can be replicated and
enhanced, we used their technique to compile a
new resource, Gezi, by selecting positive and neg-
ative hashtags from the Twitter API from Decem-
ber 2013 to May 2014. The set of 35 positive and
34 negative seed hashtags were obtained from the
Oxford American Writer’s Thesaurus (Moody and
Lindberg, 2012) by expanding the adjectives good
and bad, resulting in nearly 20 million tweets, from
which unigram, bigram, and dependency triple in-
formation was collected.

After removing retweets, tweets with conflicting
hashtags, and tweets with little or no content words,
as well as all URLs in tweets, we annotate the re-
maining tweets with the polarity class of their seed
hashtag for our Gezi tweet corpus and project the
tweet polarity onto each token inside the tweet for
our unigram and bigram features.
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Data processing After applying Phase 1 to the
Gezi corpus the same way we use it in our main
pipeline, we also parse tweets and identify negation
triggers and their scopes. Then we record counts
of unigrams, bigrams and dependency triples (type-
head-modifier) in the context they occurred by also
taking negation scope into consideration. For in-
stance; if a term occurs in a positive-annotated tweet
where it is not in the scope of a negation, its positive
count is incremented; if it is in a positive-annotated
tweet and in the scope of negation, then its negated-
positive count is incremented. This reflects the dif-
ferent contexts in which the terms of the lexicon
were found and associates them with the resulting
sentiment. In addition, we keep terms with different
POS tags separate in the resources. The counts of
the terms in the positive, negative, negated-positive
and negated-negative categories for the entire col-
lection are then transformed into association scores
using pointwise mutual information.

NRC and Gezi A quick comparison of Gezi and
NRC unigrams and bigrams on three years of Sem-
Eval data in Table 1 shows their performance is
close, with a small advantage for the much larger
Gezi lexicon. Analyzing overlap of NRC (25721
unigrams) and Gezi (220399 unigrams), we find
they agree only on 13957 of 16868 shared entries
(both have higher agreement rates with aFinn!)

We interpret these findings as confirmation that
the NRC technique can profitably be replicated and
thus be used to create sentiment lexica that are big-
ger or smaller, that span a relevant period or con-
tain relevant topics. We also conclude that size alone
does not change results proportionally, as these large
lexica clearly expand into the long tail of infre-
quently used words.

SemEval Test data
2015 2014 2013

NRC unigrams 49.83 52.39 50.9
NRC bigrams 51.31 53.48 52.31
Gezi unigrams 54.65 60.81 57.86
Gezi bigrams 51.14 56.40 50.45
all four combined 56.07 64.26 59.60

Table 1: Comparison NRC and Gezi.

5 Features and Feature Space

Primary Features Lexicon features (aFinn, NRC,
. . . ) encode the prior polarity of the terms in a lexi-
con.

Recent work in our lab on embedding predication
(Kilicoglu, 2012), negation (Rosenberg, 2013), and
modality (Rosenberg et al., 2012) highlighted that
syntactically embedding constructions exert an in-
fluence over the meaning of constituents, so we ap-
plied this insight to sentiment values. On the 2013
dataset, most (of the 6822) tweets contained named
entities (6286), as expected, but surprisingly the sec-
ond most frequent feature was modality (1785), fol-
lowed by negation (1356). Thus these features have
the potential to influence the results to a measurable
degree.

These linguistic context features were encoded
as occurrences. The general schema of this in-
tegration for our system can be formulated as
polarityClass,lexicalResource,lin-
guisticScope, where polarityClass is
one of positive, negative, neutral, strong positive,
strong negative, lexicalResource represents a
lexical resource and linguisticScope is one of
none, negation, modality, negation+modality. For
each tweet token, its prior polarity and any scope
annotation is checked (a score feature is created if a
lexicon provides score information for its terms).

The features for each feature type are aggregated
into tweet-level aggregates, creating a compact fea-
ture space (94 features for Subtask 10B, 90 for Task
11).

Table 2 shows the primary features created from
the aFinn lexical resource for Example 1.

(1) El Classico on a Sunday Night isn’t per-
fect for the Monday Morning !!

This particular example has only one sentiment
trigger in aFinn, perfect, with aFinn score=3 and
positive-aFinn=1 (it is a strong positive sentiment
trigger in the lexicon). In the context of Example 1,
however, it occurs in the scope of a negation, thus
the score is multiplied by -0.5 and the count fea-
ture positive-aFinn-negated=1 is activated instead,
resulting in the feature assignment of Table 2.

Secondary Features The contrastive conjunction
but and a list of contrastive adverbs (although, etc)
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feature value
positive-aFinn 0
positive-aFinn-negated 1
positive-aFinn-mod 0
positive-aFinn-mod-negated 0
negative-aFinn 0
negative-aFinn-negated 0
negative-aFinn-mod 0
negative-aFinn-mod-negated 0
aFinn-score -1.5

Table 2: aFinn features for Example 1.

each constitute a feature, as do named entities. Ad-
ditional ad hoc features are some special Twitter-
specific POS tags (i.e. emphasis from !!!!!), special
phrases indicative of sentiment (can’t wait). We also
found the first and last token in a tweet to carry po-
tentially special meaning, as well as the association
scores between the highest and lowest sentiment car-
riers in a tweet.

Feature Combinations We create feature spaces
for each combination of feature subsets described
above and we experiment on each combination. The
submitted feature combinations for Subtask 10B and
Task 11 were selected using the exhaustive feature
combination technique of (Shareghi and Bergler,
2013a; Shareghi and Bergler, 2013b).

# feat’s
Primary Feature Subsets
aFinn 9
MPQA 12
BingLiu 8
NRC unigrams 17
NRC bigrams 17
Gezi unigrams 17
Gezi bigrams 17
dependency scores 13
dependency counts 8

Secondary Feature Subsets
pos tag based scores and counts 9
frequencies of specific annotations 12
position and top-lowest scores 6

Table 3: Feature subset bundles.

Table 3 lists the feature bundles used in our abla-
tion studies.

6 Subtask 10B: Polarity Classification of
Tweets

The task is a 3-way classification problem of la-
belling a tweet as positive, neutral, or negative, see
(Rosenthal et al., 2015) for a detailed description.

We trained an SVM classifier for our experiments
using last year’s test sets for development. Perform-
ing manual feature selection, we selected not the fea-
ture combination that performed best on the train-
ing data but instead one that was close to the top
on 2015 training data and both, 2014 and 2013 test
data (for robustness) but that did not include NRC
data (to better assess Gezi). The competition system
included aFinn, MPQA, Bing Liu, Gezi unigrams
and dependency based features in addition to all sec-
ondary features listed above.

Results The task of assigning sentiment to a tweet
attracted the most participants. CLaC-SentiPipe
ranked 9 of 40, a very strong placement considering
less than 3% separated our results from the top rank-
ing one. A comparison of the competing systems
on the past two years’ data shows that our system
ranked 7 on 2013 Twitter data, 10 on 2014 Twitter
data, 6 on 2014 Live Journal data, 18 on SMS mes-
sages from 2013, and 10 on Twitter 2014 Sarcasm
data. This demonstrates robustness in performance.
The detailed official results are shown in Table 4.

The best performing system dips to rank 12 and
13 for the LiveJournal and Sarcasm tasks of the
previous years, which indicates that the different
datasets compared show a certain difference, but not
a big one. The very close performance of the sys-
tems in the top quarter on this task (less than 3%
difference) suggests that the different approaches are
drowned out by the constancy in the datasets: we
may have reached the beginning of the long tail at
this margin, where improvements contribute only
small amounts and are not individually measurable
in the general task.

7 Subtask 10E: Determining Strength of
Association of Terms

SemEval 2015 Subtask 10E was a pilot task re-
questing association scores of terms extracted from
tweets. The test set consisted of words or phrases
that had to be associated with scores between 0 and
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positive negative neutral overall
dataset P R F1 P R F1 P R F1 F1
Twitter2015 75.58 63.20 68.84 43.51 75.34 55.17 66.63 60.08 63.19 62.00
Twitter2015-sarcasm 55.56 55.56 55.56 61.54 61.54 61.54 43.75 43.75 43.75 58.55
LiveJournal2014 79.33 66.51 72.36 68.39 82.57 74.81 67.87 68.86 68.36 73.59
SMS2013 59.26 68.29 63.46 54.39 73.86 62.65 83.55 68.60 75.34 63.05
Twitter2013 73.45 75.13 74.28 59.50 75.54 66.57 75.66 66.52 70.80 70.42
Twitter2014 78.76 70.98 74.67 58.53 74.75 65.65 63.10 66.97 64.97 70.16
Twitter2014Sarcasm 50.91 84.85 63.64 90.91 25.00 39.22 40.00 61.54 48.48 51.43

Table 4: Official CLaC-SentiPipe results for Task 10B: rank 9.

1 where 1 stands for maximum association with pos-
itive sentiment and 0 does for maximum association
with negative sentiment.

We followed a simple, rule-based approach:

1. aFinn sentiment scores and Gezi (unigrams and
bigrams) PMI values are used

2. if a term is part of a bigram, the unigram sen-
timent trigger and negation annotations are re-
moved, if they exist

3. if a trigger is in negation scope, its prior senti-
ment score is multiplied with -0.5

4. if there is more than one sentiment trigger per
term, the triggers’ scores are summed up

5. each prior sentiment score is scaled to [0,1]

6. if there is no trigger for a term, score is 0.5

Results The evaluation metrics are Kendall and
Spearman rank correlation coefficients (Nelson,
2001) for subtask 10E between gold values of words
or phrases and predicted values. Gold values are hu-
man judgements from the compilation of the NRC
lexicon (Kiritchenko et al., 2014).

Our simple rule-based and lexica-driven system
submitted for Task 10E ranked 4th among 10 sub-
mitted systems in both correlation coefficient evalu-
ations. Our Kendall rank correlation coefficient re-
sult is 0.584 where all results range between 0.625
and 0.254, and our Spearman rank correlation coef-
ficient result is 0.777 where results range between
0.817 and 0.373.

8 Task 11: Figurative Language

Figurative language permeates daily life and so-
cial media, conveying non-explicit meanings using
tropes such as irony, sarcasm, or metaphor. How-
ever, understanding these phenomena is not trivial
for sentiment analysis systems, that usually assume
that each word has only one (literal) meaning and an
a priori sentiment value.

SemEval 2015 Subtask 11 Sentiment Analysis of
Figurative Language in Twitter was organized for
the first time this year (Ghosh et al., 2015). The
challenge dataset contains tweets that contain at
least one instance of figurative language and non-
figurative tweets (labelled other). The labels are
in form of sentiment scores obtained from human
judgements. The dataset distinguished 3 types of
figurative language, Sarcasm, Irony and Metaphor.
The organizers made the tweet data available with
both integer-based and float-based scores.

We tested the robustness of our linguistic em-
bedding features by submitting the same pipeline
for text processing, feature creation and the exhaus-
tive feature combination evaluation technique of
(Shareghi and Bergler, 2013a; Shareghi and Bergler,
2013b) via 10-fold cross validation on the training
set with M5P (Wang and Witten, 1997), a deci-
sion tree regressor. We evaluated 10-fold cross val-
idation predictions by calculating correlation coeffi-
cients (Nelson, 2001).

The extracted features are the same as the features
we extracted for Subtask 10B. The only difference
is the gold labels since Task 11 requires continuous
classes while these are discrete in Subtask 10B.

We used float-based gold labels for training data
and treat the problem as a regression problem.
The output of our system’s predictions were then
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MSE
Overall Sarcasm Irony Metaphor Other
2.117 1.023 0.779 3.155 3.411
Cosine
Overall Sarcasm Irony Metaphor Other
0.758 0.892 0.904 0.655 0.584

Table 5: CLaC-SentiPipe in Task 11: rank 1.

rounded to integer values, as required.

Results The single submission from CLaC ranked
first in both, cosine and mean squared error mea-
sures. There were wide margins between the first
three systems.

The different types of figurative language were
scored individually, see Table 5. In mean square
error, CLaC ranked first in the overall score, the
metaphor, and other categories. For the cosine mea-
sure, the third system of a competitor obtained best
performance in the other category, but with a high
mean squared error.

The second best system, interestingly, does not
hold best performance in a single category, which
demonstrates the good performance of a steady ap-
proach. The third ranked team obtained best per-
formance for irony both in cosine similarity and
least squared error, but not in their best performing
(ranked) submission.

Our system has shown robustness across tasks and
the linguistic features encoded have been validated
for their adaptability to figurative language.

Further analysis We compared our technique
with automatic forward feature selection, which in-
terestingly selected the following six features: Gezi
strong negative unigram, Gezi strong negative bi-
gram, NRC strong positive unigram, NRC strong
positive bigram: all four under scopes of both nega-
tion and modality; average scores of hashtag senti-
ment; counts of named entities. The results for this
feature set would have been 66.41, which places it
between the third and fourth-ranked systems in the
competition.

This reinforces the observation that negation and
modality contexts interoperate well with strong lex-
icon scores and are essential.

9 Conclusion

CLaCSentiPipe showed a strong top quarter perfor-
mance in sentiment annotation of tweets and in its
submitted lexicon, but it excelled at figurative lan-
guage. We claim that the use of linguistic fea-
tures negation, modality, embedding and depen-
dency triples provides a wider context to the a pri-
ori sentiment values found in a lexicon. We com-
bined our own large Twitter derived lexicon (Gezi)
with standard resources for a range of a priori values.
Gezi used the technique of extracting tweets with
hashtags that are believed to guarantee sentiment po-
larity and inducing sentiment values for the words
contained accordingly. This technique has been used
for the NRC lexicon and here we showed that it can
be reimplemented with good success. Our lexicon
was derived from a Twitter stream of two years ago.
The drastically lower performance of all systems on
2015 test data as compared to 2014 or 2013 data sug-
gests that some events or story lines in the 2015 data
use sentiment triggers differently.

Closeness of results suggest that the systems
largely cover common ground, and that their special-
izations now fall in the area of the long tail, where
incremental improvements become small and are
hard to detect and measure. This confirms the obser-
vation that sentiment carrying words form a fuzzy
set as demonstrated by (Andreevskaia and Bergler,
2006).

It is thus especially pleasing that the same system
performed best on Task 11, sentiment annotation
of tweets containing figurative language of various
forms: irony, sarcasm, metaphor, or other. Here, we
feel the explicit annotation of the embedding con-
structs has given the system the required degree of
freedom to adapt to the non-literal usage. We inter-
pret the fact that our features had not been designed
specifically for this task (but were repurposed from
Task 10 and merely retrained) as an indicator of ro-
bustness and a strong endorsement of our linguisti-
cally inspired features.
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Abstract 

SemEval-2015 Task 12, a continuation of 

SemEval-2014 Task 4, aimed to foster re-

search beyond sentence- or text-level senti-

ment classification towards Aspect Based 

Sentiment Analysis. The goal is to identify 

opinions expressed about specific entities 

(e.g., laptops) and their aspects (e.g., price). 

The task provided manually annotated reviews 

in three domains (restaurants, laptops and ho-

tels), and a common evaluation procedure. It 
attracted 93 submissions from 16 teams. 

1 Introduction and Related Work 

The rise of e-commerce, as a new shopping and 

marketing channel, has led to an upsurge of review 

sites for a variety of services and products. In this 

context, Aspect Based Sentiment Analysis (ABSA) 
-i.e., mining opinions from text about specific enti-

ties and their aspects- can help consumers decide 

what to purchase and businesses to better monitor 
their reputation and understand the needs of the 

market (Pavlopoulos 2014). Given a target of in-

terest (e.g., Apple Mac mini), an ABSA method 

can summarize the content of the respective re-
views in an aspect-sentiment table like the one in 

Fig 1. Some review sites also generate such tables 

based on customer ratings, but usually only for a 
limited set of predefined aspects and not from free-

text reviews.  

Several ABSA methods have been proposed for 
various domains, like consumer electronics (Hu 

and Liu {2004a, 2004b}), restaurants (Ganu et al., 

2009) and movies (Thet et al., 2010). The available 

methods can be divided into those that adopt do-
main-independent solutions (Lin and He, 2009), 

and those that use domain-specific knowledge to 

improve their results (Thet et al., 2010). Typically, 
most methods treat aspect extraction and sentiment 

classification separately (Brody and Elhadad, 

2010), but there are also approaches that model the 
two problems jointly (Jo and Oh, 2011).  

Figure 1. Table summarizing the average sentiment for 

each aspect of an entity. 

 

Publicly available ABSA datasets adopt differ-
ent annotation schemes for different subtasks and 

languages (Pavlopoulos 2014). For example, the 

datasets of McAuley et al. (2012) provide aspects 
and respective ratings at the review level (i.e., as-

pects and ratings associated with entire reviews, 

not particular sentences)1 about Beers, Pubs, Toys 

and Games, and Audiobooks. The reviews are ob-
tained from sites that allow users to evaluate a 

product not only in terms of its overall quality, but 

also focusing on specific predefined aspects (e.g. 
“smell” and “taste” for Beers, “fun” and “educa-

tional value” for Toys and Games). The IGGSA 

Shared Tasks on German Sentiment Analysis 

(Ruppenhofer et al., 2014) provided human anno-
tated datasets of political speeches (STEPS task) 

                                                        
1 A subset of the datasets has been annotated with aspects at 
the sentence level. 
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and reviews about products (StAR task) like coffee 

machines and washers. The StAR task focused on 
the extraction of evaluative phrases (e.g., “bad”) 

and aspect expressions (e.g., “washer”). The 

STEPS dataset includes annotations for evaluative 

phrases, opinion targets, and the corresponding 
sources (opinion holders). The extraction of opin-

ion targets and holders has also been addressed in 

the context of the Multilingual Opinion Analysis 
Task (Seki et al., 2007; Seki et al., 2008; Seki et 

al., 2010) and the Sentiment Slot Filling2 Task of 

the Knowledge Base Population Track (Mitchell, 
2013). However, these tasks deal with the identifi-

cation of opinion targets in general, not in the con-

text of ABSA.  

SemEval-2014 Task 4 (SE-ABSA14) provided 
datasets annotated with aspect terms (e.g., “hard 

disk”, “pizza”) and their polarity for laptop and 

restaurant reviews, as well as coarser aspect cate-
gories (e.g., PRICE) and their polarity only for res-

taurants3 (Pontiki et al., 2014). The task attracted 

165 submissions from 32 teams that experimented 
with a variety of features (e.g., based on n-grams, 

parse trees, named entities, word clusters), tech-

niques (e.g., rule-based, supervised and unsuper-

vised learning), and resources (e.g., sentiment 
lexica, Wikipedia, WordNet). The participants ob-

tained higher scores in the restaurants domain. The 

laptops domain proved to be harder involving more 
entities (e.g., hardware and software components) 

and complex concepts (e.g., usability, portability) 

that are often discussed implicitly in the text. The 

SE-ABSA14 task set-up has been adopted for the 
creation of aspect-level sentiment datasets in other 

languages, like Czech (Steinberger et al., 2014). 

SemEval-2015 Task 12 (SE-ABSA15) built up-
on SE-ABSA14 and consolidated its subtasks (as-

pect category extraction, aspect term extraction, 

polarity classification) into a principled unified 
framework (described in Section 2). In addition, 

SE-ABSA15 included an aspect level polarity clas-

sification subtask for the hotels domain in which 

no training data were provided (out-of-domain 
ABSA). The annotation schema and the provided 

datasets are described in Section 3. The evaluation 

measures and the baseline methods are described 
in Section 4, while the evaluation scores and the 

                                                        
2 http://www.nist.gov/tac/2014/KBP/Sentiment/index.html 
3 The SE-ABSA14 inventory of categories for the restaurants 
domain is similar to the one of Ganu et al. (2009). 

main characteristics of the developed systems are 

presented in Section 5. The paper concludes with a 
general assessment of the task. 

2 Task Set-Up 

2.1 ABSA Framework: From SE-ABSA14 to 

SE-ABSA15 

In SE-ABSA14, given a sentence from a user re-

view about a target entity e (e.g., a laptop), the goal 
was to identify all aspects (explicit terms or cate-

gories) and the corresponding polarities. Following 

Liu (2006) & Zhang and Liu (2014), an aspect 

(term or category) indicated: (a) a part/component 
of e (e.g., battery), (b) an attribute of e (e.g., price), 

or (c) an attribute of a part/component of e (e.g., 

battery life). In SE-ABSA15, an aspect category is 
defined as a combination of an entity type E and an 

attribute type A. This definition of aspect makes 

more explicit the difference between entities and 
the particular facets that are being evaluated. E can 

be the reviewed entity e itself (e.g., laptop), a 

part/component of it (e.g., battery or customer sup-

port), or another relevant entity (e.g., the manufac-
turer of e), while A is a particular attribute (e.g., 

durability, quality) of E. E and A are concept names 

(classes) from a given domain ontology and do not 
necessarily occur as terms in a sentence. For ex-

ample, in “They sent it back with a huge crack in it 

and it still didn't work; and that was the fourth 
time I’ve sent it to them to get fixed” the reviewer 

is evaluating the quality (A) of the customer sup-

port (E) without explicitly mentioning it.  

In contrast to SE-ABSA14, in the current 
framework aspect terms correspond to explicit 

mentions of the entities E (e.g., service, pizza) or 

attributes A (e.g., price, quality). However, only the 
extraction of the explicit mentions of E is required 

(see Section 2.2). Another difference is that the 

datasets of SE-ABSA15 consist of whole reviews, 

not isolated sentences. Correctly identifying the E, 
A pairs of a sentence and their polarities often re-

quires examining a wider part or the whole review.  

In this setting, the ABSA problem has been for-
malized into a principled unified framework in 

which all the identified constituents of the ex-

pressed opinions (i.e., opinion target expressions, 
aspects and sentiment polarities) meet a set of 

guidelines/specifications and are linked to each 

other within tuples. The extracted tuples directly 
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reflect the intended meaning of the texts and, thus, 

can be used to generate structured aspect-based 
opinion summaries from user reviews in realistic 

applications (e.g., review sites). 

2.2 Task Description 

SE-ABSA15 consisted of the following subtasks. 

Participants were free to choose the subtasks, slots 
and domains they wished to participate in.  

Subtask 1: In-domain ABSA. Given a review 

text about a laptop or restaurant, identify all the 
opinion tuples with the following types (tuple 

slots) of information: 

Slot 1: Aspect Category. The goal is to identify 
every entity E and attribute A pair towards which 

an opinion is expressed in the given text. E and A 

should be chosen from predefined inventories of 

entity types (e.g., LAPTOP, MOUSE, RESTAURANT, 
FOOD) and attribute labels (e.g., DESIGN, PRICE, 

QUALITY). The E, A inventories for each domain 

are described in section 3. 
Slot 2: Opinion Target Expression (OTE). 

The task is to extract the OTE, i.e., the linguistic 

expression used in the given text to refer to the 

reviewed entity E of each E#A pair. The OTE is 
defined by its starting and ending offsets. When 

there is no explicit mention of the entity, the slot 

takes the value “NULL”. The identification of Slot 2 
values was required only in the restaurants domain. 

Slot 3: Sentiment Polarity. Each identified 

E#A pair has to be assigned one of the following 
polarity labels: positive, negative, neutral (mildly 

positive or mildly negative sentiment). 

Two examples of opinion tuples with Slot 1-3 

values from the restaurants domain are shown be-
low. Such tuples can be used to generate aspect-

sentiment tables like the one of Fig 1. 
 

a. The food was delicious but do not come here 
on an empty stomach.  →  
{category= “FOOD#QUALITY”, target= “food”,  

from: “4”, to: “8”, polarity= “positive”},  

{category= “FOOD#STYLE_OPTIONS”4, target = 

“food”, from: “4”, to: “8”, polarity= “negative”} 

 
b. Prices are in line. →  

{category: “RESTAURANT#PRICES”, target= “NULL”, 

from: “-”, to: “-”, polarity: “neutral”} 

                                                        
4 Opinions evaluating the food quantity (e.g. portions size) are 
assigned the label “FOOD#STYLE_OPTIONS”. 

Subtask 2: Out-of-domain ABSA. In this sub-

task, participants had the opportunity to test their 
systems in a previously unseen domain (hotel re-

views) for which no training data was made avail-

able. The gold annotations for Slots 1 and 2 were 

provided and the teams had to return the sentiment 
polarity values (Slot 3). 

3 Datasets and Annotation 

3.1 Data Collection 

Datasets for three domains (laptops, restaurants, 

hotels) were provided; consult Table 1 for more 

information.  
 

 Laptops Restaurants Hotels 

 Training data 

Review texts 277 254 - 

Sentences 1739 1315 - 

 Test data 

Review texts 173 96 30 

Sentences 761 685 266 

Table 1. Datasets provided for ABSA. 

 

Note that in the domain of hotels no training da-

ta were provided (Out-of-Domain ABSA). 

3.2 Annotation Schema and Guidelines 

Given a review text about a laptop, a restaurant or 

a hotel, the task of the annotators was to identify 

opinions expressed towards specific entities and 
their attributes and to assign the respective aspect 

category (Slot 1) and polarity (Slot 3) labels. The 

category (E#A) values had to be chosen from pre-
defined inventories of entities and attributes for 

each domain; the inventories were described in 

detail in the respective annotation guidelines5. In 

particular, the entity E could be assigned 22 possi-
ble labels for the laptops domain (e.g., LAPTOP, 

SOFTWARE, SUPPORT), 6 labels for the restaurants 

domain (e.g., RESTAURANT, FOOD), and 7 labels 
for the hotels domain (e.g., HOTEL, ROOMS). The 

attribute A could be assigned 9 possible labels for 

the laptops domain (e.g., USABILITY), 5 labels for 

the restaurants domain (e.g., QUALITY), and 8 la-
bels for the hotels domain (e.g., COMFORT). The 

                                                        
5 The detailed annotation guidelines are available at: 
http://alt.qcri.org/semeval2015/task12/index.php?id=data-and-
tools 
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full inventories of the aspect category labels for 

each domain are provided below in appendices A-
C. Quite often reviews contain opinions towards 

entities that are not directly related to the entity 

being reviewed, for example, restaurants/hotels 

that the reviewer has visited in the past, other lap-
tops or products (and their components) of the 

same or a competitive brand. Such entities as well 

as comparative opinions are considered to be out of 
the scope of SE-ABSA15. In these cases, no opin-

ion annotations were provided.  

The {E#A, polarity} annotations had to be as-
signed at the sentence level taking into account the 

context of the whole review. For example, “Laptop 

still did not work, blue screen within a week...” 

(Previous sentence: “Horrible customer support-
they lost my laptop for a month-got it back 3 

months later”) had to be assigned a negative opin-

ion about the customer support, not about the oper-
ation of the laptop, as implied by the previous 

sentence. Similarly, in “I was so happy with my 

new Mac.” (Next sentences: “For two months... 
Then the hard drive failed.”), even though the re-

viewer says how happy he/she was with the laptop, 

he/she is expressing a negative opinion. 

For the polarity slot the possible values were: 
positive, negative, and neutral. Contrary to SE-

ABSA14, the “neutral” label applies only to mildly 

positive or mildly negative sentiment, thus it does 
not indicate objectivity (e.g., “Food was okay, 

nothing great.” → {FOOD#QUALITY, “Food”, neu-

tral}). Another difference is that this year the “con-
flict” label was not used, since –due to the adopted 

fine-grained aspect classification schema– it is 

very rare to encounter (in a sentence) both a posi-
tive and a negative opinion about the same attrib-

ute A of an entity E. In the few cases where this 

happened, the dominant sentiment was chosen 
(e.g., “The OS takes some getting used to but the 

learning curve is so worth it!” → {OS#USABILITY, 

positive}). 
For the restaurants and the hotels domain the 

annotators also had to tag the OTE (explicit men-

tion) for each identified entity E (Slot 2). Such 
mentions can be named entities (e.g., “The Four 

Seasons”), common nouns (e.g., “place”, “steak”, 

“bed”) or multi-word terms (e.g., “vitello alla mar-

sala”, “conference/banquet room”). Similarly to 
SE-ABSA14, the identified OTEs were annotated 

as they appeared, even if misspelled. When an 

evaluated entity E was only implicitly inferred or 

referred to (e.g., through pronouns), the OTE slot 
was assigned the value “NULL” (e.g. “Everything 

was wonderful.” → {RESTAURANT#GENERAL, 

NULL, positive}). 
In the laptops domain we did not provide OTE 

annotations, since most entities are instantiated 

through a limited set of expressions (e.g., 
MEMORY: “memory”, “ram”, CPU: “processing 

power”, “processor”, “cpu”) as opposed to the res-

taurants domain, where for example, the entity 
“FOOD” is instantiated through a variety of food 

types and dishes (e.g. “pizza”, “Lobster Cobb Sal-

ad”). Furthermore, LAPTOP, which is the majority 

category label in laptops (see Section 3.3), is in-
stantiated mostly through pronominal mentions, 

while the explicit mentions are limited to nouns 

like laptop, computer, product, etc.  

3.3 Annotation Process and Statistics 

Each dataset was annotated by a linguist (annotator 

A) using BRAT (Stenetorp et al., 2012), a web-

based annotation tool, which was configured ap-

propriately for the needs of the task. Then, one of 
the organizers (annotator B) validated/inspected 

the resulting annotations. When B was not confi-

dent or disagreed with A, a decision was made col-
laboratively between them and a third annotator. 

The main disagreements encountered during the 

annotation process are summarized below: 
Slot 1. In the laptops domain the main difficulty 

was that in some negative evaluations the annota-

tors were unsure about the actual problem/target. 

For example, in “Sometimes the screen even goes 
black on this computer”, the black screen may be 

related to the graphics, the laptop operation (e.g., 

motherboard issue) or the screen itself. The deci-
sion for such cases was to assign the E#A pair that 

reflected what the reviewer is saying and not the 

possible interpretations that a technician would 

give. So, if someone reports screen issues without 
providing further details, then the opinion is con-

sidered to be about the screen6. Another issue was 

when an attribute could be inferred from an explic-
itly evaluated attribute. For example, DESIGN af-

fects USABILITY (e.g., “With the switch being at 

the top you need to memorize the key combination

                                                        
6 “Blue screen” is an exception since it is well-known that it 
refers to the laptop operation. 
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Train Test

 Figure 2. Aspect category (E#A) distribution in the restaurants domain. REST = restaurant, SERV = service, 
AMB = ambience, LOC = location, GEN=general, PRIC = price, S&O = style&options, MISC= miscellaneous

Figure 3. LAPTOP#ATTRIBUTE categories distribution in the laptops domain. LP= laptop, O&P= operation 
&performance, QUAL= quality, D&F= design &features, USAB=usability, CONN=connectivity, PORT=portability.

rather than just flicking a switch”). In such cases 

annotators assigned both attribute labels. The an-

notation in the restaurants domain was easier, due 
to the less fine-grained schema. A common prob-

lem was that (as in SE-ABSA14) the distinction 

between the GENERAL and MISCELLANEOUS and 

between the RESTAURANT and AMBIENCE labels 
was not always clear.  

Slot 2. The annotators found it easier to identify 

explicit references to the target entities as opposed 
to the more general aspect terms of SE-ABSA14. 

However, the problem of distinguishing aspect 

terms when they appear in conjunctions or disjunc-
tions remains. In this case the maximal phrase (e.g. 

the entire conjunction or disjunction) is annotated 

(e.g. “Greek or Cypriot dishes” instead of “Greek 

dishes”, “Cypriot dishes”).  
Slot 3. Most cases in which the annotators had 

difficulty deciding the correct polarity label fall 

into one of the following categories: (a) Change of 
sentiment over time. Some reviewers tend to start 

their review by saying how excited they were at 

first (e.g., with the laptop) and continue by report-

ing problems or negative evaluations. (b) Negative 
fact vs. positive opinion. Some reviewers do men-

tion particular deficiencies of a laptop or a restau-

rant saying, however, at the same time that they do 

not bother (e.g., “Overheats but put a pillow and 

problem solved!”). (c) Mildly positive and negative 
sentiments are both denoted by the “neutral” la-

bel. In some cases the annotators reported that it 

would be helpful to have a more fine-grained 

schema (e.g., “negative”, “somewhat negative”, 
“neutral”, “somewhat positive”, “positive”). Final-

ly, in some cases it is difficult to decide a polarity 

label without knowing the reviewer’s intention 
(e.g., “50% of the food was very good”). 

The annotation process resulted in 5,761 opinion 

tuples in total that correspond to more than 15,000 
label assignments (E, A, OTE, polarity); consult 

Table 2 for more information. 

 
Laptops 

 training test total 

{E#A, polarity} 1974 949 2923 

Restaurants 

 training test total 

{E#A, OTE, polarity} 1654 845 2499 

Hotels 

 training test total 

{E#A, OTE, polarity} - 339 339 

Table 2. Number of tuples annotated per dataset. 

20.92%

8.21% 7.95%

7.70%
5.27%

4.61% 3.85%

2.23%

1.62%

22.55%

9.59% 12.54%

7.59% 4.11%

6.74% 6.32%

0.84%

2.53%

LP#GEN LP#D&F LP#O&P LP#QUAL LP#USAB LP#MISC LP#PRIC LP#PORT LP#CONN

Train Test
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The distribution of the category annotations in 

the restaurants domain (Fig. 2) is similar across the 
training and test set. In the laptops domain, 81 E,A 

combinations (different pairs) were annotated in 

the training set and 58 in the test set. LAPTOP is the 

majority entity class in both sets; 62.36% in train-
ing, 72.81% in test data. Figure 3 presents the dis-

tribution for all the attributes of the LAPTOP entity 

in the training and test sets. Again, the category 
distributions are similar. The remaining 37.64% of 

the annotations in the laptops training data corre-

spond to 72 categories with frequencies ranging 
from 6.53% to 0.05%. In the test set, the remaining 

27.19% of the annotations correspond to 49 cate-

gories with frequencies from 2.32 % to 0.11%.  

   Regarding polarity, positive is the majority class 
in all domains (Table 3). The polarity distribution 

is balanced in the laptops domain, while in the res-

taurants domain there is a significant imbalance 
between the positive and negative classes across 

the training and the test sets. 
 

 positive negative neutral 

RS-TR 72.43% 24.36% 3.20% 

RS-TE 53.72% 40.96% 5.32% 

LP-TR 55.87% 38.75% 5.36% 

LP-TE 57% 34.66% 8.32% 

HT-TE 71.68% 24.77% 3.53% 

Table 3. Polarity distribution per domain (RS-

restaurants, LP-laptops, HT-hotels). TR and TE indicate 

the training and test sets. 

3.4 Datasets Format and Availability 

The datasets7 of the SE-ABSA15 task were pro-
vided in an XML format. They are available under 

a non-commercial, no redistribution license 

through META-SHARE8, a repository devoted to 
the sharing and dissemination of language re-

sources (Piperidis, 2012). 

4 Evaluation Measures and Baselines  

Similarly to SE-ABSA14, the evaluation ran in two 
phases. In Phase A, the participants were asked to 

return the {category, OTE} tuples for the restau-

rants domain and only the category slot (Slot1) for 
the laptops domain. Subsequently, in Phase B, the 

                                                        
7 The data are available at http://metashare.ilsp.gr:8080/.   
8 META-SHARE (http: //www.metashare.org/) was  
implemented in the framework of the META-NET Network of 
Excellence (http://www.meta-net.eu/). 

participants were given the gold annotations for the 

reviews of Phase A and they were asked to return 
the polarity (Slot3). Each participating team was 

allowed to submit up to two runs per slot and do-

main in each phase; one constrained (C), where 

only the provided training data could be used, and 
one unconstrained (U), where other resources (e.g., 

publicly available lexica) and additional data of 

any kind could be used for training. In the latter 
case, the teams had to report the resources they 

used. To evaluate aspect category (Slot1) and OTE 

extraction (Slot2) in Phase A, we used the F-1 
measure. To evaluate sentiment polarity (Slot 3) in 

Phase B, we used accuracy. Furthermore, we im-

plemented and provided three baselines (see be-

low) for the respective slots. 

4.1 Evaluation Measures 

Slot 1: F-1 scores are calculated by comparing 

the category annotations that a system returned (for 

all the sentences) to the gold category annotations 
(using micro-averaging). These category annota-

tions are extracted from the values of Slot 1 (cate-

gory). Duplicate occurrences of categories (for the 

same sentence) are ignored.  
Slot 2: F-1 scores are calculated by comparing 

the targets that a system returned (for all the sen-

tences) to the corresponding gold targets (using 
micro-averaging). The targets are extracted using 

their starting and ending offsets. The calculation 

for each sentence considers only distinct targets 
and discards NULL targets, since they do not cor-

respond to explicit mentions.  

Slot 1&2 (jointly): Again F-1 scores are calcu-

lated by comparing the {category, OTE} tuples of 
a system to the gold ones (using micro-averaging).  

Slot 3:  To evaluate sentiment polarity detection 

in Phase B, we calculated the accuracy of each sys-
tem, defined as the number of correctly predicted 

polarity labels of aspect categories, divided by the 

total number of aspect categories. Recall that we 
use the gold aspect categories in Phase B. 

4.2 Baselines  

Slot 1: For category (E#A) extraction, a Support 

Vector Machine (SVM) with a linear kernel was 

trained. In particular, n unigram features are ex-
tracted from the respective sentence of each tuple 

that is encountered in the training data. The catego-

ry value (e.g., SERVICE#GENERAL) of the tuple is 
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used as the correct label of the feature vector. 

Similarly, for each test sentence s, a feature vector 
is built and the trained SVM is used to predict the 

probabilities of assigning each possible category to 

s (e.g., {SERVICE#GENERAL, 0.2}, {RESTAURANT# 

GENERAL, 0.4}. Then, a threshold9 t is used to de-
cide which of the categories will be assigned10 to s. 

As features, we use the 1,000 most frequent uni-

grams of the training data excluding stop-words. 
Slot 2: The baseline uses the training reviews to 

create for each category c (e.g., SERVICE# 

GENERAL) a list of OTEs (e.g., SERVICE#GENERAL 

→ {“staff”, “waiter”}). These are extracted from 

the (training) opinion tuples whose category value 

is c. Then, given a test sentence s and an assigned 

category c, the baseline finds in s the first occur-
rence of each OTE of c’s list. The OTE slot is 

filled with the first of the target occurrences found 

in s. If no target occurrences are found, the slot is 
assigned the value NULL. 

Slot 3: For polarity prediction we trained a 

SVM classifier with a linear kernel. Again, as in 
Slot 1, n unigram features are extracted from the 

respective sentence of each tuple of the training 

data. In addition, an integer-valued feature11 that 

indicates the category of the tuple is used. The cor-
rect label for the extracted training feature vector is 

the corresponding polarity value (e.g., positive). 

Then, for each tuple {category, OTE} of a test sen-
tence s, a feature vector is built and it is classified 

using the trained SVM. Furthermore, for Slot 3 we 

also used a majority baseline that assigns the most 

frequent polarity (in the training data) to all test 
tuples.  

The baseline systems and evaluation scripts are 

available for download as a single zip from the SE-
ABSA15 website12. They are implemented in Java 

and can be used via a Linux shell script. The base-

lines use the LibSVM package13 (Chang and Lin, 
2011) for SVM training and prediction. The scores 

of the baselines in the test datasets are presented in 

Tables 4–8 along with the system scores.  

                                                        
9 The threshold t was tuned on a subset of the training data (for 
each domain) using a trial and error approach. 
10We use the –b 1 option of LibSVM to obtain probabilities. 
11 Each category (E#A pair) has been assigned a distinct inte-

ger value. 
12http://alt.qcri.org/semeval2015/task12/index.php?id=data-
and-tools 
13http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

5 Evaluation Results 

In total, the task attracted 92 submissions from 16 

teams. The evaluation results per phase and slot are 

presented below. For the teams that submitted 
more than one unconstrained runs per slot and do-

main, we included in the tables only the run with 

the highest score. 

5.1 Results of Phase A 

The aspect category identification slot attracted 6 

teams for the laptops dataset and 9 teams for the 

restaurants dataset (consult Table 4). As expected, 

the systems achieved significantly higher scores 
(+12%) in the restaurants domain since in this do-

main the classification schema is less fine-grained; 

it contains 6 entity types and 5 attribute classes that 
result in 12 possible combinations, as opposed to 

the laptops domain where the 22 entities and 9 at-

tribute labels give rise to more than 80 combina-
tions. The best F-1 scores in both domains, 50.86% 

for laptops and 62.68% for restaurants, were 

achieved by the unconstrained submission of the 

NLANGP team, which modeled aspect category 
extraction as a multiclass classification problem 

with features based on n-grams, parsing, and word 

clusters learnt from Amazon and Yelp data (for 
laptops and restaurants, respectively). The system 

of Sentiue (scores: 50% on laptops, 54.10% on 

restaurants) used a separate MaxEnt classifier with 
bag-of-word-like features (e.g. words, lemmas) for 

each entity and for each attribute. Subsequently, 

heuristics are applied to the output of the classifiers 

to determine which categories will be assigned to 
each sentence. 

 
Laptops Restaurants 

Team F1 Team F1 

NLANGP 50.86* NLANGP 62.68* 

Sentiue 50.00* NLANGP 61.94 

IHS-RD. 49.59 UMDuluthC 57.19 

NLANGP 49.06 UMDuluthT  57.19 

TJUdeM 46.49 SIEL 57.14* 

UFRGS 44.95 Sentiue 54.10* 

UFRGS 44.73* LT3 53.67* 

V3 24.94* TJUdeM 52.44* 

 

UFRGS 52.09* 

UFRGS 51.88 

IHS-RD. 49.87 

IHS-RD. 49.16 

V3 41.85* 
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Baseline 48.06 Baseline 51.32 

Table 4. F-1 scores for aspect category extraction (slot 

1). * indicate unconstrained systems. 

 

The OTE slot, which was used only in the res-
taurants domain, attracted 14 teams; consult Table 

5. The best F1 score (70.05%) was achieved by the 

unconstrained submission of EliXa that addressed 

the problem using an averaged perceptron with a 
BIO tagging scheme. The features EliXa used in-

cluded n-grams, token classes, n-gram prefixes and 

suffixes, and word clusters learnt from additional 
data (Yelp for Brown and Clark clusters; Wikipe-

dia for word2vec clusters). Similarly, NLANGP 

(67.11%) was based on a Conditional Random 

Fields (CRF) model with features based on word 
strings, head words (obtained from parse trees), 

name lists (e.g. extracted using frequency), and 

Brown clusters.  
 

Restaurants 

Team F1 Team F1 

EliXa 70.05* UMDuluthC 50.36 

NLANGP 67.11* UMDuluthT 50.36 

IHS-RD. 63.12 LT3 49.97* 

Lsislif 62.22 UFRGS 49.32* 

NLANGP 61.49 V3 45.67* 

wnlp 57.63 Sentiue 39.82* 

SIEL 53.38* CU-BDDA 36.01 

TJUdeM 52.44* CU-BDDA 33.86* 

Baseline 48.06 

Table 5. Results for OTE extraction (slot 2). * indicate 

unconstrained systems. 

 

Finally, as expected, the scores are significantly 

lower when systems have to link the extracted 
OTEs to the relevant aspect categories (Slot1&2 

jointly). As shown in Table 6, the best F-1 score 

(42.90%) was achieved by the NLANGP team that 
simply combined the output for each slot to con-

struct the corresponding tuples.  
 

Restaurants 

Team F1 Team F1 

NLANGP 42.90*    LT3 35.50* 

IHS-RD. 42.72 UFRGS 34.87* 

IHS-RD. 41.96 UMDuluthC 32.59 

NLANGP 39.81 UMDuluthT 32.59 

TJUdeM 37.15* Sentiue 31.20* 

Baseline 34.44 

Table 6. Results for Slot1&2. * indicate unconstrained 

systems. 

5.2 Results of Phase B 

The sentiment polarity slot attracted 10 teams for 

the laptops and 12 teams for the restaurants domain 

(see Table 7). The best accuracy scores in both 
domains, 79.34% for laptops and 78.69% for res-

taurants, were achieved by Sentiue with a MaxEnt 

classifier along with features based on n-grams, 

POS tagging,  lemmatization, negation words and 
publicly available sentiment lexica  (MPQA, Bing 

Liu’s lexicon, AFINN). The system of ECNU 

(scores: 78.29% laptops, 78.10% restaurants) used 
features based on n-grams, PMI scores, POS tags, 

parse trees, negation words and scores based on 7 

sentiment lexica. The lsislif team (77.87% laptops, 

75.50% restaurants) relied on a logistic regression 
model (Liblinear) with various features: syntactic 

(e.g., unigrams, negation), semantic (Brown dic-

tionary), sentiment (e.g., MPQA, SentiWordnet).  
 

Laptops Restaurants 

Team Acc. Team Acc. 

Sentiue 79.34* Sentiue 78.69* 

ECNU 78.29 ECNU 78.10* 

Lsislif 77.87 Lsislif 75.50 

ECNU 74.49* LT3 75.02* 

LT3 73.76* UFRGS 71.71 

TJUdeM 73.23* Wnlp 71.36 

EliXa 72.91* UMDuluthC  71.12 

Wnlp 72.07 EliXa 70.05* 

EliXa 71.54 ECNU 69.82 

V3 68.38* V3 69.46*    

UFRGS 67.33 TJUdeM 68.87* 

SINAI 65.85 EliXa 67.33 

SINAI 51.84* SINAI 60.71* 

  SIEL 70.76* 

SVM+ BOW  

Baseline 
69.96 SVM+ BOW  

Baseline 
63.55 

Majority Base-

line 
57.00 Majority Base-

line 
53.72 

Table 7. Accuracy scores for slot 3 (polarity extraction). 
* indicate unconstrained systems. The evaluated run of 

SIEL team was submitted after the deadline had ex-

pired, but before the release of the gold polarity labels. 

 

Most teams performed (slightly) better in the 

laptops domain. This is probably due to the fact 

that in the restaurants domain the positive polarity 
is significantly more frequent in the training than 

in the test data, which may have led to biased 

models. Nevertheless, most system scores indicate 
robustness across the two domains, with Sentiue 
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achieving the most stable performance: 79.34% in 

laptops and 78.69% in restaurants.  
A similar score was obtained also by Sentiue in 

the hidden domain (78.76%). The (hidden) hotels 

domain (subtask 2) attracted 9 teams. Lsislif 

achieved the best score based on a Liblinear model 
developed for the restaurants domain. LT3 

achieved the second best score (80.53%) with an 

SVM model trained on the restaurants training da-
ta. The model used features based on unigrams, 

sentiment lexica (by Bing Liu, General Inquirer) 

and PMI scores learnt from TripAdvisor data. The 
team of EliXa (79.64%) used a multiclass SVM 

and features based on word clusters, lemmas, n-

grams, POS tagging, and well known sentiment 

lexica. The system of Sentiue (78.76%) is some-
what similar; it uses BOW, POS tags, lemmas, and 

sentiment lexica. The results of some systems 

(LT3, EliXa, V3) suggest that the hidden domain 
was easier, but other systems (e.g., ECNU, wnlp) 

achieved significantly lower scores in the hidden 

domain, compared to the in-domain ABSA scores.  
 

Hotels 

Team Acc. Team Acc. 

lsislif 85.84 V3 71.09* 

LT3 80.53*    UFRGS 65.78 

EliXa 79.64* SINAI 63.71* 

sentiue 78.76*    Wnlp 55.45 

EliXa 74.92    UMDuluthC  71.38 

Majority Baseline 71.68 

Table 8. Accuracy scores for slot 3 (polarity extraction). 

* indicate unconstrained systems. The evaluated run of 

UMDuluthC team was submitted after the deadline had 

expired but before the release of the gold polarity labels. 

6 Conclusions  

The SE-ABSA15 task is a continuation of SE-

ABSA14 task. The SE-ABSA15 task provided a 

new definition of aspect –that makes explicit the 
difference between entities and the particular facets 

that are being evaluated- within a new principled, 

unified ABSA framework and output representa-
tion, which may be used in realistic applications 

(e.g., review sites). We also provided benchmark 

datasets containing manually annotated reviews 

from three domains (restaurants, laptops, hotels) 
and baselines for the respective SE-ABSA15 slots. 

The task attracted 93 submissions from 16 teams 

that were evaluated in three slots: aspect categories, 
opinion target expressions, and polarity classifica-

tion. Future work includes applying the new 

framework and annotation schema to other lan-
guages (e.g., Spanish, Greek) and enhancing it with 

information about topics or events, opinion holders, 

and annotations for linguistic phenomena like met-

aphor and irony. 
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Appendix A. Laptop Aspect Categories 

Entity Labels 

1. LAPTOP 

2. DISPLAY 

3. KEYBOARD 

4. MOUSE 
5. MOTHERBOARD 

6. CPU 

7. FANS& COOLING 

8. PORTS 

9. MEMORY 

10. POWER SUPPLY 

11. OPTICAL DRIVES 

13. BATTERY 

14. GRAPHICS 

15. HARD DISK 

16. MULTIMEDIA DEVICES 
17. HARDWARE 

18. SOFTWARE 

19. OS 

20. WARRANTY 

21. SHIPPING 

22. SUPPORT 

23. COMPANY 

Attribute Labels 

A. GENERAL 

B. PRICE 

C. QUALITY 

D. OPERATION& 

     PERFORMANCE 

E. USABILITY  

F. DESIGN& FEATURES 

G. PORTABILITY 

H. CONNECTIVITY 

 I.  MISCELLANEOUS 

Appendix B. Restaurant Aspect Categories 

Entity Labels Attribute Labels 

1. RESTAURANT 

2. FOOD 

3. DRINKS 

4. AMBIENCE 

5. SERVICE 

6. LOCATION 

A. GENERAL 

B. PRICES 

C. QUALITY 

D. STYLE & OPTIONS 

E. MISCELLANEOUS 

Appendix C. Hotel Aspect Categories 

Entity Labels Attribute Labels 

1. HOTEL 

2. ROOMS 

3. FACILITIES 

4. ROOM AMENITIES 

5. SERVICE 

6. LOCATION 

7. FOOD & DRINKS 

 

A. GENERAL 

B. PRICE 

C. COMFORT 

D. CLEANLINESS 

E. QUALITY 

F. DESIGN & FEATURES 

G. STYLE & OPTIONS 

H. MISCELLANEOUS 
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Abstract

This paper describes our system used in the
Aspect Based Sentiment Analysis Task 12 of
SemEval-2015. Our system is based on two
supervised machine learning algorithms: sig-
moidal feedforward network to train binary
classifiers for aspect category classification
(Slot 1), and Conditional Random Fields to
train classifiers for opinion target extraction
(Slot 2). We extract a variety of lexicon and
syntactic features, as well as cluster features
induced from unlabeled data. Our system
achieves state-of-the-art performances, rank-
ing 1st for three of the evaluations (Slot 1 for
both restaurant and laptop domains, and Slot
1 & 2) and 2nd for Slot 2 evaluation.

1 Introduction

The amount of user-generated content on the web
has grown rapidly in recent years, prompting in-
creasing interests in the research area of sentiment
analysis and opinion mining. Most previous work
is concerned with detecting the overall polarity of a
sentence or paragraph, regardless of the target enti-
ties (e.g. restaurants) and their aspects (e.g. food).
By contrast, the Aspect Based Sentiment Analysis
task of SemEval 2014 (SE-ABSA14) is concerned
with identifying the aspects of given target enti-
ties and the sentiment expressed towards each as-
pect (Pontiki et al., 2014).

The SemEval-2015 Aspect Based Sentiment
Analysis (SE-ABSA15) task is a continuation of
SE-ABSA14 (Pontiki et al., 2015). The SE-
ABSA15 task features a number of changes that

address issues raised in SE-ABSA14 and also en-
courage further in-depth research. For example, (1)
instead of isolated (potentially out of context) sen-
tences, the input datasets will contain entire reviews;
(2) information linking aspect terms and aspect cat-
egories are now provided; (3) besides in-domain
ABSA (Subtask 1), SE-ABSA15 will include an
out-of-domain ABSA subtask (Subtask 2).

We participate in Subtask 1 of SE-ABSA15,
namely aspect category classification (Slot 1) and
opinion target extraction (Slot 2). We also partici-
pate in the evaluation which assesses whether a sys-
tem identifies both the aspect categories and opinion
targets correctly (Slot 1 & 2).

For Slot 1, we model the problem as a multi-class
classification problem where binary classifiers are
trained to predict the aspect categories. We follow
the one-vs-all strategy and train a binary classifier
for each category in the training set. Each classifier
is trained using sigmoidal feedforward network with
1 hidden layer. For Slot 2, we follow the approach of
Toh and Wang (2014) by modeling the problem as a
sequential labeling task, using Conditional Random
Fields (CRF) as the training algorithm. For Slot 1 &
2, we perform a simple combination of Slot 1 pre-
dictions and Slot 2 predictions.

The remainder of this paper is structured as fol-
lows. In Section 2, we describe our system in detail,
including the feature description and approaches. In
Section 3, the official results are presented. Feature
ablation results are shown in Section 4. Finally, Sec-
tion 5 summarizes our work.
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2 System Description

In this section, we present the details of our sen-
timent analysis system. The training set consists of
254 English review documents containing 1315 sen-
tences for the restaurant domain and 277 English re-
view documents containing 1739 sentences for the
laptop domain.

As a first step of our system, we perform basic
data preprocessing. All sentences are tokenized and
parsed using the Stanford Parser1.

2.1 Features

This section briefly describes the features used in
our system, where some of the features are useful
across different slots. The features used are a subset
of the features described in Toh and Wang (2014),
which also provides a more detailed description of
the features.

2.1.1 Word
The current word is used as a feature. For opinion

target extraction, the previous word and next word
are also used as features.

2.1.2 Bigram
All word bigrams found in a sentence are used as

features.

2.1.3 Name List
For the restaurant domain, we extract two high

precision name lists from the training set and use
them for membership testing. For the first list, we
collect and keep only high frequent opinion targets.
For the second list, we consider the counts of in-
dividual words in the opinion targets and keep those
words that frequently occur as part of an opinion tar-
get in the training set.

2.1.4 Head Word
From the sentence parse tree, we extract the head

word of each word and use it as a feature.

2.1.5 Word Cluster
We induce Brown clusters and K-means clus-

ters from two different sources of unlabeled dataset:
the Multi-Domain Sentiment Dataset that contains

1http://nlp.stanford.edu/software/lex-parser.shtml

Amazon product reviews (Blitzer et al., 2007)2, and
the Yelp Phoenix Academic Dataset that contains
user reviews3. We also experiment using a third
dataset that is created by combining the initial two
datasets into one.

For Brown clusters4, we experiment with differ-
ent datasets, cluster sizes ({100, 200, 500, 1000}),
minimum occurrences ({1, 2, 3}) and binary prefix
lengths. The best settings to use are determined us-
ing 5-fold cross validation.

K-means clusters are induced using the
word2vec tool (Mikolov et al., 2013)5. Sim-
ilarly, among different datasets, word vector
sizes ({50, 100, 200, 500, 1000}), cluster sizes
({50, 100, 200, 500, 1000}), and sub-sampling
thresholds ({0.00001, 0.001}), we use 5-fold cross
validation to select the best settings.

2.1.6 Name List Generated using Double
Propagation

For the restaurant domain, we generate a name
list of possible opinion targets using the Double
Propagation (DP) algorithm (Qiu et al., 2011). The
propagation rules are modified from the logic rules
presented in Liu et al. (2013), where we write our
rules in Prolog and use SWI-Prolog6 as the solver.
As the rules can only identify single-word targets,
to consider multi-word targets, we extend the left
boundary of the identified target to include any con-
sective noun words right before the target.

2.2 Approaches

We developed our system to return results for Slot
1 (restaurant and laptop domains), Slot 2 (restaurant
domain) and Slot 1 & 2 (restaurant domain). This
section describes our machine learning approaches
used to generate the predictions for each slot.

2.2.1 Aspect Category Classification (Slot 1)
Aspect category classification is based on a set of

one-vs-all binary classifiers, one classifier for each

2We used the unprocessed.tar.gz archive found
at http://www.cs.jhu.edu/ mdredze/datasets/sentiment/

3http://www.yelp.com/dataset challenge/
4Brown clusters are induced using the implementation

by Percy Liang found at https://github.com/percyliang/brown-
cluster/

5https://code.google.com/p/word2vec/
6http://www.swi-prolog.org/
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Parameter Restaurant Laptop
learning rate 0.9 0.7
hidden units 4 4
threshold 0.2 0.2

Table 1: Tuned parameter values for Slot 1 on the restau-
rant and laptop domain.

category found in the training set. For each sentence
in the training set, we extract features from all words
in the sentence to create a training example. The la-
bel of the example depends on which category C we
are training: 1 if the sentence contains C as one of
its categories, −1 otherwise. The number of binary
classifiers is 13 for the restaurant domain and 79 for
the laptop domain, which equals to the number of
categories annotated in the training set for the re-
spective domain.

We use the Vowpal Wabbit tool7 to train the bi-
nary classifiers. Each classifier is trained using sig-
moidal feedforward network with 1 hidden layer
(--nn), with --ngram enabled to generate word
bigrams. The learning rate (-l) and number of hid-
den units are tuned using 5-fold cross validation.

We also tuned the probability threshold where we
regard the classifier output as positive outcome. Any
classifier that returns a probability score greater than
the threshold will be added to the output set of cate-
gories. The tuned parameter values used are shown
in Table 1.

Table 2 shows the features used for the restau-
rant and laptop domain, as well as the 5-fold cross-
validation performances after adding each feature
group.

2.2.2 Opinion Target Extraction (Slot 2)
Opinion target extraction is modeled as a sequen-

tial labeling task, where each word in the sentence is
assigned a label using the IOB2 scheme (Sang and
Veenstra, 1999). The classifier is trained using Con-
ditional Random Fields (CRF), which has shown
to achieve state-of-the-art performances in previous
work (Toh and Wang, 2014; Chernyshevich, 2014).
We use the CRFsuite tool (Okazaki, 2007) for CRF
training and enable negative state and transition
features (-p feature.possible states=1

7https://github.com/JohnLangford/vowpal wabbit/wiki

Restaurant
Feature F1
Word 0.6245
+ Bigram 0.6423
+ Name List 0.6608
+ Head Word 0.6660
+ Word Cluster 0.7038

Laptop
Feature F1
Word 0.4520
+ Bigram 0.4611
+ Head Word 0.4721
+ Word Cluster 0.4841

Table 2: 5-fold cross-validation performances for Slot 1
on the restaurant and laptop domain. Each row uses all
features added in the previous rows.

-p feature.possible transitions=1).
We experiment with two different methods of re-

turning predicted opinion targets, one suitable for
Slot 1 & 2 evaluation (Method-1), the other suitable
for Slot 2 evaluation (Method-2).

For Slot 1 & 2 evaluation, the explicit opinion tar-
gets may have more than one categories. Thus, we
use the following method (Method-1): we train a
separate CRF model for each category found in the
training set. That is, for each category C, we assign
the label “B-C” to indicate the start of an opinion
target, “I-C” to indicate the continuation of an opin-
ion target, and “O” if the opinion target does not
have C as one of its categories.

Using FOOD#PRICES category as an ex-
ample, for the training set that is used to
train the FOOD#PRICES CRF model, we as-
sign the label “B-FOOD#PRICES” to indicate
the start of a FOOD#PRICES opinion target, “I-
FOOD#PRICES” to indicate the continuation of a
FOOD#PRICES opinion target, and “O” if the opin-
ion target does not have FOOD#PRICES as one of
its categories.

However, our initial experiments suggest that
Method-1 does not achieve optimum performance
for Slot 2 evaluation. The reason is that the number
of positive training examples for most of the cate-
gories is small.
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Slot 1
Restaurant Laptop

System Type Rank P R F1 Type Rank P R F1
NLANGP (U) U 1 0.6386 0.6155 0.6268 U 1 0.6425 0.4209 0.5086
NLANGP (C) C 2 0.6637 0.5806 0.6194 C 4 0.5743 0.4283 0.4906

1st U 1 0.6386 0.6155 0.6268 U 1 0.6425 0.4209 0.5086
2nd C 2 0.6637 0.5806 0.6194 U 2 0.5773 0.4409 0.5000
3rd C 3 0.5698 0.5742 0.5720 C 3 0.5548 0.4483 0.4959

Baseline – – – – 0.5133 – – – – 0.4631
Slot 2 Slot 1 & 2

Restaurant
System Type Rank P R F1 Type Rank P R F1

NLANGP (U) U 2 0.7053 0.6402 0.6712 U 1 0.4463 0.4130 0.4290
NLANGP (C) C 7 0.7129 0.5406 0.6149 C 4 0.4387 0.3645 0.3982

1st U 1 0.6893 0.7122 0.7005 U 1 0.4463 0.4130 0.4290
2nd U 2 0.7053 0.6402 0.6712 C 2 0.5937 0.3337 0.4273
3rd C 3 0.6723 0.6661 0.6691 U 3 0.5832 0.3278 0.4197

Baseline – – – – 0.4807 – – – – 0.3444

Table 4: Comparison of our unconstrained (U) and constrained (C) systems with the top three participating systems
and official baselines for Slot 1, Slot 2 and Slot 1 & 2. P, R, and F1 denote the precision, recall and F1 measure
respectively.

Restaurant
Feature F1
Word 0.6225
+ Name List 0.6796
+ Head Word 0.6840
+ Word Cluster 0.7224
+ DP Name List 0.7237

Table 3: 5-fold cross-validation performances of Slot 2
on the restaurant domain. Each row uses all features
added in the previous rows. The cross-validation experi-
ments use Method-1 to train the models.

Since Slot 2 evaluation only requires the identi-
fied text span to be returned and does not require
any category information, we can increase the num-
ber of positive training examples by collapsing all
categories into a single category (e.g. “TERM”).
Thus, for Slot 2 evaluation, the following method
(Method-2) is used: we train a single CRF model
where all opinion targets in the training set are as-
signed the labels “B-TERM”, “I-TERM” and “O”
accordingly.

Table 3 shows the features used for the restaurant

domain as well as the 5-fold cross-validation perfor-
mances after adding each feature group.

Due to time constraints, all cross-validation ex-
periments for Slot 2 use Method-1 to train the mod-
els. The same settings will then be used to train the
final models using both Method-1 (for Slot 1 & 2
evaluation) and Method-2 (for Slot 2 evaluation).

2.2.3 Slot 1 & 2
To create the predictions for Slot 1 & 2 evalua-

tion, we perform a simple combination of Slot 1 pre-
dictions and Slot 2 predictions. First, we use all Slot
2 predictions. Next, for each sentence, we add cat-
egories that are found in Slot 1 predictions but not
Slot 2 predictions of the same sentence. Those ad-
ditional categories are assumed to be NULL targets.

3 Results

We have submitted results for unconstrained and
constrained (using only the provided training set
of the corresponding domain) systems. The con-
strained system only uses Word, Bigram (for Slot 1)
and Name List (for the restaurant domain) features.
Table 4 presents the official results of our submi-
sions. We also include the results of the top three
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Restaurant
System Method-1 Method-2
NLANGP (U) 0.6099 0.6712
NLANGP (C) 0.5489 0.6149

Table 5: Comparison of F1 performances for Slot 2 eval-
uation. Our official submissions for Slot 2 evaluation use
Method-2, which is better than Method-1 used for Slot 1
& 2 evaluation.

participating systems and official baselines for com-
parison (Pontiki et al., 2015).

As shown from the table, our system performed
well for all four evaluations. Our system is ranked
1st for three of the evaluations (Slot 1 for both
restaurant and laptop domains, and Slot 1 & 2) and
2nd for Slot 2 evaluation. In addition, our con-
strained system also achieves competitive results,
ranking 2nd in Slot 1 Restaurant and 4th in Slot 1
Laptop and Slot 1 & 2. Another observation is that
our unconstrained systems achieved better perfor-
mances than the corresponding constrained systems
for all evaluations, indicating the use of external re-
sources are beneficial.

We are interested to know whether the Slot 2 pre-
dictions that help to achieve best results in Slot 1
& 2 evaluation are also useful for Slot 2 evaluation.
Table 5 shows the F1 performances of Slot 2 eval-
uation if we have used Method-1 (Section 2.2.2) to
generate the Slot 2 predictions. As shown from the
table, using the same Slot 2 predictions for both Slot
2 evaluation and Slot 1 & 2 evaluation are detrimen-
tal to Slot 2 performances, with performance differ-
ence greater than 6.0%. Our approach of using a
different method to generate Slot 2 predictions for
Slot 2 evaluation helps to overcome the data sparse-
ness problem and improves the performances of tar-
get extraction.

4 Feature Ablation

Table 6 and Table 7 show the (unconstrained) F1
measure and loss on the test set resulting from train-
ing with each group of feature removed for Slot 1
and Slot 2 respectively. The ablation experiments
indicate that each feature is helpful in improving the
performance, with performance gains in the range
of 1.0% − 6.0%. The only exception is the use of

Restaurant
Feature F1 Loss
Word 0.5914 0.0354
Bigram 0.6031 0.0237
Name List 0.6123 0.0145
Head Word 0.6136 0.0132
Word Cluster 0.5910 0.0358

Laptop
Feature F1 Loss
Word 0.4483 0.0603
Bigram 0.5114 -0.0027
Head Word 0.4978 0.0108
Word Cluster 0.4940 0.0146

Table 6: Test set ablation experiments for Slot 1 on the
restaurant and laptop domain. The quantity is the (uncon-
strained) F1 measure and loss resulted from the removal
of a single feature group.

Restaurant
Feature F1 Loss
Word 0.6280 0.0432
Name List 0.6540 0.0172
Head Word 0.6602 0.0110
Word Cluster 0.6387 0.0325
DP Name List 0.6608 0.0104

Table 7: Test set ablation experiments for Slot 2 on the
restaurant domain. The quantity is the (unconstrained)
F1 measure and loss resulted from the removal of a single
feature group.

bigram feature in Slot 1 evaluation on the laptop do-
main, where a slight decrease of 0.27% is observed.
Among the external resources used, the Word Clus-
ter feature consistently provides the most gain: an
increase in F1 measure greater than 3.0% for both
slots on the restaurant domain.

5 Conclusion

In this paper, we report our work on aspect category
classification and opinion target extraction using su-
pervised machine learning approaches. By lever-
aging on external resources, careful feature selec-
tion and performance tuning, our system achieves
top performances in all four evaluations, ranking 1st
for three of the evaluations, and second for the re-

500



maining evaluation. In future, we hope to improve
our opinion target extraction system by taking into
account surrounding sentence context and incorpo-
rating sentiment lexicon features to better classify
aspect categories and detect opinion expressions.
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Abstract

This paper describes the SHELLFBK system
that participated in SemEval 2015 Tasks 9,
10, and 11. Our system takes a supervised
approach that builds on techniques from in-
formation retrieval. The algorithm populates
an inverted index with pseudo-documents that
encode dependency parse relationships ex-
tracted from the sentences in the training set.
Each record stored in the index is annotated
with the polarity and domain of the sentence
it represents. When the polarity or domain of
a new sentence has to be computed, the new
sentence is converted to a query that is used
to retrieve the most similar sentences from the
training set. The retrieved instances are scored
for relevance to the query. The most rele-
vant training instant is used to assign a polarity
and domain label to the new sentence. While
the results on well-formed sentences are en-
couraging, the performance obtained on short
texts like tweets demonstrate that more work
is needed in this area.

1 Introduction

Sentiment analysis is a natural language processing
task whose aim is to classify documents according to
the opinion (polarity) they express on a given sub-
ject (Pang et al., 2002). Generally speaking, sen-
timent analysis aims at determining the attitude of
a speaker or a writer with respect to a topic or the
overall tonality of a document. This task has created
a considerable interest due to its wide applications.
In recent years, the exponential increase of the Web
for exchanging public opinions about events, facts,

products, etc., has led to an extensive usage of senti-
ment analysis approaches, especially for marketing
purposes.

By formalizing the sentiment analysis problem, a
“sentiment” or “opinion” has been defined by (Liu
and Zhang, 2012) as a quintuple:

〈oj , fjk, soijkl, hi, tl〉, (1)

where oj is a target object, fjk is a feature of the
object oj , soijkl is the sentiment value of the opinion
of the opinion holder hi on feature fjk of object oj

at time tl. The value of soijkl can be positive (by
denoting a state of happiness, bliss, or satisfaction),
negative (by denoting a state of sorrow, dejection,
or disappointment), or neutral (it is not possible to
denote any particular sentiment), or a more granular
rating. The term hi encodes the opinion holder, and
tl is the time when the opinion is expressed.

Such an analysis, may be document-based, where
the positive, negative, or neutral sentiment is as-
signed to the entire document content; or it may be
sentence-based where individual sentences are ana-
lyzed separately and classified according to the dif-
ferent polarity values. In the latter case, it is often
desirable to find with a high precision the entity at-
tributes towards which the detected sentiment is di-
rected.

In the classic sentiment analysis problem, the po-
larity of each term within the document is com-
puted independently of the domain which the doc-
ument’s domain. However, conditioning term po-
larity by domain has been found to improve perfor-
mance (Blitzer et al., 2007). We illustrate the intu-
ition behind domain specific term polarity. Let us
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consider the following example concerning the ad-
jective “small”:

1. The sideboard is small and it is not able to con-
tain a lot of stuff.

2. The small dimensions of this decoder allow to
move it easily.

In the first sentence, we considered the Furnishings
domain and, within it, the polarity of the adjective
“small” is, for sure, “negative” because it highlights
an issue of the described item. On the other hand, in
the second sentence, where we considered the Elec-
tronics domain, the polarity of such an adjective may
be considered “positive”.

Unlike the approaches already discussed in the lit-
erature (and presented in Section 2), we address the
multi-domain sentiment analysis problem by apply-
ing Information Retrieval (IR) techniques for repre-
senting information about the linguistic structure of
sentences and by taking into account both their po-
larity and the domain.

The rest of the work is structured as follows. Sec-
tion 2 presents a survey on works about sentiment
analysis. Section 3 provides a description of the
SHELLFBK system by described how information
are stored during the training phase and exploited
during the test one. Section 4 reports the system
evaluation performed on the Tasks 9, 10, and 11 pro-
posed at SemEval 2015 and, finally, Section 5 con-
cludes the paper.

2 Related Work

The topic of sentiment analysis has been studied ex-
tensively in the literature (Pang and Lee, 2008; Liu
and Zhang, 2012), where several techniques have
been proposed and validated.

Machine learning techniques are the most com-
mon approaches used for addressing this problem,
given that any existing supervised methods can be
applied to sentiment classification. For instance,
in (Pang et al., 2002) and (Pang and Lee, 2004), the
authors compared the performance of Naive-Bayes,
Maximum Entropy, and Support Vector Machines in
sentiment analysis on different features like consid-
ering only unigrams, bigrams, combination of both,
incorporating parts of speech and position informa-
tion or by taking only adjectives. Moreover, beside

the use of standard machine learning method, re-
searchers have also proposed several custom tech-
niques specifically for sentiment classification, like
the use of adapted score function based on the eval-
uation of positive or negative words in product re-
views (Dave et al., 2003), as well as by defining
weighting schemata for enhancing classification ac-
curacy (Paltoglou and Thelwall, 2010).

An obstacle to research in this direction is the
need of labeled training data, whose preparation is
a time-consuming activity. Therefore, in order to re-
duce the labeling effort, opinion words have been
used for training procedures. In (Tan et al., 2008)
and (Qiu et al., 2009b), the authors used opinion
words to label portions of informative examples for
training the classifiers. Opinion words have been ex-
ploited also for improving the accuracy of sentiment
classification, as presented in (Melville et al., 2009),
where a framework incorporating lexical knowledge
in supervised learning to enhance accuracy has been
proposed. Opinion words have been used also for
unsupervised learning approaches like the ones pre-
sented in (Taboada et al., 2011) and (Turney, 2002).

Another research direction concerns the exploita-
tion of discourse-analysis techniques. (Somasun-
daran, 2010) and (Asher et al., 2008) discuss some
discourse-based supervised and unsupervised ap-
proaches for opinion analysis; while in (Wang and
Zhou, 2010), the authors present an approach to
identify discourse relations.

The approaches presented above are applied at the
document-level, i.e., the polarity value is assigned
to the entire document content. However, for im-
proving the accuracy of the sentiment classification,
a more fine-grained analysis of the text, i.e., the sen-
timent classification of the single sentences, has to
be performed. In the case of sentence-level senti-
ment classification, two different sub-tasks have to
be addressed: (i) to determine if the sentence is sub-
jective or objective, and (ii) in the case that the sen-
tence is subjective, to determine if the opinion ex-
pressed in the sentence is positive, negative, or neu-
tral. The task of classifying a sentence as subjec-
tive or objective, called “subjectivity classification”,
has been widely discussed in the literature (Riloff et
al., 2006; Wiebe et al., 2004; Wilson et al., 2004;
Wilson et al., 2006; Yu and Hatzivassiloglou, 2003).
Once subjective sentences are identified, the same
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methods as for sentiment classification may be ap-
plied. For example, in (Hatzivassiloglou and Wiebe,
2000) the authors consider gradable adjectives for
sentiment spotting; while in (Kim and Hovy, 2007)
and (Kim et al., 2006) the authors built models to
identify some specific types of opinions.

The growth of product reviews was the perfect
floor for using sentiment analysis techniques in mar-
keting activities. However, the issue of improving
the ability of detecting the different opinions con-
cerning the same product expressed in the same re-
view became a challenging problem. Such a task
has been faced by introducing “aspect” extraction
approaches that were able to extract, from each
sentence, which is the aspect the opinion refers
to. In the literature, many approaches have been
proposed: conditional random fields (CRF) (Jakob
and Gurevych, 2010; Lafferty et al., 2001), hid-
den Markov models (HMM) (Freitag and McCal-
lum, 2000; Jin and Ho, 2009; Jin et al., 2009), se-
quential rule mining (Liu et al., 2005), dependency
tree kernels (Wu et al., 2009), and clustering (Su et
al., 2008). In (Qiu et al., 2009a; Qiu et al., 2011), a
method was proposed to extract both opinion words
and aspects simultaneously by exploiting some syn-
tactic relations of opinion words and aspects.

A particular attention should be given also to the
application of sentiment analysis in social networks.
More and more often, people use social networks
for expressing their moods concerning their last pur-
chase or, in general, about new products. Such a
social network environment opened up new chal-
lenges due to the different ways people express their
opinions, as described by (Barbosa and Feng, 2010)
and (Bermingham and Smeaton, 2010), who men-
tion “noisy data” as one of the biggest hurdles in
analyzing social network texts.

One of the first studies on sentiment analysis on
micro-blogging websites has been discussed in (Go
et al., 2009), where the authors present a distant
supervision-based approach for sentiment classifica-
tion.

At the same time, the social dimension of the
Web opens up the opportunity to combine com-
puter science and social sciences to better recognize,
interpret, and process opinions and sentiments ex-
pressed over it. Such multi-disciplinary approach
has been called sentic computing (Cambria and Hus-

sain, 2012b). Application domains where sentic
computing has already shown its potential are the
cognitive-inspired classification of images (Cambria
and Hussain, 2012a), of texts in natural language,
and of handwritten text (Wang et al., 2013).

Finally, an interesting recent research direction is
domain adaptation, as it has been shown that senti-
ment classification is highly sensitive to the domain
from which the training data is extracted. A classi-
fier trained using opinionated documents from one
domain often performs poorly when it is applied or
tested on opinionated documents from another do-
main, as we demonstrated through the example pre-
sented in Section 1. The reason is that words and
even language constructs used in different domains
for expressing opinions can be quite different. To
make matters worse, the same word in one domain
may have positive connotations, but in another do-
main may have negative connotations; therefore, do-
main adaptation is needed. In the literature, dif-
ferent approaches related to the Multi-Domain sen-
timent analysis have been proposed. Briefly, two
main categories may be identified: (i) the transfer
of learned classifiers across different domains (Yang
et al., 2006; Blitzer et al., 2007; Pan et al., 2010;
Bollegala et al., 2013; Xia et al., 2013; Yoshida et
al., 2011), and (ii) the use of propagation of labels
through graph structures (Ponomareva and Thelwall,
2013; Tsai et al., 2013; Tai and Kao, 2013; Huang et
al., 2014). Independently of the kind of approach,
works using concepts rather than terms for repre-
senting different sentiments have been proposed.

3 The SHELLFBK System

The proposed system is based on the implementa-
tion of an IR approach for inferring both the polarity
of a sentence and, if requested, the domain to which
the sentence belongs to. The rational behind the us-
age of such an approach is that by using indexes, the
computation of the Retrieval Status Value (RSV) (da
Costa Pereira et al., 2012) of a term or expression,
automatically takes into account which are the ele-
ments that are more significant in each index with
respect to the ones that, instead, are not important
with respect to the index content. In this section, we
present the steps we carried out to implement our IR
based sentiment and theme classification system.
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3.1 Indexes Construction
The proposed approach, with respect to a classic IR
system, does not use a single index for containing
all information, but a set of indexes are created in
order to facilitate the identification of the correct po-
larity and domain, of a sentence during the valida-
tion phase. In particular, we built the following set
of indexes:

• Polarity Indexes: from the training set, the
positive, negative, and neutral sentences have
been indexed separately.

• Domain Indexes:: a different index has been
built for each domain identified in the training
set. This way, it is possible to store information
about which terms, or expression, are relevant
for each domain.

• Mixed Indexes: by considering the multi-
domain nature of the system, this further set of
indexes allows to have, for each domain, infor-
mation about the correlation between the do-
main and the polarities. This way, we are able
to know if the same term, or expression, has the
same polarity in different domains or not.

For each sentence of the training set, we exploited
the Stanford NLP Library for extracting the depen-
dencies between the terms. Such dependencies are
then used as input for the indexing procedure.

As example, let’s consider the following sentence
extracted from the training set of the Task 9:

“I came here to reflect my happiness by fishing.”

This sentence has a positive polarity and belongs
to the “outdoor activity” domain. By applying the
Stanford parser, the dependencies that are extracted
are the following ones:

nsubj(came-2, I-1)
nsubj(reflect-5, I-1)
root(ROOT-0, came-2)
advmod(came-2, here-3)
aux(reflect-5, to-4)
xcomp(came-2, reflect-5)
poss(happiness-7, my-6)
dobj(reflect-5, happiness-7)
prep_by(reflect-5, fishing-9)

Each dependency is composed by three elements:
the name of the “relation” (R), the “governor” (G)
that is the first term of the dependency, and the “de-
pendent” (D) that is the second one. We extract,

from each dependency, the structure “field - content”
shown in Table 1 by using as example the depen-
dency “dobj(reflect-5, happiness-7)”. Such a struc-
ture is then given as input to the index.

Field Name Content
RGD “dobj-reflect-happiness”
RDG “dobj-happiness-reflect”
GD “reflect-happiness”
DG “happiness-reflect”
G “reflect”
D “happiness”

Table 1: Field structure and corresponding content stored
in the index.

The structure shown in Table 1 is created for each
dependency extracted from the sentence and the ag-
gregation of all structures are stored as final record
in the index.

3.2 Polarity and Domain Computation

Once the indexes are built, both the polarity and the
domain of each sentence that need to be evaluated,
are computed by performing a set of queries on the
indexes. In our approach, we implemented a varia-
tion of classic IR scoring formula for our purposes.
In the classical TF-IDF IR model (van Rijsbergen,
1979), the inverse document frequency value is used
for identifying which are the most significant docu-
ments with respect to a particular query. This value
is useful when we want to identify the uniqueness
of a document with respect to a term contained in
a query, with respect to the other documents stored
into the index. In our case, the scenario is different
because if a term, or expression, occurs often in the
index, this aspect has to be emphasized instead of
being discriminated. Therefore, in our scoring for-
mula we consider, as final score of a term or an ex-
pression, the document frequency (DF) value (i.e.,
the inverse of the IDF). This way, we are able to in-
fer if a particular term or expression is significant or
not for a given polarity value or domain.

The queries are built with the same procedure
used for creating the records stored in the indexes.
For each sentence to evaluate, a set of queries, one
for each dependency extracted from the sentence is
performed on the indexes and the results are aggre-
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gated for inferring both the polarity and domain of
the sentence.

As example of how the system works, let’s con-
sider the following sentence:

“I feel good and I feel healthy.”
For simplicity, we only consider the following

two extracted dependencies:
acomp(feel-2, good-3)
acomp(feel-6, healthy-7)

From these two dependencies, we generate the
following two queries:
Q1: "RGD:"acomp-feel-good"

OR RDG:"acomp-good-feel"
OR GD:"feel-good" OR DG:"good-feel"
OR G:"feel" OR D:"good"

Q2: "RGD:"acomp-feel-healthy"
OR RDG:"acomp-healthy-feel"
OR GD:"feel-healthy" OR DG:"healthy-feel"
OR G:"feel" OR D:"healthy"

For computing the polarity of the sentence, the
queries are performed on the three indexes con-
taining polarized records: positive (POS), negative
(NEG), and neutral (NEU ). From the computed
ranks, we extract only the DF associated to each
field F contained in the query:

DF (F ) = 1/IDF (F ) (2)

where DF is the value extracted.
As a direct consequence, for each index I , the

value representing the RSV of a sentence is:

RSV (I) = DF (RGDQ1) + DF (RDGQ1)+
DF (GDQ1) + DF (DGQ1) + DF (GQ1)+

DF (DQ1) + DF (RGDQ2) + DF (RDGQ2)+
DF (GDQ2) + DF (DGQ2) + DF (GQ2)+

DF (DQ2)
(3)

Finally, the polarity of the sentence S is inferred
by considering the maximum RSV computed over
the three indexes:

Polarity(S) =
argmaxP∈POS,NEU,NEG RSV(S, P )

(4)

In case of domain assignment, given a set D of k
domains, the domain is computed by:

Domain(S) = argmax i∈1...k RSV(S, Di) (5)

4 Results

The SHELLFBK system participated in three Se-
mEval 2015 tasks: 9, 10, and 11. All three tasks
were about the sentiment analysis topic with the fol-
lowing differences:

• Task 9 (Russo et al., 2015): this task is based on
a dataset of events annotated as instantiations of
pleasant and unpleasant events previously col-
lected in psychological researches as the ones
on which human judgments converge (Lewin-
sohn and Amenson, 1978),(MacPhillamy. and
Lewinsohn, 1982). Task 9 concerns classifica-
tion of the events that are pleasant or unpleas-
ant for a person writing in first person. This
task was organized around two subtasks: (A)
identification of the polarity value associated
to an event instance, and (B) identification of
both the event instantiations and the associated
polarity values. The SHELLFBK system has
been tested on both tasks.

• Task 10 (Rosenthal et al., 2015): this task
aims to identify sentiment polarities in short
text messages contained in the Twitter micro-
blog. This task contains five subtasks: (A)
expression-level, (B) message-level, (C) topic-
related, (D) trend, and (E) a task on prior polar-
ity of terms. The SHELLFBK has been tested
only on the subtask (B).

• Task 11 (Ghosh et al., 2015): this task consists
in the classification of tweets containing irony
and metaphors. Given a set of tweets that are
rich in metaphor and irony, the goal is to deter-
mine whether the user has expressed a positive,
negative, or neutral sentiment in each, and the
degree to which this sentiment has been com-
municated. With respect to the other tasks, here
the polarity is expressed through a fine-grained
scale in the interval [-5, 5].

In the following subsections, we will briefly re-
port the performance obtained on each task.

4.1 Task 9
Table 2 reports the results obtained in Task 9. This
task consisted in the identification of the polarity of
a sentence written in first person (subtask A) and in
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Task Precision Recall F-Measure
Subtask A 0.555 0.384 0.454
Subtask B 0.261 0.155 0.197

Table 2: Results obtained by the SHELLFBK system on
Task 9.

the identification of both the polarity and the do-
main of the sentence (subtask B). Precision, recall
and F-Measure have been computed. As expected,
the accuracy obtained on the sole prediction of the
sentence polarity is higher with respect to the one
obtained on the subtask combining the inference of
both the domain and the polarity itself. Unfortu-
nately, the recall values obtained on both subtasks
are quite low, especially for the subtask B.

4.2 Task 10

Performance obtained by the SHELLFBK system
on Task 10 have been reported in Table 3. For this
task, the SHELLFBK system has been tested only
on the message-level polarity subtask (B). By ob-
serving either the overall f-measure and the ones ob-
tained on the different portions of the dataset, the
performance of the system are too low for consider-
ing it a reliable solution for being used in contexts
where short texts are taken into account.

4.3 Task 11

Results of the proposed system concerning Task 11
are shown in Table 4. In this task, due to the fine-
grained nature of the polarity predictions, the cosine
similarity and the mean square error with respect to
the gold standard have been computed. In the first
result-line, the values obtained on the four figura-
tive categories are reported, while in the second one,
the overall results. By observing the results, for the
“Sarcasm” and “Irony” topics the obtained results
are acceptable; while, for the “Metaphor” and for
the “Other” category, both the cosine similarity and
the MSE are significantly worse with respect to the
first two. These results, either with the ones obtained
on Task 10, confirm that the analysis of short texts
is the first issue to address for improving the general
quality of the system.

5 Conclusion

In this paper, we described the SHELLFBK system
presented at SemEval 2015 that participated in Se-
mEval 2015 Tasks 9, 10, and 11. Our system makes
use of IR techniques to classify sentences by polar-
ity, domain and the joint prediction of polarity and
domain, effectively providing domain specific senti-
ment analysis. The results demonstrated that, while
on well-formed sentences the system obtained good
performance, the method performs less well on short
texts like tweets. Therefore, future work will focus
on the improvement of the system in this direction.
In future work, we intend to explore the integration
of sentiment knowledge bases (Dragoni et al., 2014)
in order to move toward a more cognitive approach.
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Abstract

We present our supervised sentiment classifi-
cation system which competed in SemEval-
2015 Task 10B: Sentiment Classification in
Twitter— Message Polarity Classification.
Our system employs a Support Vector Ma-
chine classifier trained using a number of fea-
tures including n-grams, dependency parses,
synset expansions, word prior polarities, and
embedding clusters. Using weighted Sup-
port Vector Machines, to address the issue of
class imbalance, our system obtains positive
class F-scores of 0.701 and 0.656, and nega-
tive class F-scores of 0.515 and 0.478 over the
training and test sets, respectively.

1 Introduction

Social media has seen unprecedented growth in
recent years. Twitter, for example, has over
645,750,000 users and grows by an estimated
135,000 users every day, generating 9,100 tweets
per second1). Users often express their views and
emotions regarding a range of topics on social me-
dia platforms. As such, social media has become
a crucial resource for obtaining information directly
from end-users, and data from social media has been
utilized for a variety of tasks ranging from person-
alized marketing to public health monitoring. While
the benefits of using a resource such as Twitter in-
clude large volumes of data and direct access to end-
user sentiments, there are several obstacles associ-
ated with the use of social media data. These include

1http://www.statisticbrain.com/
twitter-statistics/. Accessed on: 26th August,
2014.

the use of non-standard terminologies, misspellings,
short and ambiguous posts, and data imbalance, to
name a few.

In this paper, we present a supervised learning
approach, using Support Vector Machines (SVMs)
for the task of automatic sentiment classification
of Twitter posts. Our system participated in
the SemEval-2015 task Sentiment Classification in
Twitter— Message Polarity Classification. The goal
of the task was to automatically classify the polar-
ity of a Twitter post into one of three predefined
categories— positive, negative and neutral. In our
approach, we apply a small set of carefully extracted
lexical, semantic, and distributional features. The
features are used to train a SVM learner, and the
issue of data imbalance is addressed by using dis-
tinct weights for each of the three classes. The re-
sults of our system are promising, with positive class
F-scores of 0.701 and 0.656, and negative class F-
scores of 0.515 and 0.478 over the training and test
sets, respectively.

2 Related Work

Following the pioneering work on sentiment analy-
sis by Pang et. al. (2002), similar research has been
carried out under various umbrella terms such as: se-
mantic orientation (Turney, 2002), opinion mining
(Pang and Lee, 2008), polarity classification (Sarker
et al., 2013), and many more. Pang et al. (2002) uti-
lized machine learning models to predict sentiments
in text, and their approach showed that SVM clas-
sifiers trained using bag-of-words features produced
promising results. Similar approaches have been ap-
plied to texts of various granularities— documents,
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sentences, and phrases.
Due to the availability of vast amounts of data,

there has been growing interest in utilizing social
media mining for obtaining information directly
from users (Liu and Zhang, 2012). However, so-
cial media sources, such as Twitter posts, present
various natural language processing (NLP) and ma-
chine learning challenges. The NLP challenges arise
from factors, such as, the use of informal language,
frequent misspellings, creative phrases and words,
abbreviations, short text lengths and others. From
the perspective of machine learning, some of the
key challenges include data imbalance, noise, and
feature sparseness. In recent research, these chal-
lenges have received significant attention (Jansen et
al., 2009; Barbosa and Feng, 2010; Davidov et al.,
2010; Kouloumpis et al., 2011; Sarker and Gonza-
lez, 2014).

3 Methods

3.1 Data

Our training and test data consists of the data made
available for SemEval 2015 task 10 (A–D). Each in-
stance of the data set made available consisted of a
tweet ID, a user ID, and a sentiment category for the
tweet. For training, we downloaded all the annotated
tweets that were publicly available at the time of de-
velopment of the system. We were able to obtain,
from the training and development sets released by
the organizers, a total of 9,289 tweets for which the
annotations were available. Of these, 4,445 (48%)
were annotated as neutral, 1,416 (15%) as negative,
and 3,428 (37%) as positive. The data is heavily im-
balanced with particularly small number of negative
instances.

3.2 Features

We derive a set of lexical, semantic, and distribu-
tional features from the training data. A brief de-
scription of each feature and preprocessing tech-
nique is described below.

3.2.1 Preprocessing

We perform standard preprocessing such as tok-
enization, lowercasing and stemming of all the terms

using the Porter stemmer2 (Porter, 1980). Our pre-
liminary investigations suggested that stop words
can play a positive effect on classifier performances
by their presence in word 2-grams and 3-grams; so,
we do not remove stop words from the texts.

3.2.2 N-grams
Our first feature set consists of word n-grams of

the tweets. A word n-gram is a sequence of con-
tiguous n words in a text segment, and this feature
enables us to represent a document using the union
of its terms. We use 1-, 2-, and 3-grams as features.

3.2.3 Synset
It has been shown in past research that certain

terms, because of their prior polarities, play impor-
tant roles in determining the polarities of sentences
(Sarker et al., 2013). Certain adjectives, and some-
times nouns and verbs, or their synonyms, are almost
invariably associated with positive or non-positive
polarities. For each adjective, noun or verb in a
tweet, we use WordNet3 to identify the synonyms of
that term and add the synonymous terms as features.

3.2.4 Average Sentiment Score
For this feature, we incorporate a score that at-

tempts to represent the general sentiment of a tweet
using the prior polarities of its terms. Each word-
POS pair in a comment is assigned a score and the
overall score assigned to the comment is equal to the
sum of all the individual term-POS sentiment scores
divided by the length of the sentence in words. For
term-POS pairs with multiple senses, the score for
the most common sense is chosen. To obtain a
score for each term, we use the lexicon proposed by
Guerini et al. . The lexicon contains approximately
155,000 English words associated with a sentiment
score between -1 and 1. The overall score a sentence
receives is therefore a floating point number with the
range [-1:1]. One problem faced, when using such
a lexicon on tweets, is words are frequently mis-
spelled and, thus, missed by the lexicon matching
process. We, therefore, used a fast, moderately accu-
rate, and publicly available spelling correction sys-

2We use the implementation provided by the NLTK toolkit
http://www.nltk.org/.

3http://wordnet.princeton.edu/. Accessed on
October 13, 2014.
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tem4 to process each tweet before performing lexi-
con matches.

3.2.5 Grammatical Dependencies
Stanford grammatical dependencies have been

designed with a view to provide a simple and usable
analysis of the grammatical structure of a sentence
by people who are not (computational) linguists (de
Marneffe et al., 2006). In this schema, each rela-
tion between words of a sentence are encoded as
binary predicates between two words. A semantic
interpretation which uses the notions of traditional
grammar are attached to the relations to facilitate
their comprehension. For example, from the sen-
tence I love the banner, we expect in the analysis the
relations nsubj(love, I), det(banner, the), dobj(love,
banner) denoting subject, determinant and direct ob-
ject roles, respectively. Based on previous research
(Nikfarjam et al., 2012), our intuition is that depen-
dency relationships maybe useful for polarity clas-
sification. We used the Stanford parser integrated
in the Stanford CoreNLP 3.4 suite,5 and computed
collapsed and propagated dependency trees for each
tweet.

3.2.6 Embedding Cluster Features
Considering the nature of the user posts in Twit-

ter, it is common to observe rarely occurring or un-
seen tokens in the test data. In order to address
this issue, we use embedding cluster features in-
troduced in (Nikfarjam et al., 2014). We catego-
rize the similar tokens into clusters, and as a result,
each token in the corpus has an associated cluster
number. Therefore, every tweet is represented with
a set of cluster numbers, with similar tokens hav-
ing the same cluster number. The word clusters are
generated based on K-means clustering of the to-
ken representative vectors (known as embeddings).
The embeddings are meaningful real-valued vectors
of configurable dimensions (usually, 150 to 500 di-
mensions) learned from large volumes of unlabeled
sentences. We generate 150-dimensional vectors
using the word2vec tool.6. Our corpus includes a

4http://norvig.com/spell-correct.html.
Accessed on January 7, 2015.

5http://nlp.stanford.edu/software/
corenlp.shtml. Accessed on January 8, 2015

6Available at: https://code.google.com/p/
word2vec/. Accessed on 13 January, 2015

large number of unlabeled sentences from the pro-
vided train/test tweets plus an additional 860,000
in-house set of collected tweets about user opinions
on medications. The vector and cluster dimensions
are selected based on extrinsic evaluation of differ-
ent configurations for the embedding clusters, gen-
erated from the same in-house Twitter corpus in our
previous study. Word2vec learns the embeddings
by training a neural network-based language model,
and mapping tokens from similar contexts into vec-
tors that can then be clustered using vector similarity
techniques. More information about generating the
embeddings can be found in the related papers (Ben-
gio et al., 2003; Turian et al., 2010; Mikolov et al.,
2013).

3.2.7 Other Features
In addition to the abovementioned features, we

used the post lengths, in number of characters, as
a feature.

3.3 Classification
Using the abovementioned features, we trained
SVM classifiers for the classification task. The per-
formance of SVMs can vary significantly based on
the kernel and specific parameter values. For our
work, based on some preliminary experimentation
on the training set, we used the RBF kernel. We
computed optimal values for the cost and γ parame-
ters via grid-search and 10-fold cross validation over
the training set. To address the problem of data im-
balance, we utilized the weighted SVM feature of
the LibSVM library (Chang and Lin, 2011), and we
attempted to find optimal values for the weights in
the same way using 10-fold cross validation over the
training set. We found that cost = 8.0, γ = 0.0,
ω1 = 3.5, and ω2 = 2.2 to produce the best results,
where ω1 and ω2 are the weights for the positive and
negative classes, respectively.

4 Results

Table 1 presents the performance of our system on
the training and test data sets. The table presents the
positive and negative class F-scores for the system,
and the average of the two scores— the metric that is
used for ranking systems in the SemEval evaluations
for this task. For the training set, the results are those
obtained via 10-fold cross validation. The test set
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consists of 2,390 instances and the full training set
is used when performing classification on this set.

Data set Positive F-
score (P)

Negative F-
score (N)

P + N
2

Training 0.701 0.515 0.608
Test 0.656 0.478 0.567

Table 1: Classification results for the DIEGOLab system
over the training and test sets.

4.1 Feature Analysis

To assess the contribution of each feature towards
the final score, we performed leave-one-out feature
and single feature experiments. Tables 3 and 2 show
the P+N

2 values for the training and the test sets for
the two set of experiments. The first row of the
tables present the results when all the features are
used, and the following rows show the results when
a specific feature is removed or when a single fea-
ture is used. The tables illustrate that the most im-
portant feature set is n-grams, and there is a large
drop in the evaluation score when that feature is re-
moved (in Table 2). For all the other feature sets,
the drops in the evaluation scores shown in Table 3
are very low, meaning that their contribution to the
final evaluation score is quite limited. Table 3 sug-
gests that the sentiment score feature is the second
most useful feature after n-grams. The experiments
suggest that the classifier settings (i.e., the parameter
values and the class weights) play a more important
role in our final approach, as greater deviations from
the scores presented can be achieved by fine tuning
the parameter values than by adding, removing, or
modifying the feature sets. Further experimentation
is required to identify useful features and to config-
ure existing features to be more effective.

5 Conclusions and Future Work

Our system achieved moderate performance on the
SemEval sentiment analysis task utilizing very basic
settings. The F-scores were particularly low for the
negative class, which can be attributed to the class
imbalance. Considering that the performance of our
system was achieved by very basic settings, there
is promise of better performance via the utilization

Feature
removed

Training set
average

Test set
average

None 0.608 0.567
N-grams 0.575 0.527
Synset 0.606 0.565
Sentiment
Score

0.608 0.561

Grammatical
Dependen-
cies

0.601 0.562

Embedding
Clusters

0.602 0.566

Other 0.608 0.565

Table 2: Leave-one-out P+N
2 feature scores for the train-

ing and test sets.

Feature Training set
average

Test set
average

All 0.608 0.567
N-grams 0.587 0.560
Synset 0.507 0.478
Sentiment
Score

0.561 0.489

Grammatical
Dependen-
cies

0.435 0.436

Embedding
Clusters

0.482 0.461

Other 0.303 0.272

Table 3: Single feature P+N
2 scores for the training and

test sets.

of various feature generation and engineering tech-
niques.

We have several planned future tasks to improve
the classification performance on this data set, and
for social media based sentiment analysis in general.
Following on from our past work on social media
data (Patki et al., 2014; Sarker and Gonzalez, 2014),
a significant portion of our future work will focus
on the application of more informative features for
automatic classification of social media text, includ-
ing sentiment analysis. We are also keen to explore
the use of text normalization techniques, at various
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granularities, to improve classification performance
over social media data.
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Abstract

This paper describes our sentiment classifica-
tion system submitted to SemEval-2015 Task
10. In the message-level polarity classifica-
tion subtask, we obtain the highest macro-
averaged F1-scores on three out of six test-
ing sets. Specifically, we build a two-stage
classifier to predict the sentiment labels for
tweets, which enables us to design different
features for subjective/objective classification
and positive/negative classification. In addi-
tion to n-grams, lexicons, word clusters, and
twitter-specific features, we develop several
deep learning methods to automatically ex-
tract features for the message-level sentiment
classification task. Moreover, we propose a
polarity boosting trick which improves the
performance of our system.

1 Introduction

In the task 10 of SemEval-2015, submitted sys-
tems are required to categorize tweets to posi-
tive, negative, and neutral classes (Rosenthal et
al., 2015). There are six testing sets in SemEval-
2015. Four of them are tweets: Twitter13, Twit-
ter14, Twitter14Sarcasm, and Twitter15. The Twit-
terSarcasm14 consists of the tweets which express
sarcasm. In order to evaluate the performance on
out-of-domain data, the other two datasets are Live-
Journal14 and SMS13 that are from web blogs and
SMS messages respectively. The details of these
datasets are described in (Nakov et al., 2013; Rosen-
thal et al., 2014; Rosenthal et al., 2015).

∗Contribution during internship at Microsoft Research.

We utilize both basic features and deep learn-
ing features in our system. Deep learning is used
to automatically learn representations, which has
achieved some promising results on sentiment anal-
ysis (Kim, 2014; Socher et al., 2013; Dong et
al., 2014). In order to design more flexible fea-
tures, we use a two-stage classification framework
which conducts subjective/objective (sub/obj) clas-
sification and positive/negative (pos/neg) classifica-
tion. In addition, we introduce a polarity boosting
trick that can utilize pos/neg training data to improve
classifying tweets to sub/obj. With the help of these
features and methods, our system achieves the best
results on three out of six datasets among 40 teams
in SemEval-2015. We describe the basic features
and deep learning features used in our system, and
compare their contributions. Moreover, we make the
word2vec clustering results on Twitter data publicly
available for research purpose.

2 System Description

2.1 Overview

As shown in Figure 1, our sentiment analysis system
is a two-stage sentiment classifier which consists of
a subjective/objective (sub/obj) classifier and a pos-
itive/negative (pos/neg) classifier. By using this ar-
titacture, we can design different feature sets for the
two classification steps. Notably, the predicted val-
ues of pos/neg classifier is employed to help clas-
sify tweets to sub/obj classes. We employ the LIB-
LINEAR (Fan et al., 2008) with option “-s 1” as our
classifier. All the input tweets are normalized by re-
placing the @ mentions and URLs. Moreover, the
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tweet

pos/neg feature 
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Figure 1: The overview of our two-stage sentiment anal-
ysis system. We use two classifiers to predict labels
for tweets. Different features are extracted for sub/obj
and pos/neg classification steps. The predicted value of
pos/neg classifier is used to extract features for sub/obj
step, which is called as polarity boosting trick.

elongated words are normalized by shortening them
to three contiguous letters.

2.2 Basic Features

We briefly describe the basic features used in our
system as follows. The features are used in both
pos/neg and sub/obj classifiers unless noted other-
wise. The features which appear less than two times
are pruned to reduce the model size.

Word ngrams We use unigrams and bigrams for
words.

Character ngrams For each word, character
ngrams are extracted. We use four-grams and five-
grams in our system.

Word skip-grams For all the trigrams and four-
grams, one of the words is replaced by ∗ to indicate
the presence of non-contiguous words. This feature
template is used in sub/obj classification.

Brown cluster ngrams We use Brown clusters1

to represent words, and extract unigrams and bi-
grams as features.

POS The presence or absence of part-of-speech
tags are used as binary features. We use the CMU
ARK Twitter Part-of-Speech Tagger (Owoputi et al.,
2013) in our implementation.

Lexicons The NRC Hashtag Sentiment Lexicon

1http://www.ark.cs.cmu.edu/TweetNLP/clusters/50mpaths2

and Sentiment140 Lexicon2 are used. These two
lexicons are automatically generated by calculat-
ing pointwise mutual information (PMI) scores be-
tween the words and positive or negative labels (Kir-
itchenko et al., 2014). The hashtags and emoticons
are used to assign noisy polarity labels for tweets.
For both positive and negative lexicons, we extract
the following features: (1) the number of occur-
rences; (2) the maximal PMI score; (3) the score of
last term; (4) the total PMI score of terms.

Twitter-specific features The number of hash-
tags, emoticons, elongated words, and puncuations
are used as features.

2.3 Deep Learning Features

In order to automatically extract features, we explore
using some deep learning techniques in our system.
These features and the basic features described in
Section 2.2 are used together to learn classifiers.

Word2vec cluster ngrams We use the word2vec
tool (Mikolov et al., 2013) to learn 40-dimensional
word embeddings from a twitter dataset. Then, we
employ K-means algorithm and L2 distance of word
vectors to cluster the 255, 657 words to 4960 classes.
The clusters are used to represent words. We extract
unigrams and bigrams as features, and use them in
sub/obj classifier. The word2vec clustering results
are publicly available3 for research purposes. As
shown in Table 1, similar words are clustered into
the same clusters. This feature template is used in
sub/obj classification.

CNN predicted distribution The convolutional
neural networks (dos Santos, 2014) are used to
predict the probabilities of three sentiment classes,
and the predicted distribution is used as a three-
dimension feature template. As illustrated in Fig-
ure 2, we use the network architecture proposed
by Collobert et al. (2011). The dimension of word
vectors is 50, and the window size is 5. Then the
concatenated word vectors are fed into a convolu-
tional layer. The vector representation of a sentence
is obtained by a max pooling layer, and is used to
predict the probabilities of three classes by the soft-
max layer. We employ stochastic gradient descent
to minimize the cross-entropy loss. In order to pre-

2http://goo.gl/ee2CVo
3http://goo.gl/forms/8pLMMClzxB
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Cluster Words

4493
good, hope, great, nice, lovely, special, gr8, enjoying, goood, enjoyed, fabulous, magical, beaut,
fab, g8, spectacular, pleasant, spoilt, swell, brill, greaaat, amazin, terrific, kickass, gr9, grrreat,
greatt, fabbb, lush, marvellous, frantastic, greeeat, amzing, badasss, greaat, beauitful, pawsome

2123
love, miss, luv, loveee, looove, luh, lovee, misss, ilove, luvvv, lub, wuv, luhhh, luhh, imiss, thnk,
loove, loooveee, iove, luuuv, luvv, lovvve, looovvveee, luff, mish, lobe, lovveee, wuvvv, lurv,
mith, lovve, love/miss, luuuvvv, lubb, lurve

Table 1: Examples of word2vec clusters. Similar words are clustered to the same cluster.

... ...

Convolutional layer

Max pooling layer

Softmax layer

5x50

300

300

300
Hidden layer

3

Figure 2: Architecture of convolutional neural network
used in our system. The lines represent vectors, and the
numbers indicate the vector dimensions.

vent overfitting, a L2-norm constraint for the col-
umn vectors of weight matrices is used. The back-
propagation algorithm (Rumelhart et al., 1986) is
employed to compute the gradients for parameters.
The word vectors provided by Tang et al. (2014) are
used for initialization.

Sentiment-specific embedding Tang et al. (2014)
improve the word2vec model to learn sentiment-
specific word embeddings from tweets annotated by
emoticons. We use element-wise max, min, and avg
operations for the word vectors to extract features.

2.4 Polarity Boosting Trick

Predicted scores indicate the confidence of classi-
fier. If the pos/neg classifier has a high confidence
to classify a tweet to positive or negative, it is less
likely that this tweet is objective. Consequently, the
absolute value of output of pos/neg classifier is used
as a feature in sub/obj classification step, which is
called as polarity boosting trick. This method bet-
ter utilizes the pos/neg training data to help sub/obj
step instead of only using the sub/obj training data.
Moreover, this approach is based on the fact that
classifying pos/neg is much easier than categorizing
sub/obj (Pang and Lee, 2008).

Unlike most of previous work, we perform the
pos/neg classification for every message to extract
the polarity boosting feature, even if it is classified
as an objective message.

3 Experimental Results

The macro-averaged F1-score of positive and nega-
tive classes is used as the evaluation metric (Rosen-
thal et al., 2015). Notably, this evaluation metric
also takes the neutral class into consideration. We
train the model on TRAIN/DEV (7,072/1,120) pro-
vided in SemEval-2013.

3.1 Overall Results

As shown in Table 2, we compare our system with
the best results of other teams on six datasets.
Our system ranks first on three out of six datasets,
namely, Twitter13 (Twt13), Twitter14 (Twt14), and
LiveJournal14 (LvJn14). The results indicate that
our system performs well for short texts in online so-
cial networks. Furthermore, we find that the perfor-
mance drops for the tweets which are sarcastic. An-
other model is needed to better address the sarcasm
problem in Twitter. In addition, the performance on
SMS13 is worse than on Twitter data. This suggests
that the mismatch of domains between training data
and testing data harms the results.

3.2 Contribution of Features

We conduct ablation experiments on six testing sets
to show effectiveness of features. As presented in
Table 3, the overall conclusion is that both basic
features and deep learning features contribute to the
performance. In addition, the polarity boosting trick
improves the performance.

Specifically, after removing the ngrams features,
our system still performs well, and the results on
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Feature Twt13 Twt14 Twt15 LvJn14 SMS13 Sarc14
all 72.80 74.42 63.73 75.34 67.16 42.86
- basic features 69.80 70.35 59.48 72.74 63.32 47.90

- word/char ngrams & skip-grams 72.70 73.14 62.99 75.43 66.32 44.41
- Brown cluster ngrams 72.03 73.62 63.85 74.75 67.75 42.75
- lexicons 72.48 72.40 62.84 74.78 66.76 44.18

- deep learning features 70.13 70.46 62.23 72.25 66.91 51.47
- word2vec cluster ngrams 72.71 74.14 62.66 74.99 67.11 43.35
- CNN predicted distribution 71.83 70.60 62.81 74.81 68.08 45.87
- sentiment-specific embedding 72.78 74.29 63.69 74.70 67.31 44.10

- polarity boosting trick 72.42 72.20 62.91 75.10 65.74 41.46

Table 3: Results of ablation experiments.

Dataset
Best of
Others

Spp
(Ours)

Twt13 72.79 72.80
Twt14 73.60 74.42
Twt15 64.84 63.73
LvJn14 74.52 75.34
SMS13 68.37 67.16
Sarc14 59.11 42.86

Table 2: We compare the macro-averaged F1-scores of
our system (Spp) with the best results of other teams
in SemEval-2015. Our system achieves the highest F1-
scores on three out of six datasets.

LvJn14 and Sarc14 become better. Moreover, the
automatically learned lexicons play a positive role
in our system. We also try some manually annotated
lexicons (such as MPQA Lexicon (Wilson et al.,
2005), and Bing Liu Lexicon (Hu and Liu, 2004)),
but the performance drops on the dev data. It illus-
trates the coverage of lexicons is important for the
informal text data. The cluster features are also use-
ful in this task, because the clusters reduce the fea-
ture sparsity and have the ability to deal with out-of-
vocabulary words.

The deep learning significantly improves test re-
sults on all the datasets except on the sarcastic
tweets. Using the clustering results of word2vec per-
forms better and more stable than directly using the
vectors as features. This feature template contributes
more than other features on Twitter-15 (Twt15). The
CNN predicted probabilities also increase the F1-
scores. It is the most useful feature template on
Twitter-13 (Twt13) and Twitter-14 (Twt14). Addi-

tionally, the sentiment-specific embeddings which is
learned on emoticon annotated tweets contributes to
the performances. It provides more explicit senti-
ment information than word2vec vectors.

As shown in Table 2, the polarity boosting trick
also contributes to the performance of our system
on all the six datasets.

4 Conclusions

We describe our message-level sentiment classifica-
tion system submitted in SemEval-2015. Our sys-
tem ranks first on three out of six testing sets in
the message-level polarity classification task. It em-
ploys various basic features and modern deep learn-
ing techniques. The deep learning methods help us
get rid of feature engineering and improve the re-
sults significantly. Furthermore, the polarity boost-
ing trick which is easy to implement is a good way to
utilize positive/negative data to improve the subjec-
tive/objective classification. There are several inter-
esting directions to further improve the results. First,
more recently proposed deep learning models can
be used to automatically learn features. Second, we
can utilize the noisy data annotated by hashtags or
emoticons to learn lexicons of higher quality. Third,
making the classifier robust for out-of-domain test
data is crucial in practice.
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Abstract
This paper describes the system that was sub-
mitted to SemEval2015 Task 10: Sentiment
Analysis in Twitter. We participated in Sub-
task B: Message Polarity Classification. The
task is a message level classification of tweets
into positive, negative and neutral sentiments.
Our model is primarily a supervised one which
consists of well designed features fed into an
SVM classifier. In previous runs of this task,
it was found that lexicons played an important
role in determining the sentiment of a tweet.
We use existing lexicons to extract lexicon
specific features. The lexicon based features
are further augmented by tweet specific fea-
tures. We also improve our system by using
acronym and emoticon dictionaries. The pro-
posed system achieves an F1 score of 59.83
and 67.04 on the Test Data and Progress Data
respectively. This placed us at the 18th posi-
tion for the Test Dataset and the 16th position
for the Progress Test Dataset.

1 Introduction
Micro-blogging has become a very popular com-
munication tool among Internet users. Millions of
users share opinions on different aspects of life, ev-
eryday on popular websites such as Twitter, Tum-
blr and Facebook. Spurred by this growth, compa-
nies and media organizations are increasingly seek-
ing ways to mine these social media for informa-
tion about what people think about their companies
and products. Political parties may be interested to
know if people support their program or not. Social
organizations may need to know people’s opinion
on current debates. All this information can be ob-
tained from micro-blogging services, as their users
post their opinions on many aspects of their life reg-
ularly.
Twitter contains an enormous number of text posts
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and the rate of posts is increasing every day. Its au-
dience varies from regular users to celebrities, com-
pany representatives, politicians, and even coun-
try presidents. Therefore, it is possible to collect
text posts of users from different social and inter-
est groups. However, analyzing Twitter data comes
with its own bag of difficulties. Tweets are small in
length, thus ambiguous. The informal style of writ-
ing, a distinct usage of orthography, acronymization
and a different set of elements like hashtags, user
mentions demand a different approach to solve this
problem.
In this work we present the description of the super-
vised machine learning system developed while par-
ticipating in the shared task of message based sen-
timent analysis in SemEval 2015 (Rosenthal et al.,
2015). The system takes as input a tweet message,
pre-processes it, extracts features and finally classi-
fies it as either positive, negative or neutral. Tweets
in the positive and negative classes are subjective in
nature. However, the neutral class consists of both
subjective tweets which do not have any polarity as
well as objective tweets.
Our paper is organized as follows. We discuss re-
lated work in Section 2. In Section 3, we discuss the
existing resources which we use in our system. In
Section 4 we present the proposed system and give
a detailed description for the same. We present ex-
perimental results and the ranking of our system for
different datasets in Section 5. The paper is summa-
rized in Section 6.

2 Related Work
Sentiment analysis has been an active area of re-
search since a long time. A number of sur-
veys (Pang and Lee, 2008; Liu and Zhang, 2012) and
books (Liu, 2010) give a thorough analysis of the
existing techniques in sentiment analysis. Attempts
have been made to analyze sentiments at different
levels starting from document (Pang and Lee, 2004),
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sentences (Hu and Liu, 2004) to phrases (Wilson et
al., 2009; Agarwal et al., 2009). However, micro-
blogging data is different from regular text as it is ex-
tremely noisy in nature. A lot of interesting work has
been done in order to identify sentiments from Twit-
ter micro-blogging data also. (Go et al., 2009) used
emoticons as noisy labels and distant supervision to
classify tweets into positive or negative class. (Agar-
wal et al., 2011) introduced POS-specific prior po-
larity features along with using a tree kernel for
tweet classification. Besides these two major pa-
pers, a lot of work from the previous runs of the Se-
mEval is available (Rosenthal et al., 2014; Nakov et
al., 2013).

3 Resources
3.1 Annotated Data
Tweet IDs labeled as positive, negative or neutral
were given by the task organizers. In order to build
the system we first downloaded these tweets. The
task organizers provided us with a certain number of
tweet IDs. However, it was not possible to retrieve
the content of all the tweet IDs due to changes in the
privacy settings. Some of the tweets were probably
deleted or may not be public at the time of down-
load. Thus we were not able to download the tweet
content of all the tweets IDs provided by the organiz-
ers. For the training and the dev-test datasets, while
the organizers provided us with 9684 and 1654 tweet
IDs respectively, we were able to retrieve only 7966
and 1368 tweets, respectively.

3.2 Sentiment Lexicons
It has been found that lexicons play an important
role in determining the polarity of a message. Sev-
eral lexicons have been proposed in the past which
are used popularly in the field of sentiment analy-
sis. We use the following lexicons to generate our
lexicon based features: (1) Bing Liu’s Opinion Lexi-
con1, (2) MPQA Subjectivity Lexicon (Wilson et al.,
2005), (3) NRC Hashtag Sentiment Lexicon (Mo-
hammad et al., 2013), and (4) Sentiment140 Lexi-
con (Mohammad et al., 2013).

3.3 Dictionary
Besides the above sentiment lexicons, we used two
other dictionaries described as follows.

1http://www.cs.uic.edu/˜liub/FBS/
opinion-lexicon-English.rar

• Emoticon Dictionary: We use the emoticons
list 2 and manually annotate the related senti-
ment. We categorize the emoticons into four
classes as follows: (1) Extremely- Positive, (2)
Positive, (3) Extremely- Negative, and (4) Neg-
ative.

• Acronym Dictionary: We crawl the
noslang.com website 3 in order to obtain
the acronym expansion of the most commonly
used acronyms on the web. The acronym
dictionary helps in expanding the tweet text
and thereby improves the overall sentiment
score. The acronym dictionary has 5297
entries. For example, asap has the translation
As soon as possible.

Other than this we also use Tweet NLP (Owoputi
et al., 2013), a Twitter specific tweet tokenizer and
tagger which provides a fast and robust Java-based
tokenizer and part-of-speech tagger for Twitter.

4 System Overview
Figure 1 gives a brief overview of our system. In the
offline stage, the system takes the tweet IDs and the
N-Gram model as inputs (shown in red) to learn a
classifier. The classifier is then used online to pro-
cess a test tweet and output (shown in green) its sen-
timent. The basic building blocks of the system in-
clude Pre-processing, Feature Extraction and Clas-
sification. We first build a baseline model based on
unigram, bigrams and trigrams and later add more
features to it. In this section we discuss each mod-
ule in detail.

4.1 Pre-processing
Since the tweets are very noisy, they need a lot of
pre-processing. Table 1 lists the various steps of pre-
processing applied on the tweets. They are discussed
as follows.

• Tokenization
After downloading the tweets using the tweet
IDs provided in the dataset, we first tokenize
them. This is done using the Tweet-NLP
tool (Gimpel et al., 2011) developed by ARK
Social Media Search. This tool tokenizes the

2http://en.wikipedia.org/wiki/List_of_
emoticons

3http://www.noslang.com/dictionary/
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Figure 1: System Architecture (Red: Inputs, Green: Out-
puts).

Table 1: List of Pre-processing Steps.

Tokenisation
Remove Non-English Tweets
Replace Emoticons
Remove Urls
Remove Target Mentions
Remove Punctuations from Hashtags
Handle Sequences of Repeated Characters
Remove Numbers
Remove Nouns and Prepositions
Remove Stop Words
Handle Negative Mentions
Expand Acronyms

tweet and returns the POS tags of the tweet
along with the confidence score. It is important
to note that this is a Twitter specific tagger and
tags the Twitter specific entries like emoticons,
hashtags and mentions along with the regular
parts of speech. After obtaining the tokenized
and tagged tweets, we move to the next step of
preprocessing.

• Remove Non-English Tweets
Twitter allows more than 60 languages. How-
ever, this work currently focuses on English to-
kens only. We remove the tweets with non-
English tokens.

• Replace Emoticons
Emoticons play an important role in determin-
ing the sentiment of the tweet. Hence we re-

place the emoticons by their sentiment polarity
by looking up in the Emoticon Dictionary gen-
erated using the dictionary mentioned in Sec-
tion 3.

• Remove Urls
The urls which are present in the tweet are
shortened due to the limitation on the length
of the tweet text. These shortened urls do
not carry much information regarding the sen-
timent of the tweet. Thus these are removed.

• Remove Target Mentions
The target mentions in a tweet done using ‘@’
are usually the twitter handle of people or orga-
nizations. This information is also not needed
to determine the sentiment of the tweet. Hence
they are removed.

• Remove Punctuations from Hashtags
Hashtags represent a concise summary of the
tweet, and hence are very critical. In order to
capture the relevant information from hashtags,
all special characters and punctuations are re-
moved before using them as a feature.

• Handle Sequences of Repeated Characters
Twitter provides a platform for users to ex-
press their opinion in an informal way. Tweets
are written in a noisy form, without any fo-
cus on correct structure and spelling. Spell
correction is an important part in sentiment
analysis of user-generated content. People use
words like ‘coooool’ and ‘hunnnnngry’ in or-
der to emphasize the emotion. In order to cap-
ture such expressions, we replace the sequence
of more than three similar characters by three
characters. For example, ‘wooooow’ is re-
placed by ‘wooow’. We replace by three char-
acters so as to distinguish words like ‘wow’ and
‘wooooow’.

• Remove Numbers
Numbers are of no use when measuring sen-
timent. Thus, numbers which are obtained as
tokenized units from the tokenizer are removed
in order to refine the tweet content.

• Remove Nouns and Prepositions
Given a tweet token, we identify the word as
a noun word by looking at its part-of-speech
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tag assigned by the tokenizer. If the majority
sense (most commonly used sense) of that word
is noun, we discard the word. Noun words do
not carry sentiment and thus are of no use in our
experiment. Similarly we remove prepositions
too.

• Remove Stop Words
Stop words play a negative role in the task
of sentiment classification. Stop words occur
in both positive and negative training set, thus
adding more ambiguity in the model formation.
Also, stop words do not carry any sentiment in-
formation and thus are of no use.

• Handle Negative Mentions
Negation plays a very important role in de-
termining the sentiment of the tweet. Tweets
consist of various notions of negation. Words
which are either ‘no’, ‘not’ or ending with
‘n’t’ are replaced by a common word indicat-
ing negation.

• Expand Acronyms
As described in Section 3 we use an acronym
expansion list. In the pre-processing step we
expand the acronyms if they are present in the
tweet.

4.2 Baseline Model
We first generate a baseline model as discussed
in (Bakliwal et al., 2012). We perform the pre-
processing steps listed in Section 4.1 and learn the
positive, negative and neutral frequencies of uni-
grams, bigrams and trigrams in our training data.
Every token is given three probability scores: Posi-
tive Probability (Pp), Negative Probability (Np) and
Neutral Probability (NEp). Given a token, let Pf

denote the frequency in positive training set, Nf de-
note the frequency in negative training set and NEf

denote the frequency in neutral training set. The
probability scores are then computed as follows.

Pp =
Pf

Pf + Nf + NEf
(1)

Np =
Nf

Pf + Nf + NEf
(2)

NEp =
NEf

Pf + Nf + NEf
(3)

Next we create a feature vector of tokens which
can distinguish the sentiment of the tweet with high
confidence. For example, presence of tokens like
am happy!, love love , bullsh*t ! helps in determin-
ing that the tweet carries positive, negative or neu-
tral sentiment with high confidence. We call such
words, Emotion Determiner. A token is consid-
ered to be an Emotion Determiner if the probabil-
ity of the emotion for any one sentiment is greater
than or equal to the probability of the other two sen-
timents by a certain threshold. It is found that we
need different thresholds for unigrams, bigrams and
trigrams. The threshold parameters are tuned and
the optimal threshold values are found to be 0.7, 0.8
and 0.9 for the unigram, bigram and trigram tokens,
respectively. Note that before calculating the proba-
bility values, we filter out those tokens which are in-
frequent (appear in less than 10 tweets). This serves
as a baseline model. Thus, our baseline model is
learned using a training dataset which contains for
every given tweet, a binary vector of length equal
to the set of Emotion Determiners with 1 indicat-
ing its presence and 0 indicating its absence in the
tweet. After building this model we will append
the features discussed in Section 4.3. After append-
ing the features to the baseline model, we get en-
hanced richer vectors containing Emotion Determin-
ers along with the new feature values.

4.3 Feature Extraction
We propose a set of features listed in Table 2 for our
experiments. There are a total of 34 features. We
calculate these features for the whole tweet in case
of message based sentiment analysis. We can divide
the features into two classes: a) Tweet Based Fea-
tures, and b) Lexicon Based Features. Table 2 sum-
marizes the features used in our experiment. Here
features f1− f22 are tweet based features while fea-
tures f23 − f34 are lexicon based features.

A number of our features are based on prior polar-
ity score of the tweet. For obtaining the prior polar-
ity of words, we use AFINN dictionary 4 and extend
it using SENTIWORDNET (Esuli and Sebastiani,
2006). We first look up the tokens in the tweet in
the AFINN lexicon. This dictionary of about 2490
English language words assigns every word a pleas-
antness score between -5 (Negative) and +5 (Posi-

4http://www2.imm.dtu.dk/pubdb/views/
publication_details.php?id=6010
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Table 2: Description of the Features used in the Model.
Feature Description Feature ID
Prior Polarity Score of the Tweet f0

Brown Clusters f1

Percentage of Capitalised Words f2

# of Positive Capitalised Words f3

# of Negative Capitalised Words f4

Presence of Capitalised Words f5

# of Positive Hashtags f6

# of Negative Hashtags f7

# of Positive Emoticons f8

# of Extremely Positive Emoticons f9

# of Negative Emoticons f10

# of Extremely Negative Emoticons f11

# of Negation f12

# Positive POS Tags f13

# Negative POS Tags f14

Total POS Tags Score f15

# of special characters like ? ! and * f16.f17, f18

# of POS (Noun, Verb, Adverb, Adjective) f19, f20, f21, f22

# of words with nonzero score using Bing Liu’s Opinion Lexicon f23

# of words with nonzero score using MPQA Subjectivity Lexicon f24

# of words with nonzero score using NRC Hashtag Sentiment Lexicon f25

# of words with nonzero score using Sentiment140 Lexicon f26

Maximum positive score for a token in the message using Bing Liu’s Opinion Lexicon f27

Maximum positive score for a token in the message using MPQA Subjectivity Lexicon f28

Maximum positive score for a token in the message using NRC Hashtag Sentiment Lexicon f29

Maximum positive score for a token in the message using Sentiment140 Lexicon f30

Total score of the message using Bing Liu’s Opinion Lexicon f31

Total score of the message using MPQA Subjectivity Lexicon f32

Total score of the message using NRC Hashtag Sentiment Lexicon f33

Total score of the message using Sentiment140 Lexicon f34

tive). We normalize the scores by diving each score
by the scale (which is equal to 5) to obtain a score
between -1 and +1. If a word is not directly found
in the dictionary we retrieve all its synonyms from
SENTIWORDNET. We then look for each of the
synonyms in AFINN. If any synonym is found in
AFINN, we assign the original word the same pleas-

antness score as its synonym. If none of the syn-
onyms is present in AFINN, we perform a second
level look up in the SENTIWORDNET dictionary to
find synonyms of synonyms. If the word is present
in SENTIWORDNET, we assign the score retrieved
from SENTIWORDNET (between -1 and +1).
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Table 3: Accuracy on 3-way classification task extending the baseline with additional features. All fi refer to Table 2.

Model F Measure
Positive Class Negative Class Neutral Class Macro-Average

Baseline Model 36.93 30.66 15.38 33.79
+f0 37.14 36.48 59.02 36.81
+ f0 - f1 63.73 47.19 66.24 55.46
+ f0 - f5 63.66 47.50 66.08 55.58
+ f0 - f7 63.58 47.55 66.08 55.56
+ f0 - f11 63.18 46.98 66.06 55.08
+ f0 - f12 63.14 48.52 65.75 55.83
+ f0 - f15 63.84 48.40 66.11 56.12
+ f0 + f18 64.42 48.57 66.30 56.50
+ f0 - f22 64.00 48.09 66.48 56.04
+ f0 - f22 + 67.50 52.26 66.57 59.83
Lexicon Based Features (f23 - f34)

4.4 Classification
After pre-processing and feature extraction we feed
the features into a classifier. We tried various classi-
fiers using the Scikit library 5. After extensive exper-
imentation it was found that SVM gave the best per-
formance. The parameters of the model were com-
puted using grid search. It was found that the model
performed best with radial basis function kernel and
0.75 as the penalty parameter C of the error term.
All the experimental are performed using these pa-
rameters for the model.
5 Results
In this section we present the experimental results
for the classification task. We first present the score
and rank obtained by the system on various test
dataset followed by a discussion on the feature anal-
ysis for our system.
5.1 Overall Performance
The evaluation metric used in the competition is the
macro-averaged F measure calculated over the posi-
tive and negative classes. Table 4 presents the over-
all performance of our system for different datasets.

5.2 Feature Analysis
Table 3 represents the results of the ablation experi-
ment on the Twitter Test Data 2015. Using this abla-

5http://scikit-learn.org/stable/modules/svm.html

tion experiment, one can understand which features
play an important role in identifying the sentiment
of the tweet. It can be observed that the brown clus-
ters plays an important role in determining the class
of the tweet and improves the F-measure by around
20. Also, lexicon based features play a significant
role by improving the F-measure by 3.

6 Conclusion
We presented results for sentiment analysis on Twit-
ter by building a supervised system which combines
lexicon based features with tweet specific features.
We reported the overall accuracy for 3-way classifi-
cation tasks: positive, negative and neutral. For our
feature based approach, we perform feature analysis
which reveals that the most important features are

Table 4: Overall Performance of the System.

Dataset Our Score Best Score Rank
Twitter 2015 59.83 64.84 18
Twitter Sarcasm 2015 52.67 65.77 23
Twitter 2014 67.04 74.42 16
Twitter 2013 65.68 72.80 20
Twitter Sarcasm 2014 57.50 59.11 2
Live Journal 2014 69.91 75.34 21
SMS 2013 62.25 68.49 19
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those that combine the prior polarity of words and
the lexicon based features. In the future, we will
explore even richer linguistic analysis, for example,
parsing, semantic analysis and topic modeling to im-
prove our feature extraction component.
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Abstract

This paper describes our automatic sentiment
analysis system – CIS-positive – for SemEval
2015 Task 10 “Sentiment Analysis in Twit-
ter”, subtask B “Message Polarity Classifica-
tion”. In this system, we propose to normalize
the Twitter data in a way that maximizes the
coverage of sentiment lexicons and minimizes
distracting elements. Furthermore, we inte-
grate the output of Convolutional Neural Net-
works into Support Vector Machines for the
polarity classification. Our system achieves a
macro F1 score of the positive and negative
class of 59.57 on the SemEval 2015 test data.

1 Introduction

On the Internet, text containing different forms of
sentiment appears everywhere. Mining this informa-
tion supports many types of interest groups. Com-
panies, for instance, are interested in user feedback
about the advantages and drawbacks of their prod-
ucts. Users want to read short reviews or ratings
of hotels they want to book for their next vaca-
tion. Politicians try to predict the outcome of the
next presidential election. An automatic sentiment
analysis system can support all these different re-
quirements. One source of these types of informa-
tion covering many domains and topics is the social
networking service Twitter. Its popularity and the
users’ productivity in creating new text makes it an
interesting research topic. However, Twitter intro-
duces specific challenges as we will see next.

In general, automatic sentiment analysis is chal-
lenging due to many different factors, such as am-
biguous word senses, context dependency, sarcasm,
etc. Specific properties of Twitter text make this task

even more challenging. The limit of 140 character
per message leads to countless acronyms and ab-
breviations. Moreover, the vast majority of tweets
is of informal character and contains intentional
miss-spellings and wrong use of grammar. Hence,
the out-of-vocabulary (OOV) rate of Twitter text is
rather high, which leads to information loss.

One of the SemEval 2015 shared tasks – Task
10: Sentiment Analysis in Twitter – addresses these
challenges (Rosenthal et al., 2015). We participated
in Subtask B the “Message Polarity Classification”
task. The goal is to predict the polarity of a given
tweet into positive, negative, or neutral. The task
organizers provided tweet IDs and corresponding la-
bels to have a common ground for training polarity
classification systems. More information about the
task, its other subtasks as well as information about
how the data was selected can be found in (Rosen-
thal et al., 2015).

In this paper, we present our sentiment analysis
system for SemEval 2015 - Task 10. Our system
addresses the above mentioned challenges in two
ways. First, we normalize the text to maximize the
coverage of sentiment lexicons and minimize dis-
tracting elements such as user names or URLs. Sec-
ond, we combine deep Convolutional Neural Net-
works (CNN) and support vector machines (SVM)
for a better overall classification. The motivation of
using CNNs is to extract not only local features but
also context to predict sentiment. Integrating CNN
output into an SVM improves classification.

2 Data Preprocessing

Twitter texts are challenging and differ from other
domains in some specific properties. Due to the 140
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characters limit of tweet length, users make heavy
use of abbreviations and acronyms. This leads to
a high OOV rate and makes tasks like tokenizing,
part-of-speech (POS) tagging, and lexicon search
more difficult. Furthermore, special tokens such as
user mentions (e.g., “@isar”), urls, hashtags (e.g.,
“#happy”), and punctuation sequences like “!?!?”
are often utilized. Therefore, normalization of all
tweets is necessary to facilitate later polarity clas-
sification. Our text preprocessing pipeline can be
described as follows: Tweets are first tokenized
and POS tagged with the CMU tokenizer and tag-
ger (Owoputi et al., 2013). This tagger is specialized
for Twitter and therefore superior to other general
domain taggers. Afterwards, all user mentions are
replaced by “<user>” and all urls by “<web>”, be-
cause they do not provide any cues of polarity. We
do not replace hashtags, because they often contain
valuable information such as topics or even senti-
ment.

Punctuation sequences like “!?!?” can act as ex-
aggeration or other polarity modifier. However, the
sheer amount of possible sequences increases the
OOV rate dramatically. Therefore, all sequences of
punctuations are replaced by a list of distinct punc-
tuations in this sequence (e.g., “!?!?” is replaced by
“[!?]”). That reduces the OOV rate and still keeps
most of the information.

Mohammad et al. (2013) showed that sentiment
lexicons are crucial for achieving good polarity clas-
sification. Unfortunately, miss-spellings and elon-
gated surface forms of sentiment-bearing tokens,
such as “cooooolllll”, lead to lower coverage of all
sentiment lexicons. Since elongated words often
convey sentiment (Brody and Diakopoulos, 2011),
we carefully normalize them in the following way.
First, all elongated words are identified by search-
ing for tokens that contain a sequence of at least
three equal characters. Afterwards, for each elon-
gated word a candidate set is created by removing
the repeated character one by one until only one oc-
currence is left. If a word contains several repeated
character sequences, all combinations are taken as
candidates. For instance, the candidate set of the
word “cooolll” will be {coolll, colll, cooll, coll, cool,
col}. We then search every candidate in a senti-
ment lexicon to find the correct canonical form of
the elongated word. If there is more than one match,

convolution layers

hidden layers

word embeddings

external knowledge

softmax probabilities

bag-of-words

external knowledge

softmax probabilities

SVM

confidence

SVM

final label

Figure 1: System architecture

the shortest match is taken. Since several sentiment
lexicons with different qualities exist, we apply a se-
quential approach. We search the canonical form of
the elongated word in one lexicon. If it does not
exist, the next lexicon in the sequence is searched.
The sequence of sentiment lexicons is sorted based
on the reliability of the lexicon. Manually created
lexicons precede automatically created lexicons. In
this paper, the ordering is as follows: MPQA sub-
jectivity cues lexicon (Wilson et al., 2005), Opin-
ion lexicon (Hu and Liu, 2004), NRCC Emotion
lexicon (Mohammad and Turney, 2013), sentiment
140, and Hashtag lexicon (both in (Mohammad et
al., 2013)). As a result, a mapping from elongated
words to their canonical form is found and used to
normalize the corpus. Lowercasing finalizes the pre-
processing step.

3 Model

The system architecture consists of three main com-
ponents and is depicted in Figure 1. The first compo-
nent is a CNN (left part in the figure), which makes
use of the sequence of all words in a tweet. The
second component is an SVM classifier which uses
several linguistic features and the CNN’s output as
input (top right part in Figure 1). Finally, to combine
the polarity prediction of the CNN and the SVM we
use another SVM on top to receive the final polarity
label (bottom right part in Figure 1). In this section
all components are described in detail.
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3.1 CNN
The intuition of using a CNN for sentence modeling
is to have a model that is able to capture sequential
phenomenon and considers words in their contexts.
In a bag-of-words approach the word not, indicat-
ing negation, is not set into relation to the words it
negates. An n-gram approach might tackle this prob-
lem to some extent, but long distance effects are still
not captured. Furthermore, a bag-of-words model
suffers from sparsity. A CNN is a neural network
that can handle sequences by performing a math-
ematical convolution operation with a filter matrix
and the input. The goal is to conflate the input se-
quence into a meaningful representation by finding
salient features that indicate polarity. More formally,
the words in the model are represented by two ma-
trices. First, P ∈ Rdp×V denotes a matrix of low di-
mensional word representations, so called word em-
beddings. dp, the size of the embeddings, is usu-
ally set to 50-300, depending on the task. V de-
notes the size of the vocabulary. The matrix P is
learned during model training. It is initialized ei-
ther randomly or with a pretrained matrix, as we
will describe later. In addition to P , we introduce
another matrix Q ∈ Rdq×V which contains exter-
nal word features. In this case, dq is the number of
features per word. This approach allows us to add
as much external knowledge into the training pro-
cess as needed. The features are precomputed and
not embedded into any embeddings space, i.e. Q is
fixed during training. A description of all features is
given later in this section.

Both components are concatenated into a lookup

tableLT =
[
P
Q

]
, where each column corresponds

to the entire representation of a certain word in the
vocabulary. Given a sentence of n words w1 to wn,
the model concatenates all n word representation to
the input of the CNN

S =

 | | |
LT:,w1 · · · LT:,wn

| | |

 .
A one dimensional convolution is a mathematical

operation that slides a filter m ∈ R1×m over a vector
and computes a dot product at every position. The
length of the filter m specifies how many elements

the filter spans. Applying this concept to a two di-
mensional input leads to a convolution matrix where
the elements are computed by

Ci,j = mTSi,j:j+m−1,

where i is the ith row in S and j is the start index of
the convolution.
A, the output of the convolution layer is computed

by an element-wise addition of a bias term (one bias
per row) and an element-wise non-linearity: A =
f(C + b). As non-linear function we use a rectified
linear unit: f(x) = max(0, x). This non-linearity
proved to be a crucial part in object recognition (Jar-
rett et al., 2009), machine translation (Vaswani et al.,
2013), and speech recognition (Zeiler et al., 2013).

Our model uses two layers of convolution. The
concatenation of all rows of the second convolution
layer output is the input to a sequence of three fully
connected hidden layers. A hidden layer transforms
the input vector x into z = f(Wx + b), where W
is a weight matrix that is learned during training and
b is a bias. In order to convert the final hidden layer
output z into a probability distribution over polarity
labels o ∈ R3, the softmax function is used: oi =

exp(zi)∑
j

exp(zj) .

Pretraining of Word Embeddings The standard
way of initializing the word embeddings matrix P
is by sampling from a uniform distribution. Since
there is only a small amount of training data avail-
able, word representations cannot be learned from
scratch before the model would overfit. Therefore,
instead of initializing the word embeddings matrix
randomly, we precompute word embeddings with
the word2vec toolkit on a large amount of Twit-
ter text data.1 We first downloaded about 60 mil-
lion tweets from the unlabeled Twitter Events data
set (McMinn et al., 2013). This corpus is normalized
as described in Section 2. We then select V words,
comprising all the words of the SemEval training
data, words from the sentiment lexicons, and the
most frequent words of the Twitter Events data set.
Finally a continuous bag-of-words model (Mikolov
et al., 2013) with 50 dimensional vectors is trained
and used to initialize P .

1https://code.google.com/p/word2vec/
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Word Features In addition to the word embed-
dings the CNN receives additional external features
(matrix Q). These features are the following:

binary sentiment indicators binary features that
indicate the polarity of a token in a senti-
ment lexicon. The lexicons for this feature are
MPQA (Wilson et al., 2005), Opinion lexicon
(Hu and Liu, 2004) and NRCC Emotion lexi-
con (Mohammad and Turney, 2013).

sentiment scores the sentiment 140 lexicon and the
Hashtag lexicon (Mohammad et al., 2013) both
provide a score for each token instead of just a
label. We directly use these scores. Both lex-
icons also contain scores for bigrams and skip
ngrams. In such a case each word of an ngram
receives the score of the entire ngram.

binary negation following the procedure of
Christopher Potts’ Sentiment Symposium tuto-
rial2 we mark each token between a negation
word and the next punctuation as negated.

3.2 SVM 1
Since training the CNN for many epochs (entire runs
over the whole dataset) always led to overfitting, we
decided to use a second classifier, an SVM. Follow-
ing Mohammad et al. (2013) we use the following
features:

binary bag-of-words binary bag-of-words features
of uni- and bigrams, as well as character tri-
grams. In contrast to (Mohammad et al., 2013)
our system does not use trigrams or character
ngrams of higher order, because it degraded the
performance on the validation set.

sentiment features for every tweet and every lexi-
con we add the following features: number of
tokens in the tweet that occur in the lexicon,
sum of all sentiment scores in the tweet, maxi-
mum sentiment score, and the sentiment score
of the last token in the tweet.

CNN output to inform the SVM about the CNN’s
classification decision and certainty, we add the
softmax output of the CNN as an additional fea-
ture.

2http://sentiment.christopherpotts.net/
lingstruc.html

As linear SVM implementation we use LIBLIN-
EAR (Fan et al., 2008).

3.3 SVM 2

Analyzing the CNN and SVM 1 predictions we
found that both classifiers learn orthogonal features.
Therefore, we introduce a second linear SVM into
the classification pipeline, which combines the soft-
max probabilities of the CNN and the confidence
scores of the first SVM. The output is the final pre-
dicted polarity label of our system.

4 Experiments

Twitter’s terms of service do not allow to provide
tweets as text. Instead, the participants of the
SemEval 2015 task had to download the tweets us-
ing a list of user and tweet IDs. However, not all
tweets are still available. After downloading, our
training data comprises a total of 8394 tweets, 3133
of which are positive, 1237 negative, and 4023 neu-
tral. The evaluation is done on two separate test sets.
The first test set, the progress test set, was used as
test set in previous years of SemEval 2013 (Nakov
et al., 2013) and SemEval 2014 (Rosenthal et al.,
2014). It consists of 3506 positive, 1541 negative,
and 3940 neutral short text (a total of 8987). This
set contains not only Twitter texts, but also SMS
text messages, blog posts (LiveJournal), and tweets
that are marked as sarcastic. The second test set,
the SemEval 2015 test set, contains 2390 Twitter
tweets, 1038 positive, 365 negative, and 987 neu-
tral. Table 1 lists all test set sizes in detail. As eval-
uation measure the organizers chose to report the
macro F1 score of positive and negative examples,
i.e., F1,macro = (F1,positive + F1,negative) /2.

The CNN is trained using minibatch stochastic
gradient descent with a batch size of 200 examples.
For learning rate adaptation we use AdaGrad (Duchi
et al., 2011) with an initial learning rate of 0.001.
`2 with λ = 0.001 is utilized to avoid overfitting
as much as possible. The embeddings size is set
to 50. In the first convolution layer, we use 30 fil-
ters with a m = 5, which means it spans 5 words.
The second convolution layer uses 10 filters with
m = 3. The three hidden layers have sizes 200,
40, and 200. This choice of layer sizes with a bot-
tleneck layer between two larger layers is frequently
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Table 1: Test set sizes and results
#pos #neg #neu F1,positive F1,negative F1,neutral F1,macro

SemEval 2013 Twitter 1572 601 1640 71.32 58.31 72.53 64.82
SemEval 2013 SMS 492 394 1207 66.94 63.34 80.33 65.14

SemEval 2014 LiveJournal 427 304 411 71.09 71.84 69.04 71.47
SemEval 2014 Twitter 982 202 669 73.63 58.47 67.14 66.05
SemEval 2014 Twitter sarcasm 33 40 13 60.00 38.46 53.33 49.23

SemEval 2015 Twitter 1038 365 987 65.32 53.82 68.06 59.57

used in automated speech recognition systems. For
example Grézl et al. (2007) showed that using the
bottleneck layer’s output leads to lower word error
rates than using hidden layer outputs. However, our
experimental results show that using the output of
the CNN softmax layer as input for the first SVM
achieves slightly better performance than using the
output of the bottle-neck layer.

For both linear SVMs we tune theC parameter on
the validation data.

Results The last line in Table 1 lists the F1 per-
formances of our system on the SemEval 2015 test
set. The performance on negative examples is much
worse than on positive or neutral examples. This is
due to the small number of negative training exam-
ples. The macro F1 score of 59.57 leads to rank 20
out of 40 participants in this year’s SemEval. The
fact that our system scores much better on LifeJour-
nal and the SMS data in terms of F1,negative suggests
that Twitter is an especially difficult medium for au-
tomated analysis.

The performance difference on Twitter from 2013
and 2014 compared to Twitter 2015 suggests that
this year’s Twitter data was different than in the
years before. Our system scored similarly on Twitter
from 2013 and 2014, but worse on 2015. Even worse
results are achieved on the sarcasm data. However,
the results should be taken with care, because this
sub set is very small.

5 Related Work

One early work that used CNNs to model sentences
was published by Collobert et al. (2011). They used
one convolution layer followed by a max pooling
layer to create a sentence representation. We extend
their method by incorporating additional features fo-
cused on the polarity classification task. In contrast

to their approach, we do not embed our external fea-
tures, but make direct use of them.

Kalchbrenner et al. (2014) show that a CNN for
modeling sentences can achieve competitive results
in polarity classification. Among others, they intro-
duce dynamic k-max pooling, a method that adapts
max pooling to the length of an input sentence.
Compared to their work we use a simpler architec-
ture of the CNN without max-pooling, because this
technique did not show any improvements in our ex-
periments. Furthermore, we use the same filter for
each dimension to reduce the number of parameters,
whereas their model uses a different filter per dimen-
sion. Finally, our CNN model is combined with an-
other classifier to produce the final polarity label.

Using an SVM for polarity classification is a com-
mon approach. One of the first polarity classification
systems used bag-of-words features and an SVM to
classify the polarity of movie reviews (Pang et al.,
2002). The winning system of SemEval 2013 and
SemEval 2014 also used an SVM with many dif-
ferent features (Mohammad et al., 2013). We im-
plemented their most helpful features, which is bag-
of-words and lexicon features and added the CNN
output as an additional feature to improve the final
performance.

6 Conclusion

This paper summarizes the features of our automatic
sentiment analysis system – CIS-positive – for the
SemEval 2015 shared task - Task 10, subtask B. We
carefully normalize the Twitter data and integrate the
output of convolutional neural networks into support
vector machines for the polarity classification. Our
system achieves a macro F-score of 59.57 on the
SemEval 2015 test data. Among the 40 participants
in this subtask our system reached rank 20 with a
distance of 5.0 F1 points to the winning system.
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Abstract

This paper presents the approach of the GTI
Research Group to SemEval-2015 task 10 on
Sentiment Analysis in Twitter, or more specif-
ically, subtasks A (Contextual Polarity Disam-
biguation) and B (Message Polarity Classifi-
cation). We followed an unsupervised depen-
dency parsing-based approach using a senti-
ment lexicon, created by means of an auto-
matic polarity expansion algorithm and Nat-
ural Language Processing techniques. These
techniques involve the use of linguistic pe-
culiarities, such as the detection of polar-
ity conflicts or adversative/concessive subor-
dinate clauses. The results obtained confirm
the competitive and robust performance of the
system.

1 Introduction

The domain of sentiment analysis has received in-
creasing attention in recent years (Liu, 2012), partic-
ularly due to the growth of the Internet and content
generated by users of social networks and other plat-
forms. Some of these, such as Twitter, allow people
to express their opinions using colloquial, compact
language. The result is a new form of expression
that may in the long term become a source of ex-
tremely valuable information. An increasing num-
ber of companies are now focusing their market-
ing campaigns on online comments, sentiments, and
opinions of brands from clients or potential clients,
and some are even trying to predict the acceptance
and rejection of certain products using this informa-
tion (Jansen et al., 2009).

Even though the approaches used for this pur-
pose are numerous and varied, they can be
broadly divided into two categories: supervised
machine-learning and unsupervised semantic-based
approaches. The former are often classifiers built
from features of a “bag of words” representation (Hu
and Liu, 2004; Pak et al., 2010). In other words,
they consist of automatically analyzing n-grams in
search of recurrent combinations of opinion words.
The latter aim at capturing and modeling linguistic
knowledge through the use of dictionaries (Taboada
et al., 2011) containing words that are tagged with
their semantic orientation. These methods detect the
words present in a text using different strategies in-
volving lexics, syntax or semantics (Quinn et al.,
2010) and then aggregate their values. Such meth-
ods usually combine two or more levels of analysis.

In recent years, work on sentiment classification
using different types of texts has shown that special-
ized methods are required. For example, emotions
are not conveyed in the same manner in newspaper
articles as in blogs, reviews, forums or other types
of user-generated content (Balahur, 2013). Dealing
with sentiment in Twitter, thus, requires an analy-
sis of the characteristics of tweets and the design of
adapted methods.

This paper presents a method for sentiment analy-
sis in English that uses dependency parsing to deter-
mine the polarity of tweets, using a previously cre-
ated sentiment lexicon and considering the special
structure and linguistic content of these postings.

The remainder of this article is structured as fol-
lows: Section 2 provides a brief description of the
task and some of its subtasks. Section 3 presents in
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detail the system proposed for the performance of
these tasks, and Section 4 shows the results obtained
and discusses them. Finally, Section 5 summarizes
the main findings and conclusions.

2 Task Description

This paper describes our contribution to the
SemEval-2015 Task 10: Sentiment Analysis in Twit-
ter. Of the five subtasks established, we participated
in two:

• Contextual Polarity Disambiguation (A), on
determining the polarity of a marked instance
of a word or phrase in the context of a given
message.

• Message Polarity Classification (B), on clas-
sifying the content of a whole message.

This year there were two datasets for testing can-
didate systems for substasks A and B: The Official
2015 Test and a Progress Test. The first test con-
sisted of a set of Twitter messages (Rosenthal et al.,
2015) whilst the second test was a rerun of SemEval-
2014 Task 9 (Rosenthal et al., 2014), which includes
Twitter messages and other kinds of texts from dif-
ferent domains. Datasets formed by the datasets
given in SemEval-2013 Task 2 (Nakov et al., 2013)
were also provided for training and development. In
our case, the approach does not involve any training,
and all the datasets were used to test the behavior of
our system.

3 System Overview

The main objective of the tasks was to detect
whether a marked instance of word/phrase in a given
context (A) or message (B) expresses positive, nega-
tive or neutral sentiment. Most learning- or lexicon-
based systems do not usually take into account re-
lations between words, although they try to simu-
late comprehension of some linguistic constructions,
such as negation, but this does not always work cor-
rectly due to the complexity of human language. For
this reason, in this paper, we propose an alternative
system to exploit the information present in depen-
dencies obtained from a parsing analysis, without
the need for any kind of training. The research we

describe in this section has several linguistic pecu-
liarities that were used to improve sentiment detec-
tion performance. Our method, which was fully un-
supervised, consisted of four stages, which are each
explained in detail below.

3.1 Preprocessing

Working with tweets presents several challenges for
natural language processing. The language used on
social media sites is quite different from that used
in other forums because it often contains words that
are not found in a dictionary. One reason is that
tweets have particular orthographic and typograph-
ical characteristics, such as letter or word duplica-
tion. Hence, before applying our approach, it was
necessary to start with a data preprocessing stage to
normalize the language used, remove noisy elements
and generalize the vocabulary used to express senti-
ment. The aim of the preprocessing module is to
bring tweets as close as possible to natural language
by eliminating expressions that are not considered
part of current usage, in order to minimize the noise
in later stages. There are four main steps involved:

• URL links (such as “http://url”), hashtags links
(such as “#hashtag”) and username links (such
as “@username”) are replaced with “URL”,
“HASHTAG” and “USERNAME” placehold-
ers respectively.

• Replicated characters are removed to return the
word to its normal form, such as sweeeeet →
sweet.

• Emoticons1 are replaced by one of nine
labels: e laugh, e happy, e surprise,
e positive state, e neutral state,
e inexpressive, e negative state,
e sad and e sick. For instance, :-( is replaced
with e sad.

• Abbreviations2 are replaced with their respec-
tive full written forms, such as h8→ hate.

1taken from the list available at
http://www.datagenetics.com/blog/october52012/index.html

2taken from the lists available at
http://chatslang.com/terms/abbreviations.
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3.2 Lexical and syntactic analysis

In order to derive the syntactic context, each pre-
processed social media message must first be bro-
ken into tokens and then into sentences. To then en-
sure that all inflected forms of a word are covered,
lemmatization and part-of-speech (POS) tagging are
performed using the Freeling Tagger (Atserias et
al., 2006; Padró et al., 2012), or more specifically,
its tagger implementation based on HMM (Brants,
2000). Freeling is a library that provides multiple
language analysis services, including probabilistic
prediction of categories of unknown words. POS
tagging allows the identification of lexical items that
can contribute to the correct recognition of senti-
ment in message. These items are namely adjectives,
adverbs, verbs and nouns.

The resulting lemmatized and POS-annotated
messages are fed to a parser that transforms the out-
put of the tagger into a full parse tree. Finally, the
tree is converted to dependencies, and the functions
are annotated. The entire process is performed with
Freeling Parser (Padró et al., 2012).

3.3 Sentiment lexicons

Sentiment lexicons, such as SOCAL (Taboada et al.,
2011), AFINN (Nielsen et al., 2011) and NRC Emo-
tion and Hashtag Sentiment Lexicon (Mohammad et
al., 2013; Mohammad et al., 2013b), have been used
in many systems for determining the semantic orien-
tation of a phrase within a tweet or sentence. These
lexicons contain English word lists sorted by lexical
category, i.e. adjectives, verbs, nouns and adverbs.
Each word is assigned a score of between -5 and 5.

However, these lexical resources are intrinsically
non-contextual, so it is necessary to improve their
coverage. To do this, we need to acquire new
polarities of subjective words that are not present
in generic dictionaries and adapt the scores of the
other words using the data available. Consequently,
we apply an automatic polarity expansion algorithm
based on graphs (Cruz et al., 2011). The graph is
generated from the syntactic dependencies provided
by the Freeling Parser, considering only those in-
volving verbs, nouns and adjectives. The starting
point of the algorithm is a subset of negative and
positive words, that are fed into the system as seed
words. In this regard, we chose the most negative

and positive words in the SOCAL and AFINN lex-
icons, as they resulted to work quite well for the
datasets provided, after carrying out different experi-
ments through the training datasets. Then, we apply
the iterative polarity expansion through the created
graph, and the result is merged with the unique word
list of SOCAL/AFINN lexicons, incorporating 5982
of new words. The next step is to include emoticon
labels, together with their polarities, in the resulting
sentiment lexicon.

3.4 Sentiment Detection

Once the lexical and syntactic analyses are com-
plete, it is possible to estimate the polarity result-
ing from a message. In other words, its sentiment
can be expressed by a real number, which can be
later interpreted as positive, negative or neutral. This
value is computed by using the lexical polarities of
the words included in the text (provided by the senti-
ment lexicon we have generated), and subjecting the
special parsing structure and its content to linguis-
tic processing which is described below. Once these
have been applied, the resulting sentiment is a prop-
agation of the values of linguistic elements within
the dependencies, from the leaves to the upper lev-
els until the root is achieved (Caro, 2013). Then, it
is classified according to defined interval.

3.4.1 Intensification treatment
Intensifiers and diminishers, such as “very” or “a

little”, are usually adverbs that emphasize or attenu-
ate the semantic orientation of the words or expres-
sions they precede. Intensification is achieved by
associating a positive or negative percentage, which
implies a graduation depending on its type (Zhang
et al., 2012). For instance, in “very good”, “very”
enhances the positivity of “good”. Our system de-
tects these structures and uses the parsing to identify
the exact scope of the intensification whose seman-
tic orientation will be altered. Superlative adjectives
are also taken into account by asuming that they be-
have like a word accompanied by an intensifier. An
example is “greatest”, where the superlative implies
an intensification of the word “great”.

3.4.2 Negation treatment
Negation can be used to deny or reject statements.

It is expressed grammatically through a variety of
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negator words, such as “no”, “not”, “never” or “nei-
ther” (Zhang et al., 2012). In our case, it is first
necessary to identify the dependencies in which any
of the above negator forms are present to estimate
the negation scope. Later, the semantic polarities of
the words involved in the affected dependencies are
modified using a negative factor.

3.4.3 Polarity conflict treatment
The mere application of polar lexicons, intensi-

fiers, diminishers and negators on a syntactic struc-
ture is insufficient. That is, words cannot be con-
sidered individually (Moilanen et al., 2007). The
meaning and polarity of “unpleasant dream” differs
for example from those of “wonderful dream”. The
first statement has a negative connotation while the
second has a positive one. In both cases, the word
“dream” is involved, and we could expect that, re-
gardless of its accompanying terms, it should behave
in a specific way, with certain polarity effects or ex-
pectations. However, the meaning changes signifi-
cantly with the addition of “unpleasant” or “wonder-
ful”. In these cases, our system is able to detect po-
larity conflicts, i.e., it recognizes when a positive ad-
jective modifies a negative noun, or vice-versa, and
subsequently reduces the polarity of the elements
that cause the conflict.

3.4.4 Adversative/concessive clause treatment
There is a point in common between adversative

and concessive subordinate clauses. While the for-
mer express an objection in compliance with what is
said in the main clause, the latter express a difficulty
in fulfilling the main clause, although it is not im-
possible. In both cases, one part of the sentence is in
contrast with the other part. For this reason, in a con-
text of sentiment analysis, we can assume that both
constructions will restrict, exclude, amplify or di-
minish the sentiment reflected in the clauses. In this
regard, it is necessary to clearly distinguish them. In
an adversative structure, the argument introduced by
items such as “but” or “however” is usually more im-
portant (Winterstein, 2012; Poria et al., 2014), while
in a concessive structure, that introduced by items
such as “despite” or “in spite of” is the least impor-
tant (Rudolph, 1996).

Our approach is able to coherently estimate the
sentiment of sentences that involve not only adver-

sative clauses, such as “Bill Maher may be a little
out there, but he does make some points” (where the
speaker is backing the view of Bill in general), but
also concessive clauses such as “Despite going off
on Saturday, it looks like Ian Bennett could be fine
for Wembley” (where what appears to be really im-
portant is that Ian could go to Wembley).

4 Experimental Results

In this section we describe the experiments we
conducted for both subtasks. These experiments
were carried out using the datasets provided by the
SemEval-2015 task organizers. These datasets are
composed of texts extracted from Twitter (including
sarcastic tweets), LiveJournal and phone text mes-
sages. The performance of each system is measured
by means of the F-score, calculated as shown in
Equation 1,

F-score = (FP + FN )/2 (1)

where FP stands for the F-score estimated only for
positive results. In this case, this value is computed
as shown in Equation 2, where PP represents the
precision and RP the recall, both for positive results.
The same is calculated for negative results, denomi-
nated FN .

FP = (2 ∗ PP ∗RP )/(PP + RP ) (2)

Table 1 presents the overall score for subtasks A
and B, in Twitter2015 Test, as well as precision, re-
call and F-measure values for positive (P), negative
(N) and neutral (NEU) results.

Twitter 2015
Precision Recall F-score

Task A

P 87.33% 71.26% 78.48%
N 80.02% 72.47% 76.06%

NEU 10.25% 34.21% 15.78%
Overall score: 77.27%

Task B

P 72.13% 66.09% 68.98%
N 41.57% 59.45% 48.93%

NEU 61.72% 57.35% 59.45%
Overall score: 58.95%

Table 1: Results of our approach for subtasks A and B.

The approach previously described was applied
on both datasets (A and B) in the same way using the
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TASK A TASK B
LJ’14 SMS’13 T’13 T’14 TS’14 LJ’14 SMS’13 T’13 T’14 TS’14

P 84.65% 82.16% 91.41% 93.23% 88.75% 73.53% 56.57% 68.54% 76.27% 52.17%
Precision N 85.04% 92.64% 87.53% 78.86% 95.83% 74.52% 58.47% 54.56% 51.94% 87.50%

NEU 31.62% 16.55% 7.76% 9.79% 10.00% 62.00% 81.64% 67.69% 60.03% 37.50%
P 76.06% 83.85% 81.38% 76.26% 86.59% 70.26% 71.75% 73.73% 70.06% 72.73%

Recall N 81.21% 79.80% 79.23% 71.63% 62.16% 64.47% 70.05% 59.73% 63.34% 35.00%
NEU 51.39% 30.19% 29.38% 52.27% 40.00% 71.05% 67.44% 60.43% 62.18% 69.23%

P 80.13% 82.99% 86.11% 83.90% 87.65% 71.86% 63.26% 71.04% 73.04% 60.76%
F-score N 83.08% 85.74% 83.17% 75.07% 75.41% 69.14% 63.74% 57.03% 58.26% 50.00%

NEU 39.15% 21.38% 12.27% 16.49% 16.00% 66.21% 73.87% 63.85% 61.09% 48.65%
Overall 81.61% 84.37% 84.64% 79.48% 81.53% 70.50% 63.50% 64.03% 65.65% 55.38%

Table 2: Performance of our approach on the progress test A and B.

generated sentiment lexicon and applying the propa-
gation of the sentiment values within the dependen-
cies. After performing several tests on the training
datasets provided by organizers, we set the neutral
sentiment intervals to [−0.05, 0.05] for subtask A
and [−1.0, 1.0] for subtask B.

As can be seen, all our results are adjusted, so we
can state that our system has no bias for one particu-
lar result, but performs quite well for all three types
of answers. However, as can be seen in subtask A,
the performance measures for neutral tweets are no-
tably lower than those obtained for positive and neg-
ative tweets. This can be explained by the content
of the dataset provided, which contained 1006 neg-
ative and 1896 positive tweets, but just 190 neutral
tweets, which is an insufficient sample for producing
reliable estimates on precision. The same problem
happened for progress test A, where the proportions
of tweets are similarly unbalanced.

Detailed scores for progress tests of subtasks A
and B are shown in Table 2. In general, we can say
that our system is quite stable, as it generates similar
results for the different kinds of texts under evalua-
tion. Also of note are the high percentages obtained
for sarcastic tweets, which ranked in the first posi-
tion in subtask A and in the tenth (test dataset) and
sixth positions (progress dataset) in subtask B (as
shown in Table 3).

5 Conclusions

This paper describes the participation of the GTI Re-
search Group, AtlantTIC Centre, University of Vigo,
in SemEval-2015 task 10: Sentiment Analysis in
Twitter. We achieved our results using a fully un-
supervised approach for message-level and phrase-

Test sets Task A Task B
Twitter2015 9/11 22/40

Twitter2015Sarcasm - 10/40
LiveJournal2014 8/11 18/40

SMS2013 6/11 16/40
Twitter2013 5/11 25/40
Twitter2014 9/11 22/40

Twitter2014Sarcasm 1/11 6/40

Table 3: Position of our approach for each test and task,
according to results provided on January 1, 2015.

level sentiment analysis of tweets. Table 3 shows
our position in the ranking published for both sub-
tasks A and B for all the different datasets evaluated.

Our approach comprises different processing
stages, including the generation of sentiment lexi-
cons, test preprocessing and the application of dif-
ferent methods for determining contextual polarity
based on syntactical structure. This makes our ap-
proach robust in diverse contexts without the need
for previous manual tagging of datasets. To the best
of our knowledge, it is the only system presented in
this competition whose sentiment analysis method
does not require any supervision.
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Héctor Cerezo-Costas, Diego Celix-Salgado
Gradiant - Galician Research and Development Center in Advanced Telecommunications

Edificio CITEXVI, local 14
Vigo, Pontevedra 36310, SPA

{hcerezo, dcelix}@gradiant.org

Abstract

In this paper we present our solution for ob-
taining sentiment at message-level of short
sentences. The system combines the use of
polarity dictionaries and Conditional Random
Fields to obtain syntactic and semantic fea-
tures, which are afterwards fed to a statistical
classifier in order to obtain the sentence polar-
ity. To improve results, an ensemble of clas-
sifiers was employed by combining the indi-
vidual outputs with majority voting strategy.
Our solution was evaluated in the SemEval
2015 Task 10, subtask B: Sentiment Analysis
in Twitter, achieving competitive performance
in all testsets.

1 Introduction

Sentiment Analysis (SA) is a hot-topic in the aca-
demic world, and also in the industry. In SA, a la-
bel is automatically assigned to a piece of content
carrying the polarity of the composition. The rel-
evance for the web industry is clear, as new ser-
vices promote content sharing among users. The
number of registers generated by these services is
paramount, discouraging manual analysis. Hence,
automatic systems capable of processing this infor-
mation have great value for the industry. Many ser-
vices, such as web advertisement, recommendation,
and mail campaigns (to name a few) could benefit
from the information gathered with polarity analysis
of user content.

This work is focused on message-level sentiment
analysis, that is, the objective is the assignment of
polarity to a small piece a text, typically one or two

sentences with less than 140 characters. This restric-
tion is motivated by the popularity of microblogging
services such as Twitter. Here, users write messages
of up to 140 characters to share information, their
opinions or their feelings with other users. Those
messages are shared in real time, and are a sample
of the public opinion. Therefore, these small compo-
sitions published in microblogging sites can be ana-
lyzed to deduce the opinions about any topic of in-
terest.

Nevertheless, automatic systems are not perfect.
The results of the sentiment analysis in short sen-
tences is not completely reliable. State of the art
solutions are still far from being comparable to hu-
man performance, though very promising results
were obtained recently using deep learning systems
(Socher et al., 2013; Tang et al., 2014), and a careful
selection of features with Support Vector Machines
(SVM) (Zhu et al., 2014) or other statistical classi-
fiers (Go et al., 2009).

This paper describes our sentiment classifier for
short sentences and the results in our participation
in the SemEval 2015 competition. We have imple-
mented a supervised solution for learning the polar-
ity of short messages. We made extensive use of se-
quential Conditional Random Fields (CRFs) in order
to obtain the scope of polarity modifiers and shifters
(e.g. negation, intensification). Although a complete
explanation of CRFs is out of scope of this paper, the
reader can obtain comprehensive information about
it in the literature (Lafferty et al., 2001; Sutton and
McCallum, 2011).
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2 The SA System

This section presents a detailed overview of our sys-
tem for sentiment tagging of short sentences. Our
system performs several steps over each register to
determine the polarity of the sentence. Initially, each
register is preprocessed to obtain a normalized rep-
resentation of the data. Next, syntactic information
is extracted generating high-level features. As a final
step, the features extracted in previous analysis are
fed to a statistical classifier, obtaining the polarity of
the register.

This is a supervised system, and therefore it needs
a learning phase where data are tagged manually.
The supervised models are trained only with the data
provided by the organization, and therefore it can be
considered a constraint solution.

2.1 Preprocessing

The sort of language used in microblogging services
is colloquial style, with misspelled words and gram-
matical and syntactic errors. In order to solve this
problem, basic normalization is performed as the
first step. The actions executed in this stage are the
substitution of emoticons for equivalent words and
the substitution of frequent abbreviations. By lack of
space, a complete Lookup Table of emoticons can-
not be displayed in this paper but a sample of rele-
vant transformations are in Table 1. We divided the
emoticons in twelve categories: angry, bad, boring,
complicity, happy, laugh, love, neutral, sad shy, sur-
prise and worried.

One kind of specific language artefacts appearing
in Twitter are hashtags. Hashtags are small pieces
of text which usually contain valuable information
to extract the sense of a whole sentence. Users use
those chunks to voice those parts more relevant of
the message and, very frequently, they are opinion-
ated. Nevertheless, hashtags do not follow the gram-
mar rules (e.g. no case used, words are stuck to-
gether, incomplete sentences without subject, verb,
etc). To deal with the multiword problem of hash-
tags, we developed a module that uses CRFs with
character-level features to find word terminations in
hashtags. If more than one word is found, the system
handles them as separated words in following steps.

Table 2 contains different multi-word hashtags
that appear in the testsets provided in the SemEval

Emoticons Replacement
:), :-), :o), etc happy
XD, x-D, xD, etc laugh
:*, :ˆ *, etc love
;), ;-), ;D, etc complicity
:(, :’-(, :-[, etc sad
D;, DX, D:, etc worried
:@, :-||, etc angry
o O, o.O, o 0, etc surprise
:O, >:O, :-O, etc boring
:-###.., etc bad
:$, ˆˆ;, etc shy
:#, :-#, :X, etc neutral

Table 1: Sample of Emoticon Transformations.

Input Hashtags Output Words
#classicmovielotto classic movie lotto
#notupinhere not up in here
#Thatisall That is all
#shoptilwedrop shop til we drop
#whatabadass what a bad ass
#wordtomymuva word to my muva

Table 2: Inputs and Outputs of the Hashtag Splitter.

competition and the corresponding output of the
hashtag splitter. One of the hashtags, #whatabadass,
is wrongly processed but with no significant change
in meaning. In internal tests, 93% of words are cor-
rectly extracted by this approach.

2.2 Word Features
Our system uses several dictionaries as an input
for different steps of the feature extraction process.
These dictionaries are used to extract labels that get
combined with features in the learning steps.

• Polar Dictionary: contains polar words, posi-
tive and negative, in English. This is a gen-
eral purpose dictionary and no adaptation to the
context of analysis was performed. If a word
is registered as a positive/negative word, it is
labelled with the corresponding polar tag. In
case of ambiguity (the word appears in both
dictionaries) the polarity label is not used for
this word. The baseline for this dictionary was
SentiWordNet (Baccianella et al., 2010), aug-
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mented after observation of training records.

• Denier particles: this dictionary contains par-
ticles that reverse the polarity of the words af-
fected by them (e.g. not, no, etc). Detecting the
scope of negation plays an important role in de-
tecting the polarity of a sentence. The academic
literature follows different approaches, such as
hand-crafted rules (Sidorov et al., 2013; Pang
et al., 2002; Athar, 2011), or CRFs (Lapponi et
al., 2012b; Nakagawa et al., 2010; Councill et
al., 2010).

• Reversal verbs: their behaviour is similar to de-
nier particles. Some verbs reverse the polarity
of the content under their scope of influence
(e.g. avoid, prevent, solve, etc). In order to
obtain the list of reversal verbs, basic syntactic
rules and a manual supervision was applied af-
terwards. A similar approach can be found in
(Choi and Cardie, 2008).

• Comparators and Superlatives: a dictionary
with comparatives and superlatives was built in
a similar way as the polar dictionary. There
is a bit of redundancy with this feature as the
morphological tagger used by the system gives
the same information. However, the syntactic
parser is not very reliable for informal style,
unless it is specifically trained, which is not the
case of our system. This information is needed
to track intensification and comparisons within
a sentence.

2.3 Syntactic Features

Several language constructions can act like polarity
shifters with those parts influenced by them. This
is the case of negation particles and some specific
verbs. Detecting the scope of this modifiers is a
hard task. Our system employs CRFs to obtain la-
bels of those part of sentences that can act as polarity
shifters, or that are influenced by polarity shifters. In
this sense, we consider the detection of these scopes
as an special case of a sequential labelling problem.
CRFs are supervised techniques and they learnt the
parameters of the system using manually labelled
examples. We have built training records using a
subset of the data available in the task.

Input Features
words, word bigrams, word trigrams, stems,

stem bigrams, stem trigrams, PoS, PoS bigrams,
PoS trigrams, distance to denier particle,

distance to denier verb, distance to advers. particles

Table 3: Input Features of CRFs.

Our system follows a similar approach to (Lap-
poni et al., 2012a) but it was enhanced to track in-
tensification, comparisons within a sentence, and the
effect of adversative clauses (e.g. sentences with but
particles). Figure 1 shows an example of the labels
assigned by the system to each word of a sentence.
Table 3 show the inputs and the combination of fea-
tures included in the CRFs. The particles of negation
(e.g. none, not), denier verbs (e.g. prevent, avoid)
and others present in internal dictionaries such as
more, very, less or but are marked as CUEs of nega-
tion, intensification and adversarial scopes respec-
tively.

Sentences are tagged to obtain morphosyntactic
data to use this information as input to the polar-
ity shifter modules. In our case, we use the Freel-
ing tool (Padró and Stanilovsky, 2012) for this stage.
Freeling is an open source suite with tools to anal-
yse textual data. It contains parsers with different
degree of complexity but to the purpose of our sys-
tem, only the Part of Speech (PoS) information was
needed. We do not use dependence parsing as input
feature in contrast to previous state of the art. The
approach followed could experience problems with
discontinuous scopes (e.g. when subordinate or par-
ticiple clauses are intermingled within a sentence),
but this problem is negligible due to the typically di-
rect and colloquial style of short sentences.

The labels gathered with the CRF modules are
used in conjunction with the Word, Stem, PoS and
polar dictionaries to generate high-level features
which serve as input to the classifier and thus to as-
sign the polarity to the message in the final step.

2.4 Classification Algorithm

All the characteristics from previous steps are in-
cluded as input features of a statistical classifier. The
lexical features (word, stem, word and stem bigrams
and flags extracted from the polar dictionaries) with
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Figure 1: Example sentence with the CRF label notation.

Polarity Positives Neutral Negatives
N. Samples 3456 4468 1432

Table 4: Training vector.

PoS and the labels from the CRFs. The algorithm
employed for learning was a logistic regressor. Due
to the size of the feature space and their sparsity,
l1 (0.000001) and l2 (0.000001) regularization was
applied to learn the important features and discard
those with low relevance to the task.

2.5 Ensemble of classifiers
It could be possible to use the whole training vec-
tor available in one unique classifier, but we chose a
different strategy that provided better results.

The ensemble was obtained by replicating the in-
dividual schema but using a small subset of the data
available for training. The final decision combines
the outputs of the classifiers using majority voting.
Despite the time complexity of the ensemble and
the lower precision of the individual classifiers, this
strategy yielded better results than the one-classifier
approach (between 1% and 3%) though it depended
on the individual execution. An ensemble of 15 to
30 classifiers performed reasonably well in the eval-
uation tests.

3 Evaluation

3.1 Dataset
To train and validate the system during development,
the SemEval organization provides the team com-
petitors with a) an index set of tweets (that should be
downloaded by teams), and b) a progress and input

Test F-score
LiveJournal 2014 72.63
SMS 2013 61.97
Twitter 2013 65.29
Twitter 2014 66.87
Twitter 2014 sarcasm 59.11
Twitter 2015 60.62
Twitter 2015 sarcasm 56.45

Table 5: Performance in progress and input test.

test for fair comparison of the different approaches.
All the records that can be used as training vector
are labelled with a tag (positive, negative and neu-
tral). Due to cancellations of tweets that were not
available, our system employed a subset of training
of those provided by the organization. Table 4 shows
the distribution of the training vector used by our
system. A subset of those records are employed to
train the CRF models.

Finally, the performance of our system is evalu-
ated using a F-score that combines the F-score of
positive and negative tweet, whilst neutral records
are used to reckon the precision and recall of the pos-
itive/negative classes. We refer the reader to (Rosen-
thal et al., 2015) for a complete description of the
task and the evaluation process.

3.2 Results

Table 5 shows the results of our system in the
progress test of 2014 and the new input tests of 2015.
The system shows a distinguished performance in
nearly all the progress tests of 2014. It achieved
17th position in Twitter 2014 sentences, 1st in Twit-
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ter Sarcasm and 11th in LiveJournal2014. In SMS
2013 and in Twitter 2013 datasets we achieved also
a good result (21th and 22th respectively). Regard-
ing sarcasm detection in 2014 dataset, our system
had good results in tweets with hashtags (25 right
answers out of 35) whereas it was more prone to fail
when users expressed positive opinions over nega-
tive events. Paying more attention to these specific
constructions would lead to better results in the fu-
ture.

In the new tests of Twitter 2015, our system per-
formed in the 16th position of all competitors in both
sarcasm and normal datasets. There is a clear gap
of 6 points between the 2014 and 2015 Twitter F-
score and the new testset. Our system is supervised
and was only trained with the vector provided by the
SemEval community which could mean the gap be-
tween the training and test vectors has increased this
year. In this sense, it would be interesting to train
with external records to see if the performance over
the 2015 tests could be improved.

4 Conclusions

This paper shows the solution developed by Gra-
diant (http://www.gradiant.org) for the Sentiment
Analysis Task 10 (subtask B) of SemEval 2015. The
system finished in a notable 16th position out of 40
participants. In general terms, our system exhibits
stability in all the different subtasks, achieving the
1st position in one of them, 2014 Tweet Sarcasm.
We emphasize the modularity of our solution as one
of the advantages of our approach. New function-
ality could be easily added to the current configura-
tion, tracking new aspects of polarity detection that
was left unattended in the current state of develop-
ment.

Despite the overall goodness of the system, there
is a generalized degradation in the evaluation results
between 2014 and 2015 Twitter datasets. This result
is very interesting and encouraging for future lines
of work, as there exists a clear need in research of
new models which provide better abstraction of the
data and improve the adaptation to new contexts that
differ substantially the training vectors.
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Abstract

This paper describes our systems for
expression-level and message-level sentiment
analysis – two subtasks of SemEval-2015
Task 10 on sentiment analysis in Twitter. First
we built two baseline systems for the two sub-
tasks using SVM with a variety of features.
Then we improved the systems through model
iteration and probability-output weighting
respectively. Our submissions are ranked the
3rd and 2nd among eleven teams on the 2015
test set and progress test set in subtask A and
the 7th and 4th among 40 teams on the two
test sets respectively in subtask B.

1 Introduction

Recently sentiment analysis has become one of the
most popular research topics in the natural language
processing community, mainly due to the exponen-
tial growth of social media data replete with sub-
jective information. The once neglected topic has
spurred immense interests from both academia and
industry. Many approaches have been proposed for
sentiment analysis in customer reviews, blogs and
microblogs (for good reviews, see (Pang and Lee,
2008; Liu, 2012; Kiritchenko et al., 2014)). These
approaches can be roughly divided into two cate-
gories. One is knowledge intensive or rule-based
approaches, e.g., (Taboada et al., 2011; Reckman et
al., 2013). Such approaches can achieve reasonably
good results when tailored for a specific domain but
their maintainability and cross domain portability is
usually weak. The other is data intensive or machine
learning-based, which learns to analyse sentiment

from data. It is currently the most predominant ap-
proach, including supervised learning, deep learning
etc. Sentiment analysis is often taken as a classifica-
tion task. Widely used classifiers include Support
Vector Machines (SVM), Maximum Entropy Mod-
els (MaxEnt), and naive Bayes classifiers. Common
features include word/character n-grams and senti-
ment lexicons, among others. Key research issues
for learning approaches include feature engineering,
model selection, ensemble learning, etc.

SemEval 2015 task10 (Rosenthal et al., 2015) is
a sequel to the two tasks on sentiment analysis in
Twitter in the past two years (Nakov et al., 2013;
Rosenthal et al., 2014). They have provided freely
available, annotated corpus as a common testbed and
significantly promoted sentiment analysis in tweet-
like short and informal texts. The same metric,
i.e., the average F1 score of positive and negative
classes, is used for measuring performances. But
this year there are some changes. Besides the classi-
cal expression-level (A) and message-level (B) sub-
tasks, another three subtasks are added, i.e., subtask
C – topic-based message polarity classification, sub-
task D – detecting trends towards a topic, and sub-
task E – determining strength of association of twit-
ter terms with positive sentiment. The organisers
make no distinction between constrained and uncon-
strained systems, which means participants could
utilise any other data. But it has to be described in
the submission form.

We submitted systems only for the expression-
level and message-level subtasks. In this paper, we
provide some details behind the systems.
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Data TaskA TaskB
Twittter2013-train 7,639 7,972
Twittter2013-dev 929 1,372
Twittter2013-test 3,625 3,198

SMS2013-test 2,334 2,093
Twittter2014-test 2,028 1,561

LiveJournal2014-test 1,315 1,142
Sarcasm2014-test 124 86
Twitter2015-test 3,092 2,390

Progress2015-test 10,681 8,987

Table 1: Statistics of all the datasets. The last row
of Progress2015-test data is composed of all the pre-
vious test data sets.

2 Our System

Our systems are built with an SVM classifier us-
ing various features and resources, including sen-
timent lexicons and word vectors. To further im-
prove the performance, we use model iteration and
probability-output weighting.

2.1 Resources

The resources used in our system are as follows:
Labeled training and test data: Although the

organisers make no difference between constrained
and unconstrained systems, it is not easy to make
additional data effective (Rosenthal et al., 2014). So
we just use the provided labeled data. However,
since we did not participate in the past two evalu-
ations, we are unable to get the full labeled data be-
cause some tweets are unavailable. But we crawled
as much data as possible using the provided script.
Table 1 shows the size of the labeled data and test
data we get. The 2015 test data is released directly
and the results are required to be submitted in one
week. We take the training data and development
data as our training data. The test data from the pre-
vious years can be used for tuning parameters (but
NOT for training).

Sentiment Lexicons and Word Embedding: As
many researchers have showed, e.g., (Mohammad
et al., 2013), sentiment lexicons play an important
role in sentiment analysis. In our system, seven
sentiment lexicons are used: the Hashtag Sentiment
lexicon, the Sentiment140 lexicon (Mohammad and
Turney, 2010), the MPQA lexicon (Wilson et al.,

Feature subtask A subtask B
word ngrams X X

POS X
clusters X

word vector X X
negation X X
lexicons X X

characters X

Table 2: Features extracted for each subtask.

2005), the Bing Liu lexicon (Hu and Liu, 2004),
the AFINN-111 (Nielsen, 2011), the SentiWordNet
(Baccianella et al., 2010) and the Hedonometer lex-
icon1. In addition, as word embeddings have been
utilised to produce promising results in various NLP
applications, we use sentiment-specific word em-
bedding (Tang et al., 2014) in our system.

LibSVM: We used the package LibSVM (Chang
and Lin, 2011) to construct the classification model
for both subtasks.

CMU Tweet NLP: It is an open resource
(Owoputi et al., 2013) for analysing tweets and was
used to extract features for tokenising, POS tagging
and clustering.

2.2 Preprocessing
The main preprocessing steps are the following:

• All upper case letters are converted to lower
case ones

• URLs and user names are replaced with strings
‘http://someurl’ and ‘@someuser’ respectively

• Tokenise and label the tweets with part-
of-speech using Carnegie Mellon University
(CMU) tool (Owoputi et al., 2013)

2.3 Features
After preprocessing, each tweet is represented as a
feature vector made up of part of the following fea-
tures, the features used in each subtask are shown in
Table 2.

• Word N-grams: A binary value of contigu-
ous n-grams of 1, 2, 3, and 4 tokens and non-
contiguous n-grams (n=3, 4). Non-contiguous

1http://hedonometer.org/words.html
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n-grams are those intermediate grams that are
replaced with a special symbol like ‘*’. For ex-
ample, a 4-gram “I * * guys” is the correspond-
ing non-contiguous gram of contiguous gram “I
love you guys”.

• Character N-grams: Although character n-
grams have been used in sentiment analysis by
many researchers, we find that the features are
not effective for subtask B, so they are only
used for subtask A. This feature is the binary
value of the two and three prefix and suffix let-
ters.

• POS: Ten features are added by pos tagging.
They are respectively the count of interjec-
tion, adverb, preposition, article, verb, punctu-
ation, noun, pronoun, adjective and hashtag in
a tweet.

• Clusters: Every token in a tweet is mapped
to one of Twitter Word Clusters by CMU tool
(Owoputi et al., 2013). The features extracted
are a boolean vector showing the presence or
absence of the tweet in the 1000 clusters which
are generated from about 56 million tweets.

• Word Vector: Words are represented as a vec-
tor of 50 dimensions. Then we use min, aver-
age and max functions to convert the embed-
dings into fixed-length features, in a way simi-
lar to the pooling technique used in CNN to get
a tweet vector representation. So another three
features are added.

• Negation: A binary value indicating the
negated contexts. The “_NEG” suffix is ap-
pended to grams if they are in a negation scope
which starts with a negation word and ends
with certain punctuation marks2.

• Lexicons: For each token in one tweet, if it
appears in sentiment lexicons in section 2.1, it
is mapped to the corresponding score. In the
lexicons which have no sentiment score we set
the positive +1 and the negative -1. Other to-
kens are set to zero. Then a tweet would be
represented with its total score, maximal score,

2http://sentiment.christopherpotts.net/lingstruc.html#negation

minimal score, negative score, last word score
which does not equal zero, and the count of to-
kens with non-negative score.

2.4 Training

SVM is used as the classifier in our systems with
the features described in section 2.3. We trained
SVM on the labeled tweets with the RBF kernel
and tuned the parameters on the dev dataset. For
both subtasks, we tuned the parameters for Twit-
ter2015 test data using the Twitter2013, Twitter2014
test data as dev dataset and tuned the parameters for
the progress2015 test data using all the previous test
data as dev dataset. The parameters were tuned to
maximise the average F1 score of positive and neg-
ative classes using brute-force grid search.

2.5 Post-processing

We tried different strategies for the different sub-
tasks. For subtask A, we adopted a model iteration
approach described in Algorithm 1. For subtask B,
we used probability-output weighting to adapt SVM
model with RBF kernel to the data set, similar to
(Miura et al., 2014).

2.5.1 Model iteration for expression-level
subtask

It was found that utilising more external data did
not improve the performance as expected because
of the different data resource and annotation method
(Rosenthal et al., 2014). So we tried a model itera-
tion approach.3 We added the test data labeled with
high confidence into the training data and then re-
trained a new model. The algorithm for subtask A is
given in Algorithm 1 and the experiment results are
given in section 3.1.

3NB: Our approach is different from the semi-supervised
learning in that we use limited test data while semi-supervised
learning usually uses a large number of external data.
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Data c g I p wpos wneg

A-Twitter15 1100 0.00287 2 0.8 - -
A-Progress15 1100 0.00287 2 0.8 - -
B-Twitter15 1200 0.00267 - - 3.2 2.2
B-Progress15 1200 0.00267 - - 2.1 1.4

Table 3: The parameters for different test data. I is the maximum number of iteration. wpos and wneg are
weight parameters.

Data: Train data D; Test data T ; Polarity
C = {pos, neg, neu}; Threshold p;
The maximum number of iteration I;

Result: The probability-output p(c|x) for
each instance x ∈ T ; The label l(x)

for each instance x ∈ T , l(x) ∈ C
1 begin
2 i := 0;
3 do
4 Train a sentiment model M with D;
5 Compute p(c|x) for each instance

x ∈ T ;
6 ∆D := ∅;
7 for x in T do
8 p

(x)
max := max

c∈C
p(c|x);

9 l(x) := arg max
c∈C

p(c|x);

10 if p
(x)
max ≥ p then

11 remove x from T ;
12 add (x, l(x)) to ∆D ;
13 end
14 end
15 D← D

⋃
∆D;

16 i++
17 while (∆D 6= ∅ and i ≤ I);
18 end
Algorithm 1: Model iteration for subtask A.

2.5.2 Probability output weighting for
message-level subtask

We applied probability-output weighting (Miura
et al., 2014) into SVM and adapted it to subtask
B. For a tweet x, the base model output probabil-
ity p(c|x) for each polarity c (c ∈ {pos, neg, neu}).
A weighting factor wc that adjusted the probability-
output p(c|x) was introduced. The system labeled
the tweet with polarity c which maximises the prod-

Data
subtask A subtask B

baseline submitted baseline submitted
Twtitter15 82.31 82.76 60.02 62.62
Twitter13 83.86 83.90 68.79 71.32

SMS 84.38 84.18 68.03 68.14
Twitter14 85.09 85.37 68.70 71.86

LiveJounal 85.47 85.62 71.68 74.52
Sarcasm 71.81 71.81 53.70 51.48

Table 4: The overall results.

uct of wc and p(c|x), namely arg max
c

wc × p(c|x).
The weighting parameters wc for each polarity was
tuned by maximising the accuracy using grid-search
in the corresponding dev data. The results can be
seen in section 3.2.

3 Experiments and Results

The official evaluation metric of the task is the aver-
age F1 score of the positive and the negative classes.
After the base training (Section 2.4), we got the base
results in Table 4, “baseline” columns. Then we fo-
cused on improving systems for both subtasks. And
the improved (or not) results are shown in the “sub-
mitted” columns.

3.1 Subtask A: expression-level sentiment
analysis

We built the system using 8,568 tweets, including
7,639 training tweets and 929 development tweets
described in section 2.1 using the features in section
2.3. After the release of the labeled test data, we
compared the performance using the same model to
rerun the test data. We set different threshold param-
eters p referred in section 2.5 to compare the results.
The experiment results are given in Table 5.
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Threshold p 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Twitter2015 82.42 82.56 82.76 82.76 82.70 82.53 82.31
Twitter2013 83.95 84.00 83.90 84.62 84.49 84.38 83.86
SMS 84.02 84.09 84.18 84.41 84.43 84.48 84.38
Twitter2014 84.96 85.44 85.37 85.13 84.81 85.17 85.09
LiveJounal 85.58 85.31 85.62 85.61 85.58 85.58 85.47
Sarcasm 71.81 71.58 71.81 73.07 71.81 71.58 71.81

Table 5: The results for subtask A under different threshold p . Numbers in bold are the submitted results.

3.2 Subtask B: message-level sentiment
analysis

We adapted the probability-output weighting ap-
proach to subtask B. The experiment result shows
that weighting is effective for this subtask. The im-
provement using the parameters in Table 3 can be
seen from Table 4.

The approach is effective for improving the twit-
ter F1 score but degrades the performance on the
Sarcasm data, maybe because it depends too much
on the data.

3.3 Experiment analysis
For subtask A, we made iteration stop at i = 2. The
reason why there is little improvement is: (1) Af-
ter each iteration, the number of new data added to
the training data for retraining a new model is rather
small. (2) Once the classifier puts a high confidence
on a label, this instance is very likely to be similar to
existing instances, which means the added instances
would not contribute very much to classification.

In the experiments after submission, we tried to
interchange the improvement method between the
subtasks, but they showed a little decrease on both
subtasks. When the model iteration approach was
used in subtask B, we did not receive expected im-
provement. This may be because that the perfor-
mance for subtask B is lower than that for subtask
A, which may result in the wrong samples added
into the training data. When the probability-output
weighting approach was used on subtask A, we only
got limited improvement in the F1 score.

4 Conclusion

We described our system for two subtasks of Se-
mEval 2015 task 10 – Sentiment Analysis in Twit-
ter. Our systems are built by integrating a variety of

features into SVM as baselines and then improved
by model iteration and probability-output weighting
for expression-level and message-level subtasks re-
spectively. We compared the results and analyse the
reason of the improvement. Our submissions are
ranked the 3rd and 2nd among eleven teams on the
2015 test set and progress test set in subtask A and
the 7th and 4th among 40 teams on the two test sets
respectively in subtask B.
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Abstract

In this paper, we propose a baseline message-
level sentiment classification method, as de-
veloped for SemEval-2015 Task 10, Subtask
B. This system leverages both hand-crafted
features and message-level embedding fea-
tures, and uses an SVM classifier for message-
level sentiment classification. In pre-training
the embedding features, we use one million
randomly-selected tweets. We present re-
sults over SemEval-2015 Task 10, Subtask B,
as well as the Stanford Sentiment Treebank.
Our experiments show the effectiveness of our
method over both datasets.

1 Introduction

The rise of social media such as blogs and micro-
blogs (e.g., Twitter) has fueled interest in sentiment
analysis (Liu, 2012; Pang and Lee, 2008). One
of the most popular settings for carrying out sen-
timent analysis is at the sentence level or over in-
dividual micro-blog posts, using the simple three-
label class set of POSITIVE, NEGATIVE and NEU-
TRAL (Liu, 2012; Pang and Lee, 2008; Rosenthal et
al., 2014). Sentiment classification has been shown
to have utility in various business intelligence ap-
plications, including product marketing, identifying
new business opportunities, and managing a com-
pany’s reputation (Liu, 2012; Pang and Lee, 2008).

Learning effective features plays an impor-
tant role in building sentiment classification sys-
tems (Liu, 2012; Pang and Lee, 2008). For ex-
ample, the winning system in the SemEval-2013
message polarity classification task (Nakov et al.,

2013) was based on a rich set of hand-tuned features
such as word-sentiment association lexicon features,
word n-grams, punctuation, and emoticons, which
were combined using a simple SVM-based classi-
fier (Mohammad et al., 2013). Recently, there has
been a surge of interest in representation learning
— automatically learning word and document rep-
resentations, often in the form of continuous-valued
vectors or “embeddings” — using auto-encoders or
neural network language models (Mikolov et al.,
2013; Le and Mikolov, 2014). Of particular rel-
evance to message-level sentiment analysis, Tang
et al. (2014) proposed a deep learning approach
to learn sentiment-specific word representation fea-
tures, and Le and Mikolov (2014) proposed a neu-
ral network auto-encoder to learn message-level vec-
tors.

In this paper, we detail RoseMerry, a (strong)
baseline sentiment analysis method that combines
hand-crafted features with message-level1 embed-
dings generated by doc2vec (Le and Mikolov,
2014), using a linear-kernel SVM.

2 The Proposed Method

The proposed method combines a set of hand-
crafted features with automatically-generated
message-level representation features. The fea-
tures are concatenated into a combined feature
representation, and fed into a linear-kernel SVM
learner using LibSVM (Chang and Lin, 2011). The

1Throughout the paper, we will use “message” as a generic
term to refer to both tweets and also sentences in the case of
the Stanford Sentiment Treebank. Note that the method could
potentially be applied to any granularity of document.

551



Labelled

training set

Unlabelled

pre-training data

Feature

extractor

doc2vec

auto-encoder

Message-level

embedding features
Hand-crafted

features

SVM

learner

d21 d+1 d+2...... d+N...

Figure 1: System architecture

architecture of the method is shown in Figure 1.

Our interest in sentiment analysis stems from a
desire to use it as part of a commercial text analyt-
ics system. As such, there is an overarching con-
straint associated with the system and all third-party
components must be licensed in a manner which is
compatible with commercial use. In our description
below, we point out places where we were unable to
use notable resources because of this constraint.

The message-level embeddings are pre-trained
using doc2vec over the combination of the train-
ing data and a random sample of 1M English tweets,
as detailed in Section 2.1. The hand-crafted features
are based heavily off the work of Mohammad et al.
(2013), and are detailed in Section 2.2. Finally, the
d-dimensional message-level embedding is concate-
nated with the N -dimensional hand-crafted features
to form a d + N -dimensional combined feature vec-
tor. We experiment with each of the two feature sub-
sets, in addition to the combined feature set.

One significant divergence from Mohammad et al.
(2013) is that we do not use many of the sentiment
lexicons, due to non-commercial licensing. Given
that one of the key findings in that work was that lex-
icons are one of the most reliable features, we expect
that this will have a large impact on our results.

2.1 Message-level embeddings

The message-level embeddings are generated us-
ing doc2vec (Le and Mikolov, 2014). In this
framework, words and documents are represented in
a common d-dimensional space, using real-valued
vectors. The embeddings are learned by prediction
of each word in a given document based on the doc-
ument embedding and word embeddings of its sur-
rounding context. The document vector acts as an-
other word which captures the larger context of a
word that is missing from its immediate word con-
text.

The word and document vectors are trained using
stochastic gradient descent, based on back propaga-
tion.

After pre-training, the document vector of each
training document is used as its representation, and
test documents are fed through the pre-trained auto-
encoder to generate a message-level embedding.

2.2 Hand-crafted features

The hand-crafted features are largely lexical:

• word n-grams: binary features capturing the
presence or absence of word n-grams observed
in the training data, i.e. contiguous sequences
of n words (n ∈ {1, 2, 3, 4}); we also included
binary features for non-contiguous 3- and 4-
grams included in the training data (n-grams
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with one non-final word removed)

• character n-grams: continuous features captur-
ing the proportion of contiguous character n-
grams (n ∈ {3, 4, 5}) of each type observed in
the training data, which make up a given mes-
sage

• proportion of words in all caps: the proportion
of words which are in all caps (e.g. YAY)

• punctuation features: the proportion of tokens
which are made up of multiple exclamation
marks, question marks, or a combination of the
two (e.g. ??!)

• elongated words: the proportion of words
which have “elongated” vowels, i.e. a given
vowel repeated more than twice (e.g. coool)

• proportion of emoticons: the proportion of to-
kens which are (a) positive- and (b) negative-
polarity emoticons, as identified by Chris Potts’
scripts2

• polarity of message-final emoticon: if the last
token is a polarised emoticon, its polarity
(NEGATIVE, POSITIVE or None)

• negated words: the presence or absence of
words in “negated contexts”, where a negated
context is defined as span from a negation
word3 to a punctuation mark (matching the reg-
ular expression [,.:;!?])

3 Experiments

In this section, we will detail the experimental setup
and the results of our experiments.

3.1 Datasets

We evaluate our method over two labelled datasets,
and also two unlabelled datasets to pre-train
doc2vec, as detailed below.

2http://sentiment.christopherpotts.net/
tokenizing.html

3Defined based on Chris Potts’ word list: http://
sentiment.christopherpotts.net/lingstruc.
html.

Training Development Test
Set Set Set

POSITIVE 3043 438 1038
NEGATIVE 1177 212 365
NEUTRAL 4082 542 987

Table 1: The number of POSITIVE, NEGATIVE, NEUTRAL
documents in the SemEval-2015 dataset

Training Set Test Set
POSITIVE 3606 444
NEGATIVE 3304 428
NEUTRAL 1623 226

Table 2: The number of POSITIVE, NEGATIVE and
NEUTRAL sentences in the Stanford Sentiment Treebank
dataset

3.1.1 Labelled Datasets
SemEval-2015 Dataset: the official SemEval-
2015 Task 10, subtask B dataset, comprised of
tweets which have been hand-labelled for sentiment
at the message-level (in terms of POSITIVE, NEGA-
TIVE and NEUTRAL sentiment). The dataset is par-
titioned into three components, as detailed in Ta-
ble 1:4 (1) training set, (2) development set, and (3)
test set.

Stanford Sentiment Treebank Dataset: a col-
lection of movie review documents from www.
rottentomatoes.com, which have been sen-
tence tokenised and annotated for sentiment at
the sentence level (Maas et al., 2011) and pre-
partitioned into training and test data, as detailed in
Table 2. Socher et al. (2013) additionally annotated
the data at the phrase and lexical levels, but we use
only the sentence-level annotations in this paper.

3.1.2 Unlabelled Datasets
Twitter Dataset: a random sample of 10M En-
glish tweets from a 5.3TB Twitter dataset crawled
from 18 June to 4 Dec, 2014 using the Twitter Trend-
ing API. This is used as additional data to pre-train
the message-level embeddings for the SemEval-
2015 Dataset.

IMDB Dataset: a 100K sentence movie review
dataset from www.imdb.com, collected by Maas

4As the labels have not been released for the progress test
set, we omit this from the table.
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et al. (2011). This is used as additional data to pre-
train the message-level embeddings for the Stanford
Sentiment Treebank dataset.

3.2 Experimental setup
To evaluate the effectiveness of the different feature
sets, we report on results as follows:

• RM-manual: only hand-crafted features

• RM-doc2vec: only message-level embed-
dings

• RM-all: both hand-crafted features and
message-level embeddings

As our primary evaluation metric, we use F1PN,
which is the average F1PN for the POSITIVE (i.e.,
F1pos) and NEGATIVE classes (i.e., F1neg):

F1PN =
F1pos + F1neg

2
We also report the overall classification accuracy
(Acc) across the three classes, and the F1PN score
of each class (i.e., F1pos, F1neg and F1neu).

For the message-level embeddings, we used d =
100 and a context window size of 10. We used
LibSVM with a linear-kernel and default parameter
settings.

3.3 Experimental results
In this section, we present the results first over the
SemEval-2015 datasets, and then over the Stanford
Sentiment Treebank.

3.3.1 Results for SemEval-2015
The results for the SemEval-2015 test set and

progress test set are shown in Table 3. Figure 2a
is a learning curve of RM-doc2vec, pre-trained
over varying numbers of documents. We can see
that the results plateau at 1M tweets; this is the
document collection size we used for pre-training
RM-doc2vec and RM-all in our official runs. The
overall Acc and F1 of each class for the three fea-
ture sets are shown in Figure 2b. RM-doc2vec is
marginally better than RM-manual overall, and for
the NEGATIVE class in particular. When combined,
RM-all outperforms the two component feature sets
across all classes, pointing to (weak) complementar-
ity between the two feature sets.
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Figure 2: The learning curve for RM-doc2vec, and the
Acc, F1pos, F1neg, and F1neu results for SemEval-2015
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Figure 3: The learning curve for RM-doc2vec, and the
Acc, F1pos, F1neg, and F1neu results for the Stanford Sen-
timent Treebank

3.3.2 Results for the Stanford Sentiment
Treebank

The learning curve for RM-doc2vec over the
Stanford Sentiment Treebank with varying numbers
of unlabelled (IMDB) documents is given in Fig-
ure 3a. RM-doc2vec performed best when pre-
trained over 50K documents (plus the Stanford Sen-
timent Treebank data), and this is the model we
include in the remainder of our results over this
dataset. Figure 3b shows the Acc, in addition to
the per-class F1 over the Stanford Sentiment Tree-
bank for the three feature sets. The overall trend is
strikingly similar to that for SemEval-2015, with the
combined feature set performing marginally better
than the two component feature sets in all cases.

4 Conclusion

In this paper, we described the method used in
our official submission to the SemEval-2015 mes-
sage polarity classification task, which combines
message-level embeddings with hand-crafted fea-
tures using a simple linear-kernel SVM. We pre-
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Test Set Progress Test Set
Twitter Twitter LiveJournal SMS Twitter Twitter Twitter
2015 2015 Sarcasm 2014 2013 2013 2014 2014 Sarcasm

0.5118 0.4962 0.6254 0.5300 0.5233 0.6127 0.4925

Table 3: The official evaluation results for the SemEval-2015 Test and Progress Test set (F1PN)

sented results over the SemEval-2015 dataset and
Stanford Sentiment Treebank, and showed that the
combined feature achieved the best results. The dif-
ference between the combined feature set and the
two component feature sets is not statistically signif-
icant (based on randomised estimation, p > 0.05).
While we were not able to achieve state-of-the-art
results, we commend the proposed approach as a
strong baseline method.
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Abstract

We present an approach for tackling the Sen-
timent Analysis problem in SemEval 2015.
The approach is based on the use of a co-
occurrence graph to represent existing rela-
tionships among terms in a document with
the aim of using centrality measures to extract
the most representative words that express the
sentiment. These words are then used in a su-
pervised learning algorithm as features to ob-
tain the polarity of unknown documents. The
best results obtained for the different datasets
are: 77.76% for positive, 100% for negative
and 68.04% for neutral, showing that the pro-
posed graph-based representation could be a
way of extracting terms that are relevant to de-
tect a sentiment.

1 Introduction

In the past decade, new forms of communication,
such as microblogging and text messaging have
emerged and become ubiquitous. While there is no
limit to the range of information conveyed by tweets
and texts, often these short messages are used to
share opinions and sentiments that people have
about what is going on in the world around them.
Working with these informal text genres presents
challenges for natural language processing (NLP)
beyond those encountered when working with more
traditional text genres. Typically this kind of texts
are short and the language used is very informal.
We can find creative spelling and punctuation, slang,
new words, URLs, and genre-specific terminology
and abbreviations that make their manipulation more
challenging.

Representing that kind of text for automatically
mining and understanding the opinions and senti-
ments that people communicate inside them has very
recently become an attractive research topic (Pang,
2008). In this sense, the experiments reported in
this paper were carried out in the framework of the
SemEval 20151 (Semantic Evaluation) which has
created a series of tasks for Sentiment Analysis on
Twitter (Rosenthal, 2015). Among the proposed
tasks we find Task 10, subtask B which was named
Message Polarity Classification and was defined
as follows: ”Given a message, classify whether the
message is of positive, negative, or neutral senti-
ment. For messages conveying both a positive and
a negative sentiment, whichever is the stronger sen-
timent should be chosen”. In order to solve this task
we create an approach that uses a graph based rep-
resentation to extract relevant words that are used
in a supervised learning method to classify a set of
unknown documents in different topics and genres
provided by the SemEval team. The methodology
for our approach is discussed in detail in the next
sections.

The rest of the paper is structured as follows. In
Section 2 we present some related work found in the
literature with respect to the identification of senti-
ments in text documents. In Section 3 a graph based
representation is proposed. In Section 4 the method-
ology and the tools used to detect the sentiments of
a set of unknown documents are explained. In Sec-
tion 5, the experimental results are presented and
discussed. Finally, in Section 6 the conclusions as
well as further work are described.

1http://alt.qcri.org/semeval2015/
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2 Related Work

There exist a number of works in literature associ-
ated to the automatic identification of sentiments in
documents. Some of these works have focused on
the contribution of particular features, such as the
use of the vocabulary to extract lexical elements as-
sociated to the documents (Kim, 2006), the use of
bigrams and trigrams (Dave, 2008) to capture syn-
tactic features of texts associated with a sentiment,
the use of dictionaries and emoticons of positive and
negative words (Agarwal, 2011) as well as lexical-
syntactic features or the use of Part of Speech tags
(PoS) (Wilks, 1999; Whitelaw, 2005) as syntactic
features that can help to disambiguate the polarity
of the words in a context.

In the other hand, many contributions focused on
the use of structures to represent the features asso-
ciated to a document like the frequency of occur-
rence vector (Wrobel, 2002; Aizawa, 2003; Serrano,
2006). Finally, linear representation of documents
features combined with the use of a Support Vector
Machine (SVM) has shown great performance in the
tasks associated with the classification of texts (Vap-
nik, 1995; Joachims, 1998).

Research works that use graph representations for
texts in the context of Sentiment Analysis barely ap-
pear in the literature (Pinto, 2014; Poria, 2014). It
usually has been proposed the concept of n-grams
with a frequency of occurrence vector to solved it
(Pang, 2008). However, there is still an enormous
gap between this approach and the use of more de-
tailed graph structures that represent in a natural way
the lexical, semantic and stylistic features.

3 Graph-Based Representation

Among different proposals for mapping texts to
graphs, the co-occurrence of words (Sonawane,
2014) has become a simple but effective way to rep-
resent the relationship of one term over another one
in texts where there is no syntactic order (usually
social media texts like Twitter or SMS). Formally
the proposed co-ocurrence graph is represented by
G = (V, E, L, α), where:

• V = {vi|i = 1, ..., n} is a finite set of vertices
that consists of the words contained in one or
several texts.

• E ⊆ V × V is the finite set of edges which
represents that two vertices are connected by
means of the co- occurrence, where:

– Two vertices are connected if their cor-
responding lexical units co-occur within
a window of maximum N words, where
N can be set to any value (typically be-
tween two and ten words).

• L is the edges tag set which consists of the
number of times that two vertices co-occur in
a text window.

• α : E → L is a function that assigns a tag to a
pair of associated vertices.

As an example, consider the following sentence ζ
extracted from a text T in the dataset: “They may
have a SuperBowl in Dallas, but Dallas ain’t win-
ning a SuperBowl. Not with that quarterback and
owner, they are really bad.”, which after the prepro-
cessing stage (see Section 4) would be as follows:
“may have SuperBowl Dallas Dallas ain’t winning
SuperBowl quarterback owner are bad”. Based on
the proposed representation, preprocessed sentence
ζ can be mapped to the proposed co-ocurrence graph
shown in Figure 1.
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Figure 1: co-ocurrence graph example
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Figure 2: Sentiment Analysis Process

The co-occurrence graph shown in figure 1 has the
following features:

• Terms co-occur within a window of 3 words.

• The set of vertices consists of the preprocessed
words in sentence ζ.

• An edge between two vertices represent that
both words appear in the same co-occurrence
window (at least once).

• The label edge between two vertices represents
the number of times that two words appear in a
co-occurrence window in sentence ζ.

4 Sentiment Analysis Process Using A
Graph Representation

Figure 2 shows the methodology used to detect the
sentiments associated to a set of unknown docu-
ments, considering the use of graphs to extract the
most relevant words associated to the documents.
The methodology consists of five steps:

1. Preprocess all documents associated with the
SemEval 2015 dataset. This task includes elim-
ination of punctuation symbols and all the ele-
ments that are not part of the ASCII encoding.

Then, each preprocessed sentence in a text is
tagged with its corresponding PoS tags, for this
step, the TreeTagger tool2 was used.

2. Map only the nouns, verbs and adjectives of all
documents in the training set to a graph repre-
sentation (see section 3).

3. Apply the Degree and Closeness centrality
measures (Freeman, 1979) which are indicators
that identify the most important vertices within
a graph, where:

• The Degree centrality is defined as the
number of links incident upon a vertex in
the graph and is used to find the topologi-
cally representative words.

• The Closeness centrality is defined as the
average sum of the shortest paths from one
vertex to the others in the graph and is
used to find the most accessible words in
the graph which consequently are syntac-
tically relevant.

4. For each document in the training and test col-
lection extract the top 100 ranked vertices (the

2www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Table 2: Evaluation of the graph model approach using the test dataset

Test Dataset Methodology % Correct % Correct % Correct % Overall BaselineRuntime Positive Negative Neutral score
Official 2015 Test 00:04:56 70.90 43.23 52.06 42.10 30.28
LiveJournal 2014 00:05:14 63.95 59.57 48.82 50.11 29.2
SMS 2013 00:05:14 52.16 42.56 68.04 39.35 19.0
Twitter 2013 00:05:14 70.44 44.49 54.69 41.93 34.6
Twitter 2014 00:05:14 77.76 45.00 49.50 45.93 27.7
Twitter Sarcasm 00:05:14 50.00 100.00 26.32 41.04 27.2

most important words in the graph) from both
centrality measures in the graph without repe-
tition and use them to build a frequency of oc-
currence vector (Manning, 2008).

5. Apply a SVM classifier (Harrington, 2012)
with a polynomial kernel implemented in the
scikit-learn3 platform (Pedregosa, 2011), in or-
der to construct a classification model which is
used for determining the sentiment of a given
anonymous document.

5 Experimental results

The results obtained with the proposed approach are
discussed in this section. First, we describe the
dataset used in the experiments and, thereafter, the
results obtained.

5.1 Dataset
The description of the three text collections used in
the experiments for the SemEval 2015 is shown in
the next table:

Table 1: Datasets used in the Sentiment Analysis
problems

Dataset Name # Documents
Training Development 7493
Test Official 2015 Test 2390
Test Progress Test 8987

The test corpus was made up of short texts (mes-
sages) categorized as: ”Progress Test” and Offi-
cial 2015 Test. The Progress Test includes the fol-
lowing datasets: LiveJournal2014, SMS2013, Twit-
ter2013, Twitter2014 and Twitter2014Sarcasm. A

3http://scikit-learn.org/stable/

complete description of the training and test datasets
can be found at the task description paper (Rosen-
thal, 2015).

5.2 Obtained results

In Table 2 we present results obtained with each
dataset considered in the SemEval 2015 competi-
tion. The results were evaluated according to the
(F1pos + F1neg)/2 measure (Rosenthal, 2014) for
the overall score and the precision measure (Man-
ning, 2008) for each one of the sentiments. Our
approach performed in all cases above the base-
line. We consider that these results were obtained
even though the training corpus was very unbal-
anced (there were more positive texts than others)
and there was a high difference between the vocabu-
lary of the training and test datasets. Further anal-
ysis on the use of centrality measures and on the
methodology for constructing the graph will allow
us to find more accurate features that can be used
in a supervised learning method for the Sentiment
Analysis problem.

6 Conclusions

We have presented an approach that uses a super-
vised learning method with a graph based repre-
sentation. The results obtained show a competitive
performance that is above the baseline score. The
model presents a good performance on the Twitter
dataset. However, there is still a great deal to im-
prove on the LiveJournal and SMS datasets where
the text could be smaller and the use of slang and
genre-specific terminology is usual. One of the con-
tributions of this paper is that we use a graph based
representation (with an excellent runtime) with cen-
trality measures to discover words related to each
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sentiment instead of using traditional features like n-
grams and vocabulary. As further work we propose
the following:

• Experiment with other graph representations
for texts that include alternative levels of lan-
guage descriptions such as the use of sentence
chunks, pragmatic sentences, etc.

• Apply the graph representation described in
this paper to the Authorship Attribution prob-
lem (Holmes, 1994), where training and test
data sets are balanced and belong to the same
linguistic domain.

• Explore different supervised/unsupervised
classification algorithms.
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Abstract

This paper reports our submission to task 10
(Sentiment Analysis on Tweet, SAT) (Rosen-
thal et al., 2015) in SemEval 2015 , which
contains five subtasks, i.e., contextual polar-
ity disambiguation (subtask A: expression-
level), message polarity classification (subtask
B: message-level), topic-based message polar-
ity classification and detecting trends towards
a topic (subtask C and D: topic-level), and de-
termining sentiment strength of twitter terms
(subtask E: term-level). For the first four sub-
tasks, we built supervised models using tradi-
tional features and word embedding features
to perform sentiment polarity classification.
For subtask E, we first expanded the training
data with the aid of external sentiment lexi-
cons and then built a regression model to esti-
mate the sentiment strength. Despite the sim-
plicity of features, our systems rank above the
average.

1 Introduction

In the past few years, hundreds of millions of peo-
ple shared and expressed their opinions through mi-
croblogging websites, such as Twitter. The study
on this platform is increasingly drawing attention
of many researchers and organizations. Given the
character limitations on tweets, the sentiment orien-
tation classification on tweets is usually analogous
to the sentence-level sentiment analysis (Kouloump-
is et al., 2011; Kim and Hovy, 2004; Yu and Hatzi-
vassiloglou, 2003). However, considering opinions
adhering on different topics and expressed by vari-
ous expression words in tweets, (Wang et al., 2011;

Jiang et al., 2011; Chen et al., 2012) have inves-
tigated various ways to settle these target depen-
dent issues. Recently, inspired by (Mikolov et al.,
2013a) using neural network to construct distributed
word representation (word embedding), several re-
searchers employed neural network to perform senti-
ment analysis. For example, (Kim, 2014; dos Santos
and Gatti, 2014) adopted convolutional neural net-
works to learn sentiment-bearing sentence vectors,
and (Mikolov et al., 2013b) proposed Paragraph
vector which outperformed bag-of-words model for
sentiment analysis.

The task of Sentiment Analysis in Twitter (SAT)
in SemEval 2015 consists of five subtasks. The first
three subtasks focus on determining the polarity of
the given tweet, phrase or topic (i.e., subtask A aims
at classifying the sentiment of a marked instance in
a given message, subtask B is to determine the po-
larity of the whole message and subtask C focuses
on identifying the sentiment of the message towards
the given topic). The fourth subtask D is to detect
the sentiment trends of a given set of messages to-
wards a topic from the same period of time. The
last subtask E is to predict a score between 0 and 1,
which is indicative of the strength of association of
twitter terms with positive sentiment.

Following previous works (Rosenthal et al., 2014;
Zhao et al., 2014; Mohammad et al., 2013; Evert
et al., 2014; Mohammad et al., 2013; Wasi et al.,
2014), we adopted a rich set of traditional features,
e.g., linguistic features (e.g., n-gram at word lev-
el, part-of-speech (POS) tags, negations, etc), senti-
ment lexicon features (e.g., MPQA, Bing Liu opin-
ion lexicon, SentiWordNet, etc) and twitter specif-
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ical features (e.g., the number of URL, emoticon-
s, capital words, elongated words, hashtags, etc).
Besides, inspired by (Kim, 2014; Mikolov et al.,
2013b), we also employed novel word embedding
features in these tasks.

The remainder of this paper is organized as fol-
lows. Section 2 reports our systems including pre-
processing, feature engineering, evaluation metrics,
etc. The data sets and experiments descriptions are
shown in Section 3. Finally, we conclude this paper
in Section 4.

2 System Description

For subtask A and B, we compared two classifier-
s built on traditional NLP features (linguistic and
Sentiment Lexicon) and word embedding features
respectively. We also combined the results of the
above two classifiers by summing up the predicted
probability score. Due to time limitation, for sub-
task C and D, we only used the traditional feature
sets to build a classifier. Unlike the above four sub-
tasks, for subtask E we built a regression model to
calculate a sentimental strength score for each target
term with the aid of sentiment lexicon score features
and word embedding features.

2.1 Data Preprocessing
Firstly, we collected about 5, 000 slangs or abbre-
viations from Internet to convert the irregular writ-
ing to formal forms. By doing this, we also recov-
ered the elongated words to its initial forms, e.g.,
”goooooood” to ”good”, ”asap” to ”as soon as
possible”, ”3q” to ”thank you”, etc. Then the pro-
cessed data was performed for tokenization, POS
tagging and parsing by using CMU Parsing tools
(Owoputi et al., 2013).

2.2 Feature Engineering
Although the first four subtasks all focus on senti-
ment polarity classification, they have very different
definitions. For example, since subtask B focuses
on sentiment classification on whole tweet, we ex-
tract features from all words in tweet. However, the
other three subtasks, i.e, A, C, and D, perform senti-
ment polarity classification only on a certain piece of
tweet, i.e., expression words or topic in tweet. Since
organizers have provided the annotated target words
(for A) and topics (for C and D) for each tweet, we

only chose related words rather than all words in w-
hole tweet as pending words for consequential fea-
ture extraction. To pick out related words from w-
hole tweet, following (Kiritchenko et al., 2014), for
each annotated target word we only treated the sur-
rounding words from parse tree with distance d ≤ 2
as its relevant words.

In this task, we used four types of features: senti-
ment lexicon features (the score calculated from sev-
en sentiment lexicons), linguistic features (n-grams,
POS tagger, negations, etc), tweet-specific features
(emoticons, all-caps, hashtag, etc) and word embed-
ding features.

Sentiment Lexicon Features (SentiLexi):
We employed the following seven sentiment lex-

icons to extract sentimental lexicon features: Bing
Liu lexicon1, General Inquirer lexicon2, IMDB3, M-
PQA4, SentiWordNet5, NRC Hashtag Sentiment Lex-
icon6, and NRC Sentiment140 Lexicon7. Generally,
we transformed the scores of all words in all sen-
timent lexicons to the range of −1 to 1, where the
minus sign denotes negative sentiment and the posi-
tive number indicates positive sentiment.

Given extracted pending words, we first convert-
ed them to lowercase. Then for each sentiment lexi-
con, we calculated the following five sentimental s-
cores on the processed pending words: (1) the ra-
tio of positive words to pending words, (2) the ratio
of negative words to pending words, (3) the max-
imum sentiment score, (4) the minimum sentiment
score, (5) the sum of sentiment scores. If the pend-
ing word does not exist in one sentiment lexicon, its
corresponding score is set to zero. Specifically, be-
fore locating the corresponding term in SentiWord-
Net lexicon, we conducted lemmatization for words
and selected its first item in searched results accord-
ing to its POS tag.

Linguistic Features:

- Word n-grams: We first converted all pending

1http://www.cs.uic.edu/liub/FBS/sentiment-
analysis.html#lexicon

2http://www.wjh.harvard.edu/inquirer/homecat.htm
3http://anthology.aclweb.org//S/S13/S13-2.pdf#page=444
4http://mpqa.cs.pitt.edu/
5http://sentiwordnet.isti.cnr.it/
6http://www.umiacs.umd.edu/saif/WebDocs/NRC-Hashtag-

Sentiment-Lexicon-v0.1.zip
7http://help.sentiment140.com/for-students/
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words to lowercase and removed URLs, men-
tions, hashtags, and low frequency (threshold
value is 10) words. Then we extracted uni-
gram and bigram features. Besides, inspired
by (Kiritchenko et al., 2014), the words con-
nected on parse tree are extracted as pairgram.

- POS Features: We recorded the number of
nouns (the corresponding POS tags in CMU
parser are N, O, ˆ, S, Z), verbs (i.e., V,L, M ),
adjectives (i.e., A), and adverbs (i.e., R) in
pending words.

- Negation Features: Usually, the sentiment ori-
entation of a message or phrase can be reversed
by a modified negation. Thus, we collected 29
negations8 from Internet and this binary fea-
ture is set as 1 or 0 if corresponding negation
is present or absent in pending words.

Tweet Specific Features (PAHE):

- Emoticon: We gathered 69 emoticons from In-
ternet and this binary feature records whether
the corresponding emoticon is present or ab-
sent in pending words.

- Punctuation: The numbers of exclamations (!)
and questions (?) are also noted.

- All-caps: It indicates the number of words with
uppercase letters.

- Hashtag: It is the number of hashtags in the
sentence or phrase.

- Elongated: It represents the number of word-
s with one character repeated more than two
times, e.g., “gooooood”.

Word Embedding Features: Word embedding
is a continuous-valued representation of the word
which usually carries syntactic and semantic infor-
mation (Zeng et al., 2014). Since a phrase or sen-
tence contains more than one word, usually there
are two strategies to convert the words vectors into
a sentence vector: (1) summing up all words vec-
tors; (2) rolling up the sequential words to obtain a

8The 29 negations and other following manually collected
data are available upon request.

vector that contains context information (i.e., convo-
lution neutral network). The convolution neural net-
work (CNN) is usually employed in image recogni-
tion, while many researchers have adopted it in Nat-
ural Language Processing (Kim, 2014; dos Santos
and Gatti, 2014) and achieved good performance.
For subtask A and B, we adopted the CNN tools in
(Kim, 2014) and extracted the penultimate hidden
layer content as the sentence word embedding fea-
tures to perform classification. For subtask E, we
simply adopted the first strategy to sum up the word
vectors in the given phrase.

Specifically, in this work we used the publicly
available word2vec vectors to get the word embed-
ding with dimensionality of 300, which is trained on
100 billion words from Google News (Mikolov et
al., 2013b). If a word is not in word2vec list, we
initialize its vector values to random values.

2.3 Evaluation Metrics

For subtask A, B and C, we used the macro-
averaged F score of positive and negative classes
(i.e., Fmacro = Fpos+Fneg

2 ) to evaluate the perfor-
mance, which considers a sense of effectiveness on
small classes. For subtask D, the averaged absolute
difference (i.e., avgAbsDiff = 1

n

∑n
i=1 |xi − x̄|)

is employed, which is a common measure of how
much a set of observations differ from the aver-
age. Since the subtask E aims at predicting the sen-
timent score for target term, in order to make the
comparison of predicted strength of different terms
reasonable, the Kendall rank correlation coefficient
(usually measures the association between two mea-
sured quantities) and Spearman rank correlation (a
nonparametric measure of statistical dependence be-
tween two variables) are adopted in this subtask,
where the Kendall rank correlation coefficient is the
official evaluation criteria.

3 Experiments

3.1 Datasets

The organizers provided tweet ids and a script for
all participants to collect data. Table 1 shows the
statistics of the data sets we used in our experiments.

For subtask A and B, the training data set is com-
posed of SemEval 2013 Task 2 training and develop-
ment data (Nakov et al., 2013) and the development
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data set is made up of the test sets from the same
tasks in previous two years. For subtask C and D,
this data is divided into many topic sets.

With regard to subtask E, the organizers provided
200 terms labeled with a decimal in the range of 0 to
1. We observed that among these 200 given terms,
22% are hashtags and 15% contain negator. In con-
sideration of the lack of training data, we expanded it
with 1, 346 terms collected from following sources:
916 terms which are present in all above mentioned
7 sentiment lexicons, 230 terms with hashtag and
200 terms with negator extracted from NRC Hash-
tag sentiment lexicon randomly. The provided 200
terms were used as development data. To predict the
strength values of the extended data, we used the M-
PQA sentiment lexicon label as reference. There are
6 polarity types in MPQA, i.e., strong positive, weak
positive, both strong, both weak, weak negative and
strong negative. We converted them to numeric s-
core as 1, 0.75, 0.5, 0.5, 0.25, 0 respectively. By do-
ing so, if a target term is present in this expanded
lexicon, the output is its corresponding score. Oth-
erwise we split the term to several words and calcu-
lated their averaged sentiment score as output.

dataset Positive Negative Neutral Total
subtask A:
train 5,738(62%) 3,097(33%) 456(5%) 9,291
dev 10,159(58%) 6,416(37%) 875(5%) 17,450
test
LiveJournal 660(50%) 511(39%) 144(11%) 1,315
SMS2013 1,071(46%) 1,104(47%) 159( 7%) 2,334
Twitter2013 2,734(62%) 1,541(35%) 160(3%) 4,435
Twitter2014 1,807(73%) 578(23%) 88( 4%) 2,473
Twitter2014S 82(66%) 37(30%) 5(4%) 124
offical2015 1,896(61%) 1,006(33%) 190(6%) 3,092
all 8,250(60%) 4,777(35%) 746(6%) 13,773
subtask B:
train 3,774(37%) 1,598(16%) 4,842(47%) 10,214
dev 5,570(37%) 2,536(17%) 6,788(46%) 14,894
test
LiveJournal 427(37%) 304(27%) 411(36%) 1,142
SMS2013 492(24%) 394(19%) 1,207(57%) 2,093
Twitter2013 1,572(41%) 601(16%) 1,640(43%) 3,813
Twitter2014 982(53%) 202(11%) 669(36%) 1,853
Twitter2014S 33(38%) 40(47%) 13(15%) 86
offical2015 1,038(43%) 365(15%) 987(41%) 2,390
all 5,411(39%) 2,166(16%) 6,183(45%) 13,760
subtask C and D:
train 142(29%) 56(11%) 288(59%) 489
dev 65(35%) 34(18%) 85(46.%) 184
test 867(36%) 260(11%) 1256(53%) 2383

Table 1: Statistics of data sets in training (train), devel-
opment (dev), test (test) set for subtask A, B, C and D.
Twitter2014S stands for Twitter2014Sarcasm.

3.2 Experiments on Training Data
3.2.1 Subtask A and B

To address subtask A and B, we conducted a se-
ries of experiments to examine the effects of differ-
ent traditional features. Table 2 describes the exper-
iments of various traditional features on subtask A
and B. From Table 2, it is interesting to find that: (1)
SentiLexi and unigram are the most effective feature
types to detect the polarities; (2) POS feature makes
contribution to improve the performance for subtask
B but no improvement for A. It may be because
the neutral instances in subtask B (i.e., 45.58%) are
much more than that in subtask A (i.e., 5.01%); (3)
The emoticons features are not as effective as ex-
pected since most emoticons are already present in
unigram.

Besides, following (Kim, 2014) we adopted sen-
tence modeling and extracted the penultimate hid-
den layer content as novel word embedding feature
to build another classifier. Furthermore, we com-
bined the intermediate results (i.e., the distances be-
tween point to multiple hyperplanes returned from
SVM) of two classifiers. The experimental results
of using word embedding features in isolation and
in combination are shown in Table 3. From Table 3,
we find that the word embedding alone performs a
bit worse than the traditional features. This may be
because the traditional features are dozens of times
more than word embedding features and as a result
the effectiveness of word embeddings is impaired.
However, when we combined the two experimental
results, we find that the combination result of two
classifiers achieves the best performances in both
subtasks. This indicates that although the size of
word embeddings is small, it still makes contribu-
tion to performance improvement.

Features Subtask A Subtask B
Traditional 86.65% 66.81%
Word embedding 83.80% 64.85%
Combination 87.68% 67.80%

Table 3: Results of subtask A and B using traditional fea-
tures, word embedding features and their combination in
terms of Fmacro on training data.

Besides, in our preliminary experiments, we ex-
amined several supervised machine learning classi-
fication algorithms with different parameters imple-

564



Features Subtask A Features Subtask B Features Subtask C
SentiLexi 81.83 SentiLexi 60.99 unigram 32.87
.+unigram 85.32(+3.49) .+unigram 64.60(+3.61) .+PAHE 33.51(+0.64)
.+Negation 86.20(+0.88) .+pairgram 65.76(+1.16) .+SentiLexi 34.37(+0.86)
.+pairgram 86.52(+0.32) .+POS 66.19(+0.43) .+POS 35.45(+1.03)
.+PAHE 86.57(+0.05) .+Negation 66.68(+0.49) .+Emoticon 36.03(+0.58)
.+bigram 86.65(+0.08) .+PAHE 66.81(+0.13) .+Negation 34.94(-1.09)
.+POS 86.53(-0.12) .+Emoticon 66.76(-0.05) - -
.+Emoticon 86.50(-0.03) .+bigram 66.21(-0.55) - -

Table 2: Results of feature selection experiments for subtask A, B and C in terms of Fmacro on the training data.
The numbers in the brackets are the performance increments compared with the previous results. PAHE stands for
Punctuation&All-caps&Hashtag&Enlongated features. “.+” means to add current feature to the previous feature set.

mented in scikit-learn tools (Pedregosa et al., 2011)
(e.g., SVM with kernel={linear, rbf}, c=0.1 ,1 ,10,
SGD with loss={hinge, log}, RandomForestClassi-
fier with n={10, 50, 100}, etc). Table 4 shows the
configuration of classifiers with best performance.
Thus, in subsequential experiments, we adopted the
configurations listed in Table 4.

Task Features Configuration

Subtask A
traditional SVM, kernel=linear,c=0.1
word embedding SVM, kernel=rbf,c=0.1

Subtask B
traditional SVM, kernel=linear,c=0.1
word embedding SVM, kernel=rbf,c=0.1

Table 4: System configurations for subtask A and B.

3.2.2 Subtask C and D
Table 2 lists the experimental results using

several traditional features on subtask C. Since
the sentiment trend of given topic in subtask
D is calculated from the results of subtask C
(i.e., sentiment trend = positive/(positive +
negative)), we have not conducted additional ex-
periments for subtask D.

Similar with the first two subtasks, we adopted the
SVM classification algorithm with kernel=linear,
c=0.1 as system configurations for follow-up exper-
iments.

3.2.3 Subtask E
We transformed the informal terms to their nor-

mal forms and used the sentiment lexicons men-
tioned in Section 2.2 except MPQA to extract sen-
timent lexicon feature. If the target term contained
more than one word, we averaged their scores as it-
s final sentiment lexicon feature. Besides, the word

embedding features were also adopted in this sub-
task.

To explore the effectiveness of different feature
types, we conducted several feature combination ex-
periments shown in Table 5.

Features Kendall Rank Spearman Rank
SentiLexi 48.24% 66.17%
Word embedding 52.97% 70.90%
SentiLexi + Word embedding 56.73% 75.56%

Table 5: Results of feature section experiments for sub-
task E on training data.

From Table 5, we find that: (1) The combination
of SentiLexi and word embedding is the most effec-
tive feature type for sentiment score prediction; (2)
The word embedding features achieved better result
than SentiLexi features about 4.7% improvement in
terms of Kendall measure, which indicates that word
embedding feature preserves the sentiment informa-
tion and semantic relationship between words.

We also performed a series of experiments to op-
timize the parameters of SVM classifiers. Similar-
ly, we found that SVM classifier with kernel=linear
and c=1 obtained the best performance. Thus, in
following experiments on test data, we adopted this
configuration with SentiLexi and word embedding
features together.

3.3 Results on Test Data

Using the optimum feature set and configurations
described in Section 3.2, we trained separate mod-
els for each subtasks and evaluated them against the
SemEval-2015 Task 10 test set.

Table 6 shows the results of our systems and the
top-ranked systems on subtask A, B, C and D. From
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Subtask Systems LiveJournal SMS2013 Twitter2013 Twitter2014 Twitter2014S Offical2015 Twitter2015

A
ECNU 82.49(6) 84.70(4) 85.28(4) 82.09(7) 70.96(7) 81.08(7) -
unitn 84.46(2) 88.60(2) 90.10(1) 87.12(1) 73.65(3) 84.79(1) -

KLUEless 83.94(4) 88.62(2) 88.56(2) 84.99(3) 75.59(3) 84.51(2) -

B
ECNU 74.40(3) 68.49(1) 65.25(22) 66.37(20) 45.87(24) 59.72(19) -
Webis 71.64(14) 63.92(14) 68.49(10) 70.86(6) 49.33(11) 64.84(1) -
unitn 72.48(12) 68.37(2) 72.79(3) 73.60(2) 55.44(4) 64.59(2) -

C/D
ECNU - - - - - - 25.38(5)/0.300(5)

TwitterHawk - - - - - - 50.51(1)/0.214(3)
KLUEless - - - - - - 45.48(2)/0.202(1)

Table 6: Performances of our systems and top-ranked systems for subtask A, B, C (Fmacro(%)) and D (avgAbsDiff )
on test data. The numbers in the brackets are the rankings on corresponding data set.

the Table 6, we observe the following findings.
Firstly, in accordance with previous work (Rosen-

thal et al., 2014), the results of subtask B is much
worse than those of subtask A. On one hand, the
text in message-level task is long and contains multi-
ple/mixed sentiments with different strength and the
text in expression-level usually contain a single sen-
timent orientation. On the other hand, the polarity
distributions of subtask A and B are significantly d-
ifferent (i.e., about 6.14% instances in expression-
level are neutral while 41.30% in message-level).

Secondly, the performances on LiveJournal and
SMS are comparable to the results on Twitter2013
and Twitter2014 in both subtasks, which means the
Twitter, SMS and LiveJournal have similar charac-
teristics and then we may consider to use SMS as
training data when the available tweet data is insuf-
ficient.

Thirdly, the submissions of subtask C and D only
adopted traditional linguistic features rather than the
combination of word embeddings, which may result
in the poor performance in subtask C and D.

Our systems ranked 7th out of 11 submissions for
subtask A, 19th out of 40 submissions for subtask B
and performed well on LiveJournal and SMS2013
data sets. For subtask C and D, our systems ranked
5th out of 7 submissions and 5th out of 6 submis-
sions respectively.

Team ID Kendall Rank Spearman Rank
ECNU 59.07%(3) 78.61%(3)

INESC-ID 62.51%(1) 81.72%(2)
lsislif 62.11%(2) 82.02%(1)

Table 7: Performances of our systems and the top-ranked
systems for subtask E. The numbers in the brackets are
the official ranking.

Table 7 shows the results of our system and the
top ranked system provided by organizer for subtask
E. Our system ranked 3rd out of 10 submissions. Al-
though the word embedding features obtained from
large amount of contexts are believed to contain se-
mantic information, they contain sentiment informa-
tion more or less induced from context. As a conse-
quence, with the aid of sentiment lexicon and word
embedding, our system is promising.

4 Conclusion

In this paper, we combined the results of two classi-
fiers (adopting traditional features and word embed-
ding features respectively) to detect the sentiment
polarity towards expression-level and message-level
(i.e., subtask A, B), adopted several basic feature
types to settle topic-level task (i.e., subtask C, D)
and built regression model with the aid of senti-
ment lexicon features and word embedding features
to predict degree of polarity strength on term-level
(i.e., subtask E). Using word embedding features
alone may not perform good results, but it makes
contribution to performance improvement in combi-
nation with traditional linguistic features. In future
work, we consider to construct the word representa-
tions bearing sentiment information to address sen-
timent analysis.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning
Research, 12:2825–2830.

Sara Rosenthal, Preslav Nakov, Alan Ritter, and Veselin
Stoyanov. 2014. Semeval-2014 task 9: Sentiment
analysis in Twitter. Proc. SemEval, pages 73–80.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. SemEval-2015 Task 10: Sentiment anal-
ysis in Twitter. In Proceedings of the 9th Internation-
al Workshop on Semantic Evaluation, SemEval ’2015,
Denver, Colorado, June.

Xiaolong Wang, Furu Wei, Xiaohua Liu, Ming Zhou, and
Ming Zhang. 2011. Topic sentiment analysis in Twit-
ter: a graph-based hashtag sentiment classification ap-
proach. In Proceedings of the 20th ACM internation-
al conference on Information and knowledge manage-
ment, pages 1031–1040.

Sabih Bin Wasi, Rukhsar Neyaz, Houda Bouamor, and
Behrang Mohit. 2014. CMUQ@ Qatar: Using rich
lexical features for sentiment analysis on Twitter. Se-
mEval 2014, page 186.

Hong Yu and Vasileios Hatzivassiloglou. 2003. Toward-
s answering opinion questions: Separating facts from
opinions and identifying the polarity of opinion sen-
tences. In Proceedings of the 2003 conference on Em-
pirical methods in natural language processing, pages
129–136.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of COL-
ING, pages 2335–2344.

Jiang Zhao, Man Lan, and Tian Tian Zhu. 2014. EC-
NU: Expression-and message-level sentiment orienta-
tion classification in Twitter using multiple effective
features. SemEval 2014, page 259.

567



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 568–573,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

Lsislif: Feature Extraction and Label Weighting for Sentiment Analysis in
Twitter

Hussam Hamdan
Aix-Marseille University
hussam.hamdan@lsis.org

Patrice Bellot
Aix-Marseille University
patrice.bellot@lsis.org

Frederic Bechet
Aix-Marseille University

frederic.bechet@lif.univ-mrs.fr

Abstract

This paper describes our sentiment analysis
systems which have been built for SemEval-
2015 Task 10 Subtask B and E. For sub-
task B, a Logistic Regression classifier has
been trained after extracting several groups of
features including lexical, syntactic, lexicon-
based, Z score and semantic features. A
weighting schema has been adapted for pos-
itive and negative labels in order to take into
account the unbalanced distribution of tweets
between the positive and negative classes.
This system is ranked third over 40 partici-
pants, it achieves average F1 64.27 on Twit-
ter data set 2015 just 0.57% less than the first
system. We also present our participation in
Subtask E in which our system has got the sec-
ond rank with Kendall metric but the first one
with Spearman for ranking twitter terms ac-
cording to their association with the positive
sentiment.

1 Introduction

Twitter is one of the most social media platforms
which allows the users to express their opinions and
feelings towards different issues. The users have
become an important source of content. This con-
tent may be interesting to analyze for those who are
interested in understanding user’s interests such as
buyers, sellers and producers.

Sentiment Analysis can be done in different lev-
els; Document level; Sentence level; Clause level or
Aspect-Based level. SA in Twitter can be seen as
sentence level task, but some limitations should be
considered in such sentences. The size of tweet is

limited to 140 characters, informal language, emo-
tion icons and non-standard expressions are very
used, and many spelling errors can be find due to
the absence of correctness verification.
Three different approaches can be identified in the
literature of Sentiment Analysis in Twitter, the first
approach is a lexicon based which uses specific
types of lexicons to derive the polarity of a text,
this approach suffers from the limited size of lexi-
con and requires human expertise to build manual
lexicons, in the other hand the automatic lexicons
needs labeled data. The second approach is ma-
chine learning one which uses annotated texts with
given labels to learn a classifying model. Both lex-
icon and machine learning approaches can be com-
bined to achieve a better performance. These two
approaches are used for SA task but the third one is
specific for Twitter or social content, the social ap-
proach exploits social network properties and data
for enhancing the accuracy of the classification.

In this paper, we present our supervised system
which adapts a logistic regression classifier with
several groups of features and weighting schema
for positive and negative labels. The features are
grouped into 5 groups: word n-gram, lexicon-based,
negation, Z score and semantic features. We also
describe our system used for ranking terms accord-
ing to their positivity, in which we derive the term
polarity score from different lexicons.

The rest of this paper is organized as follows. Sec-
tion 2 outlines existing work of sentiment analysis in
Twitter. Section 3 describes the data and resources.
The features we used for training the classifier pre-
sented in Section 4. Our experiments are described
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in section 5, our participation in subtask E is de-
scribed in section 6 and future work is presented in
section 7.

2 Related Work

Three main approaches for sentiment analysis can
be identified in Twitter. The lexicon based ap-
proach which depends on sentiment lexicons con-
taining positive, negative and neutral words or ex-
pressions; the polarity is computed according to the
number of common opinionated words between the
lexicons and the text. Many dictionaries have been
created manually such as MPQA Lexicon (Wilson
et al., 2005) or automatically such as SentiWordNet
(Baccianella et al., 2010).

Machine learning approach adapts different clas-
sifiers and features. Naive Bayes, Maximum En-
tropy MaxEnt and Support Vector Machines (SVM)
were adapted in (Go et al., 2009) in which the au-
thors reported that SVM outperforms other classi-
fiers. They tried a unigram and a bi-gram model
in conjunction with parts-of-speech (POS) features;
they noted that the unigram model outperforms all
other models when using SVM and that POS fea-
tures decrease the results. Authors in (Hamdan et al.,
4 29) used the concepts extracted from DBPedia
and the adjectives from WordNet, they reported that
the DBpedia concepts are useful with Nave-Bayes
classifier but less useful with SVM. Many features
were used with SVM including the lexicon-based
features in (Mohammad et al., 2013) which seem to
get the most gain in performance. Another work has
also proved the importance of lexicon-based features
with logistic regression classifier (Miura et al., 4 08;
Hamdan et al., 2015a; Hamdan et al., 2015b).

The third main approach takes into account the
influence of users on their followers and the relation
between the users and the tweets they wrote. It as-
sumes that using the Twitter follower graph might
improve the polarity classification. In (Speriosu
et al., 2011) authors demonstrated that using label
propagation with Twitter follower graph improves
the polarity classification. In (Tan et al., 2011) au-
thors employed social relation for user-level senti-
ment analysis. In (Hu et al., 2013) a Sociologi-
cal Approach to handling the Noisy and short Text
(SANT) for supervised sentiment classification is

used; they reported that social theories such as Sen-
timent Consistency and Emotional Contagion could
be helpful for sentiment analysis.

3 Data and Resources

3.1 Labeled Data

We used the data set provided in SemEval 2013 for
subtask B of sentiment analysis in Twitter (Nakov
et al., 2013). The participants have been provided
with training tweets annotated positive, negative
or neutral. We downloaded these tweets using the
given script. We obtained 9646 tweets, the whole
training data set is used for training, the provided
development set containing 1654 tweets is used for
tuning the machine learner. The test data set 2015
contains about 2390 tweets (Rosenthal et al., 5 06).
Table 1 shows the distribution of each label in each
data set.

Twitter all neg. pos. neut.
train 9684 1458 3640 4586
dev 1654 340 739 575
test-2015 2390 365 1038 987

Table1. Sentiment labels distribution in the training
and development, test data sets.

3.2 Sentiment Lexicons

The system exploits two types of sentiment lexi-
cons: manual constructed lexicons and automatic
ones. The manual ones are the Bing Lius Opin-
ion Lexicon which is created in (Hu and Liu,
2004) and augmented in many research papers; and
MPQA subjectivity lexicons (Wilson et al., 2005).
Both lexicons contain English words annotated pos-
itive and negative. While the automatic lexicons
are NRC Hashtag Sentiment Lexicon (Mohammad,
6 07), Sentiment140 Lexicon (Mohammad et al.,
2013), and SentiWordNet (Baccianella et al., 2010).
NRC Hashtag Sentiment Lexicon and Sentiment140
Lexicon contain tweet terms with scores, positive
score indicates association with positive sentiment,
whereas negative score indicates association with
negative sentiment. NRC has entries for 54,129 un-
igrams and 316,531 bigrams; Sentiment140 has en-
tries for 62,468 unigrams, 677,698 bigrams. Sen-
tiWordNet is the result of automatically annotating
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all WORDNET synsets according to their degrees
of positivity, negativity, and neutrality.

3.3 Twitter Dictionary
We constructed a dictionary for the abbreviations
and the slang words used in Twitter in order to over-
come the ambiguity of the these terms. This dictio-
nary maps certain twitter expressions and emotion
icons by their meaning or their corresponding sen-
timent (e.g. gr8 replaced by great, :) replaced by
very-happy).

4 Feature Extraction

4.1 Word ngrams
unigram and bigram are extracted for each word in
text without any stemming or stop-word removing,
all terms with occurrence less than 3 are removed
from the feature space.

4.2 Negation Features
The rule-based algorithm presented in Christo-
pher Potts Sentiment Symposium Tutorial is imple-
mented. This algorithm appends a negation suffix to
all words that appear within a negation scope which
is determined by the negation key and a punctua-
tion. All these words have been added to the feature
space.

4.3 Twitter dictionary
All terms presented in a text and in the twitter dic-
tionary presented in 3.3 are mapped to their corre-
sponding terms in the dictionary and added to the
feature space.

4.4 Sentiment Lexicons
The system extracts four features from the manual
constructed lexicons and six features from the auto-
matic ones. For each sentence the number of posi-
tive words, the number of negative ones, the number
of positive words divided by the number of negative
ones and the polarity of the last word are extracted
from manual constructed lexicons. In addition to the
sum of the positive scores and the sum of the nega-
tive scores from the automatic constructed lexicons.

4.5 Z score
Z score can distinguish the importance of each
term in each class, their performances have been

proved in (Hamdan et al., 2014). We assume as
in the mentioned work that the term frequencies
are following a multi-nomial distribution. Thus,
Z score can be seen as a standardization of the
term frequency using multi-nomial distribution.
We compute the Z score for each term ti in a class
Cj (tij) by calculating its term relative frequency
tfrij in a particular class Cj , as well as the mean
(meani) which is the term probability over the
whole corpus multiplied by the number of terms
in the class Cj , and standard deviation (sdi) of
term ti according to the underlying corpus. Like in
(Hamdan et al., 4 29) we tested different thresholds
for choosing the words which have higher Z score.

Zscore(ti) =
tfrij −meani

sdi
(1)

Thus, we added the number of words having Z
score higher than the threshold in each class pos-
itive,negative and neutral, the two classes which
have the maximum number and minimum number
of words having Z score higher than the thresh-
old. These 5 features have been added to the feature
space.

4.6 Semantic Features

The semantic representation of a text may bring
some important hidden information, which may re-
sult in a better text representation and a better clas-
sification system.

4.6.1 Brown Dictionary Features

Each word in the text is mapped to its cluster
in Brown, 1000 features are added to feature space
where each feature represents the number of words
in the text mapped to each cluster. The 1000 clusters
is provided in Twitter Word Clusters of CMU ARK
group. 1000 clusters were constructed from approx-
imately 56 million tweets.

4.6.2 Topic features

Latent dirichlet association or topic modeling is
used to extract 10 features. Lda-c is configured with
10 topics and the training data is used for training
the model, then for each sentence in the test set,
the trained model estimates the number of words as-
signed to each topic.
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4.6.3 Semantic Role Labeling Features
Authors in (Ruppenhofer and Rehbein, 2012) en-

code semantic role labeling features in SVM classi-
fier. Our system also extract two types of features,
the names: the whole term which represents an argu-
ment of the predicate and the tags: the type of each
argument in the text (A0 represents the subject of
predicate, A1 the object, AM-TMP the time, AM-
ADV the situation, AM-loc the location). These
encodings are defined by the tool which we used
(Senna). We think that the predicate arguments can
constitute a multi-word expression which may be
helpful in Sentiment Classification.

5 Experiments

5.1 Experiment Setup

We trained the L1-regularized Logistic regression
classifier implemented in LIBLINEAR (Fan et al.,
2008). The classifier is trained on the training data
set using the features of Section 4 with the three
polarities (positive, negative, and neutral) as labels.
A weighting schema is adapted for each class, we
use the weighting option −wi which enables a use
of different cost parameter C for different classes.
Since the training data is unbalanced, this weighting
schema adjusts the probability of each label. Thus,
we tuned the classifier in adjusting the cost param-
eter C of Logistic Regression, weight wpos of pos-
itive class and weight Wneg of negative class. We
used the development set for tuning the three param-
eters, all combinations of C in range 0.1 to to 4 by
step 0.1, wpos in range 1 to 8 by step 0.1, wneg in
range 1 to 8 by step 0.1 are tested. The combination
C=0.2, wpos=5.2, wneg=4.2 have given the best F1
score for the development set and therefore it was
selected for our submission.

5.2 Results

The evaluation score used by the task organizers was
the averaged F1-score of the positive and negative
classes. In the SemEval-2015 competition, our sub-
mission is ranked third (64.27) over 40 submissions,
just 0.57% less than the first system.

Table 2 shows the results of our experiments after
removing a feature group at each run for the three
test sets 2013, 2014, and 2015. For the test set 2015,
we note that using Z score feature provides a gain

of 0.45%, n-gram provides a gain of 0.28%, lexi-
con features gain is about 3.31%, LDA gain is 0.8%,
Brown clusters 0.44%, semantic role labeling de-
creases the F1 score by 0.83%. The most influen-
tial features is the sentiment lexicon features; they
provided gains of 3.31%.

Because of negative effect of semantic role
labeling features, we have done another analysis
in order to estimate if these features are useful or
not, the fact that the combination of features makes
some of them not influential are not sufficient to
consider the features not useful. Thus, we repeat
the same classification process but add one feature
group at a time (Tabel 3). Z score seems to give
gain of 1.91%, LDA topics gain is 0.66%, semantic
role labeling 0.64%, brown clusters 3.38% and
sentiment lexicons 6.58%. The most influential
features is also the sentiment lexicon features.
Brown cluster features obtains an interesting gain
of 3.38%. From the previous two analysis, we
find that sentiment lexicon features are the most
influential ones as concluded by (S. M. Mohammad
et al., 2013). Some features have improved the
performance in test set 2015 but not in the other test
sets such as Z score, Semantic Role Labeling.

Run Test-2015 Test-2014 Test-2013
All features 64.27 71.54 71.34
all-zscore 63.82 73.05 69.99
all-lexicons 60.96 67.6 66.63
all-ngram 63.99 69.06 69.67
all-srl 65.1 71.81 70.41
all-topics 63.47 71.49 71
all-brown 63.82 70.74 69.9

Table2. The F1 score for each run, All features
run exploits all features while the others remove a
feature group at each run Zscore, lexicons, n-gram,
srl, topics and brown cluster, respectively.

Run Test-2015 Test-2014 Test-2013
bl 57.47 66.71 66.25
bl+lexicon 64.05 70.57 69.31
bl+zscore 59.38 63.47 65.28
bl+brown 60.85 66.71 66.25
bl+topics 58.13 - -
bl+srl 58.13 66.69 63.35

Table3. The F1 score for each run, bl run exploits
the n-gram, negation, twitter dictionary features
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while the other runs add to bl one feature group at
each run, lexicon, Zscore, brown, topics, slr features
have been respectively added.

6 SubTask E: determining strength of
association of Twitter terms with positive
sentiment

This subtask is new in SemEval-2015, the objective
is to provide for each Twitter term a score between
0 and 1 that is indicative of its strength of associa-
tion with positive sentiment. If a word is more pos-
itive than another, then it should have a higher score
than the other. Participants are provided with 200
terms with their scores as a trail data. The test data
includes 1315 terms to rank. The organizers have
chosen Kendall’s Tau correlation coefficient to com-
pare the ranked lists, they have also provided the
scores of Spearman’s Rank Correlation, but partic-
ipating teams will be ranked according to Kendall’s
Tau.

To rank these terms, we have used six different
sentiment lexicons for computing the score for each
twitter term. Four of them are described in sec-
tion 3.2 (manaul lexicons: Bing Liu and MPQA
Subjectivity Lexicon , automatic constructed lexi-
cons: NRC Hashtag and Sentiment140 ) and we
have built two other automatic construction lexi-
cons: the first named PMi-Sem from the training
tweets provided by SemEval-2013 sub-task B Ta-
ble 1, the second named PMI-sentiment140 from the
sentiment140 corpus (Go et al., 2009), we calculated
PMI from the labeled tweets for the two corpus us-
ing the following equation:

PMI(word, positive) = log
p(positive, word)

p(positive).p(word)
(2)

where p(positive,word): The joint probability of the
positive class and the word. p(positive): the proba-
bility of positive class. p(word): the probability of
the word in whole corpus.

6.1 Score computing
If the word exists in a manual constructed lexicon
(two lexicons), a score of 1 is assigned if the word
is positive else -1 if negative. If the word exists in

an automatic constructed lexicon (four lexicons),
the lexicon score of the word is used. For each
lexicon which does not have the word a default
score is assigned, this default score is chosen to be
1/(number of the words in the test set). the final
score is the average score of the previous six scores.

Run Kendall Spearman
all 0.621 0.820
all-BingLiu 0.616 0.816
all-MPQA 0.616 0.815
all-NRC Hashtag 0.510 0.689
all-Sentiment140 0.617 0.813
all-PMI-Sem 0.620 0.822
all-PMI-sentiment140 0.621 0.821

Table4. The results of Twitter term ranking, the
first run all exploits all six lexicons, one lexicon is
removed in the following runs.

The test data set contains 1315 twitter terms.
Our system is ranked second with Kendall 0.004%
less than the first ranked system, but first with
Spearman. Table 4 shows our results with the two
evaluation metrics. We repeat the experiment after
removing one lexicon at each run, we can note that
NRC Hashtag is the most influential lexicon.

7 Conclusion and Future Work

In this paper, we tested the impact of combining sev-
eral groups of features on the sentiment classifica-
tion of tweets. A logistic regression classifier with
weighting schema is used, the sentiment lexicon-
based features seem to get the most influential effect
with the combination.
We have also exploited four existing lexicons and
constructed two other lexicons using PMI metric in
order to rank the twitter terms according to their as-
sociation with positive sentiment.
As the sentiment lexicon-based features have proved
their performance, future work will focus on the au-
tomatic lexicon construction on testing several met-
rics like Z score which we think promising in mea-
suring the association between each term and senti-
ment labels.
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Abstract

This paper describes our participation at tasks
10 (sub-task B, Message Polarity Classifica-
tion) and 11 task (Sentiment Analysis of Fig-
urative Language in Twitter) of Semeval2015.
We describe the Support Vector Machine sys-
tem we used in this competition. We also
present the relevant feature set that we take
into account in our models. Finally, we show
the results we obtained in this competition and
some conclusions.

1 Introduction

Nowadays social media, such as Twitter, produce a
vast amount of information that lead us to new chal-
lenges in Machine Learning (ML) and in Natural
Language Processing (NLP) fields.
Twitter 1 is a micro-blogging service, which accord-
ing to latest statistics, has 284 million active users,
77 % outside the US that generate 500 million tweets
a day in 35 different languages. That means 5,700
tweets per second and they had peaks of activity of
43,000 per second. This numbers justify the great
interest in the automatic processing of this informa-
tion.
The study (Analytics, 2009) estimates that 50.9% of
tweets have some useful information that are capable
of mobilize opinions in Internet and also in the real
world. Therefore, social media users opinions have
great strategic value for different organizations.

Our work is focused on automatically identify the
prevailing sentiment in a tweet using ML and NLP

1About twitter,inc. https://about.twitter.com/company. Ac-
cessed: 30-12-2014.

techniques. We developed a system for determin-
ing the tweets polarity for 10B and 11 tasks at the
SemEval-2015 competition.
The aim of task 10 (subtask B) (Rosenthal et al.,
2015) is to classify tweets among positive, nega-
tive, and neutral polarity. In task 11 (Ghosh et al.,
2015) we had to deal with figurative language, and
we should assign a polarity to each tweet with a
score that vary in the range [-5..5], this score rep-
resents the degree of the sentiment. Due to this last
requirement, we formalized this task as a regression
problem.
Our approach shared some points for solving both
tasks. Preprocessing and feature extraction pro-
cesses from the corpora were similar. We considered
some common problems when we are dealing with
text from social media and in particular from Twit-
ter: short texts, slang, peculiarities of the language
(hashtags, retweets, user mentions, etc.). We rep-
resented features extracted using a bag of n-grams.
We used Support Vector Machine (SVM) formalism
due to the fact to its ability to handle large feature
space and to determine the relevant features.
Task 10B has been considered as a classification
problem and it has been modeled by means of SVM
classifiers. For Task 11 we used regression SVM,
due to the granularity of the scores.
Both tasks were solved using a supervised tech-
nique. Our systems learned from the training set
supplied by the Semeval organization. We also used
external resources such as polarity dictionaries.
The rest of this paper is organized as follows. In
section 2, we briefly present some relevant works
related to these tasks. In section 3, we describe
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the main features of the used corpora. In section 4,
we present the system we developed to solve these
tasks. Section 5 is dedicated to show the results of
our experimental work and the results we obtained
for the SemEval tasks. Finally, in section 6, we will
share some conclusions from our work and possible
future directions.

2 Related Work

Sentiment Analysis has been widely studied in the
last decade in multiple domains. Most work focuses
on classifying the polarity of the texts as positive,
negative, mixed, or neutral. The pioneering works
in this field used supervised (Pang et al., 2002) or
unsupervised (knowledge-based) (Turney, 2002) ap-
proaches. In (Pang et al., 2002), the performance of
different classifiers on movie reviews was evaluated.
In (Turney, 2002), some patterns containing POS in-
formation were used to identify subjective sentences
in reviews to then estimate their semantic orienta-
tion.
In (Pang and Lee, 2008) we can find a comprehen-
sive study of the different techniques used to identify
the polarity of a text.
Many efforts have been made to transfer this knowl-
edge to language extracted from social media. In
the literature we can find recent attempts to solve
this problem using different machine learning ap-
proaches such as, SVM, Maximum Entropy, Naive
Bayes, etc, (Barbosa and Feng, 2010; O’Connor
et al., 2010a; Zhu et al., 2014). At best, these works
achieve F1-score close to 70%, therefore we still
could improve these proposed systems.
The construction of polarity lexicons is another
widely explored field of research. Opinion lexicons
have been obtained for English (Liu et al., 2005;
Wilson et al., 2005) and also for Spanish (Perez-
Rosas et al., 2012). A good presentation of the SA
problem and a description of the state-of-the-art of
the more relevant approaches to SA can be found in
(Liu, 2012).

Research works about SA on Twitter are much
more recent. Twitter appeared in the year 2006
and the early works in this field are from 2009
when Twitter started to achieve popularity. Some of
the most significant works are (Barbosa and Feng,
2010), (Jansen et al., 2009), and (O’Connor et al.,

2010b). A survey of the most relevant approaches to
SA on Twitter can be see in (Vinodhini and Chan-
drasekaran, 2012). The SemEval competition has
also dedicated specific tasks for SA on Twitter (Wil-
son et al., 2013; Rosenthal et al., 2014a,b) which
shows the great interest of the scientific community
in this field.
TASS workshop has proposed different tasks for
SA focused on the Spanish language (Villena-
Román and Garcı́a-Morera, 2013) and (Villena-
Román et al., 2014). In this paper, we have included
some ideas that we have used in previous works in
the context of some SA tasks at TASS competition
for Spanish (Pla and Hurtado, 2013, 2014b,a)

3 Corpus Description

In the following section, we describe the main fea-
tures of SemEval2015 corpora used in 10B and 11
tasks, respectively.

3.1 Task 10 B

The corpora supplied by the Semeval2015 organiza-
tion is composed by 7,236 tweets for training, 1,242
tweets for tuning (development set) and 2,880 tweets
for test-time development composed by part of the
Semeval2013 corpora used in that edition (Nakov
et al., 2013). The test corpora has an official test with
2,390 tweets and a progress test with 8,987 tweets.

Figure 1 plots the polarity distribution over these
train, tuning and test-time development corpora.
On average, 16.53% of the tweets are negatives,
45.75% are neutrals and 37.72% are positives.
Vocabulary from training corpus has 25,973 words,
development corpus has 6,700 words and test-time
development corpus has 13,672 words after we
deleted the stop-words. We found that 57.57% of
the words from test-time development were never
seen in training.

We studied the Zipf’s distribution of the words
from train, tune and test-time development corpora
and we find out that words with less number of
synsets, less ambiguity, appear with more frequency.
We used this information in the normalization of the
SentiWordNet Lexicon.
Since we used lexicons as a features for training our
systems, it is important to know the percentage of
words from corpus which appear in these lexicons.
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Figure 1: Polarity distribution studied over train, tune
(dev) and test-time development corpora in Task 10.

Table 1 highlights how less than 10 % of the
vocabulary from the corpus can be found in the
lexicons; with the exception of the lexicons NRC
and SentiWordNet (Baccianella et al., 2010) but
in this lexicon we have to deal with the semantic
ambiguity of the words.

Lexicon Train Test
Afinn 3.14 % 3.85 %
Pattern 4.28 % 5.21 %
SentiWordNet 45.21 % 51.26 %
Jeffrey 4.01 % 4.56 %
NRC 29.42 % 33.26 %

Table 1: Percentage of words from task 10’s corpora with
polarity using different lexicons in Task 10.

It is noteworthy that only 19.98% of training
tweets and 20.31% of tweets from the test-time
development set have hashtags. Users tag the
content of their tweets with hashtags, consequently
its meaning may be relevant when we try to classify
a tweet. However hashtags often have multiple
words together and segmentation of these words it
is a problem in itself.

3.2 Task 11
The Task 11 corpus is similar to previous one, but its
main feature is that it contains figurative language
such as irony and affective metaphor. This kind of
language will increase the complexity of the task.
Also this task requires a much more fine grained po-
larity identification. Two corpora were provided to
address this task.

• A trial corpus with 1,000 figurative tweets an-

notated. We were able to retrieve 925 tweets
–86.6 % from total–.

• A train corpus with 8,000 tweets, of these we
recover 6,928 tweets – 92.5 % from total–.

Trial and a train corpus share some tweets. We
had 7,135 unique tweets to train and tune our sys-
tems. The corpus has 22,227 words without stop
words.

Figure 2: Polarity distribution in the development corpora
in Task 11.

Table 2 shows the percentage of words from task
11 corpus we could find in the lexicons. Just like
vocabulary from task 10, a small percentage of the
vocabulary will have a polarity score.

Lexicon Corpus
Afinn 5.75 %
Pattern 5.69 %
SentiWordNet 43.23 %
Jeffrey 5.64 %
NRC 38.09 %

Table 2: Percentage of words from task 11’s corpora with
polarity using different lexicons in Task 11.

As expected, the corpora for this task has a lot
of figurative language. If we assume that Twitter’s
users tag semantically its tweets using hashtags and
tags as #irony or #sarcasm indicates the presence of
figurative text then at least 46.22 % of the corpus has
figurative text. This was the only knowledge we add
to deal with task 11 differently from the knowledge
used in task 10. Finally, a remarkable 85.58% of
tweets have at least one hashtag. Therefore these
features will be relevant in our classification system.

4 Our System

In this section we describe the main features of the
system developed for SemEval tasks We determined

576



the baseline for both tasks by selecting the most
probable class in the training set. In task 10B we
got a 26.49% of F1-score, a 43.61% of precision,
and a 43.61 % of recall. In task 11 we got a 19.53%
of F1-score, a 36.51 % of precision and a 36.51% of
recall.
After studying the corpus, we train and tune differ-
ent classifiers using features extracted from the text
and from the lexicons. We did a 10-cross validation
to tune the SVM models.

4.1 Feature Extraction
We selected the best set of features in order to solve
each task. The best features considered were:

N-grams We used a bag-of-words approach to
represent each tweet as a feature vector that con-
tains the tf-idf factors of the selected features of the
training set. After tokenizing the tweet and deleting
its stop words we extract n-grams of characters. We
have two approaches: we got all n-grams joining
words or just n-grams within words. In task 10 we
used 1-grams to 6-grams and we vectorized them
using tf-idf coefficients. In task 11 we used the
same approach but we used 3-grams to 9-grams.

Negation We need to deal with negation to
predict polarity correctly. Thus, we label every
word in a negation context. We assume that a
negation context begins with a negation word as:
“never”, “no”, “nothing”, “none”, . . . , and ends
with a punctuation mark, following the approach of
(Pang et al., 2002). We used this strategy only in
task 10. After labeling negation context, our system
extracted the n-grams from labeled tweets.

Lexicons In order to use lexicons, tweets are tok-
enized, cleaned the stop words and all the tokens are
converted to lowercase. We applied five lexicons.

1. Pattern (De Smedt and Daelemans, 2012):
Given a tweet this lexicon will return a score
with the polarity and another one with the ob-
jectivity.

2. Afinn-111 (Hansen et al., 2011): This lexicon
has a set of words tagged with a score. We sum
the polarity of every word in a tweet to get a
score for the whole tweet.

∑
w∈W Afinn(w)

3. Jeffrey (Hu and Liu, 2004): This lexicon has
two sets of words: a positive and a negative
word set. We got two scores from this lexicon.
First score is the count of positive words and
the second one is the count of negative words.∑

w∈W Jeffrey(w)

4. NRC (Mohammad et al., 2013): Likewise, we
obtain a score for each tweet adding the polar-
ity of each word from this lexicon. Also we
return a score normalized by the length of the
tweet. 1

|W |
∑

w∈W NRC(w)

5. SentiWordNet (Baccianella et al., 2010): In
this lexicon each word could belong to mul-
tiple sets of meaning (Synsets S), therefore
we normalize the score of a word by its
number of meanings. This lexicon provides
three scores for: positive, negative and objec-
tive words, and we used these three scores.∑

w∈W
1
|S|
∑

s∈S SentiWordNet(w, s)

Features from Twitter: We count the number
of hashtags, retweets, mentions and URLs for each
tweet.
Some hashtags like: #irony, #sarcasm o #not,. . . are
useful in order to identify the presence of figurative
text in a tweet. We count the number of these
hashtags as a feature.

Encoding We consider number of capitalized
words and the number of words with elongated
characters.

Obviously we tried different set of features like:
POS tags, word n-grams, binary bag of words,
. . . also we tried different combinations of features
in order to optimize the system.

4.2 Clasification
We classified tweets using a SVM approach. In task
10B we used a linear kernel for classification and in
task 11 we also used a linear kernel for regression.
Feature selection process was performed in task
10 using the development corpus and in task 11
using a cross-validation technique (10-fold cross
validation) on training set. We selected the set of
features that optimized the accuracy of the system

577



on the development set.
We used scikit-lean toolkit (Pedregosa et al., 2011),
and we developed a framework to define functional
classification models. These models included:
preprocess, mining, vectorization features, and
classification functions. This framework receive 1
to N models. A tweet is classified using the most
voted category or using the mean of predictions if
we are doing regression.

5 Experiments

We tested a set of configurations in order to obtain
a competitive classifier. In this section, we present
only the systems which achieved best performance
in development time. We submitted only the best
system to the SemEval 2015 competition.

5.1 Task 10B
1. Model 1: We used a linear SVM. The set of

features considered were:

• 1-gram to 6-grams of characters from
tweet.
• 1-gram to 6-grams of characters from

negation labelled tweet.
• Lexicons 1, 2, and 5.
• Features extracted from Twitter

2. Model 2: A linear SVM trained using these
features:

• 1-gram to 6-grams of characters from
negation labelled tweet.
• All lexicons described in section 4.1.
• Features extracted from Twitter

3. Model 3: A linear SVM trained using these set
of features:

• 1-gram to 6-grams of characters from
tweet.
• Lexicons 1, 2, and 5.
• Features extracted from Twitter

4. Model 4: We created three SVMs classifiers.
Each one of them were trained with this set of
features:

• 1-gram to 6-grams of characters from
tweet.
• A lexicon. Each SVM has its own lexicon.

We used lexicons 1, 2, and 5.

Then we used a majority voting system to com-
bine these classifiers.

Table 3 shows the best systems in development
phase. The accuracy is computed globally. Preci-
sion and recall are the average of these metrics for
each class.

accuracy precision recall

Model 1 0.6899 0.7035 0.6942
Model 2 0.7073 0.7201 0.7024
Model 3 0.6989 0.7146 0.7026
Model 4 0.6920 0.7074 0.6190

F1 F1neg F1neu F1pos

Model 1 0.6826 0.5014 0.7303 0.6994
Model 2 0.7013 0.5365 0.7407 0.7209
Model 3 0.6901 0.4802 0.7391 0.7162
Model 4 0.6816 0.4759 0.7307 0.7060

Table 3: Performance in development phase from our best
systems in Task 10B.

For the competition we submitted the model
2 which achieved the best performance in the
development phase. Table 4 shows evaluation
performance. Forty teams participated in this task.
In the official rank our system achieved the 24th
position and the 35th position in the progress test.

5.2 Task 11
Our best model for this task was trained using these
features:

• 3-grams to 9-grams of characters from tweet.

• Lexicons 1, 2, and 5.

• Features extracted from Twitter including the
number of figurative hashtags.

We selected this set of features by cross validation.
We tuned our system using the official measure, the
cosine distance.
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F1 Rank Best Worst
Official Test Twitter 2015 58.58 24 64.84 24.80

LiveJournal 2014 68.33 28 75.34 34.06
SMS 2013 60.20 28 68.49 26.14

Progress Test Twitter 2013 57.05 32 93.62 32.14
Twitter 2014 61.17 35 74.42 32.2

Twitter 2014 sarcasm 45.98 24 59.11 35.58

Table 4: Evaluation results in Task 10B.

Cosine Rank Best Worst
Overall 0.6579 5 0.758 0.059
Sarcasm 0.904 1 0.904 0.412

Irony 0.905 4 0.918 -0.209
Metaphor 0.411 5 0.655 -0.023

Other 0.247 8 0.584 -0.025

Table 5: Official evaluation results in Task 11.

MSE Rank Best Worst
Overall 3.096 8 2.117 6.785
Sarcasm 1.349 9 0.934 4.375

Irony 1.034 8 0.671 7.609
Metaphor 4.565 4 3.155 9.219

Other 5.235 5 3.411 12.16

Table 6: MSE evaluation results in Task 11.

Table 5 shows the official results of our system in
task 11. We achieved the 5th position in the rank.
Our system obtained the first position in detecting
sarcasm. We achieved a 0.918 of cosine similarity
measure. For non figurative language, our system
performed worse, obtaining the 8th position in the
rank. We think this is due to the fact that training
corpus lacks of non-figurative tweets, therefore our
system was not able to learn this class properly.

Mean square error metric (MSE) was also con-
sidered by Task 11 organizers. Table 6 shows the
results achieved using this metric. We obtained
worse results because we didn’t tune the system for
this metric.

6 Conclusions

We have presented a system for 10B and 11 tasks
at SemEval 2015. We used a machine learning

approach based on SVM formalism for both tasks.
We handled both tasks uniformly with regard to the
preprocesing, feature extraction and feature repre-
sentation. We have not included any knowledge
about the tasks, except from resources used, that is,
corpora and dictionaries. In this respect, our system
will be easy to adapt to other SA tasks and other
languages with this kinds of resources.

Even we did not include any external knowledge
we plan to study the impact of including external
resources to improve our system. Moreover, we also
find interesting to extend existing corpora based
on Twitter in order to increase the accuracy of the
machine learning system.
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Abstract

We reproduce four Twitter sentiment classi-
fication approaches that participated in pre-
vious SemEval editions with diverse feature
sets. The reproduced approaches are com-
bined in an ensemble, averaging the individ-
ual classifiers’ confidence scores for the three
classes (positive, neutral, negative) and decid-
ing sentiment polarity based on these aver-
ages. The experimental evaluation on Sem-
Eval data shows our re-implementations to
slightly outperform their respective originals.
Moreover, not too surprisingly, the ensem-
ble of the reproduced approaches serves as a
strong baseline in the current edition where it
is top-ranked on the 2015 test set.

1 Introduction

We reproduce four state-of-the-art approaches to
classifying the sentiment expressed in a given tweet,
and combine the four approaches to an ensem-
ble based on the individual classifiers’ confidence
scores. In particular, we focus on subtask B of Sem-
Eval 2015’s task 10 “Sentiment Analysis in Twitter,”
where the goal is to classify the whole tweet as either
positive, neutral, or negative. Since the notebook
descriptions accompanying submissions to shared
tasks are understandably very terse, it is often a chal-
lenge to reproduce the results reported. Therefore,
we attempt to reproduce the state-of-the-art Twitter
sentiment detection algorithms that have been sub-
mitted to the aforementioned task in its previous two
editions. Furthermore, we combine the reproduced
classifiers in an ensemble. Since the individual ap-
proaches employ diverse feature sets, the goal of the
ensemble is to combine their individual strengths.

The paper at hand is a slight extension of the ap-
proach from our ECIR 2015 reproducibility track
paper (Hagen et al., 2015) such that also text pas-
sages are reused. In our ECIR paper, we showed that
three selected approaches participating in the Sem-
Eval 2013 Twitter sentiment task 2 could be repro-
duced from the papers accompanying the individual
approaches. Adding the best participant of the re-
spective SemEval 2014 task 9 is shown to form a
very strong baseline that was not outperformed by
the SemEval 2015 participants on the 2015 test data
and that also places in the top-10 in the progress test.

In Section 2 we briefly describe some related
work while in Section 3 we provide more details on
the four individual approaches as well as our ensem-
ble scheme. Some concluding remarks and an out-
look on future work close the paper in Section 4.
An experimental evaluation of our approach and an
in-depth comparison to the other participants is not
included in this paper since it can be found in the
task overview (Rosenthal et al., 2015).

2 Related Work

Sentiment detection is a classic problem of text clas-
sification. Unlike other text classification tasks, the
goal is not to identify topics, entities, or authors of a
text but to rate the expressed sentiment as positive,
negative, or neutral. Most approaches used for sen-
timent detection usually involve methods from ma-
chine learning, computational linguistics, and statis-
tics. Typically, several approaches from these fields
are combined for sentiment detection (Pang et al.,
2002; Turney, 2002; Feldman, 2013).

Since Twitter is one of the richest sources of opin-
ion, a lot of different approaches to sentiment de-
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tection in tweets have been proposed. Different
approaches use different feature sets ranging from
standard word polarity expressions or unigram fea-
tures also applied in general sentiment detection (Go
et al., 2009; Kouloumpis et al., 2011), to the usage
of emoticons and uppercases (Barbosa and Feng,
2010), word lengthening (Brody and Diakopoulos,
2011), phonetic features (Ermakov and Ermakova,
2013), multi-lingual machine translation (Balahur
and Turchi, 2013), or word embeddings (Tang et al.,
2014). The task usually is to detect the sentiment
expressed in a tweet as a whole (also focus of this
paper). But it can also be used to identify the senti-
ment in a tweet with respect to a given target concept
expressed in a query (Jiang et al., 2011). The differ-
ence is that a generally negative tweet might not say
anything about the target concept and must thus be
considered neutral with respect to the target concept.

Both tasks, namely sentiment detection in a tweet,
and sentiment detection with respect to a specific tar-
get concept, are part of the SemEval sentiment anal-
ysis tasks since 2013 (Nakov et al., 2013; Rosenthal
et al., 2014). SemEval fosters research on sentiment
detection for short texts in particular, and gathers the
best-performing approaches in a friendly competi-
tion. The problem we are dealing with is formulated
as subtask B: given a tweet, decide whether its mes-
sage is positive, negative, or neutral.

State-of-the-art approaches have been submitted
to the SemEval tasks. However, up to now, no one
had trained a meta-classifier based on the submitted
approaches to determine what can be achieved when
combining them, whereas each participating team
only trains their individual classifier using respec-
tive individual feature sets. Our idea is to combine
four of the best-performing approaches from the last
years with different feature sets, and to form an en-
semble classifier that leverages the individual classi-
fiers’ strengths forming a strong baseline.

Ensemble learning is a classic approach of com-
bining several classifiers to a more powerful en-
semble (Opitz and Maclin, 1999; Polikar, 2006;
Rokach, 2010). The classic approaches of Bag-
ging (Breiman, 1996) and Boosting (Schapire, 1990;
Freund and Schapire, 1996) try to either combine the
outputs of different classifiers trained on different
random instances of the training set or on training

the classifiers on instances that were misclassified
by the other classifiers. Both rather work on the final
predictions of the classifiers just as for instance av-
eraging or majority voting on the predictions (Asker
and Maclin, 1997) would do. In our case, we employ
the confidence scores of the participating classifiers.
Several papers describe different ways of working
with the classifiers’ confidence scores, such as learn-
ing a dynamic confidence weighting scheme (Fung
et al., 2006), or deriving a set cover with averaging
confidences (Rokach et al., 2014). Instead, we sim-
ply average the three confidence scores of the three
classifiers for each individual class. This straight-
forward approach performs superior to its individ-
ual parts and performs competitive in the SemEval
competitions. Thus, its sentiment detection results
can be directly used in any of the above use cases
for Twitter sentiment detection.

3 Individual Approaches and Ensemble

For our ECIR 2015 reproducibility paper (Hagen
et al., 2015), we originally selected three state-of-
the-art approaches for Twitter sentiment detection
among the 38 participants of SemEval 2013. To
identify worthy candidates—and to satisfy the claim
“state of the art”—we picked the top-ranked ap-
proach by team NRC-Canada (Mohammad et al.,
2013). However, instead of simply picking the ap-
proaches on ranks two and three to complete our set,
we first analyzed the notebooks of the top-ranked
teams in order to identify approaches that are signif-
icantly dissimilar from NRC-Canada. We decided
to handpick approaches this way so they comple-
ment each other in an ensemble. As a second can-
didate, we picked team GU-MLT-LT (Günther and
Furrer, 2013) since it uses some other features and
a different sentiment lexicon. As a third candidate,
we picked team KLUE (Proisl et al., 2013), which
was ranked fifth. We discarded the third-ranked
approach as it is using a large set of not publicly
available rules probably hindering reproducibility,
whereas the fourth-ranked system seemed too sim-
ilar to NRC and GU-MLT-LT to add something new
to the planned ensemble. Finally, for participation
in SemEval 2015, we also included TeamX (Miura
et al., 2014) as the 2014 top-performing approach
resulting in an ensemble of four.
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Note that due to the selection process, reproduc-
ing the four approaches does not deteriorate into
reimplementing the feature set of one approach and
reusing it for the other two. Moreover, combin-
ing the four approaches into an ensemble classifier
actually makes sense, since, due to the feature set
diversity, they tap sufficiently different information
sources. In what follows, we first briefly recap the
features used by the individual classifiers and then
explain our ensemble strategy.

3.1 NRC-Canada

Team NRC-Canada (Mohammad et al., 2013) used
a classifier with a wide range of features. A tweet
is first preprocessed by replacing URLs and user
names by some placeholder. The tweets are then to-
kenized and POS-tagged. An SVM with linear ker-
nel is trained using the following feature set.

N -grams The occurrence of word 1- to 4-grams
as well as occurrences of pairs of non-consecutive
words where the intermediate words are replaced by
a placeholder. No term-weighting like tf ·idf is used.
Similarly for occurrence of character 3- to 5-grams.

ALLCAPS Number of all-capitalized words.

Parts of speech Occurrence of part-of-speech tags.

Polarity dictionaries In total, five polarity dictio-
naries are used. Three of these were manually cre-
ated: the NRC Emotion Lexicon (Mohammad and
Turney, 2010; Mohammad and Turney, 2013) with
14,000 words, the MPQA Lexicon (Wilson et al.,
2005) with 8,000 words, and the Bing Liu Lexi-
con (Hu and Liu, 2004) with 6,800 words. Two
other dictionaries were created automatically. For
the first one, the idea is that several hash tags can
express sentiment (e.g., #good). Team NRC crawled
775,000 tweets from April to December 2012 that
contain at least one of 32 positive or 38 negative
hash tags that were manually created (e.g., #good
and #bad). For word 1-grams and word 2-grams in
the tweets, PMI-scores were calculated for each of
the 70 hash tags to yield a score for the n-grams
(i.e., the ones with higher positive hash tag PMI are
positive, the others negative). The resulting dictio-
nary contains 54,129 unigrams, 316,531 bigrams,
and 308,808 pairs of non-consecutive words. The
second automatically created dictionary is not based

on PMI for hash tags but for emoticons. It was cre-
ated in a similar way as the hash tag dictionary and
contains 62,468 unigrams, 677,698 bigrams, and
480,010 pairs of non-consecutive words.

For each entry of the five dictionaries, the dictio-
nary score is either positive, negative, or zero. For
a tweet and each individual dictionary, several fea-
tures are computed: the number of dictionary entries
with a positive score and the number of entries with
a negative score, the sum of the positive scores and
the sum of the negative scores of the tweet’s dictio-
nary entries, the maximum positive score and mini-
mum negative score of the tweet’s dictionary entries,
and the last positive score and negative score.

Punctuation marks The number of non-single
punctuation marks (e.g., !! or ?!) is used as a fea-
ture and whether the last one is an exclamation or a
question mark.

Emoticons The emoticons contained in a tweet,
their polarity, and whether the last token of a tweet
is an emoticon are employed features.

Word lengthening The number of words that are
lengthened by repeating a letter more than twice
(e.g., cooooolll) is a feature.

Clustering Via unsupervised Brown cluster-
ing (Brown et al., 1992) a set of 56,345,753 tweets
by Owoputi (Owoputi et al., 2013) clustered into
1,000 clusters. The IDs of the clusters in which the
terms of a tweet occur are also used as features.

Negation The number of negated segments is a
feature. A negated segment starts with a nega-
tion (e.g., shouldn’t) and ends with a punctuation
mark (Pang et al., 2002). Every token in a negated
segment (words, emoticons) gets a suffix NEG at-
tached (e.g., perfect_NEG).

3.2 GU-MLT-LT

Team GU-MLT-LT (Günther and Furrer, 2013) was
ranked second in SemEval 2013. They train a
stochastic gradient decent classifier on a much
smaller feature set compared to NRC. The follow-
ing feature set is computed for tokenized versions
of the original raw tweet, a lowercased normalized
version of the tweet, and a version of the lower-
cased tweet where consecutive identical letters are
collapsed (e.g., helllo gets hello).
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Normalized unigrams The occurrence of the nor-
malized word unigrams is one feature set. No term
weighting like for instance tf ·idf is used.

Stems Porter stemming (Porter, 1980) is used to
identify the occurrence of the stems of the collapsed
word unigrams as another feature set. Again, no
term weighting is applied.

Clustering Similar to NRC, the cluster IDs of the
raw, normalized, and collapsed tokens are features.

Polarity dictionary The SentiWordNet assess-
ments (Baccianella et al., 2010) of the individual
collapsed tokens and the sum of all tokens’ scores
in a tweet are further features.

Negation Normalized tokens and stems are added
as negated features similar to NRC.

3.3 KLUE

Team KLUE (Proisl et al., 2013) was ranked fifth in
the SemEval 2013 ranking. Similarly to NRC, team
KLUE first replaces URLs and user names by some
placeholder and tokenizes the lowercased tweets. A
maximum entropy-based classifier is trained on the
following features.

N -grams Word unigrams and bigrams are used as
features but in contrast to NRC and GU-MLT-LT not
just by occurrence but frequency-weighted. Due to
the short tweet length this however often boils down
to a simple occurrence feature. To be part of the
feature set, an n-gram has to be contained in at least
five tweets. This excludes some rather obscure and
rare terms or misspellings.

Length The number of tokens in a tweet (i.e., its
length) is used as a feature. Interestingly, NRC and
GU-MLT-LT do not explicitly use this feature.

Polarity dictionary The employed dictionary is
the AFINN-111 lexicon (Nielsen, 2011) containing
2,447 words with assessments from −5 (very nega-
tive) to +5 (very positive). Team KLUE added an-
other 343 words. Employed features are the number
of positive tokens in a tweet, the number of negative
tokens, the number of tokens with a dictionary score,
and the arithmetic mean of the scores in a tweet.

Emoticons and abbreviations A list of
212 emoticons and 95 colloquial abbreviations
from Wikipedia was manually scored as positive,
negative, or neutral. For a tweet, again the number

of positive and negative tokens from this list, the
total number of scored tokens, and the arithmetic
mean are used as features.

Negation Negation is not treated for the whole
segment as NRC and GU-MLT-LT do but only on
the next three tokens except the case that the punc-
tuation comes earlier. Only negated word unigrams
are used as an additional feature set. The polarity
scores from the above dictionary are multiplied by
−1 for terms up to 4 tokens after the negation.

3.4 TeamX

TeamX (Miura et al., 2014) was ranked first in the
SemEval 2014 ranking. The approach was inspired
by NRC Canada’s 2013 method but uses fewer fea-
tures and more polarity dictionaries—some differ-
ences are outlined below. Although it is very close
to NRC Canada, some differences exist that jus-
tify TeamX’s selection for our ensemble—besides
its good performance in SemEval 2014.

Parts of speech Two different POS taggers are
used: the Stanford POS tagger’s tags are used
for the polarity dictionaries based on formal lan-
guage and for word sense disambiguation while
the CMU ARK POS tagger is used for the polar-
ity dictionaries containing more informal expres-
sions, n-grams and the cluster features. Since the
CMU ARK tagger was explicitly developed for han-
dling tweets, it is better suited for the informal lan-
guage often used in tweets while the Stanford tagger
better addresses the needs of the formal dictionaries.

N -grams Word uni- up to 4-grams (consecutive
words but also with gaps) and consecutive character
3- up to 5-grams are used as features similar to NRC.

Polarity dictionaries TeamX uses all the dictio-
naries of NRC, GU-ML-LT, and KLUE except for
the NRC emoticon dictionary. Additionally, also
SentiWordNet is used.

3.5 Remarks on Reimplementing

As was to be expected, it turned out to be impossible
to re-implement all features precisely as the origi-
nal authors did. Either not all data were publicly
available, or the features themselves were not suffi-
ciently explained in the notebooks. We deliberated
to contact the original authors to give them a chance
to supply missing data as well as to elaborate on
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missing information. However, we ultimately opted
against doing so for the following reason: our goal
was to reproduce their results, not to repeat them.
The difference between reproducibility and repeata-
bility is subtle, yet important. If an approach can be
re-implemented with incomplete information and if
it then achieves a performance within the ballpark of
the original, it can be considered much more robust
than an approach that must be precisely the same
as the original to achieve its expected performance.
The former hints reproducibility, the latter only re-
peatability. This is why we have partly re-invented
the approaches on our own, wherever information or
data were missing. In doing so, we sometimes found
ourselves in a situation where departing from the
original approach would yield better performance.
In such cases, we decided to maximize performance
rather than sticking to the original, since in an eval-
uation setting, it is unfair to not maximize perfor-
mance wherever one can.

In particular, the emoticons and abbreviations
added by the KLUE team were not available, such
that we only choose the AFINN-111 polarity dic-
tionary and re-implemented an emoticon detec-
tion and manual polarity scoring ourselves. We
also chose not to use the frequency information
in the KLUE system but only Boolean occurrence
like NRC and GU-MLT-LT, since pilot studies on
the SemEval 2013 training and development sets
showed that to perform much better. For all three
approaches, we unified tweet normalization regard-
ing lowercasing and completely removing URLs and
user names instead of adding a placeholder. As for
the classifier itself, we did not use the learning al-
gorithms used originally but L2-regularized logis-
tic regression from the LIBLINEAR SVM library
for all three approaches. In our pilot experiments
on the SemEval 2013 training and development set
this showed a very good trade-off between training
time and accuracy. We set the cost parameter to 0.5
for NRC, to 0.15 for GU-MLT-LT, and to 0.05 for
TeamX and KLUE.

Note that most of our design decisions do not
hurt the individual performances but instead im-
prove the accuracy for GU-MLT-LT and KLUE on
the SemEval 2013 test set. Table 1 shows the per-
formance of the original SemEval 2013 and 2014

Table 1: F1-scores of the original and reimplemented
classifiers on the SemEval 2013 and 2014 test data and
performance of the final system on the 2015 test data.

Classifier Original SemEval 2013 Reimplemented

NRC 69.02 69.44
GU-MLT-LT 65.27 67.27
KLUE 63.06 67.05

Original SemEval 2014 Reimplemented
TeamX 72.12 70.09

SemEval 2015 result
Ensemble 64.84 (rank 1 among 40 systems)

rankings and that of our re-implementations based
on the averaged F1-score for the positive and neg-
ative class only (as is done at SemEval). While
the reimplemented NRC performance is slightly bet-
ter, GU-MLT-LT and KLUE are substantially im-
proved. That TeamX lost performance is proba-
bly due to a fact that we only recognized after the
competition: The word sense feature was uninten-
tionally not switched on in the re-implementation
of TeamX. Since for this “handicapped” version
of TeamX (again, we just noticed the reason for
the handicap after the SemEval 2015 deadline) the
weighting scheme of the classification probabilities
proposed for the original approach (Miura et al.,
2014) did decrease the performance, we also did not
use these weights. If we would have noticed our mis-
take before, the performance of the TeamX classifier
would probably have been better.

Altogether, we conclude that reproducing the
SemEval approaches was generally possible but in-
volved some subtleties that sometimes lead to dif-
ficult design decisions. Our resolution is to maxi-
mize performance rather than to dogmatically stick
to the original approach; even though this includes
the error in the TeamX re-implementation that went
through unnoticed until after the deadline.

3.6 Ensemble Combination

In our pilot studies on the SemEval 2013 training
and development sets, we tested several ways of
combining the classifiers to an ensemble method.
One of the main observations was that each in-
dividual approach classifies some tweets correctly
that others fail for. This is not too surprising
given the different feature sets but also supports
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the idea of using an ensemble to combine the in-
dividual strengths. Although we briefly tried dif-
ferent ways of bagging and boosting the three clas-
sifiers, it soon turned out that some simpler com-
bination performs better. A problem, for instance,
was that some misclassified tweets are very dif-
ficult (e.g., the positive Cant wait for the UCLA

midnight madness tomorrow night). Since often
at least two classifiers fail on a hard tweet, this rules
out some basic combination schemes, such as the
majority vote which turned out to perform worse on
the SemEval 2013 development set than NRC alone.

The solution that we finally came up with is moti-
vated by observing how the classifiers trained on the
SemEval 2013 training set behave for tweets in the
development set. Typically, not the four final deci-
sions but the respective confidences or probabilities
of the individual classifiers give a good hint on un-
certainties. If two are not really sure about the final
classification, sometimes the remaining ones favor
another class with high confidence. Thus, instead
of looking at the classifications, we decided to use
the confidence scores or probabilities to build the
ensemble. This approach is also motivated by old
and also more recent research on ensemble learn-
ing (Asker and Maclin, 1997; Fung et al., 2006;
Rokach et al., 2014). But instead of learning a
weighting scheme for the different individual clas-
sifiers, we decided to simply compute the average
probability of the four classifiers for each of the
three classes (positive, negative, neutral).

Our ensemble thus works as follows. The
four individual re-implementations of the TeamX,
the NRC, the GU-MLT-LT, and the KLUE classi-
fier are individually trained on the SemEval 2013
training and development set as if being applied
individually—without boosting or bagging. As
for the classification of a tweet, the ensemble ig-
nores the individual classifiers’ classification deci-
sions but requests the classifiers’ probabilities (or
confidences) for each class. The ensemble deci-
sion then chooses the class with the highest average
probability—again, no sophisticated techniques like
dynamic confidence weighting (Fung et al., 2006)
or set covering schemes (Rokach et al., 2014) are in-
volved. Thus, our final ensemble method is a rather
straightforward system based on averaging confi-

dences instead of voting schemes on the actual clas-
sifications of the individual classifiers. It can be eas-
ily implemented on top of the four classifiers and
thus incurs no additional overhead. It also proves
a very strong baseline in the SemEval 2015 evalu-
ation. This is not really surprising since typically
ensembles of good and diverse approaches should
achieve better performances. Our code for the four
reproduced approaches as well as that of the ensem-
ble is publicly available.1

4 Conclusion and Outlook

We have reproduced four state-of-the-art approaches
to sentiment detection for Twitter tweets. Our find-
ings include that not all aspects of the approaches
could be reproduced precisely, but that missing
data, missing information, as well as opportuni-
ties to improve the approaches’ performances lead
us to re-invent them and to depart to some ex-
tent from the original descriptions. Most of our
changes have improved the performances of the
original approaches (except the erroneously and un-
intentionally switched off word sense feature of
TeamX). Moreover, we have demonstrated that the
approaches can be reproduced even with incomplete
information about them, which is a much stronger
property than being merely repeatable.

In addition, we investigated a combination of con-
fidence scores of the four approaches within an en-
semble that altogether yields a top-performing Twit-
ter sentiment detection system forming a very strong
baseline. The ensemble computation is as efficient
as its components, and its effectiveness can be seen
from the top rank on the SemEval 2015 test set and
the top-10 ranking in the progress test involving the
previous years’ test data.

Promising directions for future research are an ex-
tensive error analysis and the identification of further
classifiers potentially strengthening the ensemble.
Following our philosophy of selecting approaches
that are significantly different from each other, it will
be interesting to observe how much new approaches
can improve the existing ensemble.

1http://www.uni-weimar.de/medien/webis/
publications/by-year/#stein_2015d
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Abstract

Like SemEval 2013 and 2014, the task Sen-
timent Analysis in Twitter found a place in
this year’s SemEval too and attracted an un-
precedented number of participations. This
task comprises of four sub-tasks. We partici-
pated in subtask 2 — Message polarity classi-
fication. Although we lie a few notches down
from the top system, we present a very simple
yet effective approach to handle this problem
that can be implemented in a single day!

1 Introduction

Social media not only acts as a proxy for the real
world society, it also offers a treasure trove of data
for different types of analyses like Trend Analysis,
Event Detection and Sentiment Analysis, to name
a few. SemEval 2015 Task 10 subtask B (Rosen-
thal et al., 2015) specifically deals with the task of
Sentiment Analysis in Twitter. Sentiment Analy-
sis in social media in general and Twitter in par-
ticular has a wide range of applications — Compa-
nies/services can gauge the public sentiment towards
the new product or service they launched, political
parties can estimate their chances of winning the
upcoming elections by monitoring what people are
saying on Twitter about them, and so on. In spite of
the availability of huge amount of data and the huge
promises they entail, working with social media data
is far more challenging than regular text data. Be-
ing user-generated, the data is noisy; there are mis-
spellings, unreliable capitalization, widespread use

∗The first two authors made equal contribution to this work

of creative acronyms, lack of grammar, and a style
of writing that is very typical of its own which makes
the problem of Sentiment Analysis on Twitter more
challenging. Also, the cues for positive or negative
sentiment in social media text are starkly different,
thereby generating a whole new domain for explo-
ration.

2 Related Work

SemEval 2013 (Nakov et al., 2013) and 2014 tasks
(Rosenthal et al., 2014) on Sentiment Analysis in
Twitter not only contributed to this field by mak-
ing huge amounts of annotated datasets available for
research, but also encouraged researchers to come
up with better solutions for this challenging prob-
lem. There has been numerous initiatives outside
SemEval too. (Pak and Paroubek, 2010) is one of
the early attempts at using Twitter as a corpus for
Sentiment Analysis, which shows how to automat-
ically collect a corpus for the same and performs
linguistic analysis of the collected corpus. (Bakli-
wal et al., 2012) presents a simple sentiment scoring
function which uses prior information to classify and
weight various sentiment bearing words/phrases in
tweets. (Wilson et al., 2005) demontrates an efficient
technique for automatically identifying the contex-
tual polarity for a large subset of sentiment expres-
sions. (Mohammad et al., 2013) and (Kiritchenko et
al., 2014) establishes benchmark in Sentiment Ana-
lyis in Twitter as well as in the field of Aspect Based
Sentiment Analysis by incorporating various inno-
vative linguistic features. (Agarwal et al., 2011)
introduced POS-specific prior polarity features and
(Kouloumpis et al., 2011) explored the use of a tree
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kernel to obviate the need for tedious feature engi-
neering. (Kouloumpis et al., 2011) evaluate the use-
fulness of existing lexical resources as well as fea-
tures that capture information about the informal and
creative language used in microblogging. Recent
publication from (Socher et al., 2013) has further
raised the bar for Sentiment Analysis in general, but
it is not specifically designed to tackle tweets data.

3 Approach

3.1 Preprocessing

We acquire a list of acronyms and their expanded
forms 1. We use this list as a look-up table and
replace all occurrences of acronyms in our data by
their expanded forms. We normalize all numbers
that find a place in our data by replacing them with
the string ‘0’. We do not remove stop words be-
cause they often contribute heavily towards express-
ing sentiment/emotion. We do not also stem the
words because stemming leads to the loss of the
parts of speech information of the word and makes
the use of lexicons unnecessarily complicated.

3.2 Vocabulary Generation

We assign a unique ID to all words occurring in our
data. All the hashtags we encounter in the data are
hashed to a single string place holder and a single
unique ID is assigned to it, as opposed to differ-
ent Ids for different hashtags. Hashtags are mostly
formed by concatenation of multiple words without
any space in between, and therefore, unless hashtags
are segmented into meaningful chunks, raw hashtags
seldom add any semantics to the sentence. Hence,
we do not distinguish between the different hashtags
and consider them as a single unit. Similarly, we
hash all mentions of the kind @user1 and @user2
to a single string placeholder and assign a single ID
to it. This is because these words prefixed by ‘@’
are all named entities and do not contribute anything
to the semantic meaning or towards the polarity of a
tweet.

1Dowloaded from https://github.com/
TaikerLiang/Twitter/blob/master/Data/
Knowledge\_Database/Slang\%20Dictionary/a.

3.3 Feature Engineering
The task required us to classify a tweet into positive,
negative and neutral polarity categories. This can
essentially be treated as a 2-step process

• Classify each tweet into subjective (posi-
tive/negative) and objective(neutral) classes.

• Classify subjective tweets into positive and
negative ones.

We keep this philosophy in mind, but do not ex-
plicitly model the problem as two sub-problems.
We treat them as a single step, but we select fea-
tures such that some of the features are best suited
for distinguishing between subjective and objective
classes, while some others are engineered to be able
to tell a positive tweet from a negative one. The
problem with treating the problem as a pipeline of
two steps is that we would have to deal with the
propagation of errors from one step to the other. If
a subjective tweet is mis-classified as an objective
one, we rob that tweet of its opportunity of being
classified any further in the next step and immedi-
ately label them as neutral. This might be detri-
mental in cases where certain features lead us to be-
lieve a tweet is objective, while a combination of all
features might rightly lean them towards positive or
negative polarities. We take aid from both extrin-
sic features like emoticons and grapheme stretching
as well as intrinsic ones like unigrams and so on.
Following is the list of features we employ and also
their underlying motivation:

• Unigrams — For each word in a tweet, we look
up the vocabulary we generated in the previous
step. If the word is present in the vocabulary,
we determine its position in the feature vector
from the unique ID assigned to it and put 1 in
its position. All other positions are 0 by default.
Unigram features contribute to understanding
both the distinction between subjective and ob-
jective tweets as well as between positive and
negative tweets.

• Number of hashtags — Inspection of the data
lead us to believe that the more the number of
hashtags in the tweets, the more the author’s
involvement with it and hence more the subjec-
tivity.
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• Presence of URLs — A factual tweet is often
accompanied by a URL as a proof of its valid-
ity or for more enthusiastic of the author’s fol-
lowers to go and explore the news/fact further.
Hence, presence of URLs is likely to indicate
that the sentence is objective/neutral.

For example- “Jose Iglesias / Igleisas started
at shortstop Wednesday night for the second
http://t.co/Gkpx9Blu” and “Today In History
November 02, 1958 Elvis gave a party at his
hotel before going out on maneuvers. He sang
and... http://t.co/Za9bLTcE”

• Presence of exclamation marks — From our
observation, a subjective tweet is much more
likely to be ended by exclamation marks than a
purely factual or objective tweet. Further, posi-
tive tweets are more prone to contain exclama-
tion than negative ones.

• Presence of question marks and wh-words —
Tweets containing question marks or wh-words
like “why” and “where” are seldom objective.
Statistics tells us that this feature can act as a
strong cue for not only subjectivity, but also of
negativity.

• Number of positive/negative emoticons — An
emoticon is a representation of a facial ex-
pression such as a smile or frown, formed
by various combinations of keyboard charac-
ters and used heavily in tweets to convey the
writer’s feelings or intended tone. Quite intu-
itively, positive emoticons accompany positive
tweets and negative emotions juxtapose nega-
tive tweets. More the number of emoticons, it
leans with more confidence towards the corre-
sponding polarity. However, a lot of sarcastic
tweets also contain positive emoticons, but we
do not explicitly handle sarcasm and hence ig-
nore such possibility.

• Number of named entities — Just like URLs,
named entities act as another indication for
factual and hence neutral sentences. For ex-
ample, “Remember this? Santorum: Rom-
ney, Obama healthcare mandates one and the
same http://t.co/sIoG48TO #TheRealRomney
@userX @userY”. We extract named entities

using a python wrapper for the Stanford NER
tool (Finkel et al., 2005). However, ablation
experiments done after the submission of sys-
tem in the competition revealed that this fea-
ture actually ended up degrading performance
by more than 2% of F1 score.

• Grapheme Stretching — Words with charac-
ters repeated multiple times (at least twice)
herald strong subjectivity, most often positive.
For example, “Not only is @userZ home from
China, she’s in LA...I called her and screamed
Mandyyyyyyyyyyyyy...I’m gonna hug her for
2 hrs tomorrow!” and “daniel radcliffe was
sooo attractive in the 3rd and 5th films omg
im in love”. We used the number of grapheme
stretched words as a feature for our sentiment
classifier.

• Number of words with unusual capitalization
— Words with characters made upper-case or
lower-case out of turn might potentially convey
subjectivity. This feature also proved to slightly
degrade performance, during post-competition
ablation experiments.

• Number of words with all the characters cap-
italized — Strongly positive or strongly nega-
tive tweets often have words in all caps in or-
der to convey the excitement that normally the
loudness of a voice intones.

• Presence of numbers — Numbers are used pro-
fusely in factual tweets. For example- “13:58
Steven Pourier, Jr. (OLC) MADE the 2nd of
the 2 shot Free Throw. DaSU leads 90 - 36 in
the 2nd Half. #NAIAMBB”. Hence the pres-
ence of numbers can be used as an useful fea-
ture to distinguish between subjective and ob-
jective tweets.

• Lexicon features- We use 15 lexicon fea-
tures extracted from publicly available lexi-
cons, which prove to be one of the most pow-
erful features in our features list. Social media
data, specially tweets, have a style of language
use that is quite different from other text data.
We included lexicons which are specially tai-
lored to handle social media data, like Senti-

592



ment140 and NRC Hashtag Lexicon. We elab-
orate on the lexicon features as the following:

From Sentiwordnet (Baccianella et al., 2010),
we extract

– Number of positive tokens
– Number of negative tokens
– Total positive sentiment score
– Total negative sentiment score
– Maximum sentiment score

From Bing Liu’s opinion lexicon (Hu and Liu,
2004), we extract

– Number of positive tokens
– Number of negative tokens

From MPQA subjectivity lexicon (Wilson et
al., 2005), we extract

– Number of positive tokens
– Number of negative tokens

From NRC Emotion Association lexicon (Mo-
hammad and Turney, 2013), we extract

– Number of positive tokens
– Number of negative tokens

From Sentiment140 lexicon (Go et al., 2009),
we extract

– Sum of sentiment score
– Maximum sentiment score

From NRC Hashtag Lexicon (Mohammad and
Kiritchenko, 2014), we extract

– Sum of sentiment score
– Maximum sentiment score

3.4 Training Classifier

Once we have extracted all the features, we train a
linear SVM using Python based Scikit Learn library
(Pedregosa et al., 2011) for the purpose of classifi-
cation. We experimentally ascertained the optimal
value of the parameter C to be 0.025. In order to
cope with the slight class imbalance in the data, we
automatically adjust weights inversely proportional
to class frequencies.

Feature F1
all 56.67
all - number of entities 58.68 2

all - grapheme 56.52
all - exclamation 55.91
all - emoticons 56.61
all - number of hastags 56.69
all - unigrams 53.52
all - lexicons 48.40
all - wh words 56.62
all - illegal capitalization 56.90 2

Table 1: Ablation Experiment on Twitter 2015 dataset.

Dataset Our Score Best Score
Twitter 2015 56.67 64.84
Twitter 2015 Sarcasm 62.96 65.77
Twitter 2014 63.29 74.42
Twitter 2014 Sarcasm 47.07 59.11
Twitter 2013 61.56 72.80
Live Journal 2014 67.55 75.34
SMS 2013 59.26 68.49

Table 2: Official Results for SemEval 2015.

4 Experiments and Results

We used the official training and test sets provided
for the SemEval 2015 task to train and evaluate our
system. Tweets in the training data that were not
available any more through the Twitter API were re-
moved from the training set. For the evaluation, we
compute precision, recall and F1 measures as com-
puted by the scorer package provided for the task.
Table 1 shows the ablation experiment we carried
out, thereby highlighting the usefulness of the vari-
ous features used. Table 2 records the F1 score ob-
tained by our submission on different datasets. Our
performance on Twitter 2015 Sarcasm data set is en-
couraging - we stand 4th on the data set.

5 Conclusion

This papers details the description of the system sub-
mitted by team Sentibase for SemEval 2015 Task
10. As the title of the paper suggests, the goal

2The fact that this feature degrades performance became
clear during post-competition experiments
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of this work was more to, put together a com-
plete Sentiment Analyzer for Twitter in a day’s time
that achieves competitive performance without go-
ing through complex modeling techniques, than to
up the ante in the state-of-the-work picture of Senti-
ment Analysis.
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Abstract

This paper describes the UNIBA team partic-
ipation in the Sentiment Analysis in Twitter
task (Task 10) at SemEval-2015. We propose a
supervised approach relying on keyword, lex-
icon and micro-blogging features as well as
representation of tweets in a word space.

1 Introduction

Sentiment analysis is the study of the subjectivity
and polarity (positive vs. negative) of a text (Pang
and Lee, 2008). With the worldwide diffusion of
social media, a huge amount of textual data has
been made available, thus attracting the interest of
researchers in this domain (Rosenthal et al., 2014).
Sentiment analysis on such informal texts poses new
challenges due to the presence of slang, misspelled
words and micro-blogging features such as hash-
tags or links and traditional approaches may not be
successfully exploited in this domain. Previous re-
search has successfully exploited approaches based
on lexical and micro-blogging features (Mohammad
et al., 2013). In this study, we investigate a su-
pervised approach including three kinds of features
based on keywords and micro-blogging properties
of tweets, sentiment lexicons and semantics. Rather
than using word-sense disambiguation (Miura et al.,
2014), we represent tweets in a distributional seman-
tic model (DSM) (Vanzo et al., 2014), which is able
to learn the context of usage of words analysing co-
occurrences in large corpora.

This paper describes our participation at the Se-
mEval 2015 Sentiment Analysis in Twitter task

(Rosenthal et al., 2015). We discuss methods and
results of our experimental study for the overall po-
larity classification of tweets (message level sub-
task B). The Sentiment Analysis task focuses on En-
glish tweets. Data provided for training are anno-
tated according to the overall polarity of each tweet
(i.e., ’negative’, ’positive’ or ’neutral’). The sys-
tem evaluation is performed on different test sets.
In particular, the rank of the systems is calculated
on the offical Twitter 2015 test set. Further evalu-
ation is performed on a progress set including test
instances from the previous edition of the task, to
allow comparision with previous studies (Rosenthal
et al., 2014). We build a supervised system based
on our sentiment classifier for Italian tweets, which
ranked 1st in both the polarity and subjectivity tasks
at Evalita 2014 (Basile and Novielli, 2014).

The paper is structured as follows: we introduce
our system and report the details about features in
Section 2. We describe the evaluation and the sys-
tem setup in Section 3. We conclude by reporting
results and discussion in Section 4.

2 System Description

Our system is built upon our classifier for senti-
ment analysis of Italian tweets (Basile and Novielli,
2014). We adopt a supervised approach using Sup-
port Vector Machine as a classification algorithm.
We investigate three groups of features based on:
(i) keyword and micro-blogging characteristics, (ii)
sentiment lexicons, and (iii) a Distributional Seman-
tic Model (DSM).
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Keywords and micro-blogging features.
Keyword-based features exploit tokens occur-
ring in the tweets (Table 1). During the tokenization
we replace the user mentions, URLs and hashtags
with three metatokens, “ USER ”, “ URL ” and
” TAG ”, for which we also count the total occur-
rences. As for keywords, we consider unigrams and
bigrams. To deal with negations, all the n-grams
occurring in a negated context receive the neg suffix.
A negated context is a tweet fragment starting with a
negation word1 and ending with a punctuation mark
(Pang et al., 2002). Moreover, we create features
capturing typical aspects of micro-blogging, such
as the use of upper case ratio and character repeti-
tions2, positive and negative emoticons, informal
expressions of laughters3, as well as the presence
of exclamation and interrogative marks, negations,
intensifiers 4. Finally we include features based on
word count for 1000 large-scale word clusters built
on English tweets5.

Lexicon-based Features. The second group con-
tains features calculated for each of the eight lexi-
cons we consider in this study. These lexicons can
be differentiated based on how they represent the in-
formation about prior polarity of words.

The NRC Emotion Lexicon (Mohammad and Tur-
ney, 2010), the MPQA Lexicon (Wilson et al., 2005)
and the Bing Liu Lexicon (Hu and Liu, 2004) pro-
vide lists of positive and negative words. We assign
a positive score equal to 1 to the positive sentiment
terms, and a negative score equal to 1 to the negative
ones. Similarly, the NRC Hashtag Sentiment Lexi-
con and the Sentiment140 Lexicon provide a list of
words with their sentiment association score, calcu-
lated as pointwise mutual information with respect
to collections of positive and negative tweets (Mo-
hammad et al., 2013). Positive and negative scores
are associated, respectively, to positive and negative

1The complete list of negation words provided by Christo-
pher Potts in his tutorial on sentiment http://sentiment.
christopherpotts.net/.

2These features usually plays the same role of intensifiers in
informal writing contexts.

3i.e., sequences of “ah”.
4The list of booster words is the same used by Sentistrength:

http://sentistrength.wlv.ac.uk/
5Twitter Word Clusters: http://www.ark.cs.cmu.

edu/TweetNLP/#resources

sentiment, while the magnitude indicates the degree
of association. We consider also the lexicon used by
SentiStrength6, a state-of-the-art tool for extracting
sentiment strength from informal English text on so-
cial media (Thelwall et al., 2010). The SentiStrength
lexicon is structured as a list of words with scores
ranging in [−5, +5]. A set of booster words is also
provided, to increase or decrease the strength of the
prior polarity of terms. Finally, we use a list of
emoticons as taken from Wikipedia7: we assign +1
and -1 as a score for positive and negative emoti-
cons, respectively. In all the lexicons mentioned so
far either a positive or negative score is associated
to each term. Using these lexicons, we extract a set
of features based on prior polarity of words occur-
ing in the tweets, as reported in Table 2. The fea-
tures are computed separately for terms in affirma-
tive contexts and terms in negated contexts.

In addition, we use SentiWordNet 3.0 (Esuli and
Sebastiani, 2006). SentiWordNet extends Word-
Net by associating positive, negative and objective
scores to each synset, where the three scores sum up
to 1. A lemma can receive multiple polarity scores if
it occurs in more than one synset. In such cases, we
select the most frequent sense for the lemma, with
respect to its part-of-speech. Thanks to the availabil-
ity of the objective scores, additional features can be
computed to model the presence of neutral terms,
as reported in (Basile and Novielli, 2014). Also the
features based on SentiWordNet are calculated sep-
arately for affirmative and negated contexts.

Finally, we consider the word classes defined in
the Linguistic Inquiry and Word Count (LIWC) tax-
onomy, developed in the scope of psycholinguistic
research (Pennebaker and Francis, 2001). LIWC or-
ganizes words into psychologically meaningful cat-
egories based on the assumption that words and lan-
guage reflect most part of cognitive and emotional
phenomena involved in communication. Previous
research has shown how the language use varies with
respect to the communicative intention, thus making
possible to distinguish between objective and sub-
jective statements as well as between agreement and
disagreement expressions (Novielli and Strapparava,
2013). Therefore, we include word count features

6http://sentistrength.wlv.ac.uk/
7http://it.wikipedia.org/wiki/Emoticon
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for each word class in LIWC. Similarly, we include
word count features for the emotion word classes in
the NRC Emotion Lexicon.

Semantic Features. Finally, we calculate features
based on the Distributional Semantic Model (DSM).
Given a set of 15M unlabelled downloaded tweets,
we build a geometric space in which each word
is represented as a mathematical point (Sahlgren,
2006). The similarity between words is computed
as their closeness in the space. To represent a tweet
in the geometric space, we adopt the superposition
operator (Smolensky, 1990), that is the vector sum
of all the vectors of words occurring in the tweet.
We use the tweet vector

−→
t as a semantic feature in

training our classifier.
In the same fashion, we build prototype vectors

for each class based on the sentiment lexicons that
provide prior polarity scores for words (i.e. Sen-
tiWordNet, SentiStrength, and the merge of NRC
Hashtag and the Sentiment140). For example, the
prototype vector for the positive class −−→ppos based on
SentiStrength is obtained by summing up all the vec-
tors of words with positive prior polarity in the Sen-
tiStrength lexicon. We use three prototype vectors to
represent, for each lexicon, the positive −−→ppos, nega-
tive−−→pneg, and subjective−→ps class (defined by consid-
ering both positive and negative words). In the case
of SentiWordNet, objectivity scores are also avail-
able and allow us to build a prototype for objectivity−→po . To capture the subjectivity and the polarity of a
tweet

−→
t , we compute the cosine similarity between−→

t and each prototype vector.

3 Evaluation

The message level subtask (subtask B) is designed
for evaluating systems on their ability to predict the
overall polarity of a given tweet, with respect to
three classes: positive, negative, and neutral.

Organizers provided 8,006 manually annotated
tweets as training data. We use the training set8

to extract the features described in Section 2. De-
tails on our system setup are reported in Section
3.1. As test set, organizers provided a collection
of 2,390 manually annotated tweets (Official 2015
test set). Further data from different sources (8,987

8Further development data provided by the organizers are
not used for training

tweets overall) are included in the progress test set
and are provided to allow comparison with systems
participating in previous editions. Systems are com-
pared against the gold standard of the official test
set in terms of macro average F measure calculated
over the positive and negative classes. For the sake
of completeness, we report also weighted F measure
considering all the three categories in the classifica-
tion task (see Section 4).

3.1 System Setup

The system is completely developed in JAVA. We
used the Liblinear9 implementation of L2-loss sup-
port vector classifier. Tweets are tokenized using the
Twitter NLP and Part-of-Speech Tagging API10. We
use both the tokenizer and the part-of-speech tagger
to preprocess the data.

Regarding the DSM, we download 15 million
tweets using the Twitter Streaming API. Tweets are
downloaded by querying the API using three lexi-
cons extracted from the training data for each class,
based on Kullback-Leibler divergence (KLD) as de-
scribed in (Basile and Novielli, 2014).

We download the same number of tweets for each
lexicon. We exploit these unlabeled tweets to build
a DSM, using the “word2vec”11 tool based on a re-
vised implementation of the Recurrent Neural Net
Language Model (Mikolov et al., 2013) using a log-
linear approach. We use the skipgram model, which
is more accurate in presence of infrequent words,
with 300 vector dimensions and remove the terms
with less than ten occurrences, obtaining 308,493
terms overall.

In training our classifier, we set the C parameter to
0.01. We select this value after a 10-fold validation
on training data to select the best combination. The
total number of features exploited is 145,967.

4 Results and Discussion

The final ranking issued by the organizers considers
the system performance in terms of average between
F measures for the positive and negative classes
only. Table 3 reports the system performance and

9http://www.csie.ntu.edu.tw/˜cjlin/
liblinear/

10http://www.ark.cs.cmu.edu/TweetNLP/
11https://code.google.com/p/word2vec/
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Keyword and micro-blogging features
n− grams uni- and bi-grams are considered. User mentions, URLs and hashtag are replaced

with metatokens
countUSER total occurrences of user mentions
countURL total occurrences of URLs
countTAG total occurrences of hashtags
uppercaseratio the ratio between the number of upper case characters and the total number of

characters
emopos the number of positive emoticons
emoneg the number of negative emoticons
countLaugh the count of sequences of ’ah’ as slang expression of laughters
countIntensif the ratio between the number of tokens with repeated characters and the total num-

ber of tokens
countQMark the total occurrences of question marks
countExMark the total occurrences of exclamation marks
countNegation the total occurrences of negation words
countclusteri

the total occurrences of words belonging to the i-th cluster

Table 1: Description of keyword and micro-blogging features.

Sentiment lexicon based features
opos the number of tokens with positive score
oneg the number of tokens with negative score
osubj the number of tokens with either positive or negative score
lastpos the score of the last positive token in the tweet
lastneg the score of the last negative token in the tweet
lastemo the score of the last emoticon in the tweet
sumpos the sum of positive scores for the tokens in the tweet
sumneg the sum of negative scores for the tokens in the tweet
sumsubj the subjectivity polarity, it is the sum of the positive and negative scores
sumMaxpos the maximum positive score observed for tokens in the tweet
sumMaxneg the maximum negative score observed for tokens in the tweet
countCi the total occurrences of words belonging to the i-th word class Ci, where word

classes are defined by the LIWC and NRC Emotion Lexicon taxonomies

Table 2: Description of sentiment lexicon features.

its rank. The system rank on the progress set is cal-
culated on the performance on the Twitter 2014 sub-
set. For completeness, we report also the F mea-
sure calculated considering all the three classes in
our model, including the neutral category 4.

The results are very encouraging: even if far from
optimum, the system differs for only 3.29 points
from the first ranked one (F=64.84). Furthermore,
we observe that even if our system is trained only
on tweets it is able to generalize on datasets from

other domains, such as SMS and other microblog-
ging services (i.e., LiveJournal). Conversely, the
system performance drops on the Twitter 2014 Sar-
casm set. This is consistent with results observed
in our previous study (Basile and Novielli, 2014) on
Italian tweets (Basile et al., 2014), where the 43% of
misclassified negative cases were mostly ironic and
would require common sense reasoning to detect the
negative opinion expressed. Moreover a drop in per-
fomance on the sarcasm test set had been already
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System Positive Negative Neutral
P R F P R F P R F F

All features 85.42 55.30 67.13 60.51 52.05 55.96 61.11 86.93 71.77 64.95
w/o keyword 88.23 49.81 63.67 59.62 51.78 55.43 59.18 89.16 71.14 63.41 (-2.37%)
w/o semantic 84.12 54.62 66.24 58.16 53.70 55.84 61,.28 85.61 71.43 64.50 (-0.69%)
w/o lexicons 83.31 52.89 64.70 60.92 39.73 48.09 58.14 58.14 70.00 60.93 (-6.19%)

Table 4: System results for all feature settings and all classes on the official test set Twitter 2015.

Test set AVG Rank(Fpos,Fneg)
Official 2015 61.55 12/40
Twitter 2014 65.11 25/40
LiveJournal 2014 70.05 -
SMS 2013 65.50 -
Twitter 2013 61.66 -
Twitter 2014 Sarcasm 37.30 -

Table 3: Task results.

observed for systems participating in the previous
edition of the task (Rosenthal et al., 2014) and can
be observed for all systems in the current edition.
However, our system had a greater than average per-
formance drop and we are currently studying this is-
sue.

Observing the detailed scores for each class (first
row of Table 4) we discover that the system per-
forms better in the recognition of positive and neu-
tral cases, in contrast with previous evidence from
the experiment on the Italian corpus.

To further investigate the predictive power of the
features in our model, we perform an ablation test on
the Twitter 2015 test set, for which organizers pro-
vided the gold standard. We remove each group of
features to assess the decrease of F measure on test
data with respect to the setting including all features.
Results are reported in Table 4 and demonstrate the
importance of all feature groups.

Removing the sentiment lexicon group of features
causes the highest decrease in performance. This is
in contrast with previous evidence of our experiment
on the Italian dataset of tweets, where a drop of per-
formance of only 1% was observed. We provide a
possible explanation to this by observing that only
one sentiment lexicon was adopted in the study on
the Italian dataset. On the contrary, in the current ex-

periment on English tweets we can rely on a richer
set of features due to the avaliablity of numerous lex-
icons, as explained in Section 2. Moreover, the Sen-
timent140 Lexicon and the Hashtag Sentiment Lexi-
con are both developed specifically to address senti-
ment analysis of tweets, thus providing higher cov-
erage of lexical cues that are typical of microblog-
ging.

Keyword and microblogging features are the sec-
ond most useful group. This is consistent with ev-
idence from the Italian experiment, for which we
observe a comparable drop in performance on the
polarity detection task. However, in the current ex-
periment we also consider n-grams, which are not
included in the feature set of the system for Italian.
This consideration suggest that n-grams might con-
tribute differently to the performance of sentiment
classifiers depending on the language being used,
thus suggesting directions for further investigation.

Finally, semantic features lead to the smaller drop
in F measure when removed (-0.69%). This is in
contrast with our previous findings in the Italian set-
ting, where the semantic features plays a key role.
This might be due to the prevalence of political top-
ics in the Italian dataset, possibly causing a bias
in our classifier due to the domain-specific lexicon
about politics. This discrepancy indicates further
directions for future investigation on the ability of
semantic features in disambiguating polarity in mi-
croblogging, with respect to the topic being dis-
cussed and the language being used.

Future replications of this study will involve fur-
ther data to validate and generalize our findings.
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Abstract

This paper presents an overview of the sys-
tem developed and submitted as a part of our
participation to the SemEval-2015 Task 10
that deals with Sentiment Analysis in Twitter.
We build a Support Vector Machine (SVM)
based supervised learning model for Subtask
A (term level task) and Subtask B (message
level task). We also participate in Subtask
E viz., determining degree of polarity, and
build a very simple system by employing the
available lexical resources. Experiments with
the 2015 official datasets show F1 scores of
81.31% and 58.80% for Task A and Task
B, respectively. For Subtask E, our model
achieves a score of 0.413 on Kendal’s Tau
metric.

1 Introduction

The use of social media platforms has become cen-
tral to many teenager’s and adult’s lives. With the
emerging forms of communication, much of the
freely available texts in the opinionated texts are lin-
guistically unstructured. People have adopted cre-
ative spellings and abbreviations, and are exces-
sively using more intelligent forms of messages that
involves typos, hash-tags and emoticons to convey
their messages. The huge abundance of inexpen-
sive data, rich in applications, can prove handy for
public and corporate institutions. This has urged the
scientific community to extract the substantive in-
formation from these texts. The proliferation of mi-
croblogging sites like Twitter which boasts of user’s
comments on everything trending in real time opens

up an unprecedented opportunity to explore and de-
velop techniques to mine the information.

Task 10 in Semantic Evaluation 2015 provides
a research platform promoting the knowledge dis-
covery in Twitter. Task 10 consists of five dif-
ferent subtasks: Contextual Polarity Disambigua-
tion (A), Message Polarity Classification (B), Topic-
Based Message Polarity Classification (C), Detect-
ing Trends Towards a Topic (D) and Determining
degree of polarity of Twitter terms with the senti-
ment (E). Complete details of the task can be found
at (Rosenthal et al., 2015). We participated in Sub-
tasks A, B and E, the first two of which require the
sentiments to be classified into positive, negative and
neutral classes for a given segment of the tweet (for
A) or the entire message (for B), while the Task E
needs to compute the strength of association of the
given terms to the sentiment on a scale of 0 to 1 with
1 denoting the maximum strength.

The technical study of public sentiment has been a
subject of trending research and a significant amount
of extensive work is being carried out in the domain.
Sentiment Analysis has been handled at the various
levels of granularity. Early research works (Pang
and Lee, 2004) focussed on the document level
classification with further studies at message and
term level (Rosenthal et al., 2014). Twitter has also
been investigated for its possible applications in the
fields of commerce (Jansen et al., 2009; Bollen et al.,
2011), elections (O’Connor et al., 2010; Tumasjan
et al., 2010), disaster management (Nagy and Stam-
berger, 2012; Terpstra et al., 2012) etc. using varied
approaches and different experimental setups. Se-
mantic Evaluation tasks (Nakov et al., 2013; Rosen-
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thal et al., 2014) continue to pitch in with the newer
systems for the sentiment classification of tweets.

2 Proposed Approach

In this section, we describe the supervised learning
system that we develop for the first two subtasks,
namely A and B. The first section would focus on
Tasks A and B and later section would describe the
method that was adopted for Task E.

2.1 Preprocessing

We normalize all URLs to http://someurl and all
usernames to @someuser. We also pre-process
the dataset to convert character encodings like
\u2019(’), \u002c(,) &amp;(&), &lt;(<), &gt;(>),
&nbsp;(whitespace), <3(love) etc. to their usual
text so as to reduce the noise.

2.2 Methods for Contextual Disambiguation
and Message Classification

We develop the methods for the first two tasks based
on supervised Support Vector Machine (Cortes and
Vapnik , 1995).

Consider {(x1, y1), . . . , (xN , yN )}, which repre-
sents the training data for the two-class problem,
where yk ∈ {+1,−1} represents the class associ-
ated with xk and xk ∈ RD is the feature vector
corresponding to the k-th sample in the training set.
The aim of the SVM is to learn a linear hyperplane
that divides the negative examples from the positive
examples such that the separation between the two
classes is maximal. The equation of this hyperplane
may be obtained as follows: (w.x) + b = 0 w ∈
RD, b ∈ R.

In our work we make use of the SVM imple-
mentation as available with the LibLinear 1 model
(Fan et al., 2008). LibLinear has been optimized for
data with millions of instances with very large fea-
ture spaces. To develop the feature-based learning
model, we categorize the features into three groups:
Token-level Features (Group-I), Semantic Features
(Group-II) and Encoding Features (Group-III).

The set of features that we implement for the tar-
get tasks are described as follows.

1www.csie.ntu.edu.tw/cjlin/liblinear

1. Group-1: Token-level Features: These corre-
spond to the features like n-grams and Part-of-
Speech (PoS).

• Word n-grams: All n-grams of sizes
1 and 2 are extracted for Task A using
Ngram Statistics Package (Banerjee and
Pedersen, 2003). This binary valued fea-
ture is implemented as contextual feature
for Task A. Based on the results obtained
on the development set, two words on
each side of the targeted segment are taken
into consideration. For Task B, all n-
grams of size upto three are extracted.

• Character n-Grams: For each token in
the target text in the tweet, all the charac-
ter n-grams of prefix and suffix of lengths
of two and three characters are extracted.
This feature is implemented only for the
term level task.

• Part of Speech (PoS) Information: For
both the subtasks, we label each token
in the tweet with CMU ARK PoS tagger
(Gimpel et al., 2011). The number of each
of the PoS tags is kept as feature.

2. Group-II: Semantic Features: To take into
account the semantics of the text present in the
tweet/targeted segment, we use Lexicon and
SentiWordNet based features.

• Lexicon Features: We use lexicons such
as NRC Hashtag 2, Sentiment 140 3, Bing
Liu (Liu et al., 2005) and NRC Emotion
Lexicons (Mohammad and Turney, 2013)
to implement various features. The im-
plementation of features for these tasks is
based on the number of tokens associated
with positive and negative sentiment using
NRC Hashtag, Sentiment 140 and Bing
Liu lexicon. For NRC Hashtag and Sen-
timent 140 lexicon, the sentiment scores
of the tokens are used to implement total
score of the message as another feature.

2http://www.umiacs.umd.edu/saif/WebDocs/NRC-Hashtag-
Sentiment-Lexicon-v0.1.zip

3http://www.umiacs.umd.edu/saif/WebDocs/Sentiment140-
Lexicon-v0.1.zip
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The NRC emotion lexicon is a list of
words and their associations with eight
emotions (anger, fear, anticipation, trust,
surprise, sadness, joy and disgust) and two
sentiments (negative and positive). We
categorize joy, surprise, trust and antici-
pation as positive emotions and the rest as
negative emotions. Based on the catego-
rization, we compute the number of tokens
with positive score, number of tokens with
negative score and number of tokens with
neutral score as the features.

• SentiWordNet Feature: We compute
the average positive score (posScore) and
negative score (negScore) for each word
in the tweet using SentiWordNet3.0 (Bac-
cianella et al., 2010). For a given tweet we
define two features that denote the num-
ber of words which have posScore greater
than negScore, and number of word with
negScore greater than posScore.

• Inverted Segment: An inverted segment
is defined as the part of the tweet which
occurs after an inverting word (i.e. the to-
kens that denote the negative context) such
as doesn’t, isn’t, can’t, etc. until a punctu-
ation. The polarity of the words occurring
in the inverted segment is reversed, i.e. a
token with positive or negative sentiment
is converted to the token bearing negative
or positive sentiment, respectively. The
intensity values of the tokens are adopted
from the NRC Hashtag lexicon (Moham-
mad et al., 2013) and Sentiment140 lexi-
con (Mohammad et al., 2013) which are
used to construct the feature vector. The
feature vector contains several pieces of
information that denote the number of in-
verted segments in the tweet, sum of in-
tensities of all the words that appear in the
inverted segments in the tweet, etc.

• Tweet Clusters: We use the CMU Twitter
Word Clusters (Owoputi et al., 2013) to
generate the clusters of words that appear
either in the context of positive or nega-
tive sentiment. All the tokens which be-
long to the positive sub-cluster occur more

in positive context than in negative con-
text. Similarly all the tokens which belong
to the negative sub-cluster occur more in
negative context than in the positive con-
text. The categorization of positive and
negative sub-cluster is done based on the
number of times the token occurs in posi-
tive and negative contexts. A feature vec-
tor of length 2000 is defined, each bit of
which takes a value denoting the number
of times the token appears in the tweet.

3. Group-III: Encoding Features: The text of
the tweet is normally different from the general
English text. It contains emoticons, hashtags,
repetitive characters and irregular punctuations.
To incorporate these encodings, we implement
the following features.

• Intensifiers: There are several words that
denote the intensity of sentiment, and
these can be used as the features of the
model. We use the number of hash-
tags, number of words in uppercase (e.g.
BIG loser) and number of elongated words
(e.g. yummmmmy) in the tweet as the fea-
tures. These features were used for both
the tasks.
• Emoticon Features: This is a binary

valued feature that denotes the presence
or absence of the positive and negative
emoticon.
• Punctuation: The number of occur-

rences of contiguous sequences of ques-
tion marks (????), exclamation marks (!!!)
and question-exclamation marks (?!!?) are
extracted from the tweet. This feature
is not used for subtask A as we observe
lower performance of the system on the
development set.
• URL and Username: This feature takes

into account the number of occurrences of
the username and URLs. The feature is
defined for the term level task.

2.3 Method for Determining the Strength

Our approach for determining the strength of senti-
ment bearing words is based on the rule-based ap-
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Set Positive Negative Neutral
Training 5480 2967 434+434

Development 648 430 57
2015 Test 1896 1006 190

Progress Test 6354 3771 556

Table 1: Dataset for Task A.

proach that is developed using various available re-
sources. We use the sentiment scores of terms ex-
tracted from SentiWordNet, Sentiment140 bigram
lexicon and NRC Hashtag unigram lexicon. In these
lexicons, terms have been assigned scores based on
their association to the positive or negative senti-
ment in some contexts. We also observe that out
of the 200 words present in the trial data, 167 words
are present at least in one of these three lexicons,
which is more than 83%. This is why we use these
resources for subtask E.

At first we extract the scores of the given term
from the SentiWordNet. The scores denote the as-
sociativity of the word towards the positive and neg-
ative sentiment in various contexts. Let us assume
that posScore and negScore denote the positive and
negative scores of the target word, respectively. We
compute the average positive and negative scores of
all the terms, and the final score is set as Score = Avg
posScore - Avg negScore.

If the word or term is not available in the Sen-
tiWordNet, we look at the Sentiment140 or NRC
Hashtag lexicon. The score of each term in these
lexicons corresponds to the number of times the term
co-occurs with the positive and negative sentiment.
For unigram we search in the NRC Hashtag lexicon,
and for the others we look at Sentiment140 lexicon.
The score of each term is set as: Score = (no. of pos-
itive occurrences - no. of negative occurrences)/(no.
of positive occurrences + no. of negative occur-
rences). For the word that does not appear in any
of these lexicons, we assign the default score of 0.5.
If the range of the scores is between -1 to 1, we nor-
malize the values between 0 and 1.

3 Datasets and Experimental Results

To train and tune our system, we use the training and
development datasets that were employed for Task 2
in SemEval 2013 (Nakov et al., 2013). The system is

Set Positive Negative Neutral
Training 3064 1204 3942

Development 575 340 739
2015 Test 1038 365 987

Progress Test 3506 1541 3940

Table 2: Dataset for Task B.

tested on two datasets for this year’s tasks, one is the
progress set and the other one is the 2015 official test
set. The datasets are annotated with three classes,
namely positive, negative and neutral. The training
sets consist of 9,315 and 8,210 annotated tweets for
subtask A and B, respectively. The progress set con-
tains tweets from five different categories: LiveJour-
nal 2014, SMS 2013, Twitter 2013, Twitter 2014
and Twitter 2014 Sarcasm. The datasets used for
the Tasks A and B are summarized in Table 1 and
Table 2, respectively. The metric used for evalu-
ating the system is average F1-score (averaged F1-
positive and averaged F1-negative, and ignoring the
F1-neutral) for 2015 test set, while the ranking for
progress set is done on the F1 score of the Twitter
2014 subset.

For Task E, the trial dataset comprise of 200
unique words/phrases with the corresponding scores
denoting the strength of the terms with positive or
negative sentiment. The test set contains 1,315
words/phrases which has to be scored in between 0
to 1 indicating their association with the positive or
negative sentiment.

We observe that proportion of neutral tweets in
the training set of Task A is quite less (4.88%). In
order to create a balanced dataset, we perform over-
sampling to increase the number of neutral tweets in
the training data. Experiments are carried out with
various oversampling rates. Based on the evalua-
tion on the development data, we observe that over-
sampling the neutral tweets by increasing its num-
ber twice lead to better scores while constructing
the dataset with thrice the number of neutral tweets
results in over-fitting, and hence, lowers the F1-
score value. For the second task, we also perform
this oversampling technique for the better represen-
tations of negative tweet instances. However we no-
tice a reduction in the overall F1-score compared to
the performance that we achieved with our original
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Features F1-Score: Task A F1-Score: Task B
All 81.31 58.80

All-Token 80.04 (-1.27) 54.51 (-4.29)
All-Semantic 76.09 (-5.22) 48.29 (-10.51)
All-Encoding 81.18 (-0.13) 58.24 (-0.56)

All-WordNgram 80.75 (-0.56) 54.92 (-3.88)
All-CharNgram 81.25 (-0.06) -

All-Ngram 80.30 (-1.01) 54.92 (-3.88)

All-POS 81.23 (-0.08) 59.10 (+0.30)
All-NRCHashtag 81.23 (-0.08) 57.31 (-1.49)

All-Senti140 81.93 (+0.62) 56.73 (-2.07)
All-Bing 80.91 (-0.40) 56.16 (-2.64)

All-Emotion 81.01 (-0.30) 57.68 (-1.12)
All-Lexicon 80.19 (-1.12) 43.23 (-15.57)
All-Cluster 81.24 (0.07) 55.62 (-3.18)
All-Inverted 81.37 (+0.06) 58.73 (-0.07)

All-SentiWord 81.14 (-0.17) 58.44 (-0.36)
All-Intensifiers 81.22 (-0.09) 58.49 (-0.31)
All-Emoticon 81.25 (-0.06) 58.33 (-0.47)

All-URL/Username 81.31 (0.0) -
All-Punctuation - 58.64 (-0.16)

Table 3: Experimental results for feature-ablation experiment for Task A and B. The values in the parenthesis denotes
the deviation from the score when all the features were taken into consideration.

setup.

For subtask A, our system achieves a F1-score of
81.31% for 2015 test set and 82.73% for Twitter
2014 subset of progress set. For the message level
task, i.e. for subtask B, our system obtains the F1-
scores of 58.80% for the 2015 test set and 65.09%
for the progress test set. The best ranked team for
the term level task shows the F1-score of 84.79%
for the 2015 test set and 87.12% for the progress
test. For Subtask B, the best performing system pro-
duces the F1-scores of 64.84% for the 2015 test set
and 74.42% for the progress set.

For Task E, we have to provide a score between 0
and 1 for a word or phrase denoting the associativity
of the phrase with the positive sentiment. The evalu-
ation metric used for this task is based on Kendall’s
Tau rank correlation coefficient. Our model obtains
a score of 0.413 with respect to the best team’s score
of 0.625.

3.1 Feature Engineering and Analysis of
Results

We observe that our system performs much better
for the term level task than the message level task.
This can be contributed to the fact that the con-
textual polarity disambiguation is, in general, sin-
gle sentiment oriented whereas a message level sen-
timent classification is ambiguous because of the
tweet containing mixed sentiments. To get an in-
sight to the contribution of each feature in develop-
ment of the system, we perform feature engineering.
Experiments of the detailed feature ablation study
are shown in Table 3.

From the feature ablation experiment, we observe
that in both the tasks, semantic features (i.e. senti-
ment lexicons) contribute significantly. Among se-
mantic features, both Task A and B rely heavily on
lexicon features. It can also be noted that the encod-
ing features which are characteristics of twitter text
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also help in marginal improvement.
However, the inverted segment feature does not

result in the expected performance gain. This can
be explained in light of the following two aspects.
Let us consider the two statements as: (a) The cof-
fee tastes bad. and (b) The book is not bad., the first
statement signifies negative sentiment while the sec-
ond statement is neutral. However, if we take into
account the method that we adopted, in sentence (b)
according to our approach a negative word (bad) be-
comes positive with the same intensity as we only
invert the polarity without changing the intensity of
the word, but in this sentence bad actually becomes
neutral when it occurs in an inverted segment (i.e.
after ’not’). Another reason might be the possible
conflict between the lexicon and inverted segment
features. In lexicon feature, we consider the scores
of each token for generating the feature vector where
the word ’bad’ is taken into negative sense for both
the cases.

3.2 Conclusions and Future Work

In this paper we describe our systems that we de-
veloped as part of our participation to the SemEval
shared task on Sentiment Analysis on Twitter. Out
of the five defined tasks, we participated in three
tasks. We have developed a supervised SVM model
for the contextual polarity disambiguation (Task A)
and message level sentiment classification (Task B).
Our system showed promising results for the Task A
and satisfactory performance for Task B. However,
when we did feature ablation experiment, we found
that certain features (like inverted segment) did not
contribute substantially as expected. In our future
work, we will try to address this issue. The n-grams
feature that we have used, generates sparse feature
vector. Proper smoothing techniques might be help-
ful to reduce the noise in the feature vector due to
the sparsity in the n-grams feature. Apart from this,
we also plan to develop a method in order to auto-
matically identify the most relevant set of features
for the individual tasks.

Our approach for the Task E was purely based on
the rules that we derived from the various available
resources. The lexicons that we used have differ-
ent ranking schemes, i.e. the same term can have
different ranks based on its sentiment intensity as
present in the different lexicons. We are exploring

to come up with the appropriate method to merge
the different ranks obtained from the different lexi-
cons. Some other resources like NRC Emotion lex-
icon and MPQA Subjectivity lexicon can also be
used. Other future works include developing meth-
ods for tasks C and D.
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Abstract

We describe a classifier for predicting
message-level sentiment of English micro-
blog messages from Twitter. This paper
describes our submission to the SemEval-
2015 competition (Task 10). Our approach is
to combine several variants of our previous
year’s SVM system into one meta-classifier,
which was then trained using a random forest.
The main idea is that the meta-classifier
allows the combination of the strengths and
overcome some of the weaknesses of the
artificially-built individual classifiers, and
adds additional non-linearity. We were also
able to improve the linear classifiers by using
a new regularization technique we call flipout.

1 Introduction

With the availability of huge amounts of user gener-
ated text online, the interest in automatic sentiment
analysis of text has greatly increased recently in both
academia and industry.

The goal is to classify a tweet (on the full mes-
sage level) into the three classes positive, negative,
and neutral. In this paper, we describe our approach
using a modified SVM based classifier on short text
as in Twitter messages. Our system has participated
in the SemEval-2015 Task 10 competition, “Senti-
ment Analysis in Twitter, Subtask–B Message Po-

This work is licenced under a Creative Commons Attribu-
tion 4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

larity Classification” (Rosenthal et al., 2015). Previ-
ous iterations of the evaluation were run in 2013 and
2014.

Our Results in the Competition. Our system was
ranked 8th out of 40 participants, with an F1-score
of 62.61 on the Twitter-2015 test set. The 2015 win-
ning team obtained an average F1-score of 64.84.

The detailed rankings of our approach were: 4th
rank on the LiveJournal data; 6th on the SMS data
(2013); 10th on Twitter-2013; 12th on Twitter-2014;
and 25th on Twitter Sarcasm. See (Rosenthal et al.,
2015) for full details and all results.

Data. In the competition, tweets for training and
development were provided as tweet IDs. A frac-
tion (10-15%) of the tweets were no longer avail-
able on Twitter, which made results of the compe-
tition not fully comparable. For testing, in addition
to last year’s data (tweets, SMS, LiveJournal), new
tweets were provided. An overview of the data that
we were able to download is given in Table 1.

Our Approach. Our system is based on two main
ideas. First, we propose a new regularization tech-
nique called flipout, which post-processes a trained
classifier model for better generalization perfor-
mance. Details of this are given in Section 2. Sec-
ond, we combine multiple classifiers with a meta-
classifier, to yield better performance than each sin-
gle sub-classifier (Dürr et al., 2014; Cieliebak et al.,
2014). To achieve this, we extended our existing
system (Jaggi et al., 2014). The result is simple:
a large collection of features used in a linear SVM
classifier. We replicated that system with several dif-
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ferent choices of features and parameters. The out-
put of all those artificially built classifiers is then
feed as input to a random forest classifier, which
generated final classification results, and gave our
system additional non-linear output capabilities.

Table 1: Overview of the data we found available for
training, development and testing.

Dataset Total Posit. Negat. Neutr.
Train (Tweets) 8224 3058 1210 3956
Dev (Tweets) 1417 494 286 637
Test: Twitter2015 2390 1038 365 987
Test: Twitter2014 1853 982 202 669
Test: Twitter2013 3813 1572 601 1640
Test: SMS2013 2093 492 394 1207
Test: Tw2014Sarcasm 86 33 40 13
Test: LiveJournal2014 1142 427 304 411

2 Flipout Regularization

We propose a new kind of post-
processing/regularization technique to improve
classification accuracy in a setting with several
different available datasets. The intuition comes
from the setting of transfer learning. Many words in
the training data do not occur in the same context
as in the target data (as for example caused by
topic shifts, such as in the evaluation task’s scenario
here). By finding suitable replacements for some
input words, the generalization performance of
a pre-trained linear classifier can be improved.
Since this post-processing of a pre-trained classifier
overrides potentially many of its weights, the
post-processing has an additional regularizing effect
with respect to the original training set, in addition
to the transfer effect towards the target dataset.

We follow a greedy approach to find the best
word-replacements which is as follows:

1. Split the dataset into 4 parts, here called flip-
train, flipdev1, flipdev2 and fliptest.

2. Train a classifier (e.g. SVM) on the set fliptrain,
using the original full set of features.

3. Calculate prediction score on datasets flipdev1
and flipdev2.

4. Pick a subset S of words from the vocabulary
of fliptrain. This is the word-pool for the flipout
trick.

5. For each word w1 ∈ S:

• For each word w2 ∈ S:
Consider the modified classifier using
the replacement (flip) of input words
w1 7→ w2. Compute its predic-
tion score on the validation datasets
flipdev1 and flipdev2.

• Keep the replacement w1 7→ w∗
2 which

resulted in the maximum improvement
for the word w1, in the sense of
min(improvement on flipdev1, improve-
ment on flipdev2),

One would expect that this approach would re-
place words of the original set (fliptrain) with words
having a better discriminative power on the new set
(flipdev). In reality, it turned out that words with-
out an obvious relation to each other were replaced
such as: 2nd 7→ may, about 7→ I’m, we 7→ day, etc.
The reason we have separated the development sets
(flipdev1 and flipdev2) is to better avoid potential
overfitting.

3 System Description

For our system, we preprocessed the tweets and ex-
tracted textual features. Using different subsets of
these features and flipout, we train different lin-
ear classifiers resulting in sentiment classification
systems which are intrinsically different from each
other. These “subsystems” were then combined into
a meta-classifier using a random forest (Breiman,
2001). The random forest uses the outputs of in-
dividual classifiers as features and the labels on the
training data as input for training. Afterwards, in
the test phase, the random forest makes predictions
using the outputs of the same individual classifiers.

3.1 Preprocessing

The tweets were preprocessed with standard meth-
ods before extracting the features.

• URLs and usernames are each normalized to a
replacement token
• Tokenizer: We used ArkTweetNLP (Owoputi

et al., 2013) which is suitable for tweets. All
text was transformed to lowercase (except for
special features relying on case information).
• Negation encoding: The negated context of a

sentence is marked as in (Pang et al., 2002), us-
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ing the list of negation words from Christopher
Potts’ sentiment tutorial1.

3.2 Features for the Subsystems

The subsystems use different subsets of the features
we introduce here. Most of them are the same as in
our last years submission (Jaggi et al., 2014). New
additions are marked with a + sign.

Features:

• n-grams: presence of word n-grams (n =
1...4)
• POS-n-grams: presence of word n-grams with

one or more words replaced by the POS-
Tag (Jaggi et al., 2014). The ArkTweetNLP
structured prediction POS tagger provided by
(Owoputi et al., 2013) together with their pro-
vided standard model (model.20120919) suit-
able for Twitter data was used (n = 3...5)
• non-contiguous n-gram: presence of word n-

grams with one or more words replaced by a
wildcard (n = 3...5)
• character n-grams: presence of charac-

ter n-grams (n = 3...6) weighted in-
creasingly by their length (weights 0.7 ·
{1.0, 1.1, 1.2, 1.4, 1.6, 1.9} for length 3, 4, . . .)
• # upper cased: number of tokens written with

all characters in upper case
• # of hashtags
• # of POS tags: for each POS-tag the number of

occurrences
• continuous punctuation: number of continu-

ous exclamation marks, number of continuous
question marks (max)
• last token punctuation: whether the last token

contains an exclamation mark or question mark
or a period
• # elongated words number of words which re-

peat the same character more than two times
• # negated tokens the number of words occur-

ring in a negation context
• Lexicons: For each lexicon (NRC-emotion,

BingLiu, MQA, NRC-HashtagSentiment,
Sentiment140, Sentiment140-3-class,
RottenTomatoes-3-class):

1http://sentiment.christopherpotts.net/
lingstruc.html

- total tokens for each class (positive, neg-
ative and neutral for 3-class lexicons)

- score of last token for each class
- maximum score over all tokens for each

class
- total score over all tokens for each class
- +score of last token regardless of the class
- +maximum score over all tokens for all

classes together
- +total score over all tokens

For the 2-class lexicons, we flip the score of
tokens occurring in the negation scope. The 3-
class lexicons are already trained with marked
negations (Jaggi et al., 2014).
• +lemma n-grams: presence of lemma n-grams

(n = 1...4), by using the Standford Core NLP
lemmatizer.
• +cluster unigram: whether a word from each

cluster in the CMU tweet clusters occurs or not
• +GloVe: GloVe word embeddings (Penning-

ton et al., 2014) are a newer version of the
word2vec embedding by (Mikolov et al., 2013),
using a matrix factorization instead of deep
learning. We used the sum, minimum and max-
imum of the GloVe-vectors for the tokens oc-
curing in the tweet.

3.3 Subsystems

For the subsystems we used different linear classifier
variants trained using the LibLinear package (Fan
et al., 2008), all being multi-class classifiers for the
three classes in a one-against-all setting.

Subsystem 1. We combined all features to a sin-
gle feature vector using an `1-regularized squared
loss SVM classifer and flipout regularization as de-
scribed in Section 2. We trained the SVM and op-
timized the regularization parameter using 10-fold
cross-validation on the training set. The remain-
ing sets were used for flipout: dev as flipdev1 and
twitter-test13 as flipdev2 and twitter-test14 for test-
ing. We chose the word pool S for flipout as the
most frequent 50 words in fliptrain.

Subsystem 2. The same as subsystem 1 but with-
out flipout. The system was trained on train+dev and
the SVM regularization parameter C was optimized
against the test sets.
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Subsystem 3. The same as subsystem 2 but using
Logistic Regression instead of SVM.

Subsystem 4. The same as subsystem 2 but with-
out any lexicon features.

Subsystem 5. The same as subsystem 2 but using
only the GloVe word-embedding features.

3.4 Meta-Classifier

Each subsystem outputs three real values corre-
sponding to the three sentiment classes. In addition,
it outputs the categorical value for the predicted sen-
timent class. Our meta-classifier used these 4 values
as input features. We trained a random forest using
the Weka Java-library on the train data, although the
subsystems are trained on the same data. To avoid
overfitting, we regularized the random forest against
the test sets by trying different values for number of
trees, maximum depth of the forest and the number
of features used per random selection.

4 Results
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Twitter15 62.70 62.07 62.41 53.72 58.11 62.73
Twitter14 69.44 69.07 69.34 61.60 63.42 70.19
Twitter13 69.64 69.05 69.49 61.73 61.84 69.70
LiveJournal14 73.54 74.14 74.29 62.32 62.67 74.48
Sarcarsm14 52.94 52.15 50.69 56.15 56.17 49.83

Table 2: Results of our subsystems and final system.

Overall Performance. Looking at the overall per-
formance, we managed to increase the scores on ev-
ery test set compared to our previous year’s submis-
sion. Table 2 shows the scores of our individual sub-
systems as well as the final system on each test set.
Note that our results in the official submission are
slightly different from Table 2, because of a mistake
we made in the class assignments in our random for-
est input, which is fixed here.

Classifiers. Subsystems 2 and 3 only differ in the
choice of the linear classifier. Our results here show
that logistic regression slightly outperforms SVM.

Flipout Regularization. Flipout proved very use-
ful. Subsystem 1 (with flipout) reached from 0.37 to
0.79 higher F1 than Subsystem 2 (without flipout).

Features from Unsupervised Learning: Lexicons
and Word-Embeddings. Subsystem 4 does not
use any of the lexicon features which were con-
structed on a separate unlabeled large corpus. The
large decrease in performance shows the importance
of the lexicons. Also we can see that Subsystem 5
(which only uses the GloVe word-embedding fea-
tures) results in a very small variation of its scores on
the different test sets, compared to the other systems.
This confirms our expectation that features gener-
ated from unsupervised training on a large data set
will generalize better, i.e. are more robust to topic
and domain changes.

Meta-Classifier. The final system compared with
Subsystem 1 shows the gain from performing meta-
classification. On last year’s Twitter test set, we
obtain an improvement of 0.75 F1-Score. On this
year’s test set (which was hidden), we achieved an
improvement of 0.03, which was low. However, we
are encouraged by the large improvement of 0.94
F1-Score on out-of-domain data (Live Journal) –
which was not seen during training.

5 Conclusion

We have described a classifier to predict the sen-
timent of short texts such as tweets. Our system
is built upon the approach of our previous sys-
tems (Jaggi et al., 2014) and (Dürr et al., 2014), with
several modifications and extensions in features and
regularization. We have seen that our system signif-
icantly improves upon last year’s approach, achiev-
ing a gain of 2.65 points in F1 score on last year’s
test data.

We showed that our newly introduced flipout reg-
ularization technique improved the score on our sys-
tem. To be able to make general statements we need
to further investigate its behavior on different data
sets. We also showed that artificially-built subsys-
tems can be used to improve upon the best classifier
using meta-classification. A question which remains
is how one could automatize the meta-classification
approach to built the most beneficial subsystems.
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Abstract

We present the approach followed by INESC-
ID in the SemEval 2015 Twitter Sentiment
Analysis challenge, subtask E. The goal was
to determine the strength of the association of
Twitter terms with positive sentiment. Using
two labeled lexicons, we trained a regression
model to predict the sentiment polarity and in-
tensity of words and phrases. Terms were rep-
resented as word embeddings induced in an
unsupervised fashion from a corpus of tweets.
Our system attained the top ranking submis-
sion, attesting the general adequacy of the pro-
posed approach.

1 Introduction

Sentiment lexicons are one of the key resources for
the automatic analysis of opinions, emotive and sub-
jective text (Liu, 2012). They compile words an-
notated with their prior polarity of sentiment, re-
gardless of the context. For instance, words such as
beautiful or amazing tend to express a positive sen-
timent, whereas words like boring or ugly are con-
sidered negative. Most sentiment analysis systems
use either word count methods, based on sentiment
lexicons, or rely on text classifiers. In the former,
the polarity of a message is estimated by computing
the ratio of (positive and negative) sentiment bear-
ing words. Despite its simplicity, this method has
been widely used (O’Connor et al., 2010; Bollen and
Mao, 2011; Mitchell et al., 2013). Even more so-
phisticated systems, based on supervised classifica-
tion, can be greatly improved with features derived
from lexicons (Kiritchenko et al., 2014). However,

manually created sentiment lexicons consist of few
carefully selected words. Consequently, they fail to
capture the use of non-conventional word spelling
and slang, commonly found in social media.

This problem motivated the creation of a task in
the SemEval 2015 Twitter Sentiment Analysis chal-
lenge. This task (subtask E), intended to evaluate au-
tomatic methods of generating Twitter specific sen-
timent lexicons. Given a set of words or phrases,
the goal was to assign a score between 0 and 1, re-
flecting the intensity and polarity of sentiment these
terms express. Participants were asked to submit a
list, with the candidate terms ranked according to
sentiment score. This list was then compared to a
ranked list obtained from human annotations and
the submissions were evaluated using the Kendall
(1938) Tau rank correlation metric.

In this paper, we describe a system developed for
this challenge, based on a novel method to create
large scale, domain-specific sentiment lexicons. The
task is addressed as a regression problem, in which
terms are represented as word embeddings, induced
from a corpus of 52 million tweets. Then, using
manually annotated lexicons, a regression model
was trained to predict the polarity and intensity of
sentiment of any word or phrase from that corpus.
We found this approach to be effective for the pro-
posed problem.

The rest of the paper proceeds as follows: we re-
view the work related to lexicon expansion in Sec-
tion 2 and describe the methods used to derive word
embeddings in Section 3. Our approach and the ex-
perimental results are presented in Sections 5 and 6,
respectively. We conclude in Section 7.
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2 Related Work

Most of the literature on automatic lexicon expan-
sion consists of dictionary-based or corpora-based
approaches. In the former, the main idea is to use a
dictionary, such as WordNet, to extract semantic re-
lations between words. Kim and Hovy (2006) sim-
ply assign the same polarity to synonyms and the op-
posite polarity to antonyms, of known words. Oth-
ers, create a graph from the semantic relationships,
to find new sentiment words and their polarity. Us-
ing the seed words, new terms are classified using a
distance measure (Kamps et al., 2004), or propagat-
ing the labels along the edges of the graph (Rao and
Ravichandran, 2009). However, given that dictio-
naries mostly describe conventional language, these
methods are unsuited for social media.

Corpora based approaches follow the assumption
that the polarity of new words can be inferred from
co-occurrence patterns with known words. Hatzi-
vassiloglou and McKeown (1997) discovered new
polar adjectives by looking at conjunctions found in
a corpus. The adjectives connected with and got the
same polarity, whereas adjectives connected with
but were assigned opposing polarities. Turney and
Littman (2003) created two small sets of prototypi-
cal polar words, one containing positive and another
containing negative examples. The polarity of a new
term was computed using the point-wise mutual in-
formation between that word and each of the proto-
typical sets (Lin, 1998). The same method was used
by Kiritchenko et al. (2014), to create large scale
sentiment lexicons for Twitter.

A recently proposed alternative is to learn word
embeddings specific for Twitter sentiment analysis,
using distant supervision (Tang et al., 2014). The
resulting features are then used in a supervised clas-
sifier to predict the polarity of phrases. This work is
the most related to our approach, but it differs in the
sense that we use general word embeddings, learned
from unlabeled data, and predict both polarity and
intensity of sentiment.

3 Unsupervised Word Embeddings

In recent years, several models have been pro-
posed, to derive word embeddings from large cor-
pora. These are essentially, dense vector repre-
sentations that implicitly capture syntactic and se-

mantic properties of words (Collobert et al., 2011;
Mikolov et al., 2013a; Pennington et al., 2014).
Moreover, a notion of semantic similarity, as well
as other linguistic regularities seem to be encoded
in the embedding space (Mikolov et al., 2013b). In
word2vec, Mikolov et al. (2013a) induce word
vectors with two simple neural network architec-
tures, CBOW and skip-gram. These models esti-
mate the optimal word embeddings by maximizing
the probability that, words within a given window
size are predicted correctly.

Skip-gram and Structured Skip-gram
Central to the skip-gram is a log-linear model of

word prediction. Given the i-th word from a sen-
tence wi, the skip-gram estimates the probability of
each word at a distance p from wi as:

p(wi+p|wi;Cp,E) ∝ exp (Cp ·E ·wi) (1)

Here, wi ∈ {1, 0}v×1 is a one-hot representa-
tion of the word, i.e., a sparse column vector of
the size of the vocabulary v with a 1 on the po-
sition corresponding to that word. The model is
parametrized by two matrices: E ∈ Re×v is the
embedding matrix, transforming the one-hot sparse
representation into a compact real valued space of
size e; Cp ∈ Rv×e is a matrix mapping the real-
valued representation to a vector with the size of
the vocabulary v. A distribution over all possible
words is then attained by exponentiating and nor-
malizing over the v possible options. In practice, due
to the large value of v, various techniques are used
to avoid having to normalize over the whole vocab-
ulary (Mikolov et al., 2013a). In the particular case
of the structured skip-gram model, the matrix Cp

depends only of the relative position between words
p (Ling et al., 2015).

After training, the low dimensional embedding E·
wi ∈ Re×1 encapsulates the information about each
word and its surrounding contexts.

CBOW
The CBOW model defines a different objective

function, that predicts a word at position i given the
window of context i − d, where d is the size of the
context window. The probability of the word wi is
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(a) Phrases as the sum of embeddings (b) Phrases as the mean of embeddings

Figure 1: Performance of the different embeddings and phrase representations, as function of vector size.

defined as:

p(wi|wi−d, ..., wi+d;C,E) ∝ exp(C · Si+d
i−d) (2)

where Si+d
i−d is the point wise sum of the embed-

dings of all context words starting at E · wi−d to
E · wi+d, excluding the index wi, and once again
C ∈ Re×v is a matrix mapping the embedding space
into the output vocabulary space v.

GloVe
The models discussed above rely on different as-

sumptions about the relations between words within
a context window. The Global Vector model, re-
ferred as GloVe (Pennington et al., 2014), combines
this approach with ideas drawn from matrix factor-
ization methods, such as LSA (Deerwester et al.,
1990). The embeddings are derived with an objec-
tive function that combines context window infor-
mation, with corpus statistics computed efficiently
from a global term co-occurrence matrix.

4 Labeled Data

The evaluation of the shared task was performed
on a labeled test set, consisting of 1315 words and
phrases. To support the development of the systems,
the organizers released a trial set with 200 exam-
ples. The terms are representative of the informal
style of Twitter text, containing hashtags, slang, ab-
breviations and misspelled words. Negated expres-
sions were also included. We show a sample of the

words and phrases in Table 1. For more details on
these datasets, see (Kiritchenko et al., 2014).

Given the small size of the trial set, we used an ad-
ditional labeled lexicon: the Language Assessment
by Mechanical Turk (LabMT) lexicon (Dodds et al.,
2011). It consists of 10,000 words collected from
different sources. Words were rated on a scale of 1
(sad) to 9 (happy), by users of Amazon’s Mechan-
ical Turk service, resulting in a measure of average
happiness for each given word. Note that LabMT
contains annotations for happiness but our goal is
to label words in terms of sentiment polarity. We
rely on the fact that some emotions are correlated
with sentiment, namely, joy/happiness are associ-
ated with positivity, while sadness/disgust relate to
negativity (Liu, 2012).

This complementary dataset was used for two pur-
poses: first, as the development set to evaluate and
tune our system, and second, as additional training
data for the candidate submission.

Type Sample words
words sweetest, giggle, sleazy, broken
slang bday, lmao, kewl, pics
negations can’t cope, don’t think, no probs
interjections weee, yays, woooo, eww
emphasized gooooood, loveeee, cuteeee, excitedddd
hashtags #gorgeous, #smelly, #fake, #classless
multiword hashtag #goodvibes, #everyonelikesitbutme
emoticons :o ): -.- :’) <33

Table 1: A sample of the different types of terms.
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5 Proposed Approach

We addressed the task of inducing large scale sen-
timent lexicons for Twitter as a regression problem.
Each term wi was represented with an embedding
E ·wi ∈ Re×1, with e ∈ {50, 200, 400, 600, 12501}
as discussed in Section 3. Then, the manually anno-
tated lexicons were used to train a model that, given
a new term wj , predicts a score y ∈ [0, 1] reflecting
the polarity and intensity of sentiment it conveys.

Note that the embeddings represent words, so to
deal with phrases we leveraged on the compositional
properties of word vectors (Mikolov et al., 2013b).
Given that algebraic operations in the embedding
space preserve meaning, we represented phrases as
the sum or mean of individual word vectors.

5.1 Learning the Word Embeddings

The first step of our approach, requires a corpus of
tweets to support the unsupervised learning of the
embedding matrix E. We resorted to the corpus of
52 million tweets used by Owoputi et al. (2013) and
the tokenizer described in the same work.

The CBOW and skip-gram embeddings were in-
duced using the word2vec2 tool, while we used
our own implementation of the structured skip-
gram. The default values in word2vec were em-
ployed for most of the parameters, but we set the
negative sampling rate to 25 words (Goldberg and
Levy, 2014). For the GloVe model, we used the
available implementation3 with the default param-
eters. In all the models, words occurring less than
100 times in the corpus were discarded, resulting in
a vocabulary of around 210,000 tokens.

Finally, embeddings of different sizes were built,
with 50, 200, 400 and 600 dimensions.

Hyperparameter Optimization and Model
Selection

Regarding the choice of learning algorithm, sev-
eral linear regression models were considered: least
squares and regularized variants, namely, the lasso,
ridge and elastic net regressors. We also experi-
mented with Support Vectors Regression (SVR) us-
ing non-linear kernels, namely, polynomial, sigmoid

1corresponds to the concatenation of all the embeddings
2https://code.google.com/p/word2vec/
3http://nlp.stanford.edu/projects/GloVe/

and Radial Basis Function (RBF). Most of these
models have hyperparameters, thus the combination
of possible algorithms and parameters represents a
huge configuration space. A brute force approach to
find the optimal model would be cumbersome and
time consuming. Instead, for each parameter, we de-
fined meaningful distributions and ranges of values.
Then, a hyperparameter optimization algorithm was
used to find the best combination of model and pa-
rameters, by sampling from the specified configura-
tion pool. The Tree of Parzen Estimators algorithm,
as implemented in HyperOpt4, was used (Bergstra
et al., 2013).

6 Experiments

Learning word embeddings from large corpora al-
lowed us to derive representations for a considerable
number of words. Thus, we were able to find embed-
dings for 94% of the candidate terms. Using simple
normalization steps, we could find embeddings for
the remaining terms. However, we found that this
improvement in recall had almost no impact in the
performance of the system.

After mapping terms to their respective embed-
dings, we performed experiments to find the best re-
gression model and respective hyperparameters. For
this purpose, the LabMT lexicon was employed as
the development set and the trial data as a valida-
tion set, against which different configurations were
evaluated. After 1000 trials, the SVR model with
RBF kernel was selected. Finally, we performed
detailed experiments to compare word embedding
models and vectors of different dimensions.

6.1 Submitted System

The evaluation on the trial data indicated that several
configurations of embedding model and size could
achieve the optimal results. Therefore, our candi-
date system was based on structured skip-gram em-
beddings with 600 dimensions, and SVR with RBF
kernel. The hyperparameters were set to C = 50,
ε = 0.05 and γ = 0.01 and the system was trained
using the trial data and the LabMT lexicon.

4http://hyperopt.github.io/hyperopt/
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(a) Results of the top 4 ranking systems (b) Comparing word embedding models under vari-
ous training and test data regimes

Figure 2: Evaluation of the INESC-ID system.

6.2 Results

The experiments showed that all the word embed-
dings have comparable capabilities. In Figure 1, we
compare the results of different embeddings with the
same regression model. Regarding the representa-
tion of phrases, the skip-gram and structured skip-
gram embeddings performed better when averaged.
However, the GloVe and CBOW seemed to be more
effective when summing the individual word vec-
tors. These results were consistent across all the ex-
periments. In terms of embedding size, we observed
that smaller vectors tend to perform worse and, in
general, concatenating vectors of different dimen-
sionality improved performance. The CBOW rep-
resentations were the only exception. This suggests
that embeddings of different size capture different
aspects of words.

Our final method, attained the highest ranking re-
sult of the competition, with 0.63 rank correlation.
Figure 2a shows the results of the top 4 submissions
to SemEval. Further experiments were conducted
after the release of the test set labels. We found
that the concatenation of GloVe embeddings outper-
forms our previous choice of features on the test set.
Surprisingly, these embeddings obtained the worst
results on the trial data, but are much better than the
others in the test set, achieving a rank correlation of
0.67. At this point, it is still not clear why this is the
case.

Figure 2b shows the performance of each embed-

ding model, under different combinations of train-
ing and test data. We can see that the proposed ap-
proach is effective, and our models outperform the
other systems with as few as 200 training examples.

7 Conclusions

We described the approach followed by INESC-ID
for subtask E of SemEval 2015 Twitter Sentiment
Analysis challenge. This work presents the first
steps towards a general method to extract large-scale
lexicons with fine-grained annotations from Twitter
data. Although the results are encouraging, further
investigation is required to shed light on some un-
expected outcomes (e.g., the inconsistent behavior
of the GloVe features on the trial and test sets). It
should nonetheless be noted that, given the small
size of the labeled sets, it is hard to draw defini-
tive conclusions about the soundness of any method.
Furthermore, the merit of a sentiment lexicon should
be assessed in terms of its impact on the perfor-
mance of concrete sentiment analysis applications.
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Abstract

This paper describes the KLUEless system
which participated in the SemEval-2015 task
on “Sentiment Analysis in Twitter”. This year
the updated system based on the developments
for the same task in 2014 (Evert et al., 2014)
and 2013 (Proisl et al., 2013) participated in
all five subtasks. The paper gives an overview
of the core features extended by different ad-
ditional features and parameters required for
individual subtasks. Experiments carried out
after the evaluation period on the test dataset
2015 with the gold standard available are in-
tegrated into each subtask to explain the sub-
mitted feature selection.

1 Introduction

The SemEval-2015 shared task on ”Sentiment Anal-
ysis in Twitter” (Rosenthal et al., 2015) is a rerun
of the shared task from SemEval-2014 (Rosenthal et
al., 2014) with three new subtasks. While subtasks
A and B were identical to the tasks of SemEval-2014
and dealt with the identification of polarity in a given
message, subtask C, D and E were new. In subtask
C a topic was given, towards which the sentiment in
a message had to be identified. Subtask D was sim-
ilar to subtask C, as the sentiment towards a given
topic had to be identified, but in this subtask several
messages were given from which the sentiment had
to be drawn. Ultimately in subtask E, the sentiment
of a given word or phrase had to be measured on a
score ranging [0, 1], indicating its association with
positive sentiment.

The training data for subtasks A and B are the

same as in SemEval-2014 (Rosenthal et al., 2014)
and SemEval-2013 (Nakov et al., 2013). For subtask
A, there are 9,505 training items with 6,769 items
in development set and 3,912 items in the test set.
For subtask B, there are 10,239 training items, 5,907
items in the development set and 3,861 in the test
set. For subtasks C and D the same training sets as
for subtasks A and B were used by our team. A pilot
task E aimed at evaluation of automatic methods of
generating sentiment lexicons had no training set, a
detailed approach used for this subtask will be given
in Section 3.

This paper describes the updated system with our
efforts to improve it after the evaluation period. The
KLUEless system was ranked within the top 3 par-
ticipants to subtasks A (rank 2 out of 11), C (rank 2
out of 7) and D (best result out of 6 teams). It scored
5th place in subtask E, but only 13th place in sub-
task B (rank 13 out of 40 teams). In the following
chapters, we will describe the way KLUEless dealt
with the tasks stated and our results for these tasks.

2 The KLUEless Approach

The KLUEless polarity classifier is an updated
version of the SentiKLUE system used for the
SemEval-2014 shared task on ”Sentiment Analysis
in Twitter” (Evert et al., 2014) which in its turn was
based on the KLUE system that participated in the
SemEval-2013 task for sentiment analysis of tweets
(Proisl et al., 2013). Maximum Entropy (known as
Logistic Regression in the implementations of the
Python library scikit-learn1 (Pedregosa et al., 2011))

1http://scikit-learn.org
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is a machine learning algorithm in the submission
for all subtasks (A-D). The detailed overview of all
features used by the system is given in the previous
papers. This section is a brief summary of the old
features extended by the new set of features that the
system extracted from the training data for subtasks
A,B,C, and D. The old feature vectors taken by the
system as input are:

1) the sum of positive and negative scores over
all words of each message as well as an average po-
larity score per tweet. The scores are taken from
8 different sentiment lexicons (AFINN 2, MPQA3,
SentiWords4, Sentiment140 (both bigrams and un-
igrams) 5, NRC Hashtag Sentiment Lexicon (both
bigrams and unigrams) with numeric polarity scores
extended with lists of distributionally similar words
based on the AFINN sentiment lexicon (Proisl et al.,
2013, Sec. 2.2).

2) counts of positive and negative emoticons
based on the list of 212 emoticons and 95 internet
slag abbreviations from Wikipedia classified man-
ually as negative (-1), neutral (0) or positive (1)
(Proisl et al., 2013, Sec. 2.3).

3) a bag-of-words model with word ngrams (uni-
grams and bigrams) occurring in at least 2 different
messages for subtask A and in 3 different messages
for subtask B, C and D.

4) a negation heuristic inverting the polarity score
of the first sentiment word within 4 tokens after a
negation marker. In the bag-of-words representation
the following 4 tokens after a negation are prefixed
with not .

The new feature set added to the old one encom-
passes the following new features:

5) a number of question marks in a message,
6) a number of exclamation marks,
7) a number of combinations of ”!?”,
8) a number of letters in upper case,
9) presence or absence of elongated vowels occur-

ring more than twice,
10) automatically generated lexicons described in

Section 3 which were left out in the submission,
though used in the development phase.

2http://www2.imm.dtu.dk/pubdb/p.php?6010
3http://mpqa.cs.pitt.edu/lexicons/subj lexicon/
4https://hlt.fbk.eu/technologies/sentiwords
5http://www.umiacs.umd.edu/ saif/WebPages/Abstracts/NRC-

SentimentAnalysis.htm

These features form the core system. The features
specific to subtasks A and B are described in their
corresponding subsections below.

3 Creating Sentiment Lexica

3.1 Subtask E

For Subtask E, we collected Twitter data for auto-
matic annotation and subsequent score computation
for individual target terms. A similar approach was
suggested last year (Kiritchenko et al., 2014). Our
tweet collection was built mostly by filtering the En-
glish Twitter Streaming API for target terms pro-
vided in the test data using a Python script based on
code from Russell (2014). The downloaded tweet
texts were stripped of retweet boilerplate and user-
names and URLs were replaced with anonymous
placeholders. Redundant tweets and tweets contain-
ing no useful information (e.g. no English words)
were discarded, resulting in a total of about 6.5 mil-
lion.

We used three sources to annotate our tweet data.
One was our main KLUEless system, assigning ei-
ther positive, negative or neutral sentiment to a
tweet. The other two were manually annotated
lists of 328 hashtags (manually selected and re-
annotated from a lexicon generated by Mohammad
et al. (2013)) and 67 emoticons (manually selected
from a list generated from wikipedia articles6,7).
Tweets were tagged positive when they contained at
least one positive and no negative hashtag or emoti-
con respectively and vice versa.

Because annotation based on hashtags and emoti-
cons showed promising results on the test data and
because we wanted to rely as little as possible on
existing sentiment lexica that greatly influence the
annotations provided by our KLUEless system, we
gave priority to hashtag and emoticon based senti-
ments in this order and fell back to KLUEless anno-
tations if either no other information was available
or the available information was conflicting. This
overall sentiment annotation also allowed for tweets
to be tagged as neutral as this was a possible output
from the KLUEless annotation.

To counter data sparsity, a back-off approach re-
lying on large scale word clusters based on twitter

6http://de.wikipedia.org/wiki/Emoticon
7http://en.wikipedia.org/wiki/Emoticons (Unicode block)
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data (Owoputi et al., 2012) was introduced. The
frequency information of any target term occurring
below a set frequency threshold tf was replaced by
combined frequency information from cluster mem-
bers. In order to exclude marginal cluster mem-
bers, only those members that together made up a
set proportion tc of the original cluster data were
used. So, if back-off was applied for the term okayyy
for example, and tc was set to 0.8, the combined
frequency information of the terms ok, okay and
alright, which are the three most frequent cluster
members that make up 80% of all tokens in this
cluster, would be used. We disabled back-off for
hashtags as the cluster data contained a consider-
ably big cluster with arbitrary hashtags that would
disrupt any positive effect of cluster based back-off
for these cases. The final scores for the target terms

score =
fpos

fpos + fneg
(1)

Figure 1: Maximum likelihood scoring equation.

were computed using a simplistic maximum likeli-
hood estimate based on their occurrences in posi-
tive and negative contexts (see Figure 1), ignoring
information from tweets tagged as neutral. Multi-
ple occurrences of the same term within one tweet
were counted as one. Any terms that after cluster
back-off still had no frequency information available
were assigned a default score of 0.5. More sophis-
ticated scoring systems based on extensions to this
approach will be discussed in Section 8.

3.2 Lexica for Use with the KLUEless System

We applied a similar method for creating our own
sentiment lexica for use with our main system. We
used the same procedure described above for count-
ing frequencies of uni- and bigrams in all data that
was collected for subtask E trial and test runs (ap-
proximately 13 million tweets). Since there were no
target terms for which cluster based back-off could
be applied we implemented a workaround in order
to still be able to remedy data sparseness.

By creating separate lexica for every application
of our KLUEless system, we were able to use the
trial and test data of any specific run as a target for
back-off, effectively using all words found in the
data of a given run as a list of target terms. This also

enabled us to filter out any terms that weren’t useful
for the specific run and create lexica that only con-
tained relevant information. For missing unigrams,
we tried to find the most frequent term in its clus-
ter that also occurred in our tweet data and adopted
its frequency data. For missing bigrams, we applied
a more complex approach as the cluster data didn’t
contain information about bigrams. We set an ar-
bitrary threshold of 10, assuming that any bigram
occurring at least this frequently in the target data
would probably not be a spelling error. For bigrams
that occurred less often in the target data and not at
all in the data used for collecting our frequency in-
formation we applied cluster-back off on a unigram
level and tried to find a combination that also oc-
curred in our tweet data.

After this process of filtering and back-off, we
used the same simplistic scoring approach as before
to generate separate uni- and bigram lexica for each
submission run of our KLUEless system.

4 Task A: Contextual Polarity
Disambiguation

Using the core system described in Section 2, we
computed the features for the whole message and re-
ceived three features with probabilities of being pos-
itive, negative and neutral for each complete tweet.
In order to adjust the classifier to message parts, we
added an additional feature to the core system, char-
acter ngrams. 1 to 5 characters were taken within
word boundaries of a marked part of a message if
it occurred at least 20 times. Using the extended
classifier we computed the new set of features for
marked parts of each message and added previously
assigned class probabilities to feature vectors gener-
ated from corresponding full messages. The KLUE-
less system received its core feature vectors ex-
tended by ngrams and three class probabilities as in-
put and generated final polarity labels to all marked
parts of each message.

The specific features used improved the perfor-
mance (see Table 1). Results for the submitted ver-
sion is typeset in italics, the best result is typeset in
bold.

The character ngrams improved the overall classi-
fier performance for subtask A. The system achieved
rank 2 out of 11 systems (with F-score 84.51). Inter-
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features Fpos Fneg Fneut Fw Fpos+neg Acc
SentiKLUE .8740 .7874 .0303 .7939 .8307 .8186
KLUEless
+ ngrams1..5 .8814 .8080 .1513 .8126 .8451 .8289
+ lexicon2014B .8829 .8155 .1513 .8160 .8492 .8321

Table 1: Evaluation results for subtask A on the test set
2015.

estingly, using automatically generated lexicon with
tools developed for Task E for the training data of
SemEval 2014 (Task B) could have improved the re-
sults bringing our system to the first place with F-
score of 84.92 (best system: 84.79). As it was not
evident on the development data, we have not in-
cluded this lexicon when submitting the results. Try-
ing to use this lexicon for other subtasks after the
evaluation stage did not improve the scores. There-
fore, it might be a coincidence.

5 Task B: Message Polarity Classification

The system scored 13th place out of 40 on subtask
B with F-score 61.20 (best system: 64.84). As in
subtask A, we used the basic feature set described in
Section 2 extended by task specific features. We ex-
tended the initial bag-of-words model with trigrams
occurring in at least 3 different messages. The large
character ngrams generated from characters inside
word boundaries only (padded with space on each
side) were added to the feature vectors. Using the
extended set of features KLUEless generated final
polarity labels for test messages.

Results for the submitted version is typeset in ital-
ics, the best result is typeset in bold (see Table 2).

features Fpos Fneg Fneut Fw Fpos+neg Acc
SentiKLUE .6618 .5348 .6731 .6471 .5983 .6448
KLUEless
+ ngram8..9 .6644 .5533 .6777 .6529 .6089 .6506
+ ngram8..9 +
+ trigrams .6674 .5566 .6792 .6554 .6120 .6531

Table 2: Evaluation results for subtask B on the test set
2015.

8 and 9 characters inside word boundaries im-
proved the overall total score both on the develop-
ment set and on the test set 2015. The same positive
influence was noticed for trigrams added to the bag-
of-words model.

6 Task C: Topic-Based Polarity
Classification

For the subtask C we used exactly the same ap-
proach used for subtask B. Therefore, we have ig-
nored topics towards which sentiments were to be
identified and assigned polarity labels generated by
KLUEless to the full messages. Nevertheless, the
system ranked 2 out of 7 teams with F-score 45.48
(best system: 50.51). The assigned labels were pro-
jected onto the list of test topics. The feature set for
this subtask was extended as described in Section 5
since it is the best found configuration. For mes-
sages where both a positive and negative sentiment
towards the topic are expressed, the stronger senti-
ment is chosen by the classifier.

7 Task D: Detecting Trends on a Topic

The task was in determining a dominant sentiment
towards a target topic. Feature vectors based on the
values listed in Section 2 were extracted from the
2,383 test sentences and processed by KLUEless.
The classifier assigned numeric values in the range
from 0 to 1, which corresponds to the probability of
being positive, negative and neutral to each tweet.
For each tweet the highest score was selected and its
value was added to the total score of positive, neg-
ative or neutral values assigned to the tweets of the
same topic. These triples were used to calculate the
correlation between positive scores and the sum of
positive and negative ones for each topic.

In the submitted version we made use of neutral
values as well and ended up with the following for-
mula for the sentiment score of a topic:

score =
topicpos + topicneut ∗ A/2

topicpos + topicneut ∗ A + topicneg
(2)

Figure 2: Sentiment score calculation.

where topicpos is a sum of all positive values of
tweets on the same topic for which the highest value
was positive. The same idea was used for topicneut

and topicneg. The factor A is a numeric value added
to incorporate neutral tweets into the ratio of posi-
tive values to [positive + negative] values of tweets.
This is the system we submitted with factor A set
to 0.2 defined on experiments for the training data.
The system performed best of all and achieved the
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1st place out of 6 on the task.
After the evaluation stage, we tried to improve the

performance and test the same approach with differ-
ent parameters for factor A as well as without a fac-
tor at all using the test data with their gold standard
set. The result for the submitted system is typeset in
italics, the best result is in bold font in Table 3.

A = 0.0 A = 0.01 A = 0.1 A = 0.2 A = 0.8
0.1926 0.1924 0.1954 0.2017 0.2320

Table 3: Average absolute difference depending on factor
A on the test set 2015.

8 Task E: Association of Terms with
Positive Sentiment

For our submission, we set tc to 0.8 and tf to 0, ef-
fectively applying back-off only for terms that didn’t
occur in our data at all. We did not disable back-off
for hash-tag terms as has been noted in section 3, a
change which should have had little impact on the
resulting score, as our submission relied on cluster
information for only seven items in the target terms,
only one of which was a hashtag. Our results were
ranked 5th out of 10 participants for task 10 sub-
task E with a Spearman rank correlation coefficient
of 0.766, which was to be expected on the basis of
very similar results on the trial data with the same
setup.

In the following, the effect of the applied back-off
method based on clustering, the individual effects of
its two parameters tc and tf as well as some exper-
imental extensions for improving our score shall be
discussed. Back-off for hashtag terms was disabled
for all subsequent experiments.

Spearman Correlation
tf tc = 0.8 tc = 0.6 tc = 0.4

- 0.767 0.767 0.767
0 0.766 0.767 0.767
20 0.765 0.765 0.766

100 0.751 0.751 0.752
200 0.742 0.742 0.742
500 0.722 0.722 0.720

Table 4: Results for different settings for frequency and
cluster threshold parameters (tf : frequency threshold for
back-off, tc: cluster proportion threshold).

8.1 Cluster Parameters

The first set of experiments was conducted to eval-
uate the effect of the two clustering parameters,
the cluster proportion threshold tc, which deter-
mines the proportion of cluster members that is used
for collecting cluster information during frequency
counting, and the frequency threshold tf , which de-
termines the maximum frequency of terms in our
data to be affected by back-off.

The results in Table 4 show that, first of all, tc
seems to have only minimal effect on the final cor-
relation score. This suggests that either a very small
number of cluster members make up most of each
cluster, minimizing the effect of different cut-off
points, or that the clusters are in fact very homo-
geneous in their structure, at least for the majority
of each cluster’s members, resulting in similar fre-
quency proportions for most of their members.

The second finding was that as more terms are
affected by back-off with higher values for tf , the
score seems to get progressively worse. This is
a somewhat unexpected result, as we were able to
achieve some gains by using a frequency thresh-
old of 100 on the trial data (after the deadline for
subtask E), but is most likely due to the fact that
our two tweet corpora are approximately the same
size for both trial and test data, albeit the consider-
able difference in the number of target terms. The
obvious consequence is data sparsity, resulting in
much more terms being affected by back-off using
the same threshold in the test run as compared to the
trial run.

8.2 Extensions

A second set of experiments was based on three ex-
tensions to our basic approach. The first consists
of add-λ smoothing, which adds a given number λ
to all frequency counts, eliminating zero frequencies
and generally smoothing frequency counts. Another
extension was the inclusion of a method for bias cor-
rection. This means we assumed that the population
contains a certain proportion b of positive tweets and
adjusted the frequency counts obtained through our
balanced sample to those expected under this bias
assumption (the default assumption, where no cor-
rection is applied being of course 50%). The last
extension was to adjust our frequency proportions
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by computing binomial confidence intervals for a set
confidence level c and replacing the actual propor-
tions by conservative estimates (the lower end of the
confidence interval for proportions over 50% and the
upper end for those below). This results in an overall
correction towards a balanced proportion and conse-
quently in scores closer to the neutral 50% mark.

As general experiments with these extensions
confirmed our findings of higher frequency thresh-
olds for clustering worsening results, and cluster
thresholds being of small importance, the systematic
experiments discussed in the following were con-
ducted with tf set to zero, effectively applying back-
off only for terms that didn’t occur at all in our data
and tc set to 0.8, which is a configuration consistent
with the settings used for submission. Experiment-
ing with the proposed extensions led to rather dis-
couraging results and a maximum improvement of
1.0% for the Spearman correlation score.

Spearman Correlation
b λ = 0 λ = 1

0.6 0.763 0.768
0.5 0.766 0.768
0.4 0.768 0.768
0.3 0.767 0.768
0.2 0.762 0.768

Table 5: Results for different bias correction settings (b:
assumed proportion of positive tweets in population).

Applying bias correction only led to a marginal
improvement of 0,2% when b was set to 40%, add-
one smoothing seemed to offset the negative effect
of different proportion assumptions (see Table 5).
Keeping bias correction at this setting and includ-

Spearman Correlation
b c λ = 0 λ = 1

0.4 - 0.768 0.768
0.4 0.1 0.768 0.758
0.4 0.2 0.766 0.756
0.4 0.3 0.763 0.753

Table 6: Results for conservative estimates using differ-
ent confidence levels (b: assumed proportion of positive
tweets in population, c: confidence level for conservative
estimates).

ing conservative estimates based on confidence in-
tervals had consistently negative effects, which were
increased by add-one smoothing and minimized by

a very low confidence level c of 0.1 (see Table 6).
Surprisingly, another experiment including conser-

Spearman Correlation
b c λ = 0 λ = 1

0.4 - 0.768 0.768
0.6 0.1 0.752 0.743
0.3 0.1 0.775 0.767
0.2 0.1 0.773 0.773
0.1 0.1 0.760 0.776

Table 7: Results for conservative estimates using differ-
ent bias correction settings (b: assumed proportion of
positive tweets in population, c: confidence level for con-
servative estimates).

vative estimates for this confidence level and differ-
ent bias correction settings achieved an optimal re-
sult of 77.6% correlation with add-one smoothing
and an assumed population proportion b of 0.1 posi-
tive tweets (see Table 7), which is of course a highly
unlikely assumption.

The results of all performed experiments seem to
indicate that, while add-one smoothing and the pro-
posed method of bias correction may provide oppor-
tunity for optimization, adjusting proportions with
regard to conservative estimates using binomial con-
fidence intervals seems to only show positive effects
in combination with the other extensions. Intuition
and the fact that these effects proved to be rather ar-
bitrary suggest that no predictable effects seem pos-
sible and this third extension could only lead to a
score improvement because of strong overtraining.
The proposed back-off approach using cluster infor-
mation has been shown to have exclusively negative
effects, even when applied only to terms that didn’t
occur in our data at all. This can of course be said
to be a matter of luck, depending on how close the
gold standard labels for such terms are to a given
default score that is assigned instead of the result of
cluster based back-off. Further experiments should
be conducted to evaluate whether this approach can
be beneficial when applied to scores that are based
on a larger data set.

9 Conclusion

The methods discussed in this paper are suited to the
polarity classification in Twitter, our system ranking
among the top systems for 3 out of 5 subtasks. In
future, we would like to experiment with new fea-
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tures for message polarity classification that can im-
prove the prediction quality. We would also like to
experiment with automatically generated lexica for
new domains. Overall it can be assumed that our
approach to determining association of terms with
positive sentiment was most likely limited by data
sparsity due to insufficient tweet data for our fre-
quency counts. Collecting more tweet data, we will
experiment with different methods involving add-λ
smoothing and bias correction.
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Abstract

This paper describes a sentiment classifica-
tion system designed for SemEval-2015, Task
10, Subtask B. The system employs a con-
strained, supervised text categorization ap-
proach. Firstly, since thorough preprocess-
ing of tweet data was shown to be effective
in previous SemEval sentiment classification
tasks, various preprocessessing steps were in-
troduced to enhance the quality of lexical in-
formation. Secondly, a Naive Bayes classi-
fier is used to detect tweet sentiment. The
classifier is trained only on the training data
provided by the task organizers. The system
makes use of external human-generated lists
of positive and negative words at several steps
throughout classification. The system pro-
duced an overall F-score of 59.26 on the of-
ficial test set.

1 Introduction

Over the past few years, an increasing number of
people have begun to express their opinion through
social networks and microblogging services. Twit-
ter, as one of the most popular of these social net-
works, has become a major platform for social com-
munication, allowing its users to send and read short
messages called ‘tweets’. Tweets have become im-
portant in a variety of tasks, including the predic-
tion of election results (O’Connor et al., 2010). The
emergence of online expressions of opinion has at-
tracted interest in sentiment analysis of tweets in
both academia and industry. Sentiment analysis,
also known as opinion mining, focuses on computa-
tional treatments of sentiments (emotions, attitudes,

opinions) in natural language text. In this paper we
describe our submission to Task 10, subtask B: Mes-
sage Polarity Classification. The task is defined as:
‘Given a message, classify whether the message is of
positive, negative, or neutral sentiment. For a mes-
sage conveying both a positive and negative senti-
ment, whichever is the stronger sentiment should be
chosen’ (Rosenthal et al., 2015).

This paper describes a system which utilizes a
Naive Bayes classifier to determine the sentiment of
tweets. This paper describes the resources used, the
system details, including preprocessing steps taken,
feature extraction and classifier implemented, and
the test runs and end results.

2 Resources

2.1 Labeled Tweets
This system is constrained, and the only training
data used is the sentiment labeled training data pro-
vided by the task organizers. The training data we
used includes 8142 tweets, each labeled as positive,
negative or neutral.

2.2 Sentiment Lexicon
Our system relies on an external lexicon of approx-
imately 6800 tokens labeled as either positive or
negative (Liu et al., 2005). The lexicon consists
of words that humans have tagged as having either
strongly negative or strongly positive sentiment. If a
word in a tweet is preidentified as highly positive or
negative, we add a special feature to the tweet’s fea-
tures to indicate that the tweet included a highly pos-
itive word or a highly negative word (Kiritchenko
et al., 2014). Although multiple lexicons exist, e.g.
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Preprocessing Step F1 score change
jazzy −5.67
stopwords −.56
negation 1.74
username normalization 0.34
url normalization 0.40
overriding 1.74
lowercasing 2.21
tokenization 4.00
sentiment lexicon 5.81

Table 1: Changes in F1-score obtained by each prepro-
cessing step (taken individually, not cumulatively) using
5-fold cross validation on the provided training set.

(Wilson et al., 2005) and (Mohammad et al., 2013),
we were unable to include them due to time con-
straints.

3 System Details

The system consists of several preprocessing steps,
feature extraction, a Naive Bayes classifier and a
secondary classifier that makes use of tokens that are
strongly correlating with either a positive or nega-
tive sentiment. Improvements that were attempted
but were unsuccessful in improving the system are
also described.

3.1 Preprocessing Steps
3.1.1 Tokenization

All tweets are tokenized using Twokenizer, a
Twitter-specific tokenizer (Owoputi et al., 2013).
The tokenizer can detect and handle conditions un-
likely to occur in more formal writing, such as men-
tions, hashtags and retweet tokens.

3.1.2 Normalization
During preprocessing, all tweets are normalized.

This included several steps:

• Lowercasing all words (e.g. ‘Hello’ to ‘hello’
or ‘heRe’ to ‘here’)

• Converting all URLs (identified as strings con-
taining ‘.com’, ‘http’, ‘www’ and ‘.co’) to the
string ‘URL’

• Converting all mentions (identified as strings
beginning with ‘@’) to ‘username’

3.1.3 Negation
The system implements a basic version of nega-

tion to improve the accuracy of the classifier. When
processing the data, any words in between a neg-
ative adverb or verb, a ‘negation key’ (e.g. never,
not, can’t) and the next end of sentence indicator,
in this case, any punctuation symbol, are negated.
Negation was implemented to avoid misclassifica-
tion of tweets due to a word of one sentiment follow-
ing a negation key and therefore being of the oppo-
site sentiment. For instance, a sentence could state:
“That movie was not the best thing I’ve ever seen.”
Clearly, this sentence is negative, but without nega-
tion, the presence of the word ‘best,’ a typically pos-
itive word, might lead this tweet to be classified as
positive, not negative. If however, a tag is added (in
this case ‘NOT ’) to any words following a negation
key, those words will be more likely to be classified
appropriately, as ‘NOT best’ will more often be seen
in negative contexts (Kiritchenko et al., 2014).

3.1.4 Other Preprocessing Considered
Several other preprocessing steps were consid-

ered. In particular, a spell corrector, Jazzy1, was
used as it had previously been shown to be effective
(Miura et al., 2014). This step was taken to reduce
dimensionality and provide better matches with the
sentiment lexicon, e.g. converting ‘luve’ into ‘love’,
so instead of seeing ‘love’ once in a positive con-
text and ‘luve’ once in a positive context, we would
see ‘love’ twice in a positive context, giving it more
weight as a positive feature and finding a match in
the sentiment lexicon. However, Jazzy actually re-
duced accuracy and F-score of our system. One po-
tential explanation for this finding is that tweets may
contain significant amounts of abbreviations, slang
and misspellings that are too far removed from the
original spelling for a spell checker to identify and
adjust to its correct spelling.

Additionally, removing stopwords was attempted.
A list of the 25 most common words in the En-
glish language was acquired using the Brown Cor-
pus. This list provided the system with common
words unlikely to be strongly associated with any
sense. These words were then removed before fea-
ture selection. In our final implementation of the

1http://jazzy.sourceforge.net/
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Sentiment Precision Recall F-score
Negative 61.72 50.45 55.52
Positive 73.98 66.17 69.86
Neutral 64.09 76.21 69.63
F1 score: 62.69 Accuracy: 67.42

Table 2: F-scores for individual sentiments and over-
all score, produced using 5-fold cross validation on
SemEval-2015 training data.

classifier, removing stopwords has a small negative
effect on performance.

3.2 Feature Extraction

The features used in our classifier are unigrams,
negated unigrams, and two special tags indicating
the presence or absence of words in the tweet be-
ing found in the sentiment lexicon. During prepro-
cessing, negated unigrams are created by prepending
‘NOT ’ to a unigram if it follows a negation key, de-
scribed above. If the unigram follows a negation key,
only the negated unigram, not its original form, is in-
cluded as a feature. In addition, a ‘positive’ or ‘neg-
ative’ feature (represented by ‘POSW’ or ‘NEGW’)
is added for each positive or negative word a tweet
contained, as identified by inclusion in the sentiment
lexicon.

3.3 Classifiers

3.3.1 Naive Bayes Classifier

We used a Naive Bayes classifier to classify the
tweets. Naive Bayes relies on the assumption of
conditional independence among the features, some-
thing that is clearly not true here. While Naive
Bayes classifiers manage to perform well despite
this assumption, a classifier not reliant on this as-
sumption might outperform a Naive Bayes classifier
(Gamallo and Garcia, 2014).

The Naive Bayes classifier employed Laplace
smoothing. More advanced smoothing techniques
were attempted, but actually reduced both the ac-
curacy and F1 score of the system. The additive
smoothing constant was empirically chosen to be
0.4. The Naive Bayes classifier was trained solely
on the training data from SemEval-2015.

3.3.2 Other Classifiers Attempted

In addition to Naive Bayes, several other classi-
fiers were tried, and an attempt was made to em-
ploy a combination of multiple classifiers to predict
sentiment. These classifiers included a typical de-
cision list (which defaults to most frequent sense
classification), and a number of classifiers included
in scikit-learn (Pedregosa et al., 2011): LinearSVC,
GaussianNB, NearestCentroid, MultinomialNB, and
BernoulliNB. Each classifier used the same prepro-
cessing and feature selection employed by the Naive
Bayes classifier. However, after implementing all of
these classifiers and attempting to use a combina-
tion of their sense decisions to make a more accu-
rate prediction, none of the classifiers, nor any com-
bination of their decisions, outperformed the Naive
Bayes classifier, and therefore none were used in our
submission.

3.3.3 Post-Processing

Several features were identified that, when
present, were strongly indicative of a positive or
negative sense (e.g. ‘:)’, ‘:(’, ‘awful’, ‘love’). If one
of those features was present in a tweet, a rule-based
system overrode the decision of the Naive Bayes
classifier, labeling the tweet as either positive or neg-
ative. This step was conducted after negation so
that no unnegated words would be used to classify a
tweet incorrectly. Suprisingly, this ‘overriding’ step
improved our F1 score by several points, indicating
that there are several features that when present are
strongly indicative of a tweet’s sense.

These strongly positive or negative overriding fea-
tures were determined by inspection of training data
and using our own knowledge to come up with sym-
bols and words which were highly polar in senti-
ment. The positive word list contained 4 emoticons2

and 7 overly positive words: ‘love’, ‘great’, ‘happy’,
‘wonderful’, ‘good’, ‘perfect’, and ‘beautiful’. The
negative list contained 6 emoticons3, 4 curse words
and 5 negative words: ‘fuck’, ‘shit’, ‘ass’, ‘crap’,
‘hate’, ‘awful’, ‘stupid’, ‘horrible’, and ‘ugh’. Fu-
ture work could include automatically inducing such
a list from training data.

2Positive :) :D :-) ;)
3Negative :( :-( :/ :’( :.( >:(
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Laplace sentiment
λ F-score weight F-score
.3 62.40 1 59.25
.4 62.69 5 62.69
.5 62.39 6 62.39

Table 3: Two parameters empirically determined using
crossvalidation. In Laplace smoothing, λ is the additive
constant for unknown words. The ‘positive’ and ‘nega-
tive’ features introduced by the sentiment lexicon were
given five times the weight of the token unigrams.

Dataset Rank F1
Twitter 2015 21 59.26
Live Journal 2014 24 69.43
SMS 2013 34 56.49
Twitter 2013 27 63.07
Twitter 2014 31 62.93
Twitter 2014 Sarcasm 15 48.42

Table 4: Performance on the official 2015 test data as well
as on the progress data sets.

4 Test Runs

In addition to attempting additional classifiers, sev-
eral parameter values were experimented with using
5-fold cross validation to determine which produced
the best F-scores.

4.1 Parameter Selection

As mentioned earlier, the constant used for addi-
tive Laplace smoothing was determined empirically.
Values between 0 and 1 were tested, and it was de-
termined that the ideal value was 0.4. Table 3 shows
the change in score for 3 different values close to
0.4.

The second parameter tuned empirically was the
weight given to the ‘positive’ and ‘negative’ fea-
tures added if a tweet contained a positive or neg-
ative word listed in the sentiment lexicon. After ex-
perimenting with various ways of oversampling this
feature, we determined that giving these words five
times the weight of other unigrams was the optimal
number under crossvalidation. (see Table 3).

5 Conclusion

This paper describes the implementation of a senti-
ment classification system that uses extensive pre-
processing and a Naive Bayes sentiment classifier.
Using only a Naive Bayes classifier the system
achieved a 59.26 F1 score, placing 21st out of 40
overall in Task 10, subtask B. Interestingly, our sys-
tem overperformed in the sarcasm progress data set,
requiring some further investigation.

While our attempt at weighting the decision of
multiple classifiers was unsuccessful, we believe
this was due to using the same features for each clas-
sifier, and that these features may have been overfit-
ted to those found effective in a Naive Bayes classi-
fier.

Additionally, our human-generated list of posi-
tive and negative words and symbols, whose pres-
ence automatically overrode the classifier’s decision,
should be further explored. It is highly likely that
more words and symbols exist whose presence is
highly indicative of a negative or positive tweet sen-
timent. Automatic creation of these lists would
likely improve performance and be more experimen-
tally justified.

References
Pablo Gamallo and Marcos Garcia. 2014. Citius: A

naive-bayes strategy for sentiment analysis on english
tweets. In Proceedings of SemEval-2014, pages 171–
175.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and
Saif Mohammad. 2014. NRC-Canada-2014: Detect-
ing aspects and sentiment in customer reviews. In Pro-
ceedings of SemEval-2014, pages 437–442.

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005.
Opinion observer: analyzing and comparing opinions
on the Web. In Proceedings of WWW’05, pages 342–
351.

Yasuhide Miura, Shigeyuki Sakaki, Keigo Hattori, and
Tomoko Ohkuma. 2014. TeamX: A sentiment an-
alyzer with enhanced lexicon mapping and weight-
ing scheme for unbalanced data. In Proceedings of
SemEval-2014, pages 628–632.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the state-of-the-
art in sentiment analysis of tweets. In Proceedings of
SemEval-2013, pages 321–327.

Brendan O’Connor, Ramnath Balasubramanyan, Bryan
Routledge, and Noah Smith. 2010. From tweets to

629



polls: Linking test sentiment to public opinion time
series. In Proceedings of the International AAAI Con-
ference on Weblogs and Social Media, pages 122–129.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conver-
sational text with word clusters. In Proceedings of
NAACL-2013, pages 380–390.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Edouard Duchesnay. 2011. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. Semeval-2015 task 10: Sentiment analy-
sis in Twitter. In Proceedings of SemEval-2015.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings HLT ’05, pages
347–354.

630



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 631–635,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

SWATCS65: Sentiment Classification Using an Ensemble of Class Projects

Richard Wicentowski
Swarthmore College
500 College Avenue

Swarthmore, PA 19081
richardw@cs.swarthmore.edu

Abstract

This paper presents the SWATCS65 ensem-
ble classifier used to identify the sentiment of
tweets. The classifier was trained and tested
using data provided by Semeval-2015, Task
10, subtask B with the goal to label the sen-
timent of an entire tweet. The ensemble was
constructed from 26 classifiers, each written
by a group of one to three undergraduate stu-
dents in the Fall 2014 offering of a natural lan-
guage processing course at Swarthmore Col-
lege. Each of the classifiers was designed in-
dependently, though much of the early struc-
ture was provided by in-class lab assignments.
There was high variability in the final perfor-
mance of each of these classifiers, which were
combined using a weighted voting scheme
with weights correlated with performance us-
ing 5-fold cross-validation on the provided
training data. The system performed very
well, achieving an F1 score of 61.89.

1 Introduction

Workshops designed around competitions such as
Semeval-2015 provide an excellent entry-point for
undergraduate students to work on real-world prob-
lems in the field by providing both the training and
test data as well as a framework for comparing their
work to the state-of-the-art. These competitions
have a low barrier to entry while also providing
students with an external motivation to continually
improve their systems.

As part of the Fall 2015 offering of CPSC 065 at

Swarthmore College1, undergraduate students en-
rolled in the class were required to build a classifier
for Semeval-2015 Task 10, subtask B (Rosenthal
et al., 2015). The goal of this task was to provide
a labeling of the sentiment expressed in a tweet:
either negative, neutral or positive.

Fifty-one students were enrolled in the class and
each student worked in a small group. Of the 26
groups, 23 were comprised of two students, one
group had three students, and two had only one
student. Approximately 35% of the students in the
class (18 of 51) took this class as their first upper-
level course in the discipline, having completed
only the equivalents of CS1 and CS2 prior to this
class.

The classifiers were developed over a seven week
period beginning in the eighth week of the course.

2 Required Components

Each group was provided with boilerplate code to
read in the tweets and were tasked with writing a
Naive Bayes classifier to label each of the tweets.
In the first two weeks, groups were required to
first evaluate their system using five-fold cross-
validation without any preprocessing of the tweets
using only unigrams. Then they compared those
results to those obtained after performing a few
basic preprocessing steps (removal of stopwords,
case-folding, and simple handling of negation) and

1http://goo.gl/ydgE5r
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tokenization using Twokenizer (Owoputi et al.,
2013).

In the third week, students read three papers
from Semeval-2014 Task 9 subtask B, a similar task
held in the previous year. Students were not told
which papers they had to read. Each group wrote
a short literature review based on their reading
and implemented something they read about that
sounded interesting. There was no requirement that
the new piece they implemented would improve
their performance, but many groups continued to
add to their systems until they had made at least a
minor improvement over their previous baseline.

After the third week, students were provided
guidance as needed, but there were no additional re-
quirements aside from writing a four-page system
description paper using the conference’s style files.

3 Features

At its most basic, this sentiment classification task
can be performed somewhat effectively without
preprocessing the tweets, using only unigrams as
features input to a supervised classifier. What sets
each of the better performing classifiers apart is
how the data is preprocessed, which features are
extracted, whether or not external tweets or other
sources (e.g. sentiment lexicons) are included,
and the specifics of the classifier and its parameter
settings. Many of the early modifications parroted
the choices of the most successful past participants
(Miura et al., 2014; Tang et al., 2014; Günther et al.,
2014; Zhu et al., 2014).

Although there was no single modification that
all teams implemented, many teams ended up with
somewhat similar systems. Most teams case-folded
the tweets, tokenized them using Twokenizer, then
extracted only the unigrams as features. Most of the
teams also included Twitter-specific preprocessing
such as normalizing URLs and mentions to reduce
dimensionality (e.g. nytimes.com ! someurl.net,
@fmanjoo ! @someone), which has previously
been shown to be effective (Amir et al., 2014).

Nearly all of the teams that attempted to handle

n-gram features
Unigrams only 18
Unigrams and bigrams 5
Unigrams, bigrams and trigrams 3

pre-processing
Case folding 24
URL normalization 22
Negation handling 22
Tokenization 21
@mention normalization 18
Stemming/lemmatization 7
Repeated character handling 7
Spell checking 6
Part-of-speech tags 3

external lexicons
Opinion lexicon (Liu et al., 2005) 14
Emoticon lists 13
Sentiment140 (Mohammad et al., 2013) 7
MPQA Subjectivity (Wilson et al., 2005) 4

classifiers
Naive Bayes 20
Support Vector Machines 10
Logistic Regression 8
Decision Lists 6
Random Forests/Boosting 2
k-Nearest Neighbors 2
Deep belief networks 1

Table 1: Common features and classifiers used by the 26
systems built in the class.

negation followed the lead of (Pang et al., 2002),
modifying the token in the tweet with some uniquely
occurring affix such as “ NEG” to every word fol-
lowing a negation word (e.g. “not”, “never”) until
reaching a punctuation mark.

Although not well represented in the final sys-
tems, many teams tried to use a spell checker to
reduce dimensionality. After experimenting with a
few options, students often chose the Jazzy2 spell
checker used by (Miura et al., 2014), though this
option was largely abandoned because it produced
inferior results. In particular, the dictionaries used
by the spell checkers were not tailored for the
colloquial, abbreviated and slangy language found

2http://jazzy.sourceforge.net/
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Classifier F1 score
Logistic Regression 59.6
Support Vector Machines 57.4
Naive Bayes 56.5
Decision Lists 53.5

Table 2: Average F1 score for systems based on the clas-
sifier used. F1 score is reported for performance on cross-
validation on the training data. Note that a majority of the
systems (16/26) used more than one classifier so the same
system may be represented in multiple rows.

in many of the tweets, yielding high rates of false
positives: words marked as incorrectly spelled
that were actually spelled correctly, for example
“LOL”. As an alternative to spell checking, a few
teams tried to identify and correct words where the
author had repeated characters for the purposes of
emphasis, e.g. “sweeeeeet” or “nooooooo!”, similar
to (Günther et al., 2014). When this occurred, teams
often gave extra weight to these unigrams as a way
to carry the author’s intended emphasis into the
feature set.

A few students made use of a part-of-speech
tagger (Owoputi et al., 2013) to include tag n-grams
in the feature set, but no groups used the tags as a
way to disambiguate unigram features.

Table 1 contains a summary of the most common
features and classifiers used. Nine of the groups
only used the Naive Bayes and decision list clas-
sifiers that they had written for class assignments.
The majority of the students also made extensive use
of scikit-learn (Pedregosa et al., 2011), which pro-
vides access to many more standard classifiers such
as support vector machines, logistic regression, and
k-nearest neighbors.

4 Classifiers

Students were required to implement a Naive Bayes
classifier as part of the initial specification of the
assignment. In a previous assignment, students had
written a decision list classifier. About half of the
groups (12 of 26) only used these two classifiers, ei-
ther on their own or in some combination. Although
a few of the better systems in the class used only

a Naive Bayes classifier, the majority of the class,
and most of the best systems in the class (7 of the
top 10) made use of scikit-learn (Pedregosa et al.,
2011). Overall, more students tried to use SVM than
Logistic Regression, perhaps because this had been
talked about in class or referenced more in previous
system description papers. However, similar to most
of the best results from Semeval-2014, students who
used the Logistic Regression classifiers tended to
outperform those who used SVMs.

The large majority of the classifiers were able to
read in raw tweets and produce a labeling of the
test data in minutes. The small number of students
who used Jazzy needed to cache the spell-checked
versions of the tweets because of the very slow
runtime. The deep belief network classifier was
very slow, taking several hours to run.

It is difficult to make strong claims about the ef-
fectiveness of each classifier given the differences in
implementation between each of the systems. How-
ever, as shown in Table 2, the average F1 score of
systems that used Logistic Regression was higher
than the average F1 score for any other classifier.

5 System Results and Combination

In consultation with the task organizers, it was
agreed that rather than submitting each of the 26
systems individually, only the best-performing
individual systems and a single system combining
all of the systems would be submitted. As a proxy
to determine how well each of the systems would do
on the 2015 task, each of the 26 systems was eval-
uated using five-fold cross-validation on the 2015
training data and on the test data from 2014. The
three top-performing systems were submitted indi-
vidually to the workshop: SWATCMW, SWATAC,
and SWASH. It is likely that one or more of the
next-best systems could have outperformed the
systems that were submitted on the 2015 test data,
but this evaluation has not been conducted. The
results of each of the systems using cross-validation
and on the 2014 test data are included in Table 3.

As can be seen in Table 3, most of the groups in
the class did well. Some groups had last-minute
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rank xvalid 2014 rank xvalid 2014
1 62.93 66.06 14 58.11 58.40
2 64.20 64.67 15 57.31 57.18
3 62.69 62.84 16 55.89 56.49
4 61.60 61.63 17 55.37 56.14
5 58.97 61.51 18 55.73 55.54
6 59.97 61.19 19 53.80 54.94
7 60.56 60.28 20 54.10 54.91
8 58.44 60.23 21 53.37 54.52
9 57.28 60.21 22 54.53 53.52
10 60.19 60.00 23 51.60 47.76
11 60.81 59.92 24 36.22 27.63
12 57.84 59.84 25 55.08 24.53
13 62.01 59.62 26 52.94 21.80

Table 3: Performance of each of the 26 systems, eval-
uated using 5-fold cross-validation on the 2015 training
data and sorted by their F1 score on the 2014 test data.
The top three systems were submitted individually as
SWATCMW, SWATAC and SWASH, respectively.

bugs in their system that caused precipitous drop-
offs in performance between the cross-validation
and the 2014 test data. Comparing individual
system performances to those of in the 2014 task
(Rosenthal et al., 2014), all of the students’ systems
were in the third quartile, though some of the best
of student systems were in the middle of the pack.

To obtain the final classifier, a simple weighted
voting scheme was used. Each classifier was run on
the test data from Semeval-2014 Task 9 subtask B.
The F1 score obtained on the test data set was used
as the weight for each classifier. This gave the
better performing classifiers more votes in the final
outcome and gave each of the students in the class a
way to participate in this year’s task. Systems that
had major flaws (shown as systems 24, 25 and 26 in
Table 3) were omitted from the final system.

As can be seen in Table 4, the combined system
did very well on the 2015 test data. On that test
set, the system ranked 11th out of 40, performing
quite similarly to systems ranked approximately 7
through 15.

However, looking more deeply into the progress
data sets, it becomes clear that this system strug-

Dataset Rank F1
Twitter 2015 11 61.89
Live Journal 2014 8 73.37
SMS 2013 8 65.49
Twitter 2013 13 68.21
Twitter 2014 15 67.23
Twitter 2014 Sarcasm 39 37.23

Table 4: Performance of combination system compared
to the 40 participants in Semeval-2015.

gled with detecting sarcasm, finishing nearly at the
bottom of all the systems submitted. It is unclear
why this subtlety was missed, but this was not only
a problem for the combined system. Two of the three
individual systems that contributed to this ensem-
ble but were submitted separately to the workshop
(SWATAC and SWATCMW) also did very poorly on
the sarcasm subset, finishing 35th and 36th. Further
analysis is warranted to see if the problem with sar-
casm was widespread across all of the systems or if it
was particular to the highest scoring systems whose
vote was over-weighted in the final system.

6 Conclusion

We present an ensemble classifier created from 26
class projects completed during an undergraduate
class in natural language processing. These projects
were completed over a seven week period beginning
midway through the semester. Many of the students
had never taken an advanced computer science class
before, but the availability of the Twitter data, pre-
processing tools and machine learning toolkits made
participation in this task possible even for inexperi-
enced young researchers. The contributions of all
of the systems yielded a highly effective sentiment
classifier on all of the tweets excluding the sarcastic
dataset.
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Abstract

This paper describes SWATAC, a system
built for SemEval-2015’s Task 10 Subtask B,
namely the Message Polarity Classification
Task. Given a tweet, the system classifies the
sentiment as either positive, negative, or neu-
tral. Several preprocessing tasks such as nega-
tion detection, spell checking, and tokeniza-
tion are performed to enhance lexical infor-
mation. The features are then augmented with
external sentiment lexicons. Classification is
done with Logistic Regression using a one-vs-
rest configuration. For the test runs, the sys-
tem was trained using only the provided train-
ing tweets. The classifier was successful, with
an F1 score of 58.43 on the official 2015 test
data, and an F1 score of 66.64 on the Twitter
2014 progress data.

1 Introduction

Since 2006, Twitter has grown into a ubiquitous
global social platform. Millions of users compose
Twitter messages, which are known as “tweets”,
to express their opinions and sentiments about the
world around them. These tweets turn into valu-
able resources for sentiment analysis, a field that fo-
cuses on analyzing the attitude of speakers or writ-
ers towards a certain topic. Working with this infor-
mal text genre opens up a new realm of challenges
in the natural language processing world. This pa-
per describes a tweet sentiment classifier which has
been applied to Subtask B of SemEval-2015 Task
10 (Rosenthal et al., 2015). The tweets generated by
users contain Internet slang, unconventional punctu-

ation and spelling, and typos, which require a differ-
ent set of preprocessing tools than traditional genres
like newswire text.

After preprocessing the tweets, classifying them
into categories of positive, negative, and neutral
presents another challenge. Many sentiment appli-
cations make use of lexicons to supply features to
the system, populating a list of positive and neg-
ative types. Some publicly available sources in-
clude the MPQA Subjectivity Lexicon (Wilson et
al., 2005), the Opinion Lexicon (Liu et al., 2005),
and the Sentiment140 Lexicon (Mohammad et al.,
2013). While some of these lexicons do not target
tweets as their analysis subject, they each provide
a mapping from n-grams to sentiment labels, which
proves to be helpful in building our tweet sentiment
analyzer.

After preprocessing, the system performs the clas-
sification task. The classifier we use is a one-
vs-rest logistic regression classifier, so the sys-
tem uses three binary classifiers: positive/not-
positive, negative/not-negative, and neutral/not-
neutral. The classifier also over-samples the low-
frequency classes, learning from the same number
of examples of each class overall.

The accompanying sections of the papers are or-
ganized as follows: Section 2 describes resources
such as the lexicons used in the system. It also out-
lines the system design and the APIs that the system
adopts. Section 3 describes the test runs and evalu-
ates the system. Section 4 concludes the paper.
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2 System Details

The main objective of our system is to determine if
a tweet conveys a positive, negative, or neutral sen-
timent. To achieve this goal, the system first em-
ploys some preprocessing tools to enhance the lex-
ical information. Then it relies on various senti-
ment lexicons to help with the classification of senti-
ments. For preprocessing, the system performs case-
folding, detects negation, optionally uses a spell
checker, performs tokenization, and makes use of
unigrams, bigrams, and pairs of n-grams.

In addition to features extracted from the tweets,
the system relies on four external sentiment lexi-
cons. Three of them are pre-existing resources: the
MPQA Subjectivity Lexicon (Wilson et al., 2005),
the Opinion Lexicon (Liu et al., 2005), and the Sen-
timent140 Lexicon (Mohammad et al., 2013). The
final lexicon is a manually created Emoji lexicon
compiled by the authors.

After extracting features, a Logistics Regression
classifier using a one-vs-rest setup is used to label
each of the tweets.

2.1 Preprocessing

2.1.1 Case Folding
We use case folding to make every letter of every

word in both the training and the test data lowercase.
This helps in dimensionality reduction.

2.1.2 Negation Detector
The system includes a negation detector. Similar

to (Pang et al., 2002), in this detector, we append a
negation suffix to words that occur within a nega-
tion window between a negation key word and some
punctuation. For example, the word “great”, which
is considered a positive word, is treated and learned
as a different token if it is preceded by “not” as in
“this pasta is not very great”. This sentence would
become “this pasta is not NOT_very NOT_great”.

2.1.3 Jazzy
Jazzy is the Java Open Source Spell Checker1.

Previous work had shown Jazzy to be effec-
tive (Miura et al., 2014). Though this was used dur-
ing the development of the system, time constraints
didn’t allow its use in the final submission. Using

1http://jazzy.sourceforge.net/

five-fold crossvalidation, including Jazzy improved
performance slightly, from an F1 score of 63.8 to
64.75.

2.1.4 Twokenizer
Twokenizer is a tokenizer designed specifically

for tweets (Gimpel et al., 2011). Twokenizer prop-
erly handles the tokenization of tweets without man-
gling URLs, mentions, or hashtags.

2.2 Sentiment Lexicons
2.2.1 MPQA

We make use of the MPQA Subjectivity Lexi-
con (Wilson et al., 2005). The lexicon is generated
from the MPQA Opinion Corpus, which incorpo-
rates a wide range of news articles manually anno-
tated for opinions and other private states. Although
the MPQA lexicon list mainly targets news articles,
it improved our system’s classifications. The MPQA
subjectivity lexicon provides a list of words with
both their polarity (positive, negative, and neutral)
and their strength (strong subjective, weak subjec-
tive). Our system made use of the polarity, but not
the strength.

2.2.2 Opinion Lexicon
The Opinion Lexicon provided by Liu et al.

(2005) consists of a list of positive words and a list
of negative words. Because the lexicon is automat-
ically generated from social media content, it con-
tains misspelled lemmas, which could be beneficial
to tweet analysis as tweets tend to include erroneous
spellings and Internet slang (Liu, 2010). For exam-
ple, we can find both words “awesome” and “aw-
some” in the list of positive words. In the negative
list, we find “awful” as well as “aweful”.

2.2.3 Sentiment140 Lexicon
The Sentiment140-Lexicon is a list of features

with associations to positive and negative senti-
ments (Mohammad et al., 2013). The lexicon
was created from the automatically-labeled senti-
ment140 corpus of 1.6 million tweets. The la-
beled features are unigrams, bigrams, and pairs
of n-grams (unigrams-unigrams, unigrams-bigrams,
bigrams-unigrams, and bigrams-bigrams). For ex-
ample, some of the features we could see in the list
are: the unigrams “@jeffery_donovan” and “xox-
oxo”, the bigrams “yeh yeh” and “praise !”, and the
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pairs “done—had”, “i—, drinking”, “thank you—
lovely”, and “good morning—can be”. Each feature
has a score that reflects how positive or negative the
feature is. If the word was seen in more positive
contexts than negative contexts, it’s score is posi-
tive. The magnitude of the score is highest when
the distribution is overwhelmingly positive, and the
magnitude is closest to zero when the word appears
equally in both positive and negative contexts. Neg-
ative words are scored similarly using negative val-
ues instead of positive values.

2.2.4 Emoji Lexicon
Our system uses a hand-created Emoji dictionary

comprised of 16 positive2 and 7 negative3 emoti-
cons. Only the most common Emoji in the training
set were added to the lexicon. However, we chose to
some exclude some emoticons because they portray
a wide range of sentiments. For example, emoticons
like ":-|" and ":|" were seen in both neutral and nega-
tive tweets. Using this specific set of emoticons im-
proved the results when using cross-validation from
an F1 score of around 62.5 to 64.8. A more exten-
sive list might improve results, but given the time
constraints, these 23 emoticons covered the test set
adequately.

2.3 Classifier

Our system uses a one-vs-rest logistic regression
classifier to analyze the sentiment of each tweet. Be-
fore the tweets get passed to the classifier, an over-
sampling process takes place to ensure equal num-
bers of each sentiment class during training. The
classifier uses a one-vs-rest scheme, breaking down
the classification process into three tasks: positive,
negative, and neutral. Our classification task as-
sumes that each sample is assigned to one and only
one label.

2.3.1 One-Vs-Rest
We use a one-vs-rest strategy, building a classi-

fier for each sentiment label (Hong and Cho, 2008).
This means our system is comprised of three clas-
sifiers: positive/not-positive, negative/not-negative,
and neutral/not-neutral. For each classifier, the class
is compared against all the other classes. In other

2Positive :) :D :-) :-D :] :-] :’) :’-) ;) =) (: ;-) XD =D =] ;D
3Negative :( :-( :[ :-[ =( =/ :/

words, the features are screened to determine if they
are positive, negative, or neutral in three separate
stages: positive vs. non-positive, negative vs. non-
negative, and neutral vs. non-neutral.

During testing, each instance is labeled by each
of the three classifiers. When determining the la-
bel for a test instance, we would ideally like to have
only one of the binary classifiers find a match. This
usually happens when a tweet has many features ex-
pressing the same sentiment. However, when a tweet
has contradicting features, the classifiers may con-
tradict each either, either finding no matching class,
or having multiple classifiers match a class. In cases
of uncertainty, we use the labeling returned by the
classifier with the highest confidence. Removing
the one-vs-rest strategy decreases the score on cross-
validation from 64.8 to 64.0.

2.3.2 Oversampling
In our classifier, we over-sample classes accord-

ing to the number of examples we have in the train-
ing data. This means no matter what the distribu-
tion of our underlying training data is, the system
learns from an equal number of examples of each
class label. For example, if we have 100 negative
instances in the training data and 200 non-negative
instances, the negative instances would be sampled
twice, whereas every non-negative example would
be sampled only once. This way, a negative fea-
ture that is seen once is twice as strong or informa-
tive to our system as a non-negative feature that is
seen once, and it would have the same weight as a
non-negative feature that had been seen twice. This
method decreased the system’s bias towards posi-
tive features. Removing oversampling decreases the
score on cross-validation from 64.8 to 62.3.

2.3.3 Logistic Regression Model
The system uses the scikit-learn (Pedregosa et al.,

2011) implementation of a Logistic Regression clas-
sifier. In this system, we use a simple logistic re-
gression, where the model has one nominal variable
(a class or non-class), and the features are used as
measurement variables.

3 Test Runs

The final classifier included in the submitted sys-
tem is an L2 regularized logistic regression algo-
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Live Twitter 2014
System Journal 2014 SMS 2013 Twitter 2013 Twitter 2014 Sarcasm Twitter 2015

SWATAC 68.67 61.30 65.86 66.64 39.45 58.43
Webis 71.64 63.92 68.49 70.86 49.33 64.84

Splusplus 75.34 67.16 72.80 74.42 42.86 63.73
Average 68.13 60.21 63.88 64.90 47.06 57.13

Table 1: Official results comparing the SWATAC system to the best performing systems on the Twitter 2015 and
Twitter 2014 datasets, as well as the average performance on each dataset.

rithm, with a C value (the inverse of regulariza-
tion strength) set to 1, and the tolerance for stop-
ping criteria set to 0.0001, which are the default val-
ues provided by the scikit-learn library (Pedregosa
et al., 2011). This system is stochastic and returns
slightly different labellings on each run. Using five-
fold cross-validation, the final classifier had an F1
score between 64.0 and 65.0.

The official results for our system are in Ta-
ble 1. Our system has successfully scored a bet-
ter than average F1 in all of the test sets, except
for Twitter 2014 Sarcasm dataset. The table com-
pares our system to two other submitted systems:
Webis, the best scoring system on the Twitter 2015
dataset, Splusplus, the best scoring system on the
Twitter 2014 progress test data, as well as the aver-
age scores of all submitted systems in each test data
set.

4 Conclusion

This paper describes our submission to SemEval-
2015’s Task 10 subtask B. Our system uses sev-
eral preprocessing tools, which includes case fold-
ing, negation, and tokenization. Several sentiment
lexicons and a manually created Emoji lexicon are
employed to help with classifying message polari-
ties. The system uses a logistic regression classifier
along with a one-vs-rest scheme to perform a three-
stage classification. The results indicate that our sys-
tem generally performs well, with an F1 score of
58.43 on the 2015 test data.

References

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and

Noah A. Smith. 2011. Part-of-speech tagging for
Twitter: Annotation, features, and experiments. In
Proceedings of HLT ’11: Short Papers, volume 2,
pages 42–47.

Jin-Hyuk Hong and Sung-Bae Cho. 2008. A probabilis-
tic multi-class strategy of one-vs.-rest support vector
machines for cancer classification. Neurocomputing,
71(16-18):3275–3281.

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005.
Opinion observer: analyzing and comparing opinions
on the Web. In WWW ’05, pages 342–351.

Bing Liu. 2010. Sentiment analysis and subjectivity.
Handbook of natural language processing, 2:627–666.

Yasuhide Miura, Shigeyuki Sakaki, Keigo Hattori, and
Tomoko Ohkuma. 2014. TeamX: A sentiment an-
alyzer with enhanced lexicon mapping and weight-
ing scheme for unbalanced data. In Proceedings of
SemEval-2014, pages 628–632.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the state-of-the-
art in sentiment analysis of tweets. In Proceedings of
SemEval-2013, pages 321–327.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification using ma-
chine learning techniques. In Proceedings of EMNLP
’02, pages 79–86.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Edouard Duchesnay. 2011. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. Semeval-2015 task 10: Sentiment analy-
sis in Twitter. In Proceedings of SemEval-2015.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of HTL-EMNLP
’05, pages 347–354.

639



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 640–646,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

TwitterHawk: A Feature Bucket Approach to Sentiment Analysis

William Boag, Peter Potash, Anna Rumshisky
Dept. of Computer Science

University of Massachusetts Lowell
198 Riverside St, Lowell, MA 01854, USA

{wboag,ppotash,arum}@cs.uml.edu

Abstract

This paper describes TwitterHawk, a system
for sentiment analysis of tweets which partici-
pated in the SemEval-2015 Task 10, Subtasks
A through D. The system performed com-
petitively, most notably placing 1st in topic-
based sentiment classification (Subtask C) and
ranking 4th out of 40 in identifying the sen-
timent of sarcastic tweets. Our submissions
in all four subtasks used a supervised learning
approach to perform three-way classification
to assign positive, negative, or neutral labels.
Our system development efforts focused on
text pre-processing and feature engineering,
with a particular focus on handling negation,
integrating sentiment lexicons, parsing hash-
tags, and handling expressive word modifica-
tions and emoticons. Two separate classifiers
were developed for phrase-level and tweet-
level sentiment classification. Our success in
aforementioned tasks came in part from lever-
aging the Subtask B data and building a single
tweet-level classifier for Subtasks B, C and D.

1 Introduction

In recent years, microblogging has developed into a
resource for quickly and easily gathering data about
how people feel about different topics. Sites such as
Twitter allow for real-time communication of senti-
ment, thus providing unprecedented insight into how
well-received products, events, and people are in the
public’s eye. But working with this new genre is
challenging. Twitter imposes a 140-character limit
on messages, which causes users to use novel abbre-
viations and often disregard standard sentence struc-
tures.

For the past three years, the International Work-
shop on Semantic Evaluation (SemEval) has been
hosting a task dedicated to sentiment analysis of
Twitter data. This year, our team participated in
four subtasks of the challenge: Contextual Polarity
Disambiguation (phrase-level), B: Message Polarity
Classification (tweet-level), C: Topic-Based Mes-
sage Polarity Classification (topic-based), and D:
Detecting Trends Towards a Topic (trending senti-
ment). For a more thorough description of the tasks,
see Rosenthal et al. (2015). Our system placed 1st

out of 7 submissions for topic-based sentiment pre-
diction (Subtask C), 3rd out of 6 submissions for de-
tecting trends toward a topic (Subtask D), 10th out
of 40 submissions for tweet-level sentiment predic-
tion (Subtask B), and 5th out of 11 for phrase-level
prediction (Subtask A). Our system also ranked 4th

out of 40 submissions in identifying the sentiment of
sarcastic tweets.

Most systems that participated in this task over the
past two years have relied on basic machine learn-
ing classifiers with a strong focus on developing ro-
bust and comprehensive feature set. The top sys-
tem for Subtask A in both 2013 and 2014 from NRC
Canada (Mohammad et al., 2013; Zhu et al., 2014)
used a simple linear SVM while putting great ef-
fort into creating and incorporating sentiment lexi-
cons as well as carefully handling negation contexts.
Other teams addressed imbalances in data distribu-
tions, but still mainly focused on feature engineer-
ing, including an improved spelling correction, POS
tagging, and word sense disambiguation (Miura et
al., 2014). The second place submission for the
2014 Task B competition also used a neural network
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setup to learn sentiment-specific word embedding
features along with state-of-the-art hand-crafted fea-
tures (Tang et al., 2014).

Our goal in developing TwitterHawk was to build
on the success of feature-driven approaches estab-
lished as state-of-the-art in the two previous years of
SemEval Twitter Sentiment Analysis competitions.
We therefore focused on identifying and incorporat-
ing the strongest features used by the best systems,
most notably, sentiment lexicons that showed good
performance in ablation studies. We also performed
multiple rounds of pre-processing which included
tokenization, spelling correction, hashtag segmenta-
tion, wordshape replacement of URLs, as well as
handling negated contexts. Our main insight for
Task C involved leveraging additional training data,
since the provided training data was quite small
(489 examples between training and dev). Although
not annotated with respect to a particular topic, we
found that message-level sentiment data (Subtask B)
generalized better to topic-level sentiment tracking
than span-level data (Subtask A). We therefore used
Subtask B data to train a more robust model for
topic-level sentiment detection.

The rest of this paper is organized as follows. In
Section 2, we discuss text preprocessing and nor-
malization, describe the two classifiers we created
for different subtasks, and present the features used
by each model. We report system results in Section
3, and discuss system performance and future direc-
tions in Section 4.

2 System Description

We built a system to compete in four subtasks of Se-
mEval Task 10 (Rosenthal et al., 2015). Subtasks
A-C were concerned with classification of Twitter
data as either positive, negative, or neutral. Subtask
A involved phrase-level (usually 1-4 tokens) senti-
ment analysis. Subtask B dealt with classification
of the entire tweet. Subtask C involved classifying
a tweet’s sentiment towards a given topic. Subtask
D summarized the results of Subtask C by analyzing
the sentiment expressed towards a topic by a group
of tweets (as opposed to the single tweet classifica-
tion for Subtask C).

We trained two classifiers one for phrase-level
classification and one for tweet-level sentiment clas-
sification. We use the phrase-level classifier for Sub-

task A and we use the tweet-level classifier for Sub-
tasks B and C. Subtask D did not require a sepa-
rate classifier since it effectively just summarized
the output of Subtask C. We experimented to deter-
mine whether data from Subtasks A or B generalized
for C, and we found that the Subtask B model per-
formed best at predicting for Subtask C.

2.1 Preprocessing and Normalization
Prior to feature extraction, we perform several pre-
processing steps, including tokenization, spell cor-
rection, hashtag segmentation, and normalization.

Tokenization and POS-tagging Standard word
tokenizers are trained on datasets from the Wall
Street Journal, and consequently do not perform
well on Twitter data. Some of these issues come
from shorter and ill-formed sentences, unintentional
misspellings, creative use of language, and abbrevi-
ations. We use ARK Tweet NLP toolkit for natural
language processing in social media (Owoputi et al.,
2013; Gimpel et al., 2011) for tokenization and part-
of-speech tagging. An additional tokenization pass
is used to split compound words that may have been
mis-tokenized. This includes splitting hyphenated
phrases such as ‘first-place’ or punctuation that was
not detached from its leading text such as ‘horay!!!’.

Spell Correction Twitter’s informal nature and
limited character space often cause tweets to con-
tain spelling errors and abbreviations. To address
this issue, we developed a spell correction module
that corrects errors and expands abbreviations. Spell
correction is performed in two passes. The first pass
identifies the words with alternative spellings com-
mon in social media text. The second pass uses
a general-purpose spell correction package from
PyEnchant library.1

If a word w is misspelled, we check if it is one of
four special forms we define:

1. non-prose - w is hashtag, URL, user mention,
number, emoticon, or proper noun.

2. abbreviation - w is in our custom hand-built
list that contains abbreviations as well as some
common misspellings.

3. elongated word - w is an elongated word, such
as ‘heyyyy’. We define ‘elongated’ as repeating
the same character 3 or more times in a row.

1http://pythonhosted.org/pyenchant/
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4. colloquial - w matches a regex for identifying
common online phrases such as ‘haha’ or ‘lol’.
We use a regex rather than a closed list for elon-
gated phrases where more than one character is
repeated in order. This allows, for ‘haha’ and
‘hahaha’, for example, to be normalized to the
the same form.

Non-prose forms are handled in the tweet normal-
ization phase (see sec 2.1). For abbreviations, we
look up the expanded form in our hand-crafted list.
For elongated words, we reduce all elongated sub-
strings so that the substring’s characters only occur
twice. For example, this cuts both ‘heeeeyyyy’ and
‘heeeyyyyyyyyy’ down to ‘heeyy’. Finally, collo-
quials are normalized to the shortened form (e.g.,
‘hahaha’ becomes ‘haha’). If w is not a special form,
we feed it into PyEnchant library’s candidate gener-
ation tool. We then filter out all candidates whose
edit distance is greater than 2, and select the top can-
didate from PyEnchant.

Hashtag Segmentation Hashtags are often used
in tweets to summarize the key ideas of the message.
For instance, consider the text: We’re going bowling
#WeLoveBowling. Although the text “We’re going
bowling” does not carry any sentiment on its own,
the positive sentiment of the message is expressed
by the hashtag.

Similarly to spell correction, we define a general
algorithm for hashtag segmentation, as well as sev-
eral special cases. If hashtag h is not a special form,
we reduce all characters to lowercase and then use
a greedy segmentation algorithm which scans the
hashtag from left to right, identifying the longest
matching dictionary word. We split off the first
word and repeat the process until the entire string
is scanned. The algorithm does not backtrack at a
dead end, but rather removes the leading character
and continues. We use a trie structure to insure the
efficiency of longest-prefix queries.

We identify three special cases for a hashtag h:

1. manually segmented - h is in our custom
hand-built list of hashtags not handled correctly
by the general algorithm;

2. acronym - h is all capitals;
3. camel case - h is written in CamelCase,

checked with a regex.

For hashtags that are in the manually segmented list,
we use the segmentation that we identified as cor-
rect. If h is an acronym, we do not segment it. Fi-
nally, for CamelCase, we treat the capitalization as
indicating the segment boundaries.

Normalization and Negation During the normal-
ization phrase, all tokens are lowercased. Next,
we replace URLs, user mentions, and numbers with
generic URL, USER, and NUMBER tokens, respec-
tively. The remaining tokens are stemmed using
NLTKs Snowball stemmer (Bird et al., 2009).

We also process negation contexts following the
strategy used by Pang et al. (2002). We define a
negation context to be a text span that begins with a
negation word (such as ‘no’) and ends with a punc-
tuation mark, hashtag, user mention, or URL. The
suffix neg is appended to all words inside of a nega-
tion context. We use the list of negation words from
Potts (2011).

2.2 Machine Learning

For the phrase-level sentiment classification, we
trained a linear Support Vector Machine (SVM)
using scikit-learn’s LinearSVC (Pedregosa et al.,
2011) on the Subtask A training data, which con-
tained 4832 positive examples, 2549 negative, and
384 neutral. The regularization parameter was set to
C=0.05, using a grid search over the development
data (648 positive, 430 negative, 57 neutral). To
account for the imbalance of label distributions, we
used sklearn’s ‘auto’ class weight adjustment which
applies a weight inversely proportional to a given
class’s frequency in the training data to the numeric
prediction of each class label.

The tweet-level model was trained using scikit-
learn’s SGDClassifier with the hinge loss function
and a learning rate of 0.001. The main difference be-
tween the learning algorithms of our classifiers was
the regularization term of the loss function. While
the phrase-level classifier uses the default SVM reg-
ularization, the tweet-level classifier uses an ‘elas-
ticnet’ penalty with l1 ratio of .85. These param-
eter values were chosen following Gunther (2014)
from last year’s SemEval and verified in cross val-
idation. We also used the ‘auto’ class weight for
this task because the training label distribution was
3640 positive, 1458 negative, and 4586 neutral. We
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used scikit-learn’s norm mat function to normalize
the data matrix so that each column vector is nor-
malized to unit length.

2.3 Features

Our system used two kinds of features: basic text
features and lexicon features. We describe the two
feature classes below. There was a substantial over-
lap between the features used for the phrase-level
classifier and those used for the tweet-level classi-
fier, with some additional features used at the phrase
level.

Basic Text Features Basic text features include
the features derived from the text representation, in-
cluding token-level unigram features, hashtag seg-
mentation, character-level analysis, and wordshape
normalization. For a given text span, basic text fea-
tures included

• presence or absence of: raw bag-of-words
(BOW) unigrams, normalized/stemmed BOW
unigrams, stemmed segmented hashtag BOW,
user mentions, URLs, hashtags;
• number of question marks and number of ex-

clamation points;
• number of positive, negative, and neutral

emoticons; emoticons were extracted from the
training data and manually tagged as positive,
negative or neutral; 2

• whether the text span contained an elongated
word (see Section 2.1, special form 3).

The above features were derived from the anno-
tated text span in both phrase-level and tweet-level
analysis. For the phrase-level analysis, these were
supplemented with the following:

• normalized BOW unigram features derived
from 3 tokens preceding the target phrase;
• normalized BOW unigram features derived

from 3 tokens following the target phrase;
• length 2, 3, and 4 character prefixes and suf-

fixes for each token in the target phrase;
• whether the phrase was in all caps;
• whether phrase contained only stop words;
• whether a phrase contained only punctuation;

2http://text-machine.cs.uml.edu/twitterhawk/emoticons.txt

• whether the phrase contained a word whose
length is eight or more;
• whether the phrase contained an elongated

word (cf. Section 2.1).

There were a few other differences in the way each
classifier handled some of the features. The phrase-
level classifier changed the feature value from 1 to 2
for elongated unigrams. In the tweet-level classifier,
we ignored unigrams with proper noun and prepo-
sition part-of-speech tags. Negation contexts were
also handled differently. For the phrase-level clas-
sifier, a negated word was treated as a separate fea-
ture, whereas for the tweet-level classifier, negation
changed the feature value from 1 to -1.

Lexicon Features We used several Twitter-
specific and general-purpose lexicons. The lexicons
fell into one of two categories: those that provided a
numeric score (usually, -5 to 5) score and those that
sorted phrases into categories. For a given lexicon,
categories could correspond to a particular emotion,
to a strong or weak positive or negative sentiment,
or to automatically derived word clusters.

We used the features derived from the following
lexicons: AFINN (Nielsen, 2011), Opinion Lexicon
(Hu and Liu, 2004), Brown Clusters (Gimpel et al.,
2011), Hashtag Emotion (Mohammad, 2012), Sen-
timent140 (Mohammad et al., 2013), Hashtag Sen-
timent (Mohammad et al., 2013), Subjectivity (Wil-
son et al., 2005), and General Inquirer (Stone et al.,
1966). Features are derived separately for each lex-
icon. General Inquirer and Hashtag Emotion were
excluded from the tweet-level analysis since they did
not improve system performance in cross-validation.
We also experimented with features derived from
WordNet (Fellbaum, 1998), but these failed to im-
prove performance for either task in ablation studies.
See Section 3.1 for ablation results.

The features for the lexicons that provided a nu-
meric score included:

• the average sentiment score for the text span;
• the total number of positively scored words in

the span;
• the maximum score (or zero if no words had a

sentiment score);
• the score of the last positively scored word;
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Opinion Hashtag Sentiment140 Subjectivity AFINN Hashtag Brown General
Sentiment Emotion Clusters Inquirer

Phrase-level 3 3 3 3 3 3

Tweet-level 3 3 3 3 3 3 3

Table 1: Which lexicons we used for each classifier.

Withholding F-score
– (Full System) 63.76
Opinion Lexicon 63.70
Hashtag Sentiment 63.49
Sentiment140 63.22
Hashtag Emotion (HE) 63.77
Brown Clusters 63.01
Subjectivity Lexicon 63.49
AFINN Lexicon 63.43
General Inquirer (GI) 63.94
WordNet (WN) 65.49
WN, GI, HE 66.38

Table 2: Ablation results for lexicons features in tweet-
level classification.

• three most influential (most positive or most
negative) scores for the text span; this was only
used by the phrase-level system.

The features derived from lexicons that provided
categories for words and phrases included the num-
ber of words that belonged to each category.

For phrase-level analysis, the text span used for
these features was the target phrase itself. For the
tweet-level analysis, the text span covered the whole
tweet. Table 1 shows which lexicons we used when
building each classifier.

3 Results

In this section, we describe the experiments we con-
ducted during system development, as well as the
official SemEval Task 10 results.

The scores reported throughout this section are
calculated as the average of the positive and nega-
tive class F-measure (Nakov et al., 2013); the neutral
label classification does not directly affect the score.

3.1 System Development Experiments

Both phrase-level and tweet-level systems were
tuned in 10-fold cross-validation using the 2013
training, dev, and test data (Nakov et al., 2013). We

used fixed data folds in order to compare different
runs. Feature ablation studies, parameter tuning, and
comparison of different pre-processing steps were
performed using this setup.

We conducted ablation studies for lexicon fea-
tures using tweet-level evaluation. Table 2 shows
ablation results obtained in 10-fold cross-validation.
The figures are bolded if withholding the features
derived from a given lexicon produced a higher
score. Note that these experiments were conducted
using a Linear SVM classifier with a limited subset
of basic text features.

Our best cross-validation results using the con-
figuration described in sections 2.2 and 2.3 above
were 87.12 average F-measure for phrase-level anal-
ysis (Subtask A), and 68.50 for tweet-level analysis
(Subtask B).

For topic-level sentiment detection in Subtask C,
we investigated three different approaches: (1) using
our phrase-level classifier “as is”, (2) training our
phrase level classifier only on phrases that resem-
bled topics3, and (3) using our tweet-level classifier
“as is”. We found that our phrase-level classifiers
did not perform well (F-scores in the 35-38 range),
which could be explained by the fact that the Sub-
task A data was annotated so that the target phrases
actually carried sentiment (e.g., the phrase “good
luck”), whereas the Subtask C assumption was that
the topic itself had no sentiment and that the topics
context determined the expressed sentiment. For ex-
ample, in the tweet “Gotta go see Flight tomorrow
Denzel is the greatest actor ever”, positive sentiment
is carried by the phrase “the greatest actor ever”,
rather than the token “Denzel” (corresponding to the
topic). It is therefore not surprising that our tweet-
level classifier achieved an F-score of 54.90, since
tweet-level analysis is better able to capture long-
range dependencies between sentiment-carrying ex-
pressions and the target topic. Consequently, we

3We kept the phrases comprised by 0-or-1-determiner fol-
lowed by 0-or-more-adjectives, followed by a noun.
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Phrase-level Tweet-level
Live Journal 2014 83.97 70.17
SMS 2013 86.64 62.12
Twitter 2013 82.87 68.44
Twitter 2014 84.05 70.64
Twitter 2014 Sarcasm 85.62 56.02
Twitter 2015 82.32 61.99

Table 3: Official results

used the tweet-level classifier in our submission for
Subtask C.

3.2 Official Results
Our official results for phrase-level and tweet-level
tasks on the 2014 progress tests are given in Table 3.
The models were trained on the 2013 training data.

In the official 2015 ranking, our system performed
competitively in each task. For subtask A (phrase-
level), we placed 5th with an F-score of 82.32, com-
pared to the winning teams F-score of 84.79. For
subtask B, we placed 10th out of 40 submissions,
with an F-score of 61.99, compared to the top team’s
64.84. Our classifier for Subtask C won 1st place
with an F-score of 50.51, leading the second place
entry of 45.48 by over 5 points. Finally, for Subtask
D, we came in 3rd place, with an average absolute
difference of .214 on a 0 to 1 regression, as com-
pared to the gold standard (Rosenthal et al., 2015).

Our system also ranked 4th out of 40 submissions
in identifying the message-level sentiment of sarcas-
tic tweets in 2014 data, with an F-score of 56.02, as
compared to the winning team’s F-score of 59.11.

4 Discussion

Consistent with previous years’ results, our system
performed better on phrase-level data than on tweet-
level data. We believe this is largely due to the
skewed class distributions, as the majority baselines
for Subtask A are much higher, and there are very
few neutral labels. This is not the case for Subtask
B, where the neutral labels outnumber positive la-
bels. Also, the phrase-level text likely carries clearer
sentiment, while the tweet-level analysis has to deal
with conflicting sentiments across a message.

Note that hashtag segmentation strategy can be
improved by using a language model to predict
which segmentations are more likely, as well as eval-
uating the hashtag’s distributional similarity to the

Live SMS Twitter Twitter Twitter
Journal Sarcasm
2014 2013 2013 2014 2014

nBow 58.64 56.55 58.38 59.18 44.67
-spell
nBOW 58.87 57.22 59.19 60.27 46.76
nBOW 58.94 57.81 60.09 61.38 53.00
+hashtag
nBOW 70.65 62.08 68.46 67.86 52.89
+lexicon
nBOW 70.59 62.23 68.78 68.22 54.27
+hashtag
+lexicon

Table 4: Contribution of different features in tweet-level
classification. nBOW stands for normalized bag-of-words
features.

rest of the tweet. A language model could also be
used to improve the spell correction.

Our system’s large margin of success at detect-
ing topic-directed sentiment in Subtask C (over 5
points in F-score better than the 2nd place team)
likely comes from the fact that we leverage the large
training data of Subtask B and the tweet-level model
is able to capture long-range dependencies between
sentiment-carrying expressions and the target topic.

We found that the most influential features for de-
tecting sarcasm were normalized BOW unigrams,
lexicon-based features, and unigrams from hashtag
segmentation. Not surprisingly, lexicon features im-
proved performance for all genres, including SMS,
LiveJournal, and non-sarcastic tweets (see rows 2
and 4 in Table 4). The same was true of spelling cor-
rection (as shown in Table 4, row 1). Hashtag-based
features, on the other hand, only yielded large im-
provements for the sarcastic tweets, as shown in the
gain achieved by adding hashtag features to the nor-
malized BOW unigrams (see rows 2 and 3 in Table
4). Note that the 6.24 point gain is only observed
for sarcasm data; other genres showed the average
improvement of about 0.67. We believe that hash-
tags were so effective at predicting sentiment for sar-
casm, because sarcastic tweets facetiously emulate
literal tweets at first but then express their true sen-
timent at the end by using a hashtag, e.g. “On the
bright side we have school today... Tomorrow and
the day after ! #killmenow”.
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Abstract

We describe a Twitter sentiment analysis sys-
tem developed by combining a rule-based
classifier with supervised learning. We sub-
mitted our results for the message-level sub-
task in SemEval 2015 Task 10, and achieved
a F1-score of 57.06%. The rule-based classi-
fier is based on rules that are dependent on the
occurrences of emoticons and opinion words
in tweets. Whereas, the Support Vector Ma-
chine (SVM) is trained on semantic, depen-
dency, and sentiment lexicon based features.
The tweets are classified as positive, negative
or unknown by the rule-based classifier, and as
positive, negative or neutral by the SVM. The
results we obtained show that rules can help
refine the SVM’s predictions.

1 Introduction

Our opinions and the opinions of others play a
very important role in our decision-making process
and even influence our behaviour. In recent times,
an increasing number of people have taken to ex-
pressing their opinions on a wide variety of topics
on microblogging websites such as Twitter. Be-
ing able to analyse this data and extract opinions
about a number of topics, can help us make informed
choices and predictions regarding those topics. Due
to this, sentiment analysis of tweets is gaining im-
portance across a number of domains such as e-
commerce (Wang and Cardie, 2014), politics (Tu-
masjan et al., 2010; Johnson et al., 2012; Wang et

1We average the positive and negative F-measures to get the
F-score, which is the evaluation metric for this task.

al., 2012), health and psychology (Cambria et al.,
2010; Harman, ; Harman, ), multimodality (Poria et
al., 2015), crowd validation (Cambria et al., 2010),
and even intelligence and surveillance (Jansen et al.,
2009).

SemEval 2015 Task 10 (Rosenthal et al., 2015)
is an international shared-task competition that aims
to promote research in sentiment analysis of tweets
by providing annotated tweets for training, devel-
opment and testing. We created a sentiment anal-
ysis system to participate in the message-level task
of this competition. The objective of the system is
to label the sentiment of each tweet as “positive”,
“negative” or “neutral”.

In this paper, we describe our sentiment analysis
system, which is a combined classifier created by in-
tegrating a rule-based classification layer with a sup-
port vector machine.

2 System Description

Our Sentiment Analysis System consists of two clas-
sifiers – (i) Rule-based and (ii) Supervised, inte-
grated together. This section describes both these
classifiers and how we combine them.

During pre-processing, all the @<username>
references are changes to @USER and all the URLs
are changed to http://URL.com. Then, we use the
CMU Twitter Tokeniser and POS Tagger (Gim-
pel et al., 2011) to tokenise the tweets and give
a parts-of-speech tag to each token. We use the
POS tags to remove all emoticons from the pre-
processed tweets. Pre-processed tweets with emoti-
cons are given as input to the rule-based classi-
fier, whereas the support vector machine takes pre-
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processed tweets without emoticons as an input.

2.1 Supervised Learning
For the supervised classifier, we cast the sentiment
analysis problem as a multi-class classification prob-
lem, where each tweet has to be labeled as “pos-
itive”, “negative” or “neutral”. We train a Sup-
port Vector Machine (SVM) (Cortes and Vapnik,
1995) on the tweets provided for training. For all
our experiments, we use a linear kernel and L1-
regularisation. The C parameter is chosen by cross-
validation. As mentioned above, emoticons have al-
ready been removed from tweets given as input to
the SVM.

Each tweet is represented as a feature vector, con-
taining the following features:

• Word N-grams: Frequencies of contiguous
sequences of 1, 2 or 3 tokens. The TF-IDF
weighting scheme is applied.

• Character N-grams: Frequencies of contigu-
ous sequences of 1, 2 or 3 characters inside
each word’s boundary. The TF-IDF weighting
scheme is applied.

• POS Tags: Using CMU Twitter Tagger (Gim-
pel et al., 2011) output, for each tweet we com-
pute – (i) countAdj (number of adjectives), (ii)
countAdv (number of adverbs), (iii) countNoun
(number of nouns, proper nouns, and proper
nouns+possessives), (iv) countVerb (number of
verbs), and (v) countIntj (number of interjec-
tions). The sum of these five counts, gives us
the totalPos. The POS features are: [ countAdj

totalPos ,
countAdv
totalPos , countNoun

totalPos , countV erb
totalPos , countIntj

totalPos ].

• @USER: A boolean feature that is set to 1 if
the tweet contains a @<username> reference.

• Hashtag: A boolean feature that is set to 1 if
the tweet contains a hashtag.

• URL: A boolean feature that is set to 1 if the
tweet contains a URL.

• Discourse: A boolean feature that is set to 1 if
the tweet contains a “discourse marker”. Ex-
amples of discourse markers would be a “RT”
followed by a username to indicate that the

tweet is a re-tweet, news article headline fol-
lowed by “...” followed by a URL to the news
article, etc. Basically, this feature indicates
whether or not the tweet is a part of a discourse.

• Sentiment140 Lexicon: The Sentiment140
Lexicon (Mohammad et al., 2013) contains un-
igrams and bigrams along with their polarity
scores in the range of −5.00 to +5.00. Con-
sidering all uni/bi-grams with polarity less than
−1.0 to be negative and with polarity greater
than +1.0 to be positive, we count the number
of negative (negativesCount) and the number
of positive (positivesCount) uni/bi-gram occur-
rences in every tweet. For each tweet,

– the polarityMeasure is based on the pos-
itivesCount and negativesCount, and cal-
culated using Algorithm 1.

– the maximum polarity value (maxPolari-
tyValue) is the most positive or most nega-
tive polarity value of all polar uni/bi-gram
occurrences in the tweet.

Both these features are normalised to values be-
tween −1 and +1.

Algorithm 1 Calculating polarityMeasure based on
positivesCount and negativesCount

if positivesCount > negativesCount then
if negativesCount ! = 0 then

polarityMeasure = positivesCount
negativesCount

else
polarityMeasure = positivesCount

end if
else if negativesCount > positivesCount then

if positivesCount ! = 0 then
polarityMeasure = −1× negativesCount

positivesCount

else
polarityMeasure = −1× negativesCount

end if
end if

• Bing Liu Lexicon: The Bing Liu lexicon (Liu
et al., 2005) is a list of positive and nega-
tive words. We count the number of posi-
tive (positivesCount) and negative words (neg-
ativesCount) in each tweet, and calculate po-
larityMeasure using Algorithm 1. The polari-
tyMeasure is appended to the feature vector.
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• NRC Emotion Lexicon: The NRC Emotion
Lexicon (Mohammad and Turney, 2013) con-
tains a list of positive and negative words. The
polarityMeasure is calculated using the method
used for the Bing Liu Lexicon.

• NRC Hashtag Lexicon: The NRC Hashtag
Lexicon (Mohammad et al., 2013) contains un-
igrams and bigrams along with their polarity
scores in the range of −5.00 to +5.00. Using
the method used for the Sentiment140 Lexicon,
we calculate polarityMeasure and maxPolarity-
Value, and append them to the feature vector.

• SentiWordNet: SentiWordNet (Esuli and Se-
bastiani, 2006) assigns to each synset of Word-
Net (Fellbaum, 2010) 3 scores: positivity, neg-
ativity, objectivity. A word whose positivity
score is greater than negativity and objectiv-
ity is positive, while a word whose negativity
score is greater than positivity and objectivity
is negative. For each tweet, we calculate po-
larityMeasure and maxPolarityValue using the
method used for the Bing Liu Lexicon.

• SenticNet: SenticNet (Cambria et al., 2014)
contains polarity scores of single and multi-
word phrases. We count the number of positive
and negative words/phrases in each tweet, and
calculate polarityMeasure using the method
used for the Sentiment140 Lexicon.

• Negation: The Stanford Dependency
Parser (De Marneffe et al., 2006) is used
to find negation in tweets. Negation is not a
feature on its own. Rather, it affects the word
n-grams and the lexicons related features. The
negated word is appended with a “ NEG” in
all n-grams, while the polarity of all negated
words is inverted in the lexicon features.

2.2 Rule-based Classifier
For the rule-based classifier, we cast the problem
as a multi-class classification problem, where each
tweet is to be labeled as “positive”, “negative”
or “unknown”. This is an unsupervised classifier,
which applies the following rules for predictions:

• Emoticon-related Rules: If a tweet contains
only positive emoticons and no negative emoti-

cons, it is classified as positive. If a tweet con-
tains only negative emoticons and no positive
emoticons, it is classified as negative. If a tweet
contains no emoticons, we apply the sentiment
lexicon-related rules. The following emoticons
are considered to be positive: :) , (: , ;) ,
:-) , (-: , :D , :-D , :P , :-P . While, the
following emoticons are considered to be neg-
ative: :( , ): , ;( , :-( , )-: , D: ,
D-: , :’( , :’-( , )’: , )-’: .

• Sentiment Lexicon-related Rules: The Bing
Liu lexicon, the NRC Emotion lexicon, and
SentiWordNet are used as resources for posi-
tive and negative opinion words. If a tweet con-
tains more than two positive words, and no
negation or negative words from either of the
lexicons, it is classified as positive. If a tweet
contains more than two negative words, and
no negation or positive words from either of the
lexicons, it is classified as negative. If none of
the above rules apply, the tweet is classified as
unknown.

2.3 Combining the Classifiers

After developing the rule-based classifier and train-
ing the SVM, we combine the them to refine the
SVM’s predictions. Since, our goal is to maximise
positive and negative precision and recall, we use
the rule-based classifier to correct or verify the “neu-
tral” SVM predictions. So, for every tweet labeled
as neutral by the SVM, we consider the predictions
of the rule-based layer as the final labels.

3 Experiments and Results

We trained a Support Vector Machine (SVM) on
9418 tweets allowed to be used for training pur-
poses. The results we submitted to SemEval
2015 were yielded by using all SVM features and
emoticon-related rules. The sentiment lexicon-
related rules were implemented later, and thus could
not be used for the official submission. Table 2
shows the official test results for SemEval 2015.
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Features Positive Negative Neutral Fpn

P R F P R F P R F
All Features 0.824 0.629 0.713 0.612 0.607 0.610 0.679 0.831 0.748 0.662
w/o N-grams 0.671 0.597 0.632 0.430 0.574 0.491 0.645 0.637 0.641 0.562
w/o POS Tags 0.814 0.611 0.698 0.633 0.589 0.610 0.669 0.839 0.744 0.654
w/o @User,
Hashtag, URL,
Discourse

0.821 0.616 0.704 0.602 0.607 0.605 0.672 0.826 0.741 0.654

w/o Sentiment140 0.814 0.616 0.701 0.602 0.599 0.600 0.676 0.830 0.745 0.651
w/o Bing Liu 0.821 0.621 0.707 0.616 0.603 0.610 0.676 0.833 0.746 0.658

w/o NRC Emo-
tion + Hashtag 0.816 0.619 0.705 0.609 0.597 0.603 0.676 0.832 0.746 0.654

w/o SentiWordNet 0.821 0.624 0.709 0.610 0.597 0.603 0.674 0.830 0.744 0.656
w/o SenticNet 0.820 0.615 0.703 0.610 0.597 0.603 0.674 0.837 0.747 0.653

w/o Negation 0.811 0.610 0.701 0.598 0.601 0.593 0.674 0.824 0.744 0.647

Table 1: Feature ablation study for the SVM classifier. Each row shows the precision, recall, and F-score for the
positive, negative, and neutral classes respectively, followed by the average positive and negative F-score, which is the
chosen evaluation metric. All values in the table are between 0 and 1, and are rounded off to 3 decimal places.

Dataset Our Score Best Score
Twitter 2015 57.06 64.84
LiveJournal 2014 68.70 75.34
Twitter 2014 66.85 74.42
Twitter 2013 63.50 72.80
SMS 2013 60.53 68.49
Twitter 2014 Sarcasm 45.18 57.50

Table 2: Average positive and negative F-scores for sys-
tem with all SVM features and only emoticon rules.

Table 1 reports the results of a feature abla-
tion study carried out by testing the SVM classi-
fier on 3204 development tweets (from SemEval
2013) not included in the training data. These are
cross-validation results obtained using the hold-out
method.This study helps us understand the impor-
tance of different features. From the table, we can
see that the word and character n-grams features are
the most useful, followed by negation and then the
rest. All sentiment lexicon related features appear to
have similar importance, but we get the best F-score
when we append them all to the feature vector.

Features Fpn Classification Rate (%)
All Features 66.2 71.5
All Features and Rules 66.7 72.3

Table 3: Comparison between the results obtained using
SVM alone, and using SVM with a rule-based layer.

Since, using all the previously described features
gives the best SVM predictions, we add the rule-

based classification layer to a SVM trained on all
features. Table 3 compares the results obtained us-
ing the SVM alone with the results obtained using
SVM along with all the rules (emoticon and lexicon-
based) specified in section 2.2. We observe that the
F-score further increases by around half a unit and
the classification rate2 increases by around 0.8.

4 Conclusion

In this paper, we described a sentiment analysis sys-
tem developed by combining a SVM with a rule-
based classification layer. Even though we do not
get the best scores, we find that a rule-based clas-
sification layer can indeed refine the SVM’s predic-
tions. We also devise creative twitter-specific, nega-
tion and lexicon-related features for the SVM, and
demonstrate how they improve the sentiment analy-
sis system. In future, we aim to use enriched senti-
ment and emotion lists like the ones used by (Poria et
al., 2012). We would also like to experiment with re-
fining the SVM’s predictions using more rules based
on complex semantics.
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Abstract

We present the INESC-ID system for the mes-
sage polarity classification task of SemEval
2015. The proposed system does not make
use of any hand-coded features or linguistic
resources. It relies on projecting pre-trained
structured skip-gram word embeddings into a
small subspace. The word embeddings can be
obtained from large amounts of Twitter data
in unsupervised form. The sentiment analy-
sis supervised training is thus reduced to find-
ing the optimal projection which can be car-
ried out efficiently despite the little data avail-
able. We analyze in detail the proposed ap-
proach and show that a competitive system can
be attained with only a few configuration pa-
rameters.

1 Introduction

Web-based social networks are a rich data source for
both businesses and academia. However, the sheer
volume, diversity and rate of creation of social me-
dia, imposes the need for automated analysis tools.
The growing interest in this problem motivated the
creation of a shared task for Twitter Sentiment Anal-
ysis (Nakov et al., 2013). The Message Polarity
Classification task consists in classifying a message
as positive, negative, or neutral in sentiment.

A great deal of research has been done on meth-
ods for sentiment analysis on user generated con-
tent. However, state-of-the-art systems still largely
depend on linguistic resources, extensive feature en-
gineering and tuning. Indeed, if we look at the best
performing systems from SemEval 2014 (Zhu et al.,

2014), (Malandrakis et al., 2014), both make exten-
sive use of these resources, including hundreds of
thousands of features, special treatment for nega-
tion, multi-word expressions or special strings like
emoticons.

In this paper we present the INESC-ID system
for the 2015 SemEval message polarity classifica-
tion task (Rosenthal et al., 2015). The system is able
to learn good message representations for message
polarity classification directly from raw text with a
simple tokenization scheme. Our approach is based
on using large amounts of unlabeled data to induce
word embeddings, that is, continuous word represen-
tations containing contextual information. Instead
of using these word embeddings directly with, for
instance, a logistic regression classifier, we estimate
a sentiment subspace of the embeddings. The idea
is to find a projection of the embedding space that is
meaningful for the supervised task. In the proposed
model, we jointly learn the sentiment subspace pro-
jection and the classifier using the SemEval train-
ing data. The resulting system attains state-of-the-
art performance without hand-coded features or lin-
guistic resources and only a few configuration pa-
rameters.

2 Unsupervised Learning of Word
Embeddings

Unsupervised word embeddings trained from large
amounts of unlabeled data have been shown to im-
prove many NLP tasks (Turian et al., 2010; Col-
lobert et al., 2011). Embeddings capture generic
regularities about the data and can be trained with
virtually an infinite amount of data in unsupervised
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fashion. Once trained, they can be used as features
for supervised tasks or to initialize more complex
models (Collobert et al., 2011; Chen and Manning,
2014; Bansal et al., 2014). Other unsupervised ap-
proaches that can also be used for feature extraction
include brown clustering (Brown et al., 1992) and
LDA (Blei et al., 2003),

One popular objective function for embeddings is
to maximize the prediction of contextual words. In
the work described in (Mikolov et al., 2013), com-
monly referred as word2vec, the models defined es-
timate the optimal word embeddings by maximiz-
ing the probability that the words within a given
window size are predicted correctly. In the work
presented here, a structured skip-gram (Ling et al.,
2015) was used to generate the embeddings. Cen-
tral to the skip-gram (Mikolov et al., 2013) is a log
linear model of word prediction. Let w = i denote
that a word at a given position of a sentence is the
i-th word on a vocabulary of size v. Let wp = j de-
note that the word p positions further in the sentence
is the j-th word on the vocabulary. The skip-gram
models the following probability:

p(wp = j|w = i;C,E) ∝ exp
(
Cj ·E ·wi

)
. (1)

Here, wi ∈ {1, 0}v×1 is a one-hot representation
of w = i. That is, a vector of zeros of the size of
the vocabulary v with a 1 on the i-th entry of the
vector. The symbol · denotes internal product and
exp() acts element-wise. The log-linear model is
parametrized by two matrices. E ∈ Re×v is the
embedding matrix, transforming the one-hot sparse
representation into a compact real valued embedding
vector of size e × 1. The matrix C ∈ Rv×e maps
the embedding to a vector with the size of the vo-
cabulary v. In the particular case of the structured
skip-gram, here used, a different prediction matrix
is trained for each relative position between words
Cp. After exponentiating and normalizing over the
v possible options, the j-th element of the resulting
vector corresponds thus to the probability ofwp = j.

In practice, due to the large value of v, various
techniques are used to avoid having to normalize
over the whole vocabulary.

After the embeddings are trained, the low dimen-
sional embedding of each word E · wi ∈ Re×1 en-
capsulates the information about each word and its

surrounding contexts. This embedding can thus be
used as input to other learning algorithms to further
enhance performance.

3 Using Embeddings for Sentiment
Prediction

3.1 Sentiment Embedding Subspace

There are multiple ways in which embeddings could
be incorporated as a pre-training step into a super-
vised task. The initial attempts for the proposed sys-
tem included log-linear classifiers using the embed-
dings as initialization values or features, but these
led to poor results. Ideally, embeddings should be
adapted to the supervised task. However, this faces
an additional difficulty: only a small subset of the
words will actually be present in the training set of
the supervised task. Words not present in the su-
pervised training set will never get their embeddings
updated.

To avoid this, here we employ a simple projec-
tion scheme. We consider the adapted embeddings
S · E, where E ∈ Re×v is the original unadapted
embedding matrix and S ∈ Rs×e, with s � e, is
a projection matrix trained on the supervised data.
The idea is that, by only training S on the super-
vised data, we determine a sub-space of the embed-
dings which is optimal for the supervised task. An
additional advantage is that, unlike with a direct re-
estimation of E, all embeddings are updated based
on the supervised task data. This simple approach
proved very useful and it accounts for most of the
performance attained in our system.

3.2 Non-linear Sub-space Model

Based on the sub-space concept, various log-linear
and non-linear models were explored. Most of the
models attempted were prone to get trapped in poor
local minima or showed stability problems during
training. The only exception identified is the non-
linear model here presented, which showed both fast
convergence and high performance.

In what follows, we will denote a message, e.g.
a tweet, of n words as a matrix m ∈ {0, 1}v×n,
where each column is a one-hot representation of
each word. The vocabulary v is equal to that of the
unsupervised pre-training. Words of the SemEval
task not appearing in that vocabulary are represented
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as a vector of zeros, equivalent to an embedding of
e zeros. In the SemEval task, each message has to be
classified as neutral, negative or positive. Let y de-
note a categorical random variable over those three
classes. The sub-space non-linear model estimates
thus the probability of each possible category y = k
given a message m as

p(y = k|m;C,S) ∝
exp (Ck · σ (S ·E ·m) ·B) , (2)

where σ() is a sigmoid function acting on each el-
ement of the matrix. The matrix C ∈ R3×s maps the
embedding sub-space to the classification space and
B ∈ 1n×1 is a matrix of ones that sums the scores
for all words up prior to normalization. This sim-
plification, equivalent to a bag of words assumption,
outperformed other approaches like convolution.

The model is thus equivalent to a multi-layer per-
ceptron (MLP) (Rumelhart et al., 1985) with one
hidden sigmoid layer and a soft-max output layer.
The input to the MLP would be the fixed word em-
beddings attained by applying E. The input layer
S learns a projection of E into a small sub-space of
size s� e.

4 Proposed System

4.1 Unsupervised Word Embeddings Learning
The embedding matrix E was trained in unsuper-
vised fashion using the structured skip-gram model,
described in Section 2.

We used the corpus of 52 million tweets used
in (Owoputi et al., 2013) with the tokenizer de-
scribed in the same work. The words that occurred
less than 40 times in the data were discarded from
the vocabulary. To train the model, we used a neg-
ative sampling rate of 25 words, sampled from a
multinomial of unigram word probabilities over all
the vocabulary (Goldberg and Levy, 2014). Em-
beddings of 50, 200, 400 and 600 dimensions were
trained.

It should be noted that the training configuration
is generic and was not adapted to the SemEval task.
One consequence of this is a relatively strong prun-
ing of the vocabulary. Around 23% of words in the
SemEval tasks did not have an embedding and thus
were set to have an embedding of e zeros.

4.2 Supervised Embedding Sub-space
Learning

Text normalization for the supervised task employed
the CMU tokenizer plus the following additional
steps: messages were lower-cased, Twitter user
mentions and URLs were replaced with special
tokens and any character repetition above 3 was
mapped to 3 characters.

The small amount of supervised data available
was the main driving factor behind the design and
optimization of the supervised training component.
In order to maintain the number of free parameters
low, small sizes of the subspace were selected with
values ranging from 5 to 30. Training was also kept
as simple as possible. The training set of SemEval
was split into 80% for parameter learning and 20%
for hyper-parameter selection, maintaining the orig-
inal sentiment relative frequencies in each set. The
2013 and 2014 SemEval sentiment analysis test sets
were used to validate the different candidate models.
The most probable class was selected as the model
prediction.

The parameters of subspace model in Equation 2,
S and C were estimated to minimize the nega-
tive log-likelihood of the correct class. Training
employed conventional Stochastic Gradient Descent
(Rumelhart et al., 1985) with mini-batch size 1 and
random uniform initialization similar to (Glorot and
Bengio, 2010). After some initial experiments, it
was determined that a learning rate of 0.01 and
selecting the model with the best accuracy on the
20% set after 8 iterations led to the best results.

5 Experiments and Results

5.1 Sensibility Analysis

This section analyzes the performance of the pro-
posed system on the message polarity classification
task of SemEval 2015. In general, the sentiment sub-
space model showed consistent and fast convergence
towards the optimum in very few iterations. Despite
using class log-likelihood as training criterion and
accuracy as stopping criterion, the model showed
good performance in terms of average F-measure for
positive and negative sentiments. This was not al-
ways the case for other tested models.

Regarding the two main parameters, embedding
size e and sub-space size s, sensibility analysis were
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carried out and are shown in Tables 1 and 2. For
these experiments learning rate and stopping condi-
tion were left fixed to the previously indicated val-
ues. Variations of learning rate to smaller values e.g.
0.005 were explored but did not lead to a clear pat-
tern.

Table 1 shows the effect of embedding size on the
system’s performance. Very small embeddings lead
clearly to worse results. Larger embeddings not al-
ways provide the best performance. However, they
provide more consistent results across test sets. It
was also inferred from other tasks that using larger
embeddings had in general a positive effect.

Emb Size (e) Dev 2013 2014
50 65.96 68.35 70.54

200 70.65 70.28 72.80
400 70.19 71.54 72.24
600 70.08 72.16 72.72

Table 1: Avg. F-measure on SemEval development and
test sets varying with embedding size e. Sub-space size
s = 10. Best model per column in bold.

Table 2 shows the variation of system perfor-
mance with sub-space size. The optimal value was
consistently found to be at s = 10 regardless of em-
bedding size.

Subsp. Size (s) Dev 2013 2014
5 69.78 71.82 72.17

10 70.08 72.16 72.72
20 69.18 71.97 72.52
30 67.81 70.97 72.45

Table 2: Avg. F-measure on SemEval test sets varying
with embedding sub-space size s. Embedding size e =
600. Best model per column in bold.

5.2 Submitted System and Revised Candidates
Due to time constraints, not all planned configura-
tions could be tested prior to system submission.
Consequently, some of the experiments shown in
the previous section were carried out after submis-
sion. Based on these results, two new candidates
were selected and then tested on the 2015 dataset.
These were a system that showed a very stable per-
formance using e = 600 and s = 10 and a good sys-
tem with a smaller embedding size using e = 200,

s = 10. The same configuration, learning rate and
number of iterations, as in the submitted model were
used for these experiments.

The results for the submitted system and the a
posteriori selected ones are displayed in Table 3.
The results on 2015, confirm the sensibility analy-
sis of e and s. The high performance of the e = 600,
s = 10 model on the 2015 dataset was however un-
expected, since it tops the submitted system by more
than a 1% absolute. The second model selected, us-
ing a smaller e size displayed a performance compa-
rable to that of the submitted system thus showing
the overall robustness of the approach.

e s Dev 2013 2014 2015
600 20 69.18 71.97 72.52 64.12
600 10 70.08 72.16 72.72 65.19
200 10 70.65 70.28 72.80 64.09

Table 3: Avg. F-measure of the submitted system (top)
and posteriorly selected candidates (bottom). Best model
per column in bold.

It should be noted as well that there is small dif-
ference between the result attained in the submitted
predictions (64.17) and the ones reported here for
the submitted system (64.12). Upon revision of the
code we could determine that this was due to a minor
bug affecting how the embeddings of the E matrix
were constructed.

6 Conclusions

We have presented the INESC-ID system for the Se-
mEval 2015 message classification task. The sys-
tem does not make use of any hand-coded features or
linguistic resources and employs a simple tokeniza-
tion scheme. The system is however able to attain
state-of-the-art performance with few configuration
parameters and a small number of iterations. The
results are also consistent across sets and configura-
tion settings.
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Abstract

We present and evaluate several hybrid sys-
tems for sentiment identification for Twit-
ter, both at the phrase and document (tweet)
level. Our approach has been to use a novel
combination of lexica, traditional NLP and
deep learning features. We also analyse tech-
niques based on syntactic parsing and token-
based association to handle topic specific sen-
timent in subtask C. Our strategy has been to
identify subphrases relevant to the designated
topic/target and assign sentiment according
to our subtask A classifier. Our submitted
subtask A classifier ranked fourth in the Se-
mEval official results while our BASELINE and
µPARSE classifiers for subtask C would have
ranked second.

1 Introduction

Twitter holds great potential for analyses in the so-
cial sciences both due to its explosive popularity, in-
creasing accessibility to large amounts of data and
its dynamic nature. For sentiment analysis on twit-
ter the best performing approaches (Mohammad et
al., 2013; Zhu et al., 2014) have used a set of rich
lexical features. However, the development of lex-
ica can be time consuming and is not always suit-
able when shifting between domains, which exam-
ine new topics and user populations (Thelwall and
Buckley, 2013). Excitingly, the state of the art has
recently shifted toward novel semi-supervised tech-
niques such as the incorporation of word embed-
dings to represent the context of words and concepts
(Tang et al., 2014b). Moreover, it is important to
be able to identify sentiment in relation to particular
entities, topics or events (aspect-based sentiment).

We have followed a hybrid approach which incor-
porates traditional lexica, unigrams and bigrams as
well as word embeddings using word2vec (Mikolov
et al., 2013) to train classifiers for subtasks A and
B. For subtask C, sentiment targeted towards a par-
ticular topic, we have developed a set of different
strategies which use either syntactic dependencies or
token-level associations with the topic word in com-
bination with our A classifier to produce sentiment
annotations.

2 Phrase-Based Sentiment Analysis
(Subtask A) as a Means to an End
(subtask C)

Phrase-based sentiment analysis (subtask A) in
tweets is a long standing task where the goal is to
classify the sentiment of a designated expression
within the tweet as either positive, negative or
neutral. The state of the art for subtask A achieves
high performance usually based on methodologies
employing features obtained from either manually
or automatically generated lexica (Mohammad
et al., 2013; Zhu et al., 2014). However, lexica
by definition lack contextual information and are
oftain domain dependent. Recent work (Tang et
al., 2014a) has successfully used sentiment-specific
word embeddings, vector representations of the
n-gram context of positive, negative and neutral
sentiment in tweets to obtain performance which
approaches that of lexicon-based approaches.

Here we employ a combination of lexical features
and word embeddings to maximise our performance
in task A. We build phrase-based classifiers both
with an emphasis on the distinction between positive
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and negative sentiment, which conforms to the dis-
tribution of training data in task A, as well as phrase-
based classifiers trained on a balanced set of posi-
tive, negative and neutral tweets. We use the latter
to identify sentiment in the vicinity of topic words
in task C, for targeted sentiment assignment. In pre-
vious work (Tang et al., 2014a; Tang et al., 2014b)
sentiment-specific word embeddings have been used
as features for identification of tweet-level sentiment
but not phrase-level sentiment. Other work which
considered word embeddings for phrase level senti-
ment (dos Santos, 2014) did not focus on produc-
ing sentiment-specific representations and the em-
beddings learnt were a combination of character and
word embeddings, where the relative contribution of
the word embeddings is not clear. In this work we
present two different strategies for learning phrase
level sentiment specific word embeddings.

2.1 Feature Extraction for Task A

Here we provide a detailed description of data pre-
processing and feature extraction for phrase-level
sentiment. Working on the training set (7,643
tweets), we replaced URLs with “URLINK”, con-
verted everything to lower case, removed spe-
cial characters and tokenised on whitespace, as in
(Brody and Diakopoulos, 2011). We decided to keep
user mentions, as potentially sentiment-revealing
features. We then extracted features both for the tar-
get (the designated highlighted phrase) and its con-
text (the whole tweet):

Ngrams: For a target at the position n in a tweet,
we created binary unigram and bigram features of
the sequence between {n � 4, n + 4}, as suggested
by Saif et al. (Mohammad et al., 2013).
Lexicons: We used four different lexica: Bing Liu’s
lexicon (Hu and Liu, 2004) (about 6,800 polarised
terms), NRC’s Emotion Lexicon (Mohammad and
Turney, 2010) (about 14,000 words annotated based
on 10 emotional dimensions), the Sentiment140
Lexicon (62,468 unigrams, 677,968 bigrams and
480,010 non-contiguous pairs) and NRC’s Hash-
tag Sentiment Lexicon (Mohammad et al., 2013)
(54,129 unigrams, 316,531 bigrams and 308,808
non-contiguous pairs). We extracted the number of
words in the text that appear in every dimension of
the Bing Liu and NRC Emotion Lexica. For every

lexicon, we extracted features indicating the number
of positive unigrams, bigrams and pairs, their maxi-
mum sentimental value as indicated by each lexicon,
the sum of their sentiment values and the value of the
last non-zero (non-neutral) token. All features were
extracted both from the tweet as well as the target.
Word Embeddings: We used the tweets collected
by (Purver and Battersby, 2012) as training data for
sentiment-specific word embeddings. These tweets
contain emoticons and hashtags for six different
emotions, which we group together to compile pos-
itive and negative subsets. To create phrase-level
word embeddings, we applied two strategies: (i)
we searched for positive and negative words (as
defined in Bing Liu’s lexicon) in the corpus; (ii)
we performed chi-squared feature selection and ex-
tracted the 5,000 most important tokens to be used
as our index; for both strategies, we extracted the
phrase included in the 2-token-length, two-sided
window. The embeddings were learnt by using Gen-
sim (Řehůřek and Sojka, 2010), a Python package
that integrates word2vec1. In both cases, we created
representations of length equal to 1002. For each
strategy, class and dimension, we used the functions
suggested by (Tang et al., 2014b) (average, maxi-
mum and minimum), resulting in 2,400 features.
Extra Features: We used several features, poten-
tially indicative of sentiment, a subset of those in
(Mohammad et al., 2013). These include: the to-
tal number of words of the target phrase, its position
within the tweet (“start”, “end”, or “other”), the av-
erage word length of the target/context and the pres-
ence of elongated words, URLs and user mentions.
We manually labelled various emoticons as positive
(strong/weak), negative (strong/weak) and “other”
and counted how many times each label appeared
in the target and its context.

2.2 Experiments and Results
We experimented with Random Forests and Lib-
SVM with a linear kernel on the training set (4,769
positive, 2,493 negative and 381 neutral tweets) us-
ing 10-fold cross-validation and selected LibSVM
as the algorithm which achieved the best average F1
score on the positive and negative classes. We then

1https://code.google.com/p/word2vec/
2The generated, phrase-level Word Embeddings are avail-

able at https://zenodo.org/record/14732
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used the development set (387 positive, 229 negative
and 25 neutral tweets) to fine-tune the value of pa-
rameter C, achieving an F1 score of 86.40. The final
model was applied on the two test sets provided to
us; the “Official 2015 Test” (“OT”) included 3,092
instances and the “Progress Test” (“PT”), including
10,681.

Our results are summarised in Table 1. Our al-
gorithm was ranked fourth in OT and fifth in PT
out of 11 competitors, achieving F1 scores of 82.46
and 83.89 respectively. It is clear from the table
that lexicon-based features have the most impor-
tant impact on the results. Interestingly, without
ngram features, our results would have been bet-
ter in both sets; however, there was a 0.8 gain in
F1 score with the development set (F1 score 85.60)
when these were incorporated in our model. The
comparison between all the different pairwise sets
of features illustrates that lexica together with word
embeddings contribute the most (the results are most
affected when they are removed), whereas from the
individual feature sets (not presented due to space
limitations), lexicon-based features outperform the
rest (79.96, 82.18), followed by word embeddings
(77.75, 79.92 in OT and PT respectively).

Features Used OT PT
All features 82.46 83.89
� lexica 79.31 80.45
� embeddings 82.01 84.58
� ngrams 82.72 84.63
� extra 82.37 84.46
� lexica, embeddings 73.11 72.60
� lexica, ngrams 77.70 79.88
� lexica, extra 78.91 80.49
� embeddings, ngrams 79.83 82.66
� embeddings, extra 81.71 84.09
� ngrams, extra 82.64 84.36

Table 1: Average F1 scores of positive/negative classes
on the test set with different features.

3 Tweet-Level Sentiment Analysis
(Subtask B) Using Multiple Word
Embeddings

Our approach to subtask B follows the same logic
as for subtask A, feeding a combination of hybrid

features (lexical features, n-grams and word embed-
dings) to an SVM classifier to determine tweet-level
polarity. Our approach integrates rich lexicon-based
resources and semantic features of tweets, which en-
ables us to achieve an average F1-score of 65.78 on
positive tweets and negative tweets in the develop-
ment dataset. In the final evaluation for subtask B,
we got a rank of 27 out of 40 teams for the test
dataset and a rank of 24 out of 40 teams for the test
progress dataset. The results are discussed in more
detail in subsection 3.2.

The features we used are presented below:

3.1 Features

N-grams: We extract unigrams, bigrams and tri-
grams from the tweets.
Twitter syntax features: These include the number
of tokens that are all in uppercase; the numbers of
special marks (?, !, #, @); the numbers of positive
emoticons (<3, :DD, ;), :D, 8), :-), :), (-:) and the
number of negative emoticons (:(, :’(, :/, :-(, :<).
Lexicon-based features: For lexica that only pro-
vided the polarities of sentiment bearing words, we
used the numbers of matched positive words and
negative words in a tweet as features; for lexica
that provided sentiment scores for words or ngrams,
we included the sum of positive scores of matched
words and the sum of negative scores of matched
words as two separate features. The lexica we
utilised fell into two categories: manually generated
sentiment lexica like the AFINN (Nielsen, 2011),
MPQA (Wilson et al., 2005), and Bing Liu’s lex-
ica (Liu, 2010); and automatically generated senti-
ment lexica like the Sentiment140 (Mohammad et
al., 2013) and NRC Hashtag Sentiment lexica (Mo-
hammad et al., 2013).
Word embeddings representations features: We
learned positive and negative word embeddings sep-
arately by training on the HAPPY and NON-HAPPY

tweets from Purver & Battersby’s multi-class Twit-
ter emoticon and hashtag corpus (Purver and Bat-
tersby, 2012), as with subtask A. The difference with
subtask A is that here we used the whole tweet as our
input (compared to the two-sided window around
a polarised word in subtask A) in order to create
tweet-level representations. We set the word em-
beddings dimension to 100 in order to gain enough
semantic information whilst reducing training time.
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We also employed the word embeddings encoding
sentiment information generated through the unified
models in (Tang et al., 2014b). Similar to Tang, we
represent each tweet by the min, average, max and
sum on each dimension of the word embeddings of
all the words in the tweet. In the end, the number
of our word embeddings features is 4⇥ 100 = 400.
A tweet’s representations of word embeddings gen-
erated from the HAPPY and non-HAPPY subset of
tweets and the embeddings generated by Tang et
al. were incorporated into the feature set. Their
word embeddings have 50 dimensions, so another
4⇥ 50 = 200 features are added to our feature set.

3.2 Experiments
For our SemEval submission we trained an SVM
classifier on 9684 tweets (37.59% positive, 47.36%
neutral, 15.05% negative) from the training data set,
and used the classifier to classify the 2390 tweets
(43.43% positive, 41.30% neutral, 15.27% nega-
tive) in the test data set. After the training pro-
cess, we tested the performance of classifiers with
different feature sets (shown in the first column in
Table 2) on the development data set (1654 tweets
with 34.76% positive, 44.68% neutral, 20.56% neg-
ative), and used the average F1 scores of positive and
negative tweets as performance measurement. The
classifier had the best performance on the develop-
ment data set, achieving a score of 65.78, compared
with 57.32 and 65.47 on the test and test progress
datasets. We hypothesize that these differences are
caused by differences in the proportions of positive
and negative tweets in these datasets.

Experiment Score
All features 58.53
� positive and negative embeddings 57.32
� n-grams 58.63
� Tang’s embeddings 58.83
� Twitter-specific features 58.38
�Manual lexica 57.58
� Automatic lexica 58.39
� All embeddings 56.54

Table 2: The scores obtained on the test set with different
features.

In Table 2 we list the average F1 scores of pos-
itive and negative tweets in the test data set when

removing certain features. The results we submit-
ted were generated by the second classifier. Table 2
demonstrates that representing the tweet with posi-
tive and negative word embeddings is the most effec-
tive feature (performance is affected the most when
we remove these) followed by the manually gen-
erated lexicon-based features. This combined with
a 2% reduction in F1 score when the embeddings
are removed, indicates that the embeddings improve
sentiment analysis performance. Contrary to the ap-
proach by (Tang et al., 2014b), we didn’t integrate
the sentiment information in the word embeddings
training process, but rather the sentiment-specific
nature of the embeddings was reflected in the choice
of different training datasets, yielding different word
embedding features for positive and negative tweets.
To measure the contributions of our word embed-
dings and Tang’s sentiment-specific word embed-
dings separately in the F1 score, we performed a fur-
ther test. When we only removed Tang’s word em-
beddings features, the F1 score dropped by 0.15%;
when we only removed our word embedding fea-
tures, the F1 score dropped by 1.21%. This illus-
trates that for our approach, our word embedding
features contribute more. However, it is the com-
bination of the two types of word embeddings that
boosts our classifier’s performance.

4 Target-Specific Sentiment: Subtask C

Experiment Score
SUBMISSION 22.79
SUBMISSION-SENTIMENT 29.37
SUBMISSION-RETOKENIZED 27.88
CONLL-PROPAGATION 31.84
BASELINE 46.59
µPARSE 46.87

Table 3: Summary of the performance of our subtask C
classifiers.

In subtask C the goal is to identify the sentiment
targeted towards a particular topic or entity. This
is closely linked to aspect-based sentiment (Pontiki
et al., 2014) and is very important for understand-
ing the reasons behind the manifestation of different
reactions. We develop several strategies for select-
ing a topic-relevant portion of a tweet and use it to
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produce a sentiment annotation. A driving force of
our approach has been to use phrase-based sentiment
identification from subtask A to annotate the topic-
relevant selections.

4.1 Topic Relevance Through Syntactic
Relations

A syntactic parser generates possible grammati-
cal relations between words in unstructured text,
which are potentially useful for capturing the con-
text around a target topic. We experimented with the
Stanford parser (Klein and Manning, 2003) and the
recently released TweeboParser (Kong et al., 2014).
TweeboParser is explicitly designed to parse tweets
– supporting multi-word annotations and multiple
roots – but instead of the popular Penn Treebank
annotation it uses a simpler annotation scheme and
outputs much less dependency type information and
was therefore not deemed suitable for our purpose.
We used the Stanford parser with a caseless pars-
ing model, expected to work better for short doc-
uments. We define the topic-relevant portion of a
tweet as the weakly connected components of the
dependency graph containing a given topic word.

4.2 Generating Per-Token Annotations

Our four different systems BASELINE,
SUBMISSION-SENTIMENT, CONLL-
PROPAGATION and µPARSE all use per-token
sentiment annotations generated in advance by the
linear SVM- and random forest-based classifiers
discussed in subtask A, using balanced and imbal-
anced versions of subtask A’s training data. Because
the classifier can perform better with additional con-
text, we generated two versions of each annotation
set – one token at a time (1-WINDOW), and three
at a time (3-WINDOW). 3-WINDOW annotations
undergo a further majority pre-processing operation
to generate a per-token annotation, since adjacent
windows overlap. We found again that the SVM
classifier outperformed the random forest classifer,
with SUBMISSION-RETOKENIZED and CONLL-
PROPAGATION performing best with the balanced
version, and µPARSE and BASELINE performing
best using the imbalanced training data. In the
following we explain each of the above mentioned
Task C strategies.

4.3 Using Dependency Relations

CONLL-PROPAGATION builds a dependency graph
from a supplied parse, trims some of the relations3,
attaches a 1-WINDOW sentiment to each node us-
ing our subtask A classifier, and then propagates
those values along variably weighted edges to the
target. To help the algorithm propagate successfully,
the graph is undirected. We opted to train the edge
weights using a simple genetic algorithm. Whilst its
performance is modestly better than our submission,
the approach is constrained by its inefficiency.

SUBMISSION builds a directed co-dependency
graph from the supplied parse, and then attempts
to match it against parse trees seen previously, to
capture syntactic features that may be relevant to
the topic’s sentiment. Because subgraph isomor-
phism is a computationally difficult problem, we
use a diffusion kernel (as in (Fouss et al., 2006))
to normalise the adjacency matrix for SVM clas-
sification. We also add unigrams within the same
window used for BASELINE as an additional fea-
ture. SUBMISSION-RETOKENIZED updates the re-
sult and replaces whitespace tokenization with that
used by (Gimpel et al., 2011), more aggressively
trims the adjacency matrix, and improves the pre-
processing pipeline, improving performance a little.
SUBMISSION-SENTIMENT changes the structure of
the dependency graph by connecting tokens to their
1-WINDOW sentiment derived from task A, improv-
ing performance further still.

4.4 Classification Without Dependency
Relations

The simplest classification method (BASELINE)
identifies the topic and then only considers those to-
kens around it. Despite being rudimentary, we found
BASELINE difficult to beat when teamed with the
sentiment analyser developed for part A, producing
an F1-score of 46.59 with a window of 8 tokens.
BASELINE is also useful because it doesn’t require
the use of the training data for task C, leaving it free
for validation.

µPARSE is an approach offering a compromise be-
tween potentially noisy dependency parsing and the

3We select 9 dependency relations – ‘amod’, ‘nsubj’, ‘ad-
vmod’, ‘dobj’, ‘xcomp’, ‘ccomp’, ‘rcmod’, ‘cop’ and ‘acomp’
which feasibly impact sentiment (Li et al., 2011).
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model-free baseline. It feeds a buffer of word2vec-
derived word representations into min-max-average
feature map (similar to (Tang et al., 2014a)), which
is then classified with a linear SVM to decide
whether to segment the tweet at the position of an
incoming token, or to add the current token to the
existing segment. The aim is to extract the neigh-
bourhood around the root words that would have
been identified by a perfect syntactic parser, mak-
ing it conceptually similar to chunking. µPARSE

then seeks out a cluster containing the target concept
and then uses 1-WINDOW or 3-WINDOW to obtain a
consensus annotation. When trained and evaluated
on TweeboParser’s dataset, it incorrectly groups root
words together at a rate of 16%, but this is sufficient
to slightly outperform BASELINE.

4.5 Discussion

We found it surprising that our task C submission
did not need to be very complex, since we could de-
termine phrase-level sentiment accurately. Whilst
we decided not to submit BASELINE as our offi-
cial entry – owing to uncertainty about the best sub-
task A parameters and its lack of technical sophis-
tication – our results in Table 3 clearly demonstrate
that we should have done so. Syntactic information
does seem effective on its own in combination with
phrase-level sentiment data, but its real utility might
be to guide a more advanced approach that detects
syntactically complex structures, and cedes the rest
to BASELINE.

5 Conclusions

We have presented our system’s components for
phrase-, tweet- and topic-based sentiment classifica-
tion. While lexica remain a critical aspect of our
system, we have found that word embeddings are
highly important and have great potential for future
research in this domain. For both subtasks A and B
we generated sentiment-specific word embeddings
which yield a performance comparable to that of our
lexicon-based approach and further enhance perfor-
mance. Furthermore, we have found that syntac-
tic features can be useful for topic-based sentiment
classification, achieving good results when com-
bined with phrase-based sentiment labels. However,
our findings also indicate that simpler approaches

can perform better (perhaps due to the need for
improvements in dependency parsing for Twitter),
and further investigation will be required to deter-
mine how to exploit the relationship between topic-
specific and phrase-level sentiment.
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Abstract 

Microblogs are considered as We-Media infor-

mation with many real-time opinions. This paper 

presents a Twitter-OpinMiner system for Twitter 

sentiment analysis evaluation at SemEval 2015. 

Our approach stems from two different angles: 

topic detection for discovering the sentiment distri-

bution on different topics and sentiment analysis 

based on a variety of features. Moreover, we also 

implemented intra-sentence discourse relations for 

polarity identification. We divided the discourse re-

lations into 4 predefined categories, including con-

tinuation, contrast, condition, and cause. These 

relations could facilitate us to eliminate polarity 

ambiguities in compound sentences where both 

positive and negative sentiments are appearing. 

Based on the SemEval 2014 and SemEval 2015 

Twitter sentiment analysis task datasets, the exper-

imental results show that the performance of Twit-

ter-OpinMiner could effectively recognize 

opinionated messages and identify the polarities. 

1 Introduction 

This year comes the third edition of SemEval Twit-

ter sentiment analysis task consisting of new genres, 

including topic-based polarity classification, trends 

detection towards a topic, and the sentimental 

strength of association of terms (Nakov et al., 

2013).  

                                                           
Corresponding author 

We only participated in the subtask of message 

sentiment analysis and built up a system, named 

Twitter-OpinMiner for the task. Twitter-

OpinMiner stems from two different angles: LDA-

based topic detection for discovering the opinion-

ated features of trending tweets’ topics and senti-

ment analysis based on a variety of features. 

 Topic detection  

Recent studies show that people often search 

Twitter to find temporally relevant information 

(Teevan et al., 2011), such as emergent events, 

trending topics. In fact, similar opinions were 

likely to express on the same topic/event in Twitter. 

For example, there are 20 tweets expressing similar 

opinions on “Blood moon” in SemEval 2015 da-

taset. Therefore, it can facilitate us to discover the 

sentiment distribution on different topics. 

 Sentiment analysis  

Unlike traditional news content, tweets are spe-

cialists in short texts with long compound sen-

tences, and a number of irregular expressions, 

including emoticon, hashtag, and special punctua-

tions. In order to better support tweets analysis, we 

extract features from following aspects: textual 

content, irregular expression, discourse relations, 

and word embedding. Then we introduce above 

features into a SVM classifier for sentiment analy-

sis. 

This paper is organized as follows. Section 2 de-

scribes the framework of our system. Section 3 in-

troduces the details of our feature extraction. We  
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Figure 1. System architecture. 

 

present the evaluation results in Section 4. Finally, 

Section 5 concludes the paper. 

2 System Overview  

2.1 Architecture 

The architecture of Twitter-OpinMiner is described 

in Figure 1. Twitter-OpinMiner system is com-

prised of three modules:  

(1) Pre-processing module: reads all data of training 

data and test data. It performs, POS tagging, named 

entity recognition, and semantic role labeling.  

(2) Feature extraction module: extracts the features 

including formal text features, tweet-specific fea-

tures, discourse features, sentiment distribution 

among topics, and word embedding. 

(3) Sentiment analysis module: creates a SVM clas-

sifier that incorporates the above features classify 

the polarity of each tweet.  

Finally, Twitter-OpinMiner outputs the polarity 

of each tweet.  

2.2 Development Data and Lexicon 

The development data are necessary in our system. 

We fully utilize the training tweets provided by 

SemEval 2013. The dataset consists of 9,912 anno-

tated tweets.  

Besides, for sentiment analysis, we also utilize 

several sentiment lexicons, including Liu’s senti-

ment lexicon (Liu, 2012), MPQA subjectivity lexi-

con (Wilson et al., 2005), and the sentiment lexicon 

generated from tweets (Mohammad et al., 2013). 

Table 1. Features of text in our system. 

Word-Level and entity-level features 

The presence of sentiment word 

The ratio of sentiment word in a sentence  

The total number of positive words  

The total number of negative words  

The presence of negation words  

The total number of the word in all-caps 

Bi-gram features 

Named entities + opinion operators  

Pronouns + opinion operators  

Nouns or named entities + opinion words  

Pronouns + opinion words  

Opinion words (adjective) + (noun)  

3 Feature Extraction  

The objective of this task is to determine whether a 

given message is positive, negative, or neutral. We 

train sentiment classifiers with LibLinear (Fan et 

al., 2008) on the training set and dev set, and tune 

parameter −c, −wi of SVM on the test set of 

SemEval 2013. SVM is a popular machine learning 

algorithm, the effectiveness of which has been 

proved in sentiment analysis on formal texts in re-

lated work (Pang and Lee, 2002; Liu, 2012). Since 

the performance of SVM classifier will be greatly 

influenced by the features selection, we explore a 

variety of features in the evaluation. 

3.1 Features of topical sentiment distribution 

The advancement of Twitter is fast response to the 

real world, so people often search Twitter to find 

temporally relevant information, such as emergent 

events, trending topics. In fact, tweets are likely to 

converge on some opinions for a specific topic, 

which will lead to different sentiment distributions 

among topics. 

In our system, we adopt LDA-based approach 

for representing the typical sentiment distribution 

features. We use the Mallet toolkit, set the topic 

number as 50, and map each tweet into 50 dimen-

sions to extract those features.  

3.2 Features of formal text 

Although the task is to analyze sentiment in Twitter, 

much research proved the effectiveness of the clas-

sic features of formal texts on tweets. The features 

we adopted in this task are partly the same with 

(Zhou et al., 2010) and listed in Table 1, and two 

types of features are incorporated in the classifier.  

Preprocessing 
Feature ex-

traction 
Sentiment 

analysis 

Tweets 

Formal text 

feature 

 

Twitter-spe-

cific feature 

 

Topical sentiment distribution  

Discourse  

relations 

 

Word em-

bedding 

 

Results 

665



These features are also integrated into our SVM 

classifier for training and treated as the baseline in 

our experiment. 

3.3 Twitter specific feature 

Unlike formal texts, tweet has its own characteris-

tics, including irregular expressions, emoticon, 

hashtag, ill format, and special punctuations. In our 

system, we combine the features proposed by Mo-

hammad et al. (2013) with some new features as 

Twitter-specific features for supplementary to the 

forma text. 

• Hashtags: the number of hashtags in one tweet;  

• Ill format: the presence of ill format with some 

characters replacing by *, for example, f**k; 

• Punctuation: the number of contiguous se-

quences of exclamation marks, question marks, 

and both exclamation and question marks; 

whether the last token contains an exclamation 

or question mark;  

• Emoticons: the presence of positive and nega-

tive emoticons at any position in the tweet; 

whether the last token is an emoticon;  

• OOV: the ratio of words out of vocabulary; 

• Elongated words: the presence of sentiment 

words with one character repeated more than 

two times, for example, ‘cooool’;  

• URL: whether the tweet contains a URL.  

• Reply or Retweet: Is the current tweet a re-

ply/retweet tweet 

3.4 Word embedding 

We also utilize word embedding technique for fea-

ture extraction. We adopt sentiment-specific word 

embedding method (Tang et al., 2014) that could 

encode sentiment information in the continuous 

representation of words. In our approach, each term 

is extended into a 150 dimensional vector.  

3.5 Discourse specific feature 

Since tweets are usually expressed informally, there 

are many compound sentences in a tweet, which al-

ways contain positive sentiment and negative senti-

ment with ambiguity. For example,  

It may not be the biggest squad in the last 10yrs, but 

Ancelotti is working for quality over quantity. Eve-

ryone... http://t.co/oCdPXQWggT. 
 

 

Table 2. Examples of cue-phrases. 

Relation Cue Phrases 

Contrast although, but, however, though 

Condition if, despite, in case of 

Continuation and, moreover, not only but 

also 

Cause because, so that, due to, in or-

der that 

In this case, there are two segments in the tweet 

that holds a Contrast discourse relation, and the po-

larity is determined by “but” segment. In our sys-

tem, we also take into consideration of intra-

sentence discourse relation features for processing 

compound sentences.  

Mann and Thompson (1988) defined a complete 

discourse scheme Rhetorical Structure Theory 

(RST). Since not all of the discourse relations in 

RST would help eliminate polarity ambiguities, the 

discourse relations were implemented in our sys-

tem was on a subset (Zhou et al., 2011).  

In our system, we use cue-phrase based method for 

discourse relation identification. We maintain a cue 

phrase lexicon and the examples of the cue phrases 

were shown in Table 2. 

4 Experiment 

We trained a SVM classifier on 9,912 annotated 

tweets (8,258 in the training set and 1,654 in the 

development set). We used the same evaluation 

metrics with SemEval 2013, including the macro-

averaged F-score of the positive and negative clas-

ses. The experimental results obtained by our sys-

tem on the training set (ten-fold cross validation), 

development set, and test sets on Twitter 2013 were 

shown in Table 3 where the baseline was achieved 

by using the formal text features as well as twitter-

specific features. Since the effectiveness of these 

two types of features were analyzed in (Moham-

mad et al., 2013), we mainly evaluated the effec-

tiveness of other features. 

Table 3 showed that the most effective feature 

on Twitter 2013 dataset turned out to be the word 

embedding features: they provided gains of about 

7%. For LDA, we set the numbers of topic from 10 

to 100, and found it could achieve best perfor-

mance when equaling 50. We then constructed the 

sentiment distribution among 50 topics for the fur-

ther evaluation. 

Besides, we also investigated the effectiveness 

of discourse features on compound sentences, and 

the statistics were shown in Table 6.  
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Table 3. Experimental results on Twitter 2013 dataset. 

Approaches 
Metrics 

pos-P pos-R pos-F neg-P neg-R neg-F ave-F 

Baseline (BL) 0.743 0.673 0.706 0.451 0.679 0.542 0.624 

BL+LDA 0.752 0.679 0.714 0.465 0.707 0.561 0.634 

BL+Word Embedding 0.772 0.685 0.724 0.561 0.798 0.659 0.692 

BL+Discourse Relation 0.756 0.680 0.716 0.467 0.705 0.562 0.635 

BL+All 0.791 0.704 0.745 0.563 0.809 0.664 0.704 

 
Table 4. Experimental results of 2015 test. 

Method 
Metrics 

pos-P pos-R pos-F neg-P neg-R neg-F ave-F 

UIR-PKU 0.7518 0.6098 0.6734 0.4636 0.6110 0.5272 0.6003 

Best run 0.7702 0.6975 0.7321 0.5171 0.6219 0.5647 0.6484 

 
Table 5. Experimental results of progress test on Average F-value. 

Approaches 

Corpus 

Live Journal 2014 SMS 2013 Twitter 2014 Twitter 2014  

Sarcasm 

UIR-PKU 0.7044 0.6741 0.6718 0.5258 

Best run 0.7534 0.6716 0.7448 0.4286 

 

 
Table 6. Distribution of discourse relations and 

the contribution in the evaluation. 

Discourse  

Relation 

Occurrence Contribution 

Cause 26.9% 33.9% 

Condition 12.6% 22.1% 

Contrast 18.2% 10.1% 

Continuation 42.3% 33.9% 

 

By adopting discourse features, around 59% sen-

tences with discourse relations were identified. 

Among these four types of relations, better perfor-

mance were achieved on cause and condition rela-

tions. Especially for the sentences with condition 

relation, they were all classified correctly. It is be-

cause that more cue-phrase of cause and condition 

relations were used to explicitly denote the dis-

course relations in tweets, but more likely use con-

text to imply contrast and continuation relations. 

Table 4 and Table 5 showed the evaluation re-

sults in SemEval 2015 Task 10. Compared with the 

best run in Table 5, our system achieved comparable 

results on Twitter sentiment analysis and better per-

formance on the evaluation of sarcasm. In fact, 

many sarcasm are likely expressed in ironic, hence 

most feature types are ineffective for this case. In 

our system, we also used the features of topical sen-

timent distribution, which assumed the polarity of 

sarcasm tweet the same with non-sarcasm tweets. 

5 Conclusion 

We describe our Twitter-OpinMiner systems for 

participating in SemEval 2015 sentiment analysis 

in Twitter. Our approach stems the features from 

two different aspects: topical sentiment distribution 

and a variety of short text based features. In our pa-

per, we also implemented intra-sentence discourse 

relations for polarity identification in compound 

sentences where both positive and negative senti-

ments are appearing. In this way, the polarity ambi-

guities will be eliminated. Based on SemEval 2015 

and SemEval 2014 datasets for Twitter sentiment 

analysis task, we examined the performance of 

Twitter-OpinMiner, which could achieved compa-

rable results on recognizing opinionated messages 

and identifying the polarities. 
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Abstract

In this paper, we describe our approach to Se-
meval 2015 task 10 subtask B, message level
sentiment detection. Our system implements a
variety of classifiers and data preparation tech-
niques from previous work. The set of features
and classifiers used in the final system pro-
duced consistently strong results using cross-
validation on the provided training data. Our
final system achieved an F-score of 57.60 on
the provided test data. The overall best per-
forming system had an F-score of 64.84.

1 Introduction

With the unprecedented growth of social media in
the past decade, more individuals than ever before
have a means to share their opinions and broad-
cast their voice. As the number of readily available
opinions grows, a challenge of academic and com-
mercial importance emerges. Namely, if the senti-
ment of social media communications can be reli-
ably determined algorithmically, a deeply informa-
tive dataset can be developed. Such data can be used
in a variety of applications, from predicting elec-
tion results to seeing how well a new product is re-
ceived. However, this task is greatly complicated by
inconsistencies in spelling, grammar, lexicon, and
other linguistic phenomena found in online commu-
nications. The SemEval 2015 Task 10 Subtask B
(Rosenthal et al., 2015) challenges participants to
determine the sentiment polarity of posts on the so-
cial media site Twitter. Specifically, the task is to
decide whether the sentiment of a given tweet is pos-
itive, negative, or neutral. In this paper we present

an approach to this task which synthesizes a number
of different preprocessing techniques and classifica-
tion methods, which we use to classify the tweets.

Our approach was inspired by several approaches
to previous iterations of this task. The winning team
in 2014, TeamX, used several preprocessors includ-
ing text normalization, lexical sense mapping, clus-
tering, and word sense disambiguation to train a ma-
chine learner to determine emotion (Miura et al.,
2014). Ultimately, we hypothesized that a success-
ful approach relies not only on the choice of a good
classifier, but also in large part upon the prepara-
tion of data for that classifier. This hypothesis led
us to place high value on our prepocessing, and as
such we focused our energy on implementing strate-
gies that would lead to improvements within exist-
ing classifiers, a decision which ultimately led to the
creation of our decision schema.

2 System Description

2.1 Preprocessing

Our system makes use of various preprocessing
steps in order to reduce the dimensionality of the
data set and improve overall performance. These
steps included:

• Tokenization using Twokenizer (Gimpel et al.,
2011), a tokenizer designed specifically for
Tweets.

• Case-folding so that all text is lower-cased.

• All unique URLs were conflated to a single to-
ken in both the training and test data.

669



Each of these preprocessing steps improved per-
formance regardless of which features we later ex-
tracted and which classifier we tried.

2.2 External Lexicons

As part of feature extraction, our system makes use
of two external lexicons. We used a manually cre-
ated list of definitively positive and negative words
(Hu and Liu, 2004) and an automatically generated
list of words and their associated sentiment polari-
ties in the Sentiment140 lexicon (Mohammad et al.,
2013). The polarities associated with the words in
the Sentiment140 lexicon are determined based on
how often the word appears in automatically labeled
positive or negative Tweets.

Our system searches through each token in the
Tweet for matches against the two sentiment lexi-
cons. When a match was found in the Sentiment140
lexicon, a special positive (or negative) feature was
added to the feature set with a magnitude correlated
to the polarity listed in the lexicon. When a match
was found only in the Hu and Liu lexicon, a special
positive (or negative) feature was added to the fea-
ture set but with a fixed magnitude because this lex-
icon did not provide strength of the sentiment along
with each word.

2.3 Features

Our system finds tokens indicating negation, such as
“no”, “never”, and “not” plus any contractions con-
taining “not”. Unlike many other implementations,
which prefixes negation words with a single identi-
fying term, our implementation prefixes each nega-
tion token with either “NO”, “NEVER”, or “NOT”
until the next punctuation mark, similar to (Zhu et
al., 2014). This strategy performed better than one
which used a single negation prefix.

Features in our system included unigrams and bi-
grams of tokens in the Tweet (modified as necessary
by negation as described above) and the positive and
negative features added by finding matches in the
external lexicons.

2.4 Classifiers

The system uses an SVM and Naive Bayes classi-
fier from SciKit Learn (Pedregosa et al., 2011), and
a simple classifier that counts occurrences of tokens

in the Tweet that match words in the sentiment lex-
icon (Hu and Liu, 2004). Our experience with the
SVM was that while it was our best preforming clas-
sifier overall, it had a tendency to mislabel both posi-
tive and negative Tweets as neutral. Therefore, once
the SVM has performed its classification, our sys-
tem uses a secondary classifier before providing its
final sentiment labeling. Figure 1 gives an overview
of the classification system.
SVM + Neutralizer The initial classifier involves
using the default SVM classifier found in SciKit.
This produces a three-way labeling of either posi-
tive, negative or neutral. After the initial SVM clas-
sification, we use a rule-based classifier to reduce
the number of tweets that are incorrectly labeled as
negative. This classifier counts the number of posi-
tive and negative words in the tweet according to the
sentiment lexicon. If the number of positive words
is greater than the number of negative words and the
tweet was labeled negative, we change the label to
neutral; otherwise the label is unchanged.
Naive Bayes We used the default implementation of
the Naive Bayes classifier from SciKit.
Sentiment Lexicon We use the sentiment lexicon
to count the number of tokens in the tweet that have
positive or negative sentiment. If there are more neg-
ative words in the tweet than positive words, we la-
bel the tweet negative; otherwise, positive.

2.5 The Decision Schema

The SVM classifier had two large sources of error.
First, it incorrectly labeled many neutral tweets as
positive. Second, it labeled many positive and neg-
ative tweets as neutral. In order to address this, we
implemented a decision schema to correct for these
errors in the SVM, as shown in Figure 1.

To correct for errors where the SVM incorrectly
labeled neutral tweets as positive, we used a sec-
ondary Naive Bayes classifier. This secondary clas-
sifier was trained only on positive and neutral tweets,
and provides a final classification as either positive
or neutral.

To correct for errors where the SVM incorrectly
over-labeled tweets as neutral, we also used a sec-
ondary Naive Bayes classifier. However, this clas-
sifier was trained on all tweets in a binary fashion,
where the tweets were labeled as either neutral or
non-neutral. If this Naive Bayes classifier provided
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Figure 1: The System’s Decision Schema.

a neutral labeling, that became the final label. In
the case where a non-neutral label was predicted,
we used the sentiment lexicon classifier to provide
the final labeling.

3 Results

3.1 Decision Schema Performance

During development, the performance of our De-
cision Schema was evaluated in two ways. First,
we performed a cross-evaluation, where we split the
training test into a number of ‘chunks’, reserved one
chunk for testing and trained on the others, then
swapped which chunk was reserved and repeated un-
til all ‘folds’ had been tested and reported an average
of the results. Then, we tested against a small devel-
opment Tweet corpus. Results for each can be seen
in Tables 1 and 2, respectively. Against the 2015 test
data, we achieved an overall score of 57.60.

3.2 Conclusions

As can be seen from Table 1 and Table 2, our classi-
fier performs quite well in assigning tags to positive
and neutral Tweets. Our system tends not to perform
as well in our tests at tagging negative Tweets. This

Sentiment Prec Recall F1
Negative 51.52 57.48 54.34
Neutral 77.16 71.98 74.78
Positive 69.66 73.51 71.53
Overall Score 62.93

Table 1: Performance of the system cross-validated on
the 2015 training set.

potentially implies that we may not be providing
enough weight to negative-polarity Tweet features
throughout our preprocessing and feature extraction
processes, that our decision schema logic unfairly
discourages negative tags, or simply that more train-
ing data is needed due to the comparatively small
number of negative Tweets in the corpus.

Sentiment Prec Recall F1
Negative 54.77 60.55 57.51
Neutral 72.96 68.06 70.42
Positive 68.26 70.91 69.56
Overall Score 63.53

Table 2: Performance of the system trained on the 2015
training set and evaluated on the 2015 development set.

4 Future Work

With every new preprocessing and classification sys-
tem that we added, numerous potential improve-
ments presented themselves. While time constraints
prohibited implementing these improvements, we
briefly mention them here.

4.1 Preprocessing
We experimented with using case (e.g. HAPPY vs
happy) as a feature and expected that all-caps would
serve as an indicator of stronger emotional content.
In evaluation, this was not the case, but we would
like to explore this further.

We would like to incorporate a dependency
parser, such as (Kong et al., 2014), which might
enable more accurate negation by better revealing
where the negating word stops modifying the words
in the Tweet. We would also like to include the
part-of-speech tagger in Twokenizer (Gimpel et al.,
2011) and incorporate word-sense disambiguation,
both of which might allow us to better determine
emotional polarities for homographs.
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4.2 Classification

We would like to experiment with more classi-
fiers. In particular, we would like to investigate
SciKit’s AdaBoost and Decision Tree modules, both
of which promise better performance but are com-
putationally expensive. We would also like to fur-
ther develop our approach of dividing the task into a
series of binary classifications rather than a ternary
classification. Additionally, we would like to ex-
plore dimensionality-reduction methods like Spec-
tral Clustering on the feature matrices, in order to
address some of the failings we observed in our de-
cision schema.
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Abstract

In this paper, we describe the system we built
for Task 11 of SemEval2015, which aims at i-
dentifying the sentiment intensity of figurative
language in tweets. We use various features,
including those specially concerned with the
identification of irony and sarcasm. The fea-
tures are evaluated through a decision tree re-
gression model and a support vector regres-
sion model. The experiment result of the five-
cross validation on the training data shows that
the tree regression model outperforms the sup-
port vector regression model. The former is
therefore used for the final evaluation of the
task. The results show that our model per-
forms especially well in predicting the senti-
ment intensity of tweets involving irony and
sarcasm.

1 Introduction

Sentiment analysis aims to identify the polarity and
intensity of certain texts in order to shed light on
people’s sentiments, perceptions, opinions, and be-
liefs about a particular product, service, scheme, etc.
Knowing what people think can, in fact, help com-
panies, political parties, and other public entities in
strategizing and decision making.

While impressive results have been achieved in
analysing literal texts (Abbasi et al., 2008; Yan et
al., 2014), the study of polarity shifting in sentiment
analysis still requires much research. For example,
Li, et.al. (2010), explores the polarity shifters in En-
glish which significantly improve the performance
of sentiment analysis. Besides, figurative uses of

language, such as irony or sarcasm, are also able
to invert the polarity of the surface text. Theoreti-
cal research in irony and sarcasm often emphasize
that humans have difficulties in deciphering mes-
sages with underlying meaning (Hay, 2001; Kot-
thoff, 2003; Kreuz and Caucci, 2007). Factors that
can facilitate the understanding of these messages
include prosody (e.g. stress or intonation), kinesics
(e.g. facial gestures), co-text (i.e. immediate textual
environment) and context (i.e. wider environment),
as well as cultural background. Computers, howev-
er, cannot always rely on this kind of information.

Currently, there is no method that can guaran-
tee the unequivocal recognition of irony or sarcas-
m. Training a computer to perform such a high-
ly pragmatic task does indeed pose a challenge to
computational linguists. A good number of studies
have been recently devoted to finding a solution to
the problem. Most of them have focused on tweet-
s (González-Ibáñez et al., 2011; Reyes et al., 2013;
Liebrecht et al., 2013; Riloff et al., 2013; Barbieri et
al., 2014; Vanzo et al., 2014).

Identifying figurative language in short messages
(generally consisting of no more than 140 character-
s) that do not make use of conventional language,
but employ “little space-consuming” elements, such
as emoticons (“:D”), abbreviations (“abbr.”) and s-
lang (“slng”) is not a self-evident task. The reason
why none of these studies has proved to be the rep-
resentative method that could widely be adopted and
applied by other researchers is that they have not
yet reached optimal results. Thus, the devising of
a computational model able to accurately detect po-
larity is very much on-going.
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This paper describes the model we developed
for Task 11 of SemEval-2015 (Ghosh et al., 2015),
which is concerned with the Sentiment Analysis of
Figurative Language in Twitter. Our model came
first in the SemEval-2015 task for irony and third
in the overall ranking, showing that the features we
proposed produce more reliable results in sentiment
analysis of ironic tweets.

2 Related Work

Irony is defined by Quintilian in the first century CE
as “saying the opposite of what you mean” (Quintil-
ian, 1922). It violates the expectations of the listen-
er by flouting the maxim of quality (Grice, 1975;
Stringfellow Jr, 1994; Gibbs and Colston, 2007;
Tungthamthiti et al., 2014). In the same fashion, sar-
casm is generally understood as the use of irony “to
mock or convey contempt” (Stevenson, 2010).

While irony and sarcasm are well studied in lin-
guistics and psychology, their automatic identifica-
tion through Natural Language Processing methods
is a relatively novel task (Pang and Lee, 2008). Not
to mention that irony and sarcasm pose a difficult
problem in Sentiment Analysis of micro blogging
and social media (Barbieri et al., 2014).

Up to this date, several approaches have been pro-
posed to automatically identify irony and sarcasm
in tweets and comments. Carvalho et al. (2009),
for example, proposed to identify irony in com-
ments to newspaper articles by relying on the pres-
ence of emoticons, onomatopoeic expressions, and
heavy punctuation in the text surface. Hao and
Veale (2010) have investigated similes of the form
“x as y” in a large corpus, proposing a method to au-
tomatically discriminate ironic from non-ironic sim-
iles. Tsur et al. (2010) proposed a semi-supervised
approach for the automatic recognition of sarcasm in
Amazon product reviews, exploiting some features
that were specific to Amazon. Their method em-
ployed two modules: a semi-supervised acquisition
of sarcastic patterns and a classifier. This method
was then applied to tweets by Davidov et al. (2010),
achieving even better results. González-Ibáñez et
al. (2011) constructed a corpus of sarcastic tweets
and used it to compare judgements made by human-
s and machine learning algorithms, concluding that
none of them performed well.

More recently, Reyes et al. (2013) defined a com-
plex model for identifying sarcasm which goes far
behind the surface of the text and takes into accoun-
t features on four levels: signatures, degree of un-
expectedness, style, and emotional scenarios. They
have demonstrated that these features do not help
the identification in isolation. However, they do if
they are combined in a complex framework. Bar-
bieri and Saggion (2014) focused their approach on
the use of lexical and semantic features, such as the
frequency of the words in different reference corpo-
ra, the length of the words, and the number of related
synsets in WordNet (Miller and Fellbaum, 1998).

Finally, Buschmeier et al. (2014) assessed the im-
pact of features used in previous studies, and they
provide an important baseline for irony detection in
English.

Many datasets for the study of irony and sarcasm
in Twitter are nowadays available. Thanks to the use
of hashtags, it is easier to collect data with specific
characteristics in Twitter. Reyes et al. (2013), for
example, created a corpus of 40.000 tweets with four
categories: Irony, Education, Humour, and Politics.
Among the other resources, it is worth mentioning
the sarcastic Amazon product reviews collected by
Filatova (2012) and the Italian examples collected
and annotated by Gianti et al. (2012), later used in
Bosco et al. (2013).

3 Methodology

3.1 Data Pre-processing

Considering the unregulated and arbitrary nature of
the texts we are working with, we use some heuristic
rules to pre-process them. These rules help us get
more reliable syntactic structures when calling the
syntactic parser.

Twitter users often use repeated vowels (e.g.
“loooove”) or capitalization (e.g. “LOVE”) to em-
phasize certain sentiments or emotions. The nor-
malization consists of removing the repeated vowels
(e.g. from “loooove” to “love”) and the capitaliza-
tion (e.g. from “LOVE” to “love”). The normal-
ized forms can help improve the parsing accuracy.
Moreover, they are saved in a special feature bag
as they are important indicators of sentiments, es-
pecially when they are in sentiment lexicons. Other
special uses of language in tweets include the so-
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called heavy punctuation and emoticons. In our sys-
tem, we substitute every combination of exclama-
tion and question marks (e.g. “?!?!!”) with the for-
m “?!”. We also compiled an emoticon dictionary
based on training data and internet resources.

Another step that we considered relevant at this
point is the maximal matching segmentation. The
segmentation is, in fact, often lost in tweets, as white
spaces and punctuation are not always used in their
customary format (e.g. “yeahright”). In order to get
rid of this problem, we tried to segment all the out
of vocabulary tokens through a maximal matching
algorithm according to an English dictionary (e.g.
the token “yeahright” would be segmented as “yeah
right”).

Finally, we use Stanford parser (Klein and Man-
ning, 2003) to get the POS tags and dependency
structures of the normalized tweets.

3.2 Feature Set
After the pre-processing, we then extract features of
the following kinds.

UniToken Token uni-grams are the basic features
in our approach. The normalized forms of the em-
phasized tokens are put in a special bag with tags de-
scribing their emphasis types {duplicate vowel, cap-
italized, heavy punctuation, emoticon}
BiToken Bi-grams of the normalized tokens are
also used as features.

DepTokenPair The “parent-child” pairs based on
dependency structures are also used as features.

PolarityWin In order to identify the polarity val-
ues of tokens, we used four sentiment dictio-
naries: Opinion Lexicon (Hu and Liu, 2004),
Afinn (Nielsen, 2011), MPQA (Wiebe et al., 2005),
and SentiWordnet (Baccianella et al., 2010). Their
union and their intersection are also used as two ad-
ditional dictionaries. A window size of five is used
to verify whether negations are present. If a nega-
tion is present the resulting value is set to zero. Six
features are used to save the sum polarity values of
a tweet based on the six dictionaries respectively.
Besides, we also use features recording the polarity
contribution of different POS tags. For example, one
possible feature-value pair can be (adj-mpqa, 1.0)
meaning that according to the dictionary MPQA,

the sum of the polarity contributed by adjectives in
the current tweet is 1.0.

PolarityDep This feature set is similar to
PolarityWin, but it differs in that the negation is
checked in the dependency structure.

PolarShiftWin This feature set is designed for
irony which has been discussed in (Riloff et al.,
2013). Let us consider the tweets (1) “I love work-
ing for eight hours without any break” and (2) “I
hate people giving me such a big surprise”. In these
tweets the verbs “love” (positive) and “hate” (neg-
ative) are used with reference to a negative and a
positive clause (“working for eight hours without
any break” and “people giving me such a big sur-
prise”) respectively. Based on a 5-window we check
whether a shift of polarity is present.

PolarShiftDep This feature set is similar to
PolarShiftWin, but it differs in that the shift is
checked in the dependency structure.

3.3 Feature Normalization and Evaluation

In order to avoid noise and sparseness, only features
that occur at least 3 times are kept. All the feature
values are normalized into the range [-1, 1] accord-
ing to the formula shown in Equation 1, where fi,j

is the value of feature j in the ith example, and N is
the sample size.

norm(fi,j) =
fi,j

max
1≤k≤N

|fk,j | (1)

We use the correlative coefficient (Pearson’s r)
measure to rank all the features. Then, we can use
the threshold value of r to rule out less important
features. The calculation of r is described in Equa-
tion 2, where X and Y are the two variables that are
evaluated, Xi is the ith sample value of X , Yi is the
ith sample value of Y and N is the sample size.

r(X, Y ) =
∑N

i=1 (Xi − X̄)(Yi − Ȳ )√∑N
i=1 (Xi − X̄)2

√∑N
i=1 (Yi − Ȳ )2

(2)
The goal of the first experiment is to find the opti-

mal threshold value of r with all the features as listed
in 3.2. Two different models are used: Decision Tree
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Feature Set Features mse cosine
Baseline N/A 1.9847 0.8184
UniToken 136 1.6821 0.8507
+BiToken 410 1.7007 0.8485
+DepTokenPair 409 1.6733 0.8514
+PolarityWin 582 1.6573 0.8524
+PolarityDep 748 1.6436 0.8536
+PolarShiftWin 825 1.6403 0.8542
+PolarShiftDep 841 1.6393 0.8543

Table 1: Experiment result of the 5-fold cross validation
by RegTree and SVR on the training data.

Regression model (RepTree) implemented in We-
ka (Hall et al., 2009) and Support Vector Regression
model (SVR) implemented in LibSVM (Chang and
Lin, 2011). The result is shown in Figure 1. The best
performance is obtained with the value of r between
0.03 and 0.04 with the RepTree model. The exper-
iment also shows that RepTree always outperforms
SVR (i.e. higher cosine value and lower rmse val-
ue). Therefore, in the following experiments and in
the evaluation the RepTree model is adopted.

Figure 1: Effect of Pearson value threshold on the overall
performance in cosine (left) and root mean squared error
(right).

In the second experiment, we use r = 0.035 as
threshold for feature selection by testing how differ-
ent kinds of features contribute to the overall perfor-
mance. The features listed in Section 3.2 are gradu-
ally added and their contribution is assessed. If the
new feature does not improve the performance, it is
removed in the next running. The results of the sec-
ond experiment are shown in Table 1. The baseline
is obtained with a naive prediction using the aver-
age polarity value of the training data. As can be
seen, only BiToken harms the performance, while
all other features contribute to its improvement.

category mse cosine
Sarcasm 0.997 0.896
Irony 0.671 0.918
Metaphor 3.917 0.535
Other 4.617 0.290
Overall 2.602 0.687

Table 2: Test result of SemEval Task 11.

3.4 Evaluation Result

Based on the described analysis, for the final test
we used RepTree and all the feature sets, except for
BiToken. The threshold for feature frequency is
set to 3 and the r value for feature selection is set
to 0.035. Finally, the trained model on the 8,000
tweets is used to predict the sentiment intensity of
the evaluation dataset which includes 4,000 tweets.
The results are shown in Table 2. Among the fifteen
participants in the SemEval task on Sentiment Anal-
ysis of Figurative Language in Twitter, our model
achieves the best performance in the identification
of irony, and ranks third in the overall performance.

4 Conclusions

In this paper, we introduced our model for the Senti-
ment Analysis of Figurative Language in Twitter fol-
lowing the track of Task 11 of SemEval 2015. We
first used heuristic rules to pre-process the tweets
by identifying and normalizing the emphasized to-
kens. Then, features were extracted based on both
window and dependency structures. We adopted
polarity shift features with special consideration on
the identification of irony. As expected, our system
performed best in predicting the sentiment intensity
of tweets containing irony according to the evalua-
tion. This confirms the robustness of our design and
points to promising development of automatic pro-
cessing of irony in the future.
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Abstract

In this paper, we propose a new statistical
method for sentiment analysis of figurative
language within short texts collected from
Twitter (called tweets) as a part of SemEval-
2015 Task 11. Particularly, the proposed
model focuses on classifying the tweets into
three categories (i.e., sarcastic, ironic, and
metaphorical tweet) by extracting two main
features (i.e., term features and emotion pat-
terns). Our experiments have been conducted
with two datasets, which are Trial set (1000
tweets) and Test set (4000 tweets). Perfor-
mance is evaluated by cosine similarity to gold
annotations. Using this evaluation methodol-
ogy, the proposed method achieves 0.74 on the
Trial set. On the Test set, we achieve 0.90 on
sarcastic tweets and 0.89 on ironic tweets.

1 Introduction

Sentiment analysis in computer science is a diffi-
cult task which aims to identify the emotion from a
given data source. The goal of sentiment analysis is
to dissect a given document and determine whether
its opinion represent positive, negative, or neutral.
There have been many studies (which use lexicon-
based methods and machine learning-based meth-
ods) to extract and identify the sentiment (Medhat et
al., 2014). In case of figurative language, the task
becomes more challenging because the document
can have secondary or extended meanings. Hence,
exactly finding the truth meaning of figurative lan-
guage is an interesting problem for researchers due
to its importance.

∗Corresponding author

The first work that we want to mention here
is contributed by Reyes and Rosso (2013a). The
authors captured ironic sentences from low-level
to high-level of irony according to three con-
ceptual layers and their eight textual features.
With customer reviews on Amazon, Reyes and
Rosso (2012a) contributed an approach for distin-
guishing irony and non-irony based on six mod-
els. Also focusing on detecting irony, Hao and
Veale (2010) classifies irony and non-irony by ana-
lyzing the large quantity of simile forms with 9-steps
sequence. By considering short texts with case-
study is Twitter, Reyes et al. (2013b) introduced
a model to detect verbal irony by combining four
types of conceptual features and their dimensions.
Focusing on comprehending metaphor, Shutova et
al. (2010) used unsupervised methods to find the
associate from a small set of metaphorical expres-
sions by verb and noun clustering processing to de-
tect similarity structure of metaphor. Finally, Reyes
et al. (2012b) analyzed humor and irony by adding
more features to express the favorable and unfavor-
able ironic contexts using the theory of textual.

These above studies tried to solve the problem by
focusing on lexical level. Therefore, the goal of
our research is to find a new way to identify fig-
urative meaning. In this work, we focus on ana-
lyzing three types of figurative languages (i.e., sar-
casm, irony, and metaphor) on tweets collected from
Twitter. With FLASA Model (Figurative Language
Analysis using Statistical Approach) to detect multi-
ple types of figurative language, we believe that this
is a general model to solve the problem and easy-
extending for characterizing other types.
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2 System Description

The Training set includes 8000 tweets collected
from Twitter. All the tweets are presented in English
with three main types of tweets: sarcasm, irony, and
metaphor with the respective ratio: 5000 sarcastic
tweets, 1000 ironic tweets and 2000 metaphorical
tweets.

Z = {< t, s > | s ∈ [−5, 5]} (1)

where Z is a set of tweets in the Training set; t is a
tweet, and s is the score of that tweet.

Tweets are extracted into the set of terms. All
the tweets are pre-processed by: i) considering in
lower-case mode, ii) removing unnecessary infor-
mation such as: the tagged persons, pronouns, iii)
formalizing words (e.g., remove redundancy charac-
ters which repeat more than three times, and correct
the typos). The hash-tags and symbol in the tweets
are kept because of the sentiment expressing prop-
erty. The set of terms which is extracted from Z:

TZ =
n⋃
i=1

ti =
n⋃
i=1

{wj | wj ∈ ti}mj=1 (2)

where TZ is a set of terms that are extracted from Z;
n is the number of tweets in the Training set; wj is a
term; andm is the number of terms that are extracted
from Z.

2.1 FLASA Model
FLASA Model includes two main modules which
are: i) Content-based Approach Module, and ii)
Emotion Pattern-based Approach Module. The final
score of a tweet is calculated by using the following
formula:

S = α× SC + β × SE (3)

where S is the final score of a tweet; SC is the
score that is calculated by Content-based Approach
module; SE is the score that is calculated by Emo-
tion Pattern-based Approach Module; and α, and β
are coefficients identified based on the training error
score of the classification model of each approach,
with α+ β = 1.

2.1.1 Content-based Approach Module
Content-based approach module evaluate the sen-

timent of a tweet based on the co-occurrence of

terms which are extracted from a tweet using the
Training set. This method basically use statistics on
the Training set to predict the score of a tweet.

With a tweet tk that is needed to be annotated.
First, it is extracted into set of terms:

Tk =
⋃
{wi | wi ∈ tk}mk

i=1 (4)

where Tk is the set of terms extracted from tweet
tk; wi is a term belongs to tweet tk; and mk is the
number of terms which are extracted from tweet tk.

From Tk, we build all the possible combinations
from the set of terms to consider all the possible
co-occurrence of terms because terms can express
different meaning when they appear together. With
this step, we can achieve all these aspects: i) all the
meaning of the tweet tk when terms co-exist, and ii)
some main terms that affect the score of the tweet
tk. We can consider each of combination is a cluster
which can respective as a feature vector:

Ck =

{
(δk)

γk
i=1

∣∣∣∣∣γk =
mk∑
j=1

(
mk

j

)}
(5)

where Ck is the set of all possible clusters extract
from the given tweet; δk is a cluster, each cluster
can be represented as a feature vector; and γk is the
number of all combinations which are created from
terms in Tk.

Each cluster in Ck is represented as a feature vec-
tor, with the dimension equals with the number of
terms in Tk. From the set of tweets Z in the Train-
ing set, we cluster every tweet into the set of cluster
Ck. A tweet is assigned into a cluster in the case:
i) the distance between a vector to a cluster is mini-
mum comparing to its distance to other clusters, and
ii) the distance has to smaller than a defined thresh-
old. This has a significant meaning in expressing the
co-occurrence of terms in a tweet. The distance be-
tween a tweet and a cluster is calculated by using the
following formula:

dis(A,B) = 1− ATB

|A||B| (6)

where dis(A,B) is the distance between a term and
a cluster.

Each cluster has a cluster coefficient which is cal-
culated from the number of feature terms of a clus-
ter. If a cluster has more terms, its coefficient will
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Figure 1: Histogram of score distribution.

be higher. The cluster coefficient can expresses how
important it affects the final score of a tweet. Then,
from tweets in clusters with their scores and coeffi-
cient, the histogram is built to represent the distribu-
tion of score in the Training set. Finally, the score
of a tweet is annotated by selecting the peak of the
histogram.

Example 1. We have 3 clusters: cluster {A,B,C}:
includes 3 tweets (< t1,−2.5 >; < t2,−3.5 >;
< t3,−3.5 >); cluster {B,C}: includes 3 tweets
(< t4, 0.0 >; < t5,−2.0 >; < t6,−2.0 >);
cluster {C}: includes 4 tweets (< t7,−4.5 >;
< t8,−3.0 >; < t9,−0.5 >; < t10,−1.5 >).
Figure 1 expresses the above data as histogram. In
this case, the score of tweet which is calculated by
Content-based Approach Module is −3.5.

2.1.2 Emotion Pattern-based Approach
Module

The Emotion Pattern-based Approach Module de-
termine the score of a given tweet based on the emo-
tion change pattern in the content. This approach
consists in calculating the sentiment score for each
term, then construct the emotion distribution pattern
using the termss score in the tweet corresponding to
its occurrence positions.

Each term has a score which is calculated based
on tweets in the Training set. By finding the score
of term and the pattern of tweet, we can understand
about how important a term contributes to the final
score of a tweet, and about the sentiment degree of a
term, whether it’s positive, negative, or neutral. The
score of a tweet is decided by the pattern of terms in
a sentence. Our goal is try to find the real score of
a term. In the Traning set, a term belongs to many
tweets, and in each tweet, it represents a different

score. Assuming that all the tweets have equatable
meaning, the score of a term is calculated by the fol-
lowing formula:

Sw =
∑l
i=1 Swi

l
(7)

where Sw is the score of a term; and l is the number
of tweets which contain this term.

From the set of tweets Z and the set of terms T ,
we can find the distribution of a term by using the
score of tweets which contain it. The peak of his-
togram is the point at that a term has highest distri-
bution with a score. At the beginning (i0 step), each
term has the score which is selected from the peak
of its respective histogram. Then, the score in the
step i+ 1 is calculated by using the formula:

Siw =
Si−1
w ∗ P (St|w)∑n

j=1(S
i−1
wj ∗ P (St|wj))

∗ St (8)

where Siw is the score of a term at step ith; St is the
score of tweet that contains this term; and P (St|w)
is the probability that a term has the score with given
tweet score.

This step is conducted repeatably until the score
of term at step ith greater than the score of term at
step (i−1)th a value of defined epsilon, with epsilon
is extremely small.

With each tweet in the Training set, it is extracted
into the list of terms and then create a pattern based
on its term scores as we mentioned above. Due to
the different of the number of terms in a tweet, the
signal of pattern is needed to be scaled by using an
interpolation function. The pattern is scaled to the
maximum possible terms that a tweet in the Training
set contain in order to be able to map all the tweets
into vectors with same dimension.

Example 2. We have a tweet: @SamySam-
son wow you’re soooo funny #sarcasm it
actually hurts a bunch!. From this tweet,
we have list of terms and their scores:
(< wow,−0.2057831 >; < soo,−0.1552674 >; <
funny,−0.19274 >; < #sarcasm,−2.34994 >;
< actually,−0.03287 >; < hurts,−0.16091 >;
< bunch,−0.02096 >). Figure 2 expresses the
pattern of the above data after the term scores are
scaled down by the size of largest terms in a tweet
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found in the Training set. Here, the maximum num-
ber of terms that a tweet contains in the Training set
is 24.
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Figure 2: Sequential pattern of tweet term scores
after length normalization.

Using the set of patterns from the Training set,
we construct a vector space representation whereby
each dimension signifies a match to one of the ex-
tracted patterns. We then train a decision tree based
classifier to predict from these vectors the inte-
ger sentiment labels [−5..5] of the corresponding
tweets. And that is the score which is annotated by
using Emotion Pattern-based Approach Module.

3 Experimental results

The test data comprises 4000 tweets with both fig-
urative and non-figurative tweets with 70% of them
are sarcasm, irony, or metaphor; and 30% of the data
are other. We evaluate the test with: i) Content-
based Approach Module, ii) Emotion Pattern-based
Approach Module, and iii) Combined Module.

FLASA Model works well with figurative tweets.
Using cosine similarity to gold annotations to evalu-
ate the system, the highest performance that we got
is 0.90 with irony type, and the next is sarcastic type
with 0.89. With metaphor type, we achieve 0.34
with annotated tweets. About non-figurative tweets,
the performance is still low due to the tweets in the
Training set. The root cause is that there are no non-
figurative tweets in the Training set. If we add more
non-figurative tweets to the Training set in order to
learn, the result will be improved. Fig. 3 shows the
performance that we got from testing our approach
on the Test set.
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Figure 3: The performance of FLASA Model on
Test set using cosine similarity.

4 Conclusion

In this paper, we proposed a new approach for ana-
lyzing the sentiment of figurative language based-
on the statistics with two main approaches: con-
tent and emotional pattern. By combining all these
features, we enhanced the performance of our algo-
rithm. However, the result of FLASA Model is af-
fected by these following reasons:
i) Almost all the tweets in the Training set are

sarcastic tweets, and irony tweets. Due to this rea-
son, the performance on metaphor tweets, and non-
figurative tweets are still low.
ii) Is this work, we only consider unigram model

when calculating the score for terms in Emotion
Pattern-based Approach. This leads to the miss-
expressing meaning of terms if they are co-showing
an specific sense in a phrase.
iii) Our training data has a little noise be-

cause some tweets are written in an unstandardized
way(e.g. abbreviation word, and repeated word).

In the next work, we will improve the perfor-
mance by increasing the number of tweets in the
Training set, especially the metaphor tweets, and
non-figurative tweets. Bigram or trigram model will
be used to clearly comprehend the sentiment of a
tweet. Moreover, we will add more heuristic to com-
pletely formalize tweets. Finally, we will extend
FLASA Model to analyze the data from the other
social network, such as Facebook, Instagram, Flick,
and Google Plus also.
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Abstract

This paper describes our contribution to the
SemEval-2015 Task 11 on sentiment analysis
of figurative language in Twitter. We consid-
ered two approaches, classification and regres-
sion, to provide fine-grained sentiment scores
for a set of tweets that are rich in sarcasm,
irony and metaphor. To this end, we combined
a variety of standard lexical and syntactic fea-
tures with specific features for capturing fig-
urative content. All experiments were done
using supervised learning with LIBSVM. For
both runs, our system ranked fourth among fif-
teen submissions.

1 Introduction

Handling figurative language is currently one of
the most challenging tasks in NLP. Figurative lan-
guage is often characterized by linguistic devices
such as sarcasm, irony, metaphors, and humour.
Their meaning goes beyond the literal meaning and
is therefore often hard to capture, even for humans.
However, as an increasing part of our daily commu-
nication takes place on social media (e.g. Twitter,
Facebook), which are prone to figurative language
use, there is an urgent need for automatic systems
that recognize and understand figurative online con-
tent. This is especially the case in the field of senti-
ment analysis where the presence of figurative lan-
guage in subjective text can significantly undermine
the classification accuracy.

Understanding figurative language often requires
world knowledge, which cannot easily be accessed
by machines. Moreover, figurative language rapidly

evolves due to changes in vocabulary and language,
which makes it difficult to train machine learning
algorithms. Nevertheless, the identification of non-
literal uses of language has attracted a fair amount
of research interest recently. Veale (2012) investi-
gated the relation between irony and our stereotyp-
ical knowledge of a domain and showed how the
insight in stereotypical norms helps to recognize
and understand ironic utterances. Reyes et al. (2013)
built an irony model for Twitter for which they re-
lied on a set of textual features for capturing ironic
tweets. Their model obtained promising results con-
cerning recall (84%). In what relates to the detec-
tion of metaphors, Turney et al. (2011) introduced
an algorithm for distinguishing between metaphor-
ical and literal word usages based on the degree of
abstractness of a word’s context. More recent work
by Tsvetkov et al. (2014) presents a cross-lingual
model based on lexical semantic word features for
metaphor detection in English, Spanish, Farsi and
Russian.

To date, most studies on figurative language use
have focussed on the detection of linguistic devices
such as sarcasm, irony and metaphor. By contrast,
only a few studies have investigated how these de-
vices affect sentiment analysis. Indeed, as stated by
Maynard (2014), it is not sufficient to determine
whether a text contains sarcasm or not. Instead, we
need to measure its impact on sentiment analysis if
we want to improve the state-of-the-art in sentiment
analysis systems.

In this paper we describe our contribution to the
SemEval-2015 shared task: Sentiment Analysis of
Figurative Language in Twitter (Ghosh et al., 2015).
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Our objective is to provide fine-grained sentiment
scores for a set of tweets that are rich in sarcasm,
irony and metaphor. The datasets for training, de-
velopment and testing were provided by the task or-
ganizers. The training dataset contains 8,000 tweets
(5,000 sarcastic, 1,000 ironic and 2,000 metaphori-
cal) labeled with a sentiment score between -5 and 5.
This training set was provided with both integer and
real-valued sentiment scores. The trial and test sets
were comparable to the training corpus and contain
1,0001 and 4,000 labeled instances, respectively. All
experiments were done using LIBSVM (Chang and
Lin, 2011).

We submitted two runs for the competition. To
this end, we built two models based on supervised
learning: 1) a classification-based (C-SVC) and 2) a
regression-based approach (epsilon-SVR). For both
models, we implemented a number of word-based,
lexical, sentiment and syntactic features in combi-
nation with specific features for capturing figurative
content such as sarcasm. Evaluation was done by
calculating the cosine similarity distance between
the predicted and the gold-standard sentiment labels.

The remainder of this paper is structured as fol-
lows: Section 2 presents our system description
whereas Section 2.2 gives an overview of the fea-
tures we implemented. The experimental setup is de-
scribed in Section 3, followed by our results in Sec-
tion 4. Finally, we draw conclusions in Section 5
where we also suggest some directions for future re-
search.

2 System Description

The main purpose of this paper was to develop a
system for the fine-grained sentiment classification
of figurative tweets. We tackled this problem by us-
ing classification and regression approaches and pro-
vided each instance with a sentiment score between
-5 and 5. In addition to more standard NLP features
(bags-of-words, PoS-tags, etc.), we implemented a
number of features for capturing the figurative char-
acter of the tweets. In this section, we outline our
sentiment analysis pipeline and describe the linguis-
tic preprocessing and feature extraction.

1As some tweets were made inaccessible by their creators,
we were able to download only 914 of them

2.1 Linguistic Preprocessing

All tweets were tokenized and PoS-tagged using the
Carnegie Mellon University Twitter Part-of-Speech-
Tagger (Gimpel et al., 2011). Lemmatization was
done using the LT3 LeTs Preprocess Toolkit (Van de
Kauter et al., 2013). We used a caseless parsing
model of the Stanford parser (de Marneffe et al.,
2006) for a dependency representation of the mes-
sages. As a final step, we tagged all named enti-
ties using the Twitter NLP tools for Named Entity
Recognition (Ritter et al., 2011).

2.2 Features

As a first step, we implemented a set of features
that have shown to perform well for sentiment
classification in previous research (Van Hee et al.,
2014). These include word-based features (e.g. bag-
of-words), lexical features (e.g. character flooding),
sentiment features (e.g. an overall sentiment score
per tweet, based on existing sentiment lexicons),
and syntactic features (e.g. dependency relation fea-
tures)2. To provide some abstraction, we also added
PoS n-gram features to the set of bag-of-words fea-
tures.

Nevertheless, as a substantial part of the data we
are confronted with is of a figurative nature, we im-
plemented a series of additional features for captur-
ing potential clues, for example of sarcasm, in the
tweets3.

Contrast – Binary feature indicating whether a
contrastive sentiment (i.e. at least one positive and
one negative sentiment word) is contained by the in-
stance.

Interjection Count – Numeric feature indicating
how many interjections are contained by an instance.
This value is normalized by dividing it by the num-
ber of tokens in the instance. As stated by (Carvalho
et al., 2009), interjections may be potential clues for
irony detection.

Sarcasm Hashtag – Binary feature indicating
whether an instance contains a hashtag that may in-
dicate the presence of sarcasm. To this end, a list of

2For a detailed description of these features we refer to Van
Hee et al. (2014).

3A number of these features (i.e. contradiction, sudden
change, and temporal imbalance) are inspired by Reyes et
al. (2013).
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≈ 100 sarcasm-related hashtags was extracted from
the training data.

Punctuation Mark Count – Normalized numeric
feature indicating the number of punctuation marks
that are contained by an instance.

Emoticon count – Normalized numeric feature
indicating the number of emoticons that are con-
tained by an instance.

Contradiction – Binary feature that indicates
whether an instance contains a linguistic contradic-
tion marker (i.e. words like nonetheless, yet, how-
ever).

Sudden Change – Binary feature that indicates
whether an instance contains a linguistic marker
of a sudden change in the narrative of the tweet
(i.e. words like suddenly, out of the blue).

Temporal Imbalance – Binary feature indicat-
ing the presence of a temporal imbalance (i.e. both
present and past tenses are used) in the narrative of
a message.

Polysemy – Normalized numeric feature indicat-
ing how many polyseme words are contained by an
instance. As polyseme are considered those words
that have more than seven different meanings ac-
cording to WordNet4, which may be an indication
of metaphorical language.

3 Experimental Setup

As the training instances were provided with both
integer and real-valued sentiment scores, we used
two different approaches to the fine-grained senti-
ment labeling. Firstly, we implemented a classifi-
cation approach where each tweet had to be given
a sentiment label on an eleven-point scale ranging
from -5 to 5. Secondly, we used regression to predict
a real-valued sentiment score for each tweet, which
could be any numeric value between -5 and 5.

Two feature sets were used throughout the experi-
ments: firstly, we included a number of word-based,
lexical, sentiment and syntactic features (we refer to
these as the sentiment feature set). Secondly, we
implemented an additional set of features for cap-
turing possibly figurative content such as irony and
metaphors. These features are referred to as the fig-
urative feature set.

4Fellbaum, C. (1998)

Using 5-fold cross-validation on the training data,
we performed a grid search to find the optimal cost
and gamma parameters for both classification (c =
0.03, g = 0.008) and regression (c = 8, g = 0.063).
For regression, an optimal epsilon value of p = 0.5
was determined.

As a first approach to evaluating our features, we
used a subset of the trial data5. Secondly, we (ran-
domly) split the data into 90% for training and 10%
for testing. We calculated a baseline using the ma-
jority class label -3 (see Table 1). Tables 2 and 3
present the results on the training and trial data that
were obtained throughout the experiments both for
classification and for regression.

Evaluation Set Cosine Similarity
Trial data 0.59
10% training set 0.80
Averaged baseline 0.70

Table 1: Majority class baseline.

Evaluation Set feature set Cosine Similarity
Trial data sentiment 0.72

figurative 0.74
10% training set sentiment 0.82

figurative 0.83

Table 2: Experimental results for classification
(after a parameter grid search).

Evaluation Set feature set Cosine Similarity
Trial data sentiment 0.75

figurative 0.74
10% training set sentiment 0.85

figurative 0.84

Table 3: Experimental results for regression
(after a parameter grid search).

As the table shows, adding figurative language
specific features proves to be beneficial for classi-
fication. For regression, by contrast, adding more
features does not improve the results on the train-
ing and trial data. However, both approaches clearly
outperform the baseline.

5We only considered the tweets that were not included by
the training data.
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4 Competition Results

We submitted two runs for this task. For our first run,
we implemented a classification approach whereas
we used regression for the second run. As the offi-
cial test data also contains a substantial part of regu-
lar Twitter data, we included both the standard sen-
timent feature set and the figurative feature set.

Our competition results can be found in Tables 4
and 5.

Overall Sarcasm Irony Metaphor Other
Cosine 0.66 (4/15) 0.89 0.90 0.44 0.35
Similarity
MSE 3.40 (4/15) 1.29 1.22 5.67 5.44

Table 4: Competition results for classification.

Overall Sarcasm Irony Metaphor Other
Cosine 0.65 (4/15) 0.87 0.86 0.36 0.36
Similarity
MSE 2.91 (4/15) 1.29 1.08 4.79 4.50

Table 5: Competition results for regression.

As shown in tables 4 and 5, our system achieved
an overall cosine similarity score of 0.66 and 0.65
for the classification-based and regression-based ap-
proaches respectively and ranked fourth among fif-
teen submissions for both runs. When considering
the competition results per category, we see that our
system performs particularly well on the sarcasm
and irony classes. For the latter, our classification
performance (cosine similarity = 0.90) corresponds
with that of the best reported system.

5 Conclusions and Future Work

We experimented with two experimental setups to
compare the performance of a sentiment classifier
using 1) more standard sentiment features and 2)
features that may capture sarcastic content. The re-
sults of our experiments show that adding features
that are specific to figurative language improves the
performance of our classification approach. How-
ever, it does not improve the performance for regres-
sion.

An error analysis revealed that our system’s per-
formance benefits from the information provided by
sentiment lexicon features. Given the high distribu-
tion of the negative class labels in this corpus, some

positive instances are incorrectly assigned a negative
class label:

• Im not about that life though lol, Im literally a
natural woman and I am proud of it :) (-3)

Another remark that should be made is that some of
our irony-specific features are possibly too coarse-
grained. The contrast feature for instance, was
sometimes activated even though the tweet under in-
vestigation was meant rather literally than sarcasti-
cally:

• RT @laurenwalter: underwater walking
was pretty bloody amazing! literally wanted
to stay under there! was such an experience!!
loved it!!

The contrast feature was activated for this tweet
since bloody was identified as a negative sentiment
word whereas pretty and amazing are positive sen-
timent words. This problem may be solved by only
considering the head of the adjectival phrase (amaz-
ing) as a sentiment word.

In this paper, we developed a sentiment analysis
pipeline that takes irony and sarcasm clues into ac-
count to provide a fine-grained sentiment score for
tweets. In future research, it would be interesting to
implement a cascaded approach where 1) the output
of a sarcasm detection system is used as a feature
for a sentiment classifier or 2) a sarcasm detection
system is used as a post-processing step where the
sentiment label given by a regular sentiment classi-
fier is flipped if the utterance is meant sarcastically.

Moreover, we will search for better features for
modeling sarcasm in tweets and we aim to rebal-
ance the data to approximate a realistic distribution
of sarcastic messages in a random stream of Twitter
messages.

To improve sentiment classification of metaphor-
ical tweets, a classifier might benefit from word
sense disambiguation and knowledge about stereo-
types and commonly used similes.

Finally, we aim to perform feature selection since
abounding bag-of-words features often suffer from
overfitting. This way, they may introduce noise and
hence decrease the classification accuracy.
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Abstract

This paper presents the system we developed
for Task 11 of SemEval 2015. Our system had
two stages: The first one was based on deep
autoencoders for extracting features to com-
pactly represent tweets. The next stage con-
sisted of a classifier or a regression function
for estimating the polarity value assigned to
a given tweet. We tested several techniques in
order to choose the ones with the highest accu-
racy. Finally, three regression techniques re-
vealed as the best ones for assigning the polar-
ity value to tweets. We presented six runs cor-
responding to three regression different tech-
niques in combination with two variants of the
autoencoder, one with input as bags of words
and another with input as bags of character 3-
grams.

1 Introduction

Sentiment Analysis from texts is a growing field of
research due to its social and economic relevance.
Task 11 of SemEval-2015 (Semantic Evaluation Ex-
ercises) was proposed to the research community in
order to foster the development of systems and tech-
niques for Sentiment Analysis (Ghosh et al., 2015).

We faced this challenging task with a system
based on deep autoencoders in combination with
classification and regression techniques. We used
deep autoencoders to extract features from tweets by
means of two ways of splitting text: i) words and
ii) character 3-grams. The training of autoencoders
was unsupervised. The extracted features (10) and a
few manually added features (5) were used for train-

ing classifiers or regression functions to estimate the
tweet’s polarity value.

The rest of the paper is organized as follows. Sec-
tion 2 describes the proposed system. Section 3
presents the obtained results on the test set. Finally,
conclusions are discussed in Section 4.

2 System Description

Our system consists of two stages: (1) Dimension-
ality reduction by means of deep autoencoders. (2)
Polarity value assignment by using different classi-
fication and regression techniques.

The text of tweets was preprocessed before being
used as input to the autoencoders. The autoencoders
take as input a representation of each tweet. Two
different representations were used: bags of words
and bags of character 3-grams. In both cases the
output of an autoencoder was a vector of 10 real
values. Optionally we added other features in order
to improve the polarity assignment, these additional
features are binary features indicating whether some
symbols or hash tags appear in the tweet. The idea
behind adding these extra features is to set a con-
text for learning under their influence. The different
subsets of used features are described in subsection
2.3. The step of assigning a polarity value to a given
tweet was carried out by a classifier or a regression
function. Several techniques for classification and
regression were tested. Table 2 shows the relation of
the used techniques.

2.1 Tweets Preprocessing

As mentioned above, the input for the autoencoders
was prepared from two different ways of splitting
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Pattern or regular expression New text
"#" " #"
"@" " @"
"&amp;" " & "
"&lt;" "<"
"&gt;" ">"
"&.*;" " HTML "
"\\u0092" "’"
"[0-9]+:[0-9]+[Aa][Mm]" " H "
"[0-9]+:[0-9]+" " H "
"[0-9]+[Aa][Mm]" " H "
"http[s]*://[a-zA-Z0-9\\./-_]+" ""
"http[s]*:/+" ""
"http" ""
"@[_a-zA-Z0-9]+" ""
" : " " "
" [0-9\\.-:]+ " " N "
"[\\u00ff-\\uffff]+" " A "
"!!!+" "!3+"
"\\?\\?\\?+" "?3+"
"\\.\\.\\.+" "?.+"
"\\p{Punct}{3,}" " P "
"> >" ">"
"< <" "<"
">+" ">"
"<+" ">"
"-+" "-"
" +" " "
" " "_"
"_+" "_"

Table 1: Substitution rules used for normalizing the text
of tweets. The double quotes are used here as delimiters,
like in Java for String literals, they are not part of the
pattern. Rules are presented in the same format they were
used as arguments for the method replaceAll() of
class String of Java. Rules were applied in the same
order they appear in this table.

the text of tweets. Before the splitting step, a clean-
ing process was carried out by applying a set of sub-
stitutions. The goal was to normalize the text before
generating the bags of words or character 3-grams.

Table 1 shows the rules used for carrying out such
substitutions. These rules were extracted by us af-
ter analyzing the text of tweets corresponding to the
training set. The order in that these rules were ap-
plied was relevant to the final result. The desired
effects were the following:

• Removing URLs from the text of tweets. We
assumed URLs were not relevant for guessing
the polarity.

• User identifiers were also removed.

• Emoticons and possible animations were also
reduced to a capital A. We were interested in
knowing whether they appear or not.

• Sequences of repeated symbols or punctuation
signs were reduced to one instance or a se-
quence to indicate the repetition.
• Numbers or dates were reduced to a capital let-

ter indicating their appearance.
• Some symbols were forced to be preceded by

a white space in order to facilitate the posterior
splitting into words.
• Sequences of several white spaces were re-

duced to one white space and all white spaces
were converted to underscores.

After the normalizing step, the splitting step was
carried out in order to prepare the input for deep au-
toencoders. Two splitting ways were applied, one
for separating words using white spaces (or under-
scores) and another one using character sequences
of size 3 (character 3-grams).

In the case a tweet was represented as a bag of
words, all the words found in the training set were
used. A special entry for out-of-vocabulary words
was introduced into the word table for generating
the bags of words. We considered tokens as words
those including only letters from the Latin alphabet.
Numbers or other symbols were not included.

In the case of representing tweets as bags of char-
acter 3-grams, only those that appeared three or
more times in the training set were used. The re-
maining ones were considered as out-of-vocabulary.
A special entry for out-of-vocabulary 3-grams was
introduced into the 3-grams table for generating the
bags of 3-grams.

2.2 Deep Autoencoders
Autoencoders provide an unsupervised way to learn
low-dimensional embeddings of the data. Such rep-
resentation can be used for discriminative tasks. We
used a deep autoencoder to extract such features.
The fundamental block of our autoencoder was the
restricted Boltzman machine (RBM). We used the
contrastive-divergence algorithm for pretraining the
autoencoder followed by the fine-tuning to minimize
the reconstruction error shown in Eq. 1 (Hinton and
Salakhutdinov, 2006).

J = ‖X −X ′‖2 (1)

where, X is the original vector and X ′ is its recon-
struction.
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The architecture1 of the autoencoder was |X|-
200-100-100-10 and the sigmoid function was used
to add non-linearity to the hidden layers except for
the final layer which was linear. We used replicated
softmax to model count data in the visible layer of
the autoencoder (Hinton and Salakhutdinov, 2009).

2.3 Classification and Regression Techniques

Different classification and regression techniques
were tested in order to figure out which ones were
the more appropriated for estimating the polarity
of tweets. This checking process was carried out
with the training set. We used the Scikit-Learn
toolkit (Pedregosa et al., 2011) for all the tested tech-
niques.

Given the output of each autoencoder we used
three different sets of features:

1. Just the vectors of 10 real values obtained from
autoencoders. 10 features.

2. Same 10 features as above plus five bi-
nary features indicating whether some hash
tags or symbols were present in the tweet.
The additional five binary features corre-
sponded to the presence of three hash tags
#irony, #sarcasm, #not, and whether
the tweet contains quotes or emoticons.
In total 15 features.

3. Same 15 features as for the second set
plus additional binary features for indicat-
ing whether any of the hash tags found in
the training set was present in the tweet.
In total 3580 (10+5+3565) features.

Table 2 shows the list of all classification and re-
gression techniques used in the second stage of our
system. All techniques are used from the Scikit-
Learn toolkit (Pedregosa et al., 2011). For train-
ing each classifier or regression function we used the
same input data, i.e. the feature vectors representing
each tweet from the training set and its polarity.

The output of classifiers is the integer value of the
polarity, but in the case of regression functions the
output value is truncated to the nearest integer.

1We did not notice any difference in performance empiri-
cally with other configurations with a general caution that much
larger number of parameters model might lead to over-fitting.

The different classification and regression tech-
niques used in the second stage were configured
with the default values for their hyperparame-
ters (Pedregosa et al., 2011). Some variations of hy-
perparameters were tested, but no further improve-
ments were observed. Our purpose was to check
which techniques were more suitable.

A more exhaustive search in order to find optimal
combinations of hyperparameters for each technique
would be an interesting extension of this work.

3 Results

Tables 2 and 3 show the results obtained with the
test set. The whole training set was used for training
all the tested techniques. It could be observed that
the best results were obtained by the Ensemble of
Extremely Randomized Trees (or Extra-Trees) used
for regression (Geurts et al., 2006). Other ensemble
techniques presented similar results. Focusing our
attention on Table 3 and comparing with the results
shown in Table 2, it could be observed as two vari-
ants of SVMs get results similar to the best ones, but
no significant improvements were observed when
using the set of 3580 features.

4 Conclusions

We developed a system for participating in Task 11
of SemEval-2015 which consisted of two stages. In
the first stage stage we used deep autoencoders for
obtaining a compact representation of tweets. We
tried three sets of features that were used as input for
different classification and regression techniques.

Results obtained in average from the 10-fold
cross-validation we carried out with the training
set revealed that the three most appropriated tech-
niques were three ensembles: Extremely Random-
ized Trees, Random Forest and Bagging of Decision
Trees. The regression setting of these techniques
performed better than that of classification.

The fact that the techniques which obtained the
best results are purely non-parametric and have no
weights for approximating the output value, tell us
that the obtained compact representation of tweets
by means of deep autoencoders needs more analy-
sis. An effort in exploring more configurations of
autoencoders will help us to obtain better compact
representations, which we plan to do in future. We
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Classification or Regression Technique Cosine Similarity
3-grams 10 words 10 3-grams 15 words 15

Automatic Relevance Determination Regressor 0.469 0.451 0.462 0.525
Bayesian Ridge Linear Regressor 0.552 0.562 0.609 0.618
Elastic Net Regressor 0.544 0.557 0.541 0.557
Ensemble AdaBoost Regressor Exponential 0.311 0.332 0.377 0.351
Ensemble AdaBoost Regressor Linear 0.540 0.556 0.554 0.587
Ensemble AdaBoost Regressor Squared 0.199 0.213 0.314 0.212
Ensemble Bagging Regressor with Decision Trees 0.558 0.549 0.593 0.587
Ensemble of Extra Trees Classifier 0.549 0.542 0.549 0.537
Ensemble of Extra Trees Regressor 0.565 0.557 0.623 0.610
Ensemble of Random Forests Classifier 0.535 0.542 0.536 0.541
Ensemble of Random Forests Regressor 0.554 0.555 0.592 0.610
KNN Classifier with inverse distance weights 0.497 0.497 0.501 0.495
KNN Classifier with uniform weights 0.507 0.526 0.517 0.518
LARS Lasso Linear Regressor 0.546 0.546 0.546 0.546
Lasso Linear Regressor 0.545 0.557 0.545 0.557
Logistic Regression (Classifier) 0.556 0.542 0.545 0.541
Perceptron Classifier 0.469 0.451 0.462 0.525
Passive Aggresive Regressor 0.561 0.378 0.564 0.384
RANSAC Regressor 0.507 0.532 0.547 0.592
Ridge Linear Regressor 0.552 0.563 0.608 0.620
SVM Linear Classifier 0.555 0.539 0.552 0.545
SVM Linear Regressor 0.551 0.552 0.583 0.570
SVM Polynomial Classifier 0.545 0.539 0.540 0.550
SVM Polynomial Regressor 0.587 0.560 0.599 0.610
SVM RBF Classifier 0.541 0.542 0.541 0.538
SVM RBF Regressor 0.593 0.562 0.604 0.560

Table 2: Results of all the tested techniques for the two kind of inputs used for the deep autoencoder: 3-grams and
words, and for feature sets with 10 and 15 features.

Classification or Regression Technique Cosine Similarity
3-grams 3580 features words 3580 features

Bayesian Ridge Linear Regressor 0.605 0.621
Ensemble Bagging Regressor with Decision Trees 0.595 0.605
Ensemble of Extra Trees Regressor 0.626 0.596
Ensemble of Random Forests Regressor 0.593 0.616
Ridge Linear Regressor 0.596 0.615
SVM Linear Regressor 0.598 0.593
SVM RBF Regressor 0.610 0.566

Table 3: Results of some of the tested techniques for the two kind of inputs used for the deep autoencoder: 3-grams
and words, and for the feature set with 3580 features.

also plan to use the tweet polarity information dur-
ing the fine-tuning stage of training as an additional
supervised component.
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Abstract

This paper describes the system used by the
ValenTo team in the Task 11, Sentiment Anal-
ysis of Figurative Language in Twitter, at Se-
mEval 2015. Our system used a regression
model and additional external resources to as-
sign polarity values. A distinctive feature of
our approach is that we used not only word-
sentiment lexicons providing polarity anno-
tations, but also novel resources for dealing
with emotions and psycholinguistic informa-
tion. These are important aspects to tackle
in figurative language such as irony and sar-
casm, which were represented in the dataset.
The system also exploited novel and stan-
dard structural features of tweets. Considering
the different kinds of figurative language in
the dataset our submission obtained good re-
sults in recognizing sentiment polarity in both
ironic and sarcastic tweets.

1 Introduction

Figurative language, which is extensively exploited
in social media texts, is very challenging for both
traditional NLP techniques and sentiment analysis,
which has been defined as “the computational study
of opinions, sentiments and emotions expressed in
text” (Liu, 2010). There is a considerable amount
of works related to sentiment analysis and opinion
mining (Pang and Lee, 2008; Liu, 2010; Cambria
et al., 2013). In particular, the linguistic analysis

∗ The National Council for Science and Technology
(CONACyT-Mexico) has funded the research work of the first
author (218109/313683 grant).

of social media (microblogging like Twitter espe-
cially) has become a relevant topic of research in
different languages (Rosenthal et al., 2014; Basile
et al., 2014) and several frameworks for detecting
sentiments and opinions in social media have been
developed for different application purposes.

In a sentiment analysis setting, the presence in a
text of figurative language devices, such as for in-
stance irony, can work as an unexpected polarity re-
verser, by undermining the accuracy of the systems
(Bosco et al., 2013). Therefore, several efforts have
been recently devoted to detect and tackle figura-
tive language phenomena in social media, follow-
ing a variety of computational approaches, mostly
focussing on irony detection and sarcasm recogni-
tion (Davidov et al., 2010; González-Ibáñez et al.,
2011; Riloff et al., 2013) as classification tasks.
Buschmeier et al. present an analysis of fea-
tures, previously applied in irony detection, in a
dataset from a product reviews corpus from Amazon
(Buschmeier et al., 2014). Veale and Hao present
a linguistic approach to separate ironic from non-
ironic expressions in figurative comparisons over a
corpus of web-harvested similes (Veale and Hao,
2010). Concerning Twitter, the problem of irony de-
tection is addressed in (Reyes et al., 2013), where
a set of textual features is used to recognize irony
at a linguistic level. In (Riloff et al., 2013) the fo-
cus is on identifying sarcastic tweets that express a
positive sentiment towards a negative situation. A
model to classify sarcastic tweets using a set of lex-
ical features is presented in (Barbieri et al., 2014).
Moreover, a recent analysis on the interplay between
sarcasm detection and sentiment analysis is in (May-
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nard and Greenwood, 2014), where a set of rules has
been proposed to improve the performance of the
sentiment analysis in presence of sarcastic tweets.

In this paper we describe our participation to the
SemEval-2015 Task 11: Sentiment Analysis of Figu-
rative Language in Twitter (Ghosh et al., 2015). The
task concerned with classification of tweets contain-
ing different kinds of figurative language, in partic-
ular irony, sarcasm and metaphors. ValenTo system
used a linear regression model, exploiting novel and
standard structural and lexical features of tweets.
Considering the different kinds of figurative lan-
guage in the Semeval dataset - sarcasm, irony and
metaphors - our submission had good results in rec-
ognizing sentiment polarity in both ironic and sar-
castic tweets, than in the other cases.

2 Our System

We propose a supervised approach that consists in
assigning a polarity value to tweets by using a lin-
ear regression model constructed from an annotated
dataset. In order to catch characteristics that allow
us to measure the polarity value in each tweet, we
considered a set of features described below.

2.1 Feature Description

2.1.1 Structural Features
Among the several structural characteristics of

tweets, in our study we consider: the length of
tweets in amount of words (lengthWords); the length
of a tweet as the number of characters that composes
the textual message (lengthChar); the frequency of
commas, semicolons, colons, exclamation and ques-
tion marks (punctuation marks); the frequency of
some Part of Speech categories as nouns, adverbs,
verbs and adjectives (POS); the frequency of upper-
case letters in each tweet upperFreq; the frequency
or presence of URL urlFreq; and the amount of
emoticons used in order to express some kind of
emotion, we consider both positive (emotPosFreq)
and negative ones (emotNegFreq).

We also consider some features that belongs to
tweets, like: the presence or absence of hashtags
(hashtagBinary) and mentions (mentionsBinary);
the amount of hashtags (hashtagFreq) and mentions
(mentionsFreq) in each tweet; and if the tweet is a
retweet (isRetweet). Finally, we decide to take into

account a feature (polReversal) in order to reverse
the polarity (positive to negative, and vice versa) if a
tweet includes the hashtag #sarcasm or #not.

2.1.2 Lexical Resources

In order to take into account sentiments, emotions
and psycholinguistic features, and to count their fre-
quency, we use the following lexical resources:

AFINN: it is a dictionary of 2, 477 English man-
ually labeled words collected by Nielsen (Nielsen,
2011). Polarity values varies from −5 up to +5 1.

ANEW: the Affective Norms for English Words
provides a set of emotional ratings for a large num-
ber of English words (Bradley and Lang, 1999).
Each word in is rated from 1 to 9 in terms of the three
dimensions of Valence, Arousal and Dominance.

DAL: the Dictionary of Affective Language devel-
oped by Whissell (Whissell, 2009) contains 8, 742
English words rated in a three-point scale2. Each
word is rated into the dimensions of Pleasantness,
Activation and Imagery.

HL: Hu–Liu’s lexicon (Hu and Liu, 2004) in-
cludes about 6, 800 positive and negative words3.

GI: General Inquirer (Stone and Hunt, 1963) con-
tains categories and subcategories for content analy-
sis with dictionaries based on the Lasswell and Har-
vard IV-4 4.

SWN: SentiWordNet (Baccianella et al., 2010) is
a lexical resource for opinion mining and consists in
three sentiment scores: positive, negative and objec-
tive5. We take into account the first two categories.

SN: SenticNet is a semantic resource for concept-
level sentiment analysis (Cambria et al., 2012).
We take into account the values of each one of the
five dimensions (senticnetDimensions) provided by
the lexical resource: Pleasantness (Pl), Attention
(At), Sensitivity (Sn) and Aptitude (Ap) and Polar-
ity (Pol); and also the polarity value p obtained by
using the formula (senticnetFormula) below based

1https://github.com/abromberg/sentiment_
analysis/blob/master/AFINN/AFINN-111.txt

2ftp://perceptmx.com/wdalman.pdf
3http://www.cs.uic.edu/˜liub/FBS/
4http://www.wjh.harvard.edu/˜inquirer/

homecat.htm.We are mostly interested in the positive and
negative words.

5http://sentiwordnet.isti.cnr.it/
download.php
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on a combination of the first four dimensions:

p =
n∑

i=1

Pl(ci) + |At(ci)| − |Sn(ci)|+ Ap(ci)
3N

where ci is an input concept, N the total number of
concepts which compose the tweet, and 3 a normal-
isation factor.

LIWC: Linguistic Inquiry and Word Counts dic-
tionary6 contains 127,149 words distributed in cate-
gories that can further be used to analyze psycho-
linguistic features in texts. We select two cate-
gories for positive and negative emotions: PosEmo
(12,878) entries and NegEmo (15,115 entries).

NRC: in the NRC word-emotion association lexi-
con (Mohammad and Turney, 2013) each word is la-
beled according to the Plutchik’s primary emotions.

3 Results

3.1 Task Description and Dataset
The goal of the Task 11 at SemEval 2015, is the fol-
lowing: given a set of tweets rich w.r.t. the pres-
ence of such figurative devices, to determine for each
message whether the user expressed positive, neg-
ative or neutral sentiment, and the sentiment de-
gree. To have a measure of the sentiment intensity
expressed in the message, it was proposed a fine-
grained 11-point sentiment polarity scale.

Figure 1: Frequency distribution of tweets by polarity in-
tensity.

Two measures evaluated the similarity of the par-
ticipant systems predictions to the manually anno-
tated gold standard: Cosine Similarity (CS) and

6http://www.liwc.net

Table 1: Criteria for assigning classes.
3c-approach 4c-approach

Original New Original New
pv>0 pos pv > 0 pos
pv<0 neg -2.5 > pv <= 0 nsn
pv=0 neu -3.5 > pv <= -2.5 neg

pv <= -3.5 vn

Mean Squared Error (MSE). The corpus available
for training and trial consists of around 9, 000 figu-
rative tweets with sentiment scores ranging from−5
to +5. Because of the perishability of Twitter data,
some of them cannot be recovered by the published
list of tweet identifiers; finally, we could rely on a
corpus of 7, 390 messages considering both training
and trial datasets. With respect to the polarity, the
whole distribution is positively skewed (Fig. 1). The
median value is very negative (−2.3) and the aver-
age of the tweets polarity is −2.

3.2 ValenTo System

As a first step, we decided to address the problem
as a classification task. We experimented three ap-
proaches, each featured by a different amount of
considered classes; in the first one (3c-approach)
we used just three classes: positive (pos), nega-
tive (neg) and neutral (neu); in the second one (4c-
approach) we used four classes: positive, nega-
tive, not so negative (nsn) and very negative (vn);
and in the third one (11c-approach) we used the
original values included in the corpus, i.e. eleven
classes from −5 to +5. For the first two approaches
we changed the polarity values (pv) in each one of
the tweets contained in the dataset according to the
criteria summarized in Table 1. Based on polarity
value distribution shown in Fig. 1, we separated the
classes in different ranges that cover all the possi-
ble values. A small set of widely classification al-
gorithms was used: Naive Bayes (NB), Decision
Tree (DT) and Support Vector Machine (SVM)7. We
performed classification experiments using only the
training set (i.e. 6,928 tweets); a ten fold-cross-
validation criterium was applied. Table 2 presents
results obtained in F-measure terms.

7We used Weka toolkit’s version available at
http://www.cs.waikato.ac.nz/ml/weka/
downloading.html
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Table 2: Classification experiments: results.
Approach NB DT SVM
3c-approach 0.829 0.804 0.790
4c-approach 0.458 0.440 0.462
11c-approach 0.324 0.311 0.302

As expected, from our classification results, the
performance in terms of F-Measure drops while the
number of classes increase. We decided to apply a
different approach: Regression.

In order to build a regression model able to as-
sign polarity values, we decided to merge both train-
ing and trial datasets (fullTrainingSet composed by
7,390 tweets). We used the Linear Regression Algo-
rithm in Weka.
First, from the whole fullTrainingSet corpus we ran-
domly extracted a set for training, containing the
70% of the tweets, and a set for the test, with the re-
maining 30%, obtaining Subset-1. We repeated the
procedure two times more and we obtained Subset-2
and Subset-3.Second, we made up 11 different com-
binations of features ft-conf[1-11]. Each one con-
tains a subset of the features described in Sec. 2.1.
We built the features combination according to a
preliminary analysis with respect to frequency dis-
tribution. Then, we applied our regression model
for each Subset and ft-conf . In order to evaluate the
performance of our model, we used the script to ob-
tain the cosine similarity measure provided by the
organizers. Table 3 shows the results of these exper-
iments for what concerns ft-conf2 configuration, the
one we selected for constructing the final model sub-
mitted to SemEval-Task 11 (due to lack of space, not
have been included all results obtained). ft-conf2
contains the following features:

lengthChar, punctuation marks, POS, upperFreq,
urlFreq, emotPosFreq, emotNegFreq,
hashtagBinary, mentionsBinary, hashtagFreq,
mentionsFreq, isRetweet, polReversal, AFINN,
ANEW, DAL, HL,GI, SWN, senticnetDimensions,
senticnetFormula, LIWC, NRC

Table 3: Regression experiments: results.
Features Subset-1 Subset-2 Subset-3
ft-conf2 0.8218 0.8161 0.8199

In order to measure the relevance of each fea-
ture used in our model, we applied the RELIEF al-
gorithm8. The best ranked features are those re-
lated to emotional words (NRC) and polarity lexi-
cons (AFINN and HL).

3.3 Official Results
We ranked 6th out of 15 teams in the SemEval-2015
Task 11 (Ghosh et al., 2015)9. ValenTo achieved the
score of 0.634 using the CS measure, and a score of
2.999 using the MSE measure, while the best team
achieved the score of 0.758 for CS, and a score of
2.117 for MSE.

Our results in terms of irony and sarcasm seem to
be close to the best ones in each category (See Table
4).

Table 4: Official ValenTo and best results in each cate-
gory of figurative type.

Category CS MSE
ValenTo Best ValenTo Best

Overall 0.634 0.758 2.999 2.117
Sarcasm 0.895 0.904 1.004 0.934
Irony 0.901 0.918 0.777 0.671
Metaphor 0.393 0.655 4.730 3.155
Other 0.202 0.612 5.315 3.411

4 Conclusions

We described our participation at SemEval-2015
Task 11. A distinctive feature of our approach is
that we used not only word-sentiment lexicons but
also novel resources for dealing with emotions and
psycholinguistic information. Based on both fea-
tures analysis and evaluation results, we can draw
a first insight about the importance of using such
high-level information about affective value of the
words in a tweet to tackle with figurative language
such irony and sarcasm. As future work, the use
of additional features for addressing figurative lan-
guage under other perspectives (e.g. metaphor) will
be explored.

8ReliefFAttributeEval version included in Weka (Robnik-
Sikonja and Kononenko, 1997).

9http://alt.qcri.org/
semeval2015/task11/index.php?id=
task-results-and-initial-analysis-1,
Table1.
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Abstract

This paper describes the details of our sys-
tem submitted to the SemEval 2015 shared
task on sentiment analysis of figurative lan-
guage on Twitter. We tackle the problem as
regression task and combine several base sys-
tems using stacked generalization (Wolpert,
1992). An initial analysis revealed that the
data is heavily biased, and a general sentiment
analysis system (GSA) performs poorly on
it. However, GSA proved helpful on the test
data, which contains an estimated 25% non-
figurative tweets. Our best system, a stacking
system with backoff to GSA, ranked 4th on the
final test data (Cosine 0.661, MSE 3.404).1

1 Introduction

Sentiment analysis (SA) is the task of determining
the sentiment of a given piece of text. The ampli-
tude of user-generated content produced every day
raises the importance of accurate automatic senti-
ment analysis, for applications ranging from, e.g.,
reputation analysis (Amigó et al., 2013) to election
results prediction (Tjong Kim Sang and Bos, 2012).
However, figurative language is pervasive in user-
generated content, and figures of speech like irony,
sarcasm and metaphors impose relevant challenges
for a sentiment analysis system usually trained on
literal meanings. For instance, consider the fol-
lowing example:2 @CIA We hear you’re looking
for sentiment analysis to detect sarcasm in Tweets.
That’ll be easy! #SLA2014 #irony. Irony or sarcasm

1After submission time we discovered a bug in ST2,which
means that the results on the official website are of the GSA and
not of the stacking system with backoff.

2From the training data, label: -1.24; GSA prediction: +5.

does not result always in the exact opposite senti-
ment and therefore it is not as simple as just invert-
ing the scores from a general SA system. Only few
studies have attempted SA on figurative language so
far (Reyes and Rosso, 2012; Reyes et al., 2013).

The prediction of a fine-grained sentiment score
(between -5 and 5) for a tweet poses a series of chal-
lenges. First of all, accurate language technology
on tweets is hard due to sample bias, i.e., collections
of tweets are inherently biased towards the particular
time (or way, cf. §2) they were collected (Eisenstein,
2013; Hovy et al., 2014). Secondly, the notion of
figurativeness (or its complementary notion of liter-
ality) does not have a strong definition, let alone do
irony, sarcasm, or satire. As pointed out by Reyes
and Rosso (2012), “there is not a clear distinction
about the boundaries among these terms”. Yet alone
attaching a fine-grained score is far from straight-
forward. In fact, the gold standard consists of the
average score assigned by humans through crowd-
sourcing reflecting an uncertainty in ground truth.

2 Data Analysis

The goal of the initial data exploration was to inves-
tigate the amount of non-figurativeness in the train
and trial data. Our analysis revealed that 99% of
the training data could be classified using a simple
heuristic: a regular expression decision list, here-
after called Tweet Label System (TLS), to split the
training data into different key-phrase subgroups.
The system searches for the expression in a tweet
and then assigns a label in a cascade fashion fol-
lowing the order in Table 2, which lists the 14 pos-
sible label types (plus NONE), their associated ex-
pressions along with the support for each category
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in the training data. Table 1 shows that only a small
fraction of the train and trial data could not be asso-
ciated to a subgroup and it can be seen that the final
test data was estimated to have a very different dis-
tribution with 25% of tweets presumably containing
literal language use.

Dataset Train Trial Test
Instances 7988 920 4000

% Non-figurative 1% 7% 25%

Table 1: Retrieved instances in each data set and esti-
mated amount of non-figurativeness.

Since there are obvious subgroups in the data, our
hypothesis is that this fact can be used to construct a
more informed baseline. In fact (§ 4.1), simply pre-
dicting the mean per subgroup pushed the constant
mean baseline performance considerably (from 0.73
to 0.81 Cosine, compared to random 0.59).

Figure 1 plots predicted scores (ridge model, §3.1)
of three subgroups against the gold scores on the
trial data. It can be seen that certain subgroups have
similar behaviour, ‘sarcasm’ has a generally nega-
tive cloud and the model performs well in predict-
ing these values, while other groups such as ‘SoTo-
Speak’ have more intra-group variance.

Label Expression Support Label Expression Support
Sarcasm #sarcas 2139 SoToSpeak so to speak 135
Irony #iron(y ic) 1444 Proverbial proverbial 22
Not #not 3601 JustKidding #justkidding -
Literally literally 344 Not2 not 29
Virtually virtually 8 about about 8
YeahRight #yeahright 47 Oh oh 3
OhYouMust Oh.*you 2 NONE - 92
asXas as .* as 83

Table 2: Tweet Label Type and Expression.

The Effect of a General Sentiment System

The data for this task is very different from data that
most lexicon-based or general sentiment-analysis
models fare best on. In fact, running a general sen-
timent classifier (GSA) described in Elming et al.
(2014) on the trial data showed that its predictions
are actually slightly anti-correlated with the gold
standard scores for the Tweets in this task (cosine
similarity score of -0.08 and MSE of 18.62). We
exploited these anti-correlated results as features for
our stacking systems (cf. § 3.2). Figure 2 shows the

●

●

●

●

●

●

●
● ●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

−4

−2

0

2

−5.0 −2.5 0.0 2.5 5.0
gold

rid
ge

label

● asXas

sarcasm

sotospeak

Figure 1: Label Plots for RR predictions.

distributions of the gold scores and GSA predictions
for the trial data. It shows that the gold distribution
is skewed with regards to the number of negative in-
stances to positives, while the GSA predicts more
positive sentiment.

Figure 2: Distribution of Gold Scores and GSA Predic-
tions for Trial Data.

3 System Description

We approach the task (Ghosh et al., 2015) as a re-
gression task (cf. §4.4), combining several systems
using stacking (§ 3.2), and relying on features with-
out POS, lemma or explicit use of lexicons, cf. § 3.3.
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3.1 Single Systems

Ridge Regression (RR) A standard supervised
ridge regression model with default parameters.3

PCA GMM Ridge Regression (GMM) A ridge
regression model trained on the output of unsu-
pervised induced features, i.e., a Gaussian Mixture
Models (GMM) trained on PCA of word n-grams.
PCA was used to reduce the dimensionality to 100,
and GMM under the assumption that the data was
sampled from different distributions of figurative
language, k Gaussians were assumed (here k = 12).

Embeddings with Bayesian Ridge (EMBD) A
Bayesian Ridge Regressor learner with default pa-
rameters trained on only word embeddings. A cor-
pus was build from the training data and an in-house
Tweet collection sampled with the expressions from
the TLS. This resulted in a total of 3.7 million tweets
and 67 million tokens. For details on how the word
embeddings were built see §3.3.

3.2 Ensembles

We developed two stacking systems (Wolpert,
1992), Stacking System 1 (ST1) and Stacking System
2: Stacking with Backoff (ST2). The systems used
for these are shown in Table 3 and the Meta Learner
used for both stacking systems is Linear Regression.

The systems used in ST1 and ST2 are not the only
differences between the two. ST2 uses the TLS to
identify the subgroup that each tweet belongs to. For
any tweet with the NONE subgrouping, the system
would back off to the predictions from the GSA. We
built ST2 as a system that is not limited to sentiment
analysis for a small subsection of language, the phe-
nomenon of figurative language, but is applicable in
situations covering many types of tweets including
those in which literal language is used.

Single System / Stacking System ST1 ST2
RR X X

GMM X
EMBD X
GSA X X

Table 3: Systems in Ensemble Setups.

3http://scikit-learn.org/

3.3 Features
This section describe the features we used for the
models in §3.1. Table 4 indicates the type of fea-
tures used for the single models. Punctuation was
kept as its own lexical item and we found removing
stopwords and normalizing usernames to ’@USER’
increased performance and as such the preprocess-
ing methods are the same across the models. Fea-
tures were set on the trial data.

1. Word N-Grams Systems use different n-grams
as features. In RR counts of 1 and 5 word
grams, in GMM binary presence of 1,2, and 3
word grams.

2. Uppercase Words Counts of the numbers of
word in a Tweet with all uppercase letters.

3. Punctuation Contiguous sequences of ques-
tion, exclamation, and question and exclama-
tion marks.

4. TLS Label The subgrouping label from TLS.
5. Word Embeddings Parameters for word em-

beddings:4 100 dimensions, 5 minimum occur-
rences for a type to be included in the model, 5
word context window and 10-example negative
sampling. Each tweet was represented by 100
features that represented the average of all the
embeddings of the content words in the tweet.

Features/Systems RR GMM EMBD
Word N-grams X X
Uppercase X
Punctuations X
TLS Label X
Word Embeddings X

Table 4: Features used in Single Models.

4 Results

4.1 Constant Baselines & Single Systems
We implemented the Mean, Mode, Median, Random
and TSL (§2) baseline systems. TSL is the hardest
baseline, and RR is the only system that beats it.

4.2 Results Stacking Systems
The performance of the stacking systems on the trial
data can be seen below in Table 6. ST2 did not per-
form well on the trial data although a reason for this

4https://code.google.com/p/word2vec/
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System Cosine MSE
TLS 0.81 2.34
Mean 0.73 3.13
Mode 0.73 3.13
Median 0.73 3.31
Random 0.59 5.17
RR 0.88 1.60
GMM 0.79 2.55
EMB 0.78 2.64

Table 5: Baseline and Single Systems On Trial Data.

is that only 7% of the trial data was found as not
belonging to a known figurative type of tweet.

System Cosine MSE
ST1 0.86 1.88
ST2 0.79 2.57

Table 6: Stacking Model Results on Trial Data.

4.3 Final Results

Three models were submitted for final evaluation on
the test data. The three models were RR, ST1, and
ST2. For the final results we scaled back values out-
side the range [-5,5] to the nearest whole number in
range. Tables 7 and 8 show the results for our sys-
tems on the final dataset and the performance of the
overall winning system for the task (CLAC) . Table
7 shows the overall cosine similarity and MSE for
the systems on the test data and Table 8 shows the
breakdown of the cosine similarity for the systems
on the different parts of language. It is interesting
to note that the performance of ST2 on the ‘Other’
type of language is identical as the performance for
CLAC, this is also the best cosine similarity score
‘Other’ out of all submissions.

System Test Cosine Test MSE
RR 0.625 3.079
ST1 0.623 3.078
ST2 0.661 3.404
CLAC 0.758 2.117

Table 7: Submission System Test Results.5

System Overall Sarcasm Irony Metaphor Other
RR 0.625 0.897 0.886 0.325 0.218
ST1 0.623 0.900 0.903 0.308 0.226
ST2 0.661 0.875 0.872 0.453 0.584
CLAC 0.758 0.892 0.904 0.655 0.584

Table 8: Cosine Test Results Breakdown.

4.4 The Case for Regression

Regression is less usual in NLP than classification.
However for this data, it is desirable to use regres-
sion, because it incorporates the ordered relation be-
tween the labels, instead of treating them as orthogo-
nal. It also keeps the decimal precision in the target
variable when training, which is relevant when the
target variable is the result of an average between
several annotations. We ran classification experi-
ments for this task but found that the best classi-
fication system’s6 performance (Cosine 0.82, MSE
2.51) is still far from the RR model (0.88,1.60).

5 Conclusions

We tested three systems for their abilities to analyse
sentiment on figurative language from Twitter. Our
experiments showed that a general SA system
trained on literal Twitter language was highly anti-
correlated with gold scores for figurative tweets. We
found that for certain figurative types, sarcasm and
irony, our system’s predictions for these phenom-
ena faired well. Our system did not explicitly use
a lexicon to define the sentiment of a tweet, but
instead used machine learning and strictly corpus-
based features (no POS or lemma) to place us 4th
in the task. More effort may be needed to discrimi-
nate metaphorical from literal tweets to build a more
robust system, although, even for humans the senti-
ment of tweets is hard to judge. This can be seen
from the data where a number of tweets were re-
peated, but did not always share the same gold score.

5The numbers in bold indicate the best performance among
our systems, underlined indicates the best performance between
any of our systems and the winning system.

6Decision Tree with 7 classes and using the minimum score
for instances in the classes in the training data to convert for
class labels to scores.
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Abstract

In this paper, we describe the approach used
by the UPF-taln team for tasks 10 and 11 of
SemEval 2015 that respectively focused on
“Sentiment Analysis in Twitter” and “Sen-
timent Analysis of Figurative Language in
Twitter”. Our approach achieved satisfac-
tory results in the figurative language analy-
sis task, obtaining the second best result. In
task 10, our approach obtained acceptable per-
formances. We experimented with both word-
based features and domain-independent intrin-
sic word features. We exploited two ma-
chine learning methods: the supervised algo-
rithm Support Vector Machines for task 10,
and Random-Sub-Space with M5P as base al-
gorithm for task 11.

1 Motivation

During the last decade the study and characterisa-
tion of sentiments and emotions in on-line user-
generated content has attracted more and more in-
terest. Since 2013 several tasks dealing with Sen-
timent Analysis have been organised in the context
of SemEval. These tasks have been mainly focused
on the analysis of short texts like SMS or tweets.
In this paper we describe the approach adopted by
UPF-taln team for tasks 10 and 11 of SemEval 2015,
both dealing with the analysis of English tweets.
Task 10 concerned “Sentiment Analysis in Twitter”

∗The research described in this paper is partially funded
by the Spanish fellowship RYC-2009-04291, the SKATER-
TALN UPF project (TIN2012-38584-C06-03), and the EU
project Dr. Inventor (n. 611383).

and included different subtasks. We participated in
the subtask B, named “Sentiment Polarity Classifi-
cation”. Given a message, we were asked to classify
whether the message was of positive, negative, or
neutral sentiment. In Task 11 the participants were
asked to determine the polarity score (between -5 to
+5) of tweets rich in metaphor and irony. Our model
reaches satisfactory results in the figurative language
task 11, however it has suboptimal performance in
task 10.

We exploited an extended version of the tweet
classification features and approach described in
(Barbieri and Saggion, 2014). In particular, we ex-
perimented the use of intrinsic word features, char-
acterising each word in a tweet to try to model and
thus automatically determine its polarity. Thanks to
intrinsic word features, we aimed to detect two as-
pects of tweets: the style used (e.g. register used,
frequent or rare words, positive or negative words,
etc.) and the unexpectedness in the use of words,
particularly important for figurative language. We
also exploited textual features (like word occur-
rences, bigrams, skipgrams or other word patterns)
in order to capture the way words are used in positive
and negative tweets. As machine learning approach
we choose the supervised method Support Vector
Machines (Platt, 1999) for task 10 and the regres-
sion algorithm Random-Sub-Space (Ho, 1998) with
M5P (Quinlan, 2014) as base algorithm for task 11.

In Section 2 and 3 we describe the dataset used
and the tools we employed to process the tweets.
In Section 4 we introduce the features we built our
model on. In Section 5 we discuss the performance
of our model in SemEval 2015 and in Section 6 we
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conclude with a recap of our approach and sugges-
tions for further research.

2 Dataset

In order to train our systems we used in each task
only the dataset provided by the organisers. For
task 10 we were able to retrieve 9689 tweets, tagged
as positive, negative and neutral (Rosenthal et al.,
2015). For task 11 the dataset was a collection
of 8000 figurative tweets annotated with sentiment
scores from -5 to +5 (Li et al., 2015).

3 Text Analysis and Tools

In order to deal with the noisy text of Twitter
we made use of the GATE application TwitIE
(Bontcheva et al., 2013) where we modified the
normaliser, adding new abbreviations, new slang
words, removing URLs and changing the normalisa-
tion rules. Besides the tweet normalisation we also
employed TwitIE for tokenisation, Part of Speech
tagging and lemmatisation. We also used Word-
Net (Miller, 1995) to extract synonyms and synsets.
We employed two sentiment lexicons, SentiWord-
Net3.0 (Baccianella et al., 2010) and the NRC Hash-
tag Sentiment Lexicon (Mohammad et al., 2013) and
two emotion lexicons NRC Hashtag Emotion Lexi-
con (Mohammad, 2012) and Depeche Mood (Sta-
iano and Guerini, 2014). As frequency data for de-
termining how often a word is used in English, we
relied on the American National Corpus (Ide and Su-
derman, 2004); we also exploited the VU Amster-
dam Metaphors Corpus (Steen et al., 2010) to find
out how often a word is used in metaphors. Finally,
the machine learning tool we used was Weka (Hall
et al., 2009).

4 Our Method

We employed different machine learning methods
for the two tasks. In task 10, as the classes were only
three (positive, negative and neutral) we opted for
a supervised learning method, and from our exper-
iments with several classifiers, Support Vector Ma-
chines resulted to be the best one. On the other hand,
in task 11 tweets were classified as belonging to one
of 11 polarity classes associated with values rang-
ing from -5 to 5, hence a regression approach was
more suitable. The regression method employed was

Random-Sub-Space with M5P as base algorithm.
We also tried different mixed techniques, like using
a supervised method to classify positive (0 to 5) and
negative (-5 to 0), then a regression method (over
the two subsets) but with no luck: pure regression
methods fitted better task 11.

In both tasks we characterised each tweet using
nine groups of related features all describing both in-
trinsic aspects of the words and word patterns. These
groups of features are the following:

• Sentiments and Emotional Lexicons

• Frequency

• Lemma-Based

• Ambiguity

• Synonyms

• Adjective / Adverb Intensity

• Characters

• Part of Speech

• Bad Words

4.1 Sentiments and Emotional Lexicons
Using sentiment lexicons in Sentiment Analysis has
been a common and rewarding practice (Mohammad
et al., 2013; Kiritchenko et al., 2014). The char-
acterisation of the sentiment associated to words in
tweets is important for two reasons: to detect the
global sentiment (e.g. if tweets contain mainly pos-
itive or negative terms) and, in the case of figura-
tive language, to capture unexpectedness created by
a negative word in a positive context and viceversa.
Using the two sentiment lexicons and two emotional
lexicons mentioned in Section 3, we computed the
number of positive / negative words, the sum of the
intensities of the positive / negative scores of words,
the mean of positive / negative score of words, the
greatest positive / negative score, the gap between
the greatest positive / negative score and the posi-
tive / negative mean. These features are computed
including all the words of each tweet. We also de-
termined these features by considering separately
Nouns, Verbs, Adjectives, and Adverbs (we calcu-
late the features by considering only words charac-
terised by a specific Part of Speech).
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4.2 Frequency
To design the Frequency feature we used two fre-
quency corpora: the American National Corpus and
the VU Amsterdam Metaphors Corpus. From these
corpora we extracted three features: rarest word fre-
quency (frequency of the rarest word included in the
tweet), frequency mean (word frequency arithmetic
average) and frequency gap (the difference between
the two previous features). As previously done, we
computed these features by considering only Nouns,
Verbs, Adjectives, and Adverbs.

4.3 Lemma-Based
We designed this group of features to detect com-
mon word-patterns in positive and negative tweets.
The lemma-based features are three: lemma+pos
(the combination of each lemma and its Part of
Speech in the tweet), bigrams (combination of two
lemmas in a sequence) and skip one gram, combina-
tion of two lemmas with distance one (two lemmas
separated by one lemma).

4.4 Ambiguity
Ambiguity is modelled with WordNet. Our hypoth-
esis is that if a word has many meanings (synset as-
sociated) it is more likely to be used in an ambigu-
ous way. For each tweet we calculated the maximum
number of synsets associated to a single word, the
mean synset number of all the words, and the synset
gap—the difference between the two previous fea-
tures. We determine the value of these features by
including all the words of a tweet as well as by con-
sidering only Nouns, Verbs, Adjectives or Adverbs.

4.5 Synonyms
We carried out an analysis of the choice of synonyms
as follows: for each word in the tweet we retrieve
its list of synonyms, then we computed, across all
the words of the tweet: the greatest / lowest num-
ber of synonyms with frequency higher than the one
present in the tweet, the mean number of synonyms
with frequency greater / lower than the frequency of
the related word present in the tweet. We determine
also the greatest / lowest number of synonyms and
the mean number of synonyms of the words with fre-
quency greater / lower than the one present in the the
tweet (gap feature). We computed the set of Syn-
onyms features by considering both all the words

and also restricting the calculation to words with the
Part of Speech tags as above.

4.6 Adjective / Adverb Intensity

Using the Potts (2011) intensity scores of Adjectives
and Adverbs, we calculated three features: the most
intense adjective/adverb and the intensity mean of
the adjective/adverb of the tweet.

4.7 Characters

We also wanted to capture the punctuation style of
the author of a tweet. Punctuation and type of char-
acters used are very important in social networks:
a full stop at the end of a subjective message may
change the polarity of the message. Each feature
is a count of specific punctuation marks, including:
“.”, “#”, “!”, “?”, “$”, “%”, “&”, “+”, “-”, “=”, “/”.
Moreover we count as well number of uppercase and
lowercase character.

4.8 Part of Speech

The features included in the Part of Speech group
are designed to capture the structure of positive and
negative tweets. The features of this group are eight
and each one of them counts the number of oc-
currences of words characterised by a certain Part
of Speech. The eight Part of Speech considered
are Verbs, Nouns, Adjectives, Adverbs, Interjections,
Determiners, Pronouns, and Appositions.

4.9 Bad Words

Since Twitter messages often include bad words1,
we count them as they may be used more often in
negative messages.

5 Experiments and Results

In this section we present our results in the two tasks
(see Table 1 and Table 2). We only report final re-
sults (mean of Precision, Recall and F-Measure of
each class), for more details please refer to the task
10 and task 11 papers (Rosenthal et al., 2015; Li et
al., 2015).

1We enriched with more variants this list:
https://github.com/shutterstock/List-of-Dirty-Naughty-
Obscene-and-Otherwise-Bad-Words
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5.1 Task 10-B

Given a message, classify whether the message is of
positive, negative, or neutral sentiment. Our model
scores at position 27th out of 40 groups. Systems
were evaluated with the mean of the F-measures of
Positive, Negative and Neutral classes. Our score
is 9 points less than the best system. A consider-
able number of tweets in the test set were considered
sarcastic tweets complicating the sentiment analysis
task. With this test subset our system improves its
performances globally scoring at the 11th position.
See Table 1 for the results in each test set. The fea-
tures that perform better are from the group Senti-
ments and Emotion Lexicons, that achieve informa-
tion gain scores of 0.133. Even if less influent, the
Frequency group obtains a score of 0.09. The other
group of features are not very important for this task,
and the information gain scores are less than 0.3.

F-Measure Rank
Twitter 2014 65.05 27th

Sarcasm 50.93 11th

Twitter 2013 66.15 17th

SMS 2013 57.84 31st

LiveJournal 2014 64.5 31st

Table 1: Task 10 results. For each test set we report F-
Measure and ranking comparing to other systems.

5.2 Task 11

Given a set of tweets that are rich in metaphor and
irony, the goal is to determine whether the user has
expressed a positive, negative or neutral sentiment
in each, and the degree to which this sentiment has
been communicated.

A vector space model was used to evaluate the
similarity of the predictions of each participating
system to the human-annotated gold standard. The
list of expected gold-standard sentiment scores was
used to construct a normalised gold-standard vector,
while a comparable vector will be constructed from
the predictions of a participating system. The cosine
distance between vectors was then used as a mea-
sure of how well the participating system estimates
the gold-standard sentiment scores for the whole of
the test set (Li et al., 2015).

In this task our model ranked second out of 15

participants. We obtained a cosine similarity of
0.710 and a Mean Squared Error (MSE) of 2.458.
The best system cosine and MSE scores were re-
spectively 0.758 and 2.117. In Table 2 the reader
can find all the results.

In Table 3 we show experiments to analyse the
contribution of each type of feature to the final re-
sults. The most important contribution is given by
the Sentiment lexicons NRC and SentiWordNet (see
Section 4.1). Also the Synonyms feature is impor-
tant with a cosine similarity of 0.564. The feature
that was less influent to the final classification was
Intensity of Adjectives and Adverbs.

MSE Cosine
Overall 2.458 0.711
Sarcasm 0.934 0.903

Irony 1.041 0.873
Metaphor 4.186 0.520

Other 3.772 0.486

Table 2: Task 11 results measured by the Cosine Similar-
ity and the Mean Square Error over the test set (Overall)
and for its subsets: sarcasm, irony, metaphor and other
(non-figurative tweets).

Feature Cosine Similarity
NRC H. Sentiment 0.578

SentiWordNet 0.562
Synonyms 0.564
Characters 0.550

Part of Speech 0.550
Depeche Mood 0.550
Lemma-Based 0.547

NRC H. Emotion 0.547
Bad Words 0.547
Frequency 0.546
Ambiguity 0.546
Intensity 0.544

Table 3: Task 11 contribution of each group of feature.
The best feature group was Sentiment, in particular the
features computed with the NRC Hashtag Sentiment Lex-
icon, see Section 4.1.

6 Conclusions

In this paper we have described our participation
to the SemEval task 10 and 11. Besides the word-
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based features, we experimented the use of intrinsic
word features to characterise positive and negative
tweets. In task 10 our system obtains average perfor-
mances leaving room for important improvements to
our approach. Our system obtains very good results
in task 11, ranking second out of 15 participating
teams. The difference in performance in the two
tasks was expected since our model is the adaption
to sentiment analysis of a model for irony (Barbi-
eri and Saggion, 2014) and sarcasm (Barbieri et al.,
2014) detection in Twitter, thus it fits better the figu-
rative language identification task. Yet, both models
can be improved and we are planning to add new
features (vector space models and distributional se-
mantics among others) and experiment new machine
learning techniques (e.g. cascade classifiers for task
10 or different regression algorithms for task 11).
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Canada, 7-8 June.

John Platt. 1999. Fast Training of Support Vector Ma-
chines Using Sequential Minimal Optimization. Ad-
vances in kernel methodssupport vector learning, 3.

Christopher Potts. 2011. Developing adjective scales
from user-supplied textual metadata. NSF Workshop
on Restructuring Adjectives in WordNet. Arlington,VA.

J Ross Quinlan. 2014. C4. 5: programs for machine
learning. Elsevier.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. Semeval-2015 task 10: Sentiment analy-
sis in twitter. In Proceedings of the 9th International
Workshop on Semantic Evaluation, SemEval ’2015,
Denver, Colorado, USA, June.

Jacopo Staiano and Marco Guerini. 2014. De-
pecheMood: a Lexicon for Emotion Analysis from
Crowd-Annotated News. In 52nd Annual Meeting of
the Association for Computational Linguistics (Short
Papers), page 427433, Baltimore, Maryland, USA,,
June.

Gerard J Steen, Aletta G Dorst, J Berenike Herrmann,
Anna Kaal, Tina Krennmayr, and Trijntje Pasma.
2010. A method for linguistic metaphor identification:
From MIP to MIPVU, volume 14. John Benjamins
Publishing.

708



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 709–713,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

DsUniPi: An SVM-based Approach for Sentiment Analysis of Figurative 
Language on Twitter 

Maria Karanasou 
Dept. of Digital Systems 

University of Piraeus 
Greece 

karanasou@gmail.com 

Christos Doulkeridis 
Dept. of Digital Systems 

University of Piraeus 
Greece 

cdoulk@unipi.gr 

Maria Halkidi 
Dept. of Digital Systems 

University of Piraeus 
Greece 

mhalk@unipi.gr 

 

 

Abstract 

The DsUniPi team participated in the SemEval 
2015 Task#11: Sentiment Analysis of Figura-
tive Language in Twitter. The proposed ap-
proach employs syntactical and morphological 
features, which indicate sentiment polarity in 
both figurative and non-figurative tweets. These 
features were combined with others that indi-
cate presence of figurative language in order to 
predict a fine-grained sentiment score. The 
method is supervised and makes use of struc-
tured knowledge resources, such as Senti-
WordNet sentiment lexicon for assigning 
sentiment score to words and WordNet for cal-
culating word similarity. We have experiment-
ed with different classification algorithms 
(Naïve Bayes, Decision trees, and SVM), and 
the best results were achieved by an SVM clas-
sifier with linear kernel. 

1 Introduction 

Sentiment analysis on figurative speech is a chal-
lenging task that becomes even more difficult on 
short social-media related text. Tweet text can be 
rich in irony that is either stated with hashtags ex-
plicitly (such as #irony) or implied. Identifying the 
underlying sentiment of such text is challenging 
due to its restricted size and features such as use of 
abbreviations and slang. Consequently, assigning 
positive or negative polarity is quite a difficult 
task. The actual meaning can be very different than 
what is stated, since, for example, in ironic lan-
guage what is said can be the opposite of what it is 
meant. To address this challenge, we propose a 
system for sentiment analysis of figurative lan-

guage, which relies on feature selection and trains 
a classifier to predict the label of a tweet. Given a 
labelled trial set, the objective of the system is to 
correctly determine how positive, negative or neu-
tral a tweet is considered to be on a scale of [-5, 5]. 

2 Related Work 

Tweets have unique characteristics compared to 
other text corpora, such as emoticons, abbrevia-
tions, and hashtags. Use of emoticons is considered 
a reasonably effective way to conveying emotion 
(Derks et al. 2008, Thelwall et al.). Go et al. (2009) 
show that machine learning algorithms achieve 
accuracy above 80% when trained with emoticon 
data. It is also indicated that the use of hashtags 
and presence of intensifiers, such as capitalization 
and punctuation, can affect sentiment identification 
(Kouloumpis et al., 2010). According to Agarwal 
et al. (2011) such features can add value to a clas-
sifier, but only marginally. Additionally, natural 
language related features, such as part-of-speech 
tagging and use of lexicon resources, can signifi-
cantly contribute to detecting the sentiment of a 
tweet. Moreover, features that combine the prior 
polarity of words and their parts-of-speech tags are 
considered most useful. 
The problem of sentiment analysis on figurative 
language has been addressed in many ways. Re-
searchers have investigated the use of lexical and 
syntactic features in order to identify figurative 
language and classify the conveyed sentiment. The 
complexity of such a task is high, especially given 
the fact that irony and sarcasm are frequently 
mixed. Sarcasm is usually used for putting down 
the target of the comment and is somewhat easier 
to detect. Irony works as a negation, and it can be 
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conveyed through a positive context, which makes 
it difficult to understand the actual meaning of a 
tweet (Reyes et al. 2012, Veale et al. 2010). Da-
vidov et al. (2010) examined hashtags that indicat-
ed sarcasm to identify if such labelled tweets can 
be a reliable source of sarcasm. They concluded 
that user-labelled sarcastic tweets can be noisy and 
constitute the hardest form of sarcasm. Riloff et al. 
(2013) identify sarcasm that arises from the con-
trast between a positive sentiment referring to a 
negative situation. Reyes et al. (2012) involved in 
their work features that make use of contextual 
imbalance, natural language concepts, syntactical 
and morphological aspects of a tweet. Many stud-
ies exploit the use of contextual imbalance detec-
tion through calculation of semantic similarity 
among the words. This is achieved using lexical 
resources, such as WordNet or Whisel’s dictionary, 
and the goal is to identify features like emotional 
content, polarity of words and pleasantness, ad-
verbs implying negation or expressing timing. 
Shutova et al. (2010) have deployed an unsuper-
vised method to identify metaphor using synonymy 
information from WordNet. Reyes et al. (2013) 
argue that other features such as punctuation 
marks, emoticons, quotes, and capitalized words, 
n-grams and skip-grams are also useful to the sen-
timent analysis process. Moreover, patterns such as 
“As * As *” or “about as * as *” have been shown 
to be useful in detecting ironic similes (Veale et al. 
2010). 

3 Approach 

The proposed system consists of two main mod-
ules: (a) the preprocessing, and (b) the classifica-
tion module. Each tweet t was submitted to 
preprocessing, in order to remove useless infor-
mation and extract the desired/targeted features f. 
The result of the preprocessing of a given tweet t 
consists of a feature dictionary (fd) that stores the 
values calculated for each feature. In the classifica-
tion part, the feature dictionaries are converted to 
vectors and the result matrix is converted to a 
term-frequency matrix. The aforementioned pro-
cess is the same for trial and test data and the tf 
matrices are used by a classifier for training and 
prediction. We tested different classifiers, includ-
ing Naïve Bayes, Decision trees, and SVM, in or-
der to study their performance and select the best-
performing. 

3.1 Preprocessing 

Each tweet is given as input to the preprocessing 
module, in order to transform it to a feature-value 
dictionary representation:  

fdt= ሼf1:v1, …, fn:vnሽ                           (1) 

The preprocessing includes cleaning, which 
starts with the removal of non-ascii characters and 
is followed by the detection of certain features. 
Feature detection takes place before the actual 
cleaning of the text in order to avoid loss of infor-
mation, such as punctuation, urls and emoticons. 
This process checks if a tweet contains question 
marks or exclamation marks, capitalized words, 
urls, negations, laughing, retweet, emoticons and 
hashtags. The last two are categorized concerning 
the sentiment they may convey. We manually cate-
gorized the top20 emoticons and some minor varia-
tions (http://datagenetics.com/blog/october52012) 
as positive or negative, whereas hashtags are cate-
gorized as positive, negative or neutral. Hashtag 
categorization makes use of SentiWordNet score 
(swnScore) and the result is a representation of all 
the hashtags present in a tweet.  

In the hashtag categorization process, if a hashtag 
ht is spelled correctly, its swnScore is retrieved. 
Otherwise, spellchecking (Kelly) is tried once and 
if it fails then the hashtag is categorized as neutral. 
The result depends on the number of positive, 
negative, neutral hashtags in HTt as follows: 

௧݉ܧܶܪ ൌ 	ቐ
HT_pos,									ܿሺ݄ݏܲݐሻ  ܿሺ݄݃݁ܰݐሻ  0	
ሻݏܲݐሺ݄ܿ									,ݑ݁݊_ܶܪ ൌ ܿሺ݄݃݁ܰݐሻ ൌ 0
ሻ݃݁ܰݐሺ݄ܿ									,݃݁݊_ܶܪ  ܿሺ݄ݏܲݐሻ  0

                 (2) 

where c(htPos), c(htNeg) denote  the count of posi-
tive and negative hashtags in a tweet t respectively. 

Motivated by the “As * as *” pattern and after 
studying the data set, we further identify in the fea-
ture selection process the presence of patterns such 
as “Don’t you*”, “Oh so*?” and “As * As *”. 
Cleaning proceeds with punctuation, stop-words, 
urls, emoticons, hashtags and references removal. 
Additionally, multiple consecutive letters in a word 
are reduced to two. Finally, spellchecking is per-
formed to words that have been identified as mis-
spelled in order to deduce the correct word. After 
cleaning, the process continues with part of speech 
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(POS) tagging. POS-tagging is performed with the 
use of a custom model (Derczynski et al., 2013) 
and simplified tags (NN, VB, ADJ, RB). Words 
that belong to the same part of speech are used in 
semantic text similarity calculation simt. For this 
feature, different similarity measures (Resnik’s, 
Lin’s, and Wu & Palmer’s) provided by nltk are 
used (Pedersen et al., 2008). The value simt is cal-
culated as the maximum similarity score of every 
combination of two words and their synonyms.  

௧݉݅ݏ ൌ 	
∑௦ೇା∑௦ಿା	∑ ௦ಲା	∑ ௦ೃ

ሺሻାሺேሻାሺሻାሺோሻ
               (3) 

݉݅ݏ ൌ 	 
,݅ܣሺ݉݅ݏሺݔܽ݉	 1ሻሻ݅ܣ , 						…

,െ1݊ܣሺ݉݅ݏሺݔܽ݉		 ሻሻ݊ܣ 	
						൨                     (4) 

where V, N, A, and R denote the sets that contain 
the total words that have been identified as verbs, 
nouns, adjectives and adverbs respectively, while 
max(sim(Ai, Ai+1)) is the maximum similarity be-
tween the processed words and their n synonyms. 

Finally, the SentiWordNet score for each word in a 
tweet is calculated (Baccianella et al., 2010), ignor-
ing words that have fewer than two letters. If the 
score of a word cannot be determined, then we cal-
culate the SentiWordNet score of the stemmed 
word. Given that the word wi occurs j times in the 
SentiWordNet corpus, the total score of wi is given 
by 

௪݁ݎܿܵ݊ݓݏ ൌ 	
∑ ଵା	௪ௌሺ,ሻି௪ௌሺ	,ሻ	
ೕ
ೖసభ


        (5) 

where ݁ݎܿܵݓሺ݅, ݇ሻ and ݁ݎܿܵݓሺ	݅, ݇ሻ is the k-th 
positive (PosScore) and negative (NegScore) score 
respectively of wi in SentiWordNet. The index i of 
each word was used in an attempt to correlate each 
word’s position with the calculated sentiment.  

Moreover, the total score of a tweet t is calculated 
as the average of SentiWordNet scores of the 
words in t. 

The result is a dictionary with feature names as 
keys and values that indicate feature existence. Ta-
ble 1 depicts the set of features considered by our 
system, together with the domain of values that 
they take.  

3.2 Classification 

For the classification process, the feature dictionar-
ies fdt of each data set were processed by a vector-
izer to produce a vector array (http://scikit-
learn.org/stable/modules/generated/sklearn.feature_
extraction.DictVectorizer.html). From the vector 
array, a term-frequency matrix is calculated (with 
the use of a TfidfTransformer and the parameter 
“use_idf” set to False: http://scikit-
learn.org/stable/modules/generated/sklearn.feature_
extraction.text.TfidfTransformer.html) and is given 
as input for training to the chosen classifier. This 
frequency matrix is used to make predictions about 
the test set. 

Feature Value 
Oh so* (*) True/ False 

Don’t you*(*) True/ False 

As*As*(*) True/ False 

Question mark(*) True/ False 
Exclamation -
mark(*) 

True/ False 

Capitals(*) True/ False 

Reference(*) True/ False 

RT True/ False 

Negations(*) True/ False 

URL True/ False 

HT_pos(*) True/ False 

HT_neg(*) True/ False 

HT_neu(*) True/ False 

Emoticon Pos(*) True/ False 

Emoticon Neg(*) True/ False 

POS-tags(*) 
"NN", "VB", 
"ADJ","RB" 

swnScorewi(*) 
“positive”, 
“somewhat positive”, 

  “neutral”, “negative” 

  “somewhat negative” 

swnScoreTotal 
“positive”, 
“somewhat positive”, 

  “neutral”, “negative” 

  “somewhat negative” 
simt (Resnik*) Decimal score 
Table 1: Calculated features with their value. 

4 Experiments and Results 

The SemEval data set consists of 9000 tweets that 
are rich in figurative language and stemmed from 
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user-generated tags, such as “#sarcasm" and “#iro-
ny". There is a 90-10 split for trial and test data. 
We retrieved 8529 tweets in total, 7606 from the 
trial set and 923 from the test set. Out of these data 
sets, positive tweets in total are 8,2%, negative 
tweets are 85,2% and neutral 6,6%. 

4.1 Experiments 

We experimented by incrementally adding features, 
and trying different classifiers. The results of the 
features that seem to contribute most were used to 
make the prediction with which the system partici-
pated in the task and are the ones marked with (*) 
in Table 1. It is also worthwhile mentioning that, 
after trials, discretization was applied to swnScorewi 
as follows: 

௪݁ݎܿܵ݊ݓݏ ൌ 	

ە
ۖ
۔

ۖ
ۓ
ሺ																																								,݁ݒ݅ݐ݅ݏ 1.2ሻ	
ሺ			,݁ݒ݅ݐ݅ݏ	ݐ݄ܽݓ݁݉ݏ 0.05	  1.2ሻ
ሺ																								,݈ܽݎݐݑ݁݊ 0.05	  0.95ሻ
,݁ݒ݅ݐܽ݃݁݊	ݐ݄ܽݓ݁݉ݏ ሺ൏ 0.95	  0.2ሻ
ሺ൏																																						,݁ݒ݅ݐܽ݃݁݊ 0.2ሻ

      (6) 

4.2 Final Results 

We evaluate the performance of our approach 
measuring the cosine similarity between the output 
of our system and the given scores for the test data 
set. Other measures such as accuracy, precision 
and recall are also used in our study. 

The most useful features are pos-tags and Sen-
tiWordNet score. Semantic similarity (Resnik 
measure) and hashtags also seem to contribute and 
the rest of the selected features contribute margin-
ally. These results are coherent with sentiment 
analysis literature where prior polarity along with 
POS-tagging seem to add most value to a classifi-
er, and other features like emoticons add up only 
marginally (Agarwal et al., 2011, Kouloumpis et 
al., 2010). 

Table 2 shows the evaluation results (cosine 
similarity and accuracy) of our system for both 
initial and final data set. We can observe that Line-
ar SVM (default parameters: http://scikit-
learn.org/stable/modules/generated/sklearn.svm.Li
nearSVC.html) achieves the best performance with 
respect to tweets classification. For the final sub-
mission, the total of the test and trial sets were 
used as input for the learning process of the classi-
fier and only one run was submitted. The analysis 
of the results of the final submission, presented in 
Table 3, suggests that predictions on ironic and 
sarcastic tweets are more accurate than tweets that 

contain metaphor those that do not contain figura-
tive language. 

Classi-
fiers 

Decision 
Tree 

Naïve 
Bayes 

Linear 
SVM 

trials/ 
final 

t f t f t f 

Cosine 0.68 0.45 0.70 0.55 0.78 0.60 

Accu-
racy 

0.31 0.21 0.33 0.23 0.38 0.29 

Table 2: The results of the classifiers used on the initial 
test data set (t) and the final (f), with the selected fea-

tures of the final submission. 
 

 
Cosine  

Similarity 
MSE 

Overall 0.601 3.925 
Sarcasm 0.87 1.499 

Irony 0.839 1.656 
Metaphor 0.359 7.106 

Other 0.271 5.744 

Rank 10 10 
Table 3: The final results by category. 

5 Conclusion 

The proposed system combines structured 
knowledge sources  along with common tweet and 
figurative text features. A supervised learning ap-
proach is followed, having as goal to classify 
tweets containing irony and metaphors. The system 
ranked 10th (out of 15) based on both the cosine 
similarity measure and MSE. Among ironic, sar-
castic, metaphoric and others, the best results were 
achieved in tweets containing irony and sarcasm. 
The most useful features for learning are pos-tags, 
Senti-WordNet score, text semantic similarity and 
hashtags. Our study shows that the performance of 
our system could be improved by adding features 
related to metaphor and considering better use of 
hashtags in the classification process. Besides, the 
use of non-figurative tweets in learning can signif-
icantly contribute to classify tweets that do not 
contain figurative language. 

Acknowledgements 

The work of C. Doulkeridis and M. Halkidi has been 
co-financed by ESF and Greek national funds through 
the Operational Program “Education and Lifelong 
Learning” of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: Aristeia II, 
Project: ROADRUNNER. 

712



References 
Antonio Reyes, Paolo Rosso, Davide Buscaldi 

(2012). From Humor Recognition to Irony De-
tection: The Figurative Language of Social Me-
dia. Data & Knowledge Engineering 74:1-12. 

Yanfen Hao, Tony Veale (2010). An Ironic Fist in 
a Velvet Glove: Creative Mis-Representation in 
the Construction of Ironic Similes. Minds and 
Machines 20(4):635–650. 

Antonio Reyes, Paolo Rosso, Tony Veale (2013). 
A Multidimensional Approach for Detecting 
Irony in Twitter. Languages Resources and 
Evaluation 47(1): 239-268. 

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, Ruihong Huang. 
Sarcasm as Contrast between a Positive Senti-
ment and Negative Situation. In Proceedings of 
the 2013 Conference on Empirical Methods in 
Natural Language Processing (EMNLP 2013).  

Dmitry Davidov, Oren Tsur, and Ari Rappoport 
(2010). Semi-supervised recognition of sarcastic 
sentences in twitter and amazon. In Proceedings 
of the Fourteenth Conference on Computational 
Natural Language Learning, CoNLL 2010. 

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo 
Rosso, Ekaterina Shutova, Antonio Reyes, John 
Barnden (2015). SemEval-2015 Task 11: Senti-
ment Analysis of Figurative Language in Twit-
ter. In: Proc. Int. Workshop on Semantic 
Evaluation (SemEval-2015), Co-located with 
NAACL and *SEM, Denver, Colorado, US, 
June 4-5, 2015. 

Ekaterina Shutova, Lin Sun and Anna Korhonen 
(2010). Metaphor Identification Using Verb and 
Noun Clustering. In: Proceedings of the 23rd In-
ternational Conference on Computational Lin-
guistics. 

Alec Go, Richa Bhayani, and Lei Huang (2009). 
Twitter sentiment classification using distant su-
pervision. In: Proceeding LSM '11 Proceedings 
of the Workshop on Languages in Social Media 
Pages 30-38. 

Daantje Derks, Arjan E. R. Bos, and Jasper von 
Grumbkow (2007). Emoticons and online mes-
sage interpretation. Social Science Computer 
Review, 26(3), 379-388.  

Mike Thelwall, Kevan Buckley, Georgios Pal-
toglou, and Di Cai, Arvid Kappas (2010). Sen-
timent Strength Detection in Short Informal 
Text. Journal of the American Society for In-
formation Science and Technology Volume 61, 
Issue 12, pages 2544–2558, December 2010 

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna Moore (2011). Twitter sentiment analysis: 
The Good the Bad and the OMG! In: Lada A. 
Adamic, Ricardo A. Baeza-Yates, and Scott 
Counts, editors, Proceedings of the Fifth Inter-
national Conference on Weblogs and Social 
Media, ICWSM’ 11, pages 538–541, Barcelona, 
Spain. 

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen 
Rambow, Rebecca Passonneau (2011). Senti-
ment Analysis of Twitter Data. In: LSM'11 Pro-
ceedings of the Workshop on Languages in 
Social Media Pages 30-38. 

Leon Derczynski, Alan Ritter, Sam Clark, and Ka-
lina Bontcheva (2013). Twitter Part-of-Speech 
Tagging for All: Overcoming Sparse and Noisy 
Data. In: Proceedings of the International Con-
ference on Recent Advances in Natural Lan-
guage Processing, ACL. 

Stefano Baccianella, Andrea Esuli, and Fabrizio 
Sebastiani (2010). SentiWordNet 3.0: An en-
hanced lexical resource for sentiment analysis 
and opinion mining. In: Proceedings of the 7th 
Conference on Language Resources and Evalua-
tion (LREC 2010), Valletta, MT, 2010, pp. 
2200-2204. 

Christiane Fellbaum (1998, ed.) WordNet: An 
Electronic Lexical Database. Cambridge, MA. 

Ted Pedersen, Siddharth Patwardhan, and Jason 
Michelizzi. (2004). Wordnet::similarity - meas-
uring the relatedness of concepts. In: Demon-
stration papers at HLT-NAACL, pages 38-42. 

Fabian Pedregosa et al. (2011). Scikit-learn: Ma-
chine Learning in Python. In Journal of Machine 
Learning Research 12, pp. 2825-2830. 

Steven Bird, Ewan Klein, and Edward Loper 
(2009), Natural Language Processing with Py-
thon, O'Reilly Media. 

Ryan Kelly, https://pythonhosted.org/pyenchant/, 
v. 1.6.5. 

713



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 714–718,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

V3: Unsupervised Aspect Based Sentiment Analysis
for SemEval-2015 Task 12

Aitor Garcı́a-Pablos, Montse Cuadros
Vicomtech-IK4 research center

Mikeletegi 57
San Sebastian, Spain

{agarciap,mcuadros}@vicomtech.org

German Rigau
IXA Group

Euskal Herriko Unibertsitatea,
San Sebastian, Spain

german.rigau@ehu.es

Abstract

This paper presents our participation in
SemEval-2015 task 12 (Aspect Based Senti-
ment Analysis). We participated employing
only unsupervised or weakly-supervised ap-
proaches. Our attempt is based on requiring
the minimum annotated or hand-crafted con-
tent, and avoids training a model using the
provided training set. We use a continuous
word representations (Word2Vec) to leverage
in-domain semantic similarities of words for
many of the involved subtasks.

1 Introduction

The continuous growing of textual content on the In-
ternet has motivated an important research on find-
ing automatic ways of processing and exploiting this
valuable source of information. That is one of the
reasons why sentiment analysis has become a very
active research field during the last decade (Pang and
Lee, 2008; Liu et al., 2012; Zhang and Liu, 2014).
Sentiment analysis aims to detect and classify the
polarity of sentiments expressed in a text. The gran-
ularity of this classification goes from the overall
polarity of full documents to paragraphs, sentences
or, as in Aspect Based Sentiment Analysis (ABSA),
the sentiment about precise aspects being opinion-
ated (Hu and Liu, 2004) (Popescu and Etzioni, 2005)
(Wu et al., 2009) (Zhang et al. , 2010).

In this paper we describe our participation in
SemEval-2015 task 121 (Pontiki et al., 2015), which
is about ABSA. We have participated in all subtasks

1http://alt.qcri.org/semeval2015/task12/

employing unsupervised or weakly supervised ap-
proaches.

The rest of the paper is structured as follows. Sec-
tion 2 introduces the SemEval-2015 task 12 compe-
tition and provided datasets, and a brief introduction
about how we have approached the different slots.
Sections 3, 4 and 5 describe more in detail the em-
ployed techniques. Section 6 shows the results of
the evaluation, and finally section 7 summarizes the
conclusions.

2 Our approach

SemEval2015 task 12 was about ABSA. The task
was divided into 3 slots. Slot 1 was about classify-
ing review sentences into entity-attribute pairs, be-
ing the entity a main aspect of the reviewed item
(e.g. food, drinks, location) and the attribute a par-
ticular facet of that aspect (e.g. food-quality, food-
price, etc.). Slot 1 runs on two domains, restaurants
and laptops. Slot 2 was about detecting explicit men-
tions to aspect-terms that are being reviewed (e.g.
service in ”The service was attentive”). Slot 2 runs
only on restaurants domain. Slot 3 was about detect-
ing the polarity/sentiment for the given gold entity-
attribute pairs in sentences (see slot 1). Slot 3 was
meant for restaurants and laptops domain, plus an
additional hidden domain (i.e. revealed in the last
moment and with no training data available) which
resulted to be about hotels.

Two training datasets were provided. The first
dataset contains 254 annotated reviews about restau-
rants (a total of 1315 sentences). The second dataset
contains 277 annotated reviews about laptops (a to-
tal of 1,739 sentences). The annotation consists of
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quintuples of aspect-term, entity-attribute, polarity,
and starting and ending position of the aspect-term.
When there is no explicit aspect-term mentioned
”null” is employed to fill the gap. Only the restau-
rants dataset contains aspect-term annotation.

Our aim is to apply only unsupervised or mini-
mally supervised techniques. We have applied dif-
ferent unsupervised approaches to the different slot
tasks avoiding the use of the provided datasets to
train a supervised system. We have used them only
to evaluate and tune the performance of the em-
ployed techniques. For some of the employed tech-
niques we have also used big unlabeled datasets.
In particular, for the domain of restaurants we
have employed a subset of 100k restaurant reviews
from Yelp dataset2. We name this corpus as Yelp-
restaurants. For laptops domain we have used a sub-
set about 100k reviews from a big dataset of Amazon
electronic device reviews 3 (retaining only the ones
that contain the word laptop). We name this corpus
as Amazon-laptops.

3 Aspect term extraction

SemEval2015 Task 12 slot 2 was about detect-
ing mentions to explicit aspect terms, but only for
restaurant domain (i.e. other slots run for restaurants
and laptop domains).

For aspect term extraction our aim is to bootstrap
a list of candidate domain aspect terms and use it to
annotate the reviews of the same domain. We have
implemented a system inspired in the method de-
scribed at (Liu et al., 2014). In this work the authors
employ what they call a graph co-ranking approach.
They model aspect-terms (AT) and opinion-words
(OW) as graph nodes, and then they generate three
different sub-graphs defining different types of rela-
tions (what they call semantic-relations and opinion-
relations) between the nodes. Finally they rank the
nodes using a combined random walk on the three
sub-graphs to obtain a list of reliable aspect-term
candidates. Due to space limitations we cannot ex-
plain all the details here. Please, refer to the original
article for more in detail explanation.

Based on some of these ideas we have imple-

2http://www.yelp.com/dataset_challenge
3http://snap.stanford.edu/data/

web-Amazon.html

mented a system that aims to rank aspect-terms
modeling them as a graph. From our datasets
(i.e. Yelp-restaurants and Amazon-laptops) we have
taken nouns as aspect term candidates, and adjec-
tives as opinion word candidates, filtering out those
words that appear less than 5 times. These are the
nodes to build our graph. Then we have computed
our own definition of semantic relations and opinion
relations to build sub-graphs as follows:

• Opinion relations (AT-OW edges): we have
computed how many times each AT has some
syntactical dependency relation with each OW,
from a certain set of dependency relations (i.e.
direct object, adjectival modifier, attribute of a
copulative verb). The result of this count is
used as the weight of the edges between AT and
OW nodes.

• Semantic relations (AT-AT and OW-OW
edges): we have computed a continuous
word representation of the datasets employing
Word2Vec4 (Mikolov et al., 2013) (with the
following parameters: skip-grams, vector size
of 200, context window of 5, hierarchical
softmax). Then we have used the cosine
similarity between word vectors as the weight
of the semantic relation edges.

Once we have built the graph with the different
type of nodes and different type of weighted edges,
we execute a PageRank (Brin and Page, 1998) (al-
pha parameter set to 0.15) to score and rank the
nodes. With the obtained score we generate an or-
dered list of aspect terms. We have done this only for
restaurants since it was the only domain requested
in the task 12 slot 2. Example of some of the higher
scored words for restaurant domain are: food, ser-
vice, place, restaurant, portion, atmosphere, experi-
ence, dish, meal, burger.

The obtained aspect term list is then cropped to
retain only the top N ranked words, and this cropped
word list is used to annotate the given sentences per-
forming a simple lemma matching.

4We have employed the implementation in Apache Spark
MLlib library https://spark.apache.org/mllib/
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3.1 Multiword handling

Handling multiword terms is important in an ABSA
system (e.g. it is not the same to detect just mem-
ory than flash memory and/or RAM memory, etc.).
Multiword terms affect also to some opinion expres-
sions like top notch. Finally, multiword terms arise
from usual collocations of single terms, so they vary
between domains.

In order to bootstrap a list of candidate multiword
terms for each given domain, we have employed
again our own Yelp-restaurants and Amazon-laptops
datasets. We have computed Log-Likelihood Ratio
(LLR) of n-grams (with n¡=3) to detect the more
salient word collocations keeping the top K candi-
dates (i.e. the ones with higher confidence of being
a true multiword).

Examples of obtained multiwords for restaurants:
happy hour, onion ring, ice cream, spring roll, live
music.

Examples of obtained multiwords for laptops:
tech support, power supply, customer service, op-
erating system, battery life.

We have used this list in a pre-processing step
to merge individual words into a single token when
they match a multiword in the list.

4 Entity-attribute detection

The definition of entity-attribute detection in slot 1
states the difference between entities (coarse grained
aspects that are being reviewed, e.g. food, drinks)
and attributes (particular facet that is being actually
reviewed, e.g. price, quality). This subtask runs
both for restaurant and laptop domain. Due to the
big amount of possible combinations and the con-
sequent overlapping of some of them, this subtask
becomes very difficult for an unsupervised system.
In order to employ a weakly-supervised approach
we have faced this subtask defining some represen-
tative seed words for each possible entity (e.g. food:
chicken, salad, rice) and attribute (e.g. price: expen-
sive, cheap). Then we reused the Word2Vec model
for each domain to compute the similarity between
sentence words and the seed words. When the ac-
cumulated similarity with some entity and attribute
seed words is salient enough, we annotate the sen-
tence with that entity-attribute pair. If the similarity
is low, or is equally distributed among a every can-

Word Polarity Score Polarity label
delicious 0.424 positive

tasty 0.439 positive
inexpensive 0.341 positive

slow -0.182 negative
arrogant -0.254 negative
mediocre -0.051 negative

Table 1: Examples of polarity values obtained from the
restaurants polarity lexicon.

didate entity, we leave the sentence unlabeled.

5 Polarity detection

For polarity detection we have developed a polarity
lexicon reusing the generated Word2Vec model for
each domain. The intuition we have followed is that
a polarity word in a domain should be more ”simi-
lar” to a set of ”very positive” words than to a set of
”very negative” words, and vice versa.

We have employed the in-domain generated
Word2Vec models because the polarity of words
may vary between domains and we want to capture
the polarity for each particular domain.

Let POS be a domain-independent positive word
(e.g. excellent) and NEG a domain-independent
negative word (e.g. horrible). Let W be the set of
words we want to know the polarity. Let sim be
the similarity between words (computed using the
Word2Vec model for the domain). Then for each
w ∈W we calculate its polarity using (1).

polarity(w) = sim(w, POS)− sim(w, NEG)
(1)

We obtain polarity(w) > 0 if the word is more sim-
ilar to POS than to NEG and vice versa. This gives
us a continuous value from very positive to very neg-
ative, but we have simplified it to a binary labeling:
”positive” for any word w with polarity(w) >= 0
and ”negative” if polarity(w) < 0.

In the table 1 we can see some examples of words,
their punctuation in the positive-negative axis, and
the assigned polarity label.

With these sentiment lexicons for each of the do-
mains we have performed the annotation of the sen-
tences. We have faced the annotation as a simple po-
larity count process. For each sentence we counted
the polarity of the words regarding our in-domain
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Slot 2 systems Restaurants F-score
Baseline 0.48
V3 (ours) 0.45

Best 0.70
Average 0.52

Table 2: Results on the restaurant reviews for slot 2.

lexicons and labeled the provided gold quintuples
with the most frequent polarity. We have taken into
account the negation words (e.g. not) present in the
sentence in order to reverse the polarity of the words
within a certain window (one token before and two
tokens after the current word).

6 Experiments and results

We have participated in SemEval-2015 Task 12 slot
1 (entity-attribute detection), slot 2 (aspect-term de-
tection) and slot 3 (polarity detection). In general the
task definition is more challenging than in SemEval-
2014 ABSA competition5 as the average results of
all participants indicate. The participation number
is also lower and varies between of subtasks and
domains (15 participants for restaurants slot 1, 9
for laptops slot 1, 21 for restaurants slot 2, and an
average of 14 for slot 3 in the three available do-
mains). As far as we know, we are the only team
that has faced the competition using unsupervised
approaches. As expected, the supervised systems
obtain better results in general than our unsupervised
one.

Slot 2 (detecting explicit aspect terms) was only
available for restaurants. After performing the steps
described in section 3, we employed the top 500
bootstrapped terms to annotate the provided set of
reviews using a simple lemma matching. The re-
sults are shown in table 2, together with the official
results of the supervised baseline, the best perform-
ing system, and the average of all participants.

Slot 1 (detecting entity-attribute pairs in sen-
tences) was available both for restaurants and lap-
tops. We employed the described manual bag of
words plus Word2Vec approach. The results are
quite modest as it can be appreciated in table 3.

Slot 3 (polarity annotation) was available both for
restaurants and laptops, plus and additional hidden

5http://alt.qcri.org/semeval2014/task4/

Slot 1 systems Restaur. F-score Laptops F-score
Baseline 0.51 0.46
V3 (ours) 0.41 0.25

Best 0.62 0.50
Average 0.53 0.45

Table 3: Results on the restaurant and laptops reviews for
entity-attribute detection (SemEval-2015 task 12 slot 1).

Slot 3 accuracy Restaurants Laptops Hotels
Baseline 0.635 0.699 0.716
V3 (ours) 0.694 0.683 0.710

Best 0.786 0.793 0.805
Average 0.713 0.713 0.712

Table 4: Results on the restaurant, laptops and hotels for
slot 3.

domain. This hidden domain, which was about ho-
tels, was revealed in the last moment and no training
data was provided. For this hidden domain we had
no time to develop its own sentiment lexicon so we
employed the one from restaurants domain. The re-
sults for all domains are shown in table 4.

7 Conclusions

In this paper we have described our participa-
tion in SemEval-2015 task 12 (ABSA). We have
approached all subtasks from an unsupervised or
weakly-supervised point of view. To our opinion
this year the tasks were more challenging than in the
previous SemEval ABSA edition. We have explored
different ways of approaching the challenges with-
out requiring a manually labeled train set. We have
made an intensive use of continuous word represen-
tations (e.g. Word2Vec) to exploit semantic simi-
larities between words and despite the low results
we have found some promising ideas. In the future
we will explore how to improve the developed sys-
tems and how to combine with other unsupervised
or semi-supervised techniques to achieve competi-
tive results.

Acknowledgments

This work has been partially funded by SKaTer6

(TIN2012-38584-C06-02), NewsReader7 (ICT-
316404) and Vicomtech-IK4.

6http://nlp.lsi.upc.edu/skater/
7http://www.newsreader-project.eu

717



References
Brin, Sergey and Page, Lawrence 1998. The anatomy

of a large-scale hypertextual Web search engine Com-
puter networks and ISDN systems

Hu, Minqing and Liu, Bing 2004. Mining opinion fea-
tures in customer reviews AAAI

Bo Pang and Lillian Lee 2008. Opinion mining and sen-
timent analysis Foundations and trends in information
retrieval,

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean 2013. Efficient Estimation of Word Represen-
tations in Vector Space Proceedings of Workshop at
ICLR

Liu, Kang and Xu, Liheng and Zhao, Jun 2014. Extract-
ing Opinion Targets and Opinion Words from Online
Reviews with Graph Co-ranking Proceedings of the
52nd Annual Meeting of the Association for Computa-
tional Linguistics

Bing Liu 2012. Sentiment analysis and opinion mining
Synthesis Lectures on Human Language Technologies

Maria Pontiki, Dimitrios Galanis, Haris Papageogiou,
Suresh Manandhar, and Ion Androutsopoulos 2015.
SemEval-2015 Task 12: Aspect Based Sentiment
Analysis Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), Denver,
Colorado

Popescu, AM and Etzioni, Oren 2005. Extracting prod-
uct features and opinions from reviews Natural lan-
guage processing and text mining

Wu, Yuanbin and Zhang, Qi and Huang, Xuanjing and
Wu, Lide 2009. Phrase dependency parsing for opin-
ion mining Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing:
Volume 3

Zhang, L and Liu, Bing and Lim, SH and O’Brien-Strain,
E 2010. Extracting and ranking product features in
opinion documents Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics

Zhang, Lei and Liu, Bing 2014. Aspect and Entity Ex-
traction for Opinion Mining Data Mining and Knowl-
edge Discovery for Big Data

718



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 719–724,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

LT3: Applying Hybrid Terminology Extraction to Aspect-Based Sentiment
Analysis

Orphée De Clercq, Marjan Van de Kauter, Els Lefever and Véronique Hoste
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Abstract

The LT3 system perceives ABSA as a task
consisting of three main subtasks, which have
to be tackled incrementally, namely aspect
term extraction, classification and polarity
classification. For the first two steps, we see
that employing a hybrid terminology extrac-
tion system leads to promising results, espe-
cially when it comes to recall. For the polar-
ity classification, we show that it is possible
to gain satisfying accuracies, even on out-of-
domain data, with a basic model employing
only lexical information.

1 Introduction

There exists a large interest in sentiment analysis
of user-generated content. Until recently, the main
research focus has been on discovering the overall
polarity of a certain text or phrase. A noticeable
shift has occurred to consider a more fine-grained
approach, known as aspect-based sentiment analysis
(ABSA). For this task the goal is to automatically
identify the aspects of given target entities and the
sentiment expressed towards each of them. In this
paper, we present the LT3 system that participated
in this year’s SemEval 2015 ABSA task. Though
the focus was on the same domains (restaurants and
laptops) as last year’s task (Pontiki et al., 2014), it
differed in two ways. This time, entire reviews were
to be annotated and for one subtask the systems were
confronted with an out-of-domain test set, unknown
to the participants.

The task ran in two phases. In the first phase
(Phase A), the participants were given two test sets

(one for the laptops and one for the restaurants do-
main). The restaurant sentences were to be anno-
tated with automatically identified <target, aspect
category> tuples, the laptop sentences only with the
identified aspect categories. In the second phase
(Phase B), the gold annotations for the above two
datasets, as well as for a hidden domain, were given
and the participants had to return the corresponding
polarities (positive, negative, neutral). For more in-
formation we refer to Pontiki et al. (2015).

We tackled the problem by dividing the ABSA
task into three incremental subtasks: (i) aspect term
extraction, (ii) aspect term classification and (iii) as-
pect term polarity estimation (Pavlopoulos and An-
droutsopoulos, 2014). The first two are at the basis
of Phase A, whereas the final one constitutes Phase
B. For the first step, viz. extracting terms (or tar-
gets), we wanted to test our in-house hybrid termi-
nology extraction system (Section 2). Next, we per-
formed a multiclass classification task relying on a
feature space containing both lexical and semantic
information to aggregate the previously identified
terms into the domain-specific and predefined as-
pects (or aspect categories) (Section 3). Finally, we
performed polarity classification by deriving both
general and domain-specific lexical features from
the reviews (Section 4). We finish with conclusions
and prospects for future work (Section 5).

2 Aspect Term Extraction

Before starting with any sort of classification, it
is essential to know which entities or concepts are
present in the reviews. According to Wright (1997),
these “words that are assigned to concepts used in
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the special languages that occur in subject-field or
domain-related texts” are called terms. Translated to
the current challenge, we are thus looking for words
or terms specific to a specific domain or interest,
such as the restaurant domain.

In order to detect these terms, we tested
our in-house terminology extraction system TEx-
SIS (Macken et al., 2013), which is a hybrid
system combining linguistic and statistical infor-
mation. For the linguistic analysis, TExSIS re-
lies on tokenized, Part-of-Speech tagged, lemma-
tized and chunked data using the LeTs Preprocess
toolkit (Van de Kauter et al., 2013), which is in-
corporated in the architecture. Subsequently, all
words and chunks matching certain Part-of-Speech
patterns (i.e. nouns and noun phrases) were con-
sidered as candidate terms. In order to determine
the specificity of and cohesion between these can-
didate terms, we combine several statistical filters
to represent the termhood and unithood of the can-
didate terms (Kageura and Umino, 1996). To this
purpose, we employed Log-likelihood (Rayson and
Garside, 2000), C-value (Frantzi et al., 2000) and
termhood (Vintar, 2010). All these statistical fil-
ters were calculated using the Web 1T 5-gram cor-
pus (Brants and Franz, 2006) as a reference corpus.

After a manual inspection of the first output
for the training data, we formulated some filter-
ing heuristics. We filter out terms consisting of
more than six words, terms that refer to location
names or that contain sentiment words. Locations
are found using the Stanford CoreNLP toolkit (Man-
ning et al., 2014) and for the sentiment words, we
filter those terms occurring in one of the follow-
ing sentiment lexicons: AFINN (Nielsen, 2011),
General Inquirer (Stone et al., 1966), NRC Emo-
tion (Mohammad and Turney, 2010; Mohammad
and Yang, 2011), MPQA (Wilson et al., 2005) and
Bing Liu (Hu and Liu, 2004).

The terms that resulted from this filtered TExSIS
output, supplemented with those terms that were an-
notated in the training data but not recognized by our
terminology extraction system, were all considered
as candidate terms. Finally, this list of candidate tar-
gets was further extended by also including corefer-
ential links as null terms. Coreference resolution of
each individual review was performed with the Stan-
ford multi-pass sieve coreference resolution system

(Lee et al., 2011). We should also point out that we
only allowed terms to be identified in the test data
when a sentence contains a subjective opinion. This
was done by running it through the above-mentioned
sentiment lexicons.

3 Phase A

Given a list of possible candidate terms, the next step
consists in aggregating these terms to broader aspect
categories. As our main focus was on combining as-
pect term extraction with classification and since no
targets were annotated for the laptops, we decided
to focus on the restaurants domain. The organizers
provided the participants with training data consist-
ing of 254 annotated restaurant reviews. The task
was then to assign each identified term to a correct
aspect category.

For the classification task, we relied on a rich
feature space for each of the candidate targets and
performed classification into the domain-specific
categories. Whereas the annotations allow for a
two-step classification procedure by first classify-
ing the main categories and afterwards the subcat-
egories, we chose to perform the joint classification
as this yielded better results in our exploratory ex-
periments.

3.1 Feature Extraction

For all candidate terms present in our data sets we
derived a number of lexical and semantic features.
For those candidate targets that have been recog-
nized as anaphors (see Section 2), these features
were derived based on the corresponding antecedent.

First of all, we derived bag-of-words token uni-
gram features of the sentence in which a term occurs
in order to represent some of the lexical information
present in each of the categories.

The main part of our feature vectors, however,
was made up of semantic features, which should
enable us to classify our aspect terms into the
predefined categories. These semantic features
consist of:

1. WordNet features: for each main category, a
value is derived indicating the number of (unique)
terms annotated as aspect terms from that cate-
gory in the training data that (1) co-occur in the
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synset of the candidate term or (2) which are a hy-
ponym/hypernym of a term in the synset. In case the
candidate term is a multi-word term whose full term
is not found, this value is calculated for all nouns in
the multi-word term and the resulting sum is divided
by the number of nouns.

2. Cluster features: using the implementa-
tion of the Brown hierarchical word clustering al-
gorithm (Brown et al., 1992) by Liang (2005), we
derived clusters from the Yelp dataset1. Then, we
derived for each main category a value indicating the
number of (unique) terms annotated as aspect terms
from that category in the training data that co-occur
with the candidate term in the same cluster. Since
clusters can only contain single words, we calculate
this value for all the nouns in a multi-word term and
take the mean of the resulting sum.

3. Linked Open Data (LOD) features: using
DBpedia (Lehmann et al., 2013), we included
binary values indicating whether a candidate
term occurs in one of the following DBpedia
categories: Foods, Cuisine, Alcoholic beverages,
Non-alcoholic beverages, Atmosphere, Peo-
ple in food and agriculture occupations or
Food services occupations. These features were
automatically derived using the RapidMiner Linked
Open Data Extension (Paulheim et al., 2014).

4. Training data features: number of annota-
tions in the training data for each of the main cate-
gories. We filtered out candidate terms for which all
of these feature values are “0”, but decided to keep
proper nouns and proper noun phrases.

3.2 Classification and Results

For all our experiments, we used LIBSVM (Chang
and Lin, 2001). In order to tune our system, we
split the training data into a train (90%) and test fold
(10%) and ran various rounds of experiments, af-
ter which we manually analyzed the output. Based
on this analysis, we were able to derive some post-
processing heuristics to rule out some of the low-
hanging fruit (i.e. misclassification which could be
ruled out univocally). To do so, we built a dictio-
nary containing all targets annotated in the training
data, together with their associated category label(s).
In case our classifier assigns a main category to a

1https://www.yelp.com/academic dataset

target term that is never associated with the respec-
tive target in the training dictionary, we overrule the
classification output and replace it by the (most fre-
quent) category-subcategory label that is associated
with this target in the training dictionary.

The results of our system on the final test set and
rank are presented in Table 1, where Slot 1 refers to
the aspect category classification and Slot 2 to the
task of finding the correct opinion target expressions
(or terms).

Slot Precision Recall F-score Rank
Slot 1 51.54 56.00 53.68 8/15
Slot 2 36.47 79.34 49.97 13/21
Slot 1,2 29.44 44.73 35.51 6/13

Table 1: Results of the LT3 system on Phase A

For the design of our system we wanted to focus
most on the combination of Slot 1 and 2, i.e. finding
the target terms and being able to classify them in the
correct category. This is the most difficult task of all
three, hence the lower F-scores in general (Pontiki et
al., 2015). Though there is much room for improve-
ment for our system, we do observe that our rank
increases for this more difficult task. Our precision
scores are rather low, but we obtain the best recall
scores for Slot 2 and Slot 1,2. For Slot 1,2 we are
able to find 378 of the 845 possible targets, resulting
in the best recall score of all participating systems
(e.g. 44.73 compared to a recall score of 41.73 ob-
tained by the winning team).

This leads us to conclude that there’s quite some
room for improvement for the aggregation phase.
Normally, the similarity between terms is first com-
puted after which some sort of clustering is per-
formed

4 Phase B

In recent years, sentiment analysis has been a pop-
ular research strand. An example is last year’s Se-
mEval task 9 Sentiment Analysis in Twitter, which
drew over 45 participants. The competition revealed
that the best systems use supervised machine learn-
ing techniques and rely much on lexical features in
the form of n-grams and sentiment lexicons (Rosen-
thal et al., 2014). For Phase B, in which we had
all gold standard terms and aspect categories avail-
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able, we decided to extend our LT3 system with an-
other classification round where we classify every
aspect as positive, negative or neutral. All features
are derived from the sentence in which the terms
were found and we participated in all three domains.

4.1 Feature Extraction
We implemented a number of lexical features. First
of all, we derived bag-of-words token unigram fea-
tures. Then, we also generated features using two
of the more well-known sentiment lexicons: Gen-
eral Inquirer (Stone et al., 1966) and Bing Liu (Hu
and Liu, 2004) and a manually constructed list of
negation cues based on the training data of SemEval-
2014 task 9 (Van Hee et al., 2014). Moreover, for
both the restaurants and laptops domain we created a
list of all the domain-specific positive, negative and
neutral words based on the training data. For the ho-
tels we were not able to compile such a list.

Finally, we also included PMI features based
on three domain-specific datasets. PMI (pointwise
mutual information) values indicate the association
of a word with positive and negative sentiment:
the higher the PMI score, the stronger the word-
sentiment association. We calculated this for each
unigram based on the word-sentiment associations
found in the respective training dataset. PMI values
were calculated as follows:

PMI(w) = PMI(w, positive)− PMI(w, negative)
(1)

As the equation shows, the association score of a
word with negative sentiment is subtracted from
the word’s association score with positive senti-
ment. For the restaurants domain we relied on
the Yelp dataset (cfr. Section 3.1), for the lap-
tops domain on a subset of the Amazon electronics
dataset (McAuley and Leskovec, 2013), and for the
hidden – hotel – domain we worked with reviews
collected from TripAdvisor (Wang et al., 2011). All
datasets were filtered by only including reviews with
strong subjective ratings (e.g. we preferred a 5 star
rating for positive reviews over one of 3 stars).

4.2 Classification and Results
We again used LIBSVM as our learner. For the
restaurants and laptops domain, we used the re-
spective training data sets. For the hidden (ho-
tel) domain, we only used the restaurants training

data since we assumed hotels to be more similar to
restaurants than they are to laptops. The results of
our system are presented in Table 2.

Domain Accuracy Rank
Restaurants 75.03 4/15
Laptops 73.76 5/13
Hotels 80.53 2/11

Table 2: Result of the LT3 system on Phase B

Our results show that using only lexical features
already results in quite satisfying accuracy scores for
all three domains. Considering the hotels dataset,
we can conclude that having training data available
from a very similar domain does already result in a
satisfying accuracy (our system has the second best
score on the hidden domain). In the future, we will
investigate the performance gain when also includ-
ing domain-specific training data.

5 Conclusions and Future Work

We presented the LT3 system, which is able to tackle
the aspect-based sentiment analysis task incremen-
tally by first deriving candidate terms, after which
these are classified into various categories and po-
larities. Applying a hybrid terminology extraction
system to the first phase seems to be a promising ap-
proach. Our experiments revealed that we are able
to receive high recall for the task of deriving tar-
gets and aspect categories using a variety of lexical
and semantic features. When it comes to the polar-
ity estimation, we see that a classifier mostly relying
on lexical information achieves a satisfying perfor-
mance, even on out-of-domain data.

Based on our results, we see different directions
for follow-up research. For the term extraction, we
will focus on more powerful filtering techniques.
With respect to term aggregation, we will explore
new techniques of clustering our list of candidate
terms in different manners. Furthemore, we will ex-
plore in future experiments to which extent deeper
syntactic, semantic and discourse modelling leads
to better polarity classification. Since the TEx-
SIS system was developed as a multilingual frame-
work (Macken et al., 2013), we are currently trans-
lating the LT3 system so that it can handle Dutch
reviews.
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Abstract

This paper reports on our participation in
SemEval-2015 Task 12, which was devoted
to Aspect-Based Sentiment Analysis. Partic-
ipants were required to identify the category
(entity and attribute), the opinion target, and
the polarity of customer reviews. The system
we built relies on classification algorithms to
identify aspect categories and on a set of rules
to identify the opinion target. We propose a
two-phase classification approach for category
identification and use a simple method for po-
larity detection. Our results outperform the
baseline in many cases, which means our sys-
tem could be used as an alternative for aspect
classification.

1 Introduction

Aspect Based Sentiment Analysis aims at discover-
ing the opinions or sentiments expressed by a user
on the different aspects of a given entity (Hu and
Liu, 2004; Liu, 2012). Recently, a number of meth-
ods and techniques have been developed to tackle
this task and some of them rely on syntactic depen-
dencies to locate the opinion target (Kim and Hovy,
2004; Qiu et al., 2011; Liu et al., 2013). A syntac-
tic parser takes a natural language sentence as input
and outputs the relationships between the words in
the sentence. Figure 1 shows the dependency tree
for the sentence “The phone has a good screen.” and
the grammatical relations of each token (det, subj,
mod, obj). We explore using grammatical relations
to help identify the opinion targets.

In this paper, we describe a system which took
part on SemEval-2015, and the way it was applied

by an opinion word “good” (which is known a priori). The
knowledge can be represented by the logic rule:

aspect(T) :- depends(T,mod,O),
opinionW(O),pos(T,nn).

where :- is understood as logic if, aspect(T) denotes that
the word T is an aspect, opinionW(O) that the word O
is an opinion word, pos(T,nn) that the POS of T is NN,
depends(T,mod,O) that T is modified by O.

The extraction process inevitably produces errors because
it uses only syntactical information. In many existing works
[21], [26], infrequent candidate aspects are pruned. However,
this method may result in significant loss in precision or recall.
Typically, a threshold is used to tell whether a frequency is
high or low. As a result, to improve the precision, we need to
raise the threshold, which will hurt the recall, and vice versa.
To improve precision and recall, methods other than simple
frequency threshold have to be used.

We observed that there is a large class of words which are
so general that in very few cases they are aspects. Normally,
we will not take these words as aspects. As an example, in “I
can’t write enough good things about this camera,” “things”
is extracted as an aspect because it is modified by the opinion
word “good.” However, “things” is very unlikely to be a
product aspect and thus should be pruned. We propose to
use WordNet [28] to automatically generate a list of general
words using three typical general words “thing,” “person,”
and “place” as seeds. By extending the DP method with the
knowledge that a general word is normally not an aspect, we
obtain a major improvement in the precision with almost no
drop in recall on a widely used benchmark data set.

In summary, we make two contributions: (1) We propose
to employ Answer Set Programming (ASP) – a variant of
Logic Programming – to implement syntactical approach based
aspect extraction. Our implementation of the DP method is
more elegant and efficient, and it has only 8 rules, while a
Java implementation has about 510 lines of code. The ASP
based implementation can process about 3000 sentences per
second, while the Java implementation only processes about
300 sentences per second. The preciseness and simplicity of
the logic programming rules enable the sharing of knowledge
used in aspect extraction and the reproducibility of experi-
mental results. (2) We introduce the concept of general words
based on WordNet and augment the DP method with the
knowledge that general words normally should not be taken
as aspects, which results in more accurate aspect extraction.
Again, the general words and new knowledge can be naturally
implemented using ASP.

The remaining of the paper is organized as follows: we
present background and related work in Section II and an
overview of our logic programming approach in Section III.
The ASP rules to implement the DP method for extracting
explicit aspects are described in Section IV. Our new approach
to aspect pruning is presented in Section V. We present the
experiments in Section VI and conclude the paper and discuss
future work in Section VII.

II. BACKGROUND AND RELATED WORK

In this section we introduce the basics of aspect extraction
and Answer Set Programming.

A. Aspect Extraction

An object is an entity which can be a product, service,
person, event, organization, or topic. It is associated with a set
of components or attributes, called aspects of the object. Each
component may have its own set of aspects.

For example, a particular brand of cellular phone, say
iPhone, is an object. It has a set of components, e.g., battery
and screen, and also a set of attributes, e.g., voice quality, size,
and weight. These components and attributes are aspects of the
phone.

An opinion is simply a positive or negative view, attitude,
or emotion about an object or an aspect of the object from a
person or an organization. Given a collection of opinion texts
on an object, the aspect extraction problem is to produce the
aspects of the object from these documents.

As mentioned earlier, there are two main methods for as-
pect extraction. In this paper, we focus only on the syntactical
approach as it has been shown to perform better than the
statistical approach [26]. For related work on the statistical
approach, please refer to the recent book [1]. In the syntactical
approach, explicit aspect extraction consists of two phases:
candidate aspect extraction and incorrect aspect pruning.

For candidate aspect extraction, we focus on the double
propagation method [26] which is based on the following
observations. The first is that it is easy to identify (a priori)
a set of opinion words such as “good” and “bad,” etc. The
next is that opinion words are usually associated with aspects
(opinion targets) under certain syntactic relations. For example,
in the sentence “This camera is good,” “good” is an opinion
word. The “camera,” a noun modified by “good,” is clearly an
aspect. Therefore from a given set of opinion words, we can
derive a set of aspects in terms of syntactic relations. Similarly,
syntactic clues can help extract new aspects from the extracted
aspects, and new opinion words from the extracted aspects.
This propagation process continues until no more opinion
words or aspects can be extracted.

Dependency grammar is adopted to represent the syntactic
relations used in the propagation. See the picture below for an
example of the dependency tree for the sentence “The phone
has a good screen.” � � �� � � �� � � 	 
� � 
�  � � � �� � � 
 
 	��  � � � �� � � �

A direct dependency indicates that one word depends on
another word without any additional words in their dependency
path or they both depend on a third word directly. The
DP method considers only direct dependencies as complex
relations can make the method vulnerable to parsing errors.
Opinion words are assumed to be adjectives and aspects nouns
or noun phrases. Thus the potential POS tags for opinion
words are JJ (adjectives), JJR (comparative adjectives) and
JJS (superlative adjectives) while those for aspects are NN
(singular nouns) and NNS (plural nouns). The dependency

Figure 1: Example of a dependency tree (Liu et al., 2013).

to category and polarity classification. Our system
participated in all subtasks from Task 12 (Aspect
Based Sentiment Analysis). For more details on this
task, please refer to Pontiki et al. (2015). Our sys-
tem combines classification algorithms, coreference
resolution tools, and a syntactic parser. One of our
goals was to minimize the use of external resources.

The remainder of this paper is organized as fol-
lows: Our system is described in Section 2. Sec-
tion 3 reports on the evaluation results. Finally, sec-
tion 4 concludes the paper.

2 Description of the System

In this section, we describe the different components
of the system.

2.1 Pre-processing
A distinctive characteristic of Web content is the
high prevalence of noise. This directly impacts
the quality of the results generated by a syntactic
parser. In our system, we used the StanfordNLP
Core toolkit (Manning et al., 2014).

The training sentences provided by the organizers
were sometimes composed by more than one sen-
tence. Thus, before submitting them to the parser,
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a cleaning step based on regular expressions was
performed. In this step, we replaced all punctua-
tion marks by commas and removed non-alphabetic
characters.

Then, the standard pre-processing tools available
from the StanfordNLP Core were applied (tokeniza-
tion, sentence splitting, part-of-speech tagging, mor-
phological analysis, syntactic parsing, coreference
resolution, and sentiment analysis).

2.2 Aspect Category Identification
We treated the problem of identifying aspect cate-
gories as a classification task. Thus, we made use
of the classifiers available from Weka (Hall et al.,
2009) to build models based on the training data.
In Task 12, categories are formed by a pair En-
tity#Attribute. The organizers have provided a list
of possible entities and, for each entity, a list of at-
tributes.

For each entity, we built a binary classifier where
each instance contains the lemmas on the sentence
and coreference lemmas to the previous sentences.
The class indicates whether the instance belongs to
the entity (i.e., positive means that the instance be-
longs to the entity and negative means it does not
belong to the entity). For each entity, the features
were selected using the InfoGainAttributeEval with
Ranker as a search method (available from Weka).
The threshold set up to Ranker was 0, which means
that the words selected by the method must con-
tribute to identify the class.

We used two approaches to classify the sen-
tences. In the first approach, one-phase classifi-
cation, for each entity dataset we trained six clas-
sifiers using all the sentences. These six clas-
sifiers (namely IBk, ThresholdSelector, Bayesian-
LogisticRegression, Logistic, MultiClassClassifier,
and SMO) were the top performers on our experi-
ments on the training data. We will refer to those
as Category classifiers, as they will be used to ac-
tually determine the class. Since the classifiers for
each category are independent, it is possible that a
sentence is predicted as belonging to more than one
category.

Classifiers were also built for each attribute be-
longing to that entity using only the sentences con-
taining the entity. We call these Attribute classifiers,
as they will be used to generate features for the Cat-

egory classifiers.
In the two-phase approach (Figure 2), first we

train n Attribute classifiers using all sentences but
the current. In the experiments reported in Section 3,
we used twenty Attribute classifiers (n=20). Then,
the outputs from each of the n Attribute classifiers
were used as features for the Category classifiers
(second phase). This phase requires significant pro-
cessing time since a new dataset is created for each
instance and the models have to be updated. This
method assumes that the features in each instance
contain “what the others tell about it” using differ-
ent prediction models.

set of instances (sentences)

subset of 

instances
current instance

build attribute 

classifier 1 to n
classification 1 to n

current instance with n features

Figure 2: Two-phase classification pipeline.

To classify a new unseen instance, first it needs to
be processed so that its lemmas and coreferences are
identified. Then, word frequencies are selected and
the n Attribute classifiers generate the values of the
features for the second phase.

The final predicted class is the top scoring (i.e.,
with the highest sum of scores) obtained from the
results of the six Category classifiers. Although this
has not happened in our experiments, a tie between
the scores of the positive and negative classes is pos-
sible. In such a case, the sentence will be assigned to
the positive class (i.e., as belonging to the category).

2.3 Opinion Target Identification

The opinion target is detected after the category has
been identified. For each pair Entity#Attribute dis-
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covered in the sentence, the candidate words are se-
lected in order of information gain for that category.
The words from attribute classification are concate-
nated with the words for entity classification. The
assumption is that the words from attribute classifi-
cation are more significant than the words from en-
tity classification (which are more generic).

We select the word pairs which are directly as-
sociated (on the dependency tree) by a grammati-
cal relation such as adjectival modifier, noun com-
pound modifier, and nominal subject. We consider
the opinion targets to be nouns/noun phrases as this
has been widely adopted in the related literature (Hu
and Liu, 2004; Qiu et al., 2011; Liu et al., 2013).
Thus, the potential POS tags for targets are NN (sin-
gular nouns) and NNS (plural nouns). In order to
identify incorrect targets, we rely on a list of 5k
words assembled by Qian (2013). This exceptions
list contains words with little or no meaning and that
normally are not an aspect. The main target is the
first candidate noun which is not in such a list.

If no nouns are found among the candidates, we
find the nouns in the same sentence that are indi-
rectly related to the candidate words (i.e. by transi-
tivity), then we select the first noun. When still no
nouns are found, then the opinion is set to NULL (it
does not exist in the sentence). Target expressions
are obtained using noun compound modifier (nn) as-
sociations.

A current limitation is that we do not identify mul-
tiple target expressions for the same category. We
assume that for each category found, there is only
one target in the sentence. However, since a sen-
tence may be assigned to several categories, in these
cases, more than one target may be identified and
returned.

2.4 Sentiment Polarity Attribution
For this subtask, we used a simple approach that as-
signs the polarity of the target as the general polarity
of the sentence. Stanford NLP Core provides senti-
ment analysis based on a compositional model over
trees using deep learning (Socher et al., 2013). The
nodes of a binarized tree of each sentence are as-
signed a sentiment score.

We opted for this approach to minimize the exter-
nal resources in the our system, such as sentiment
lexicons or reviews collected from other sources.

The underlying model for Stanford NLP Core Sen-
timent Analysis was built on a corpus consisting of
11,855 sentences extracted from movie reviews. We
have made no attempt to change the model to adapt
to our reviews and used it as is to determine the
polarity of the sentences. Our contribution in this
phase was just the benchmarking of an existing tool.

3 Evaluation

We experimented with all three datasets from Task
12, namely Restaurants (Res), Laptops (Lap), and
Hidden (Hid) for which the domain was unknown.
Details on the datasets are in Pontiki et al. (2015).

The evaluation occurs in two phases. In the first
phase, participating systems were evaluated on cat-
egory detection for Restaurants and Laptops. Ad-
ditionally, identifying opinion target and the pair
(category, target) was requested for the Restau-
rants domain. In the second phase, the systems were
evaluated on polarity detection on all three domains.

3.1 Opinion Category and Target Detection
When evaluating opinion category and target detec-
tion (first phase), three measures were taken into ac-
count: precision, recall, and F1. For both category
and target detection, the baseline methodologies are
presented in Pontiki et al. (2015). Table 1 shows the
results obtained using our approach compared to the
baseline for aspect category detection, whereas Ta-
ble 2 outlines the results regarding aspect target de-
tection. The results for the pair (category, target)
are presented in Table 3.

Table 1: Opinion Category detection.
Domain Method P R F1

Res 2Phase 0.6556 0.4323 0.5210
Res 1Phase 0.6835 0.4181 0.5188
Res Baseline 0.5133
Res 1Phase-coref 0.6821 0.4180 0.5184
Res 2Phase-coref 0.6509 0.4090 0.5023
Lap Baseline 0.4631
Lap 1Phase 0.5066 0.4040 0.4495
Lap 2Phase 0.4773 0.4209 0.4473
Lap 1Phase-coref 0.4834 0.4462 0.4640
Lap 2Phase-coref 0.4689 0.4388 0.4534

The system outperforms the baseline on both ap-
proaches for the Restaurants domain. In this do-
main, the two-phase approach was superior to the
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one-phase approach. For the laptop domain, how-
ever, we scored lower than the baseline. We attribute
that to the increased difficulty the coreference reso-
lution step had when processing the review texts in
this domain because of the large number of out of
vocabulary words (CPU, HD, RAM, etc). Table 1
shows that the results improve when the coreference
resolution step is not performed. Nevertheless, for
the Restaurant domain, it brought improvements.

Table 2: Opinion Target detection.
Domain Method P R F1

Res 2Phase 0.5656 0.4373 0.4932
Res 1Phase 0.5764 0.4244 0.4888
Res Baseline 0.4807
Res 2Phase-exc. 0.5632 0.4354 0.4911
Res 1Phase-exc. 0.5739 0.4225 0.4867

Considering the results for opinion target detec-
tion, both versions of our system outperformed the
baseline. The two-phase classification achieved bet-
ter recall in both category and target detection, but
worse precision compared to one-phase classifica-
tion.

We ran some additional experiments to evaluate
the use of the exceptions list during target identifi-
cation. These runs in which the exceptions list were
not used are labelled 1Phase-exc and 2Phase-exc in
Table 2. The results show that using such a list did
not impact the results.

Table 3: Opinion Category and Target pair detection.
Domain Method P R F1

Res 2Phase 0.4852 0.2722 0.3487
Res Baseline 0.3444
Res 1Phase 0.4521 0.2734 0.3407
Res 1Phase-coref 0.4694 0.2639 0.3378
Res 2Phase-coref 0.4496 0.2591 0.3288

As for the results for the pair (category, target)
the two-phase classification outperforms both the
baseline and the one-phase classification. The gain
in terms of precision is three percentage points,
while recall was slightly reduced. The best configu-
ration was using coreference resolution and the ex-
ceptions list.

3.2 Opinion Polarity Detection

Table 4 shows the results in terms of accuracy
on opinion polarity. Here, the methodology for
the baseline is similar to the ones used for as-
pect category detection (also described in Pontiki et
al. (2015)). In this subtask, we submitted only the
results for the one-phase classification.

Table 4: Opinion Polarity detection.
Domain Method Accuracy

Res 1Phase 0.7172
Res Baseline 0.5373
Lap 1Phase 0.6733
Lap Baseline 0.5701
Hid Baseline 0.7168
Hid 1Phase 0.6578

The Stanford Core Toolkit uses a model trained
on movie reviews, and this was not the same do-
main of the datasets in the task. Still, the classifi-
cation results outperformed the baseline on Restau-
rants and Laptops. However, for the Hidden domain,
we scored lower than the baseline.

3.3 Error Analysis

The results obtained with our system are ranked be-
tween the 5th (out of 15) and the 14th (out of 22)
places. A case by case analysis was performed to
identify the most frequent causes of errors. In the
task of aspect category classification, the choice of
the threshold used during feature selection by the
Ranker (0) may have negatively impacted the re-
sults. Nevertheless, some feature selection method
is necessary since the use of all the words as features
greatly increases the processing time.

We used words selected by their Information Gain
as seeds to identify the target expression. In our ex-
periments, in many cases, the target was next to the
words selected by this strategy. This happens be-
cause the positive class had fewer instances than
the negative class, and the Information Gain tends
to select words that characterize the least frequent
class. However, most classification errors happened
because this strategy failed to identify infrequent
words that corresponded to the expected categories.
One possible alternative to mitigate this problem
could be the use of synonyms.
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The method we used for polarity detection con-
sidered the entire sentence. The limitation here is
that many sentences contain more than one opinion,
which may not convey the same polarity. This could
be solved by identifying the context (i.e., a region
around the target) and limit the polarity attribution
to that region.

4 Conclusion

This paper reports on the experiments that we con-
ducted while taking part on SemEval-2015 Task 12.
We showed that classification algorithms, corefer-
ence resolution tools, and a syntactic parser may
be combined in a category/target detection sys-
tem.We employed a two-phase approach to classify
instances. Our results show that this approach can
be an alternative to classify sentences without us-
ing lexicons, improving recall with a small decay in
precision. As future work, we plan to improve the
coreference resolution of review texts so as to fur-
ther improve recall.
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Abstract

This paper describes the participation of the
SINAI research group in the task Aspect
Based Sentiment Analysis of SemEval Work-
shop 2015 Edition. We propose a syntactic
approach for identifying the words that mod-
ify each aspect, with the aim of classifying the
sentiment expressed towards each attribute of
an entity.

1 Introduction

Opinion Mining (OM), also known as Sentiment
Analysis (SA), is the discipline that focuses on the
computational treatment of opinion, sentiment and
subjectivity in texts (Pang and Lee, 2008). Cur-
rently, OM is a trendy task in the field of Natural
Language Processing, due mainly to the fact of the
proliferation of user-generated content and the in-
terest in the knowledge of the opinion of people by
consumers and businesses.

Most of the systems developed up to now carry
out opinion analysis at document level ((Pang et al.,
2002), (Turney, 2002)) or at sentence level ((Wilson
et al., 2005), (Yu and Hatzivassiloglou, 2003)), that
is, they determine the overall sentiment expressed
by the reviewer about the topic, product, person. . . of
study. However, the fact that the overall sentiment of
a product is positive does not mean that the author
thinks that all the aspects of the product are posi-
tives, or the fact that is negative does not involve that
everything about the product is bad. For this reason,
users and companies are not satisfied with knowing
the overall sentiment of a product or service, they

seek a more detailed knowledge. Consequently, to
achieve a higher level of detail, part of the scientific
community related to this area is working on SA at
aspect level ((Quan and Ren, 2014), (Marcheggiani
et al., 2014), (Lu et al., 2011), (Thet et al., 2010))
and even, there is a competition on this topic that
began to conduct last year (Pontiki et al., 2014) in
the International Workshop on Semantic Evaluation
2014 (SemEval 2014).

This year, the 2015 edition of SemEval has
also proposed a task for SA at aspect level. The
SemEval-2015 Aspect Based Sentiment Analysis
task is a continuation of SemEval-2014 Task 4 (Pon-
tiki et al., 2014). The aim of this task is to identify
the attributes of an entity that are being reviewed
and the sentiment expressed for each one. It is di-
vided into three slots. The first one is focused on
the identification of every entity E and attribute A
pair (E#A) towards which an opinion is expressed
in the given text. Slot 2 proposes to determine the
expression used in the text to refer to the reviewed
entity, that is, the Opinion Target Expression (OTE).
Finally, Slot 3 has as goal to classify the sentiment
expressed over each category (E#A pair) as positive,
negative or neutral. We have participated in the slot
related to sentiment polarity (Slot 3).

Due to the fact that OM is a domain-dependent
task, the organization proposes the three slots in dif-
ferent domains, two known (restaurants and laptops)
and one unknown until the evaluation (hotels). A
wider description of the task and the dataset used
can be found in the task description paper (Pontiki
et al., 2015).

The rest of the paper is organized as follows. Sec-
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tion 2 describes the system developed and the re-
sources that we have used. To sum up, the results
reached and an analysis of the same are shown in
Section 3.

2 System description - Slot 3

As we have mentioned above, we have taken part
in the Slot 3. The aim of this slot is to identify the
polarity of each category or each <category, OTE>
pair on which an opinion is expressed in a given re-
view. This task has been carried out on two known
domains an one unknown domain. For each of the
known domains, restaurants and laptops, the organi-
zation has provided a dataset for training, whereas
for the unknown domain any information has been
given until the test set has been released. Therefore,
we have used a supervised method for restaurants
and laptops domains and we have developed an un-
supervised method for the unknown domain.

2.1 Slot 3 - Restaurant domain ABSA

The training data related to restaurants domain con-
tains 254 reviews. Each review is composed of dif-
ferent sentences annotated with opinion tuples. Each
opinion tuple has information about the Opinion Tar-
get Expression (OTE), the Entity and Attribute pair
(E#A category) towards the opinion is expressed, the
polarity (positive, negative or neutral) and the posi-
tion of the OTE in the text (from - to).

Using this information we have developed differ-
ent experiments for polarity prediction. In all of
them an SVM classifier of type C-SVC with lin-
ear kernel and the default configuration has been
trained, and a 10-fold-cross validation model has
been used for the assessment (Table 1).

The features that have provided the best results
in the training and that we have used for our par-
ticipation in this slot are the following. For each
<category, OTE, polarity> tuple of the training
data, we have used as label the polarity value and as
features the words that modify the OTE, their PoS
tag, their syntactic relation and their polarity using
three lexicons (taking into account negation): Senti-
WordNet (Baccianella et al., 2010), MPQA (Wilson
et al., 2005) and eBLR (enriched version of Bing Liu
Lexicon (Hu and Liu, 2004) adapted to restaurant
domain). Below, we describe briefly how this infor-

Exp. Type Accuracy Features
Exp 1 U 75.57% Modifying words,

PoS, syntactic
relation, polarity
(SentiWordNet,
MPQA, BinLiu)

Exp 2 U 75.88% Modifying words,
PoS, syntactic

relation, polarity
(SentiWordNet,
MPQA, BinLiu)

taking into
account negation

Exp 3 U 75.67% Modifying words,
PoS, syntactic

relation, polarity
(SentiWordNet,
MPQA, eBLR)

Exp 4 U 75.94% Modifying words,
PoS, syntactic

relation, polarity
(SentiWordNet,
MPQA, eBLR)

taking into
account negation

Table 1: Experiments restaurants training data (U =
Unconstrained, C = Constrained).

mation has been obtained. Thereby, each <category,
OTE> tuple of the test data is classified using its fea-
tures vector and the trained SVM model.

2.1.1 Features
Words that modify the OTE
We call words that modify an OTE those words

that specifically have been used in the review to
discuss about the OTE. In order to determine what
these words are, we use the Stanford Dependencies
Parser1. This parser was designed to provide a sim-
ple description of the grammatical relationships that
can appear in a sentence and it can be easily under-
stood and effectively used by people without linguis-
tic expertise who want to extract textual relations
(De Marneffe and Manning, 2008). It represents
all sentence relationships uniformly as typed depen-

1http://nlp.stanford.edu/software/lex-parser.shtml
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dency relations. In this experiment, we have consid-
ered the main relationships for expressing opinion
about a noun or nominal expression: using an ad-
jectival modifier (“amod”), an active or passive verb
(“nsub”, “nsubjpass”), a noun compound modifier
(“nn”) or a dependency relation with another word
(“dep”). In this way, for each OTE of a review,
we use these relationships to extract all the words
that modify the aspect of the entity that has been re-
viewed and we use them as features. If there is no
word related to the aspect using these relationships,
the previous word to the OTE and the following four
words will be used.

Pos Tag
In addition, for each of the words that modify an

aspect we get their particular Part of Speech Tag
(noun, verb, adjective. . . ).

Syntactic relations
As it has been mentioned above, the syntactic re-

lation of each modifying word with the OTE has also
been used as feature.

Polarity
The last feature of our SVM classifier is the polar-

ity of each modifying word according to three lexi-
cons: SentiWordNet, MPQA and eBLR. In addition,
it has been used the fixed window method for the
treatment of negation. Then, if any of the preceding
or following 3 words is a negative particle (“not”,
“n’t”, “no”, “never”. . . ), the modifying word polar-
ity will be reversed (positive —> negative, negative
—> positive, neutral —> neutral).

SentiWordNet is a lexical resource that assigns to
each synset of WordNet2 (Miller, 1995) three senti-
ment scores (positivity, negativity and objectivity)
that describe how positive, negative and objective
the terms contained in the synset are.

MPQA is a subjectivity lexicon formed by over
8000 subjectivity clues. For each word, it has infor-
mation about its prior polarity, its part of speech tag
and its grade of subjectivity (strong or weak).

Finally, eBLR is an enriched version of Bing Liu
Lexicon that we explain below. As is well-known
in the SA research community, the semantic orienta-
tion of a word is domain-dependent. Therefore, we
decided to generate a list of opinion words for the

2Wordnet is an English lexical database which groups words
according to their meaning.

restaurant domain, taking as baseline the Bing Liu
Lexicon and using the training data for restaurant
domain supplied by the organization. For this, we
have employed a corpus-based approach following
the methodology of (Molina-González et al., 2013)
that consists of the use of a sentiment labeled corpus
in order to select the most frequent positive and neg-
ative words. A word is added to the list of opinion
positive words if it only appears in positive reviews
and its frequency exceeds a certain threshold. The
same process is followed for negative words. In the
case of words that appear in both positive and neg-
ative reviews, a word is considered as opinion posi-
tive/negative word if the frequency of occurrence in
positive/negative reviews exceeds the frequency of
occurrence in negative/positive reviews in a certain
threshold.

2.2 Slot 3 - Laptops domain ABSA
The training data for laptops domain contains 277
reviews. Each review has different sentences anno-
tated at aspect level with the Entity and Attribute
pair (E#A category) towards each opinion is ex-
pressed and the polarity (positive, negative or neu-
tral). In this case no information about the OTE is
provided and thus, we have followed a different ap-
proach to that used in the restaurant domain. We
have also developed different experiments with an
SVM classifier of type C-SVC with linear kernel
and the default configuration, and we have also used
a 10-fold-cross validation model for the assessment
but with different features (Table 2).

Exp. Type Accuracy Features
Exp 1 C 75.08% Unigrams, PoS
Exp 2 U 73.76% Unigrams, total

positive words
(Bin Liu), total
negative words

(Bin Liu)
Exp 3 U 79.64% Unigrams, total

positive words
(eBLL), total

negative words
(eBLL)

Table 2: Experiments laptops training data (U =
Unconstrained, C = Constrained).
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For this domain we have submitted two runs,
one constrained (using only the provided training
data) and another unconstrained (using additional
resources for training). These experiments are those
that have provided better results with the training
data and we have used them for our participation in
this domain.

• SINAI B Lap 1 (Exp 1 - constrained). For
each <category(E#A pair), polarity> tuple of
the training data we have used as label the po-
larity and as features the entity and the specific
attribute of this entity about someone is review-
ing, and all the words of the sentence with their
pertinent Part of Speech Tag.

• SINAI B Lap 2 (Exp 3 - unconstrained). In
this case, the features that we have selected
for each <category (E#A pair), polarity> tu-
ple of the training data are the entity and the
attribute about someone is reviewing, all the
words of the sentence and the number of pos-
itive and negative opinion words according to
eBLL. eBLL is an enriched version of Bing Liu
Lexicon for laptops domain. It has been built
using the training data supplied by the organi-
zation for laptops domain, in the same way that
eBLR Lexicon.

Thus, given a category of the test data, it is clas-
sified using its features vector and the trained SVM
model.

2.3 Slot 3 - Out of domain ABSA
For the last domain, the organization has not pro-
vided any information until the test set has been re-
leased. We only knew that we had to assign a polar-
ity value for each <OTE, category> tuple present
in the test data. In this case we have followed an
unsupervised approach that we present below.

In order to classify the sentiment expressed about
each OTE is important to determine the words that
have been used in the review to discuss about the
aspect. For this, we have employed the Stanford De-
pendencies Parser and the main relationships for ex-
pressing opinion about a noun or nominal expres-
sion: “amod”, “nsubj”, “nsubjpass”, “nn”, “dep”
(they are explained in Subsection 2.1). In this way,
for each OTE of a review, we use these relationships

to extract all the words that modify it and we use
them to determine the sentiment expressed about the
OTE. If there is no word related to the aspect us-
ing these relationships, the previous word to the as-
pect and the following four words will be used. We
calculate the polarity of each OTE through a voting
system based on three classifiers: Bing Liu Lexicon,
SentiWordNet and MPQA. To do this we determine,
with each of the classifiers individually, the polarity
of an OTE using the words that modify it. Thus, ac-
cording to Bing Liu Lexicon, we count the number
of positive (pw) and negative words (nw) that mod-
ify the OTE and tag it following the equation 1. On
the other hand, we use MPQA as classifier following
the same approach but in this case we take into ac-
count the PoS of the modifying words in order to get
their polarity. At last, we employ SentiWordNet also
following the approach of comparing the number of
positive and negative words but as this lexicon as-
signs three sentiment scores to each synset, we cal-
culate the polarity of each modifying word using the
Denecke method (Denecke, 2008), that is, we cal-
culate the average of the positivity, negativity and
objectivity scores of all the synsets of the word with
the same PoS and assign the word the polarity of the
highest average.

pol(OTE) =


positive if (pw > nw)

negative if (pw < nw)

neutral if (pw = nw)

(1)

Therefore, an OTE is positive/negative if there are
at least two classifiers that tag it as positive/negative
and neutral in another case. It may happen that an
OTE is affected by negation, so if any of the pre-
ceding or following 3 words is a negative particle
(“not”, “n’t”, “no”, “never”. . . ), the OTE polarity
will be reversed (positive —> negative, negative —
> positive, neutral —> neutral).

3 Analysis of results

This section shows the results reached in the evalua-
tion of the task using the system described in Section
2. Table 3 presents the official results of our submis-
sions. We also include the results of the best team
and the average of all participants for comparision.

A clear difference between the results obtained by
our team and the average may be seen in Table 3.
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Furthermore, the results in restaurants and laptops
domain are worse than those achieved in the train-
ing phase (Table 1 and Table 2). Therefore, we have
calculated the confusion matrix related to each ex-
periment for a deeper analysis (Table 4, Table 5, Ta-
ble 6 and Table 7).

Accuracy
SINAI Avg. Best

team
Restaurants 0.6071 (U) 0.7119 0.7870

(U)

Laptops 0.6586 (C)
0.7093

0.7935
0.5184 (U) (U)

Hotels 0.6372 (U) 0.7079 0.8053
(U)

Table 3: Results test data (U = Unconstrained, C =
Constrained).

Restaurants
Pred.
pos.

Pred.
neu.

Pred.
neg.

Recall

Real pos. 446 0 8 0.9824
Real neu. 43 0 2 0
Real neg. 276 3 67 0.1936
Precision 0.583 0 0.8701

Table 4: Confusion matrix restaurants submission.

Laptops (C)
Pred.
pos.

Pred.
neu.

Pred.
neg.

Recall

Real pos. 491 0 50 0.9076
Real neu. 51 0 28 0
Real neg. 195 0 134 0.4073
Precision 0.6662 0 0.6321

Table 5: Confusion matrix laptops constraint
submission.

Laptops (U)
Pred.
pos.

Pred.
neu.

Pred.
neg.

Recall

Real pos. 391 0 150 0.7227
Real neu. 63 0 16 0
Real neg. 228 0 101 0.3070
Precision 0.5733 0 0.3783

Table 6: Confusion matrix laptops unconstraint
submission.

Hotels
Pred.
pos.

Pred.
neu.

Pred.
neg.

Recall

Real pos. 181 56 6 0.7449
Real neu. 5 6 1 0.5
Real neg. 15 40 29 0.3452
Precision 0.9005 0.0588 0.8056

Table 7: Confusion matrix hotels submission.

Restaurants Laptops
Positive opinions 1198 1103
Neutral opinions 53 106
Negative opinions 403 765

Table 8: Opinions in training data per class.

If we observe Table 4, Table 5 and Table 6, we can
see that, in restaurants and laptops domains, the sys-
tem has failed mainly in the classification of negative
and neutral opinions. It has classified most of them
as positive. We think that one of the reasons may
be that the training data for restaurants and laptops
domains is unbalanced (Table 8). For restaurants,
the number of positive opinions is almost three times
the number of negative opinions. Another possible
reason, in restaurants domain, is that we have only
taken into account the scope (words that modify the
OTE) and not the whole context (all words present
in the review). In future works, we will do experi-
ments balancing the datasets in order to test how the
system works. Furthermore, we will take into ac-
count the whole context in restaurants domain to see
if that improves the system.

Regarding the unsupervised system, that has been
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tested with hotels domain, there are also differences
with respect to the mean accuracy of all teams (Table
3). This is a first approach that can be improved with
the consideration of other relationships to determine
which words modify the OTE and with a treatment
of negation more exhaustive. In future works we will
consider these possible improvements.
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Abstract

This paper describes our systems submitted to
the target-dependent sentiment polarity clas-
sification subtask in aspect based sentimen-
t analysis (ABSA) task (i.e., Task 12) in Se-
mEval 2015. To settle this problem, we ex-
tracted several effective features from three se-
quential sentences, including sentiment lexi-
con, linguistic and domain specific features.
Then we employed these features to con-
struct classifiers using supervised classifica-
tion algorithm. In laptop domain, our systems
ranked 2nd out of 6 constrained submissions
and 2nd out of 7 unconstrained submissions.
In restaurant domain, the rankings are 5th out
of 6 and 2nd out of 8 respectively.

1 Introduction

Reviews express opinions of customers towards var-
ious aspects of a product or service. Mining cus-
tomer reviews (i.e., opinion mining) has emerged
as an interesting new research direction in recen-
t years. Since sentiment expressed in reviews usu-
ally adheres to specific categories or target terms, it
is much meaningful to identify the sentiment target
and its orientation, which helps users gain precise
sentiment insights on specific sentiment target.

Unlike most existing sentiment analysis method-
s which try to detect the polarity of a sentence or
a review, the aspect based sentiment analysis task
(ASBA) shared as task 12 in SemEval 2015 is aim-
ing at addressing the category- or target- dependent
sentiment analysis in reviews. There are two types
of subtasks organized in ASBA. The first aspect de-
tection subtask is to identify the sentiment adherent

from reviews, i.e., the category (i.e., entity-attribute
(E-A) pair) or opinion target expression (OTE) in re-
views. In most cases, the customers may not ex-
plicitly indicate the entity and attribute words in re-
views but the opinion target expression is a segment
of review. For example, in a given review: “The
pizza is overpriced and soggy.”, target=“pizza”,
category=“FOOD-QUALITY”. Its category label
FOOD-QUALITY does not exist in reviews, while it-
s OTE word “pizza” is explicitly present in reviews.
The second sentiment polarity classification subtask
is to assign a polarity label (i.e., positive, negative or
neutral) for every E-A pair or OTE identified from
the given reviews. We participated the second type
subtask, i.e., performing sentiment polarity classifi-
cation on reviews. There are two domains in this
sentiment analysis subtask, i.e, laptop and restauran-
t. In laptop domain, only E-A pairs are annotated
and provided in reviews while in restaurant domain,
both E-A pairs and OTE are provided. Comparing
with laptop reviews, the restaurant reviews provide
the annotated surface words adhering to sentimen-
t. Therefore we speculate that the performance in
restaurant domain would be much better than that of
laptop domain.

The study of aspect based sentiment analysis fo-
cuses on discovering the opinions or sentiments ex-
pressed by a customer on different categories or as-
pects (Liu, 2012). In recent years, it has drawn a lot
of attentions. For example, (Branavan et al., 2009;
He et al., 2012; Mei et al., 2007) used topic or cat-
egory information. (Lin and He, 2009; Jo and Oh,
2011) presented LDA-based models, which incorpo-
rate aspect and sentiment analysis together to model
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sentiments towards different aspects. (Hu and Liu,
2004; Ding et al., 2008) adopted lexicon-based ap-
proaches to detect the sentiment on different aspect-
s. In addition, (Boiy and Moens, 2009; Jiang et al.,
2011) explored the work to determine whether the
reviews contain the aspect information. Unlike the
above study, (Xiang et al., 2014) split the data into
multiple subsets based on category distributions and
then built seperate classifier for each category.

Following previous work (Brun et al., 2014;
Brychcı́n et al., 2014; Castellucci et al., 2014; Kir-
itchenko et al., 2014), a rich set of features are
adopted in this work: linguistic features (e.g., n-
grams, grammatical relationship, POS, negations),
sentiment lexicon features (e.g., MPQA, General In-
quirer, SentiWordNet, etc) and domain specific fea-
tures (e.g., in-domain word list, punctuation, etc).
We also performed a series of experiments to com-
pare supervised machine learning algorithms with d-
ifferent parameters and to choose effective feature
subsets for performance of classification.

The rest of this paper is structured as follows. In
Section 2, we describe our system in details, includ-
ing preprocessing, feature engineering, evaluation
metrics, etc. Section 3 reports data sets, experiments
and result discussion. Finally, Section 4 concludes
our work.

2 System Description

2.1 Motivation

Unlike tweets with word length limitation, a review
usually consists of several sentences and one single
sentence may contain mixed opinions towards dif-
ferent targets. However, based on our observation
and statistics on the data provided by SemEval 2015
Task 12, we find that most reviews (about 70%) have
consistent opinion in their sentences, even though
these sentences contain different category descrip-
tions. Furthermore, although the E-A pair annota-
tion is provided for each sentence, it is usually in-
ferred by human being based on common knowl-
edge from review rather than a single sentence. That
is, the E-A pair information is supposed to be in-
duced from contextual sentences rather than a single
sentence alone. On the other hand, since one sen-
tence may contain more than one category (i.e. E-A
pair), this sentence alone may not provide enough

information for every E-A pair. In consideration of
above described reasons, we use multiple sentences
rather than one single sentence to extract features for
sentiment analysis. In this work, we used three se-
quential sentences, that is, for one given sentence,
we combined its preceding and subsequent sentence
with this current sentence together to perform senti-
ment analysis.

As we mentioned, one sentence may contain more
than one E-A pair. As a result, for each E-A pair,
not all words in this sentence or review are quite rel-
evant and we need to select out only relevant words
from three sequential sentences in terms of the cor-
responding E-A pair. Unlike the OTE words which
already exist in reviews, most E-A pairs are not
present in the sentence. Thus, for each E-A pair, we
first extracted target words having top tfidf scores
from three sequential sentences and then chose the
relevant words from parse tree. Specifically, in lap-
top domain, the sentences contain only E-A pairs,
so we selected two words having the highest tfid-
f scores from three sequential sentences in terms of
corresponding E-A pair as its target words. Inspired
by (Kiritchenko et al., 2014), for each target word in
E-A pair, we selected the words from parse tree with
distance d =< 2 as relevant words in terms of this
E-A pair. After that, for all words in target words, we
combined all their relevant words as pending words
to extract features for sentiment analysis. While in
restaurant domain since the sentences contain both
E-A pair and opinion target expressions (OTE), we
only combined the words in OTE with two word-
s mentioned before as target words and chose their
relevant words as pending words.

For each domain, each participant can submit two
runs: (1) constrained: only the provided data can be
used; (2) unconstrained: any additional resources
can be used. In this task, we adopted 7 sentiment
lexicons as external resources. Thus, the only differ-
ence of our two systems lies in the sentiment lexicon
score features. For both systems, we extracted many
traditional types of features to build classifiers for
classification.

2.2 Data Preprocessing

Four preprocessing operations were performed. We
first removed the XML tags from data and then
transformed the abbreviations to their normal form-
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s, i.e., “don’t” to “do not”. We used Stanford Parser
tools1 for tokenization, POS tagging and parsing. Fi-
nally, the WordNet-based Lemmatizer implemented
in NLTK2 was adopted to lemmatize words to their
base forms with the aid of their POS tags.

2.3 Feature Engineering
In this work, we used three types of features:
sentiment lexicon features, linguistic features and
domain-specific features. All features were extract-
ed from pending words as described above.

Sentiment Lexicon Features: Given pending
words, we first converted them into lowercase and
then calculated five feature values for each senti-
ment lexicon: (1) the ratio of positive words to pend-
ing words, (2) the ratio of negative words to pend-
ing words, (3) the maximum sentiment score, (4) the
minimum sentiment score3, (5) the sum of sentiment
scores. If the pending word does not exist in one sen-
timent lexicon, its corresponding score is set to zero.
The following 8 sentiment lexicons are used in our
systems. Specifically, the first lexicon is employed
to build constrained system and others 7 lexicons for
unconstrained system.

- Constrained PMI: To build constrained system,
we generated two domain-specific sentimen-
t lexicons from the given training data respec-
tively (i.e., laptop and restaurant). Given a term
w, this PMI-based score is calculated from la-
beled reviews as below:

score(w) = PMI(w, pos)− PMI(w, neg)

where PMI stands for pointwise mutual infor-
mation.

- Bing Liu opinion lexicon4: This sentiment lex-
icon contains two annotated words lists: posi-
tive (about 2, 000) and negative(about 4, 800).

- General Inquirer lexicon5: The General Inquir-
er lexicon tries to classify English words along

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://nltk.org
3We convert the sentiment scores in all sentiment lexicons

to the range of [−1, 1], where “-” denotes negative sentiment.
4http://www.cs.uic.edu/liub/FBS/sentiment-

analysis.html#lexicon
5http://www.wjh.harvard.edu/inquirer/homecat.htm

several dimensions, including sentiment polar-
ity and we selected about 1, 500 positive words
and 2, 000 negative words.

- IMDB6: This lexicon is generated from a large
data set from IMDB which contains 25, 000
positive and 25, 000 negative movie reviews
and the PMI-based sentiment score of each
word is calculated as above.

- MPQA7: MPQA contains about 8, 000 subjec-
tive words with 6 types of label: strong/weak
positive, strong/weak negative, both (having
positive and negative sentiment) and neutral.
Then we transformed these above nominal la-
bels to 1, 0.5,−1,−0.5, 0, 0 respectively.

- SentiWordNet8: The sentiment scores of each
item in SentiWordNet is represented as a tu-
ple i.e., positivity and negativity.We use the d-
ifference between positive and negative score
as its sentiment score. When locating the cor-
responding item, we retrieved the word lemma
and selected the first term in searched results
according to its POS tag.

- NRC Hashtag Sentiment Lexicon9: (Moham-
mad et al., 2013) collected two tweet sets con-
taining hashtags and used the sentiment of its
hashtags as the sentiment label for each tweet.
In this experiment, we used both unigrams and
bigrams sentiment lexicons.

- NRC Sentiment140 Lexicon10: This lexicon
is generated from a collection of 1.6 million
tweets with positive or negative emoticons and
contains about 62, 000 unigrams, 677, 000 bi-
grams and 480, 000 non-contiguous pairs. We
used unigrams and bigrams.

Linguistic Features

- Word n-grams: We converted all pending word-
s into lowercase and removed low frequency
terms (≤ 5). After that, we extracted word-
level unigram and bigrams.

6http://anthology.aclweb.org//S/S13/S13-2.pdf#page=444
7http://mpqa.cs.pitt.edu/
8http://sentiwordnet.isti.cnr.it/
9http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
10http://help.sentiment140.com/for-students/
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- POS Features: (Pak and Paroubek, 2010)
found that subjective texts often contain more
adjectives or adverbs and less nouns than ob-
jective texts. Therefore, the POS tags are im-
portant features for sentiment analysis. We
recorded the number of nouns (the correspond-
ing POS tags are NN, NNP, NNS and NNPS),
verbs (VB, VBD, VBG, VBN, VBP and VBZ),
adjectives (JJ, JJR and JJS) and adverbs (RB,
RBR and RBS) in pending words.

- Grammatical Relationship: The grammatical
relationship usually expresses the role of words
in phrase and contains certain semantic infor-
mation (Zhao et al., 2014). We obtained de-
pendency information from parse tree and the
grammatical information is denoted as a tuple,
e.g., amod(surprises, great), where amod rep-
resents the dependency relationship between
surprises and great (here great is a modifier).
We presented two types of features: the rela-
tionship with the first word in tuple as Rel1 and
with the second word as Rel2. The size of each
feature set is approximately 150.

- Negation Features: We collected 29 negations
from Internet and designed this binary feature
to record if there is negation in pending words.

Domain Specifical Features

- In-domain word list: For different domains, the
words indicative of viewpoints are quite differ-
ent. For example, useful, fast, excellent repre-
sent positive opinion in laptop domain and deli-
cious, cheap, beautiful stand for positive opin-
ion in restaurant domain. Therefore, we manu-
ally built two in-domain word lists from train-
ing instances indicative of positive and nega-
tive for both domains respectively. This fea-
ture records the number of in-domain words in
pending words.

- Punctuation: Exclamation (!) and question
(?) signs often indicate emotions (i.e., surprise,
shock, interrogative, etc.) of users. Thus this
feature counts the number of exclamations and
questions in pending words.

- All-caps: This feature is the number of upper-
case words in pending words.

2.4 Evaluation Measures
To evaluate the performance of different systems,
the official evaluation measure accuracy is adopted.

3 Experiment

3.1 Datasets
The organizers provided two XML format docu-
ments regarding laptop and restaurant domain. In
laptop, the {E-A, P} (i.e., {EntityAttribute, Polari-
ty}) annotations are assigned at the sentence level
taking the context of the whole review into accoun-
t. In restaurant, it is a quadruple, i.e., {E-A, OTE,
P}, where OTE stands for opinion target expres-
sion. In laptop, 22 entities (e.g., LAPTOP, DISPLAY,
CPU, etc.) and 9 attributes (e.g., PORTABILITY,
PRICE, CONNECTIVITY, etc.) are tagged while the
restaurant data contains 6 entities (e.g., SERVICE,
RESTAURANT, FOOD, etc.) and 5 attributes (i.e.,
PRICES, QUALITY, STYLE OPTIONS, etc.). Table
1 shows the statistics of the data sets used in our ex-
periments. Specifically, in restaurant, the opinions
are adhered to OTEs and if the target does not exist
explicitly, the OTE is tagged as NULL.

Dataset Reviews Sentences Positive Negative Neutral All
Laptop:
train 277 1,739 1,103 765 106 1,974
test 173 725 541 329 79 949
Restaurant:
train 254 1,315 1,198 403 53 1,654
test 96 663 454 346 45 845

Table 1: Statistics of training and test dataset in laptop
and restaurant domains. Positive, Negative, Neural and
All stand for the number of corresponding instances.

3.2 Experiments on Training data
To address this task, we adopted similar methods for
both laptop and restaurant domains, i.e, employing
rich features to build classifiers and adopting Con-
strained PMI features as sentiment lexicon feature
for constrained systems while other sentiment lex-
icons for unconstrained systems. The 5-fold cross
validation was performed for system development.

Table 2 shows the results of feature selection ex-
periments for unconstrained and constrained sys-
tems in restaurant and laptop domains.

From Table 2, it is interesting to find: (1) Sen-
tiLexi features are the most effective feature type-
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Restaurant Laptop
Constrained Unconstrained Constrained Unconstrained

Feature Accuracy Feature Accuracy Feature Accuracy Feature Accuracy
ConPMI 79.80 SentiLexi 82.82 ConPMI 80.09 SentiLexi 81.21
+bigram 80.77(+0.97) +Domain 83.49(+0.67) +Domain 80.49(+0.40) +bigram 82.02(+0.81)
+Negation 81.07(+0.30) +Negation 84.28(+0.77) +Negation 81.30(+0.81) +rel2 83.54(+1.52)
+rel2 81.25(+0.18) +rel1 84.52(+0.24) +rel2 81.71(+0.41) +rel1 83.94(+0.40)
+Domain 81.43(+0.18) +rel2 84.34(-0.18) +POS 81.25(-0.46) +Negation 84.19(+0.25)
+rel1 81.07(-0.36) +bigram 84.03(-0.31) +unigram 81.00(-0.25) +unigram 84.04(-0.15)
+POS 80.89(-0.18) +POS 83.67(-0.36) +rel1 79.53(-0.47) +Domain 83.99(-0.05)
+unigram 78.71(-2.18) +unigram 81.63(-2.04) +bigram 79.38(-0.15) +POS 82.77(-0.78)

Table 2: Results of feature selection experiments for restaurant and laptop domains on training datasets. The numbers
in the brackets are the performance increments compared with the previous results. ConPMI stands for Constrained
PMI features while SentiLexi is other external sentiment lexicons features.

s to detect the polarity regardless of constrained or
unconstrained. (2) POS features are not quite ef-
fective in all systems. The possible reasons may
be that POS aims at identifying the subjective in-
stances from objective ones and it has no discrimi-
nating power for the type of sentiment polarity. (3)
The unigram features are not as effective as expect-
ed because most words are already present in rel1
or rel2 feature. (4) The performances in laptop and
restaurant domain are comparable, which is incon-
sistent with our previous speculation (i.e., the re-
sult of restaurant domain performs better than that of
laptop domain since both A-E pair and OTE are pro-
vided in restaurant). We do a deep analysis and find
that the top two words with tfidf score usually in-
clude the OTE words in restaurant domain. This also
confirmed that this target words selection method is
effective for laptop domain.

Besides, in our preliminary experiments for both
domains, we examined the SVM classifiers with var-
ious parameters implemented in scikit-learn tools11.
Finally we employed the configurations listed in Ta-
ble 3 for test data.

Domain Constrained Unconstrained
Restaurant SVM,kernel=linear,c=0.1 SVM,kernel=linear,c=0.5
Laptop SVM,kernel=linear,c=0.1 SVM,kernle=linear,c=1

Table 3: System configurations for the constrained and
unconstrained runs in two domains.

3.3 Results and Discussion

Using the optimum feature set shown in Table 2 and
configurations described in Table 3, we trained sep-

11http://scikit-learn.org/stable/

arate models for each domain and evaluated them
against the SemEval-2015 Task 12 test set.

Table 4 presents the results of our systems and
top-ranked systems on test data provided by orga-
nizer for laptop and restaurant domain. In laptop do-
main, our systems ranked 2nd out of 6 constrained
submissions and 2nd out of 7 unconstrained submis-
sions while in restaurant domain, the rankings are
5th/6 and 2nd/8 respectively.

The results in Table 4 shows that in both domain-
s our unconstrained systems performed comparable
to the best results. It indicated that using the exter-
nal sentiment lexicons as additional resources makes
great contribution although the majority of these ex-
ternal sentiment lexicons are out of domain, e.g., N-
RC lexicons are generated from tweets and IMDB is
about movie reviews. On the other hand, the con-
strained system which calculated the PMI score for
each word from training data only, would involve a
lot of noise due to (1) no sufficient training instances
and (2) without consideration of the relationship be-
tween word sentiment and its opinion adherent.

TeamID Restaurant Laptop
Con Uncon Con Uncon

ECNU 69.82(5) 78.11(2) 74.50(2) 78.29(2)
lsislif 75.50(1) - 77.87(1) -

sentiue - 78.70(1) - 79.35(1)

Table 4: Performance of our systems and the top-ranked
system for laptop and restaurant domains in terms of Ac-
curacy(%) on test datasets. Con stands for constrained
and Uncon represents unconstrained. The numbers in the
brackets are the rankings on corresponding submissions.
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4 Conclusion

In this paper, we examined several feature types, i.e.,
surface text, syntax feature, sentiment lexicon fea-
ture, etc, to detect sentiment polarity towards cate-
gory or opinion target expression in reviews. More-
over, we extracted features from three sequential
sentences in consideration of the characteristic of re-
view. Our systems perform better than majority of
submissions (e.g., rank 2nd out of 7 and 2nd out of 8
on unconstrained submissions in laptop and restau-
rant domains respectively). For the future work, we
would like to construct domain-specific sentiment
lexicons and present more effective in-domain fea-
tures to settle this problem.
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Abstract

This paper provides a detailed description of
the approach of our system for the Aspect-
Based Sentiment Analysis task of SemEval-
2015. The task is to identify the Aspect Cate-
gory (Entity and Attribute pair), Opinion Tar-
get and Sentiment of the reviews. For the
In-domain subtask that is provided with the
training data, the system is developed using a
supervised technique Support Vector Machine
and for the Out-of-domain subtask for which
the training data is not provided, it is imple-
mented based on the sentiment score of the vo-
cabulary. For In-domain subtask, our system
is developed specifically for restaurant data.

1 Introduction

With the increase in usage of internet, most of the
users record their experiences of a particular product
or item in the form of online reviews. Users might
express their opinion about many different aspects
of an item in a review.

While most of existing systems try to extract the
overall polarity of a sentence, Semeval 2015 con-
ducted a task on Aspect-Based Sentiment Anal-
ysis and the requirement was to extract entities
(e.g., Food, Price, Service for Restaurant data),
attributes(e.g., Quality, Style) for each sentence
and then to determine the polarity for each entity-
attribute pair.

The fajitas were delicious, but expensive.
In the above example, there are two opinions.The

first opinion has FOOD#QUALITY as the entity-
attribute pair with positive polarity and second has

FOOD#PRICES with negative polarity. The target
for both these opinions is fajitas. Since there are two
opinions with two different polarities, it is useful to
identify entities, attributes and targets for each sen-
tence.

Our system tries a new approach of trying to split
the sentence to find out more than one opinion in
a sentence. Initially, all the unnecessary words are
removed and then sentences are split in a way such
that each split sentence has an opinion. These split
sentences are given to a classifier for identifying en-
tities and attributes. Later, these entities are used
to extract opinion targets. Polarity is found using a
classifier and voting mechanisms.

The rest of the paper is structured as follows:
Section 2 presents the description of SemEval-
Task Aspect-Based Sentiment Analysis. Section 3
presents the description of our system. Section 4
discusses the results of our system and analyze them.
Section 5 presents a conclusion to the paper.

2 SemEval Task Description

The SemEval Task is divided into two subtasks.

2.1 Subtask 1

Following are the slots in the Subtask 1

2.1.1 Slot 1 - Aspect Category (Entity and
Attribute)

It specifies the category of the domain to which
the review refers. Aspect Category contains the En-
tity#Attribute pair of the review.

Entity is the aspect of the domain for which an
opinion is expressed in the given review. Attribute is
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the quality or feature the review refers to and this is
dependent on the Entity.

Great for a romantic evening, but over-priced.
{Entity#Attribute} –>{Ambience#General, Restau-
rant#Prices}
2.1.2 Slot 2 - Opinion Target Expression

Opinion target is the target word in the review on
which an opinion is expressed.

The Shrimp was awesome, but over-priced.
{Entity#Attribute, Target} –>{Food#Quality,
“Shrimp”}, {Food#Prices, “Shrimp”}
2.1.3 Slot 3 - Sentiment Polarity

Every Entity#Attribute pair obtained from sen-
tence should be assigned a polarity of either posi-
tive, negative, or neutral depending on the sentiment
expressed by the user.

2.2 Subtask 2

The task is to find out the polarity for each entity,
attribute pair of the review which will be provided
in the test data. No training data is provided for this
task.

Further details of the task description are provided
in (SemEval, 2015).

3 System Description

This system has been developed specifically for
Restaurant data for subtask 1 and it is constrained
for subtask1, unconstrained for subtask2.

The different stages in which the system proceeds
are described in respective subsections. Most of
them use an SVM classifier for predictions. This
classifier is described extensively in subsection 3.9.

3.1 Subjectivity Classification

There are two types of sentences: Subjective and
Objective. Subjective sentences are based on per-
sonal opinions. Objective sentences are factual and
observable. Linear SVM classifier is used to catego-
rize the subjective and objective sentences.

Training: Training sentences that have opinions
are given a constant value and that do not have opin-
ions are given another constant value. Using this bi-
nary classification model, a Linear SVM classifier is
trained using unigram Bag of words feature for the
given training dataset.

Testing: The trained Linear SVM classifier is
used in predicting the test sentences with subjective
information.

Only these predicted subjective test sentences are
considered for further processing.

3.2 Clean the Sentence
The main functionality of this module is to remove
unnecessary words and modify the sentence in a way
that helps in splitting of the sentence in next stage.
Specifically, clean the sentence to remove the arti-
cles (a, an, and the) and append ‘,’ before ‘but’, ‘at’,
and ‘with’ words. This addition of ‘,’ will help to
split the sentence in the next processing stage. A
‘,’ is prepended to ‘at’ if it is preceded by an adjec-
tive and to ‘with’ if any adjective exists in any of the
three previous words. These rules are extracted by
observing the training data.

The food is great and they have a good selection
of wines at reasonable prices.

In the above example, ‘at’ will be prepended with
‘,’ and ‘a’ will be removed.

3.3 Split the Sentence
Each sentence may contatin multiple opinions and
we believe that divison of sentence into subsen-
tences will help in making these predictions better.
Observations from the training data led to the un-
derstanding that ‘,’ and ‘and’ are used frequently to
express multiple opinions in one sentence and hence
these tokens are used to divide the sentence. Some
words like ‘at’, ‘but’, ‘with’ are also being used to
express multiple opinions and as ‘,’ has been ap-
pended in the previous stage this helps in splitting
these sentences also properly.

Below are some examples on this splitting
The food is great and they have a good selection

of wines, at reasonable prices.
Split sentences: 1) The food is great 2) they have

a good selection of wines 3) wines at reasonable
prices

Thalia is a beautiful restaurant, with beautiful
people serving you, but the food doesn’t quite match
up

Split sentences: 1) Thalia is a beautiful restaurant
2) with beautiful people serving you 3) but the food
doesn’t quite match up
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If a split sentence has an adjective but does
not have a noun, then the noun(s) in the previous
split sentence will be appended to current split
sentence.

Similarly, if the split sentence has a noun but does
not have an adjective, then the adjective from the
previous split sentence will be appended to current
split sentence.

We love food, drinks, and atmosphere
Split sentences: 1) we love the food 2) love drinks

3) love atmosphere
In contrast, if a split sentence does not have both
noun and adjective then append this split sentence to
the previous split sentence.

3.4 Identify Entities
In this section, we use the output from the split sen-
tences. Since there can be multiple split sentences
and entities, each split sentence has to be matched
with it’s corresponding entity. For Example:

Pizza is delicious, ambience is bad.
This example has two different entities: Food,

Ambience. After splitting the sentences, assigning
an entity to its respective part of sentence is impor-
tant:

Pizza is delicious- Food
ambience is bad - Ambience

To assign each split sentence with it’s respec-
tive entity, Wordnet is used. Find the similarities
between the words in each split sentence and each
entity using wordnet. For each entity, assign a split
sentence to which the most similar word for that
entity belongs to.

After each split sentence has been assigned to it’s
respective entity, the words from that split sentence
whose parts of speech are among nouns, verbs, ad-
jectives or adverbs are extracted and given as input
to SVM. Use the linear SVM model as described in
subsection 3.9 to predict the entity.

3.5 Identify Attributes
All the nouns, verbs, adjectives, adverbs for each
particular attribute are extracted from the training
data. Each attribute along with their respective ex-
tracted words are given as input to the SVM Clas-
sifier. Use the linear SVM model as described in
subsection 3.9 to predict the entity.

Apart from this process some predefined lexicons
from the training data are extracted manually. For
example, if there are words like money or price in
the sentence then it is likely that the sentence is talk-
ing about the attribute price. Words like these will,
in almost all of the cases, belong to attribute ’price’,
these were extracted manually from training data
as only a few of them were present. Upon the en-
counter of such words in the test data, the attribute
associated with them is assigned. If none of these
predefined words are encountered, then SVM classi-
fier is used as described above.

3.6 Extract Opinion Targets

In order to extract opinion targets, The following
procedure is applied for finding targets where the
entities extracted in previous section are among
‘Food’, ‘Restaurant’, ‘Drinks’, ‘Location’.

Training: Targets are found out based on Entities
and most of them are nouns with a few being adjec-
tives. Each entity has some nouns that will not be
the targets. For example, a noun such as ‘food’ will
not be the target for the ‘restaurant’ entity. In the
training data, for each entity, identify all the nouns,
adjectives that are not targets. Also, identify the tar-
get words for each entity. All these extracted words
are used for finding the targets in a test sentence.

Testing: If a given test sentence has one of target
words extracted in training, return that target. If not,
remove all the non-targets in the sentence that were
extracted from training. After this removal, if there
are no more nouns in the sentence, then return the
target as NULL. If more nouns exist in the sentence,
then return the largest substring of the consecutive
nouns and adjectives. If the entity is restaurant then
return the proper noun as the target if it is preceded
with ‘at’ or ‘to’.

For Entities (Ambience and Service): For sen-
tences that has Ambience and Service as the iden-
tified entities, a different approach is employed to
extract opinion targets: A vocabulary of targets is
constructed from the training data and is given as in-
put to a classifier along with the corresponding sen-
tences and their labels. This classifier is described in
subsection 3.9
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3.7 Sentiment Polarity

From the given sentence, all noun(s), adjective(s),
adverb(s), and verb(s) are extracted and given as in-
put to the classifier to predict the polarity as either
positive, negative or neutral. Usually classifiers can
have multiple parameters. So, using the grid search
method from Scikit Learn package, different param-
eters such as unigrams, bigrams and trigrams are
tested and it was observed that trigrams resulted in
better performance of the classifier. Hence trigrams
are used whenever needed.

Two different techniques are tried for the classifi-
cation of the given training data:

1. All unique tri-grams in the training sentences
are identified and TF-IDF values are calculated for
these trigrams. Count Vectorizer and TF-IDF trans-
former from ‘Scikit Learn’ package are used to ex-
tract the BoW features from the sentences.

2. Categorical Probability Proportion Difference
(CPPD) (CPPD, 2012)

When compared to CPPD, BoW features resulted
in higher accuracy. But, CPPD model might work
good for other domains. To predict the polarity for
test sentences, voting (Brill et al., 2001) among clas-
sifiers is used. The classifiers used in the voting pro-
cedure are Naive Bayes, Linear SVC, and Logistic
Regression.
By experimentation it is observed that Naive Bayes
has a good “negative recall” when compared to vot-
ing. This experiment was helpful in deciding the po-
larity of a sentence. If Naive Bayes predicts nega-
tive, then the polarity for that sentence is assigned
as negative, else it is assigned as the value predicted
from voting.

3.8 Out-of-Domain

In the out-of-domain subtask, no training data or
knowledge about the domain would be provided or
used to predict the polarity of the given test sentence.

The steps taken in this task are:
1. Splitting of the test sentence into sub sentences

is done based on the number of opinions it has. From
the split sentences, words with parts of speech tag as
noun, verb, adjective, or adverb are extracted.

2. Polarity is predicted using two tools Sentiword-
net and Pattern. The nearest opinion word (adjec-
tive, adverb, or verb) to the target word is identified

and polarity is found out for this word and is set as
the polarity for the sentence. If this word does not
have polarity, then the average polarity score for the
remaining opinion words in the sentence is calcu-
lated and is set as the polarity for the sentence. Apart
from these two predictions, Pattern tool is also used
to predict the polarity for the complete sentence.

3. Voting is applied to these three predictions and
the output of this would be the final polarity for the
sentence.

3.9 Linear SVM Model

The steps involved in training the Linear SVM clas-
sifier for our system are described below:

Features are extracted using unigram Bag of
words (BoW), Tf-Idf, Univariate feature selection
model (Scikitlearn, 2011). An optimized regular-
ization parameter (C value) is also used.

Train the Classifier: With the help of all the
above mentioned parameters, the classifier is trained
for the given training dataset. Linear SVM model
with BoW as features is trained using the multi-class
classification method for the given training dataset.

Predict the Label: The Linear SVM classifier
predicts the output label for each test sentence by
using the C value identified in the Cross-validation
step.

4 Results and Analysis

Our system was trained on 1314 review sentences
and tested on 685 review sentences for sub task 1.
Evaluations are done for slot 1, slot 2, slot 1 and slot
2, slot 3, and subtask 2. The results for each of them
are provided in the tables. Each table has the scores
of the best team, our system and the SemEval base-
line. Table1 provides the results for slot 1 in which
our system is ranked 2nd among all the constrained
systems participated in the task and is ranked 3rd
among all the participating systems. As our system
for subtask 1 is constrained, all our scores are com-
pared only with the best constrained system. For
subtask 2, the best score among all systems is con-
sidered.

As evident from the results, extraction of opinion
targets can be attributed to the failure of both slot 2
and slot 1 & slot 2. We suspect that the reason be-
hind this could be our concentration on finding those
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Team F1-Score
Best 61.94
UMDuluth-CS8761-12 57.20
Baseline 51.32

Table 1: Slot 1.

Team F1-Score
Best 66.91
UMDuluth-CS8761-12 50.36
Baseline 48.06

Table 2: Slot 2.

words that are non-targets rather than on trying to
find words that should be targets. If a noun is not a
target in one sentence, it doesnt mean that it cannot
be a target in any sentence having similar entity.

5 Conclusion

Overall, our system performed well especially in
slot 1 and slot 3. Identifying the number of opin-
ions that each sentence might express is an impor-
tant step to be taken, which we have achieved by
splitting the sentence so that each split sentence can
express an opinion. Applying supervised machine
learning techniques on these split sentences resulted
in a much better predictions compared to the com-
plete sentences.
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Abstract

This paper presents a supervised Aspect Based
Sentiment Analysis (ABSA) system. Our aim
is to develop a modular platform which allows
to easily conduct experiments by replacing the
modules or adding new features. We obtain
the best result in the Opinion Target Extrac-
tion (OTE) task (slot 2) using an off-the-shelf
sequence labeler. The target polarity classi-
fication (slot 3) is addressed by means of a
multiclass SVM algorithm which includes lex-
ical based features such as the polarity values
obtained from domain and open polarity lex-
icons. The system obtains accuracies of 0.70
and 0.73 for the restaurant and laptop domain
respectively, and performs second best in the
out-of-domain hotel, achieving an accuracy of
0.80.

1 Introduction

Nowadays Sentiment Analysis is proving very use-
ful for tasks such as decision making and market
analysis. The ever increasing interest is also shown
in the number of related shared tasks organized:
TASS (Villena-Román et al., 2012; Villena-Román
et al., 2014), SemEval (Nakov et al., 2013; Pon-
tiki et al., 2014; Rosenthal et al., 2014), or the
SemSA Challenge at ESWC20141. Research has
also been evolving towards specific opinion ele-
ments such as entities or properties of a certain opin-
ion target, which is also known as ABSA. The Se-
meval 2015 ABSA shared task aims at covering the

1http://challenges.2014.eswc-
conferences.org/index.php/SemSA

most common problems in an ABSA task: detect-
ing the specific topics an opinion refers to (slot1);
extracting the opinion targets (slot2), combining the
topic and target identification (slot1&2) and, finally,
computing the polarity of the identified word/targets
(slot3). Participants were allowed to send one con-
strained (no external resources allowed) and one un-
constrained run for each subtask. We participated in
the slot2 and slot3 subtasks.

Our main is to develop an ABSA system to be
used in the future for further experimentation. Thus,
rather than focusing on tuning the different modules
our main goal is to develop a platform to facilitate
future experimentation. The EliXa system consists
of three independent supervised modules based on
the IXA pipes tools (Agerri et al., 2014) and Weka
(Hall et al., 2009). Next section describes the ex-
ternal resources used in the unconstrained systems.
Sections 3 and 4 describe the systems developed for
each subtask and briefly discuss the obtained results.

2 External Resources

Several polarity Lexicons and various corpora were
used for the unconstrained versions of our systems.
To facilitate reproducibility of results, every re-
source listed here is publicly available.

2.1 Corpora

For the restaurant domain we used the Yelp Dataset
Challenge dataset2. Following (Kiritchenko et al.,
2014), we manually filtered out categories not corre-
sponding to food related businesses (173 out of 720

2http://www.yelp.com/dataset challenge
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were finally selected). A total of 997,721 reviews
(117.1M tokens) comprise what we henceforth call
the Yelp food corpus (CY elp).

For the laptop domain we leveraged a corpus
composed of Amazon reviews of electronic devices
(Jo and Oh, 2011). Although only 17,53% of the re-
views belong to laptop products, early experiments
showed the advantage of using the full corpus for
both slot 2 and slot 3 subtasks. The Amazon elec-
tronics corpus (CAmazon) consists of 24,259 reviews
(4.4M tokens). Finally, the English Wikipedia was
also used to induce word clusters using word2vec
(Mikolov et al., 2013).

2.2 Polarity Lexicons
We generated two types of polarity lexicons to rep-
resent polarity in the slot3 subtasks: general purpose
and domain specific polarity lexicons.

A general purpose polarity lexicon Lgen was built
by combining four well known polarity lexicons:
SentiWordnet SWN (Baccianella et al., 2010), Gen-
eral Inquirer GI (Stone et al., 1966), Opinion Finder
OF (Wilson et al., 2005) and Liu’s sentiment lexi-
con Liu (Hu and Liu, 2004). When a lemma oc-
curs in several lexicons, its polarity is solved ac-
cording to the following priority order: Liu > OF
> GI > SWN . The order was set based on the
results of (San Vicente et al., 2014). All polarity
weights were normalized to a [−1, 1] interval. Po-
larity categories were mapped to weights for GI
(neg+→−0.8; neg→-0.6; neg−→-0.2; pos−→0.2;
pos→0.6; pos+→0.8), Liu and OF (neg→-0.7;
pos→0.7 for both). In addition, a restricted lexicon
Lgenres including only the strongest polarity words
was derived from Lgen by applying a threshold of
±0.6.

Domain Polarity Lexicon Total
General Lgen 42,218
General Lgenres 12,398
Electronic
devices

LAmazon 4,511

Food LY elp 4,691

Table 1: Statistics of the polarity lexicons.

Domain specific polarity lexicons LY elp and
LAmazon were automatically extracted from CY elp

and CAmazon reviews corpora. Reviews are rated

in a [1..5] interval, being 1 the most negative and
5 the most positive. Using the Log-likelihood ratio
(LLR) (Dunning, 1993) we obtained the ranking of
the words which occur more with negative and pos-
itive reviews respectively. We considered reviews
with 1 and 2 rating as negative and those with 4 and 5
ratings as positive. LLR scores were normalized to a
[−1, 1] interval and included in LY elp and LAmazon

lexicons as polarity weights.

3 Slot2 Subtask: Opinion Target
Extraction

The Opinion Target Extraction task (OTE) is ad-
dressed as a sequence labeling problem. We use the
ixa-pipe-nerc Named Entity Recognition system3

(Agerri et al., 2014) off-the-shelf to train our OTE
models; the system learns supervised models via
the Perceptron algorithm as described by (Collins,
2002). ixa-pipe-nerc uses the Apache OpenNLP
project implementation of the Perceptron algorithm4

customized with its own features. Specifically, ixa-
pipe-nerc implements basic non-linguistic local fea-
tures and on top of those a combination of word class
representation features partially inspired by (Turian
et al., 2010). The word representation features use
large amounts of unlabeled data. The result is a
quite simple but competitive system which obtains
the best constrained and unconstrained results and
the first and third best overall results.

The local features implemented are: current to-
ken and token shape (digits, lowercase, punctuation,
etc.) in a 2 range window, previous prediction, be-
ginning of sentence, 4 characters in prefix and suffix,
bigrams and trigrams (token and shape). On top of
them we induce three types of word representations:

• Brown (Brown et al., 1992) clusters, taking the
4th, 8th, 12th and 20th node in the path. We in-
duced 1000 clusters on the Yelp reviews dataset
described in section 2.1 using the tool imple-
mented by Liang5.

• Clark (Clark, 2003) clusters, using the standard
configuration to induce 200 clusters on the Yelp
reviews dataset and 100 clusters on the food
portion of the Yelp reviews dataset.

3https://github.com/ixa-ehu/ixa-pipe-nerc
4http://opennlp.apache.org/
5https://github.com/percyliang/brown-cluster
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• Word2vec (Mikolov et al., 2013) clusters,
based on K-means applied over the extracted
word vectors using the skip-gram algorithm6;
400 clusters were induced using the Wikipedia.

The implementation of the clustering features
looks for the cluster class of the incoming token in
one or more of the clustering lexicons induced fol-
lowing the three methods listed above. If found,
then we add the class as a feature. The Brown
clusters only apply to the token related features,
which are duplicated. We chose the best combina-
tion of features using 5-fold cross validation, ob-
taining 73.03 F1 score with local features (e.g. con-
strained mode) and 77.12 adding the word clustering
features, namely, in unconstrained mode. These two
configurations were used to process the test set in
this task. Table 2 lists the official results for the first
4 systems in the task.

System (type) Precision Recall F1 score
Baseline 55.42 43.4 48.68
EliXa (u) 68.93 71.22 70.05
NLANGP (u) 70.53 64.02 67.12
EliXa (c) 67.23 66.61 66.91
IHS-RD-Belarus (c) 67.58 59.23 63.13

Table 2: Results obtained on the slot2 evaluation on
restaurant data.

The results show that leveraging unlabeled text is
helpful in the OTE task, obtaining an increase of 7
points in recall. It is also worth mentioning that our
constrained system (using non-linguistic local fea-
tures) performs very closely to the second best over-
all system by the NLANGP team (unconstrained).
Finally, we would like to point out to the overall
low results in this task (for example, compared to
the 2014 edition), due to the very small and diffi-
cult training set (e.g., containing many short samples
such as “Tasty Dog!”) which made it extremely hard
to learn good models for this task. The OTE mod-
els will be made freely available in the ixa-pipe-nerc
website in time for SemEval 2015.

4 Slot3 Subtask: Sentiment Polarity

The EliXa system implements a single multiclass
SVM classifier. We use the SMO implementation

6https://code.google.com/p/word2vec/

provided by the Weka library (Hall et al., 2009). All
the classifiers built over the training data were eval-
uated via 10-fold cross validation. The complexity
parameter was optimized as (C = 1.0). Many con-
figurations were tested in this experiments, but in the
following we only will describe the final setting.

4.1 Baseline

The very first features we introduced in our classi-
fier were token ngrams. Initial experiments showed
that lemma ngrams (lgrams) performed better than
raw form ngrams. One feature per lgram is added
to the vector representation, and lemma frequency
is stored. With respect to the ngram size used, we
tested up to 4-gram features and improvement was
achieved in laptop domain but only when not com-
bined with other features.

4.2 PoS

PoS tag and lemma information, obtained using the
IXA pipes tools (Agerri et al., 2014), were also in-
cluded as features. One feature per PoS tag was
added again storing the number of occurrences of a
tag in the sentence. These features slightly improve
over the baseline only in the restaurant domain.

4.3 Window

Given that a sentence may contain multiple opin-
ions, we define a window span around a given opin-
ion target (5 words before and 5 words after). When
the target of an opinion is null the whole sentence is
taken as span. Only the restaurant and hotel domains
contained gold target annotations so we did not use
this feature in the laptop domain.

4.4 Polarity Lexicons

The positive and negative scores we extracted as fea-
tures from both general purpose and domain specific
lexicons. Both scores are calculated as the sum of
every positive/negative score in the corresponding
lexicon divided by the number of words in the sen-
tence. Features obtained from the general lexicons
provide a slight improvement. Lgenres is better for
restaurant domain, while Lgen is better for laptops.
Domain specific lexicons LAmazon and LY elp also
help as shown by tables 3 and 4.
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4.5 Word Clusters
Word2vec clustering features combine best with the
rest as shown by table 3. These features only were
useful for the restaurant domain, perhaps due to the
small size of the laptops domain data.

4.6 Feature combinations
Every feature, when used in isolation, only
marginally improves the baseline. Some of them,
such as the E&A features (using the gold informa-
tion from the slot1 subtask) for the laptop domain,
only help when combined with others. Best perfor-
mance is achieved when several features are com-
bined. As shown by tables 4 and 5, improvement
over the baseline ranges between 2,8% and 1,9% in
the laptop and restaurant domains respectively.

Classifier Acc Rest
Baseline (organizers) 78.8
Baseline

1lgram 80.11
2lgram 79.3

1lgram + E&A 79.8
1lgram(w5) 80.41
1lgram + PoS 80.59 (c)
Lexicons

1lgram + Lgen 80.6
1lgram + Lgenres 81
1lgram + LY elp 80.9

Combinations
1lgram(w5)+w2v(CY elp)+Lgenres +

LY elp + PoS
82.34 (u)

Table 3: Slot3 ablation experiments for restaurants. (c)
and (u) refer to constrained and unconstrained tracks.

4.7 Results
Table 5 shows the result achieved by our sentiment
polarity classifier. Although for both restaurant and
laptops domains we obtain results over the baseline
both performance are modest.

In contrast, for the out of domain track, which was
evaluated on hotel reviews our system obtains the
third highest score. Because of the similarity of the
domains, we straightforwardly applied our restau-
rant domain models. The good results of the con-
strained system could mean that the feature combi-
nation used may be robust across domains. With re-
spect to the unconstrained system, we suspect that

Classifier Acc Lapt
Baseline (organizers) 78.3
Baseline

1lgram 79.33
2lgram 79.7

1lgram + clusters(w2v) 79.23
1lgram + E&A 79.23
1lgram + PoS 78.88
Lexicons

1lgram + Lgen 79.2
1lgram + Lgenres 79
1lgram + LAmazon 79.7

Combinations
1lgram + PoS + E&A 79.99 (c)
2lgram + PoS + E&A 78.27
1lgram+Lgenres +LAmazon +PoS +

E&A
80.85 (u)

Table 4: Slot3 ablation experiments for laptops; (c) and
(u) refer to constrained and unconstrained tracks.

such a good performance is achieved due to the fact
that word cluster information was very adequate for
the hotel domain, because Cyelp contains a 10.55%
of hotel reviews.

System Rest. Lapt. Hotel
Baseline 63.55 69.97 71.68 (majority)
Sentiue 78.70 (1) 79.35 (1) 71.68 (4)
lsislif 75.50 (3) 77.87 (3) 85.84 (1)
EliXa (u) 70.06(10) 72.92 (7) 79.65 (3)
EliXa (c) 67.34 (14) 71.55 (9) 74.93 (5)

Table 5: Results obtained on the slot3 evaluation on
restaurant data; ranking in brackets.

5 Conclusions

We have presented a modular and supervised ABSA
platform developed to facilitate future experimenta-
tion in the field. We submitted runs corresponding
to the slot2 and slot3 subtasks, obtaining competi-
tive results. In particular, we obtained the best re-
sults in slot2 (OTE) and for slot3 we obtain 3rd best
result in the out-of-domain track, which is nice for a
supervised system. Finally, a system for topic detec-
tion (slot1) is currently under development.
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Abstract

This paper describes our contribution in Opin-
ion Target Extraction OTE and Sentiment Po-
larity sub tasks of SemEval 2015 ABSA task.
A CRF model with IOB notation has been
adopted for OTE with several groups of fea-
tures including syntactic, lexical, semantic,
sentiment lexicon features. Our submission
for OTE is ranked fifth over twenty submis-
sions. A Logistic Regression model with a
weighting schema of positive and negative la-
bels have been used for sentiment polarity;
several groups of features (lexical, syntac-
tic, semantic, lexicon and Z score) are ex-
tracted. Our submission for Sentiment Polar-
ity is ranked third over ten submissions on the
restaurant data set, third over thirteen on the
laptops data set, but the first over eleven on
the hotel data set that is out-of-domain set.

1 Introduction

Sentiment Analysis (SA) has become more and
more interesting since the year 2000, many tech-
niques in Natural Language Processing have been
used to understand the expressed sentiment on an
entity.

Many levels of granularity have been also distin-
guished: Document Level SA considers the whole
document is about an entity and classifies whether
the expressed sentiment is positive, negative or neu-
tral; Sentence Level SA determines the sentiment of
each sentence, some papers have focused on Clause
Level SA, but they are still not enough; Entity or
Aspect-Based SA performs finer-grained analysis in

which all entities and their aspects should be ex-
tracted and the sentiment towards them should also
be determined.

Aspect-Based SA task consists of several sub-
problems, the document is about many entities
which could be for example a restaurant, a laptop,
a printer. Users may refer to an entity by different
writings, but normally there are not a lot of vari-
ations to indicate the same entity, each entity has
many aspects which could be its parts or attributes.
Some aspects could be another entity such as screen
of laptop, but most work did not take this case into
account. Therefore, we could define the opinion by
the quintuple (Liu, 2012) (ei, aij, sijkl, hk, tl) where
ei is the entity i, aij are the aspects of the entity i,
sijkl is the expressed sentiment on the aspect at the
time tl , hk the holder which created the document or
the text. This definition does not take into account
that the entity has aspects that could have also other
aspects which leads to an aspect hierarchy, in order
to avoid this information loss, few work has handled
this issue, they proposed to represent the aspect as a
tree of aspect terms.

In this paper, we focus on Opinion Target Extrac-
tion (OTE) and Sentiment Polarity towards a target
or a category. The description of each subtask is
provided by ABSA organizers (Pontiki et al., 2015).
For OTE or aspect term extraction, a CRF model is
proposed with IOB annotation and several groups of
features including syntactic, lexical, semantic, sen-
timent lexicon features. For aspect term polarity de-
tection, a logistic regression classifier is trained with
weighting schema for positive and negative labels
and several groups of features are extracted includ-
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ing lexical, syntactic, semantic, lexicon and Z score
features.

The rest of this paper is organized as follows. Sec-
tion 2 outlines existing work in aspect extraction and
polarity detection. Section 3 describes our system
for aspect term extraction. Aspect term polarity de-
tection is presented in Section 4. Section 6 shows
the conclusion and the future work.

2 Related Work

Aspect-Based Sentiment Analysis consists of sev-
eral sub tasks. Some papers have proposed different
methods for aspect detection and sentiment polarity
analysis, others have proposed joint models in or-
der to obtain the aspect and their sentiments from
the same model, these models are generally unsu-
pervised or semi-supervised.

The earliest work on aspect detection from on-
line reviews presented by Hu and Liu (Hu and Liu,
2004) that used association rule mining based on
Apriori algorithm to extract frequent noun phrases
as product features, for polarity detection they used
two seed sets of 30 positive and negative adjectives,
then WordNet has been used to find and add the syn-
onyms of the seed words. Infrequent features had
been processed by finding the noun related to an
opinionated word.

Opinion Digger (Moghaddam and Ester, 2010)
also used Apriori algorithm to extract the frequent
aspects. KNN algorithm is applied to estimate the
aspect rating scaling from 1 to 5 stands for (Excel-
lent, Good, Average, Poor, Terrible).

Supervised methods uses normally the CRF or
HMM models. Jin and Ho (Jin and Ho, 2009)
applied a lexicalized HMM model to extract as-
pects using the words and their part-of-speech tags
in order to learn a model, then unsupervised al-
gorithm for determining the aspect sentiment us-
ing the nearest opinion word to the aspect and tak-
ing into account the polarity reversal words (such
as not). A CRF model was used by Jakob and
Gurevych (Jakob and Gurevych, 2010) with the fol-
lowing features: tokens, POS tags, syntactic depen-
dency (if the aspect has a relation with the opinion-
ated word), word distance (the distance between the
word in the closest noun phrase and the opinion-
ated word), and opinion sentences (each token in the

sentence containing an opinionated expression is la-
beled by this feature), the input of this method is also
the opinionated expressions, they use these expres-
sions for predicting the aspect sentiment using the
dependency parsing for retrieving the pair aspect-
expression from the training set. A CRF model is
also used by (Hamdan et al., 2014b) with lexical and
POS features.

Unsupervised methods based on LDA (Latent
Dirichlet allocation) have been proposed. Brody and
Elhadad (Brody and Elhadad, 2010) used LDA to
figure ou the aspects, determined the number of top-
ics by applying a clustering method, then they used
a similar method proposed by Hatzivassiloglou and
McKeown (Hatzivassiloglou and McKeown, 1997)
to extract the conjunctive adjectives, but not the dis-
junctive due to the specificity of the domain, seed
sets were used and assigned scores, these scores
were propagated using propagation method through
the aspect-sentiment graph building from the pairs
of aspect and related adjectives. Lin and He (Lin
et al., 2012) proposed Joint model of Sentiment
and Topic (JST) which extends the state-of-the-art
topic model (LDA) by adding a sentiment layer, this
model is fully unsupervised and it can detect senti-
ment and topic simultaneously. Wei and Gulla (Wei
and Gulla, 2010) modeled the hierarchical relation
between product aspects. They defined Sentiment
Ontology Tree (SOT) to formulate the knowledge of
hierarchical relationships among product attributes
and tackled the problem of sentiment analysis as a
hierarchical classification problem. Unsupervised
hierarchical aspect Sentiment model (HASM) was
proposed by Kim et al (Kim et al., 3 07) to discover
a hierarchical structure of aspect-based sentiments
from unlabeled online reviews.

Aspect term polarity detection can be seen as a
sentence level sentiment analysis. Therefore, many
papers can be mentioned. Supervised methods have
been widely exploited for this purpose, a classi-
fication algorithms with a wise feature extraction
could achieve good results (Mohammad et al., 2013)
(Hamdan et al., 2015a) (Hamdan et al., 4 29).

3 Opinion Target Expression (OTE)

An opinion target expression (OTE) is an expres-
sion used in the given text to refer to an aspect or
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an aspect term related to the reviewed entity. The
objective of OTE slot is to extract all opinion tar-
get expressions in a restaurant review, OTE could
be a word or multiple words. For this purpose, we
have used CRF (Conditional Random Field) which
have proved its performance in information extrac-
tion. We choose the IOB notation for representing
each sentence in the review. Therefore, we distin-
guish the terms at the Beginning, the Inside and the
Outside of OTE. For example, for this review ”But
the staff was so horrible to us.” Where staff is OTE,
the target of each word will be:
But:O the:O staff:B was:O so:O horrible:O to:O
us:O.
We extract for each single word the following fea-
tures for the word itself and the 2 and 3 previous and
subsequent words, respectively.
-word lemma using WordNet.
-word POS using NLTK parser.
-word shape: the shape of each character in the word
(capital letter, small letter, digit, punctuation, other
symbol)
-word type: the type of the word (uppercase, digit,
symbol, combination )
-Named entity: the IOB annotation for the named
entity extracted from the review using Senna (Col-
lobert, 2011).
-chunk: the chunk of the word (NP, VP, PP) ex-
tracted using Senna.
-polarity: the sum of word polarity score calculated
using Bing Liu Lexicon (Hu and Liu, 2004) and
MPQA subjectivity Lexicon (Wilson et al., 2005).
-Prefixes (all prefixes having length between one to
four ).
-Suffixes (all suffixes having length between one to
four).
-Stop word: if the word is a stop word or not.
-if the initial letter is uppercase, if all letters are up-
percase, All letters lowercase, All letters digit, Con-
tains a uppercase letter, Contains a lowercase letter,
Contains a digit, Contains a alphabet letter, Contains
a symbol.
We also extract the value of each two successive fea-
tures in the the range -2,2 (the previous and subse-
quent two words of actual word) for the following
features:
word surface, word POS, word chunk, word shape,
word type.

Finally, we extract the value of each three successive
features in the the range -1,1 for the two features:
word POS and word lemma.

3.1 Experiments

The data set is extracted from restaurant reviews,
provided by SemEval 2015 ABSA organizers
(Pontiki et al., 2015). Table 1 shows the training
and testing data sets statistics of restaurant reviews,
where each review is composed of several sentences
and each sentence may contain several OTE.
CRFsuite tool is used for this experiment with lbfgs
algorithm. This tool is fast in training and tagging
(Okazaki, 2007).

Data Reviews Sentences OTE
Train 254 1315 1654
Test 96 685 845

Table 1. Training and testing data sets for restaurant
OTE slot.

Our submission is ranked fifth with the F1 score
over twenty submissions with gain of 14% over the
baseline provided by the organizers. This baseline
uses the training reviews to create for each category
c a list of targets to which it is linked to. Then, given
a test sentence s and a category c, the baseline finds
the first occurrence in s of each target encountered
in cs list. Table 2 shows our system and the baseline
results.

Experiment Recall Precision F1 Score
Our System 0.55 0.72 0.62
Baseline - - 0.48

Table 2. The results of OTE slot.

4 Sentiment Polarity

For a given set of aspect terms within a sentence, we
determine whether the polarity of each aspect term is
positive, negative, neutral. For example, the system
should extract the polarity of fajitas and salads
in the following sentence: ”I hated their fajitas, but
their salads were great”, fajitas: negative and sal-
ads: positive.

This sub-task can be seen as sentence level or
phrase level sentiment Analysis. At the first step,
we detect the context of the aspect term or OTE,
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the context is the aspect term itself and all the
surrounding terms enclosed between two separators
like (,, ;, !), if another aspect term is also enclosed
by these separators we consider it as a separator
instead, and we do not take the terms after it or
before it (according to its direction to the current
aspect term). If the sentence has only an aspect term
the separators will be the beginning and the end of
the sentence.
For example, for this review ”It took half an hour to
get our check, which was perfect since we could sit,
have drinks and talk!” where we have two aspect
terms drinks and check, the context of check will
be ”It took half an hour to get our check” and the
context of drinks will be ”have drinks and talk!”.
Another example, ”All the money went into the
interior decoration, none of it went to the chefs.”.
The context for interior decoration will be ”All the
money went into the interior decoration” and the
context for chefs will be ”none of it went to the
chefs”.
At the second step, we should determine the polar-
ity, which could be positive, negative, neutral. We
propose to use a logistic regression classifier with
weighting schema of positive and negative labels
with the following features:

- Word n-grams Features
Unigrams and bigrams are extracted for each

word in the context without any stemming or
stop-word removing, all terms with occurrence less
than 3 are removed from the feature space.

- Sentiment Lexicon-based Features
The system extracts four features from the man-

ual constructed lexicons (Bing Liu Lexicon (Hu and
Liu, 2004) and MPQA subjectivity Lexicon (Wilson
et al., 2005)) and six features from the automatic
ones (NRC Hashtag Sentiment Lexicon (Moham-
mad, 6 07), Sentiment140 Lexicon (Mohammad
et al., 2013), and SentiWordNet (Baccianella et al.,
2010)). For each context the number of positive
words, the number of negative ones, the number of
positive words divided by the number of negative
ones and the polarity of the last word are extracted
from manual constructed lexicons. In addition to
the sum of the positive scores and the sum of the
negative scores from the automatic constructed

lexicons.

- Negation Features
The rule-based algorithm presented in Christo-

pher Potts Sentiment Symposium Tutorial is
implemented. This algorithm appends a negation
suffix to all words that appear within a negation
scope which is determined by the negation key and
a certain punctuation. All these words are added to
the feature space.

4- Z score Features
Z score can distinguish the importance of each

term in each class, their performances have been
proved (Hamdan et al., 2014a). We assume as in
the mentioned work that the term frequencies are
following the multi-nomial distribution. Thus, Z
score can be seen as a standardization of the term
frequency using multi-nomial distribution. We com-
pute the Z score for each term ti in a class Cj (tij) by
calculating its term relative frequency tfrij in a par-
ticular class Cj , as well as the mean (meani) which
is the term probability over the whole corpus multi-
plied by nj the number of terms in the class Cj , and
standard deviation (sdi) of term ti according to the
underlying corpus (see Eq.1). We tested different
threshold for choosing the words which have higher
Z score, we found 3 is the best one for restaurant
data and 4 for laptop data.

Zscore(ti) =
tfrij −meani

sdi
(1)

Thus, we added the number of words having Z score
higher than 3,4 in each class positive,negative and
neutral, the two classes which have the maximum
number and minimum numbers of words having Z
score higher than the threshold. These 5 features
have been added to the feature space.

- Brown Cluster Features
Each word in the text is mapped to its cluster in

Brown clusters, 1000 features are added to feature
space where each feature represents the number
of words in the text mapped to each cluster. The
1000 clusters is provided in Twitter Word Clusters
of CMU ARK group which were constructed from
approximately 56 million tweets.
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- Category Feature
We also added the category of each OTE as a fea-

ture to the feature space.

4.1 Experiments

In addition to the restaurant data set presented in
tabel 1, two other data sets statistics are presented
in table 3 (Laptops data which consists of training
and testing data sets while the Hotel test set is out
of domain set that was provided to test our model on
new domain without having training data).

We trained a L1-regularized Logistic regression
classifier implemented in LIBLINEAR, which has
given good results in several papers (Hamdan et al.,
2015b) (Hamdan et al., 2015a). The classifier is
trained on the training data set using the previous
features with the three polarities (positive, nega-
tive, and neutral) as labels. A weighting schema is
adapted for each class, we use the weighting option
-wi which enables a use of different cost parameter
C for different classes. Since the training data is un-
balanced, this weighting schema adjusts the proba-
bility of each label. Thus, we tuned the classifier in
adjusting the cost parameter C of Logistic Regres-
sion, weight wpos of positive class and weight wneg

of negative class.
We used the 1/10 of training data set for tuning

the three parameters in the two data sets (Restaurant,
Laptop), all combinations of C in range 0.1 to to 4
by step 0.1, wpos in range 1 to 8 by step 0.1, wneg in
range 1 to 8 by step 0.1 are tested. The combination
C=0.3, textitwpos=1.2, wneg=1.9 have been chosen
for the restaurant set and C=0.2 wpos=2.1 wneg=1.9
for the laptops set.

Data Reviews Sentences OTE
Train Lap 277 1739 1973
Test Lap 173 761 949
Test hotel 30 266 339

Table 3. Data set statistics for Hotel and Laptops
Reviews.
Table 4 shows the results of our system on the three
data sets. It should note that we use the trained
classifier on restaurant data set for predicting the
polarity in the Hotel test set the out-of-domain set.
Our system outperforms the baseline over the three
data set. The gain is of 11.95%, 7.9%, 14.16% in

restaurant, laptop, hotel reviews respectively. The
baseline of Hotels is the majority baseline while
the other baselines are provide by the organizers
which use a trained SVM on the BOW features and
the category name feature in each data set. Our
system is ranked third over ten submissions in the
restaurant data set, third over thirteen in the laptops
set, and the first over eleven in the hotel set.

Experiment Correct All Accuracy
Restaurant
Our system 638 845 75.5
Baseline 537 845 63.55
Laptops
Our system 739 949 77.87
Baseline 664 949 69.97
Hotels
Our system 291 339 85.84
Baseline 243 339 71.68

Table 4. Results of sentiment polarity in Restaurant,
laptops, hotels reviews.

5 Conclusion and future work

We have built two systems for opinion target extrac-
tion of restaurant data set, and sentiment polarity
analysis for three data sets (restaurant and laptops)
and one out-of-domain set (hotel). We have used
supervised tagger for OTE, trained a CRF model
with several features. A Logistic regression classi-
fier is used for sentiment polarity where we adopted
a weighting schema in each domain and applied
the same classifier and weighting schema trained on
restaurant set on the Hotel test set. In future work,
we will focus on using parsing tree for determining
the context of OTE instead of the syntactic method.
And play with other types of features for the two
subtasks OTE and Sentiment Polarity.

References

Baccianella, S., Esuli, A., and Sebastiani, F. (2010). Sen-
tiWordNet 3.0: An enhanced lexical resource for sen-
timent analysis and opinion mining. In in Proc. of
LREC.

Brody, S. and Elhadad, N. (2010). An unsupervised
aspect-sentiment model for online reviews. In Human
Language Technologies: The 2010 Annual Conference

757



of the North American Chapter of the Association for
Computational Linguistics, HLT ’10, pages 804–812.
Association for Computational Linguistics.

Collobert, R. (2011). Deep learning for efficient dis-
criminative parsing. In Gordon, G. J. and Dunson,
D. B., editors, Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics (AISTATS-11), volume 15, pages 224–232. Journal
of Machine Learning Research - Workshop and Con-
ference Proceedings.

Hamdan, H., Bechet, F., and Bellot, P. (2013-04-29). Ex-
periments with DBpedia, WordNet and SentiWordNet
as resources for sentiment analysis in micro-blogging.
In International Workshop on Semantic Evaluation
SemEval-2013 (NAACL Workshop).

Hamdan, H., Bellot, P., and Bechet, F. (2014a). The im-
pact of z score on twitter sentiment analysis. In In
Proceedings of the Eighth International Workshop on
Semantic Evaluation (SemEval 2014), page 636.

Hamdan, H., Bellot, P., and Bechet, F. (2014b). Super-
vised methods for aspect-based sentiment analysis. In
In Proceedings of the Eighth International Workshop
on Semantic Evaluation (SemEval 2014).

Hamdan, H., Bellot, P., and Bechet, F. (2015a). lsislif:
Feature extraction and label weighting for sentiment
analysis in twitter. In In Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015).

Hamdan, H., Bellot, P., and Bechet, F. (2015b). Senti-
ment lexicon-based features for sentiment analysis in
short text. In In Proceeding of the 16th International
Conference on Intelligent Text Processing and Compu-
tational Linguistics.

Hatzivassiloglou, V. and McKeown, K. R. (1997). Pre-
dicting the semantic orientation of adjectives. In Pro-
ceedings of the Eighth Conference on European Chap-
ter of the Association for Computational Linguistics,
EACL ’97, pages 174–181. Association for Computa-
tional Linguistics.

Hu, M. and Liu, B. (2004). Mining and summariz-
ing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177. ACM.

Jakob, N. and Gurevych, I. (2010). Extracting opinion
targets in a single- and cross-domain setting with con-
ditional random fields. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’10, pages 1035–1045.
Association for Computational Linguistics.

Jin, W. and Ho, H. H. (2009). A novel lexicalized HMM-
based learning framework for web opinion mining-
NOTE FROM ACM: A joint ACM conference com-

mittee has determined that the authors of this article vi-
olated ACM’s publication policy on simultaneous sub-
missions. therefore ACM has shut off access to this pa-
per. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pages
465–472. ACM.

Kim, S., Zhang, J., Chen, Z., Oh, A., and Liu, S. (2013-
07). A hierarchical aspect-sentiment model for on-
line reviews. In Proceedings of The Twenty-Seventh
AAAI Conference on Artificial Intelligence (AAAI-13).
AAAI.

Lin, C., He, Y., Everson, R., and Ruger, S. (2012).
Weakly supervised joint sentiment-topic detection
from text. 24(6):1134–1145.

Liu, B. (2012). Sentiment Analysis and Opinion Min-
ing. Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool Publishers.

Moghaddam, S. and Ester, M. (2010). Opinion dig-
ger: An unsupervised opinion miner from unstruc-
tured product reviews. In Proceedings of the 19th
ACM International Conference on Information and
Knowledge Management, CIKM ’10, pages 1825–
1828. ACM.

Mohammad, S. (2012-06-07). #emotional tweets. In
*SEM 2012: The First Joint Conference on Lexical
and Computational Semantics Volume 1: Proceedings
of the main conference and the shared task, and Vol-
ume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation (SemEval 2012), pages
246–255. Association for Computational Linguistics.

Mohammad, S. M., Kiritchenko, S., and Zhu, X. (2013).
NRCCanada: Building the state-of-the-art in senti-
ment analysis of tweets. In In Proceedings of the Inter-
national Workshop on Semantic Evaluation, SemEval
13.

Okazaki, N. (2007). CRFsuite: a fast implementation of
Conditional Random Fields (CRFs).

Pontiki, M., Galanis, D., Papageogiou, H., Manandhar,
S., and Androutsopoulos, I. (2015). SemEval-2015
task 12: Aspect based sentiment analysis. In In Pro-
ceedings of the 9th International Workshop on Seman-
tic Evaluation (SemEval 2015).

Wei, W. and Gulla, J. A. (2010). Sentiment learning on
product reviews via sentiment ontology tree. In In
Proceedings of the 48th Annual Meeting of the ACL,
pages 404–413. ACL.

Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J.,
Wiebe, J., Choi, Y., Cardie, C., Riloff, E., and Patward-
han, S. (2005). OpinionFinder: A system for subjec-
tivity analysis. In Proceedings of HLT/EMNLP on In-
teractive Demonstrations, HLT-Demo ’05, pages 34–
35. Association for Computational Linguistics.

758



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 759–766,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

SIEL: Aspect Based Sentiment Analysis in Reviews

Satarupa Guha, Aditya Joshi, Vasudeva Varma
Search and Information Extraction Lab

International Institute of Information Technology, Hyderabad
Gachibowli, Hyderabad, Telengana, India

{satarupa.guha,aditya.joshi}@research.iiit.ac.in
vv@iiit.ac.in

Abstract

Following the footsteps of SemEval-2014
Task 4 (Pontiki et al., 2014), SemEval-2015
too had a task dedicated to aspect-level senti-
ment analysis (Pontiki et al., 2015), which saw
participation from over 25 teams. In Aspect-
based Sentiment Analysis, the aim is to iden-
tify the aspects of entities and the sentiment
expressed for each aspect. In this paper, we
present a detailed description of our system,
that stood 4th in Aspect Category subtask (slot
1), 7th in Opinion Target Expression subtask
(slot 2) and 8th in Sentiment Polarity subtask
(slot 3) on the Restaurant datasets.

1 Introduction

When a review or a social media post talks about
a product or service, the user might want to dis-
cuss multiple aspects or sub-topics related to the
product or service being discussed. For example,
in a restaurant review, while the customer might
have good things to say about the food quality of-
fered at a restaurant, she might be disappointed with
the service offered to her, and she might think the
decor needs to be revamped. So a general senti-
ment analyzer that determines the overall sentiment
towards the product or service might not be able to
capture the full essence of the review. Hence the
need for Aspect-based Sentiment Analysis, for bet-
ter and more fine-grained analysis of user feedback,
which would enable service providers and product
manufacturers to identify those business aspects that
needs improvement. Specifically, SemEval-2015
Task 12 expects systems to automatically determine

the aspect categories present in the data and the sen-
timent expressed towards each of those categories,
given a customer review. For the Aspect Category
(Entity and Attribute) Detection subtask, one has to
identify every entity E and attribute A pair E#A to-
wards which an opinion is expressed in the given
text. E and A should be chosen from predefined
inventories of Entity types and Attribute labels per
domain. Each E#A pair together defines an aspect
category of the given text. The E#A inventories for
the restaurants domain has been shown in Table 1.

For the Opinion Target Expression (OTE) identi-
fication subtask (Slot 2), we need to identify an ex-
pression used in the given text that refers to the re-
viewed entity E of a pair E#A. The OTE is defined
by its starting and ending offsets in the given text.
The OTE slot takes the value “NULL” when there is
no explicit mention of the opinion entity or no men-
tion at all.

For Sentiment Polarity Detection task, each iden-
tified E#A pair of the given text has to be assigned a
polarity - positive, negative, or neutral.

2 Related Work

The Aspect Category Detection task can be thought
of as similar to document classification task, which
has a huge trove of excellent literature. Specif-
ically delving into classification of reviews, (Kir-
itchenko et al., 2014) showed state-of-art perfor-
mance, using interesting linguistic and lexicon fea-
tures. (Castellucci et al., 2014) used simple bag
of words based features, generalized using distribu-
tional vectors learnt from external data. (Brychcı́n et
al., 2014) employed MaxEnt classifiers using addi-

759



tional features like word clusters learnt using various
methods like LDA.

(Hu and Liu, 2004b) initiated works on aspect
identification in product reviews using an associa-
tion rule based system. In his book (Liu, 2012)
specifies four methods for aspect extraction, namely,
frequent phrases, opinion and target relations, su-
pervised learning and topic models. (Jakob and
Gurevych, 2010) highlighted the use of Condi-
tional Random Fields to extract the aspect terms and
phrases and demonstrated a significant improvement
in the F-Measure compared to then state-of-the-art
by (Zhuang et al., 2006), which used a supervised
approach to extract feature-opinion pairs. There are
some approaches that utilize NLP semantics to ex-
tract aspect terms. Bhattacharyya (Mukherjee and
Bhattacharyya, 2012) created a system to discover
dependency parsing rules to extract opinion expres-
sions. Many new works use hybrid approaches com-
bining both NLP as well as statistical methods to
create improved systems. In SemEval 2014, (Kir-
itchenko et al., 2014) used an in-house entity tagging
system to find labels for Outside Term (O) and As-
pect Term (T). (Toh and Wang, 2014) used tagging
approach with more linguistic features and extra re-
sources like Wordnet and word clusters.

The task of Sentiment Analysis has been enriched
with some of the seminal works like (Pang and Lee,
2004) and (Wilson et al., 2005), and has reached
new heights with recent publications from (Socher
et al., 2013) which combines grammatical cues with
deep learning. (Carrascosa, 2014) presented inno-
vative techniques of ensemble learning for the task
of Sentiment Analysis, which we too have adopted
in concept. (Bakliwal et al., 2012) presents a sim-
ple sentiment scoring function which uses prior in-
formation to classify and weight various sentiment
bearing words/phrases in tweets. However, none of
these works are crafted to handle Aspect based Sen-
timent Analysis and it is not trivial to adapt them
for this task. Similar to the task at hand are works
done by (Mcauley et al., 2012) and (Lakkaraju et al.,
2011), both of whom mined great benefits from the
topic modelling paradigm. (Mohammad et al., 2013)
achieved the best performance in Aspect Category
Polarity Detection task in SemEval 2014 using vari-
ous innovative linguistic features and publicly avail-
able sentiment lexica and two automatically com-

Entities
RESTAURANT, FOOD, DRINKS,
SERVICE, AMBIENCE, LOCATION
Attributes
GENERAL, PRICES, QUALITY,
STYLE OPTIONS, MISCELLANEOUS

Table 1: Entities and Attributes in Restaurants dataset.

piled polarity lexica. (Brun et al., 2014) used infor-
mation from its syntactic parser, BoW features, and
an out-of-domain sentiment lexicon to train an SVM
model.

We have experimented with the techniques and
features from these previous works and have also
added some of our own.

3 Subtask 1: Aspect Category Detection

The Aspect Category Detection task involves iden-
tifying every entity E and attribute A pair E#A to-
wards which an opinion is expressed in the given
review.

We take a supervised classification approach
where we use C one-vs-all Random Forest Classi-
fiers, for each of the C {entity,attribute} pairs or as-
pect categories in the training data, with basic bag
of words based approach. We have also tried other
features that we explain shortly, but surprisingly the
bag of words approach yielded us the best perfor-
mance. As a part of the pre-processing procedure,
we did the following:

• Removed stop words, except pronouns, be-
cause we observed that the category SER-
VICE#GENERAL can easily be distinguished
from other categories by using pronouns as
cues

• Stemmed all words

• Removed punctuation

• Normalized all numbers by replacing them by
zeros, with the motivation that the exact figures
do not hold any semantic meaning and are not
of importance to us.

Following is the list of features we experimented
with:
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• Unigrams — For each word in a review, we
mark its corresponding position True if it is
present in the vocabulary.

• Presence of number — We check if a review
sample contains numbers or not, with the mo-
tivation reviews talking about the PRICES at-
tribute are more likely to have numbers in them.

• Presence of word in Food and Drinks list 1

— The motivation behind using this feature is,
sentences talking about say, FOOD#PRICES
and DRINKS#PRICES are likely to use sim-
ilar words like “cheap”, “expensive”, “value
for money”, “dollars”, etc., but we need to be
able to distinguish between the two (FOOD and
DRINKS). Hence we use look-up lists for food
and drinks with the hope that the customers
would explicitly use names of food and drinks
items in reviews, wherever applicable.

• WordNet synsets — WordNet is a large lexi-
cal database of English. In Wordnet, synonyms
or words that denote the same concept and are
interchangeable in many contexts, are grouped
into unordered sets called synsets. Word forms
with several distinct meanings are represented
in as many distinct synsets, and hence this fea-
ture is useful for capturing semantic informa-
tion. For each word we find its corresponding
synset and use it as a feature for our classifier
in a bag of words fashion.

• TF-IDF — Instead of using binary values to de-
note absence or presence of a word in the sen-
tence, we put its corresponding TF-IDF score
pre-computed from the train data. Normally
for document classification tasks, TF-IDF per-
forms better than n-grams because the former
rightly penalizes common words that are not
helpful in distinguishing one topic from the
other. Although our Aspect Detection task is
very similar to document classification task,
this feature did not help much, probably be-
cause of the small size of the data set.

• Word2Vec — The Word2Vec is an efficient
implementation of skip-gram and continuous

1Food list compiled from http://eatingatoz.com/food-list/
and Drinks list compiled manually

bag of words architectures that takes a text
corpus as input and produces the word vec-
tors of its constituent words as output. We
trained Word2Vec on a corpus comprising Yelp
Restaurant reviews data, SemEval 2014 data,
SemEval 2015 train data. Let the vector di-
mension to be D. For each word in a review
sentence, we get a vector representation of di-
mension D. We take an average over all words
and end up with a single D-dimensional vector.
We experiment with the value of D, which is
essentially an optimization over time required
to train, and the performance and finally set it
to be 30. However, vectors averaged over all
words in a sentence are not very good repre-
sentations for the sentence, which is possibly
why this feature did not add much value to our
system.

For train and test data were pre-processed and their
features extracted in the same way. As for the Ran-
dom Forest Classifier, we used 50 decision tree esti-
mators using Gini index criterion and at each step we
consider only S features when looking for the best
split, where S is the square root of the total number
of features.

We had also tried hierarchical 2-level classifica-
tion, i.e. first classifying a review sentence into
one of the entities and then classifying them fur-
ther into one of the pre-defined attributes. However,
this 2-level classification technique, with the same
set of features mentioned above, yielded poorer per-
formance. So we decided to not make any distinc-
tion between entities and attributes, and consider an
entity-attribute pair together as an aspect category.

This task required us to categorize reviews into
very fine-grained and inter-related categories, with
hierarchical dependencies among themselves. This
might have been one of the reasons why many of the
popular features used for regular document classifi-
cation did not perform as good as they promised to.
Another challenge was the small number of training
examples, as compared to the large number of cate-
gories to be classified into, which was not the case in
any of the previous works to the best of our knowl-
edge.
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4 Subtask 2: Opinion Target Expression

Given a review sentence, the aim of this task is
to find the Opinion Target Expressions (OTE), that
is, the particular attribute of the entity the user ex-
presses his/her sentiment about. Aspects may either
be explicitly explained in the review as in the sen-
tence “The service was really quick and I loved the
fajitas.” Here “service” and “fajita ”are explicit as-
pects. In a sentence like “Don’t go. Really horrible”,
the user didn’t use any individual term but still gives
an impression of her sentiment. In such cases, the
slot takes the value “NULL”. Our system uses a se-
quence labelling approach to tackle this problem by
the use of Conditional Random Fields. The tagger
from Mallet toolkit, is trained to identify three pos-
sible tags, namely BEG and INT for beginning and
intermediate target words and OTH for other words.

Our features are as follows:-

• Word — The lowercase form of the word itself

• POS — Part of speech tag of the word

• Dependency — We use two kinds of depen-
dency features — the dependency label on in-
coming edge on the word, and the first depen-
dency label on outgoing edge. This proved to
be a very important feature.

• Capitalization — If the first character of the
word is in capital, mark it as capital.

• Punctuation — If the word contains any non-
alphanumeric character, we mark it as punctu-
ation.

• Seed — The word is marked as a seed if it was
present in the seed-list created by collecting all
the OTEs in the training data, splitting them by
word and removing all the stop words.

• Brown Cluster — Brown Cluster ID is obtained
by first training Brown Clustering on the same
corpus we described for Word2Vec features in
Subtask 1. Brown clustering is a form of hier-
archical clustering of words based on the con-
text in which they occur. The intuition be-
hind the method is that a class-based language
model where probabilities of words are based

on the clusters of previous words, can over-
come the data sparsity problem inherent in lan-
guage modeling. From brown clustering, for
each word in the corpus we get the cluster ID
to which it has been assigned. We generate 100
clusters.

• Presence in Expanded List — We curated an
expanded seed list from the original seed list
explained above. We utilized WiBi, which is a
taxonomy of Wikipedia pages and categories.
We traversed the WiBi Page graph and col-
lected the pages located next to the words (if
present) in the seed list. The new list was again
split by spaces and punctuation, and stop words
were removed. This feature is marked if the
term is present in the expanded list.

• Stop Word — This feature is marked if the cur-
rent term is a stop word in English language.

• Seed Stem — This feature contains the
stemmed form of the original word as obtained
from Porter Stemmer.

5 Subtask 3: Sentiment Polarity
Classification

In this subtask, the input consists of a review sen-
tence and the set of aspect categories it belongs to.
The expected output is a polarity label for each of
the associated aspect categories. We have first ex-
tracted Bag of Words and Wordnet Synset features
from both train and test data. Then we run a vari-
ety of classifiers (like Stochastic Gradient Descent,
SVM, Adaboost) multiple times and store the con-
fidence scores obtained from decision functions of
each of these classifiers. Finally we build a linear
SVM classifier that uses the scores obtained from
the classifiers in the 1st level as features, along with
15 other hand-crafted lexicon features as explained
in Section 5.2. This is also known as stacking, a
form of ensemble learning. It is essentially stacking
of classifiers inside a classifier. Stacking typically
yields performance better than any single one of the
trained models, and this is what we wanted to lever-
age. However, since we need polarity labels per as-
pect category, we need to identify the segments in
the sentence that deals with each of the categories
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and then treat those segments as individual sam-
ples for polarity detection. For example, if there are
three aspect categories associated with a sentence,
we want to break it down into 3 {sentence,category}
pairs:

sent1, {cat1,cat2, cat3} →
{sent1, cat2}, {sent2,cat2}, {sent3, cat3}

For each {sentence, category} pair, we find a
word in the sentence that is the best representative
of the category, which we call as centroid. Then we
take a window of n words surrounding the centroid
and consider that window to be the segment of in-
terest for that category. So in this example sentence,
we need to have three centroids and hence three seg-
ments, not necessarily disjoint:
{sent1, cat1}, {sent1,cat2}, {sent1, cat3} →
{seg1, cat1}, {seg2,cat2}, {seg3, cat3}

We experimented with the window size, and de-
cided upon using a window size of 3 words to the
left and to the right of the centroid. It is interesting to
note that among sentences that have more than one
category, the average length of a review sentence is
15 words in train data and 17 words in test data.

After we get these segments, we extract the fol-
lowing features from these segments for polarity de-
tection:

• Bag of Words

• Grapheme Stretching i.e. words with re-
peated characters. For example, words like
“Tooooo goooood” indicates strong subjectiv-
ity and therefore is less likely to belong to Neu-
tral class.

• Presence of exclamation also signals subjectiv-
ity, usually positivity.

• Presence of wh-words and conditional words
like why, what,if, etc. Observation tells us that
such presence are mostly characteristic of sen-
tences with negative polarity.

• Wordnet Synsets, as explained before

While bag of words features include statistical in-
formation, WordNet synsets help incorporate se-
mantic information. These two complementary fea-
tures help us in making the maximal discrimination
among the target classes.

5.1 Extracting Centroid for a {Sentence,
Category} Pair

We automatically generate a set of seed words for
each of the aspect categories by the following tech-
nique: From the train data, we consider all sentences
labelled with a single category as a single document.
As a result, for 13 possible categories in the train
data, we have 13 documents. Now for each doc-
ument (corresponding to each category), we com-
pute the TF-IDF scores of all the words and consider
words having TF-IDF greater than a certain thresh-
old as seed words for that category. We ascertain the
optimal value of the threshold to be 0.2 through ex-
perimentation. We generate a co-occurrence matrix
of words from three datasets SemEval 2015 train
data, SemEval 2014 train and test data. Typically,
it is considered that two words co-occur if they are
present as bigram in the corpus. However, we define
co-occurrence as occurring in the same review sen-
tence, rather than occurring as a bigram as it is less
likely to find repetition of co-occurring bigrams in
a smaller corpus. This co-occurrence matrix stores
the frequency of co-occurrence of two words in the
corpus. For N words in the vocabulary, we have a
N × N co-occurrence matrix. Given a {sentence,
category} pair, for each word in the review sentence,
we find the Point wise Mutual Information (P.M.I.)
between that word and each word in the seed list of
the assigned category and take their average for that
word. We do the same for all words in the sentence.
The word in the sentence having the maximum av-
erage P.M.I. score is defined as the centroid for the
{sentence, category} pair. P.M.I is defined as the
ratio of the probability of occurrence of two words
together in the corpus to the product of the probabil-
ities of occurrence of the two words independently
in the corpus. We derive the co-occurrence frequen-
cies from the co-occurrence matrix we built in the
previous step.

5.2 Ensemble Learning – Stacking Classifiers

After feature extraction, we train 3 kinds of classi-
fiers — Linear Support Vector Machines, Stochastic
Gradient Descent and Adaboost, for each of the fea-
tures — Bag of words and Wordnet Synsets. We
repeat the process K times where K ∈ Z. We
have experimentally chosen K to be 30 — it is ac-
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tually a trade off between the time taken to train
the model and the performance improvements. As
we increased K over 30, the improvement in perfor-
mance started to diminish. For each test sample, we
obtain 3 scores (corresponding to three classes —
positive, negative, neutral) from the decision func-
tion of each classifier. We use these confidence
scores as features along with 15 other hand-crafted
lexicon features for a linear Support Vector Ma-
chine classifier. We employ features such as num-
ber of positive tokens, number of negative tokens,
total positive sentiment score, total negative senti-
ment score, sum of sentiment scores, maximum sen-
timent score, etc. from Sentiwordnet (Baccianella et
al., 2010), Bing Liu’s opinion lexicon (Hu and Liu,
2004a), MPQA subjectivity lexicon (Wilson et al.,
2005), NRC Emotion Association lexicon (Moham-
mad and Turney, 2013), Sentiment140 lexicon (Go
et al., 2009), and NRC Hashtag Lexicon (Moham-
mad and Kiritchenko, 2014).

For the final linear SVM classifier, we experimen-
tally ascertain the optimal value of the parameter
C to be 0.024. The linear SVM classifiers, in the
first level of stacking, had a default value of 1.0 for
parameter C. We did not have enough time to tune
them, as we had many classifiers inside the main
SVM classifier. The Ada Boost Classifier uses 100
decision tree estimators and a default learning rate
of 1. We have used Scikit Learn for building all the
classifiers. Although we employ several classiers,
the time taken is negligible. This is because the dif-
ferent classifiers in the first stage of stacking can be
trained in parallel quite easily.

6 Results

We submitted unconstrained systems for the Restau-
rants dataset. We did not run our system for other
domains mainly due to lack of time during the com-
petition. Table 2 shows our final F1-scores obtained
on SemEval official test data, for each of the three
slots. Tables 3, 4 and 5 presents the results of ab-
lation experiments carried out for slots 1, 2 and 3
respectively. We show the effect of varying the size
of the context window surrounding the centroid, on
F1-score in Figure 1. Finally Table 6 compares our
ensemble system with a baseline system trained on
a single linear SVM with only lexicon features.

Subtask Our Score Best Score Rank
Slot 1 0.57 0.62 4
Slot 2 0.53 0.70 7
Slot 3 0.71 0.78 8

Table 2: Official Results for SemEval 2015.

Feature Precision Recall F1
Unigrams 0.64 0.51 0.57
Unigrams+Bigrams 0.51 0.45 0.48
Unigrams+WordNet syn 0.53 0.48 0.50
Unigrams+Word2Vec 0.52 0.46 0.49
TF-IDF 0.47 0.42 0.44

Table 3: Experiment with Features for Slot 1.

Feature Precision Recall F1
All 0.51 0.55 0.52
All - (Seed+Expanded Seed) 0.52 0.55 0.53 2

POS+Dep.+Punct.+Brown 0.35 0.54 0.43
POS+Dep.+Punct.+Stopwords 0.64 0.53 0.58 3

POS+Dep. 0.62 0.51 0.57

Table 4: Ablation Experiment for Slot 2.

Feature Accuracy
All (BoW + WordNet syn) 0.71
All - BoW 0.68
All - WordNet syn 0.70

Table 5: Ablation Experiment for Slot 3.

System Accuracy
Linear SVM with only lexicon 0.68
Our system 0.71

Table 6: Slot 3: Comparison of our ensemble learning
technique with a baseline system trained on a single Lin-
earSVM with only lexicon features.

Figure 1: Variation of F1 score with context window size.

2Submitted system
3This result was obtained during ablation experiment post-

competition
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7 Conclusion

This paper describes the system submitted by team
SIEL for SemEval 2015 Task 12. For all the three
subtasks, our system performs quite well, ranking
between 4th and 8th. We experimented with Ensem-
ble Learning technique for slot 3, which we want to
explore and improve further. In future, we would
like to work on adapting our system to other do-
mains as well.
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Abstract

This paper describes our participation in
SemEval-2015 Task 12, and the opinion min-
ing system sentiue. The general idea is
that systems must determine the polarity of the
sentiment expressed about a certain aspect of
a target entity. For slot 1, entity and attribute
category detection, our system applies a super-
vised machine learning classifier, for each la-
bel, followed by a selection based on the prob-
ability of the entity/attribute pair, on that do-
main. The target expression detection, for slot
2, is achieved by using a catalog of known
targets for each entity type, complemented
with named entity recognition. In the opin-
ion sentiment slot, we used a 3 class polarity
classifier, having BoW, lemmas, bigrams after
verbs, presence of polarized terms, and punc-
tuation based features. Working in uncon-
strained mode, our results for slot 1 were as-
sessed with precision between 57% and 63%,
and recall varying between 42% and 47%.
In sentiment polarity, sentiue’s result ac-
curacy was approximately 79%, reaching the
best score in 2 of the 3 domains.

1 Introduction

Social networks and other online platforms are an
important communication mechanism in current
lifestyle. These platforms aggregate user-generated
content, such as opinions that people write and
publish freely on the Web, and are now valued
for market research and trend analysis. Natural
language processing (NLP) helps to automatically
extract information from these written opinions.

This paper describes a participation in SemEval-
2015 Task 121, Aspect Based Sentiment Analysis
(Pontiki et al., 2015), with the sentiue system,
from Universidade de Évora. In previous editions
of SemEval, we participated in Sentiment Analysis
(SA) tasks, but in terms of overall polarity, over
Twitter messages (Rosenthal et al., 2014), not being
aspect oriented. The general idea for this challenge,
is that, for a text, the system must determine the
polarity of the sentiment expressed about a certain
aspect of a particular target entity. Our sentiue
system is an evolution from our previous work
(Saias and Fernandes, 2013; Saias, 2014), for target
oriented SA.
Task 12 was run in two phases. In phase A systems
are tested for aspect detection with one slot to aspect
category, and a second slot for the opinion target
expression on the text. Test data includes review
texts for two domains: restaurants and laptops. In
phase B, aspect category is provided, and systems
must assign a polarity (positive, negative, or neutral)
for each opinion. In this phase, systems received
also texts from a third domain, hotels, for which no
sentiment training data was given.
We used a supervised machine learning classifier
combined with a probability based selection pro-
cess, for entity and attribute category detection, on
slot 1. Target expression detection was performed
with an entity catalog, filled with known targets
for each entity type, and named entity recognition
(NER). For the sentiment polarity slot, we used a a
supervised machine learning classifier, having bag-
of-words (BoW), lemmas, bigrams after verbs, and

1http://alt.qcri.org/semeval2015/task12/
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punctuation based features, along with sentiment
lexicon based features. The detailed procedure is
explained in section 3.

2 Related Work

Many SA related publications, originating both in
industry and in academia, have appeared, and it is
notorious the growing interest by companies. Pop-
ular scientific forums and events include activities
and workshops on this area, such as RepLab (Amigó
et al., 2014) at CLEF2, for online reputation, or
ABSA and Twitter SA tasks in SemEval.
In last year’s edition of this SemEval task (Pontiki et
al., 2014), there were 26 systems participating in the
polarity subtask. The two systems with better polar-
ity classification accuracy were from NRC-Canada
and DCU teams. NRC-Canada system (Kiritchenko
et al., 2014) was trained with the data provided in
the task, and complemented with lexicons generated
from other corpora of customer reviews, to help
feature extraction in machine learning. Stanford
CoreNLP was used to tokenize, POS tagging, and
dependency parse trees. They address polarity
classification with a linear SVM classifier, with
features for: the target, and its surrounding words;
POS based features; dependency tree based features;
unigrams and bigrams; lexicon based features. The
DCU system (Wagner et al., 2014) also uses SVM
for aspect and for polarity classification, combining
bag-of-n-gram features with rule-based features.
N-grams (with size from 1 to 5) in a window around
the aspect term, are used as features, as well as
features derived from a sentiment lexicon. The
rule-based approach to predict the polarity of an
aspect term, generated features considering all
words score and their distance to the aspect term.

3 Method

Our participation involved the adaptation of our pre-
vious real-time system, for text overall sentiment
classification, into a target oriented SA system. The
next subsections explain how the system works, for
each part of Task 12 challenge.

2http://clef2014.clef-initiative.eu/

3.1 Aspect Entity and Attribute

The first annotation task focuses on aspect category.
This category is an entity and attribute pair, each
chosen from an inventory with possible values, in
each domain, for entity types and attributes. Since
the possible category types are known and limited,
we decided to use a classifier for each entity type
(e.g. food, laptop) and for each attribute label (e.g.
price, quality). Our approach comprises two stages.
The first processes each review sentence assigning
to it zero, one, or more entity types and attribute la-
bels. The second stage chooses and combines iden-
tified entities and attributes, forming the aspect an-
notation. Analyzing the training data, we found that
in the same sentence, there may be opinions on var-
ious types of entity (e.g. CPU, battery) or attributes.
Thus, we have chosen to train a classifier for each
entity type, and a classifier for each attribute la-
bel. We set a supervised machine learning text clas-
sifier, using MALLET (McCallum, 2002), a Java-
based tool for NLP, with machine learning applica-
tions to text. For the purpose of this stage, it was
necessary to prepare the training data for each bi-
nary classifier, that would determine whether a sen-
tence contains an opinion on its tag (entity type or at-
tribute label). The train process was the same for all
tags, entity type or attribute label, of each domain.
We created a dataset where each instance is a sen-
tence text, and its class is tag, if the sentence had at
least one opinion with that tag, or no tag otherwise.
Text preprocessing includes tokenization, POS tag-
ging and lemmatization, all performed with Stanford
CoreNLP (Toutanova et al., 2003; Manning et al.,
2014) tool. The classifier algorithm was Maximum
Entropy3, and the classifier model features were text
words and lemmas.
Second stage starts with each sentence annotated
with a set and tags, some for entity type and some
for attribute label. When a sentence has no annota-
tions, the system assumes that there is no opinion. In
case of 1 tag on entity type and 1 tag in the attribute
label, then it is the trivial case where the junction
of the two results in the aspect annotation. For sen-
tences with 1 tag on entity type and 0 tags for the
attribute, our system searches for the most frequent
aspect annotation, within the sentence domain, that

3MALLET class: cc.mallet.classify.MaxEnt
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includes that entity type. The equivalent is applied
in the case of 0 tags to entity and 1 tag for the at-
tribute label. If both sides have one or more tags,
the system applies a cycle, where each loop iteration
forms the more frequent pair (entity,attribute) in that
domain, and removes these two tags from the sen-
tence tag set. This is repeated until the first, entity
or attribute side, exhausts the tags provided by the
previous stage classifier. And if some tags are left,
on the opposite side of the pair, the system applies,
for each, the same process already explained for case
0-1 or 1-0.

3.2 Opinion Target Expression

At this point, sentences are already marked as hav-
ing (or not) opinions on certain aspect category.
For each opinion on restaurants domain, the sys-
tem needed to identify the entity mention on the
sentence text, referred to as the opinion target ex-
pression (OTE). We collected the opinion targets for
each entity type, from the training data, forming a
catalog. If any of the targets already known (e.g.
restaurant name, or meal) appears in the sentence
text, next to a verb or adjective, it is chosen as the
OTE. If this does not lead to any OTE candidate, our
system applies named entity recognition, looking for
references to organization and location entities, us-
ing Stanford NER tool (Finkel et al., 2005; Manning
et al., 2014). Having found one OTE, through the
catalog or by NER, its text and position are marked
in slot 2. If no mention is found, OTE slot is filled
with the NULL value.

3.3 Sentiment Polarity

Phase B was held in a subsequent period, and the
input given to the systems is a little different, hav-
ing the correct annotations on the aspect category,
in restaurants, laptops and hotels domains. For each
opinion, the participating systems must assign a sen-
timent polarity (positive, negative or neutral), con-
sidering the opinion aspect.
For training, there were 1654 opinions on restau-
rants domain, and 1974 more opinions about lap-
tops, all annotated for polarity. No sentiment train-
ing data was given for hotels domain. Considering
the available data, and the objective of this phase, we
used a supervised machine learning classifier to pre-
dict each opinion polarity. Instead of multiple classi-

fiers, such as implemented for slot 1, we prepared a
single classifier, thought, as before, for text but tuned
with a different model, so that it can choose between
positive, negative or neutral polarity.
Sentences without opinion are not considered in the
training, because here the polarity is associated with
opinions. Further, a single sentence may have sev-
eral opinions about different aspects, and each may
have a different and independent polarity. To train
the classifier, for each opinion we created a polarity
data instance, containing the sentence text, its do-
main, its aspect entity and attribute, OTE (if avail-
able, in restaurants), and the opinion polarity to be
learned. As before, MALLET was used with a Max-
imum Entropy classifier. The sentence text prepro-
cessing was the same we did for aspect category
classification. The features to represent each in-
stance were:

• BoW with a feature for each token text;

• lemmas for verbs and adjectives;

• bigram after verb (lemmatized);

• presence of negation terms;

• bigram after negation term;

• presence of exclamation/question mark;

• presence of polarized terms (positive or nega-
tive), according to each sentiment lexicon;

• whether there are polarized terms before excla-
mation mark and question mark;

• bigram before, and after, any polarized term;

• polarity inversion, by negation detection before
some polarized term;

• presence of polarized terms in the last 5 tokens;

• a feature for the domain, and two features for
the entity type and the attribute label.

To see whether a term is polarized, each token text
is verified in each sentiment lexicon. These polarity
support resources are AFINN lexicon (Nielsen,
2011), Bing Liu’s opinion lexicon (Liu et al., 2005)
and MPQA subjectivity clues (Wiebe et al., 2005).
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Domain Precision Recall F-measure
restaurants 0,633 0,472 0,541
laptops 0,577 0,441 0,500

Table 1: sentiue’s evaluation on aspect category.

Domain Precision Recall F-measure
restaurants 0,488 0,336 0,398

Table 2: sentiue’s evaluation on target detection.

After some experimentation, we decided to use a
single full train, joining the instances of restaurants
and laptops as a whole training set. The resulting
model was used to classify the opinion polarity for
the three domains.
Because we used sentiment lexicons, our system
operates in unconstrained mode. These additional
resources served as support for features extraction.
No supplementary training texts were used. In our
development testing, we obtained an 80% accuracy
for polarity. After this, the result is written in XML
format for submission.

4 Results

The phase A test data had 685 sentences on restau-
rants domain and 761 on laptops domain. With the
method described above, the sentiue system ex-
tracted 596 opinion categories for restaurants do-
main and 751 other for laptops domain.
Table 1 shows the evaluation for slot 1. Among the
15 submissions evaluated in the first domain, the
best system F-score value was 0,627, while our re-
sult F-score was 0,541. For laptops aspect category,
sentiue’s scores were lower, but improving in the
comparison with other systems, achieving the sec-
ond best F-measure, out of 9 evaluated submissions.
The evaluation of our result in opinion target expres-
sion in given in Table 2. This was a poor result,
when compared with the 0,524 average F-measure
of the 21 submissions for this slot.
In phase B systems had to fill the slot 3, with senti-

ment polarity to 845 opinions on restaurants domain,
949 opinions on laptops domain, and 339 opinions
on hotels domain.
On Table 3 we find our system’s result accuracy, in
the two trained domains plus the untrained hotels do-

Domain Accuracy
restaurants 0,787
laptops 0,793
hotels 0,788

Table 3: sentiue accuracy on sentiment polarity.

Domain,Polarity Precision Recall F-measure
restaurants, positive 0,767 0,914 0,834
restaurants, negative 0,825 0,708 0,762
restaurants, neutral 0,714 0,111 0,192
laptops, positive 0,831 0,891 0,860
laptops, negative 0,766 0,787 0,777
laptops, neutral 0,387 0,152 0,218
hotels, positive 0,887 0,840 0,863
hotels, negative 0,608 0,738 0,667
hotels, neutral 0,143 0,083 0,105

Table 4: sentiue’s SA evaluation per domain.

main. In this slot we got the most satisfactory re-
sult, with the best accuracy in restaurants and lap-
tops, and an above average score, in the hotels do-
main. The detailed evaluation is shown in Table 4,
with values for precision, recall and f-measure, per
domain and polarity class.

5 Conclusions

By participating in this SemEval edition, we sought
to develop our previous work, in order to achieve
SA results focused on the opinion targets.
Our results were poor for OTE detection, but we
think it will be easy to correct the implementation
problems for that part. As example, while checking
if a sentence contained a known target, from the
catalog, the system did not require whole words to
be matched, and this led to some misidentification
of word substrings as target.
Our result was more satisfactory for slot 1, with a
F-measure slightly above average between the 15
evaluated submissions for restaurants domain, and
4.5% better than submissions average for laptops
domain. The distribution of opinions for each aspect
category is not uniform. For example, for attribute
label classification, we already know that QUALITY

and GENERAL have much more instances than other
labels. This analysis inspired our approach in the
second stage, explained in section 3.1. To improve
this part, we think to introduce a cascade classifier.

770



After the classification obtained in the current first
stage, other machine learning classifier will decide
how to pair entity+attribute, based on the wording
of the sentence. Another future work idea is to use
more corpora for training the aspect classifiers, as
other systems (Kiritchenko et al., 2014) have tried.
In phase B sentiue achieved good results. This,
perhaps, is justified by our previous experience in
overall SA. Many of the polarity classifier features
are inherited from our former system. SemEval
challenge is always a motivation to test our system
and an opportunity to learn from other participants.
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Abstract

This paper describes the system we submitted
to In-domain ABSA subtask of SemEval 2015
shared task on aspect-based sentiment analy-
sis that includes aspect category detection and
sentiment polarity classification. For the as-
pect category detection, we combined an SVM
classifier with implicit aspect indicators. For
the sentiment polarity classification, we com-
bined an SVM classifier with a lexicon-based
polarity classifier. Our system outperforms the
baselines on both the laptop and restaurant do-
mains and ranks above average on the laptop
domain.

1 Introduction

Sentiment analysis aims at identifying people’s
opinions, sentiments, attitudes, and emotions to-
wards entities and their attributes (Liu, 2012), which
has a wide range of applications on user-generated
content, e.g., reviews, blogs, and tweets.

Most previous work in sentiment analysis mainly
attempted to identify the overall polarity of a giv-
en text or text span (Pang and Lee, 2008; Wilson et
al., 2009; Zhang et al., 2009). The document-level
or sentence-level sentiment classification is often in-
sufficient for applications. Each document may talk
about different entities, or express different opinions
about different aspects of the entity even if the doc-
ument concerns a single entity. Therefore, we need
to discover the aspects of entities and determine the
sentiment polarity on each entity aspect. This task
is called aspect-based sentiment analysis or feature-
based opinion mining (Hu and Liu, 2004).

The aspect-based sentiment analysis (ABSA) task
(Task 12) (Pontiki et al., 2015) in SemEval 2015 is
a continuation of SemEval 2014 Task 4 (Pontiki et
al., 2014). The ABSA task consists of two subtasks:
In-domain ABSA and Out-domain ABSA. We par-
ticipated in the former subtask that aims to identify
the aspect category (i.e., an entity and attribute pair)
and the sentiment polarity given a review text about
a laptop or a restaurant.

Each entity and attribute pair is an aspect catego-
ry chosen from the predefined inventories of entity
types and attribute labels per domain. For the aspect
category detection, an SVM classifier with the bag-
of-words features can be used, and this approach is
used as our baseline method. However, if a token
implying an aspect, e.g., “overpriced”, is not tak-
en as a feature, the SVM classifier cannot correct-
ly identify its corresponding category. Therefore,
we enhance the results from the SVM classifier by
using implicit aspect indicators (Cruz-Garcia et al.,
2014). For the sentiment polarity classification, an
SVM classifier with the bag-of-words features plus
the category feature is trained and this is used as our
baseline. However, again, if a sentiment word does
not appear in the training data, the SVM classifier
cannot predict its polarity. Therefore, we combined
the SVM classifier and a lexicon-based polarity clas-
sifier (Taboada et al., 2011).

The remainder of this paper is organized as fol-
lows. In Section 2, we describe our approach to
the aspect category detection. In Section 3, our ap-
proach to the sentiment polarity classification is pre-
sented. Experimental results are shown in Section 4.
Section 5 provides the conclusion.
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2 Aspect Category Detection

The aspect category detection task is to identify the
specific entities and their attributes about the laptop
or restaurant reviews. We use an SVM classifier en-
hanced by implicit aspect indicators. The process of
the whole system is illustrated in Figure 1. We will
describe the details in the following subsections.

Figure 1: System flowchart for aspect category detection.

2.1 SVM Classifier
The SVM classifier uses words as features to deter-
mine the aspect categories. We use the LIBSVM
package (Chang and Lin, 2011) to implement an
SVM classifier. The “-t” option is set to 0 for linear
kernel, and the “-b” option is set to 1 for probability
estimates. The top n frequent tokens in the training
data are used as the bag-of-words features. We set
n = 1000 as the number of bag-of-words features.

An aspect category (C) is an entity (E) and at-
tribute (A) pair, i.e., C = E#A. For instance,

I received prompt service with a s-
mile.→{Service#General}

It would cost too much to repair
it.→{Support#Price}

For a test sentence s, the LIBSVM package can
predict the probability of assigning each category
E#A to s. The category should be assigned to s
only if its probability is higher than a predefined
threshold t. We set t to 0.2 for the restaurant re-
views and to 0.12 for the laptop reviews. It’s easy
to see that our SVM classifier is configured in accor-
dance with the SVM baseline system provided by
the task organizers (Pontiki et al., 2015).

Aspectsvm(s) = {E#A|Prob(E#A) > t} (1)

2.2 Implicit Aspect Indicator
If the tokens implying aspects are beyond bag-of-
words features, the SVM classifier is unable to pre-
dict it. For example,

It was totally overpriced- fish and chips was about
$15.

Both “overpriced” and “$15” in the above sen-
tence are associated with the “price” aspect. These
tokens are considered as the implicit aspect indica-
tors.

The different methods can be used to identify the
implicit aspect indicators (Cruz-Garcia et al., 2014).
In our case, we do it manually by setting a set of in-
dicators for several aspects (see Table 1). The list
of words associated with the “price” aspect includes
“cost”, “overpriced”, “expensive”, etc. The list
for the “quality” aspect includes “feels”, “durable”,
“taste”, etc.

Implicit
Aspect

Word List Size

Price
expensive, overpriced,
cheap, discount, cost, · · · · · · 16

Quality
feels, durable, overcooked,
taste, breaks, · · · · · · 50

Performance
improves, stable, crashed,
performs, powerful, · · · · · · 40

Design
lightweight, heavy, elegant,
fit, looks, · · · · · · 27

Usability
access, store, typing,
flexible, upgrade, · · · · · · 62

Table 1: Implicit aspect indicator.

In addition, an expression of the amount of money
is strongly related to the “price” aspect. To identify
these expressions, we use the following regular ex-
pression: “\s$\d+(\.\d+)?\s”.

If the word W indicates the implicit aspect A′, the
aspects determined by implicit aspect indicators are
denoted as follows:

Aspectiai(s) = {A′|W ∈ s} (2)

2.3 Combination Classifier
We find the SVM classifier often obtains the cate-
gory like “E|General” which means that a general
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opinion is expressed and it is not specific to a partic-
ular aspect. On the other hand, for the same case, the
implicit aspect indicators may suggest other specif-
ic aspect categories (e.g., “price”). This case occurs
when the words corresponding to the implicit aspec-
t indicators are not included in the features used by
SVM. It is in this case that it is the most useful to
combine the two classifiers.

Our combination is done as follows: if the “Gen-
eral” category is suggested by the SVM classifi-
er, then we replace it by the categories identified
through the implicit aspect indicators. Otherwise,
the categories given by the SVM classifier remain
unchanged. The method is described in the follow-
ing algorithm.

Algorithm 1 A combination classifier for aspect cat-
egory detection.
Input: Aspectsvm(s) and Aspectiai(s) for a test

sentence s
Output: Aspect(s)

1: if Aspectiai(s) = ∅ then
2: return Aspectsvm(s)
3: end if
4: Aspect(s) = ∅
5: for all E#A ∈ Aspectsvm(s) do
6: if A is ‘General’ then
7: for all A′ ∈ Aspectiai(s) do
8: Aspect(s) = Aspect(s) ∪ {E#A′}
9: end for

10: else
11: Aspect(s) = Aspect(s) ∪ {E#A}
12: end if
13: end for
14: return Aspect(s)

3 Sentiment Polarity Classification

The sentiment polarity classification task is to assign
a polarity from a set {positive, negative, neutral} to
each identified aspect category of a sentence. We use
a similar method as for the previous task. The pro-
cesses of the system are illustrated in Figure 2 that
includes three parts: an SVM classifier, a lexicon-
based polarity classifier, and their combination clas-
sifier.

Figure 2: System flowchart for sentiment polarity classi-
fication.

3.1 SVM Classifier
We also use the LIBSVM package (Chang and Lin,
2011) to implement an SVM classifier with linear k-
ernel. Again, n (n = 1000) bag-of-words features
are extracted from the training data. In addition,
a feature that indicates the aspect category is used.
Our SVM configurations are also the same with that
of the SVM baseline system (Pontiki et al., 2015).

The SVM classifier can predict a polarity (posi-
tive, negative, or neutral) for each aspect category
C within a test sentence s. We represent three polar-
ity labels with three respective numbers.

Polaritysvm(s, C) ∈ {1,−1, 0} (3)

3.2 Lexicon-Based Polarity Classifier
If the sentiment words are beyond the bag-of-words
features, the SVM classifier assigns the neutral po-
larity, and what’s worse, it assigns the reverse polar-
ity if the sentence contains negation words (Zhu et
al., 2014), like “not” and “no”. In fact, the lexicon-
based methods can also be effective in sentiment
classification (Taboada et al., 2011). We therefore
adopt a simple lexicon-based method in our system.

The sentiment lexicons, such as Bing Liu’s Opin-
ion Lexicon (Hu and Liu, 2004) and MPQA Sub-
jectivity Lexicon (Wilson et al., 2009), are used to
generate our sentiment word list. We denote all pos-
itive words and negative words by POS and NEG
respectively.

We use the Stanford Parser package (Klein and
Manning, 2003) for POS tagging and parsing. The
typed dependency “neg(X,Y )” shows that one sen-
tence contains a negation Y modifying X , and
“root(ROOT,X)” shows that X is a core word.
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Assume that one sentiment word X is in a test
sentence s and X ∈ POS ∪ NEG, if X ∈ POS,
then Polarity(X) = 1, otherwise Polarity(X) =
−1. The polarity for the aspect category is deter-
mined by,

Polaritylex(s, C) =


−Polarity(X) ∃neg(X, Y )
−Polarity(X) ∃neg(Z, Y )

∧root(ROOT, Z)
Polarity(X) otherwise

(4)

where Y ∈ s is a negation word, and Z ∈ s but
Z /∈ POS ∪NEG.

The following examples are corresponding to
three circumstances in the above equation:

Overpriced and not tasty {neg(tasty, not)}
Our experience did not ever get any

better {neg(get, not), root(ROOT, get)}
Overpriced and not

tasty {root(ROOT, overpriced)}

3.3 Combination Classifier

If none of the sentiment words in the lexicon appear
in a sentence, the lexicon-based polarity classifier is
helpless, but the SVM classifier could still determine
a reasonable polarity (Pang et al., 2002).

We propose a classifier combining the SVM clas-
sifier and the lexicon-based polarity classifier. It
works as follows: If there is disagreement between
the polarity of SVM classifier and the lexicon, we
will rely on the polarity based on the lexicon if the
latter is not neutral (0). Otherwise, we take the po-
larity of the SVM classifier.

Algorithm 2 A combination classifier for sentiment
polarity classification.
Input: Polaritysvm(s, C) and Polaritylex(s, C)

for an aspect category C of a test sentence s
Output: Polarity(s, C)

1: if Polaritysvm(s, C) = Polaritylex(s, C) then
2: Polarity(s, C) = Polaritysvm(s, C)
3: else if Polaritylex(s, C) = 0 then
4: Polarity(s, C) = Polaritysvm(s, C)
5: else
6: Polarity(s, C) = Polaritylex(s, C)
7: end if
8: return Polarity(s, C)

4 Experiments

4.1 Data Sets
The training and test data is described in Table 2.

Domain Training Test

Sentence 1739 761
Positive 1103 541

Laptop Category Negative 765 329
Neutral 106 79
Total 1974 949

Sentence 1315 685
Positive 1198 454

Restaurant Category Negative 403 346
Neutral 53 45
Total 1654 845

Table 2: Data sets.

The laptop training data, consisting of 1739 sen-
tences, includes 1974 aspect category instances. The
laptop test data, consisting of 761 sentences, in-
cludes 949 aspect category instances. The restaurant
training data, consisting of 1315 sentences, includes
1654 aspect category instances. The restaurant test
data, consisting of 685 sentences, includes 845 as-
pect category instances.

There are 22 entity labels and 9 attribute labels on
the laptop domain, and there are 6 entity labels and
5 attribute labels on the restaurant domain.

4.2 Experimental Results
Aspect category detection Table 3 lists the results
of our system for the aspect category detection.

Laptop Restaurant

SVM Baseline 0.4631 0.5133
Top 0.5086 0.6268
Average 0.4548 0.5383
Our System 0.4649 0.5245

Table 3: F-score comparison for aspect category detec-
tion.

Our system clearly outperforms the SVM baseline
on both two domains. This indicates that the im-
plicit aspect indicators can further improve the per-
formance. Our system ranks above average on the
laptop domain. But our system is far from the top
system. This is possibly due to the simple features
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used by the SVM classifier. Globally, our method
is comparable to the average performance of all the
participating systems.

Sentiment polarity classification Table 4 lists the
results of our system for the sentiment polarity clas-
sification. The majority baseline is obtained by ma-
jority voting in all the participating results.

Laptop Restaurant

SVM Baseline 0.6997 0.6355
Majority Baseline 0.5701 0.5373
Top 0.7935 0.7870
Average 0.7131 0.7132
Our System 0.7323 0.6888

Table 4: F-score comparison for sentiment polarity clas-
sification.

The performance of our system is obviously bet-
ter than two baselines on both two domains, but fails
to reach the average on the restaurant domain. The
conclusion of this experiment is that the lexicon-
based method is helpful to sentiment classification
when it is combined with a baseline method. As for
the task of aspect category detection, a possible rea-
son lies in the simple bag-of-words features we used.
With more sophisticated features, one can likely im-
prove the performance of the baseline methods, and
as a result, the combination method.

Comparing the results on the two domains, we ob-
serve that our system produced lower performance
than average for the restaurant reviews, but high-
er performance for the laptop reviews. A possi-
ble reason can be the lexicon we defined for the t-
wo domains. The Opinion Lexicon is originally de-
signed for the customer reviews about 5 digit prod-
ucts, which is more related to the laptop domain.

5 Conclusions

In this task, we proposed a combination classifier
for the aspect category detection which combines
an SVM classifier with implicit aspect indicators,
and a combination classifier for the sentiment polar-
ity classification which combines an SVM classifier
with a lexicon-based polarity classifier. Our system
ranks above average on the laptop domain and out-
performs the baselines, but is still lower than the av-

erage for the restaurant domain. Our experiments
show that implicit aspect indicators and polarity lex-
icon are both useful in these tasks. For the future
work, more and better features will be examined to
help to improve the classification performance.

Acknowledgments

We are really grateful to the organizers and review-
ers for this interesting task and their helpful sug-
gestions and comments. This research is supported
by the Quebec-China Postdoctoral Scholarship (File
No. 188040).

References
Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-

SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2(3):27:1–27:27.

Ivan Omar Cruz-Garcia, Alexander Gelbukh, and Grigori
Sidorov. 2014. Implicit aspect indicator extraction for
aspect-based opinion mining.

Minqing Hu and Bing Liu. 2004. Mining and summariz-
ing customer reviews. In Proceedings of KDD, pages
168–177, New York, NY, USA.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of ACL, pages
423–430, Sapporo, Japan.

Bing Liu. 2012. Sentiment analysis and opinion mining.
Synthesis Lectures on Human Language Technologies,
5(1):1–167.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1-2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification using ma-
chine learning techniques. In Proceedings of EMNLP,
pages 79–86, Philadelphia, PA, USA.

Maria Pontiki, Haris Papageorgiou, Dimitrios Galanis,
Ion Androutsopoulos, John Pavlopoulos, and Suresh
Manandhar. 2014. SemEval-2014 Task 4: Aspect
based sentiment analysis. In Proceedings of SemEval,
pages 27–35, Dublin, Ireland.

Maria Pontiki, Dimitrios Galanis, Haris Papageogiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
SemEval-2015 Task 12: Aspect based sentiment anal-
ysis. In Proceedings of SemEval, Denver, CO, USA.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly
Voll, and Manfred Stede. 2011. Lexicon-based meth-
ods for sentiment analysis. Computational Linguistic-
s, 37(2):267–307.

776



Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2009. Recognizing contextual polarity: An explo-
ration of features for phrase-level sentiment analysis.
Computational Linguistics, 35(3):399–433.

Changli Zhang, Daniel Zeng, Jiexun Li, Fei-Yue Wang,
and Wanli Zuo. 2009. Sentiment analysis of Chinese
documents: From sentence to document level. Journal
of the American Society for Information Science and
Technology, 60(12):2474–2487.

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and Svet-
lana Kiritchenko. 2014. An empirical study on the
effect of negation words on sentiment. In Proceedings
of ACL, pages 304–313, Baltimore, MD, USA.

777



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 778–786,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

SemEval-2015 Task 4: TimeLine: Cross-Document Event Ordering

Anne-Lyse Minard1, Manuela Speranza1, Eneko Agirre2, Itziar Aldabe2,
Marieke van Erp3, Bernardo Magnini1, German Rigau2, Rubén Urizar2

1 Fondazione Bruno Kessler, Trento, Italy
2 The University of the Basque Country (UPV/EHU), Spain

3 VU University Amsterdam, the Netherlands
{minard,manspera,magnini}@fbk.eu, marieke.van.erp@vu.nl
{itziar.aldabe,e.agirre,german.rigau,ruben.urizar}@ehu.eus

Abstract

This paper describes the outcomes of the
TimeLine task (Cross-Document Event Order-
ing), that was organised within the Time and
Space track of SemEval-2015. Given a set of
documents and a set of target entities, the task
consisted of building a timeline for each en-
tity, by detecting, anchoring in time and or-
dering the events involving that entity. The
TimeLine task goes a step further than previ-
ous evaluation challenges by requiring partic-
ipant systems to perform both event corefer-
ence and temporal relation extraction across
documents. Four teams submitted the output
of their systems to the four proposed subtracks
for a total of 13 runs, the best of which ob-
tained an F1-score of 7.85 in the main track
(timeline creation from raw text).

1 Introduction

In any domain, it is important that professionals have
access to high quality knowledge for taking well-
informed decisions. As daily tasks of information
professionals revolve around reconstructing a chain
of previous events, an insightful way of presenting
information to them is by means of timelines. The
aim of the Cross-Document Event Ordering task is
to build timelines from English news articles. To
provide focus to the timeline creation, the task is pre-
sented as an ordering task in which events involving
a particular target entity are to be ordered chrono-
logically. The task focuses on cross-document event
coreference resolution and cross-document temporal
relation extraction.

The latter has been the topic of the three previous
TempEval tasks within the SemEval challenges:

• TempEval-1 (2007): Temporal Relation Identifi-
cation (Verhagen et al., 2009)
• TempEval-2 (2010): Evaluating Events, Time Ex-

pressions, and Temporal Relations (Verhagen et
al., 2010)
• TempEval-3 (2013): Temporal Annotation (Uz-

Zaman et al., 2013)

Additionally, it has also been the focus of the 6th
i2b2 NLP Challenge for clinical records (Sun et al.,
2013). The cross-document aspect, however, has not
often been explored. One example is the work de-
scribed in (Ji et al., 2009) using the ACE 2005 train-
ing corpora. Here the authors link pre-defined events
involving the same centroid entities (i.e. entities fre-
quently participating in events) on a timeline. Nom-
inal coreference resolution has been the topic of Se-
mEval 2010 Task on Coreference Resolution in Mul-
tiple Languages (Recasens et al., 2010). TimeLine
is a pilot task that goes beyond the above-mentioned
evaluation exercises by addressing coreference reso-
lution for events and temporal relation extraction at
a cross document level.

This task was motivated by work done in the
NewsReader project1. The goal of the NewsReader
project is to reconstruct story lines across news ar-
ticles in order to provide policy and decision mak-
ers with an overview of what happened, to whom,
when, and where. Thus, the NewsReader project
aims to present end-users with cross-document sto-
rylines. Timelines are intermediate event represen-

1http://www.newsreader-project.eu
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Id: 1664
DCT: 2005-06-06

Id: 18315
DCT: 2011-08-24

Id: 18355
DCT: 2011-10-06

(sentence id: 2) Apple Computer CEO and co-founder Steve Jobs gave his 
annual opening keynote on Monday.

(sentence id: 2) Steve Jobs, founder of Apple, has chosen to step down from 
his post as CEO of the company.

(sentence id: 7) Steve Jobs has been fighting pancreatic cancer since 2004 
and has been on medical leave since January of this year.

(sentence id: 4) He has been fighting pancreatic cancer since 2004.

(sentence id: 18) The current Microsoft CEO described Jobs as “one of the 
founders of our industry and a true visionary”.

Steve Jobs

1        2004 18315-7-fighting   18355-4-fighting

2        2005-06-05 1664-2-keynote

3        2011-01 18315-7-leave

4        2011-08-24 18315-2-step_down

5        2011-10-06 18355-18-described

Target entity: 
Steve Jobs

Figure 1: Example of a timeline for the target entity “Steve Jobs” built from five sentences coming from
three documents.

tations towards this goal.
The remainder of this paper is organised as fol-

lows. In Section 2, we introduce the task. In Sec-
tion 3, we describe the data annotation protocol.
In Section 4, we present the characteristics of our
dataset and gold standard timelines. In Section 5,
we describe our evaluation methodology, followed
by the description of participant systems in Section 6
and the results obtained by the participants to the
task in Section 7. Lessons learnt and limitations of
our setup are discussed in Section 8.

2 Task Description

Given a set of documents and a set of target enti-
ties, the task consists of building a timeline related
to each entity, i.e. detecting, anchoring in time, and
ordering the events in which the target entity is in-
volved (Minard et al., 2014b). We base our no-
tion of event on TimeML, according to which an
event is a cover term for situations that happen or
occur, including predicates describing states or cir-
cumstances in which something obtains or holds true

(Pustejovsky et al., 2003).
As input data, we provide a set of documents and

a set of target entities; only entities involved in more
than two events across at least two different docu-
ments are considered as candidates target entities.
We also propose two different tracks on the basis
of the data used as input: Track A, for which we
provided only the raw text sources (main track), and
Track B, for which we also made gold event men-
tions available.

The expected output, both for Track A and B, is
one timeline for each target entity. A timeline for a
specific target entity consists of the ordered list of
the events in which that entity participates. Events
in a timeline are anchored in time through the time
anchor attribute; however, for both Track A and B,
we also propose a subtrack in which the events do
not need to be associated to a time anchor.

In Figure 1 we show an example of a timeline for
the target entity Steve Jobs built using five sentences
extracted from three documents. In bold we repre-
sent the events that form the timeline.
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In order to perform the task, participants are
required to resolve entity coreference, as time-
lines should contain events involving all corefer-
ring textual mentions of the target entities (including
pronominal mentions). For example, in Figure 1, the
event fighting involving the target entity Steve Jobs
mentioned as he is included in the timeline together
with other events also referring to Steve Jobs.

The dataset released for this task is composed of
120 Wikinews2 articles and 44 target entities. 30
documents and 6 target entities (each associated to a
timeline) are provided as trial data, while the evalu-
ation dataset consist of 90 documents and 38 target
entities (each associated to a timeline).

3 Data Annotation

We manually selected a set of target entities that ap-
peared in at least two different documents and were
involved in more than two events.

The target entities are restricted to type PERSON
(single persons or sets of people), ORGANISATION
(corporations, agencies, and other groups of people
defined by an established organisational structure),
PRODUCT (anything that might satisfy a want or
need, including facilities, food, products, services,
etc.), and FINANCIAL (the entities belonging to the
financial domain that are not included in one of the
other entity types).

Some examples of target entities are Steve Jobs
(PERSON), Apple Inc. (ORGANISATION), Airbus
A380 (PRODUCT), and Nasdaq (FINANCIAL).

The annotation procedure for the creation of gold
standard timelines for the target entities required one
person month. It consisted of four steps, as de-
scribed below.

Entity annotation. All occurrences of the target
entities in the four corpora were marked following
(Tonelli et al., 2014). Cross-document co-reference
was annotated according to the NewsReader cross-
document annotation guidelines (Speranza and Mi-
nard, 2014). For this task, we used CROMER3 (Gi-
rardi et al., 2014), a tool designed specifically for
cross-document annotation.

2http://en.wikinews.org.
3https://hlt.fbk.eu/technologies/cromer

Event and time anchor annotation. Using
CROMER, the corpora were annotated with events
following the NewsReader cross-document annota-
tion guidelines (Speranza and Minard, 2014). The
annotation of events as defined in (Tonelli et al.,
2014) was restricted by limiting the annotation to
events that could be placed on a timeline. Thus, we
did not annotate adjectival events, cognitive events,
counter-factual events (which certainly did not hap-
pen), uncertain events (which might or might not
have happened) and grammatical events4. For ex-
ample, the events gave, chosen and been (on medi-
cal leave) in Figure 1 are excluded from the timeline
as they are grammatical events.

Furthermore, timelines only contain events in
which target entities explicitly participate in a
has participant relation as defined in (Tonelli et al.,
2014), with the semantic role ARG0 (i.e. agent)
or ARG1 (i.e. patient), as defined in the PropBank
Guidelines (Bonial et al., 2010). In the example in
Figure 1 we have an explicit has participant relation
between the entity Steve Jobs and the event fighting
with semantic role ARG0, and one with semantic
role ARG1 between Steve Jobs and described.

Based on TimeML (Pustejovsky et al., 2003),
a time anchor corresponds to a TIMEX3 of type
DATE; the time anchor attribute of an event takes
as value the point in time when the event occurred
(in the case of punctual events) or began (in the case
of durative events). Its format follows the ISO-8601
standard: YYYY-MM-DD (i.e. Year, Month, and
Day).

The finest granularity for time anchor values
is DAY; other granularities admitted are MONTH
and YEAR (references to months are specified as
YYYY-MM and references to years are expressed
as YYYY). The place-holder character, X, is used
for unfilled positions in the value of a component.
Thus, an event happened some day (not specified
in the text) in July 2010 (for example, resigned in
The company’s CEO met his employees one morn-
ing last July) has time anchor 2010-07-XX (granu-

4Grammatical events are verbs or nouns that are semanti-
cally dependent on a governing content verb/noun. Typical ex-
amples of grammatical events are copula verbs, light verbs fol-
lowed by a nominal event, aspectual verbs and nouns, verbs and
nouns expressing causal and motivational relations, and verbs
and nouns expressing occurrence.
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larity DAY), while an event happened in the same
month but with a granularity lower than day (for
example in Apple received criticism last month for
the placement of the antenna on iPhone 4), has
time anchor 2010-07. Similarly, XXXX-XX-XX is
used when the time anchor is completely unknown
and the granularity is DAY, while XXXX-XX and
XXXX are used when the time anchor is unknown
and the granularity is MONTH and YEAR respec-
tively (Minard et al., 2014a).

Automatic creation of timelines. We represent
timelines in a simple tab format. On each line, we
first have a cardinal number indicating the position
of an event in the timeline, then the value of the an-
chor time attribute for the same event, and finally the
event itself, which is represented as follows: docu-
ment identifier, sentence number and textual extent
of the event. For example, the event 18315-7-leave
in Figure 1 (occurring in sentence 7 of document
18315) occupies position 4 in the timeline and is an-
chored to 2011-01.

In the case of event coreference, in the third col-
umn, there is a list of coreferring events separated
by tabs instead of a single event (see the coreferring
events 18315-7-fighting and 18355-4-fighting at po-
sition 1 in the example in Figure 1).

If two events have the same value for the anchor
time attribute, they are placed in the same position
(i.e. the same number in the first column), but on
different lines.

The automatic created timelines are produced by a
script that orders events in a timeline on the basis of
the time anchors (all events with the same time an-
chor are simultaneous and all events with unknown
time anchor are at position 0).

Manual revision of the timelines. The manual re-
vision consists of ordering events with the same time
anchor or with unknown time anchor taking into
consideration textual information that goes beyond
the defining of time anchor (Minard et al., 2014a).

For example both founded and closed in The firm
was founded in 2010 and closed before the end of the
year have anchor time 2010; nonetheless, based on
textual information, it is possible to order them (the
firm first was founded and then closed). When it is
not possible to order events based either on the time
anchor or on textual information, annotators leave

them at the same position on the timeline. The same
holds for events with anchor time XXXX-XX-XX; if
annotators have no textual information that can help
ordering them, they leave them at position 0; other-
wise they place them on the timeline.

Inter-annotator agreement Three annotators
have annotated a corpus starting from one target
entity, i.e. they have annotated entity coreferences
refering to the target entity and the events in which
this entity participates. The corpus used is the trial
corpus about Apple Inc. and the target entity iPhone
4. We compute the inter-annotator agreement
using the Dice’s coefficient (Dice, 1945). For
the annotation of entity and event mentions, the
agreement is respectively 0.81 and 0.66, and for
entity coreferences of 0.84.

4 Task Dataset

The dataset used for this task is composed of arti-
cles from Wikinews, a collection of multilingual on-
line news articles written collaboratively in a wiki-
like manner. The reason for choosing Wikinews as a
source is its creative commons license allowing us to
freely release this dataset to the research community.
For this task, we selected Wikinews articles around
four topics:

• Apple Inc. (trial corpus);
• Airbus and Boeing (corpus 1);
• General Motors, Chrysler and Ford (corpus 2);
• Stock Market (corpus 3).

The trial data consists of one corpus of 30 docu-
ments and gold standard timelines for six target en-
tities. The other three corpora, each consisting of 30
documents (about 30,000 tokens each) were used as
the evaluation dataset.

As reported in Table 1, the total number of target
entities in the evaluation dataset amounts to 38, but
for the evaluation we used 37 timelines instead as
one of the timelines contained no events.

The trial data contains one target entity of type
ORGANISATION, one of type PERSON and 4 of
type PRODUCT. The distribution of target entity
types in the evaluation dataset is the following: 18
of type ORGANISATION, 10 of type FINANCIAL,
7 of type PERSON and 3 of type PRODUCT.
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Trial corpus Evaluation dataset
Apple Inc. Airbus GM Stock Total

# documents 30 30 30 30 90
# sentences 464 446 430 459 1,335
# tokens 10,373 9,909 10,058 9,916 29,893
# events 187 343 308 264 915
# event chains 168 244 234 210 688
# target entities 6 13 12 13 38
# timelines 6 13 11 13 37
# events / timeline 31.2 26.4 25.7 20.3 24.1
# event chains / timeline 28 18.8 19.5 16.2 18.1
# docs / timeline 5.8 6.2 5.7 9.1 6.9

Table 1: Quantitative data about the dataset.

The three evaluation corpora are very similar in
terms of size. It is interesting to notice, however, that
the timelines created from the Stock Market corpus
have peculiar features as they contain a lower aver-
age number of events with respect to those created
from the other corpora. On the other hand, on av-
erage, Stock Market timelines contain events from a
higher number of different documents, i.e. 9.1, ver-
sus 6.2 for Airbus and 5.7 for GM.

5 Evaluation Methodology

The evaluation methodology of this task is based on
the evaluation metric used for TempEval-3 (UzZa-
man et al., 2013) to evaluate relations in terms of
recall, precision and F1-score. The metric captures
the temporal awareness of an annotation (UzZaman
and Allen, 2011).

Temporal awareness is defined as the
performance of an annotation as identi-
fying and categorizing temporal relations,
which implies the correct recognition and
classification of the temporal entities in-
volved in the relations.

We calculate the Precision by check-
ing the number of reduced system rela-
tions that can be verified from the refer-
ence annotation temporal closure graph,
out of number of temporal relations in the
reduced system relations. Similarly, we
calculate the Recall by checking the num-
ber of reduced reference annotation rela-

keynote leave step_downfighting described

2004 2005-06-05 2011-01 2011-08-24 2011-10-06

BEFORE

SIMULTANEOUS

Explicit relations

Implicit relations

Figure 2: Explicit and implicit relations resulting
from the timeline of Figure 1.

tions that can be verified from the sys-
tem output’s temporal closure graph, out
of number of temporal relations in the re-
duced reference annotation. (UzZaman et
al., 2013)

Before evaluating temporal awareness, each time-
line needs to be transformed into a set of temporal
relations. Figure 2 shows the explicit relations re-
sulting from the timeline of Figure 1 as well as the
implicit relations captured by the temporal graph. In
order to convert each timeline, we defined the fol-
lowing transformation steps:

1. Each time anchor is represented as a TIMEX3.
2. Each event is related to one TIMEX3 with the

SIMULTANEOUS relation type.
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3. If one event happens before another one, a BE-
FORE relation type is created between both
events.

4. If one event happens at the same time as another
one, a SIMULTANEOUS relation type is created
between both events.

Note that the evaluation of subtracks (ordering
only), requires steps 3 and 4 alone.

For this first pilot on timelines, we decided to
simplify the representation of durative events in the
timelines by anchoring them in time considering
their starting point. For this reason we represent re-
lations between each event and its time anchor with
the SIMULTANEOUS relation type (instead of other
possibilities like BEGUN BY or INCLUDES).

Events placed at the beginning of the timeline at
position 0, i.e. events that were not ordered, are
not considered in the evaluation. The official scores
are based on the micro-average of the individual F1-
scores for each timeline, i.e. the scores are averaged
over the events of the timelines of each corpus. The
micro-average precision and recall values are also
provided.

6 Participant Systems

29 teams signed up for the evaluation task, 8 teams
downloaded the evaluation dataset and only 4 teams
submitted results. A total of 13 unique runs were
submitted: 3 for Track A (for which the participants
worked on the raw texts), 2 for SubTrack A, 4 for
Track B (for which the event mentions were pro-
vided) and 4 for SubTrack B.

The WHUNLP team processed the texts with Stan-
ford CoreNLP. They applied a rule-based approach
to extract target entities and their predicates, and per-
form temporal reasoning.

The SPINOZAVU5 system is based on the pipeline
developed in the NewsReader project and on the
TIPSem tool. The tools are used for pre-processing,
dependency parsing, semantic role labelling, event
detection, temporal expression normalisation, coref-
erence resolution and temporal relations extraction.

The GPLSIUA team also used a pipeline ap-
proach, employing the OpeNER language analysis

5The members of the SPINOZAVU team involved in the
NewsReader project were not involved in any annotation work
or discussions around the organisation of the TimeLine task.

toolchain, the Semantic Role Labeller from SENNA
and the TIPSem tool for temporal processing. In
addition, in order to detect event coreferences, they
used the topic modelling algorithm of MALLET.

The HEIDELTOUL team used the HeidelTime tool
for time expression recognition and normalisation
and Stanford CoreNLP for coreference resolution.
Afterwards, they used a cosine similarity matching
function and a distance measure to select sentences
relevant for a target entity and their events.

Three teams, SPINOZAVU, GPLSIUA and HEI-
DELTOUL, participated in the subtracks. They all
submitted the same timelines both for the Tracks and
the SubTracks, simply removing time anchors.

7 Evaluation Results

The official results are presented in Table 2. For
each corpus we present the micro F1-score and in
the last three columns the micro precision, micro re-
call and micro F1-score overall the three corpora.
In the main track, Track A, WHUNLP 1 was the
best run and achieved an F1 of 7.28%. In Track B,
GPLSIUA 1 obtained the best scores with an F1 of
25.36%.

The subtracks were proposed in order to evaluate
systems that do not perform time normalisation or
event anchoring in time but focus on temporal re-
lations between events. In the end, the events or-
dering of the runs submitted to the subtracks was
the same as those submitted to the main tracks. In
SubTrack A the best results are obtained with the
run 1 of SPINOZAVU team, achieving an F1-score
of 1.69%. In SubTrack B, the best system is the
same as in Track B, GPLSIUA 1, with an F1-score
of 23.15%.

We evaluate the selection of the relevant events
involving a target entity using the classic evaluation
metrics: recall, precision and F1-score. All events
are taken into account independently of their order-
ing in timelines; events placed at position 0 are also
evaluated. The number of true positives and F1-
scores obtained on each corpus as well as the micro-
average F1-scores are presented in Table 3. In Ta-
ble 3 we also provide the evaluation of time anchors
assignment in terms of accurracy. For each timeline,
the accurracy is computed by dividing the number
of matching events/time anchors by the number of
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Airbus GM Stock Total
Track Team run F1 F1 F1 P R F1

Track A WHUNLP 1 8.31 6.01 6.86 14.10 4.90 7.28
WHUNLP 1 6 9.42 5.97 7.26 14.59 5.37 7.85
SPINOZAVU-RUN-1 4.07 5.31 0.42 7.95 1.96 3.15
SPINOZAVU-RUN-2 2.67 0.62 0.00 8.16 0.56 1.05

SubTrackA SPINOZAVU-RUN-1 1.20 1.70 2.08 6.70 0.97 1.69
SPINOZAVU-RUN-2 0.00 0.92 0.00 13.04 0.14 0.27

TrackB GPLSIUA 1 22.35 19.28 33.59 21.73 30.46 25.36
GPLSIUA 2 20.47 16.17 29.90 20.08 26.00 22.66
HEIDELTOUL 2 16.50 10.94 25.89 13.58 28.23 18.34
HEIDELTOUL 1 19.62 7.25 20.37 20.11 14.76 17.03

SubTrackB GPLSIUA 1 18.35 20.48 32.08 18.90 29.85 23.15
GPLSIUA 2 15.93 14.44 27.48 16.19 23.52 19.18
HEIDELTOUL 2 13.24 15.88 21.99 12.18 26.41 16.67
HEIDELTOUL 1 12.23 14.78 16.11 19.58 11.42 14.42

Table 2: Official results of the TimeLine task of the four participating teams7 presented per subcorpus
and over the whole dataset. (Track A: timelines with time anchors from raw text; SubTrack A: timelines
without time anchors from raw text; Track B: timelines with time anchors from texts annotated with events;
SubTrack B: timelines without time anchors from texts annotated with events.)

Airbus GM Stock Total
Events TA Events TA Events TA Events TA

Team runs TP F1 Acc TP F1 Acc TP F1 Acc TP F1 Acc
WHUNLP 120 34.53 42.50 120 34.33 34.17 91 42.52 17.58 331 36.33 32.63
SPINOZAVU 1 46 17.59 23.91 61 22.93 36.07 57 30.24 0.00 164 22.91 20.12
SPINOZAVU 2 30 13.16 26.67 50 21.69 30.00 45 26.55 0.00 125 19.90 18.40
GPLSIUA 1 240 59.33 36.67 234 67.73 24.34 190 72.80 43.16 664 65.68 34.17
GPLSIUA 2 197 53.53 32.49 188 57.58 22.87 152 59.14 41.45 537 56.44 31.66
HEIDELTOUL 1 172 50.44 38.95 119 49.90 10.92 98 46.34 47.96 389 49.18 32.65
HEIDELTOUL 2 250 45.83 37.60 182 54.98 16.48 178 55.02 48.31 610 50.83 34.43

Table 3: Evaluation of the selection of events in which a target entity is involved and of time anchors
assignment; TP: number of correctly identified events; F1: micro-average F1-score for the selection of
events; Acc: accurracy in assignment of time anchors.

correctly identified events (TP in the table).
The results obtained in SubTracks, when evaluat-

ing only events ordering, are mainly lower than in
Tracks, except on the “GM” corpus. For example
the HEIDELTOUL 1 system achieved an F1-score of
17.03% overall the 3 corpora in Track B and 14.42%

6We found an error in the format of some event ids and re-
processed the evaluation on a corrected version of the timelines.

7HEIDELTOUL 1 and HEIDELTOUL 2 are shorthand
for HEIDELTOUL NONTOLMATCHPRUNE and HEIDEL-
TOUL TOLMATCHPRUNE respectively.

in SubTrack B. But on “GM” corpus, the HEIDEL-
TOUL 1 system obtained an F1-score twice as high
as in Track B, obtaining an F1-score of 14.78% (vs.
7.25% in Track B). In evaluating the time anchors
assignment (see Table 3), we observed that HEI-
DELTOUL and GPLSIUA systems performed better
on the “Airbus” and “Stock” corpora than on “GM”.
This explains in part the better performance of their
systems on the “GM” corpus when evaluating only
events ordering (SubTrack B) than when evaluating
both time anchors assignment and events ordering
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(Track B). Furthermore, the task of time expression
extraction and normalisation has been the topic of
different shared tasks and the obtained results are
high with an F1-score of 90.30 for time expres-
sion detection and of 77.61 for normalisation (re-
sults obtained by HeidelTime (Strötgen et al., 2013)
at TempEval-3). However, the performance of tem-
poral relation extraction systems is quite low with an
F1-score of 36.26 obtained by ClearTK-2 (Bethard,
2013), the best system at TempEval-3 on Task C.

Observing the results by corpus in Table 2, we
notice that, except for Track A, the best results are
obtained on the “Stock Market” corpus. One of the
reasons is that in the timelines related to this corpus
all events were ordered (only one event was placed
at position 0), while in “Airbus” and “GM” corpora
less than 70% of the events were ordered.

In the “GM” corpus, one timeline was empty
(“General Motors creditors”), i.e. the corpus does
not contain any event that have this target entity
as Arg0 or Arg1, therefore this timeline was re-
moved from the evaluation. We observed that
SPINOZAVU systems in Track A and GPLSIUA sys-
tems in Track B correctly returned an empty time-
line, while WHUNLP created a timeline with 3
events in Track A and HEIDELTOUL 1 and HEIDEL-
TOUL 2 produced a timeline containing respectively
32 and 78 events for this target entity in Track B.

Track B was proposed as a simplified task given
that annotated texts with events were distributed to
participants. Unfortunately no results from the same
system run on both Tracks A and B were submitted,
therefore, at the moment, we cannot evaluate the im-
pact of pre-annotation of events.

8 Conclusion

The TimeLine task is the first task focusing on cross-
document ordering of events. For this task, we have
defined guidelines for cross-document annotation
and for timeline creation, as well as annotated trial
and evaluation datasets. The results submitted by
four teams show much room for improvement. Ob-
viously, timeline creation is a very challenging task
which deserves more attention in future research.

Additionally, during the organisation of this task,
many issues arose that provide interesting avenues
of future research into timeline creation. Our three

main issues concern durative versus punctual events,
events without explicit time anchors and the relation
between target entities and events. Below, we detail
each of these questions.

Anchoring events in time. The ordering of an
event in a timeline is based on the time when the
event occurred. However, many events are durative
events that have a starting point and/or an ending
point. For the task, we decided to order durative
events according to their starting points. We are in-
vestigating whether a new timeline format can be de-
fined to represent the durative aspect of these events.

Events without explicit textual time anchor. We
made the choice to include them in the timelines but
not to evaluate them (events at position 0). The dif-
ficulty is to identify cases in which an event cannot
be ordered in order to give instruction to annotators
and systems. When ordering an event, should we
take into consideration the information contained in-
side one document or inside one corpus, or could
(should) we consider also background knowledge?

The relation between target entities and events.
We chose to select events in which one target en-
tity is explicitly involved in a participant relation.
Amongst others, this rule excludes events involving
a group of which a target entity is member. For
example the event received in The two companies
have received $13.4 billion (in which the two com-
panies refers to General Motors and Chrysler) does
not appear either in the “General Motors” timeline
or in the “Chrysler” timeline. Considering also im-
plicit has participant relations would take the time-
line task into the domain of complex entity relation-
ships, but could possibly be interesting if considered
in combination with taxonomy induction tasks.

With this TimeLine task, we aimed to take a
step forward in the current state-of-the-art in cross-
document coreference and temporal relation extrac-
tion. As organisers, we needed to come up with new
ways of annotating and representing data. For the
participating teams, the task meant that they needed
to combine cutting-edge NLP technologies. This pi-
lot task has shown us that the goal of automatic time-
line extraction from raw text is challenging, but it
has given us many more insights into what is possi-
ble, and what issues still need to be addressed.
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M. Antònia Martı́, Mariona Taulé, Véronique
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Abstract

This paper describes the system
SPINOZA VU developed for the SemEval
2015 Task 4: Cross Document TimeLines.
The system integrates output from the News-
Reader Natural Language Processing pipeline
and is designed following an entity based
model. The poor performance of the submit-
ted runs are mainly a consequence of error
propagation. Nevertheless, the error analysis
has shown that the interpretation module
behind the system performs correctly. An
out of competition version of the system has
fixed some errors and obtained competitive
results. Therefore, we consider the system an
important step towards a more complex task
such as storyline extraction.

1 Introduction

This paper reports on a system (SPINOZA VU) for
timeline extraction developed at the CLTL Lab of
the VU Amsterdam in the context of the SemEval
2015 Task 4: Cross Document TimeLines. In this
task, a timeline is defined as a set of chronologically
anchored and ordered events extracted from a corpus
spanning over a (large) period of time with respect
to a target entity.

Cross-document timeline extraction benefits from
previous works and evaluation campaigns in Tem-
poral Processing, such as the TempEval evaluation
campaigns (Verhagen et al., 2007; Verhagen et al.,
2010; UzZaman et al., 2013) and aims at promoting
research in temporal processing by tackling the fol-
lowing issues: cross-document and cross-temporal

event detection and ordering; event coreference (in-
document and cross-document); and entity-based
temporal processing.

The SPINOZA VU system is based on the News-
Reader (NWR) NLP pipeline (Agerri et al., 2013;
Beloki et al., 2014), which has been developed
within the context of the NWR project1 and pro-
vides multi-layer annotations over raw texts from
tokenization up to temporal relations. The goal of
the NWR project is to build structured event in-
dexes from large volumes of news data addressing
the same research issues as the task. Within this
framework, we are developing a storyline module
which aims at providing more structured represen-
tation of events and their relations. Timeline extrac-
tion from raw text qualifies as the first component
of this new module. This is why we participated in
Track A and Subtrack A of the task, timeline extrac-
tion from raw text. Participating in Track B would
require a full re-engineering of the NWR pipeline
and of our system.

The remainder of the paper is structured as fol-
lows: Section 2 provides an overview of the model
implemented in the two versions of our system. Sec-
tion 3 presents the results and error analysis, and
Section 4 puts forward some conclusions.

2 From Model to System

Timeline extraction involves a number of indepen-
dent though highly connected subtasks, the most
relevant ones being: entity resolution, event detec-
tion, event-participant linking, coreference resolu-

1http://www.newsreader-project.eu
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tion, factuality profiling, and temporal relation pro-
cessing (ordering and anchoring).

We designed a system that addresses these sub-
tasks, first at document level, and then, at cross-
document level. We diverted from the general NWR
approach and adopted an entity based model and
representation rather than an event based one in or-
der to fit the task. This means that we used entities
as hub of information for timelines. Using an entity
driven representation allows us to better model the
following aspects:

• Event co-participation: the data collected
with this method facilitates the analysis of the
interactions between the participants involved
in an event individually;

• Event relations: in an entity based representa-
tion, event mentions with more than one entity
as their participants will be repeated in the final
representation (both at in-document at cross-
document levels); such a representation can be
further used to explore and discover additional
event relations2;

• Event coreference: we assume that two event
mentions (either in the same document or in
different documents) are coreferential if they
share the same participant set (i.e., entities) and
occur at the same time and place (Chen et al.,
2011; Cybulska and Vossen, 2013);

• Temporal relations: temporal relation pro-
cessing can benefit from an entity driven ap-
proach as sequences of events sharing the same
entities (i.e., co-participant events) can be as-
sumed to stand in precedence relation (Cham-
bers and Jurafsky, 2009; Chambers and Juraf-
sky, 2010).

2.1 The SPINOZA VU System
The NWR pipeline which forms the basis of the
SPINOZA VU system consists of 15 modules car-
rying out various NLP tasks and outputs the results
in NLP Annotation Format (Fokkens et al., 2014),
a layered standoff representation format. Two ver-
sions of the system have been developed, namely:

2We are referring to a broader set of relations that we la-
beled as “bridging relations” among events which involve co-
participation, primary and secondary causal relations, temporal
relations, and entailment relations.

• SPINOZA VU 1 uses the output of a state of
the art system, TIPSem (Llorens et al., 2010),
for event detection and temporal relations;

• SPINOZA VU 2 is entirely based on data
from the NWR pipeline including the temporal
(TLINKs) and causal relation (CLINKs) layers.

The final output is based on a dedicated rule-
based module, the TimeLine (TML) module. We
will describe in the following paragraphs how each
subtask has been tackled with respect to each ver-
sion of the system.

Entity identification Entity identification relies
on the entity detection and disambiguation layer
(NERD) of the NWR pipeline. Each detected en-
tity is associated with a URI (a unique identifier),
either from DBpedia or a specifically created one
based on the strings describing the entity. We ex-
tracted the entities by merging information from the
NERD layer with that from the semantic role la-
belling (SRL) layer. We retained only those en-
tity mentions which fulfil the argument positions
of proto-agent (Arg0) or proto-patient (Arg1) in the
SRL layer.

Event detection and classification The
SPINOZA VU 1 event module is based on
TIPSem, which provides TimeML compliant data.
We developed post processing rules to convert the
TimeML event classes (OCCURRENCE, STATE,
I ACTION, I STATE, ASPECTUAL, REPORT-
ING and PERCEPTION) to specific FrameNet
frames (e.g., Communication, Being in operation,
Body movement) and/or Event Situation Ontology
(ESO) types (Segers et al., 2015) (e.g., contextual),
which correspond to the event types specified in the
task guidelines. For instance, not all mentions of
TimeML I STATE, I ACTION, OCCURRENCE
and STATE events can enter a timeline. The
alignment with FrameNet and ESO is made by
combining the data from the Word Sense Dis-
ambiguation (WSD) layer of the pipeline with
Predicate Matrix (version 1.1) (Lacalle et al., 2014).

As for the SPINOZA VU 2, we have used the
NWR SRL layer to identify and retain the eligi-
ble events. In this case the access to the Predi-
cate Matrix is not necessary as each predicate in
the SRL layer is also associated with corresponding
FrameNet frames and ESO types. Only the pred-
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icates matching specific FrameNet frames and/or
ESO types were retained as candidate events.

Factuality The factuality filter consists of a col-
lection of rules in order to determine whether an
event is within the scope of a factuality marker
negating an event or indicating that it is uncertain, in
which case the event is excluded from the set of el-
igible events. Factuality markers are different types
of modality and negation cues (adverbs, adjectives,
prepositions, modal auxiliaries, pronouns and deter-
miners). For instance, if a verb has a dependency
relation of type AM-MOD with a modal auxiliary is
excluded from the candidate event in the timeline.

Coreference relations Two levels of corefer-
ence need to be addressed: in-document and cross-
document. As for the former, both versions of the
system rely on the coreference layer (COREF layer)
of the pipeline. Concerning the cross-document
level, two strategies have been implemented:

• Cross-document entity mentions are identified
using the URI links associated with entity men-
tions; all entity mentions from different doc-
uments sharing the same URIs are associated
with the same entity instance;

• Cross-document event coreference is obtained
during a post-processing step of the timeline
creation following the assumption that two
event mentions denote the same event instance
(i.e., they co-refer) if they share the same par-
ticipants, time of occurrence and (possibly) lo-
cation. Entity-based timelines are used as a
basis to identify instances of cross-document
event coreferential expressions.

Temporal Relations For the SPINOZA VU 1
version, we used the Temporal Relations from
TIPSem (TLINKs), including temporal expres-
sion detection and normalization. For the
SPINOZA VU 2 version, we used the TLINK and
CLINK layers of the NWR pipeline. As for the
CLINK layer, we converted all causal relations into
temporal ones, with the value BEFORE. For both
versions of the system we maximized temporal an-
choring by recovering the beginning or end point
of temporal expressions of type DURATION and re-
solving all TLINKs between a temporal expression
and a target event except “IS INCLUDED” relations
into an anchoring relation.

TimeLine Extraction The TimeLine Extrac-
tion (TML) module3 harmonizes and orders cross-
document temporal relations (anchoring and order-
ing). It provides a method for selecting the initial
(relevant) temporal relations (namely, all anchoring
relations) and enhance an updating mechanism of in-
formation so that additional temporal relations (both
anchoring and ordering relations) can be inferred.
Timelines are first created at a document level and
subsequently merged. The cross-document timeline
model is event-based and aims at building a global
timeline between all events and temporal expres-
sions regardless of the target entities. This approach
allows us to also make use of temporal information
provided by events that are not part of the final time-
lines. Finally, the target entities for the timelines are
extracted using two strategies: i) a perfect match be-
tween the target entities and the DBpedia URIs, and
ii) the Levenshtein distance (Levenshtein, 1966) be-
tween the target entities and the URIs. For this latter
strategy, an empirical threshold was set to maximize
precision on the basis of the trial data.

3 Results and Error Analysis

In Table 1 we report the results of both versions of
the system for Track A - Main. We also include
the results of the best performing system and out of
competition results of a new version of the system
(OC SPINOZA VU), which obtained competitive
results with respect the best system, WHUNLP 1.

System Version Corpus 1 Corpus 2 Corpus 3 Overall
SPINOZA VU 1 4.07 5.31 0.42 3.15
SPINOZA VU 2 2.67 0.62 0.00 1.05
OC SPINOZA VU 7.50 6.64 6.59 7.12
Best system
WHUNLP 1 8.31 6.01 6.86 7.28

Table 1: System Results (micro F1 score) for the Se-
mEval 2015 Task 4 Task A - Main Track.

The OC SPINOZA VU system is based on
SPINOZA VU 2, and the main differences concern
temporal relations identification at in-document and
cross-document level, and entity extraction. In par-
ticular, we assume that: if a temporal expression

3https://github.com/antske/
BiographyNet/tree/master/
TimeLineExtraction
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occurs in the same sentence of an event, the tem-
poral expression is the event’s temporal anchor; if
no temporal expression occurs in the same sentence,
we check if there are any temporal expressions in
the two previous sentences or, if any, in the one fol-
lowing it. The event is then anchor to the closest
temporal expression identified. Finally, if no tem-
poral expression can be found in this sentence win-
dow, no temporal anchor is assigned to the event.
As for event ordering, we have used the order of ap-
pearance of the event in the document to establish
precedence relations. The final timeline is obtained
by ordering cross-document event with a modified
version of the TML module based on time anchors
only. Entity extraction is extended by adding pure
substring match.

Table 2 reports the results of the submitted sys-
tems and of the out of competition one. No other
results are reported for Track A - Subtask A because
only our system participated. The null results of the
out of competition system are due to the modified
version of the TML module.

System Version Corpus 1 Corpus 2 Corpus 3 Overall
SPINOZA VU 1 1.20 1.70 2.08 1.69
SPINOZA VU 2 0.00 0.92 0.00 0.27
OC SPINOZA VU 0.00 0.00 0.00 0.00

Table 2: System Results (micro F1 score) for the Se-
mEval 2015 Task 4 Task A - Subtrack.

Overall, the results of the submitted system are
not satisfying. Out of 37 entity based timelines, the
system produced results only for 31 of them. Three
sources of errors occur in both versions of our sys-
tem. Error analysis yields the following explana-
tions:

Event detection We analyzed both entity-based
event detection (all events associated with each tar-
get entity) and global event detection (all events re-
gardless of the target entities). On entity-based event
detection, SPINOZA VU 1 scores an average F1
score on the 31 detected entities of 23.58 (38.7 preci-
sion and 17.35 for recall), whereas SPINOZA VU 2
scores an average F1 of 20.46 (47.83 precision
and 13.32 recall). As for global event detection,
both versions of the system present a high recall
and low precision pattern, although with substan-
tial differences in terms of results. In particular,
SPINOZA VU 1 has an average recall of 44.96 and

an average precision of 25.5, while SPINOZA VU 2
has an average recall of 77.03 and an average preci-
sion of 14.86;

Entity detection This layer is strictly connected
to the event detection layer. The lower results are
mainly due to the output of the COREF and SRL
layers. Missing coreference chains (e.g. “the air-
craft” not connected to a target entity like “Airbus
A380”)) and wrong spans of event arguments nega-
tively impacts on the extraction of candidate events
for the timeline;

Event ordering and anchoring The difference
in performance between the submitted system and
OC SPINOZA VU clearly indicates that there is
room for improvement concerning the amount of
temporal relations (anchoring and ordering ones)
which are extracted. Furthermore, the difference in
performance between the Main track and the Sub-
track suggests that the main issues concern event or-
dering rather than their detection or anchoring.

4 Conclusions and Future Work

In this paper we presented the SPINOZA VU sys-
tem for timeline extraction system in the context of
the SemEval 2015 Task 4: Cross Document Time-
Lines. The low ranking show not only that the
task is very complex, but also that there is room
for improving the system, as the results of the
OC SPINOZA VU system show. The low perfor-
mance is mainly a consequence of a combination of
cascading errors and missing data from the different
modules of the system, namely event detection, tem-
poral relation extraction and entity detection. How-
ever, on the positive side, the theoretical model that
has guided the development of the system can be fur-
ther extended to address more complex tasks on top
of the timeline extraction, such as storyline extrac-
tion.
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Abstract
QA TempEval shifts the goal of previous
TempEvals away from an intrinsic evaluation
methodology toward a more extrinsic goal of
question answering. This evaluation requires
systems to capture temporal information rele-
vant to perform an end-user task, as opposed
to corpus-based evaluation where all temporal
information is equally important. Evaluation
results show that the best automated TimeML
annotations reach over 30% recall on ques-
tions with ‘yes’ answer and about 50% on eas-
ier questions with ‘no’ answers. Features that
helped achieve better results are event corefer-
ence and a time expression reasoner.

1 Introduction

QA TempEval is a follow up of the TempEval series
in SemEval: TempEval-1 (Verhagen et al., 2007),
TempEval-2 (Verhagen et al., 2010), and TempEval-
3 (UzZaman et al., 2013). TempEval focuses on
evaluating systems that extract temporal expressions
(timexes), events, and temporal relations as defined
in the TimeML standard (Pustejovsky et al., 2003)
(timeml.org). QA TempEval is unique in its focus
on evaluating temporal information that directly ad-
dress a QA task. TimeML was originally developed
to support research in complex temporal QA within
the field of artificial intelligence (AI). However, de-
spite its original goal, the complexity of temporal
QA has caused most research on automatic TimeML
systems to focus on a more straightforward temporal
information extraction (IE) task. QA TempEval still
requires systems to extract temporal relations just
like previous TempEvals, however, the QA evalua-
tion is solely based on how well the relations answer

questions about the documents. It is no longer about
annotation accuracy, but rather the accuracy for tar-
geted questions.

Not only does QA represent a more natural way
to evaluate temporal information understanding (Uz-
Zaman et al., 2012), but also annotating docu-
ments with question sets requires much less exper-
tise and effort for humans than corpus-based evalua-
tion which requires full manual annotation of tempo-
ral information. In QA TempEval a document does
not require the markup of all the temporal entities
and relations, but rather a markup of a few key re-
lations central to the text. Although the evaluation
schema changes in QA TempEval, the task for par-
ticipating systems remains the same: extracting tem-
poral information from plain text documents.

Here we re-use TempEval-3 task ABC, where sys-
tems are required to perform end-to-end TimeML
annotation from plain text, including the complete
set of temporal relations (Allen, 1983). However,
unlike TempEval-3, there are no subtasks focusing
on specific elements (such as an event extraction
evaluation). Also, instead of IE performance mea-
surement for evaluation, a QA performance (on a set
of human-created temporal questions on documents)
is used to rank systems. The participating systems
are supposed to annotate temporal entities relations
across the document, and the relations are used to
build a larger knowledge base of temporal links to
obtain answers to the temporal questions.

In QA TempEval, annotators are not required to
tag and order all events, but instead ask questions
about temporal relations that are relevant or inter-
esting to the document, hence this evaluation bet-
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ter captures the understanding of the most important
temporal information in a document. Annotators are
not limited to relations between entities appearing
in the same or consecutive sentences, i.e., they can
ask any question that comes naturally to a reader’s
mind, e.g., “did the election happen (e3) before the
president gave (e27) the speech”. Finally, QA Tem-
pEval is unique in expanding beyond the news genre
and including Wikipedia articles and blog posts. In
the upcoming sections we will discuss details of the
conducted task and evaluation methodology.

2 Task Description

The task for participant systems is equivalent to
TempEval-3 task ABC, see Figure 1. Systems must
annotate temporal expressions, events, and temporal
relations between them1. The input to participants
is a set of unannotated text documents in TempEval-
3 format. Participating systems are required to an-
notate the plain documents following the TimeML
scheme, divided into two types of elements:

• Temporal entities: These include events
(EVENT tag, “came”, “attack”) and temporal
expressions (timexes, TIMEX3 tag, e.g., “yes-
terday”, “8 p.m.”) as well as their attributes like
event class, timex type, and normalized values.

• Temporal relations: A temporal relation
(tlink, TLINK tag) describes a pair of entities
and the temporal relation between them. The
TimeML relations map to the 13 Allen interval
relations. The included relations are: SIMUL-
TANEOUS (and IDENTITY), BEFORE, AFTER,
IBEFORE, IAFTER, IS INCLUDED, INCLUDES

(and DURING), BEGINS, BEGUN BY, ENDS,
and ENDED BY. Since the TimeML DURING

does not have a clear mapping, we map it to
SIMULTANEOUS for simplicity. The following
illustrates how the expression “6:00 pm” BE-
GINS the state of being “in the gym”.

(1) John was in the gym between 6:00 p.m
and 7:00 p.m.

Each system’s annotations represent its temporal
knowledge of the documents. These annotations are

1http://alt.qcri.org/semeval2015/task5

Figure 1: Task - Equivalent to TempEval-3 task ABC

then used as input to a temporal QA system (Uz-
Zaman et al., 2012) that will answer questions on
behalf of the systems, and the accuracy of their an-
swers is compared across systems.

3 QA Evaluation Methodology

The main difference between QA TempEval and
earlier TempEval editions is that the systems are
not scored regarding how similar their annotation
to a human annotated key is, but how useful is
their TimeML annotation to answer human anno-
tated temporal questions. There are different kinds
of temporal questions that could be answered given
a TimeML annotation of a document. However, this
first QA TempEval focuses on yes/no questions in
the following format:
IS <entityA> <RELATION> <entityB> ?
(e.g., is event-A before event-B ?)

This makes it easier for human annotators to
create accurate question sets with their answers.
Other types of questions such as list-based make
it more difficult and arguable in edge cases (e.g.,
list events between event-A and event-B). Questions
about events not included in the document are not
possible, but theoretically one could ask about any
time reference. Due to the difficulty of mapping ex-
ternal time references to a specific time expression
in the document, these types of questions are not in-
cluded in the evaluation.

The questions can involve any of the thirteen rela-
tions described above. Two relations not in the set of
thirteen, OVERLAPS and OVERLAPPED BY, cannot
be explicitly annotated in TimeML, but they could
happen implicitly (i.e., be inferred from other rela-
tions) if needed by an application.

The evaluation process is illustrated in Figure 2.
After the testing period, the participants send their
TimeML annotations of the test documents. Orga-
nizers evaluate the TimeML annotations of all the
participating systems with a set of questions. The
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Figure 2: QA based on participant annotations

systems are scored comparing the expected answers
provided by human annotators against the predicted
answers obtained from the system’s TimeML anno-
tations.

Given a system’s TimeML annotated documents,
the process consists of three main steps:

• ID Normalization: Entities are referenced by
TimeML tag ids (e.g., eid23). The yes/no ques-
tions must contain two entities with IDs (e.g.,
“is event[eid23] after event[eid99] ?”). The en-
tities of the question are annotated in the cor-
responding key document. However, systems
may provide different ids to the same entities.
Therefore, we align the system annotation IDs
with the question IDs that are annotated in the
key docs using the TempEval-3 normalization
tool2.

• Timegraph Generation: The normalized
TimeML docs are used to build a graph of
time points representing the temporal relations
of the events and timexes identified by each
system. Here we use Timegraph (Gerevini
et al., 1993) for computing temporal closure
as proposed by Miller and Schubert (1990).
The Timegraph is first initialized by adding the
TimeML explicit relations. Then the Time-
graph’s reasoning mechanism infers implicit
relations through rules such as transitivity.
For example, if eventA BEFORE eventB and
eventB BEFORE eventC, then the implicit re-
lation eventA BEFORE eventC can be inferred.
Timegraph expands a system’s TimeML anno-
tations and can answer both explicit and im-

2https://github.com/hllorens/timeml-normalizer

plicit Allen temporal relation questions, includ-
ing OVERLAPS.

• Question Processing: Answering questions re-
quires temporal information understanding and
reasoning. Note that asking ‘IS <entity1>
<relation> <entity2>?’ is not only asking if
there is that explicit tlink between them, but
also, if it is not, if that relation can be in-
ferred from other tlinks implicitly. Unlike cor-
pus based evaluation, the system gets credit if
its annotations provide the correct answer re-
gardless of whether it annotates other irrele-
vant information or not. In order to answer
the questions about TimeML entities (based on
time intervals) using Timegraph, we convert the
queries to point-based queries. For answering
yes/no questions, we check the necessary point
relations in Timegraph to verify an interval re-
lation. For example, to answer the question
“is event1 AFTER event2”, our system verifies
whether start(event1) > end(event2); if it is ver-
ified then the answer is true (YES), if it con-
flicts with the Timegraph then it is false (NO),
otherwise it is UNKNOWN.

4 QA Scoring

For each question we compare the obtained answer
from the Timegraph (created with system annota-
tions) and the expected answer (human annotated).
The scoring is based on the following Algorithm 1.
With this we calculate the following measures:

• Precision (P) = num correct
num answered

• Recall (R) = num correct
num questions
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num questions=0
num answered=0
num correct=0
foreach question q ∈ questionset do

num questions += 1
if predicted ans[q] != unknown
or key ans[q] == unknown then

num answered += 1
if predicted ans[q] == key ans[q] then

num correct += 1

Algorithm 1: QA Scoring

• F-measure (F1) = 2∗P∗R
P+R

We use Recall (QA accuracy) as the main metric and
F1 is used in case of draw.

5 Datasets

In QA TempEval, the creation of datasets does not
require the manual annotation of all TimeML ele-
ments in source docs. The annotation task in QA
TempEval only requires reading the doc, making
temporal questions, providing the correct answers,
and identifying entities included in the questions by
bounding them in the text and designating an ID.
The format of the question sets is as follows:
<question-num>|<source-doc>|
<question-with-ids>|<NL-question>|
<answer>|[opt-extra-info]

Following is an example question and its corre-
sponding annotated document:
3|APW.tml|IS ei21 AFTER ei19|
Was he cited after becoming general?|yes

APW.tml (KEY)
Farkas <event eid="e19">became</event>
a general. He was
<event eid="e21">cited</event>...

APW.tml (system annotation, full-TimeML)
Farkas <event eid="e15"...>became</event>
a general. He was
<event eid="e24"...>cited</event>...
<tlink eventID=e15 relatedToEventID=e24
relType=before />

5.1 Training Data

TimeML training data consists of TempEval-3 an-
notated data: TimeBank, AQUAINT (TBAQ,
TempEval-3 training), and TE-3 Platinum
(TempEval-3 testing). Furthermore, a question-set
in the format explained earlier is provided to the
participants for training purposes. It consists of
79 Yes/No questions and answers about TimeBank
documents (UzZaman et al., 2012). Participants

can easily extend the question-set by designing new
questions over TimeML corpora.

5.2 Test Data

The test dataset comprises three domains:

• News articles (Wikinews, WSJ, NYT): This
covers the traditional TempEval domain used
in all the previous editions.

• Wikipedia3 articles (history, biographical):
This covers documents about people or history,
which are rich in temporal entities.

• Informal blog posts (narrative): We hand se-
lected blog entries from the Blog Authorship
Corpus (Schler et al., 2006). They are in nar-
rative nature, such as the ones describing per-
sonal events as opposed to entries with opinions
and political commentary.

For each of these domains, human experts se-
lect the documents, create the set of questions to-
gether with the correct answer, and annotate the cor-
responding entities of the questions in the key doc-
uments. The resulting question-set is then peer-
reviewed by the human experts. Table 1 depicts
statistics of the test dataset. In this table, the col-
umn dist- shows the number of questions about
entities that are in the same or consecutive sen-
tences while dist+ refers to questions about non-
consecutive (more distant) entities.

docs words quest yes no dist- dist+
news 10 6920 99 93 6 40 59
wiki 10 14842 130 117 13 58 72
blogs 8 2053 65 65 0 30 35
total 28 23815 294 275 19 128 166

Table 1: Test Data

Annotators were asked to create positive (yes)
questions unless a negative (no) question came nat-
urally. This is due to the fact that we can auto-
matically generate negative questions from positive
questions, but not the other way around. Note that
the number of questions about distant entities is con-
siderable. TimeML training data and thus systems
tend to only annotate temporal relations about less

3http://en.wikipedia.org
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distant entities. Therefore, to answer distant ques-
tions the necessary implicit relations must be obtain-
able from the annotated explicit relations.

5.3 Development Time Cost
One of the claims of QA evaluation of tempo-
ral text understanding (UzZaman et al., 2012) is
that the time cost of creating question sets in QA
schema is lower than the one for fully annotating
a document with TimeML elements and attributes.
Both tasks involve reading the document. How-
ever, question-set creation only requires designing
yes/no questions paired with answers and annotating
the corresponding entities in the document, while
full TimeML annotation needs identifying all enti-
ties, their attributes, and large set of relations among
them. There is not any rigorous information avail-
able about the time it takes to perform these different
annotation tasks. Comparison is difficult since many
factors play a role in timing (e.g., human annotators
skills, dedicated software help). In order to provide
an approximate comparison, following we present
information regarding some real experiences:

• Question Set annotation (about 10 questions
per document, without dedicated software
help): QA TempEval consists of 28 docs
(23,815 words), i.e., about 850 words per doc-
ument. Human annotators reported that the an-
notation task from raw text took them 30min-
2h per document, i.e., 15min-1h for 360 words.

• TimeML all-elements and attributes annotation
(with dedicated software help): Annotators of
the Spanish TimeBank spent a year to com-
plete the annotation working 3h/day, approx-
imately 3h per document or 360 words. We
don’t have available to us similar data for the
English TimeBank’s creation.

• Other experiences regarding full TimeML an-
notation such as correcting a pre-annotated
document by a system took about 2-3h per
document. TLINK annotation reportedly took
about 1.5h per document.

We do not aim to provide an exact quantification
or comparison; however, based on the information
we have available, creating a QA test set takes con-
siderably less time than full TimeML annotation.

TimeML annotated documents can also be used for
training and evaluating temporal extraction systems,
whereas TempQA annotated documents can be used
only for evaluation. Given that we have enough an-
notated data, TempQA helps to easily create more
data to evaluate temporal systems in new domains.

6 Participating Systems

Nine approaches addressing automatic TimeML
annotation for English were presented in the
QA TempEval evaluation, divided into two groups:

Regular participants, optimized for task:

• HITSZ-ICRC4. rule-based timex module,
SVM (liblinear) for event and relation detection
and classification

• hlt-fbk-ev1-trel1. SVM, separated event de-
tection and classification, without event co-
reference

• hlt-fbk-ev1-trel2. SVM, separated event de-
tection and classification, with event coref

• hlt-fbk-ev2-trel1. SVM, all predicates are
events and classification decides, without event
co-reference

• hlt-fbk-ev2-trel2. SVM, all predicates are
events and classification decides, with event co-
reference

Off-the-Shelf Systems, not optimized on task:

• CAEVO5 (Chambers et al., 2014). Cascading
classifiers that add temporal links with transi-
tive expansion. A wide range of rule-based and
supervised classifiers are included

• ClearTK6 (Bethard, 2013) A pipeline of
machine-learning classification models, each
of which have simple morphosyntactic annota-
tion pipeline as feature set

• TIPSemB (Llorens et al., 2010) CRF-SVM
model with morphosyntactic features

• TIPSem (Llorens et al., 2010) TIPSemB + lex-
ical (WordNet) and combinational (PropBank
roles) semantic features

4Annotations Submitted 1-day after the deadline
5Off-the-shelf system: the author was co-organizer
6Off-the-shelf system: trained and tested by organizers
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7 Time Expression Reasoner (TREFL)

As an extra evaluation, task organizers added a
new run for each system augmented with a post-
processing step. The goal is to analyze how a gen-
eral time expression reasoner could improve results.
The TREFL component is straightforward: resolve
all time expressions, and add temporal relations be-
tween the time expressions when the relation is un-
ambiguous based on their resolved times.

We define a “timex reference” as a temporal ex-
pression consisting of a date or time (e.g., “Jan 12,
1999”, “tomorrow”) that is normalized to a Grego-
rian calendar interval (e.g., 1999-01-12, 2015-06-
06). These are perfectly suited for ordering in time.
In addition, finding timex references and obtain-
ing their normalized values are tasks in which au-
tomatic systems perform with over 90% accuracy.
Thus, given a system normalized-values, we can au-
tomatically produce timex-timex reference relations
or links (TREFL) that represent a temporal rela-
tion backbone (base Timegraph) with high accuracy.
This backbone can then assist the much more diffi-
cult event-event and event-timex links that are later
predicted by system classifiers. Any relations pre-
dicted by a classifier can be discarded if they are in-
consistent with this TREFL backbone.

For example, if a system TimeML annotation con-
tains three timexes t1 (1999), t2 (1998-01-15), and
t3 (1999-08), a minimal set of relations can be de-
terministically extracted as t2 BEFORE t1 and t3
IS INCLUDED t1. The corresponding Timegraph is:
t2 < t1 start < t3 start < t3 end < t1 end

To automatically obtain such minimal set of re-
lations from the system timex-values, the TREFL
component orders them by date and granularity us-
ing SIMULTANEOUS, BEFORE, BEGINS, IS INCLUDED,

or ENDS relations. More complicated cases have not
been included in this evaluation for simplicity.

The only drawback or risk of this strategy is that
some of the system timex-values could be incorrect,
but previous work suggests these errors are less nu-
merous than those occurring in later event-event re-
lation extraction. Our hypothesis is that (i) many
systems do not include a strategy like this, and (ii)
even taking into account the drawback of this strat-
egy most systems would benefit from using it, reach-
ing a higher performance. The evaluation compares

original systems with their TREFL-augmented vari-
ant that discarded system relations in conflict with
its TREFL Timegraph.

8 Evaluation

The objective of this evaluation is to measure and
compare QA performance of TimeML annotations
of participating and off-the-shelf systems. Partici-
pants were given the documents of the previously
defined test set (TE3-input format). They were
asked to annotate them with their systems within a 5-
day period. Organizers evaluated the submitted an-
notations using the test question-sets. Result tables
include Precision (P), Recall (R), F-measure (F1),
percentage of the answered questions (awd%) and
number of correct answers (corr). As mentioned ear-
lier, Recall is the main measure for ranking systems.
The percentage of the questions which are answered
by the system provides a coverage metric, measur-
ing a system’s ability to provide more complete set
of annotation on entities and relations.

8.1 Results without TREFL

Table 2 shows the combined results over all three
genres in the test set, comprising 294 test questions.

Measures Questions
System P R F1 awd% corr
HITSZ-ICRC .54 .06 .12 .12 19
hlt-fbk-ev1-trel1 .57 .17 .26 .30 50
hlt-fbk-ev1-trel2 .47 .23 .31 .50 69
hlt-fbk-ev2-trel1 .55 .17 .26 .32 51
hlt-fbk-ev2-trel2 .49 .30 .37 .62 89
ClearTK .59 .06 .11 .10 17
CAEVO .56 .17 .26 .31 51
TIPSemB .47 .13 .20 .28 38
TIPSem .60 .15 .24 .26 45

Table 2: QA Results over all domains.

The participant system hlt-fbk-ev2-trel2 system
(.30 R) outperformed all the others by a significant
margin. CAEVO performed best among the off-the-
shelf systems, but behind the winning participant re-
call by 13% absolute. The awd% of the hlt-fbk-ev2-
trel2 system doubles the one by the best off-the-shelf
system, CAEVO. Interstingly, CAEVO and the two
hlt-fbk trel1 systems performed approximately the
same. The trel2 versions included event coreference.

Table 3 shows three result tables from the three
genres: news, wiki, and blogs. The best overall sys-
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News Genre Results
Measures Questions

System P R F1 awd% corr
HITSZ-ICRC .47 .08 .14 .17 8
hlt-fbk-ev1-trel1 .59 .17 .27 .29 17
hlt-fbk-ev1-trel2 .43 .23 .30 .55 23
hlt-fbk-ev2-trel1 .56 .20 .30 .36 20
hlt-fbk-ev2-trel2 .43 .29 .35 .69 29
ClearTK .60 .06 .11 .10 6
CAEVO .59 .17 .27 .29 17
TIPSemB .50 .16 .24 .32 16
TIPSem .52 .11 .18 .21 11

Wiki Genre Results
Measures Questions

System P R F1 awd% corr
HITSZ-ICRC .83 .08 .14 .09 10
hlt-fbk-ev1-trel1 .55 .16 .25 .29 21
hlt-fbk-ev1-trel2 .52 .26 .35 .50 34
hlt-fbk-ev2-trel1 .58 .17 .26 .29 22
hlt-fbk-ev2-trel2 .62 .36 .46 .58 47
ClearTK .60 .05 .09 .08 6
CAEVO .59 .17 .26 .28 22
TIPSemB .52 .13 .21 .25 17
TIPSem .74 .19 .30 .26 25

Blogs Genre Results
Measures Questions

System P R F1 awd% corr
HITSZ-ICRC .17 .02 .03 .09 1
hlt-fbk-ev1-trel1 .57 .18 .28 .32 12
hlt-fbk-ev1-trel2 .43 .18 .26 .43 12
hlt-fbk-ev2-trel1 .47 .14 .21 .29 9
hlt-fbk-ev2-trel2 .34 .20 .25 .58 13
ClearTK .56 .08 .14 .14 5
CAEVO .48 .18 .27 .38 12
TIPSemB .31 .08 .12 .25 5
TIPSem .45 .14 .21 .31 9

Table 3: QA Results broken down by genre, based on 99
News, 130 Wiki, and 65 Blog questions.

tem, hlt-fbk-ev2-trel2, maintained its top position.

The main difference in genre results appears to be
the smaller blog corpus where the leading hlt-fbk-
ev2-trel2 participant and CAEVO performed simi-
larly, .20 and .18 R respectively. The hlt-fbk system
exhibited similar behavior as the other genres show-
ing a high coverage, as demonstrated by awd% met-
ric. However, it simply guessed incorrectly much
more often (precision dropped to the 30’s).

We make note that the ClearTK off-the-shelf sys-
tem’s lower performance is because it was used
without modification from its TempEval-3 submis-
sion. ClearTK was TempEval-3 best system, partly
due to its optimization to the task where it maxi-

mized precision and not recall. It likely would per-
form better if optimized to this new QA task.

8.2 Results with TREFL

Table 4 shows the results for systems augmented
with TREFL (explained in Section 7).

Measures Questions
System P R F1 awd% corr
HITSZ-ICRC .58 .09 .15 .15 25
hlt-fbk-ev1-trel1 .62 .28 .38 .45 81
hlt-fbk-ev1-trel2 .55 .31 .40 .57 92
hlt-fbk-ev2-trel1 .61 .29 .39 .48 86
hlt-fbk-ev2-trel2 .51 .34 .40 .67 99

ClearTK (TREFL not applied because of its TLINK format)
CAEVO .60 .21 .32 .36 63
TIPSemB .64 .24 .35 .37 70
TIPSem .68 .27 .38 .40 79

Table 4: QA Results augmented with TREFL

Recall went up on all systems (by 49% relative
on average), but the degree of improvement var-
ied. Recall of the top system (hlt-fbk-ev2-trel2) im-
proved 4% absolute (13% relative). The largest gain
was with TIPSem which improved from .15 to .27,
becoming the top off-the-shelf system. TREFL is
mainly focused on improving recall which explains
the differences. The best system had higher recall
already, so TREFL had less contribution. TIPSem
had lower recall, so it sees the greatest gain. TREFL
did not penalize TIPSem precision as much as it did
for other systems. That made TIPSem obtain the top
F1 in wiki and blogs domains.

By genre, on average TREFL improved systems’
relative recall by 60% (news), 48% (wiki), and 47%
(news).

In news and wiki, hlt-fbk-ev2-trel2+terfl was the
system answering correctly more questions about
distant entities (22 news, 20 wiki), while for blogs
it was TIPSem (9).

We also found that hlt-fbk-ev2-trel2+terfl answers
more questions that no other system is capable of
answering (4 news, 11 wiki, 5 blogs), demonstrat-
ing that it has some features that others system lack.
One of the distinguishing features of this system, re-
quired to answer some of the testset questions, is
event co-reference (clustering) which could be re-
sponsible for this good result.
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Analyzing the questions answered correctly after
the TREFL augmentation, in both the news and wiki
domains, we found that around 35% of the ques-
tions were not answered by any system because they
didn’t find a temporal entity in the question (either
an event or time expression, or both). This is mostly
because no system found one of the entities in the
question. In the blog genre, 50% of errors were
due to missing entities, and blogs/news were 75%.
These missing entity errors exist in both the original
system submissions and this TREFL augmentation.
The remaining unanswered questions were simply
due to sparsity in relation annotation. The relation
needed to answer the question is neither annotated
nor do transitive inferences exist.

8.3 Results with TREFL (no-questions)

As mentioned earlier the evaluation is mainly fo-
cused on positive questions (with yes answer) since
annotating them provides more information and neg-
ative questions can be automatically generated from
them. Moreover, in general, answering positive
questions is more challenging, e.g., asking IS e1 BE-

FORE e2 requires a system to guess the single correct
relation if the correct answer is yes; However, if the
correct answer is no, there are 12 possible correct
relations (all but BEFORE).

In order to have more insight into this issue, we
automatically obtained negative questions by ask-
ing about the opposite7 relation with “no” as the ex-
pected answer. For example, IS e1 BEFORE e2 (yes)
becomes IS e1 AFTER e2 (no). The aim of this evalu-
ation is to analyze system performance in determin-
ing if a relation is not correct. In this easier test,
participating and off-the-shelf systems obtain better
results going over .50 R in the news domain. The
best obtained recalls are .52 in news, .39 in wiki,
and .42 in blogs, as compared to .38, .36 and .22
obtained for yes-questions in the main test.

It is interesting to see that in this negative alterna-
tive, systems were better in blogs than in wiki, un-
like in the positive test. Likewise the positive vari-
ant, the addition of trefl has improved results, but the
improvements is smaller in this case.

7SIMULTANEOUS has no opposite and IAFTER was used.

9 Conclusions and Future Work
QA evaluation task attempts to measure how far we
are on temporal information understanding applied
to temporal QA (an extrinsic task) instead of only
TimeML annotation accuracy. One of the benefits
of QA evaluation is that test set creation time and
human expertise required is considerably less than
in TimeML annotation. QA TempEval also included
Wikipedia and blog domains, in addition to the reg-
ular news domain, for the first time. Evaluation re-
sults suggest that we are still far from systems that
more deeply understand temporal aspects of natural
language and can answer temporal questions. The
best overall recall was 30% (34% with TREFL).
This top result is higher than best off-the-shelf sys-
tem 17% (27% with TREFL).

The main findings include:
• The only system using event co-reference ob-

tained the best results, so adding event coref
may help other systems.

• Adding TREFL improved the QA recall of all
systems, ranging from 3% to 12% absolute
(13% to 80% relative).

• Training data is news, but the best system
performed well on Wikipedia. Some off-
the-shelf systems even performed better on
Wikipedia/blogs than on the news domain.

• Human annotators annotated as many ques-
tions about close entities as distant entities. In
the same line, automated systems were capable
of answering correctly approximately the same
amount of questions of each type.

As future work we aim to extend the analysis
of the results presented in this paper. On the one
hand, by explaining TREFL technique and its ef-
fects in more detail. On the other hand, by finding
out what features made some systems unique being
the only ones capable of answering certain questions
correctly. The question-sets8 , tools and results9 have
been released for future research.
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Abstract

The HLT-FBK system is a suite of SVMs-
based classification models for extracting time
expressions, events and temporal relations,
each with a set of features obtained with the
NewsReader NLP pipeline. HLT-FBK’s best
system runs ranked 1st in all three domains,
with a recall of 0.30 over all domains. Our at-
tempts on increasing recall by considering all
SRL predicates as events as well as utilizing
event co-reference information in extracting
temporal links result in significant improve-
ments.

1 Introduction

QA TempEval is a continuation of the TempEval
task series (Verhagen et al., 2007; Verhagen et al.,
2010; UzZaman et al., 2013), which shifts its eval-
uation methodology from temporal information ex-
traction accuracy to temporal question-answering
(QA) accuracy. However, the main task is the same
as its predecessor tasks, which is to automatically
annotate texts with temporal information following
TimeML specification (Pustejovsky et al., 2003a).

This paper describes the HLT-FBK system sub-
mitted to QA TempEval. The system decomposes
the task into three sub-tasks, i.e. temporal expres-
sion (timex) extraction, event extraction and tempo-
ral relation extraction. Each sub-task is formulated
as a supervised classification problem using SVMs-
based classifiers, which make use of the information
acquired from the NewsReader1 NLP pipeline.

1http://www.newsreader-project.eu

2 Data, Resources and Tools

The training data set is the TimeML annotated
data released by the task organizers, which includes
TBAQ-cleaned and TE3-Platinum corpora reused
from the TempEval-3 task (UzZaman et al., 2013).
We extended the training corpus for the timex ex-
traction system with the TempEval-3 silver corpus.

The test data are 30 plain texts of News, Wikipedia
and Blogs domains (10 documents each). For evalu-
ating the system, 294 temporal-based questions and
the test data annotated with entities relevant for the
questions are used.

The resources used by the system to extract some
features are lists of temporal signals extracted from
the TimeBank corpus (Pustejovsky et al., 2003b) and
a list of nominalizations extracted from the SPE-
CIALIST Lexicon2 distributed by the U.S. National
Library of Medicine, which contains commonly oc-
curring English words in addition to biomedical
terms, with syntactic and morphological informa-
tion. We extracted all nouns resulting from a nom-
inalization. Other features come from the annota-
tion of the addDiscourse tool (Pitler and Nenkova,
2009), which identifies discourse connectives and
assigns them to one of the four semantic classes:
Temporal, Expansion, Contingency and Compari-
son.

The MorphoPro module, part of the TextPro tool
suite3, is used to get the morphological analysis
of each token in a text. The time expression nor-

2http://www.nlm.nih.gov/research/umls/
new_users/online_learning/LEX_001.html

3http://textpro.fbk.eu/
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malization sub-task is carried out by TimeNorm4

(Bethard, 2013), a library for converting natural lan-
guage expressions of dates and times into their nor-
malized form.

The HLT-FBK system is a suite of classification
models that have been built and applied using Yam-
Cha5 (Kudo and Matsumoto, 2003), a text chunker
using the Support Vector Machines (SVMs) algo-
rithm. It supports the dynamic features that are de-
cided dynamically during the classification, multi-
class classification using either one-vs-rest or one-
vs-one strategies, and polynomial kernels.

3 The End-to-end System

3.1 Pre-processing: NewsReader Pipeline
The data pre-processing was done using the NLP
pipeline developed for the NewsReader project.
The pipeline includes, amongst others, tokenization,
part-of-speech tagging, constituency parser, depen-
dency parser, named entity recognition, semantic
role labeling (SRL) and event co-reference.6

3.2 Timex Extraction System
The task of recognizing the extent of a timex, as well
as determining the timex type (i.e. DATE, TIME, DU-
RATION and SET), is taken as a text chunking task.
Since the timex extent can be a multi-token expres-
sion, we employ the IOB2 tagging to annotate the
data, so each token will be classified into 9 classes:
B-DATE, I-DATE, B-TIME, I-TIME, B-DURATION, I-
DURATION, B-SET, I-SET and O (for other).

The classifier is built with one-vs-one strategy
for multi-class classification. The features used to
represent a token are token’s text, lemma, part-of-
speech (PoS) tag, chunk, named entity type (if any),
and whether a token matches regular expression pat-
terns for a time unit, part of a day, name of days,
name of months, duration (e.g. 1h3’), etc. In ad-
dition, all mentioned features for the preceding 4
and following 4 tokens, and the preceding 4 labels
tagged by the classifier, are also included in the fea-
ture set.

4http://github.com/bethard/timenorm
5http://chasen.org/˜taku/software/

yamcha/
6More information about the NewsReader pipeline, as well

as a demo, are available on the project website http://www.
newsreader-project.eu/results/.

For timex normalization, we decided to use
TimeNorm. For English, it is shown to be the
best performing system for most evaluation corpora
(Llorens et al., 2012). We added pre- and post-
processing rules in order to obtain the best normal-
ized form.

3.3 Event Extraction System

Event detection is taken as a text chunking task, in
which tokens have to be classified into two classes:
EVENT (i.e. the token is included in an event extent)
or O (for other). Then events are classified into one
of the 7 TimeML classes (i.e. REPORTING, PERCEP-
TION, ASPECTUAL, I ACTION, I STATE, STATE and
OCCURRENCE).

The classification models are built with one-vs-
rest strategy for multi-class classification. For both
event extent identification and event classification
tasks we use various features to represent each to-
ken. The classic features are token’s lemma, PoS
tag, and entity type (if the token is part of a named
entity or a time expression). Other features that are
more specific for the task include: verb’s tense and
polarity7, whether the token is annotated as predi-
cate by the SRL module, whether it is part of an
event co-reference chain and whether it is in the
nominalization list. In addition, all mentioned fea-
tures for the preceding 4 and following 4 tokens, and
the preceding 4 labels tagged by the classifier, are
also considered as features.

Specifically for event classification, additional
features are used: token’s chunk, whether the token
is part of a temporal discourse connective, whether a
verb is the main verb of the sentence (root verb), the
predicate for which the token is part of a participant
and its semantic role (e.g. Arg0, Arg1), and finally
whether the token is in an event extent (annotated in
the previous step).

We submitted two different runs:

• Run 1 (ev1) Two classifiers are used as described
above.
• Run 2 (ev2) We consider all predicates identified

by the SRL module as events. We then used a
classifier to determine the class of each event.

7The tense, aspect and polarity attributes of events, as de-
fined in TimeML, are obtained through manually written rules
based on the morphological analysis produced by MorphoPro.
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3.4 Temporal Relation Extraction System
The temporal relation extraction system extracts
temporal relations (TLINKs) holding between two
events or between an event and a time expression.
We consider all combinations of event/event and
event/timex pairs within the same sentence (in a
forward manner8), and pairs of main events (root
verbs) of consecutive sentences, as candidate tem-
poral links.

Given an ordered pair of entities (e1, e2), either
event/event or event/timex pair, the classifier has
to assign a label, i.e one of the 13 TimeML tem-
poral relation types. However, we simplified the
considered temporal relation types to better fit the
QA TempEval task description and to deal with the
unbalanced training data as follows: (i) IDENTITY

and DURING are mapped to SIMULTANEOUS; (ii)
IBEFORE/IAFTER are mapped to BEFORE/AFTER;9

and (iii) INCLUDES, BEGINS and ENDS are con-
verted to their inverse counterparts (IS INCLUDED,
BEGUN BY and ENDED BY, resp.) by exchanging
the order of entities in the pair. In the end, we only
consider 6 temporal relation types (i.e. SIMULTANE-
OUS, BEFORE, AFTER, IS INCLUDED, BEGUN BY

and ENDED BY).
The classification models for event/event and

event/timex pairs are built with one-vs-one strategy
for multi-class classification. The overall approach
is largely inspired by an existing work for classifing
temporal relations (Mirza and Tonelli, 2014). The
implemented features are as follows:

String and grammatical features. Tokens, lem-
mas, PoS tags and chunks of e1 and e2, along with
a binary feature indicating whether e1 and e2 in an
event/event pair have the same PoS tags.

Textual context. Sentence distance (e.g. 0 if e1

and e2 are in the same sentence) and entity distance
inside a sentence (i.e. the number of entities occur-
ring between e1 and e2).

Entity attributes. Event attributes (class, tense,
aspect and polarity) taken from the output of the
event extraction module, and the timex attribute

8For example, for a sentence “...ev1...tmx1...ev2...”, the can-
didate pairs are (ev1, tmx1), (ev1, ev3) and (ev2, tmx1).

9Because event pairs of IBEFORE/IAFTER types are too
scarce as training examples, and they are by definition specific
types of BEFORE/AFTER.

(type) obtained from the timex extraction module of
e1 and e2; a binary feature to represent whether the
timex in an event/timex pair is the document creation
time; and four binary features to represent whether
e1 and e2 in an event/event pair have the same event
attributes or not. We also include as features the PoS
chain of VP chunks containing events (e.g. VHZ-
VBN-VVG for has been [raining]e1 , VM-VVB for
would [send]e2), which captures tense and aspect,
as well as modality information of the event.

Dependency information. Dependency path ex-
isting between e1 and e2, and binary features indi-
cating whether e1/e2 is the root verb.

Temporal signals. Tokens of temporal signals oc-
curring around e1 and e2 and their positions with re-
spect to e1 and e2 (i.e. before/after e1, before/after
e2, or at the beginning of the sentence).

Temporal discourse connectives. We take into
account discourse connectives belonging to the Tem-
poral class, acquired from the addDiscourse tool.
Similar to temporal signals, tokens of connectives
occurring in the textual context of e1 and e2, and
their position with respect to e1 and e2, are used
as features. These features are only relevant for
event/event pairs.

There are two variations of system submitted:
• Run 1 (trel1) We incorporate pre-processing rules

based on timex pattern matching (e.g. from...to...,
between...and...), to recognize event/timex pairs
of BEGUN BY and ENDED BY types, which are
not well represented in the training corpus.
• Run 2 (trel2) Similar as Run 1, however, we also

incorporate the event co-reference information
obtained from the NewsReader pipeline. When-
ever two events co-refer, the event/event pair is
excluded from the classifier, and automatically la-
belled SIMULTANEOUS.

4 Results

We submitted 4 system runs, i.e. the combinations
of 2 system runs for event extraction (ev1 and ev2)
and 2 system runs for temporal relation extraction
(trel1 and trel2). Table 1 shows HLT-FBK system
results in terms of coverage, precision, recall and F1-
score for the three considered domains; recall is the
main evaluation metric used to rank the systems.
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News Wikipedia Blogs All domains
Cov P R F1 Cov P R F1 Cov P R F1 R

ev1-trel1 0.29 0.59 0.17 0.27 0.29 0.55 0.16 0.25 0.32 0.57 0.18 0.28 0.17
ev1-trel2 0.55 0.43 0.23 0.30 0.50 0.52 0.26 0.35 0.43 0.43 0.18 0.26 0.23
ev2-trel1 0.36 0.56 0.20 0.30 0.29 0.58 0.17 0.26 0.29 0.47 0.14 0.21 0.17
ev2-trel2 0.69 0.43 0.29 0.35 0.58 0.62 0.36 0.46 0.58 0.34 0.20 0.25 0.30

Table 1: HLT-FBK system results in terms of coverage (Cov), precision (P), recall (R) and F1-score (F1).

News Wikipedia Blogs
Answered Unknown Answered Unknown Answered Unknown

Q Cor Inc Ent Rel Q Cor Inc Ent Rel Q Cor Inc Ent Rel
ev2-trel1 99 20 16 17 46 130 22 16 48 44 65 9 10 22 24
ev2-trel2 99 29 39 16 15 130 47 29 48 6 65 13 25 22 5

Table 2: HLT-FBK system results in terms of number of answered questions, correctly (Cor) and incorrectly (Inc), and
unanswered questions because of unknown entities (Ent) and unknown relations (Rel).

News Wikipedia Blogs
ev tx ev tx ev tx

ev1 0.72 0.83 0.81 0.59 0.68 0.35
ev2 0.80 0.83 0.84 0.54 0.70 0.35

Table 3: HLT-FBK system results in terms of recall on
identifying events (ev) and timexes (tx) with strict match.

The best results are achieved with the combina-
tion of ev2 and trel2, which significantly outper-
formed other participating systems and reported off-
the-shelf systems (not optimized for the task), i.e.
CAEVO with 0.17 and 0.18 recall scores on News
and Blogs respectively, and TIPSem with 0.19 recall
on Wikipedia.

Table 2 compares trel1 and trel2 runs, in terms
of the number of answered questions (correctly and
incorrectly) and unanswered questions (due to un-
known entities and non-established/unknown rela-
tions). Meanwhile, Table 3 compares ev1 and ev2
in terms of recall scores on identifying EVENT and
TIMEX3 tags, with the annotated test data as the
gold standard.10 Both results give more insight on
the question answering-based evaluation.

5 Discussion

The timex extraction system performs well on News
texts, but not on texts from Wikipedia and Blogs (see
Table 3). Our error analysis shows that many time

10The gold standard only contains the annotated entities rel-
evant for answering the set of questions. For this reason, we
computed only the recall.

expressions in Wikipedia texts are not represented
in the training corpus (e.g. 4th millennium BCE).

Considering all SRL predicates as events (ev2)
improves the recall on identifying relevant events
(see Table 3), but lowers the precision on answer-
ing the questions (except for Wikipedia, in which
the precision is also improved, see Table 1). In this
task, the focus is on the recall and as expected the
best results are obtained by the system with the best
recall (ev2).

For temporal relation extraction, using event co-
reference information (trel2) reduces the number of
unknown relations (Rel) down by 77% in average for
all domains (see Table 2). Hence, the recall scores
increase significantly as shown in Table 1, especially
for the Wikipedia domain with almost 20% improve-
ment.

Our attempts on improving the overall perfor-
mance by increasing the recall (ev2 and trel2 runs)
work well on News and Wikipedia, shown by im-
proving F1-scores. This unfortunately does not hold
for Blogs, since the precision is greatly compro-
mised while the recall is only slightly improved.

In general, the system performs best on News and
Wikipedia texts, but not so well on informal Blogs
texts. This difference can be due to the fact that
our systems, as well as most of the pipeline’s mod-
ules, are trained using the corpus of formal news
texts. Moreover, Blogs texts contain orthographic
errors, a lot of punctuation signs, etc. and their pre-
processing with the pipeline do not run well.
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Abstract

Clinical TempEval 2015 brought the tempo-
ral information extraction tasks of past Temp-
Eval campaigns to the clinical domain. Nine
sub-tasks were included, covering problems in
time expression identification, event expression
identification and temporal relation identifica-
tion. Participant systems were trained and eval-
uated on a corpus of clinical notes and pathol-
ogy reports from the Mayo Clinic, annotated
with an extension of TimeML for the clinical
domain. Three teams submitted a total of 13
system runs, with the best systems achieving
near-human performance on identifying events
and times, but with a large performance gap
still remaining for temporal relations.

1 Introduction

The TempEval shared tasks have, since 2007, pro-
vided a focus for research on temporal information
extraction (Verhagen et al., 2007; Verhagen et al.,
2010; UzZaman et al., 2013). Participant systems
compete to identify critical components of the time-
line of a text, including time expressions, event ex-
pressions and temporal relations. However, the Temp-
Eval campaigns to date have focused primarily on
in-document timelines derived from news articles.

Clinical TempEval brings these temporal informa-
tion extraction tasks to the clinical domain, using
clinical notes and pathology reports from the Mayo
Clinic. This follows recent interest in temporal infor-
mation extraction for the clinical domain, e.g., the
i2b2 2012 shared task (Sun et al., 2013), and broad-
ens our understanding of the language of time beyond
newswire expressions and structure.

Clinical TempEval focuses on discrete, well-
defined tasks which allow rapid, reliable and repeat-
able evaluation. Participating systems are expected
to take as input raw text such as:

April 23, 2014: The patient did not have
any postoperative bleeding so we will re-
sume chemotherapy with a larger bolus on
Friday even if there is slight nausea.

And output annotations over the text that capture the
following kinds of information:

• April 23, 2014: TIMEX3
– TYPE=DATE

• postoperative: TIMEX3
– TYPE=PREPOSTEXP

– CONTAINS

• bleeding: EVENT

– POLARITY=NEG

– BEFORE document creation time
• resume: EVENT

– TYPE=ASPECTUAL

– AFTER document creation time
• chemotherapy: EVENT

– AFTER document creation time
• bolus: EVENT

– AFTER document creation time
• Friday: TIMEX3

– TYPE=DATE

– CONTAINS

• nausea: EVENT

– DEGREE=LITTLE

– MODALITY=HYPOTHETICAL

– AFTER document creation time
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That is, the systems should identify the time expres-
sions, event expressions, attributes of those expres-
sions, and temporal relations between them.

2 Data

The Clinical TempEval corpus was based on a set of
600 clinical notes and pathology reports from cancer
patients at the Mayo Clinic. These notes were man-
ually de-identified by the Mayo Clinic to replace
names, locations, etc. with generic placeholders,
but time expressions were not altered. The notes
were then manually annotated by the THYME project
(thyme.healthnlp.org) using an extension of ISO-
TimeML for the annotation of times, events and tem-
poral relations in clinical notes (Styler et al., 2014b).
This extension includes additions such as new time
expression types (e.g., PREPOSTEXP for expressions
like postoperative), new EVENT attributes (e.g., DE-
GREE=LITTLE for expressions like slight nausea),
and an increased focus on temporal relations of type
CONTAINS (a.k.a. INCLUDES).

The annotation procedure was as follows:

1. Annotators identified time and event expres-
sions, along with their attributes

2. Adjudicators revised and finalized the time and
event expressions and their attributes

3. Annotators identified temporal relations be-
tween pairs of events and events and times

4. Adjudicators revised and finalized the temporal
relations

More details on the corpus annotation process are
documented in a separate article (Styler et al., 2014a).

Because the data contained incompletely de-
identified clinical data (the time expressions were
retained), participants were required to sign a data
use agreement with the Mayo Clinic to obtain the
raw text of the clinical notes and pathology reports.1

The event, time and temporal relation annotations
were distributed separately from the text, in an open
source repository2 using the Anafora standoff format
(Chen and Styler, 2013).

1The details of this process are described at http://thyme.
healthnlp.org/

2https://github.com/stylerw/thymedata

Train Dev
Documents 293 147
EVENTs 38890 20974
TIMEX3s 3833 2078
TLINKs with TYPE=CONTAINS 11176 6173

Table 1: Number of documents, event expressions, time
expressions and narrative container relations in the train-
ing and development portions of the THYME data. (Dev
is the Clinical TempEval 2015 test set.)

The corpus was split into three portions: Train
(50%), Dev (25%) and Test (25%). For Clinical
TempEval 2015, the Train portion was used for train-
ing and the Dev portion was used for testing. The Test
portion was not distributed, and was reserved as a test
set for a future iteration of the shared task. Table 1
shows the number of documents, event expressions
(EVENT annotations), time expressions (TIMEX3 an-
notations) and narrative container relations (TLINK

annotations with TYPE=CONTAINS attributes) in the
Train and Dev portions of the corpus.

3 Tasks

A total of nine tasks were included, grouped into
three categories:

• Identifying time expressions (TIMEX3 annota-
tions in the THYME corpus) consisting of the
following components3:

– The spans (character offsets) of the expres-
sion in the text

– Class: DATE, TIME, DURATION, QUAN-
TIFIER, PREPOSTEXP or SET

• Identifying event expressions (EVENT annota-
tions in the THYME corpus) consisting of the
following components:

– The spans (character offsets) of the expres-
sion in the text

– Contextual Modality: ACTUAL, HYPO-
THETICAL, HEDGED or GENERIC

– Degree: MOST, LITTLE or N/A
– Polarity: POS or NEG

– Type: ASPECTUAL, EVIDENTIAL or N/A
3Normalized time values (e.g. 2015-02-05) were originally

planned, but annotation was not completed in time.
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• Identifying temporal relations between events
and times, focusing on the following types:

– Relations between events and the doc-
ument creation time (BEFORE, OVER-
LAP, BEFORE-OVERLAP or AFTER), rep-
resented by DOCTIMEREL annotations in
the THYME corpus

– Narrative container relations (Pustejovsky
and Stubbs, 2011) between events and/or
times, represented by TLINK annotations
with TYPE=CONTAINS in the THYME cor-
pus

The evaluation was run in two phases:

1. Systems were given access only to the raw text,
and were asked to identify time expressions,
event expressions and temporal relations

2. Systems were given access to the raw text and
the manual event and time annotations, and were
asked to identify only temporal relations

4 Evaluation Metrics

All of the tasks were evaluated using the standard
metrics of precision (P ), recall (R) and F1:

P =
|S ∩H|
|S|

R =
|S ∩H|
|H|

F1 =
2 · P ·R
P + R

where S is the set of items predicted by the system
and H is the set of items manually annotated by the
humans. Applying these metrics to the tasks only
requires a definition of what is considered an “item”
for each task.

• For evaluating the spans of event expressions
or time expressions, items were tuples of (be-
gin, end) character offsets. Thus, systems only
received credit for identifying events and times
with exactly the same character offsets as the
manually annotated ones.

• For evaluating the attributes of event expres-
sions or time expressions – Class, Contextual

Modality, Degree, Polarity and Type – items
were tuples of (begin, end, value) where begin
and end are character offsets and value is the
value that was given to the relevant attribute.
Thus, systems only received credit for an event
(or time) attribute if they both found an event
(or time) with the correct character offsets and
then assigned the correct value for that attribute.

• For relations between events and the document
creation time, items were tuples of (begin, end,
value), just as if it were an event attribute. Thus,
systems only received credit if they found a
correct event and assigned the correct relation
(BEFORE, OVERLAP, BEFORE-OVERLAP or
AFTER) between that event and the document
creation time. Note that in the second phase of
the evaluation, when manual event annotations
were given as input, precision, recall and F1 are
all equivalent to standard accuracy.

• For narrative container relations, items were tu-
ples of ((begin1, end1), (begin2, end2)), where
the begins and ends corresponded to the char-
acter offsets of the events or times participating
in the relation. Thus, systems only received
credit for a narrative container relation if they
found both events/times and correctly assigned
a CONTAINS relation between them.

For attributes, an additional metric measures how
accurately a system predicts the attribute values on
just those events or times that the system predicted.
The goal here is to allow a comparison across systems
for assigning attribute values, even when different
systems produce very different numbers of events
and times. This is calculated by dividing the F1 on
the attribute by the F1 on identifying the spans:

A =
attribute F1

span F1

For the narrative container relations, additional met-
rics were included that took into account temporal
closure, where additional relations can be determin-
istically inferred from other relations (e.g., A CON-
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TAINS B and B CONTAINS C, so A CONTAINS C):

Pclosure =
|S ∩ closure(H)|

|S|

Rclosure =
|closure(S) ∩H|

|H|

Fclosure =
2 · Pclosure ·Rclosure

Pclosure + Rclosure

These measures take the approach of prior work (Uz-
Zaman and Allen, 2011) and TempEval 2013 (UzZa-
man et al., 2013), following the intuition that preci-
sion should measure the fraction of system-predicted
relations that can be verified from the human an-
notations (either the original human annotations or
annotations inferred from those through closure), and
that recall should measure the fraction of human-
annotated relations that can be verified from the sys-
tem output (either the original system predictions or
predictions inferred from those through closure).

5 Baseline Systems

Two rule-based systems were used as baselines to
compare the participating systems against.

memorize For all tasks but the narrative container
task, a memorization-based baseline was used.

To train the model, all phrases annotated as ei-
ther events or times in the training data were
collected. All exact character matches for these
phrases in the training data were then examined,
and only phrases that were annotated as events
or times greater than 50% of the time were re-
tained. For each phrase, the most frequently an-
notated type (event or time) and attribute values
for instances of that phrase were determined.

To predict with the model, the raw text of the
test data was searched for all exact character
matches of any of the memorized phrases, pre-
ferring longer phrases when multiple matches
overlapped. Wherever a phrase match was
found, an event or time with the memorized
(most frequent) attribute values was predicted.

closest For the narrative container task, a proximity-
based baseline was used. Each time expression

was predicted to be a narrative container, con-
taining only the closest event expression to it in
the text.

6 Participating Systems

Three research teams submitted a total of 13 runs:

BluLab The team from Stockholm University and
University of Utah participated in all tasks, us-
ing supervised classifiers with features gen-
erated by the Apache clinical Text Analysis
and Knowledge Extraction System (cTAKES)4.
Their runs differed in whether and how many
rules were used to constrain the search for nar-
rative container relations.

KPSCMI The team from Kaiser Permanente South-
ern California participated in the time expres-
sion tasks. Their runs compared an extended
version of the rule-based HeidelTime5 system
(run 1) with systems based on supervised classi-
fiers (run 2-3).

UFPRSheffield The team from Universidade Fed-
eral do Paraná and University of Sheffield par-
ticipated in the time expression tasks. Their
runs compared in-house rule-based systems (the
Hynx runs) to systems based on supervised clas-
sifiers (the SVM runs).

7 Human Agreement

We also give two types of human agreement on the
task, measured with the same evaluation metrics as
the systems:

ann-ann Inter-annotator agreement between the two
independent human annotators who annotated
each document. This is the most commonly re-
ported type of agreement, and often considered
to be an upper bound on system performance.

adj-ann Inter-annotator agreement between the ad-
judicator and the two independent annotators.
This is usually a better bound on system perfor-
mance in adjudicated corpora, since the models
are trained on the adjudicated data, not on the
individual annotator data.

4https://ctakes.apache.org
5https://code.google.com/p/heideltime/
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span span + class
Team P R F1 P R F1 A
Baseline: memorize 0.743 0.372 0.496 0.723 0.362 0.483 0.974
BluLab: run 1-3 0.797 0.664 0.725 0.778 0.652 0.709 0.819
KPSCMI: run 1 0.272 0.782 0.404 0.223 0.642 0.331 0.948
KPSCMI: run 2 0.705 0.683 0.694 0.668 0.648 0.658 0.948
KPSCMI: run 3 0.693 0.706 0.699 0.657 0.669 0.663 0.973
UFPRSheffield-SVM: run 1 0.732 0.661 0.695 0.712 0.643 0.676 0.977
UFPRSheffield-SVM: run 2 0.741 0.655 0.695 0.723 0.640 0.679 0.950
UFPRSheffield-Hynx: run 1 0.479 0.747 0.584 0.455 0.709 0.555 0.952
UFPRSheffield-Hynx: run 2 0.494 0.770 0.602 0.470 0.733 0.573 0.951
UFPRSheffield-Hynx: run 3 0.311 0.794 0.447 0.296 0.756 0.425 0.951
UFPRSheffield-Hynx: run 4 0.311 0.795 0.447 0.296 0.756 0.425 0.952
UFPRSheffield-Hynx: run 5 0.411 0.795 0.542 0.391 0.756 0.516 0.978
Agreement: ann-ann - - 0.690 - - 0.644 0.933
Agreement: adj-ann - - 0.774 - - 0.747 0.965

Table 2: System performance and annotator agreement on TIMEX3 tasks: identifying the time expression’s span
(character offsets) and class (DATE, TIME, DURATION, QUANTIFIER, PREPOSTEXP or SET). The best system score
from each column is in bold. The three BluLab runs are combined because they all have identical performance (since
they only differ in their approach to narrative container relations).

Precision and recall are not reported in these scenar-
ios since they depend on the arbitrary choice of one
annotator as the “human” (H) and the other as the
“system” (S).

Note that since temporal relations between events
and the document creation time were annotated at
the same time as the events themselves, agreement
for this task is only reported in phase 1 of the evalu-
ation. Similarly, since narrative container relations
were only annotated after events and times had been
adjudicated, agreement for this task is only reported
in phase 2 of the evaluation.

8 Evaluation Results

8.1 Time Expressions

Table 2 shows results on the time expression tasks.
The BluLab system achieved the best F1 at identify-
ing time expressions, 0.725. The other machine learn-
ing systems (KPSCMI run 2-3 and UFPRSheffield-
SVM run 1-2) achieved F1 in the 0.690-0.700
range. The rule-based systems (KPSCMI run 1 and
UFPRSheffield-Hynx run 1-5) all achieved higher
recall than the machine learning systems, but at sub-
stantial costs to precision. All systems outperformed
the memorization baseline in terms of recall, and all

machine-learning systems outperformed it in terms
of F1, but only the BluLab system outperformed the
baseline in terms of precision.

The BluLab system also achieved the best F1 for
predicting the classes of time expressions, though
this is primarily due to achieving a higher F1

at identifying time expressions in the first place.
UFPRSheffield-Hynx run 5 achieved the best accu-
racy on predicting classes for the time expressions
it found, 0.978, though on this metric it only outper-
formed the memorization baseline by 0.004.

Across the time expression tasks, systems did not
quite achieve performance at the level of human
agreement. For the spans of time expressions, the
top system achieved 0.725 F1, compared to 0.774
adjudicator-annotator F1, though almost half of the
systems exceeded the lower annotator-annotator F1

of 0.690. For the classes of time expressions, the
story was similar for F1, though several models ex-
ceeded the adjudicator-annotator accuracy of 0.965
on just the time expressions predicted by the system.

8.2 Event Expressions

Table 3 shows results on the event expression tasks.
The BluLab system outperformed the memorization
baseline on almost every metric on every task. The
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span span + modality span + degree
Team P R F1 P R F1 A P R F1 A
Baseline: memorize 0.876 0.810 0.842 0.810 0.749 0.778 0.924 0.871 0.806 0.838 0.995
BluLab: run 1-3 0.887 0.864 0.875 0.834 0.813 0.824 0.942 0.882 0.859 0.870 0.994
Agreement: ann-ann - - 0.819 - - 0.779 0.951 - - 0.815 0.995
Agreement: adj-ann - - 0.880 - - 0.855 0.972 - - 0.877 0.997

span + polarity span + type
Team P R F1 A P R F1 A
Baseline: memorize 0.800 0.740 0.769 0.913 0.846 0.783 0.813 0.966
BluLab: run 1-3 0.868 0.846 0.857 0.979 0.834 0.812 0.823 0.941
Agreement: ann-ann - - 0.798 0.974 - - 0.773 0.944
Agreement: adj-ann - - 0.869 0.988 - - 0.853 0.969

Table 3: System performance and annotator agreement on EVENT tasks: identifying the event expression’s span
(character offsets), contextual modality (ACTUAL, HYPOTHETICAL, HEDGED or GENERIC), degree (MOST, LITTLE or
N/A), polarity (POS or NEG) and type (ASPECTUAL, EVIDENTIAL or N/A). The best system score from each column
is in bold.

one exception was the semantic type of the event,
where the memorization baseline had a better preci-
sion and also a better accuracy on the classes of the
events that it identified.

The BluLab system got close to the level of
adjudicator-annotator agreement on identifying the
spans of event expressions (0.875 vs. 0.880 F1),
identifying the degree of events (0.870 vs. 0.877
F1), and identifying the polarity of events (0.857
vs. 0.869 F1), and it generally met or exceeded the
lower annotator-annotator agreement on these tasks.
There is a larger gap (3+ points of F1) between the
system performance and adjudicator-annotator agree-
ment for event modality and event type, though only
a small gap (<1 point of F1) for the lower annotator-
annotator agreement on these tasks.

8.3 Temporal Relations

Table 4 shows performance on the temporal relation
tasks. In detecting the relations between events and
the document creation time, the BluLab system sub-
stantially outperformed the memorization baseline,
achieving F1 of 0.702 on system-predicted events
(phase 1) and F1 of 0.791 on manually annotated
events (phase 2). In identifying narrative container re-
lations, the best BluLab system (run 2) outperformed
the proximity-based baseline when using system-
predicted events (Fclosure of 0.123 vs. 0.106) but
not when using manually annotated events (Fclosure

of 0.181 vs. 0.260). Across both phase 1 and phase
2 for narrative container relations, the top BluLab
system always had the best recall, while the baseline
system always had the best precision.

Annotator agreement was higher than system per-
formance on all temporal relation tasks. For rela-
tions between events and the document creation time,
adjudicator-annotator agreement was 0.761 F1, com-
pared to the best system’s 0.702 F1, though this sys-
tem did exceed the lower annotator-annotator agree-
ment of 0.628 F1. For narrative container relations
using manually annotated EVENTs and TIMEX3s,
the gap was much greater, with adjudicator-annotator
agreement at 0.672 Fclosure, and the top system (the
baseline system) at 0.260 Fclosure. Even the lower
annotator-annotator agreement of 0.475 Fclosure was
much higher than the system performance.

9 Discussion

The results of Clinical TempEval 2015 suggest that
a small number of temporal information extraction
tasks are solved by current state-of-the-art systems,
but for the majority of tasks, there is still room for im-
provement. Identifying events, their degrees and their
polarities were the easiest tasks for the participants,
with the best systems achieving within about 0.01
of human agreement on the tasks. Systems for iden-
tifying event modality and event type were not far
behind, achieving within about 0.03 of human agree-
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To document time Narrative containers
Without closure With closure

P R F1 P R F1 P R F1
Phase 1: systems are given only the raw text

Baseline: memorize 0.600 0.555 0.577 - - - - - -
Baseline: closest - - - 0.368 0.061 0.104 0.400 0.061 0.106
BluLab: run 1 0.712 0.693 0.702 0.085 0.080 0.082 0.100 0.099 0.100
BluLab: run 2 0.712 0.693 0.702 0.080 0.142 0.102 0.094 0.179 0.123
BluLab: run 3 0.712 0.693 0.702 0.084 0.086 0.085 0.090 0.103 0.096
Agreement: ann-ann - - 0.628 - - - - - -
Agreement: adj-ann - - 0.761 - - - - - -

Phase 2: systems are given manually annotated EVENTs and TIMEX3s
Baseline: memorize - - 0.608 - - - - - -
Baseline: closest - - - 0.514 0.170 0.255 0.554 0.170 0.260
BluLab: run 1 - - 0.791 0.100 0.104 0.102 0.117 0.128 0.123
BluLab: run 2 - - 0.791 0.109 0.210 0.143 0.140 0.254 0.181
BluLab: run 3 - - 0.791 0.119 0.137 0.128 0.150 0.155 0.153
Agreement: ann-ann - - - - - 0.449 - - 0.475
Agreement: adj-ann - - - - - 0.655 - - 0.672

Table 4: System performance and annotator agreement on temporal relation tasks: identifying relations between events
and the document creation time (DOCTIMEREL), and identifying narrative container relations (CONTAINS). The best
system score from each column is in bold.

ment. Time expressions and relations to the docu-
ment creation time were at the next level of difficulty,
with a gap of about 0.05 from human agreement.

Identifying narrative container relations was by
far the most difficult task, with the best systems
down by more than 0.40 from human agreement. In
absolute terms, performance on narrative container
relations was also quite low, with system Fclosure
scores in the 0.10-0.12 range on system-generated
events and times, and in the 0.12-0.26 range on
manually-annotated events and times. For compari-
son, in TempEval 2013, which used newswire data,
Fclosure scores were in the 0.24-0.36 range on system-
generated events and times and in the 0.35-0.56 range
on manually-annotated events and times (UzZaman
et al., 2013). One major difference between the cor-
pora is that the narrative container relations in the
clinical domain often span many sentences, while
almost all of the relations in TempEval 2013 were ei-
ther within the same sentence or across adjacent sen-
tences. Most past research systems have also focused
on identifying within-sentence and adjacent-sentence
relations. This focus on local relations might explain
the poor performance on the more distant relations

in the THYME corpus. But further investigation is
needed to better understand the challenge here.

In almost all tasks, the submitted systems substan-
tially outperformed the baselines. The one exception
to this was the narrative containers task. The base-
line there – which simply predicted that each time
expression contained the nearest event expression to
it in the text – achieved 4 times the precision of the
best submitted system and consequently achieved the
best F1 by a large margin. This suggests that future
systems may want to incorporate better measures of
proximity that can capture some of what the baseline
is finding.

While machine learning methods were overall the
most successful, for time expression identification,
the submitted rule-based systems achieved the best
recall. This is counter to the usual assumption that
rule-based systems will be more precise, and that
machine learning systems will sacrifice precision to
increase recall. The difference is likely that the rule-
based systems were aiming for good coverage, trying
to find all potential time expressions, but had too
few constraints to discard such phrases in inappro-
priate contexts. The baseline system is suggestive
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of this possibility: it has a constraint to only memo-
rize phrases that corresponded with time expressions
more than 50% of the time, and it has high preci-
sion (0.743) and low recall (0.372) as is typically
expected of a rule-based system, but if the constraint
is removed, it has low precision (0.126) and high
recall (0.521) like the participant rule-based systems.

Clinical TempEval was the first TempEval exercise
to use narrative containers, a significant shift from
prior exercises. Annotator agreement in the dataset
is moderate, but needs to be further improved. Sim-
ilar agreement scores were found when annotating
temporal relations in prior corpora (for TempEval or
using TimeML), although these typically involved
the application of more complex temporal relation
ontologies. The narrative container approach is com-
paratively simple. The low annotator-adjudicator
scores (i.e. below 0.90, a score generally recognized
to indicate a production-quality resource) suggests
that annotation is difficult independent of the num-
ber of potential temporal relation types. Difficulty
may lie in the comprehension and reification of the
potentially complex temporal structures described in
natural language text. Nevertheless, systems did well
on the DCT task, achieving high scores – similar to
the pattern seen in Task D of TempEval-2, which had
a comparable scoring metric.

Though the results of Clinical TempEval 2015
are encouraging, they were limited somewhat by the
small number of participants in the task. There are
two likely reasons for this. First, there were many
different sub-tasks for Clinical TempEval, meaning
that to compete in all sub-tasks, a large number of
sub-systems had to be developed in a limited amount
of time (six months or less). This relatively high
barrier for entry meant that of the 15 research groups
that managed to sign a data use agreement and obtain
the data before the competition, only 3 submitted sys-
tems to compete. Second, the data use agreement pro-
cess was time consuming, and more than 10 research
groups who began the data use agreement process
were unable to complete it before the evaluation.

In future iterations of Clinical TempEval, we ex-
pect these issues to be reduced. The next Clinical
TempEval will use the current Train and Dev data as
the training set, and as these data are already avail-
able, this leaves research teams with a year or more
to develop systems. Furthermore, arrangements with

the Mayo Clinic have been made to further expedite
the data use agreement process, which should signifi-
cantly reduce the wait time for new participants.
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Abstract

The 2015 Clinical TempEval Challenge ad-
dressed the problem of temporal reasoning
in the clinical domain by providing an anno-
tated corpus of pathology and clinical notes
related to colon cancer patients. The chal-
lenge consisted of six subtasks: TIMEX3 and
event span detection, TIMEX3 and event at-
tribute classification, document relation time
and narrative container relation classification.
Our BluLab team participated in all six sub-
tasks. For the TIMEX3 and event subtasks,
we developed a ClearTK support vector ma-
chine pipeline using mainly simple lexical fea-
tures along with information from rule-based
systems. For the relation subtasks, we em-
ployed a conditional random fields classifica-
tion approach, with input from a rule-based
system for the narrative container relation sub-
task. Our team ranked first for all TIMEX3
and event subtasks, as well as for the docu-
ment relation subtask.

1 Introduction

Temporal information extraction plays a crucial role
in improved information access, in particular for
creating timelines and detailed question answering.
Several previous natural language processing (NLP)
research community challenges have dealt with tem-
poral reasoning in the newswire domain (Verhagen
et al., 2010; UzZaman et al., 2013) and the clinical
domain (Sun et al., 2013).

The 2015 Clinical TempEval challenge (Bethard
et al., 2015) addressed temporal reasoning subtasks
similar to these previous efforts by providing a new

benchmark corpus in the clinical domain with anno-
tated pathology and clinical notes from colon can-
cer patients. The corpus is annotated with a modi-
fied version of the TimeML schema (Pustejovsky et
al., 2010), where adaptations specific to this domain
have been developed (Styler et al., 2014).

For successful temporal modelling, three core
concepts need to be defined: temporal expressions
(TIMEX3), denoting time references like dates;
events (EVENT), denoting salient occurrences; and
temporal relations (TLINK) denoting order (e.g.
before, after) between an event and/or TIMEX3.

As part of the 2012 i2b2/VA Challenge, the best
performing systems for classification of TIMEX3
(F1: 0.66), EVENTS (F1: 0.92), their attributes (av-
erage accuracy: 0.86) and TLINKS (F1: 0.69) ap-
plied regular expressions as well as machine learn-
ing approaches such as conditional random fields
(CRF) and support vector machines (SVM) (Sun et
al., 2013). For the 2013/2014 CLEF/ShARe Chal-
lenges, the best approaches for strict information
extraction (F1: detection and accuracy: normaliza-
tion) of TIMEXs (0.287 F1 and 0.354 accuracy),
disease/disorder EVENTS (0.750 F1 and 0.589 ac-
curacy), and EVENT attributes (0.676 F1 and 0.868
accuracy) leveraged the Apache cTAKES (Savova et
al., 2010) framework, Begin-Inside-Outside (BIO)
tagging, and CRF and SVM for (Pradhan et al.,
2015; Mowery et al., 2014).

The 2015 Clinical TempEval consisted of six sub-
tasks related to these core concepts: TIMEX3 span
(TS) and attribute (TA) classification, EVENT span
(ES) and attribute (EA) classification, document cre-
ation time (DR) and narrative container (CR) rela-
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tions. Our team participated in all six subtasks, with
the aim of benchmarking existing tools and methods
on this corpus for further development of semantic
processing of clinical notes. In this paper, we de-
scribe our system, its results, and an error analysis
for each of the challenge subtasks.

2 Methods

We received 293 training reports for system develop-
ment and 147 testing reports for blind system eval-
uation. For all subtasks, we extracted morphologi-
cal (lemma), lexical (tokens), and syntactic (part-of-
speech) features encoded from cTAKES. In the fol-
lowing sections, we enumerate additional subtask-
specific features from various NLP systems used to
train supervised learning (combined with rule-based
in some cases) approaches for each subtask.

2.1 TIMEX3, EVENTS, and their Attributes

A UIMA pipeline using ClearTK (Bethard et al.,
2014) was built for the subtasks TS, TA, ES and EA,
using SVM classifiers (Liblinear) with parameters
(C-value) set manually using a grid search. For TS,
a separate classifier was built for each TA type using
simple lexical features (the token itself in full and
without its ending (2 characters), part-of-speech tag,
numeric type, capital type, lower case, surrounding
tokens) and gazetteer information based partly on an
adapted version of HeidelTime (Strötgen and Gertz,
2013). Each token was classified as either B (Begin),
I (Inside) or O (Outside) using the ClearTK BIO-
chunking representation. Slightly different context
window sizes and gazetteer information were em-
ployed for each TA value. For ES, one classifier
was built for classifying tokens using the same BIO-
chunking representation, employing similar lexical
features and a context window size of ±2, as well
as a chunk type feature, followed by separate classi-
fiers for each EA value. The values for TA and EA
can be found in Table 1.

For EA, we used lexical features (similar to those
used for TS and ES) along with new features from
the pyConText system (Chapman et al., 2011). For
each non-default EA, we evaluated the predictive-
ness of each cue from the pyConText linguistic
knowledge base on the training set to determine its
association. For example, the “denies” predicts po-

Attribute Potential Values
TA: type *DATE, TIME,

DURATION, QUANTIFIER,
PREPOSTEXP or SET

EA: modality *ACTUAL, HEDGED,
HYPOTHETICAL or GENERIC

EA: degree *N/A, MOST
or LITTLE

EA: polarity *POS or NEG
EA: type *N/A, ASPECTUAL

or EVIDENTIAL

Table 1: Possible values for TIMEX3 attributes (TA) and
event attributes (EA). *default majority value.

larity: NEG. We eliminated cues that were not rel-
evant for the task e.g., experiencer. We then con-
ducted an error analysis on the training data for
missed cues and added them to the existing knowl-
edge base for final evaluation. These cues were pro-
vided to the SVM model in addition to section in-
formation and previous EA assignments for each ES.
For TA and EA, we used adapted versions of pyCon-
Text and HeidelTime as baselines.

2.2 DocTimeRel and Contains Relations

The challenge relation classification task consisted
of two subtasks: DocTimeRel (DR) and narrative
container relation (CR). For DR, the task was de-
fined to identify 4 classes: before, after, overlap, and
before/overlap which describe the relation between
the event mentioned in the document and the related
document time. For CR, the task was defined for the
contains class to recognize whether one event/time
mention in the document contains or is contained by
another.

We used token-level features for each sentence.
We parsed the cTAKES output to extract the fol-
lowing features: a binary feature indicating if the
token is the first token in the sentence, the token
lemma and normalization forms, its type of token
(word/punctuation/symbol/number/contraction) and
if it was tagged as any of the following semantic
types by cTAKES: medical, procedure, anatomical
site, sign/symptom, disease/disorder, and concept.
We also added a feature indicating whether the to-
ken was part of an event mention, a time mention, or
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none of these, extracted from the predictions (phase
1 in the challenge) or the gold annotations (phase 2).

We used CRF++1 for the DR task using the afore-
mentioned features along with a window of ±5 to-
kens for each feature as contextual features. For the
CR task, we aimed at integrating machine learning
(ML) and rule-based techniques as a potential solu-
tion. The search space was limited to three event
or time mentions in ascending sequential order from
the text to classify CR between two mentions. We
used CRF++ again for the machine learning part,
with the same token features as for DR. If two ad-
jacent mentions were located in separate sentences,
we merged the sentences to one.

For the rule-based part, we used the Moonstone
system. Moonstone is a language processing tool
which uses both a semantic grammar, and a rule en-
gine which can take as input (among other things)
the output of its grammatical parser (Christensen
and Chapman, 2015). We situated Moonstone in
a UIMA pipeline, along with the ClearTK predic-
tions for TS, TA, ES, and EA, to recognize potential
instances of the contains relation, using two rules
which can be paraphrased in English as follows:

• If a DATE annotation initiates a sentence, and an
EVENT annotation occurs anywhere in the fol-
lowing three sentences, with no intervening DATE
mention, then infer a CR between the two.

• If two EVENT annotations appear within a sen-
tence, and one appears commonly as the first argu-
ment in the training annotations denoting the con-
tains relation, and the second commonly appears as
the second contains argument in the training anno-
tations, then infer a CR between the two.

Finally, to integrate both techniques, we con-
ducted three runs. The first run (V1) was based en-
tirely on the ML solution. In the second run (V2),
we added the mentions extracted from the Moon-
stone rules to the V1 search space. In the third run
(V3), we started with the mentions extracted from
the Moonstone rules as an initial search space, then,
we added pairs randomly from the first run such that
each mention had maximum 3 nearest mentions in-
cluding those of the Moonstone rules (if any).

1http://crfpp.googlecode.com/svn/trunk/doc/index.html, ac-
cessed Jan. 26 2015

Subtask P R F1
TS 0.788 0.669 0.724
TS (b) 0.549 0.654 0.597
TA: type 0.772 0.658 0.710
TA (b): type 0.549 0.654 0.597
ES (*) 0.886 0.867 0.876
EA: modality 0.883 0.872 0.877
EA (b):modality 0.744 0.734 0.739
EA: degree 0.946 0.933 0.940
EA (b): degree 0.854 0.842 0.848
EA: polarity 0.931 0.919 0.925
EA (b): polarity 0.930 0.917 0.923
EA: type 0.894 0.883 0.888
EA (b): type 0.814 0.803 0.809

Table 2: Training set results for TIMEX3 span (TS), and
attributes (TA), event span (ES), and attributes (EA). (b)
= baseline. (*) For ES, no rule-based method was used as
baseline, only different feature settings in ClearTK.

Subtask P R F1
TS 0.797 0.664 0.725
TA: type 0.778 0.652 0.709
ES 0.887 0.864 0.875
EA: modality 0.834 0.813 0.824
EA: degree 0.882 0.859 0.870
EA: polarity 0.868 0.846 0.857
EA: type 0.834 0.812 0.823

Table 3: Test set results for TIMEX3 spans (TS), at-
tributes (TA), event spans (ES), and attributes (EA).

3 Results

We present results on the training data and the final
results on the test set for all challenge subtasks.

In Table 2, results on the training data for the
TIMEX3 (TS, TA) and EVENT (ES, EA) tasks are
shown, for the final ClearTK models that were used
for system submission, as well as baseline results us-
ing adapted versions of pyConText and HeidelTime.
The ClearTK modules resulted in improved perfor-
mance for all subtasks. Final results on the test set
are shown in Table 3.

For the relation subtasks DocTimeRel (DR) and
narrative containers (CR), results on the training
data are shown in Tables 4 and 5. For testing, two
phases were provided in the challenge: one where
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Subtask P R F1
DR: before 0.814 0.801 0.807
DR: overlap 0.836 0.818 0.827
DR: before-overlap 0.745 0.736 0.740
DR: after 0.808 0.796 0.802
Overall 0.801 0.788 0.794

Table 4: Results for all relation types (before, overlap,
before-overlap, after) for Document relation time (DR)
on the training data.

Subtask P R F1
CR: V1 0.118 0.124 0.121
CR: V2 0.142 0.266 0.185
CR: V3 0.160 0.176 0.168

Table 5: Results for the Contains relation (CR) on the
training data. V# indicates the run.

only plain text was given (#1), and one where gold
TIMEX3 and event annotations were given (#2). For
CR, final results were calculated with or without clo-
sure. In Table 6 final results on the two relation tasks
are shown.

Phase Subtask P R F1
1 DR 0.712 0.693 0.702

CR V1 0.100 0.099 0.100
CR V2 0.094 0.179 0.123
CR V3 0.090 0.103 0.096

2 DR - - 0.791
CR V1 0.117 0.128 0.123
CR V2 0.140 0.254 0.181
CR V3 0.150 0.155 0.153

Table 6: Results for DocTimeRel (DR) and narrative con-
tainer relations (CR) on the test set. During Phase 1, only
text was provided, while in Phase 2 manual EVENT and
TIMEX3 annotations were provided. V# indicates the
run. Results for CR are reported with closure.

4 Discussion

Our team had the highest F1 on all TIMEX3,
EVENT and DR subtasks in the 2015 Clinical Temp-
Eval challenge. Similar to other best performing
systems in previous temporal modelling challenges,
we applied CRF, SVM, and rule-based approaches,

using mostly simple features.

We observed moderate recall for TS which can
be attributed to missing words (“perioperative”) and
span errors (e.g. “early July” (gold) vs. “early July
apparently” (system)). TA values with very few
training examples (e.g. type: TIME) were diffi-
cult for both approaches, with the exception of PRE-
POSTEXP, which resulted in high F1 on the training
data. For ES, spanning issues were not the source for
errors as much as for TS. Most errors were due to
previously unseen words or contexts. For different
EA types, rare classes were problematic, e.g. de-
gree: LITTLE and MOST, but also distinguishing
subtle differences between modality: GENERIC,
HEDGED, and HYPOTHETICAL values.

In the DR subtask, we achieved high preci-
sion, recall, and F1 using simple cTAKES fea-
tures. Careful analysis of our outputs revealed that
some events have similar features with different re-
lation classes. Moreover, in some cases, the before-
overlap class was mistakenly recognized as before
or overlap which degraded the overall recognition
performance.

In the CR task, our second run (V2) performed
best overall, indicating that a combination of ma-
chine learning and rule-based approaches is useful
for this task. The main limitation of our approach is
to use exhaustive (blind) search to extract possible
pair relations. This results in many false positives
and decreases the overall performance. Also, Moon-
stone rules are still under development, and will be
further analyzed to increase accuracy.

Our aim was to benchmark existing tools and
methods on this corpus. Adaptations of rule-based
systems such as pyConText and HeidelTime proved
insufficient on their own for the event and TIMEX3
subtasks compared to machine-learning based ap-
proaches, but were useful as feature input. Simple
lexical features and cTAKES outputs were useful for
the SVM and CRF classification approaches on the
different subtasks. The narrative container relation
is a very challenging task, requiring further feature
engineering and analysis. We plan to further inves-
tigate and develop solutions where machine learn-
ing and rule-based approaches are combined, and to
evaluate performance on other similar corpora.
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Abstract

Building unified timelines from a collection of
written news articles requires cross-document
event coreference resolution and temporal re-
lation extraction. In this paper we present an
approach event coreference resolution accord-
ing to: a) similar temporal information, and
b) similar semantic arguments. Temporal in-
formation is detected using an automatic tem-
poral information system (TIPSem), while se-
mantic information is represented by means
of LDA Topic Modeling. The evaluation of
our approach shows that it obtains the highest
Micro-average F-score results in the SemEval-
2015 Task 4: “TimeLine: Cross-Document
Event Ordering” (25.36% for TrackB, 23.15%
for SubtrackB), with an improvement of up to
6% in comparison to the other systems. How-
ever, our experiment also showed some draw-
backs in the Topic Modeling approach that de-
grades performance of the system.

1 Introduction

Since access to knowledge is crucial in any domain,
connecting and time-ordering the information ex-
tracted from different documents is a very important
task. The goal of this paper is therefore to build or-
dered timelines for a set of events related to a tar-
get entity. In doing so, our approach is dealing with
two problems: a) cross-document event coreference
resolution and b) cross-document temporal relation
extraction.

In order to arrange event mentions in a timeline it
is necessary to know which event mentions co-refer

to the same event or fact and occur at the same mo-
ment. Our approach attempts to formalize the idea
that two or more event mentions co-refer if they have
not only temporal compatibility (the events occur at
the same time) but also semantic compatibility (the
event mentions refers to the same facts, location, en-
tities, etc.).

Of a set of event mentions in one or more texts,
our proposal groups together the event mentions that
(i) have the same or a similar temporal reference,
(ii) have the same or a similar event head word, and
(iii) whose main arguments refer to the same or sim-
ilar topics. In order to evaluate the system, we have
participated in the SemEval-2015 Task 4 “TimeLine:
Cross-Document Event Ordering”.

In the following sections we will present the the-
oretical background to our approach (section 2) and
the main technical aspects (sections 3 and 4). Then
we will present the results obtained (section 5) and
some conclusions.

2 Background

Two or more event mentions co-refer when they re-
fer to the same real fact or event. Two events can
denote the same fact whereas the linguistic mentions
have a different syntax structure, different words, or
even a different meaning. Whatever the case may be,
both event mentions must be semantically related.

An event mention is formed of an event head
(usually a verb or a deverbal noun) that is related
to a semantic structure (linguistically represented
as an argument structure with an agent, patient,
theme, instrument, etc., that is, the semantic roles)
in which there are some event participants (entities)
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and which is located in place and time (Levin and
Rappaport-Hovav, 2005; Hovav et al., 2010). The
meaning of an event mention is therefore not only
the meaning of the event head, but also the compo-
sitional meaning of all the components and their re-
lations: head, participants, time, place, etc.

In order to detect this semantic relation between
event mentions, previous papers have isolated the
main components of the event structure. For in-
stance, Cybulska and Vossen (2013) apply an event
model based on four components: location, time,
participant and action. Moreover, with regard to
temporal information, only explicit temporal ex-
pressions that appears in the text are considered,
but no temporal information is inferred by navigat-
ing temporal links. Bejan and Harabagiu (2014)
use a rich set of linguistic features to model the
event structure, including lexical features such as
head word and lemmas, class features such as PoS
or event class, semantic features such as WordNet
sense or semantic roles frames, etc. They use an
unsupervised approach based on a non-parametrical
Bayesian model.

3 Our Approach

In our approach we represent each event mention as
a head word (the event tag in the TimeML (Saurı́ et
al., 2006) annotation scheme) related to a temporal
expression (implicit or explicit), a set of entities (0
or more), and a set of topics that represents what the
event mention is referring to. This paper is focused
on temporal information processing and topic-based
semantic representation.

3.1 Temporal Information Processing

The TimeML (Saurı́ et al., 2006) annotation scheme
has now been adopted as a standard by a large num-
ber of researchers in the field of temporal informa-
tion annotation. It represents not only events and
temporal expressions, but also links (Pustejovsky et
al., 2003)

A manual annotation of event mentions and the
DCT of texts have been considered as an input of
the system, and an automatic system has been used
to perform the annotation with temporal expres-
sions and temporal links in order to be able to es-
tablish a complete timeline of the input texts. If

a plain text is considered, systems such TIPSem
(Temporal Information Processing using Semantics)
(Llorens et al., 2013; Llorens et al., 2012)1 are
able to automatically annotate all the temporal ex-
pressions (TIMEX3), events (EVENT) and links be-
tween them.

Once the temporal links have been established, all
the specific temporal information for each event is
inferred by means of temporal links navigation. This
information allows us to determine temporal com-
patibility between all the events considered.

3.2 Topic-based Semantic Representation
The meaning of each event structure has been rep-
resented by using Topic Modeling (Blei, 2012) on
a reference corpus. Topic modeling is a family of
algorithms that automatically discover topics from
a collection of documents. More specifically, we
apply the Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), which follows a bottom up approach.
Each word is assigned to a topic according to the
co-ocurrence words in the context (document) and
the topics assigned to this word in other documents.
In formal terms, a topic is a distribution on a fixed
vocabulary.

We have applied the LDA to the WikiNews cor-
pus.2 Each topic in this corpus is represented using
the twenty most prominent words.

4 Architecture of the System

Our approach to build timelines from written news
in English implies event coreference resolution by
applying three cluster processes in sequential order:
a temporal cluster, a lemma cluster, and a topic clus-
ter. It combines various resources:
• Named entity recognition, using OpeNER web

services.3

• TimeML automatic annotation of texts using
TipSEM system (Llorens et al., 2010).
• The NLTK4 verb lemmatizer based on Word-

Net (Fellbaum, 1998).
• The SENNA (Collobert et al., 2011) Semantic

Roles Labeling.
1http://gplsi.dlsi.ua.es/demos/TIMEE/
2https://dumps.wikimedia.org/enwikinews/
3http://www.opener-project.eu/

webservices/
4http://www.nltk.org/
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• The LDA Topic Modeling algorithm, using
MALLET (McCallum, 2002).

4.1 Target Entity Filtering
If the target entity filtering is to be performed then it
is first necessary to resolve the named entity recog-
nition and coreference resolution. This is done by
integrating the external OpeNER web services into
our proposal. More specifically, the components
applied in our proposal are the NER component,5

which identifies the names of people, cities, and mu-
seums, and classifies them in a semantic class (PER-
SON, LOCATION, etc.) and the coreference resolu-
tion component,6 whose objective is to identify all
those words that refers to the same object or entity.

Only those events that are part of sentences con-
taining the target entity or a coreference entity of the
target will be selected for the final timeline.

4.2 Temporal Clustering Approach
A plain text was considered and we use the TIPSem
system to automatically annotate all the temporal
expressions (TIMEX3), events (EVENT) and links
between them. The TLINKS annotated in the text
are used in order to extract the time context of
each event and make it possible to infer both time
at which each event occurs and the temporal or-
dering between the events in the text. Moreover,
if we are able to determine the time of the event,
we will be able to determine temporal compatibil-
ity between events, even when they are contained
in different documents, thus signifying that cross-
document event coreference resolution is also possi-
ble.

In this first step, all the events from the differ-
ent documents that occurring on the same date will
therefore be part of the same cluster. The clusters are
positioned in ascending ordered based on the date
assigned.

4.3 Semantic Clustering Based on Lemmas
Once all the events that share temporal information
and the target entity have been grouped together, we
apply a simple clustering based on head word lem-
mas. This lemma-based clustering groups together
all event mentions with the same head word lemma,

5http://opener.olery.com/ner
6http://opener.olery.com/coreference

the same temporal information and the same target
entity. We therefore assume that all these event men-
tions corefer to the same event. This is our Run 1 at
the competition.

4.4 Semantic Clustering Based on Topics

The problem of the lemma-based cluster is that it
does not take into account the argument structure of
the event. This last clustering therefore attempts to
solve this problem by extracting the semantic roles
from each event and representing their meaning by
using topics on a reference corpus. This approach
has three steps:

1. Using SENNA (Collobert et al., 2011) as Se-
mantic Roles Labeling, we have detected roles
A0 and A1.7 which are related to the event
mention head word. For each role we extract
only the nouns.

2. We have extracted 500 topics from WikiNews
using Topic Modeling with MALLET. All
these topics are used as a knowledge base. We
will use only the most representative words for
each topic (the twenty words with the greatest
weight) and the weights that they have in each
topic.

3. Finally, we have created an event-topic matrix.
Each event (raws) is represented by a vector.
The values of the vector are the addition of
weights of each argument noun in each topic
(columns).

For example, if the nouns in arguments A0 and
A1 are “users, problems, phones”, we represent their
meanings according to the topics tn assigned to them
by applying LDA to WikiNews (user = t0, t3, t5,
problems = t0, t2, phones = t5, t6, etc). Then,
the event e of this sentence is represented by a n-
dimensional vector in which n is the amount of
topics (500) and whoses values are the addition of
weight of each noun in each topic Tn.

In order to group together similar event mentions,
we have applied a k-means clustering algorithm to
these event vectors.8 The distance metric used has

7In order to represent Semantic Roles, SENNA uses the tag
set proposed by Proposition Bank Project (http://verbs.
colorado.edu/˜mpalmer/projects/ace.html) A0
and A1 represent the main roles related to each verb.

8Note that it has been applied only to the events previously
clustered following the lema-based approach (Run 1).
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been Euclidean Distance. The number of cluster
has been adjusted to two.9 Therefore, each cluster
with the same head word lemma, the same tempo-
ral information and the same target entity is then re-
clustered according to the similarity of the main top-
ics of its arguments. This cluster corresponds to our
Run 2 at the competition.

5 Evaluation Results

SemEval-2015 Task 4 consists on building timelines
from written news in English in which a target entity
is involved. The input data provided by the organiz-
ers is therefore a set of documents and a set of target
entities related to those documents. Two different
tracks are proposed in the task, along with their sub-
tracks:
• Track A: This consists of using raw texts as in-

put and obtaining full timelines. Subtrack A
has the same input data, but the output will be
the timeLines of only ordered events (no as-
signment of time anchors).
• Track B: This consists of using texts with man-

ual annotation of events mentions as input data.
Subtrack B has the same input data but the out-
put will be timeLines of only ordered events.

In the Semeval-2015 Task 4 competition we have
participated in Track B and Subtrack B. The results
for the Micro-average F-score measure obtained by
our approach in the competition are shown in Table
1.

TRACK Corpus1 Corpus2 Corpus3 Total
TrackB-R1 22.35 19.28 33.59 25.36
TrackB-R2 20.47 16.17 29.90 22.66
SubTrackB-R1 18.35 20.48 32.08 23.15
SubTrackB-R2 15.93 14.44 27.48 19.18

Table 1: Results for GPLSIUA Approach.

Although the Micro-FScore results are not very
high, the results obtained by our approach are the
highest in all of the corpus evaluated by the organiz-
ers. Our approach obtained an improvement of 7%
compared with the other participant in Track B and
a 6.48% in Subtrack B.

9We have used PyCluster tool: https://pypi.
python.org/pypi/Pycluster

6 Conclusions

The results show that our approach is suitable for the
task in hand. On the one hand, temporal information
is automatically extracted with a temporal informa-
tion processing system which makes it possible to
infer and determine the time at which each event has
occurred. On the other hand, the semantic similar-
ity based on the verb is sufficient to group together
coreferent events.

The basic method (Run 1), consisting of search-
ing for similar verb lemma, eventually proved to be
the best. We have therefore carried out an in-depth
analysis of the results obtained for Run 2 and have
observed three main drawbacks in the Topic Model-
ing approach:
• The K-means algorithm forces us to fix the

number of clusters beforehand, and this has
been fixed at 2. However, there is often only
one correct cluster. Another approach without
a fixed number of topics will improve the ap-
proach. Bejan and Harabagiu (2014), for ex-
ample, suggest inferring this value from data.
• The representativity of each event mention de-

pends directly on the amount of topics ex-
tracted from the reference corpus. Many top-
ics will produce excessive granularity, and few
topics will be unrepresentative. We have set
the number of topics at 500, but it is necessary
to study whether another amount of topics will
improve the results.
• This approach depends excessively on the rep-

resentativity of the reference corpus. We be-
lieve using larger corpora should improve the
results.

As Future work, we plan to use other similarity
measures and clustering algorithms in an attempt
to solve the problem of previously fixed number of
clusters. We also plan to evaluate using different
Topic Modeling configurations.
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Abstract

In this paper, we give an overview of our
participation in the timeline generation task
of SemEval-2015 (task 4, TimeLine: Cross-
Document Event Ordering). The main goals
of this new track are, given a collection of
news articles and a so-called target entity, to
determine events that are relevant for the en-
tity, to resolve event coreferences, and to order
the events chronologically. We addressed the
sub-tasks, in which event mentions were pro-
vided, i.e., no additional event extraction was
required. For this, we developed an ad-hoc ap-
proach based on a temporal tagger and a coref-
erence resolution tool for entities. After de-
termining relevant sentences, relevant events
are extracted and anchored on a timeline. The
evaluation conducted on three collections of
news articles shows that our approach – de-
spite its simplicity – achieves reasonable re-
sults and opens several promising issues for
future work.

1 Introduction

Due to the tremendous amount of documents being
constantly published on the Internet, there is a need
for more enhanced search facilities to retrieve rel-
evant information. Consider, for example, a user
looking for information about the “Golden Globe
Awards”. It might be possible that the user’s in-
formation need is about the recent “72nd edition”.
However, it is also reasonable to assume that the user

∗The work was done during an internship at Heidelberg
University.

would appreciate relevant information about previ-
ous editions. Thus, presenting search results for
time- and event-sensitive information needs in the
form of a complete and updatable timeline would
be a promising approach. While this issue is tack-
led by some applications, early techniques required
manual effort (Shahar and Musen, 1992) and recent
approaches rely on heavily structured information
such as Google’s entity-related search results, which
are based on Google’s knowledge graph (Singhal,
2012). However, instead of listing only structured
knowledge on a timeline, e.g., winners of the 71st
Golden Globes in our example, search results would
become much more valuable when adding tempo-
rally anchored event information extracted from text
documents (e.g., recent updates about the event).

In the SemEval task 4,1 the goal is to detect all
events in a document collection that are relevant for
a target entity, and to anchor these events on a time-
line. Thus, events are to be sorted chronologically,
and, if possible, specific dates are to be assigned to
the events. As in previous SemEval tasks addressing
temporal relation extraction, namely in the Temp-
Eval series (see, e.g., Verhagen et al., 2010), the
TimeML event definition is used. However, a special
focus is now put on the cross-document aspect, i.e.,
on cross-document event coreference resolution and
cross-document temporal relation extraction. While
the document collection contains news articles, tar-
get entities can be persons, organizations, products,
or financial entities.

The organizers offered the task in two tracks.
While the final goals of timeline construction are

1http://alt.qcri.org/semeval2015/task4/
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identical in both tracks, systems addressing track A
had to extract event mentions, while event annota-
tions were provided to participants of track B. Fur-
thermore, both tracks were evaluated with and with-
out assigning explicit temporal information to the
events. Since we participated in track B, the main
challenges for our approach were to

• filter events relevant for the target entities,
• assign date information to relevant events,
• determine cross-document event coreferences,
• and to construct a timeline for each entity.
In the following section, we describe our ap-

proach and give an example for cross-document
event ordering. In Section 3, we present and ana-
lyze the official evaluation results. Finally, we dis-
cuss open issues for future research in the context of
cross-document timeline construction.

2 Cross-document Event Ordering

Given a set of documents and a set of target entities,
the task is to build an event timeline for each entity.
Documents are provided with annotated sentences,
which may contain several event annotations.

2.1 System Architecture
We implemented an ad-hoc approach for both the re-
trieval and the anchoring of relevant events. Figure 1
illustrates the general architecture of our approach.
Our system is based on five main components:

• Matching: In this step, we identify sentences in
the document collection, in which parts of the
target entity name occur. Furthermore, we use
the cosine similarity matching function with a
threshold to not select sentences that contain
too few parts of the entity name. The result of
this step is a list of sentences with event candi-
dates for the timeline of the target entity.

• Coreference resolution: To avoid extracting
event candidates only from sentences in which
parts of the entity name occur explicitly, we
apply entity coreference resolution using the
Stanford CoreNLP tool (Lee et al., 2013; Man-
ning et al., 2014). Thus, sentences, in which
other terms, e.g., pronouns, are used to refer to
the target entity, can be added to the list of sen-
tences with event candidates.

Figure 1: General architecture of our approach.

• Temporal tagging: To extract and normalize
temporal expressions, HeidelTime (Strötgen
and Gertz, 2013) is applied. If a temporal ex-
pression cooccurs with an event candidate in a
sentence, the event is anchored at the respective
point in time. If no expressions are detected in
a sentence, we use the document creation time
as anchor date for respective events.

• Filtering: Since the first steps result in many
event candidates, we aim to filter out non rel-
evant events to improve the precision of our
approach. Using a threshold for the token dis-
tance between the event and the closest term re-
ferring to the target entity, we prune events for
which it is unlikly that the entity is involved.

• Cross-document event clustering: Finally, all
events anchored at the same point in time with
identical covered text are clustered.

We apply several filtering techniques in order to
prune non relevant sentences and events. These
thresholds were tuned using the trial data provided
by the organizers. Since the performance of our sys-
tem depends on these parameters, we submitted two
runs with different configurations:

• HeidelToul NonTolMatchPrune: The first run
uses a non-tolerant pruning setting with low
values for the thresholds and distances.

• HeidelToul TolMatchPrune: The second run
performs a more tolerant pruning of events and
sentences using quite high thresholds.
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anchor date event rel
1 1994 8983-13-flight 1
2 2000-02 4764-6-received 0
2 2000-02 4764-6-announced 1
3 2004-11-24 1173-6-negotiations 0
... ... ... ...
9 2008 8983-14-development 0
9 2008 8983-14-scheduled 0

Table 1: Timeline excerpt returned for Boeing 777.
Events are either relevant (1) or not (0).

Evaluation results are discussed in Section 3.

2.2 Timeline Construction Example

Table 1 shows some events of the timeline con-
structed by our system for the entity Boeing 777.
The listed events are extracted from the document
parts depicted in Figure 2. Events mentioned in the
timeline are surrounded by boxes, and (parts of) the
entity mentions are underlined. In the following, we
explain the timeline and the reasons for incorrectly
returned and anchored events.

The first column of the timeline refers to the rank
of the events, the second contains the dates in which
events are anchored, and the third corresponds to
the events that are detected as relevant for the tar-
get entity. Each event of the timeline is represented
by the document id and sentence id from which it
was extracted, and the covered text of the event men-
tion. For instance, our system correctly determines
the event flight as chronologically first relevant event
(rank 1) occurring in 1994. It was extracted from
sentence 13 of document 8983 (c.f. Figure 2c).

If two events are simultaneous, they can be asso-
ciated with the same rank, as the second and third
event. If a systems fails to extract the anchor dates
of relevant events, these should be returned at rank 0
and are ignored in the evaluation.

Using the excerpts in Figure 2, we explain why
events in Table 1 have been selected as relevant for
Boeing 777. All sentences contain only substrings
of the target entity name, i.e., the full entity name
never occurs. For instance, sentence 13 of docu-
ment 8983 contains the string 777 while sentence 14
contains the string Boeing. As explained above, we
used substring matching with a threshold and coref-
erence resolution to increase the number of poten-

(a) Doc. #1173: Internal emails expose Boeing . . .

(b) Doc. #4764: Boeing unveils long-range 777.

(c) Doc. #8983: Boeing secures $11bn of aircraft deals.

Figure 2: Three document excerpts with sentences
containing events returned for entity Boeing 777.

tially relevant events. While for many target enti-
ties, it is important to not require a full entity name
(e.g., for persons), the term Boeing in the three doc-
ument excerpts never refers to Boeing 777, resulting
in some non-relevant events in our timeline. Note,
however, that relying on strict entity matching, no
event could be extracted from the sentences shown
in Figure 2, and that some events considered as not
relevant in the gold standard are at least debatable,
e.g., received: Although our anchor date is incorrect
(it should be the document creation time of the arti-
cle due to so far), the event is relevant for the target
entity since Boeing 777 is the subject of the orders.

3 Experimental Results and Discussion

The evaluation data consists of 3 sets of 30 doc-
uments from Wikinews annotated with event men-
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MICRO-FSCORE details (overall)

track run corpus 1 corpus 2 corpus 3 overall precision recall

TrackB GPLSIUA 1 22.35 19.28 33.59 25.36 21.73 30.46
TrackB GPLSIUA 2 20.47 16.17 29.90 22.66 20.08 26.00
TrackB HeidelToul NTMP2 19.62 7.25 20.37 17.03 20.11 14.76
TrackB HeidelToul TMP3 16.50 10.94 25.89 18.34 13.58 28.22

SubTrackB GPLSIUA 1 18.35 20.48 32.08 23.15 18.90 29.85
SubTrackB GPLSIUA 2 15.93 14.44 27.48 19.18 16.19 23.52
SubTrackB HeidelToul NTMP 12.23 14.78 16.11 14.42 19.58 11.42
SubTrackB HeidelToul TMP 13.24 15.88 21.99 16.67 12.18 26.41

Table 2: Official results of participating groups in SemEval 2015 task 4. 2NonTolMatchPrune: non tolerant
matching and pruning setting; 3TolMatchPrune: tolerant matching and pruning setting (cf. Section 2.1).

tions and a total of 38 target entities. Our system
ranked second among only two participating groups.

While there have been a total of four teams
participating in the task, only two participated in
(sub)track B. Participants of (sub)track A addition-
ally performed event extraction so that a comparison
between results of all four participants is not possi-
ble. Thus, in Table 2, we only present the results of
the two teams that addressed (sub)track B.

Table 2 (left) reports the results by means of
Micro-FSCORE obtained by our runs and that of
the other participating group. As shown, our system
is outperformed by the system “GPLSIUA” for both
settings. The performance difference is most signif-
icant for corpus 2, especially within TrackB. How-
ever, we notice that our tolerant setting gives better
overall results than the non tolerant one. These im-
provements are less significant for corpora 1 and 2
than for corpus 3.

To get a deep understanding of the results, we re-
port in Table 2 (right) the overall precision and recall
values for our system configurations and that of the
other participating group. Our non tolerant setting is
slightly outperformed by the run ”GPLSIUA 1” in
terms of precision for trackB. However, it relatively
enhances the other runs within the SubTrackB. This
can be explained by the important number of rele-
vant retrieved events due to the high values of dis-
tances and thresholds used to prune the events. In
contrast, in terms of recall, our tolerant setting per-
forms better than the non tolerant one in both sub-
tracks. Actually, this is not surprising given that the
filtering techniques are not strict.

Interestingly, an in-depth analysis of the nature of

the target entities and the types of temporal expres-
sions in the documents for which our system fails
to provide good timeline, may help to improve the
overall performance of our system in the future. For
instance, for the target entities “Boeing 777” and
“Airbus A380” in corpus 1, we obtained the lowest
values in terms of MicroFSCORE among all target
entities. Clearly, this is due to the partial matching
technique we used, which results in the extraction of
many events related to other entities (e.g., “Boeing
787” instead of “Boeing 777”; cf. Table 1 and Fig-
ure 2). Moreover, all events that do not cooccur with
a temporal expression in the same sentence are an-
chored at the document creation time by our system.
This hurts the performance of our system in partic-
ular for TrackB, because many of those events are
placed at rank 0 in the gold standard.

4 Conclusions

In this paper, we presented an overview of our
participation in the timeline generation task of
SemEval-2015. We proposed a baseline approach
for the extraction and anchoring of events. Our sys-
tem is evaluated using three corpora of news articles
and shows reasonable results.

Interesting future work to improve our approach
could include a fine tuning of the matching function
as well as the filtering parameters used to prune non
relevant events. In addition, more sophisticated en-
tity disambiguation could further improve the per-
formance of our system.
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Abstract 

This paper presents the HITSZ-ICRC system 
designed for the QA TempEval challenge in 
SemEval-2015. The system used an integra-
tion approach to annotate temporal informa-
tion by merging temporal annotation results 
from different temporal annotators. TIPSemB, 
ClearTK and TARSQI were used as temporal 
annotators to get candidate temporal annota-
tion results. Evaluation demonstrated that our 
system was effective for improving the per-
formance of temporal information annotation, 
and achieved recalls of 0.18, 0.26 and 0.19 on 
Blog, News and Wikipedeia test sets. 

1 Introduction 

The QA TempEval  (Llorens et al., 2015) in Se-
mEval-2015 is a temporal information annotation 
challenge, which is a follow-up task after Tem-
pEval-1 (Verhagen et al., 2007), TempEval-2 
(Verhagen et al., 2010) and TempEval-3(UzZaman 
et al., 2013). QA TempEval task is similar to the 
task ABC in TempEval-3, requires participant sys-
tem (1) extracting and normalizing temporal ex-
pressions, (2) extracting events and (3) identifying 
temporal relations on plain documents. Temporal 
information annotation should follow TimeML 
scheme (Pustejovsky et al., 2003a). Difference be-
tween QA TempEval task and task ABC in Tem-
pEval-3 is evaluation method: in all previous 
TempEval tasks, annotated result was evaluated by 
the temporal information annotation accuracy 
based on manually annotated test corpus; in QA 
TempEval, annotated result was evaluated by tem-
poral question-answering(QA) accuracy in the giv-
en temporal QA system (UzZaman et al., 2012) 

based on temporal knowledge produced from par-
ticipant’s annotation. 

Temporal annotation is useful in information re-
trieval, QA, natural language understanding and so 
on. A lot of researches have been attracted on this 
topic in the past years. Many methods were pro-
posed and many toolkits were implemented for 
temporal information annotation.  

TIMEN (Llorens et al., 2012a) is a community-
driven tool using rule-based method based on 
knowledge base to solve the temporal expression 
normalization problem. TARSQI Toolkit (Verha-
gen and Pustejovsky, 2008) is a modular system 
for automatic temporal information annotation. 
The toolkit can extract temporal expressions, 
events and recognize temporal relations by its dif-
ferent components. Llorens et al. (2010) used CRF 
models based on semantic information to annotate 
temporal information according to TimeML 
scheme, and their TIPSem system got outstanding 
performance results in TempEval-2. Steve (2013) 
piped machine-learning models in his ClearTK 
system to annotate temporal information using a 
small set of features. His system got best perfor-
mance for temporal relation identification in Tem-
pEval-3. The TIMEN toolkit was integrated into 
the ClearTK system for temporal expression nor-
malization. Llorens et al. (2012b) proposed an au-
tomatic method to improve the correctness of each 
individual annotation by merging different annota-
tion results with different strategies.  

This paper described the method HITSZ-ICRC 
system used for QA TempEval challenge. This was 
first time for HITSZ-ICRC team to do the temporal 
annotation task. An integration approach was cho-
sen to get improved annotation result on currently 
available temporal annotation toolkits for QA 
TempEval task. Annotation results from those 
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toolkits were merged using a temporal annotation 
merging method (Llorens et al., 2012b). 

The remainder of this paper is structured as fol-
lows: Section 2 describes the system modules used 
for temporal information annotation. Section 3 in-
troduces the data sets and toolkits used, explains 
and analysis the evaluation results. Section 4 con-
cludes the paper. 

2 Integration Approach for Temporal In-
formation Annotation 

QA TempEval task required participant system to 
annotate temporal expressions, events and tempor-
al relations following TimeML scheme.  

Many toolkits are available for temporal infor-
mation annotation, such as TARSQI (Verhagen 
and Pustejovsky, 2008), ClearTK (Bethard, 2013)  
TIPSemB (Llorens et al., 2010) and so on. Each 
toolkit can be used as a temporal annotator to get 
candidate annotation result.  

But annotation results from current toolkits can-
not be used for QA TempEval directly because 
some annotations do not in the TimeML format. 
For example, time expression normalization values 
in some results are in independent format, such as 
“20140804AF”, should be as “2014-08-04TAF”; 
some time expressions are not normalized and are 
set to “default_norm” or no value; some toolkits 
change source text content after annotating tem-
poral information, such as changing adjacent spac-
es to single space. So an annotation corrector 
module is necessary to correct candidate annota-
tion results. 

Automatic method proposed by Llorens et al. 
(2012b) was employed to merge annotation results 
from different annotators. The method used 
weighted voting techniques to merge temporal an-
notations. Weight for each candidate result and 
threshold for choosing final annotation were varia-
ble. Element in merged result should get weight 
above the threshold. Based on different weight and 
threshold settings, merged results can satisfy dif-
ferent requirements: such as high recall, high pre-
cision and balanced precision and recall. 

Annotation toolkits and the results merging me-
thod were used to get final annotation result.  Steps 
to get final result are as follows: 

Step1: re-training models with train dataset for 
temporal annotator; 

Step2: annotating temporal information on test 
data using each annotator; 

Step3: correcting annotation results from all an-
notators using temporal annotation corrector; 

Step4: integrating all candidate annotation re-
sults to get final temporal annotation result using 
temporal result merger. 

The temporal information annotation process of 
our system is shown in figure 1. 

 

Figure 1. Temporal annotation process. 

Annotation module used three temporal annota-
tors here. The function of this module is for getting 
candidate temporal annotation results using differ-
ent annotators. 

Corrector module corrects all annotated results 
following TimeML scheme. Its functions include: 
(1) changing format of temporal expression values 
to TimeML format; (2) normalizing temporal ex-
pressions which have no value; (3) removing tem-
poral expression tags which cannot be normalized, 
and removing the related temporal links at same 
time; (4) removing temporal entity tags with class 
labels not in TimeML label set and removing the 
related temporal links; (5) removing temporal links 
with class labels not in TimeML label set; (6) cor-
recting the text content to source  text. 

The TimeML merger module used the temporal 
annotation merging method to merge annotation 
results. The F1 value for different annotators eva-
luated on develop data was used as voting weights. 
For QA TempEval task, high recall annotation re-
sult will be more effective, so high recall settings 
for the merging method were chosen. Different 
weight and threshold setting strategies were tried, 
which include: (1) Best F1 prior voting: the anno-
tation chose as final result should be annotated by 
the best F1 annotator or at least two annotators; (2) 
Better F1 prior voting: the annotation chose as fi-

831



nal result should be annotated by at least one anno-
tator except the worst F1 annotator; (3) Union: the 
annotation chose as final result should be anno-
tated by at least one annotator. 

3 Results Evaluation 

3.1 Dataset and toolkits 

Train dataset provided for QA TempEval task is 
the same dataset in TempEval-3, includes TBAQ-
cleaned dataset and TE3-Platinum (UzZaman et al., 
2013) dataset. TBAQ-cleaned contains cleaned and 
improved AQUAINT and TimeBank corpus (Pus-
tejovsky et al., 2003b). The TE3-Platinum is the 
evaluation corpus for TempEval-3 manually anno-
tated by organizers. All the datasets are annotated 
in TimeML format. 

The test dataset was in TempEval-3 format, and 
includes 28 plain text documents in Blog (8 docu-
ments), News (Wikinews, NYT, WSJ) (10 docu-
ments) and Wikipedia (10 documents). 

Results evaluation was based on 294 temporal 
questions, 65 questions for Blog documents, 99 for 
News and 130 for Wikipedia. The question set was 
created by human experts based on the test docu-
ments. Annotated result was evaluated by the tem-
poral QA system (UzZaman et al., 2012) using the 
question set. 

The three annotation toolkits TARSQI, ClearTK 
and TIPSemB were used as temporal annotators. 
Default models in the toolkits were used for 
TARSQI and TIPSemB. Models in ClearTK were 
re-trained with the training data. In merging step, 
the temporal annotation merging toolkit (Llorens et 
al., 2012b) was used to get the final result. 

3.2 Measures 

Answers’ precision (P), recall (R), and F1 value 
(F1) of the temporal QA system are used to eva-
luate annotation results. Recall is used as the main 
metric to sort results and F1 is used as secondary 
metric. 

P, R and F1 are calculated as: 
_

_

num correct
P

num answered
                          (1) 

_

_

num correct
R

num questions
                           (2) 

2
1

P R
F

P R

 



                               (3) 

where num_correct is the number of questions cor-
rectly answered by the temporal QA system based 
on temporal knowledge produced from partici-
pant’s annotation result; num_answered is the 
number of questions answered by the temporal QA 
system based on participant’s annotation result; 
num_questions is the number of test questions used 
in the temporal QA system.  

3.3 Evaluation results with QA TempEval 

Giving a test document, firstly it was annotated by 
three temporal annotators separately, including 
ClearTK, TIPSemB and TARSQI; then the anno-
tated results were corrected to follow TimeML 
scheme by corrector module and were used as can-
didate results; finally, the three candidate results 
were merged using three different strategies. The 
models in ClearTK toolkit were trained with 
TBAQ-cleaned dataset. 

Six results from different annotators and merg-
ing strategies were compared, including three re-
sults annotated by different annotators and three 
results annotated by different merging strategies. 
For the system had not been finished before sub-
mission deadline, only the result of TARSQI was 
submitted to QA TempEval challenge.  

The evaluation results for the six temporal anno-
tation results are shown in table 1, 2 and 3 in do-
main Blog, News and Wikipedia separately. awd% 
is the percentage of the answered questions and 
corr is the number of correct answers. 

Run TARSQI, TIPSemB and ClearTK is the re-
sult annotated by corresponding temporal annota-
tor. Run BSTF_VOTE, BTRF_VOTE and 
RES_UNION is the result produced with different 
merging strategies.  

F1 value of each annotator result was used as its 
weight in merging step. BSTF_VOTE is the result 
merging with best F1 prior voting strategy. 
BTRF_VOTE is the result with better F1 prior vot-
ing strategy. RES_UNION is the result with union 
strategy. 

Results in table 1, 2 and 3 shows that perfor-
mance of all merged results are better than results 
annotated by single annotator in each test domain. 
It means integration approach is effective for im-
proving temporal information annotation perfor-
mance. The union strategy performs best in all the 
six run results in all domains. So merging results 
from all annotators with union strategy is an effec-
tive way to get better annotation results based on 
QA TempEval evaluation method. 
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Run 
Measures Questions 

P R F1 awd% corr
TARSQI 0.17  0.02  0.03  0.09 1
TIPSemB 0.37  0.11  0.17  0.29 7
ClearTK 0.55  0.09  0.16  0.17 6
BSTF_VOTE 0.34  0.17  0.23  0.49 11
BTRF_VOTE 0.30  0.15  0.20  0.51 10
RES_UNION 0.36  0.18  0.24  0.51 12

Table 1. Evaluation results on Blog test data. 

Run 
Measures Questions 

P R F1 awd% corr
TARSQI 0.47  0.08  0.14  0.17 8
TIPSemB 0.55  0.18  0.27  0.33 18
ClearTK 0.53  0.08  0.14  0.15 8
BSTF_VOTE 0.51  0.24  0.33  0.47 24
BTRF_VOTE 0.49  0.23  0.32  0.47 23
RES_UNION 0.51  0.26  0.35  0.52 26

Table 2. Evaluation results on News test data. 

Run 
Measures Questions 

P R F1 awd% corr
TARSQI 0.83  0.08  0.14  0.09 10
TIPSemB 0.41  0.11  0.17  0.26 14
ClearTK 0.57  0.06  0.11  0.11 8
BSTF_VOTE 0.48  0.18  0.26  0.37 23
BTRF_VOTE 0.48  0.18  0.26  0.37 23
RES_UNION 0.54  0.19  0.28  0.35 25

Table 3. Evaluation results on Wikipedia test data. 

Evaluation results show that annotation results 
from different annotators could be used to improve 
temporal information annotation performance by 
results merging. The precision of all merging re-
sults cannot achieve to the highest, and are lower 
than some annotator results. It means that the 
merging step merged wrong annotation into final 
result. The merging strategies tried in our experi-
ments were more effective on improving the recall 
of temporal information annotation, which in-
creased the chance that the temporal question 
could be answered, but were useless for question 
answering precision. So balancing the precision 
and recall is necessary for improving the perfor-
mance of annotation results merging. Improving 
performance of single annotator also is important 
job for getting better final annotation result. We 
have tried the integration approach using results of 
the top 3 best performance systems in QA Tem-

pEval challenge(Llorens et al., 2015), and the re-
sult still can be improved.  

4 Conclusions 

We used an integration approach to annotate tem-
poral information in HISZ-ICRC system for QA 
TempEval challenge. Annotation results from dif-
ferent annotators were merged using automatic 
merging method with different strategies. Evalua-
tion results showed that the integration approach 
for temporal information annotation can effectively 
improve annotation performance than single anno-
tator. Union strategy performed best in all strate-
gies we tried. 

We used same weight for temporal expression, 
event and temporal relation merging. But perfor-
mance of different annotation modules is different 
in an annotator. We will try different weight set-
ting for temporal expression, event and temporal 
relation annotation merging in future work. And 
the precision and recall have not been tried as 
merging weight in our experiment, which also will 
be tried in future work. 
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Abstract

We present two approaches to time expres-
sion identification, as entered in to SemEval-
2015 Task 6, Clinical TempEval. The first
is a comprehensive rule-based approach that
favoured recall, and which achieved the best
recall for time expression identification in Clin-
ical TempEval. The second is an SVM-based
system built using readily available compo-
nents, which was able to achieve a competi-
tive F1 in a short development time. We dis-
cuss how the two approaches perform relative
to each other, and how characteristics of the
corpus affect the suitability of different ap-
proaches and their outcomes.

1 Introduction

SemEval-2015 Task 6, Clinical TempEval (Bethard et
al., 2015), was a temporal information extraction task
over the clinical domain. The combined University
of Sheffield/Federal University of Parana team fo-
cused on identification of spans and features for time
expressions (TIMEX3), based on specific annotation
guidelines (TS and TA subtasks).

For time expressions, participants identified ex-
pression spans within the text and their corresponding
classes: DATE, TIME, DURATION, QUANTIFIER,
PREPOSTEXP or SET.1 Participating systems had
to annotate timexes according to the guidelines for
the annotation of times, events and temporal rela-

1There was no time normalisation task in Clinical TempEval

tions in clinical notes – THYME Annotation Guide-
lines (Styler et al., 2014) – which is an extension of
ISO TimeML (Pustejovsky et al., 2010) developed
by the THYME project.2 Further, ISO TimeML ex-
tends two other guidelines: a) TimeML Annotation
Guidelines (Sauri et al., 2006), and b) TIDES 2005
Standard for the Annotation of Temporal Expressions
(Ferro et al., 2005). Clinical TempEval temporal ex-
pression results3 were given in terms of Precision,
Recall and F1-score for identifying spans and classes
of temporal expressions.

For Clinical TempEval two datasets were provided.
The first was a training dataset comprising 293 doc-
uments with a total number 3818 annotated time ex-
pressions. The second dataset comprised 150 docu-
ments with 2078 timexes. This was used for evalua-
tion and was then made available to participants, after
evaluations were completed. Annotations identified
the span and class of each timex. Table 1 shows the
number of annotated timex by class in each dataset.

We present a rule-based and a SVM-based ap-
proach to time expression identification, and we dis-
cuss how they perform relative to each other, and how
characteristics of the corpus affect outcomes and the
suitability of the two approaches.

2http://thyme.healthnlp.org/ (accessed 27 Mar.
2015)

3http://alt.qcri.org/semeval2015/task6/
index.php?id=results (accessed 27 Mar. 2015)
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Class Training Evaluation
DATE 2583 1422
TIME 117 59
DURATION 433 200
SET 218 116
QUANTIFIER 162 109
PREPOSTEXP 305 172
Total 3818 2078

Table 1: Time expressions per dataset.

2 HINX: A Rule-Based Approach

HINX is a rule-based system developed using
GATE4 (Cunningham et al., 2011). It executes a
hierarchical set of rules and scripts in an information
extraction pipeline that can be split into the 3 mod-
ules: 1) text pre-processing; 2) timex identification;
and 3) timex normalisation, which are described be-
low. These modules identify and normalise temporal
concepts, starting from finding basic tokens, then
grouping such tokens into more complex expressions,
and finally normalising their features. An additional
step was included to produce the output files in the
desired format.

2.1 Text Pre-processing

This module is used to pre-process the documents
and identify the document creation time (DCT).

HINX used GATE’s ANNIE (Cunningham et al.,
2011) – a rule-based system that was not specifically
adapted to clinical domain – to provide tokenization,
sentence splitting and part of speech (POS) tagging.
We used the Unicode Alternate Tokenizer provided
by GATE to split the text into very simple tokens
such as numbers, punctuation and words. The Sen-
tence Splitter identifies sentence boundaries, making
it possible to avoid creating a timex that connects
tokens from different sentences or paragraphs. POS
Tagging produces a part-of-speech tag as an annota-
tion on each word or symbol, which is useful in cases
such as identifying whether the word “may” is being
used as a verb or as a noun (the month).

We use rules written in JAPE, GATE’s pattern
matching language, to identify the DCT annotation
reference within the “[meta]” tag at the beginning
of each document. The DCT value was split into
different features to be stored at the document level –

4http://gate.ac.uk (accessed 27 Mar. 2015)

year, month, day, hour, minute, and second.

2.2 Timex Identification

This module uses a set of hierarchical JAPE rules to
combine 15 kinds of basic temporal tokens into more
complex expressions, as described in the sequence of
steps given below:

• Numbers: A set of rules is used to identify
numbers that are written in a numeric or a non-
numeric format, as numbers as words (e.g. “two
and a half”).
• Temporal tokens: Every word that can be used

to identify temporal concepts is annotated as a
basic temporal token - e.g. temporal granulari-
ties; periods of the day; names of months; days
of the week; season names; words that represent
past, present and future references; and words
that can give an imprecise sense to a temporal
expression (e.g. the word “few” in “the last
few days”). Additionally, as a requirement for
Clinical TempEval, we included specific rules
to identify those words that corresponded to a
timex of class PREPOSTEXP (e.g. “postopera-
tive” and “pre-surgical”).
• Basic expressions: A set of rules identifies the

basic temporal expressions, including explicit
dates and times in different formats (e.g. “2014”,
“15th of November”, “12:30”), durations (e.g.
“24 hours”, “the last 3 months”), quantifiers, and
isolated temporal tokens that can be normalised.
• Complex expressions: Complex expressions

are formed by connecting two basic expressions
or a basic expression with a temporal token.
These represent information corresponding to
ranges of values (e.g. “from July to August
this year”), full timestamps (e.g. “Mar-03-2010
09:54:31”), referenced points in time (e.g. “last
month”), and precise pre/post-operative periods
(e.g. “two days postoperative”).
• SETs: Temporal expressions denoting a SET

(number of times and frequency, or just fre-
quency) are identified by this specific set of
rules (e.g. “twice-a-day”, “three times every
month”, “99/minute”, “every morning”).
• Imprecise expressions: These expressions

comprise language-specific structures used to
refer to imprecise periods of time, including im-
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precise expressions defined with boundaries (e.g.
“around 9-11 pm yesterday”), imprecise values
of a given temporal granularity (e.g. “a few days
ago”, “the coming months”), precise and impre-
cise references (e.g. “that same month”, “the
end of last year”, “the following days”), impre-
cise sets (e.g. “2 to 4 times a day”), and vague
expressions (e.g. “some time earlier”, “a long
time ago”).

2.3 Timex Normalisation
As the above identification process is run, the ba-
sic temporal tokens are combined to produce more
complex annotations. Annotation features on these
complex annotations are used to store specific time
values, for use by the normalisation process. Such
features comprise explicit values like “year=2004”,
references to the document creation time/DCT (e.g.
“month=(DCT.month)+1” for the expression “in
the following month”, and “day=(DCT.day)-3” in
“three days ago”), and a direct reference to the
last mentioned timex in the previous sentences (e.g.
“year=LAST.year” for the timex “April” in “In Febru-
ary 2002,... Then, in April,...”).

The normalisation process uses these features to
calculate corresponding final values. It also captures
a set of other characteristics, including the precision
of an expression, and whether or not it represents a
boundary period of time. This last one is used to split
the DURATION timexes into two different DATE
expressions, as explicitly defined in the THYME An-
notation Guidelines (e.g. “between November/2012
and March/2013”).

3 Using an SVM-Based Approach

GATE provides an integration of LibSVM (Chang
and Lin, 2011) technology with some modifications
enabling effective rapid prototyping for the task of
locating and classifying named entities. This was
used to quickly achieve competitive results. An ini-
tial system was created in a few hours, and although
a couple of days were spent trying parameter and
feature variants, the initial results could not be im-
proved. No development effort was required, the
system being used as “off the shelf” software.

State of the art machine learning approaches to
timex recognition often use sequence labeling (e.g.
CRF) to find timex bounds (UzZaman et al., 2013),

then a use separate instance-based classification step
(e.g. with SVM) to classify them (Sun et al., 2013).
Our approach uses SVM to implement separate
named entity recognizers for each class, then makes
a final selection for each span based on probability.
GATE’s LibSVM integration incorporates the uneven
margins parameter (UM) (Li et al., 2009), which
has been shown to improve results on imbalanced
datasets especially for smaller corpora. In position-
ing the hyperplane further from the (smaller) positive
set, we compensate for a tendency in smaller cor-
pora for the larger (negative) class to push away the
separator in a way that it doesn’t tend to do when suf-
ficient positive examples exist for them to populate
their space more thoroughly, as this default behaviour
can result in poor generalization and a conservative
model. Since NLP tasks such as NER often do in-
volve imbalanced datasets, this inclusion, as well as
robust default implementation choices for NLP tasks,
make it easy to get a respectable result quickly using
GATE’s SVM/UM, as our entry demonstrates. The
feature set used is:

• String and part of speech of the current token
plus the preceding and ensuing five.
• If a date has been detected for this span using the

Date Normalizer rule-based date detection and
normalization resource in GATE, then the type
of date in this location is included as a feature.
The mere presence of such a date annotation
may be the most important aspect of this feature.
Note that this Date Normalizer was not used in
HINX, which used a custom solution.
• As above, but using the “complete” feature on

the date, to indicate whether the date present in
this location is a fully qualified date. This may
be of value as an indicator of the quality of the
rule-based date annotation.

A probabilistic polynomial SVM is used, of order
3. Probabilistic SVMs allow us to apply confidence
thresholds later, so we may: 1) tune to the imbalanced
dataset and task constraints, 2) use the “one vs. rest”
method for transforming the multiclass problem to a
set of binary problems, and 3) select the final class for
the time expression. In the “one vs. rest” approach,
one classifier is created for each class, allowing it to
be separated from all others, and the class with the
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SVM Threshold P R F1
Linear 0.2 0.68 0.59 0.63
Linear 0.4 0.76 0.55 0.64
Poly (3) 0.2 0.64 0.61 0.63
Poly (3) 0.25 0.69 0.61 0.65
Inc. hinx feats 0.25 0.72 0.54 0.62

Table 2: SVM tuning results.

highest confidence score is chosen. A UM of 0.4 is
selected based on previous work (Li et al., 2005).

Two classifiers are trained for each class; one to
identify the start of the entity and another to iden-
tify the end. This information is then post-processed
into entity spans first by removing orphaned start or
end tags and secondly by filtering out entities with
lengths (in number of words) that did not appear in
the training data. Finally, where multiple annota-
tions overlap, a confidence score is used to select the
strongest candidate. A separate confidence score is
also used to remove weak entities.

Table 2 shows negligible difference between a lin-
ear and polynomial SVM (degree 3). A confidence
threshold of 0.25 was selected empirically. Task train-
ing data was split 50:50 to form training and test sets
to produce these figures. An additional experiment
involved including the output from the HINX rule-
based system as features for the SVM. This did not
improve the outcome.

4 Results and Discussion

We submitted 5 runs using the HINX system and 2
runs using our SVM approach to Clinical TempEval.
Results of both systems are shown in Table 3. For
completeness, both SVM runs submitted are included.
However the only difference between the two is that
SVM-2 included the full training set, whereas SVM-1
included only the half reserved for testing at develop-
ment time, and submitted as a backup for its quality
of being a tested model. As expected, including more
training data leads to a slightly superior result, and
the fact that the improvement is small suggests the
training set is adequate in size.

The HINX runs shown in Table 3 correspond to
the following variants: 1) using preposition “at” as
part of the timex span; 2) disregarding timexes of
class QUANTIFIER; 3) using full measures span
for QUANTIFIERs (e.g. “20 mg”); 4) considering

Span Class
Submission P R F1 P R F1
HINX-1 0.479 0.747 0.584 0.455 0.709 0.555
HINX-2 0.494 0.770 0.602 0.470 0.733 0.573
HINX-3 0.311 0.794 0.447 0.296 0.756 0.425
HINX-4 0.311 0.795 0.447 0.296 0.756 0.425
HINX-5 0.411 0.795 0.542 0.391 0.756 0.516
SVM-1 0.732 0.661 0.695 0.712 0.643 0.676
SVM-2 0.741 0.655 0.695 0.723 0.640 0.679

Table 3: Final Clinical TempEval results.

measure tokens as non-markable expressions; and
5) disregarding QUANTIFIERs that represent mea-
sures. The timex type QUANTIFIER was targeted
in different submitted runs as it was not clear how
these expressions were annotated when comparing
the training corpus to the annotation guidelines.

The HINX system had the best Recall over all
Clinical TempEval systems in both subtasks. The
low precision of the rule-based system was, however,
a surprise, and led us to examine the training and
test corpora in detail. While we would expect to
see inconsistencies in any manually created corpus,
we found a surprising number of repeated inconsis-
tencies between the guidelines and the corpora for
certain very regular and unambiguous temporal lan-
guage constructs. These included: a) timex span and
class inconsistencies, b) non-markable expressions
that were annotated as timexes, c) many occurrences
of SET expressions that were not manually annotated
in the corpus, and d) inconsistencies in the set of
manually annotated QUANTIFIERs. Had these in-
consistencies not been present in the gold standard,
HINX would have attained a precision between 0.85
and 0.90 (Tissot et al., 2015).

We suggest that inconsistent data such as this will
tend to lower the precision of rule-based systems.
To illustrate this, we ran HeidelTime (Strötgen et
al., 2013) on this year’s dataset and found that pre-
cision and recall were low (0.44; 0.49) despite this
being a demonstrably successful system in TempEval-
3. Similarly low results can be observed from
ClearTK-TimeML (0.593; 0.428), used to evaluate
the THYME Corpus (Styler et al., 2014). Systems
were run “as-is”, unadapted to the clinical domain.
Styler et al. (2014) suggest that clinical narratives
introduce new challenges for temporal information
extraction systems, and performance degrades when
moving to this domain. However, they do not con-
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sider how far performance can be impaired by incon-
sistencies in the annotated corpus.

The appearance of a superior result by our machine
learning system, which is agnostic about what infor-
mation it uses to replicate the annotators’ assertions,
is therefore not to be taken at face value. A machine
learning system may have learned regularities in an
annotation style, rather than having learned to ac-
curately find time expressions. This is an example
of data bias (Hovy et al., 2014). Machine learning
systems have a flexibility and power in finding non-
obvious cues to more subtle patterns, which makes
them successful in linguistically complex tasks, but
also gives them a deceptive appearance of success
where the irregularity in a task comes not from its
inherent complexity but from flaws in the dataset.
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Abstract

This paper presents our contribution to the
SemEval-2015 Task 7. The task was subdi-
vided into three subtasks that consisted of au-
tomatically identifying the time period when
a piece of news was written (1,2) as well as
automatically determining whether a specific
phrase in a sentence is relevant or not for a
given period of time (3). Our system tackles
the resolution of all three subtasks. With this
purpose in mind multiple approaches are un-
dertaken that use resources such as Wikipedia
or Google NGrams. Final results are obtained
by combining the output from all approaches.
The texts used for the task are written in En-
glish and range from the years 1700 to 2000.

1 Introduction

According to Mihalcea and Nastase (2012) cur-
rent applications within human language technol-
ogy work with languages as if they were constant.
However, changes in language are taking place con-
stantly, for example: new meanings for old words
are coined; metaphoric and metonymic uses become
so ingrained that they are considered literal from one
specific point in time on; new words are constantly
being created.

These changes in language are what in part has
motivated the task addressed by our system. In fact,
subtasks (1) and (2) tackle the problem of computa-
tionally identifying the time period in which a piece
of news was written. This is undertaken based on,
among other things, the changes that take place in
language over time. The difference between sub-

tasks (1) and (2) is that the texts in subtask (1) con-
tain clear references to time anchors. This means
that e.g. historical events, relevant people, commer-
cial products etc. are mentioned in the text that are
specific to the period of time in which the texts were
written. Subtask (3), on the other hand, consists of
determining whether a phrase within a clause is spe-
cific or not to the period of time in which the text
was written. The training corpus for this subtask is
made up of the texts from other subtasks. As a con-
sequence our system will be able to use information
on both time anchors and language changes in order
to generate the results for subtask (3).

This paper is organized as follows: section 2
presents the resources available to the diachronic
evaluation of texts; section 3, on the other hand,
shortly reviews the relevant literature on this mat-
ter. Section 4 makes a description of the developed
system; results are then described in section 5 and,
finally, our conclusions are given in section 6.

2 Resources

To the extent of our knowledge, there exist two main
resources as of today for computationally address-
ing the diachronic evaluation of texts as defined in
task 7: Google NGrams and Wikipedia. The for-
mer holds statistics on word usage on Google Books,
a textual corpus consisting of books written in En-
glish and printed between 1505 and 2008. Google
NGrams can be used to map language changes to
specific time periods. The latter requires no presen-
tation as it is a well-known resource; it can be used
to establish the period a time anchor belongs to.
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3 Related Work

To the best of our knowledge several techniques
have been previously used to computationally ad-
dress language-change. We consider it important
to note that the motivation to study the language-
change phenomena differs from one work to an-
other: Some of the techniques make use of it in or-
der to establish the period of time in which a text
was produced (Jong et al., 2005; Dalli and Wilks,
2006), which is our main concern; others, on the
other hand, use the phenomena in order to study top-
ics such as the changes that have taken place in cul-
ture (Juola, 2013; Michel et al., 2011).

Some of the techniques used so far to address the
task of temporal classification are based on language
models built from texts belonging to a same period
of time. This way the task of temporally classifying
texts consists basically of identifying the model that
best fits the text that wants to be classified. Some
of the systems that follow this approach are Kumar
(2011) and Wang et al. (2012).

Another relevant class of models for temporal
classification is based on the idea that the change of
word meaning and word usage over time can help
determine the period of time in which a text was
written. Normally the resource used by the systems
that are based on this approach is Google NGrams
(see section 2). Some example models that use
this approach are presented in Mihalcea and Nastase
(2012) and Popescu and Strapparava (2013).

Other systems that can be brought up in this
section make use of stylistic and readability fea-
tures (Štajner and Zampieri, 2013), neural nets (Kim
et al., 2014) and lexical features (Dalli and Wilks,
2006).

From the approaches here presented we decided
to implement our system using, among others, the
change of word usage and word meaning over time
approach (see subsection 4.1.3) and the lexical and
stylistic features approach (see subsection 4.1.4) as
we believe both to have reported good performance
in previous works (Mihalcea and Nastase, 2012; Šta-
jner and Zampieri, 2013; Dalli and Wilks, 2006).
Although we think that the approach to epoch de-
limitation based on using language models can also
come up with good results, we have not used it as
we believe that the training set is too limited for this

approach to be effective.

4 System Description

The way in which our system deals with temporal
text classification (subtasks (1) and (2)) is described
under subsection 4.1. The way in which our system
deals with recognizing time-specific phrases (sub-
task (3)), on the other hand, is presented under sub-
section 4.2.

4.1 Temporal Text Classification

Four different approaches are undertaken in order
to automatically determine the period of time in
which a piece of news was written: the first ap-
proach consists of searching for the mentioned time
period within the text. The second approach, on the
other hand, consists of searching for named entities
present in the text and then establishing the period
of time by linking these to Wikipedia. The third ap-
proach uses Google NGrams and, to conclude, the
fourth approach consists of using linguistic features
that are significant with respect to language change
in combination with machine learning.

4.1.1 Year Entity Detection
The present approach was implemented based on

the observation made upon the training texts, in the
development of which we have realized that the pe-
riod of time that corresponds to a text is present
within the text. This approach is characterized by
a very high precision and a very low recall as only
10% of the training texts contain a period of time
and in 85% of the cases these are the ones that cor-
respond to texts. In order to establish the time pe-
riod, year entities are detected by our system using
the Apache OpenNLP name finder tool Baldridge
(2005).

It is considered here that this approach is strongly
dependent on the domain; in fact, if historical texts
(or texts that in general describe past events) were
to be diachronically evaluated, the precision would
drop and recall would improve considerably.

4.1.2 Wikipedia Entity Linking
For the second approach our system detects

named entities that correspond to persons and or-
ganizations within the texts; the Apache OpenNLP
name finder tool and the pre-trained models for this

841



type of entities are used. After named entities are
recognized, these are searched for in Wikipedia; if a
named entity can be found, then year entities are de-
tected in the corresponding entry: with this purpose
in mind the OpenNLP name finder tool is used and
tuned as in 4.1.1. Finally, an average of all years
(which stem from the Wikipedia entries that corre-
spond to the named entities in the text) is calculated
for every text and the time period that corresponds
to the average assigned. The workflow for this ap-
proach can be seen in figure 1:

Figure 1: Wikipedia Entity Linking.

Different scenarios are possible concerning this
approach: some texts do not contain named enti-
ties and some others have many of them, and some-
times entities are not detected or can not be found
in Wikipedia. For these reasons not all texts are as-
signed a time period by this approach1.

4.1.3 Google NGrams
The Google NGrams 1-gram corpus is used for

the third approach. We consider all nouns (proper
and common) within the texts to be of interest as we
consider these to be the kind of words that change
most across time and as a result provide the high-
est amount of information on the time in which a
piece of news was written. In order to identify these
nouns the ClearNLP PoS tagger and lemmatizer is
used Choi and Palmer (2012). The system computes
for each noun the percentage of occurrences that that

1Our approach does not handle cases where more than one
Wikipedia pages match a name.

noun has in a year with respect to the sum of words
available for that year (normalization). The amount
of published data in Google Books is not the same
for all years; in fact, it grows exponentially from the
second half of the 20th century on. For this rea-
son the percentage of occurrences with respect to
the sum of words needs to be calculated, rather than
simply using the amount of occurrences.

When percentages for all nouns in a text are cal-
culated, the year that corresponds to the highest per-
centage is associated to each noun. Then, the aver-
age value for these years is calculated. If the year as-
sociated to a noun differs in 40 or more years from
the average value, our system considers this noun
to be period-specific. Consequently, the time period
that includes this year is assigned to the text. Period-
specific nouns are determined locally within a given
text since the same noun might be period-specific in
one text but not in another.

If there is more than one noun that is considered
to be period-specific, the average value of the years
that correspond to these nouns is used. If there are
no detected period-specific nouns, on the other hand,
the average value calculated for all nouns is used.

4.1.4 Language Change
The fourth approach used by our system consists

of using linguistic features (patterns or tendencies)
that are significant regarding language change in
combination with machine learning. For this pur-
pose the different diachronic or language-change
tendencies that are observable in the training data
have been studied. These tendencies include both
linguistic and extra-linguistic factors, and they af-
fect different areas of grammar such as orthography,
lexicon, semantics, morphology or syntax. Some ex-
amples can be seen in figure 2.

The patterns resulting from the study are classi-
fied into six different fifty-year periods ranging from
the years 1700 to 2000 as we consider these to be
the finest grain period patterns can be classified into.
Said patterns are used as features for the learning
algorithm; some examples include: the loss of sub-
junctive mood in subordinate clauses, the arisal of
do so-verbal substitution and the extinction of post-
positions and of various inflectional morphemes. In
spite of the richness of extracted linguistic change
patterns, this approach has proved in any case to be
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Figure 2: Some of the language-change patterns used by our system.

much less effective when compared to the other ap-
proaches.

The classifier used by the approach here described
is a standard multi-class Support Vector Machine
classifier implemented using the SVM-multiclass
package in Joachims (1999). The decision of using
a standard SVM learning algorithm comes from our
experience on classification tasks with such a large
number of classes.

4.1.5 Final Decision

In order to ultimately determine the period of time
in which a text was written the system follows a pro-
cedure that takes into account the precision given by

each approach (since the systems seeks maximum
precision). We consider the year entity detection ap-
proach to be the one with the highest precision, fol-
lowed by the Wikipedia entity linking, the Google
NGrams and the language-change approaches. The
present procedure establishes that the period of time
yielded by the approach with the maximum preci-
sion that is available must be set to the text. It must
be kept in mind that both the year entity detection
and the Wikipedia entity linking approaches have a
low recall as only some of the texts are assigned a
period of time by these approaches.
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Coarse Medium Fine
Subtask

Grain
Precision Score Precision Score Precision Score

1 0.0902 0.5575 0.0413 0.3672 0.0225 0.187
2 0.0987 0.6225 0.0677 0.428 0.0377 0.2618
3 0.5739

Table 1: Official results reported for our system for all three subtasks.

4.2 Recognizing Time-Specific Phrases
We consider that determining whether the phrases
within a sentence are particularly relevant or not for
the period of time in which the sentence was written
can be viewed as a two-step procedure: first, mark-
able phrases need to be detected, and then it must
be decided whether these phrases are indicative fea-
tures for the period of time or not. Our system per-
forms just the classification step since the markable
phrases are provided by the task organizers. This is
achieved by making use of the period-specific words
identified in the Google NGrams approach described
in 4.1.3. Our system marks the set of consecutive
words that start and end with period-specific words
as a relevant phrase for the period of time in which
the text was written. This procedure is followed if
there is no punctuation mark between the words and
the distance is not greater than four words.

The decision to consider phrases that have a max-
imum of four words is based upon observation. We
consider this to be the appropriate number of words
in order not to miss too many relevant phrases. The
system can be easily tuned for phrases with a greater
or a smaller number of words.

5 Results

Table 1 contains the official results reported for our
system. In order to evaluate subtasks (1) and (2)
three configurations are considered: a fine-graded
evaluation were periods of time span two years in
subtask (1) and six years in subtask (2); a medium-
graded evaluation were periods of time span six
years for subtask (1) and twelve years for subtask (2)
and a coarse-graded evaluation were periods of time
span twelve years in subtask (1) and twenty years in
subtask (2).

There is no fine-, medium- or coarse-graded eval-
uation for subtask (3). Certain phrases from a piece
of news are selected by the task organizers and

marked as yes or no by our system according to their
relevance for the period of time when the news was
produced (the period of time is also provided by the
organizers). The score for this subtask is computed
by counting the number of times our system has cor-
rectly marked the phrases.

As far as we know the only works that bear a
slight resemblance to what is proposed in the tem-
poral text classification subtasks (subtasks (1) and
(2)) are Mihalcea and Nastase (2012) and Popescu
and Strapparava (2013), in which computational ap-
proaches to temporal classification of words are pre-
sented. We consider that our results cannot be even
loosely compared to the results in the cited papers as
there is too little resemblance between temporal text
classification and temporal word classification. We
are not aware of any work that performs recognition
of time-specific phrases (subtasks (3)).

As can be observed in table 1, the scores for sub-
task (2) are higher than the scores reported for sub-
task (1); however, we find that establishing the pe-
riod of time when a piece of news was written is
more complicated for the texts in subtask (1) as it
mainly depends on a correct exploitation of time an-
chors. For this reason, we understand that the per-
formance of our system is higher in subtask (1) than
in subtask (2). Finally, we believe that the score ob-
tained for the third subtask (0.5739) can be under-
stood as an indicator of high performance as the dif-
ficulty of the subtask is, in our opinion, higher than
that of other subtasks.

6 Conclusions and Future Works

In this paper we have presented our system for the
diachronic evaluation of English texts, which has
taken part in the SemEval-2015 task 7. Our sys-
tem has been the only participant system that has
reported results for the three subtasks that compre-
hended the task. We believe that many issues still
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need to be reviewed.
We intend to improve the overall performance of

the system in the near future by trying out new tech-
niques that we have not been able to implement due
to time limitations.
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Abstract

This paper describes the USAAR-CHRONOS
participation in the Diachronic Text Evalua-
tion task of SemEval-2015 to identify the time
period of historical text snippets. We adapt
a web crawler to retrieve the original source
of the text snippets and determine the publi-
cation year of the retrieved texts from their
URLs. We report a precision score of >90%
in identifying the text epoch. Additionally, by
crawling and cleaning the website that hosts
the source of the text snippets, we present
Daikon, a corpus that can be used for fu-
ture work on epoch identification from a di-
achronic perspective.

1 Introduction

”Time changes all things: there is no reason
why language should escape this universal law”
(De Saussure, 1959). Traditionally, there are two
ways to collect linguistic data to explore how words
change over time, viz. (i) the ‘armchair’ method and
(ii) the ‘tape-recorder’ method (Aitchison, 2001). In
the first, the linguist cross-examines numerous doc-
uments from bygone years and in the latter, the lin-
guist goes around recording language and studies the
changes as they happen.

With the ingress of historical data provided by
Google (Michel et al. 2011), the ‘armchair’ method
goes into warp speed as computational linguists ex-
plore the different facets of lexical changes in En-
glish (Mihalcea and Nastase, 2012; Popescu and
Strapparava, 2013; Niculae et al., 2014).

This paper presents the Saarland University
(USAAR-CHRONOS) participation in the Di-
achronic Text Evaluation task in SemEval-2015. We
participated in Subtask 1 that requires participants to
identify the year of publication for texts with clear
reference to time anchors (i.e. explicit references to
famous persons or events).

1.1 Task Definition

In Subtask 1 of the Diachronic Text Evaluation par-
ticipants are required to identify the epoch (i.e. time
period) of a text snippet with clear reference to cer-
tain famous persons or events. The text snippets may
not necessarily contain temporal information such as
year or date but it has clear reference to a historical
event that can be identified from external knowledge
bases. For instance, given the following text, partic-
ipants are required to identify its epoch:

“Dictator Saddam Hussein ordered his troops to
march into Kuwait. After the invasion is condemned
by the UN Security Council, the US has forged a
coalition with allies. Today American troops are
sent to Saudi Arabia in Operation Desert Shield,
protecting Saudi Arabia from possible attack.”

The text has clear temporal evidence with refer-
ence to a historical figure (“Saddam Hussein”), a
notable organization (“UN Security Council”) and a
factual event (“Operation Desert Shield”). Histori-
cally, we know that Saddam Hussein lived between
1937 to 2006, that the UN Security Council has ex-
isted since 1946 and that Operation Desert Shield
(i.e. the Gulf War) occurred between 1990-1991.
Given the specific chronic deicticity (“today”) that
indicates that the text is published during the Gulf
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War, we can conceive that the text snippet should be
dated 1990-1991.

For each text snippet, different epoch choices are
provided at three granularity levels; fine, medium
and coarse graded epochs, and they are assigned
the time periods of 3, 6 and 12 years, respectively.
For the given example above, the correct epochs are
1990-1992, 1988-1993 and 1985-1995 for the three
granularity levels respectively.

2 Related Work

Michel et al. (2011) launch the field of culturo-
nomics to study changes in human culture through
language change; for this, they release ngrams taken
from millions of digitized books; they show, for ex-
ample, that censorship and suppression can be de-
termined by comparing the frequencies of proper
names in multilingual ngrams in this dataset.

Mihalcea and Nastase (2012) explore word sense
disambiguation over time using snippets from
Google Books; they add a semantic dimension on
top of lexical frequency to conduct word epoch dis-
ambiguation based on the fact that words change
their neighbors throughout time.

The Google Ngram corpus has spawned several
related studies. To create a sense pool, Yu et al.
(2007) extract pairs of ngrams and filter them with
an appropriate statistical test using their frequen-
cies, where the resulting sense pool is manually ver-
ified. Interestingly, their experiments conflate the
ngrams across time, yet it is unclear whether the
resulting sense pool contains ngrams across differ-
ent epochs. Juola (2013) uses the bigrams from the
Google Books Ngram dataset to measure changes in
the Kolmogorov complexity of American culture at
ten-year intervals between 1900 and 2000. Related
to this, Štajner and Zampieri (2013) show, for Por-
tuguese, that lexical richness, average word length
and lexical density increase over a span of 400 years.

Topic models are also applied to study topical
changes across epochs (e.g. (Blei and Lafferty,
2007; Wijaya and Yeniterzi, 2011)). Related to
epoch identification, Wang and McCallum (2006)
develop time-specific topic models to a time stamp
prediction task.

With the renaissance of neural nets, recent stud-
ies are using deep neural language models to detect

diachronic lexical changes from several text types
ranging from published books (Kim et al., 2014)
to Twitter microblogs and Amazon movie reviews
(Kulkarni et al., 2014).

3 Approach

We take a different approach compared to previous
studies that treat epoch identification as a classifica-
tion task. We see it as an information retrieval task
where we want to know whether we can get the tem-
poral information of the text snippets from the Inter-
net.

In the age where there is a contest (known
as “Googlewhack”) for finding one-hit results on
Google since they are so rare , it is clear that a great
deal of the information we are looking for is just “out
there” for us to search. It is recommended to use ma-
chine learning classifiers for cases where test data is
supposedly unknown, but more often than not it can
be known by those who know how to retrieve, clean
and harvest systematically.

Prior to the days of Google and search engines,
historians and librarians1 had to cross-reference his-
tory books and newspaper archives to identify the
text epoch. The Internet is vast and infinite. Given
the advent of Wikipedia and Google, epoch identifi-
cation can be as simple as searching “When was Op-
eration Desert Shield?” on Google2 (see Figure 1).

Figure 1: Google Result for “When was Operation Desert
Shield?”.

Tan et al. (2014a) develop a Web Translation
Memory (WebTM) crawler capable of harvesting
parallel texts from the web given an initial seed
corpus, similar to the BootCaT system (Baroni and
Bernardini, 2004). They adapt WebTM such that
it attempts to find occurrences of the text snippets
from the web. This is akin to developing a dedicated

1With the exception of the polymath librarian, Flynn Carsen
2See http://goo.gl/VD2Xtx
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search- and crawl-system for the purpose of knowl-
edge extraction.

Surprisingly, the source of the all the
text snippets of Subtask 1 is found on
http://freepages.genealogy.rootsweb
.ancestry.com/∼dutillieul and
http://archive.spectator.co.uk/.
Moreover, these webpages contain dates in their
URL, so we extract the publication year with regex
pattern matching. Since the task requires an epoch
(time period) instead of a discrete publication year,
we perform some minor integer manipulation to fit
the publication year to the expected epoch3.

4 Results

Out of the 267 text snippets, our system correctly
identifies 243, 248, 252 epochs for the fine, medium
and coarse epoch granularities.

Fine Medium Coarse
AMBRA 0.0374 0.0711 0.0749
IXA-EHUDIAC 0.0225 0.0413 0.0902
USAAR-CHRONOS 0.9288 0.9101 0.9438

Table 1: Precision scores on Subtask 1.

Table 1 presents the precision scores of the partic-
ipating teams in subtask 1. Our system scores best
on all three granularity levels.

Figure 2 shows a heatmap of the fine graded
epochal (6 years interval) differences between the
outputs and the gold standard4. The warm colors in-
dicate higher values within the interval. Looking at
the orange region of the heatmap, the other systems
were way off in the epoch identification where re-
spectively, AMBRA and IXA-EHUDIAC have 195
and 186 predictions that are 54 years off from the
gold standards. We have a total of 24 predictions
different from the gold standard and 9 out 24 were 6
years off from the gold standards.

5 Discussion

We have manually checked our epoch predictions
and the years encoded in the URL to check whether
they correspond to the date of the source articles.

3Details on http://goo.gl/TcZ9z0
4An interactive version of the heatmap can be viewed on

https://plot.ly/ alvations/21/epochs-differential/

Figure 2: Fine Graded Epoch Differential between Sys-
tems outputs and Gold Standards (warmer colors indi-
cates higher values).

Some of our predictions are dated older than the gold
standards and vice versa.

For instance, the following text refers to the Battle
of Salamanca on 22 July 1812 and the text snippet
is from a battle report written on 16 August 1812
and published on 24 August 1812 in the Salisbury
and Winchester Journal; the gold annotation records
the epoch as 1813-1815 whereas our system reports
1810-1812.

“On Thursday last, the 69th Annual Conference
of the people called Methodists, was concluded. It
had been held by adjournment in Leeds from the
27th ult. About 309 Itinerant Preachers were present
from various parts of the United Kingdom, who gave
very gratifying accounts of the success with which
their ministry have been crowned.”

In this case, the gold standard source is clearly
a different source and the assumption that there are
hard boundaries in epoch identification should be re-
laxed. One should consider different granularity lev-
els of the epochs involved when evaluating the sys-
tem’s accuracy.

Relating to the historian and librarian anecdote,
the discrepancy in dates from different sources
shows that cross-referencing temporal annotations
from various sources should be considered in future
diachronic studies and temporal analyses.
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6 Daikon Corpus

After the SemEval task, we
crawled the full articles from
http://archive.spectator.co.uk/,
cleaned the corpus and annotated it with the exact
publication date of the article, its title and the URL
from which it was retrieved. The Daikon Corpus is
made up of articles from the British Spectator news
magazine from year 828 to 2008.

The Daikon corpus can be used for future di-
achronic studies and epoch identification tasks; it
provides a complementary dataset to the gold stan-
dard provided by task. The corpus is saved in JSON
format. An excerpt from the corpus looks like this:

Figure 3: An Excerpt from the Daikon Corpus.

Each item in the body list is a paragraph embed-
ded within the <p>...</p> tags of the webpage.
The corpus contains 24,280 articles with 19 million
tokens; the token count is calculated by summing the
number of whitespaces plus 1 for each paragraph.

To clean the corpus, the encodings are converted
to Unicode (UTF8) and XML escape tokens are con-
verted to its Unicode counterparts automatically5.
However, the current version still contains minor to-
kenization errors such as the hyphenation error seen
in Figure 3. Probably, a character language model
could be developed to identify lexical items bounded
by the r‘\w+- \w+’ regex.

7 Conclusion

In this paper, we have described our submission to
the Diachronic Text Evaluation for SemEval-2015.

5The cleaning tool used is a compilation of web cleaning
scripts (Emerson et al., 2014; Tan et al., 2014b; Tan and Bond,
2011)

We have adapted a web crawler to search for the
source of the text snippets used for the evaluation
and achieved the highest precision score. Addi-
tionally, we have crawled and cleaned the source
articles of the snippets and produced the Daikon
corpus that can be used for future research in di-
achronic/temporal analysis and epoch identification.
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Abstract

This paper describes the AMBRA system,
entered in the SemEval-2015 Task 7: ‘Di-
achronic Text Evaluation’ subtasks one and
two, which consist of predicting the date when
a text was originally written. The task is
valuable for applications in digital humani-
ties, information systems, and historical lin-
guistics. The novelty of this shared task con-
sists of incorporating label uncertainty by as-
signing an interval within which the document
was written, rather than assigning a clear time
marker to each training document. To deal
with non-linear effects and variable degrees
of uncertainty, we reduce the problem to pair-
wise comparisons of the form is Document A
older than Document B?, and propose a non-
parametric way to transform the ordinal output
into time intervals.

1 Introduction

Temporal text classification consists of learning to
automatically predict the publication date of docu-
ments, by using the information contained in their
textual content. The task finds uses in fields as var-
ied as digital humanities, where many texts have are
unidentified or controversial publication dates, in-
formation retrieval (Dakka et al., 2012), where tem-
poral constraints can improve relevance, and his-
torical linguistics, where the interpretation of the
learned models can confirm and reveal insights.

From a technical point of view, the task is usu-
ally tackled either as regression or, more commonly,
as a single-label multi-class problem, with classes
defined as time intervals such as months, years,

decades or centuries. The regression approach as-
sumes that precise timestamps are uniformly avail-
able for each document, which is suitable for cases
of social media documents (Preotiuc-Pietro, 2014),
but less suitable for documents surrounded by more
uncertainty. Multi-class classification, on the other
hand, suffers from a coarseness tradeoff: using
coarser classes is less informative, and using finer
classes reduces the number of training instances in
each class, making the problem more difficult. Fur-
thermore, with a multi-class formulation, the tempo-
ral relationship between classes is lost.

The ‘Diachronic Text Evaluation’ subtasks one
and two from SemEval-2015 are formulated simi-
larly to a multi-class problem, where each document
is assigned to an interval such as 1976-1982. To
accommodate such labels, we propose an approach
based on pairwise comparisons. We train a classi-
fier to learn which document out of a pair is older
and which is newer. If two documents come from
overlapping intervals, then their order cannot be de-
termined with certainty, so the pair is not used in
training. We use the property of linear models to ex-
tend a set of pairwise decisions into a ranking of test
documents (Joachims, 2006).

While previous work uses a regression-based
method to map the ranking back to actual times-
tamps, we propose a novel non-parametric method
to choose the most likely interval. In light of this,
our system is named AMBRA (Anachronism Mod-
eling by Ranking). Our implementation is available
under a permissive open-source license.1

1https://github.com/vene/ambra
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2 Related Work

An important class of models for temporal classifi-
cation employs prototype-based classification meth-
ods, using probabilistic language models and dis-
tances in distribution space to classify documents to
the time period with the most similar language (de
Jong et al., 2005; Kumar et al., 2011). Kanhabua
and Nørvåg (2009) use temporal language models
to assign timestamps to unlabeled documents.

An extension of such models for continuous time
is proposed by Wang et al. (2008), who use Brow-
nian motion as a model for topic change over time.
This approach is simpler and faster than the discrete
time version, but it cannot be directly applied to doc-
uments with different degrees of label uncertainty,
such as interval labels.

Dalli and Wilks (2006) train a classifier to date
texts within a time span of nine years. The method
uses lexical features and it is aided by words whose
frequencies increase at some point in time, most
notably named entities. Abe and Tsumoto (2010)
propose similarity metrics to categorise texts based
on keywords calculated by indexes such as tf-idf.
Garcia-Fernandez et al. (2011) explore different
NLP techniques on a digitized collection of French
texts published between 1801 and 1944. Style-
related markers and features, including readability
features, have been shown to reveal temporal infor-
mation in English as well as Portuguese (Stamou,
2005; Štajner and Zampieri, 2013).

An intersecting research direction combines di-
atopic (regional) and diachronic variation for French
journalistic texts (Grouin et al., 2010) and for the
Dutch Folktale Database, which includes texts from
different dialects and varieties of Dutch, as well as
historical texts (Trieschnigg et al., 2012).

More recently, Ciobanu et al. (2013) propose su-
pervised classification with unigram features with
χ2 feature selection on a collection of historical Ro-
manian texts, noting that the informative features are
words having changed form over time. Niculae et al.
(2014) circumvent the limitations of supervised clas-
sification by posing the problem as ordinal regres-
sion with a learning-to-rank approach. They evalu-
ate their method on datasets in English, Portuguese
and Romanian. The superior flexibility of the rank-
ing approach makes it a better fit for the problem for-

mulation of the ‘Diachronic Text Evaluation’ task,
motivating us to base our implementation on it.

A different, but related, problem is to model and
understand how words usage and meaning change
over time. Wijaya and Yeniterzi (2011) use the
Google NGram corpus aiming to identify clusters
of topics surrounding the word over time. Mihal-
cea and Nastase (2012) split the Google Books cor-
pus into three wide epochs and introduce the task of
word epoch disambiguation. Turning this problem
around, Popescu and Strapparava (2013) use a sim-
ilar approach to statistically characterize epochs by
lexical and emotion features.

3 Methods

The ‘Diachronic Text Evaluation’ shared task con-
sists of three subtasks (Popescu and Strapparava,
2015): classification of documents containing ex-
plicit references to time-specific persons or events
(T1), classification of documents with time-specific
language use (T2), and recognition of time-specific
expressions (T3). The AMBRA system participated
in T1 and T2.

3.1 Corpus

The training data released for the shared task con-
sists of 323 documents for T1 and 4,202 documents
for T2. Each document has a paragraph containing,
on average, 71 tokens, along with a tag indicating
when each text was written/published. The publica-
tion date of texts is indicated by time intervals at all
three granularity levels: fine-, medium- and coarse-
grained (e.g. <textM yes="1695-1707"> for
a text written between the years 1695 and 1707 in
the medium-grained representation).

The shared task mentions no limitation regarding
the use of external corpora. Nevertheless, to avoid
thematic bias, we use only the corpora provided by
the organizers under the assumption that the test and
training sets are sampled from the same distribution.

The released test set consists of 267 instances for
T1 and 1,041 instances for T2.

3.2 Algorithm and Features

We use a ranking approach by pairwise compar-
isons, previously proposed for temporal text mod-
eling by Niculae et al. (2014) .
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Learning. The model learns a linear function
g(x) = w · x to preserve the temporal ordering of
the texts, i.e. if document2 xi predates document
xj , which we will henceforth denote as xi ≺ xj ,
then g(xi) < g(xj). This step can be understood
as learning to rank texts from older to newer. By
making pairwise comparisons, the problem can be
reduced to binary classification using a linear model.

A dataset annotated with intervals has the form
D = {(x, [yfirst, ylast)]} where yfirst < ylast are the
years between which document x was written. Doc-
ument xi can be said to predate document xj only if
its interval predates the other without overlap:

xi ≺ xj ⇐⇒ ylast
i < yfirst

j .

This allows us to construct a dataset consisting only
of correctly-ordered pairs:

Dp = {(xi, xj) : xi ≺ xj}.

This reduces to linear binary classification:

w · xi < w · xj ⇐⇒ w · (xi − xj) < 0.

We form a balanced training set by flipping the order
of half of the pairs in Dp at random.

Prediction. Niculae et al. (2014), following Pe-
dregosa et al. (2012), fit a monotonic function map-
ping from years to the space spanned by the learned
linear model. In contrast, to better deal with the
interval formulation, we propose a non-parametric
memory-based approach. After training, we store:

Dscores = {(z = w · x, [yfirst, ylast]}.

When queried about when a previously unseen doc-
ument x was written, we compute z = w · x and
search for the k closest entries in Dscores, which we
denote Dz

scores. For each candidate interval for the
test document [yfirst, ylast] we compute its average
distance to the intervals of the k nearest training doc-
uments [yfirst

i , ylast
i ] ∈ Dz

scores where:

dist (ya, yb) =
∣∣∣∣ylast

a + yfirst
a

2
− ylast

b + yfirst
b

2

∣∣∣∣ .
2We overload xi to refer to the document itself as well as its

representation as a feature vector.

The predicted interval is the one minimizing the av-
erage distance:

ŷ = arg miny∈Y
1
k

∑
yi∈Dz

scores

dist(y, yi).

Importantly, this approach allows for even more
flexibility in interval labels than needed for the ‘Di-
achronic Text Evaluation’ task. While in the task all
intervals (at a given granularity level) have the same
size, our method can deal with intervals of various
sizes,3 half-lines [−∞, a] or [a,∞] for expressing
only a lower or only an upper bound on the time of
writing of a document, and even degenerate intervals
[a, a] for when the time is known exactly.

Features. AMBRA uses four types of features:

• Length meta-features (number of sentences,
types, tokens);

• Stylistic (Average Word Length, Average Sen-
tence Length, Lexical Density, Lexical Rich-
ness);4

• Grammatical (part-of-speech tag n-grams);

• Lexical (token n-grams).

We use χ2 feature selection with classes defined as
the [50·n, 50·(n+1)] interval that overlaps the most
with the true one. This coarse approach to feature
selection has been shown to work well for temporal
classification (Niculae et al., 2014).

4 Results

We perform 5-fold cross-validation over the training
set to estimate the task-specific score. We fix the
number of neighbours used for prediction to k = 10
after cross-validation using only number of tokens
as feature. The model parameter space consists of
the logistic regression’s regularization parameter C,
the minimum and maximum frequency thresholds
for pruning too rare and too common features, n-
gram range for tokens and for part-of-speech tags,
and the number of features to keep after feature se-
lection. We choose the best configuration after many

3In our implementation, we set dist(ya, yb) to 0 if the
smaller interval is fully contained in the wider one.

4Lexical Density = unique tokens / total tokens; Lexical
Richness = unique lemmas / total tokens.
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Task 1 Task 2
Model Features Fine Medium Coarse MAE Fine Medium Coarse MAE

Random — 0.09 0.21 0.44 73.16 0.30 0.43 0.59 80.58
Ridge lengths+style 0.15 0.32 0.52 67.94 0.33 0.59 0.77 54.77

AMBRA lengths+style 0.12 0.26 0.48 74.67 0.38 0.58 0.75 57.00
AMBRA full 0.17 0.38 0.55 63.24 0.60 0.77 0.87 31.74

Table 1: Evaluation of AMBRA and the baselines on the test data. We report the task-specific score (between 0 and
1, higher is better) for the three levels of granularity, as well as the mean absolute error (MAE, lower is better) for the
fine level of granularity.

iterations of randomized search. We compare our
ranking model to a ridge regression baseline, em-
ploying the document length meta-features and us-
ing the middle of the time intervals as target values.
We also evaluate a random baseline where one of
the candidate intervals is chosen with uniform prob-
ability. For evaluation, we use the task-specific met-
ric defined by the organizers (Popescu and Strappa-
rava, 2015), based on the number of interval divi-
sions between the prediction and the right answer.
For context, we also report the mean absolute error
obtained by taking the center of the intervals as a
point estimate of the year. Table 1 shows the perfor-
mance of AMBRA and the baseline systems on the
test documents. On T1, the full AMBRA system is
the only to beat the random baseline in all metrics
(95% confidence). On T2, where more data is avail-
able, AMBRA with length and style features outper-
forms ridge regression at fine granularity (95% con-
fidence), and the full AMBRA system outperforms
all others in all metrics (99% confidence).5

4.1 Most Informative Features

To better understand the performance of our method
we analyze the most informative features selected
by our best models. We use identical feature sets for
both tasks, and while there are some common pat-
terns, we observe important differences in the fea-
ture rankings, confirming that T1 and T2 are differ-
ent enough in nature to warrant separate modeling.

Among the features useful for both tasks we find
the length of a document in sentences highly predic-
tive, with newer texts being longer. Also, the lin-
guistic structure determiner + singular proper noun

5All significance results are based on 10000 boostrap itera-
tions with bias correction.

is predictive of older texts, while adjective + singu-
lar noun is predictive of newer texts. The decrease
in use of the contraction ’d is captured in both cases.
From the lexical features, the word letters indicates
older texts, corresponding to the decreasing use of
mail as telecommunication became mainstream.

Words useful for T1 are more topic- and time-
specific ones, such as army, emperor, troops, while
the T2 model, possibly enabled by the larger amount
of data, proves capable of detecting diachronic
spelling variation (publick and public are both se-
lected, with opposite signs), outdated words (upon),
and more subtle stylistic changes such as the de-
crease in use of the Oxford comma (a comma fol-
lowed by a conjunction at the end of a list).

5 Conclusion and Future Work

We propose a ranking-based method to handle inter-
val prediction and account for uncertainty in tempo-
ral text classification. Our approach proved compet-
itive in the Semeval-2015 ‘Diachronic Text Evalua-
tion’ subtasks one and two. The features we used
are simplistic but effective. We expect performance
to improve by including linguistic and etymology
expertise in the feature engineering and selection
process, as well as by including world knowledge
through named entities and linked data.

Our model allows for arbitrary interval labels,
which is more expressive and more realistic than the
task formulation. We plan to refine collections of
historical texts and tighten the annotation intervals
wherever possible. Our implementation can be
made more scalable by following the random
sampling methodology of Sculley (2009).
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Abstract

This paper presents X-Space, a system that fol-
lows the ISO-Space annotation scheme in or-
der to capture spatial information as well as
our contribution to the SemEval-2015 task 8
(SpaceEval). Our system is the only partici-
pant system that reported results for all three
evaluation configurations in SpaceEval.

1 Introduction

Nowadays the need for algorithms that have the
ability to reason spatially over texts are in growing
demand within applications concerning human lan-
guage processing and in navigation services. Well-
studied topics in computational linguistics such as
named entity recognition and question answering,
for example, will presumably experience important
progress through such algorithms. Navigation sys-
tems, on the other hand, will gain the ability to in-
terpret indications given by users beyond the “string
matching” methods used at present (Wu et al., 2010).
In order for such systems to reason spatially, how-
ever, they require the enrichment of textual data with
the annotation of spatial information in language
(Pustejovsky et al., 2013). As of today there have
been several attempts at capturing spatial informa-
tion (annotation schemes): SpatialML (Mani et al.,
2008), Spatial Role Labeling (Kordjamshidi et al.,
2010) and ISO-Space (Pustejovsky et al., 2011). X-
Space follows the ISO-Space specification.

Section 2 describes the system architecture and
section 3 presents the results and discusses them. Fi-
nally, our conclusions are given in section 4.

2 System architecture

X-Space uses a four-stage pipeline: first texts are
preprocessed; second candidates to be spatial ele-
ments and signals are selected by generating word
lists from the texts; then, spatial elements and sig-
nals are identified from the candidate lists and their
attributes set according to type. Finally, spatial rela-
tions are established between the previously identi-
fied and the attributes that correspond to these rela-
tions are set.

2.1 Preprocessing and Candidate Selection

As an initial step texts that are inputted into X-Space
are syntactically and semantically parsed (SRL), and
named entities as well as coreference chains are
identified. These annotations are used in the later
stages as features for machine learning.

The parsing of syntactic and semantic dependen-
cies is achieved with the ClearNLP semantic role la-
beler (Choi and Palmer, 2012); for the recognition
of named entities, on the other hand, the Apache
OpenNLP name finder tool is used (Baldridge,
2005). Chains of coreference are identified using
the Standford CoreNLP coreference resolution sys-
tem (Manning et al., 2014).

After the preprocessing of input texts is per-
formed the words that compose these texts are used
to form candidate lists by taking words one-by-one,
two-by-two, three-by-three and four-by-four. We as-
sume that spatial elements and signals with more
than four words are highly improbable to occur. For
this reason only candidates with up to four words are
considered.
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2.2 Spatial Elements and Signals
Five different spatial elements are distinguished:
places and paths which designate a region of space
(locations); spatial entities, words of motion and
non-motion events. These do not designate a region
of space but are allowed to be coerced into behaving
like a region of space, so that they may participate in
the same kinds of relationships as regions of space
(Pustejovsky and Yocum, 2013).

In order to identify places, paths and words of
motion we have used WordNet as well as several
other resources such as PropBank and the Predi-
cate Matrix (de Lacalle et al., 2014) in combination
with a binary Support Vector Machine classifier im-
plemented using the SVM-light package (Joachims,
1999). For spatial entities and non-motion events,
on the other hand, an approach without WordNet is
used for reasons that are discussed in 2.2.2.

2.2.1 The WordNet approach
The WordNet approach is used to identify words

of motion, paths and places within the lists of
candidates. This approach is based on the idea that
within the hierarchical organization of WordNet a
domain, as for example the path domain, can be
defined as a set of subtrees by properly identifying
the root of these subtrees. According to (Feizabadi
and Padó, 2012) the challenge is to find a set of
nodes whose subtrees cover as much as possible of
the desired domain while avoiding overgeneration.

Root nodes We consider these nodes to be
the ones that best fulfill these conditions after
manually examining WordNet (v3.0): for the
motion domain we have considered nodes “move,
locomote, travel, go” (01835496-V) and “to be”
(02604760-V); for the place domain, on the other
hand, we have considered nodes “topographic
point, place spot” (08664443-N), “place, property”
(08513718-N), “position, place” (08621598-N),
“location” (00027167-N), “state, nation, country,
land, commonwealth, res publica, body politic”
(08168978-N), “country, state, land” (08544813-N),
“country, rural area” (08644722-N) and “area, coun-
try” (08497294-N). Finally, for the path domain
we have considered nodes “path” (03899328-N),
“path, route, itinerary” (08616311-N), “path, track,
course” (09387222-N) and “way” (04564698-N).

Domain definition After the place and path
domains are defined by capturing the corresponding
sets of subtrees, the domains are completed by
adding the places and paths in the training set that
are not covered by the subtrees. In total 5,572 places
and 664 paths form the final domains. For motion
words, however, most of them being verbs, sense
needs to be disambiguated; as a matter of fact many
verbs have motion as well as non-motion senses.
X-Space uses the Predicate Matrix (v1.1) in order
to map the WordNet synset IDs that correspond
to the subtrees rooted in the nodes that have been
considered for the motion domain (01835496-V and
02604760-V) with their corresponding PropBank
sense. The Predicate Matrix is a lexical resource
resulting from the integration of multiple sources
of predicate information, including FrameNet,
VerbNet, PropBank and WordNet. 511 senses form
the words of motion domain used by our system.

Identification process When domains are
defined X-Space iterates over the list of candidates
in search for places and paths. Words of motion, on
the contrary, are only looked for in the one-by-one
candidate list as we consider that only these can be
words of motion. For the identification of words
of motion the disambiguation of senses is used
which is performed in the semantic dependency
parsing in the preprocessing stage. This way only
the candidates labeled with a sense present in the
words of motion domain will be identified as such.

Avoiding overgeneration We observed that
too many candidates were identified using just the
straightforward procedure, where candidates are
looked for in the domains. In order to avoid this
over-generation we attached a machine-learning
module to the identification process. The classifier
used is a binary classifier based on Support Vector
Machines, and once the identification of places,
paths and words of motion within the identification
process is completed, the classifier decides whether
an identified element is or not correctly identified.
The following is the list of the features used:

• CAND_Lex, CAND_Lemma, CAND_PoS:
Lexical form, lemma and PoS category tag of
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the candidate.

• CAND_DepRel: Dependency relation between
the candidate and its head.

• PRED_Roleset: Roleset ID of the predicate on
which the candidate semantically depends.

• PREVW_Lex, PREVW_PoS: Lexical form
and PoS category tag of the word previous to
the candidate.

• PREVW_DepRel: Dependency relation be-
tween the word previous to the candidate and
its head.

• NEXTW_Lex, NEXTW_PoS: Lexical form
and PoS category tag of the word next to the
candidate.

• NEXTW_DepRel: Dependency relation be-
tween the word next to the candidate and its
head.

X-Space uses this classifier (same set of features,
same implementation) several times throughout the
entire process of annotating input texts with spa-
tial information. The reason not to perform a thor-
ough feature selection process whenever machine
learning needs to be used throughout the annotation
conducted by X-Space lies in the time limitations
we encountered due to the extent of the SpaceEval
task. The values taken by the training parameters
are shown next:

• Trade-Off: The trade-off between training error
and margin is computed through the avg(x ∗
x)−1 formula.

• Bias: A biased hyperplane is used.

• Cost-Factor: The cost-factor, by which training
errors on positive examples outweigh errors on
negative examples is 1.

• Kernel: The type of kernel function used is lin-
ear.

2.2.2 Other approaches

This section describes the approaches used to
identify non-motion events, spatial entities and
signals from the candidates lists. The reason why
the WordNet approach is not used on non-motion
events is that we could not accurately determine
a set of nodes whose subtrees cover the desired
domain properly. For spatial entities, on the other
hand, we believe that using the WordNet approach
is not correct given the heterogeneous nature of
these spatial elements. We also believe that the
same reason applies not to use WordNet in the
identification of spatial and motion signals. All
three use a classifier like the one in section 2.2.1 as
a final step to avoid overgeneration.

Non-motion events In order to identify non-
motion events our system first generates a list with
the PropBank senses taken by the non-motion
events in the training set. Then X-Space iterates
over the one-by-one candidate list (as we consider
that only these can be ISO-Space non-motion
events) and checks whether a candidate is labeled
with one of these senses or not. With this aim in
mind the disambiguation of senses is used that has
been performed in the preprocessing.

Spatial entities For the identification of spatial
entities the semantic role labels have been used that
were given by the semantic dependency parser to
predicate arguments. We believe spatial entities
to be viewable as arguments of a predicate which
is a word of motion or a word that expresses a
non-motion event. Arguments that correspond to
these kind of predicates are in the majority of cases
located in space and participate in ISO-Space link
tags. These, therefore, can be understood as spatial
entities. In order to identify spatial entities X-Space
iterates over the lists of candidates and searches
for arguments of words that have been previously
marked as of motion or as expressing a non-motion
event.

Signals For the purpose of identifying sig-
nals two lists are formed based on the signal
annotations in the training set. One list holds the
signals that are exclusively of motion (e.g., into,
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from) and another list holds the signals that can
only be of space (e.g., within, without). Then X-
Space iterates over the one-by-one and two-by-two
candidate lists. As we observed in the training set,
only signals with up to two words occurred. In
the iteration process candidates are looked for in
both lists; if a candidate can be found in the spatial
signals list, it is assigned the spatial signal tag; on
the other hand, if the candidate is present in the
motion signals list this is marked as a motion signal.
Many signals, however, overlap, meaning that they
can be of motion and space (e.g., by, over). In
order to capture these signals the candidate lists are
searched for prepositions and function words.

2.2.3 Attribute identification
The ISO-Space annotation language specifies sev-

eral attributes for spatial elements as well as for sig-
nals. The classifier in section 2.2.1 is used to give
values to these attributes. When an attribute can
take more than two values, however, a version of
the classifier that has been extended from binary to
multiclass is used. This is achieved with the SVM-
multiclass package. Several attributes are specified.
However, not all attributes are given values: in fact
many of them are never annotated in the training set,
and for this reason X-Space does not annotate them
either.

2.3 Spatial Relation Links

When the spatial elements and the signals within
the input texts as well as their corresponding at-
tributes are identified X-Space tries to detect the spa-
tial relations that lay between them. The SpaceEval
task addresses the detection of three types of rela-
tions: movement (MoveLink), qualitative (QSLink)
and orientational (OLink).

2.3.1 Link identification
In order to identify the spatial relation links, X-

Space follows what is stated in (Pustejovsky and
Yocum, 2013). For movement relations that typi-
cally involve motion-event triggers (words of mo-
tion), motion signals, and motion-event participants
a link is created for each identified word of motion.
For qualitative relations, on the other hand, which
normally involve spatial signals and spatial elements
and are used to capture topological relationships,

a link of this type is created for each spatial sig-
nal with an identified TOPOLOGICAL or DIR_TOP
semantic_type. Finally, an orientational link is
introduced for every spatial signal with a DIREC-
TIONAL semantic_type; this kind of link de-
scribes non-topological relationships between spa-
tial signals and spatial elements.

2.3.2 Attribute identification
There are several attributes specified by the

ISO-Space annotation scheme for the MoveLink,
QSLink and OLink relations. Nonetheless, not
all these attributes are viewed, and, consequently,
identified by X-Space following the same proce-
dure. In fact, the system distinguishes three types of
attributes: triggers, which are the spatial elements
or signals that trigger the creation of links, roles,
which are the spatial elements involved in these
relations and common attributes, which indicate
other characteristics of the links.

Triggers Triggers are directly established
for all three kinds of links based on the link identifi-
cation process.

Roles We believe that attributes source,
goal, mover and landmark within a MoveLink
relation can be seen as arguments of the trigger,
which is usually a verbal predicate (word of mo-
tion). For a QSLink or OLink relation, on the other
hand, we think that attributes trajector and
landmark can be seen as arguments of the predi-
cate that dominates the trigger, which is usually a
preposition (spatial signal). The idea behind these
attributes is based on the Spatial Role Labeling
annotation schema described in (Kordjamshidi
et al., 2010). According to this scheme there are
indicators that can be spatial (spatial signals) or
of motion (words of motion) that introduce spatial
relations. These spatial relations take arguments
with roles trajector and landmark. For this
reason, in order to identify attributes source,
goal, mover and landmark of MoveLinks,
X-Space looks for arguments of the triggers using
the semantic dependency parsing carried out in the
preprocessing. Then it establishes which PropBank
argument (A0, A1, A2, etc.) corresponds to which
attribute (spatial role) using a multiclass classifier
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Precision Recall F1 Accuracy
Baseline X-Space Baseline X-Space Baseline X-Space Baseline X-Space

1-a 0.55 0.81 0.52 0.72 0.53 0.76 0.75 0.88
1-b 0.55 0.75 0.51 0.72 0.53 0.74 0.86 0.9
1-c 0.1 0.18 0.02 0.15 0.04 0.16 0.05 0.3
1-d 0.5 0.54 0.5 0.51 0.5 0.53 0.5 0.55
1-e 0.05 0.06 0.02 0.05 0.02 0.05 0.06 0.25
2-a 0.27 0.26 0.28 0.33 0.27 0.29 0.76 0.63
2-b 0.79 0.55 0.58 0.51 0.67 0.53 0.9 0.89
2-c 0.19 0.06 0.2 0.08 0.19 0.07 0.66 0.46
3-a 0.86 0.63 0.84 0.51 0.85 0.56 0.98 0.89
3-b 0.26 0.07 0.26 0.09 0.26 0.08 0.79 0.48

Table 1: Official results reported for X-Space plus the results of one baseline system provided by
the task organizers (overall results).

like the one in section 2.2.1. The procedure for
QSLinks and OLinks is the same but arguments are
searched for the predicate that dominates the trigger
and not for the trigger itself.

Common attributes We have named com-
mon attributes all attributes taken by spatial
relations that do not indicate a spatial role or a
trigger. X-Space once again uses the classifier on
2.2.1 in order to give values to these attributes.

3 Results

The SpaceEval task considers three separate eval-
uation configurations: (1) only unannotated text is
given as an input; (2) manually annotated spatial el-
ement extents (no attributes) are given; (3) manually
annotated spatial element extents and their attributes
are given.

The subtasks that are evaluated for each config-
uration are: (1-a) identifying spans of spatial el-
ements, (1-b) classifying spatial elements accord-
ing to type, (1-c) identifying attributes for spa-
tial elements according to type, (1-d) identify-
ing MoveLink, QSLink and OLink relations and
(1-e) identifying attributes for spatial relations;
(2-a) classifying spatial elements and identifying
their attributes according to type, (2-b) identifying
MoveLink, QSLink and OLink relations and (2-c)
identifying attributes for spatial relations; (3-a) iden-
tifying MoveLink, QSLink and OLink relations and
(3-b) identifying attributes for spatial relations.

Table 1 shows the results obtained by X-Space in
every configuration and subtask and compares them
with the results of one baseline system provided by
the task organizers. As can be noted our results im-
prove the ones in the baseline for 1-a, 1-b, 1-c, 1-d,
1-e and 2-a. On the other hand, our results are worse
for 2-b, 2-c, 3-a and 3-b. From the three systems that
participated in the SpaceEval task ours was the only
one that presented results for all evaluation configu-
rations and all subtasks. We believe that in general
the results for our system are good.

4 Conclusion and Future Works

In this paper X-Space, our contribution to the
SemEval-2015 Task 8, is presented. We consider
that many things still remain to be improved. For
instance, the problem of annotating non-consuming
location tags could be addressed.

In the future, we intend to adapt our system to
other languages. This adaptation will bring the op-
portunity to see how X-Space adapts to languages of
different natures.
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Abstract

SpaceEval (SemEval 2015 Task 8), which
concerns spatial information extraction, builds
on the spatial role identification tasks intro-
duced in SemEval 2012 and used in SemEval
2013. Among the host of subtasks presented
in SpaceEval, we participated in subtask 3a,
which focuses solely on spatial relation ex-
traction. To address the complexity of a
MOVELINK, we decompose it into smaller re-
lations so that the roles involved in each rela-
tion can be extracted in a joint fashion with-
out losing computational tractability. Our sys-
tem was ranked first in the official evaluation,
achieving an overall spatial relation extraction
F-score of 84.5%.

1 Introduction

SpaceEval1 was organized as a shared task for the
semantic evaluation of spatial information extraction
(IE) systems. The goals of the shared task include
identifying and classifying particular constructions
in natural language for expressing spatial informa-
tion that are conveyed through the spatial concepts
of locations, entities participating in spatial rela-
tions, paths, topological relations, direction and ori-
entation, motion, etc. It presents a wide spectrum of
spatial IE related subtasks for interested participants
to choose from, building on the two previous years
shared tasks on the same topic (Kordjamshidi et al.,
2012; Kolomiyets et al., 2013).

Our goal in this paper is to describe the version
of our spatial relation extraction system that partic-

1http://alt.qcri.org/semeval2015/task8/

ipated in subtask 3a of SpaceEval. Systems par-
ticipating in this subtask assume as input the spa-
tial elements in a text document. For example,
in the sentence The flower is in the vase1 and the
vase2 is on the table, the set of spatial elements
{flower, in, vase1, vase2, on, table} are given and
subsequently used as candidates for predicting spa-
tial relations. Leveraging the successes of a joint
role-labeling approach to spatial relation extraction
involving stationary objects, we employ it to ex-
tract so-called MOVELINKs, which are spatial re-
lations defined over objects in motion. In partic-
ular, we discuss the adaptations needed to handle
the complexity of MOVELINKs. Experiments on the
SpaceEval corpus demonstrate the effectiveness of
our ensemble-based approach to spatial relation ex-
traction. Among the three teams participating in
subtask 3a, our team was ranked first in the official
evaluation, achieving an overall F-score of 84.5%.

The rest of the paper is organized as follows.
We first give a brief overview of the subtask 3a of
SpaceEval and the corpus (Section 2). After that,
we describes related work (Section 3). Finally, we
present our approach (Section 4), evaluation results
(Section 5), and conclusions (Section 6).

2 The SpaceEval Task

2.1 Subtask 3a: Task Description

Subtask 3a focuses solely on spatial relation extrac-
tion using a specified set of spatial elements for a
given sentence. Specifically, given an n-tuple of
participating entities, the goal is to (1) determine
whether the entities in the n-tuple form a spatial re-
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lation, and if so, (2) classify the roles of each partic-
ipating entity in the relation.

2.2 Training Corpus

To facilitate system development, 59 travel narra-
tives are marked up with seven types of spatial el-
ements (Table 1) and three types of spatial relations
(Table 2), following the ISO-Space (Pustejovsky et
al., 2013) annotation specifications, and provided as
training data. Note that a spatial-signal entity has
a semantic-type attribute expressing the type of the
relation it triggered. Its semantic-type can be topo-
logical, directional, or both.2

What is missing in Table 2 about spatial rela-
tions is that each entity participating in a relation
has a role. In QSLINKs and OLINKs, an element can
participate as a trajector (i.e., object of interest),
landmark (i.e., the grounding location), or trigger
(i.e., the relation indicator). Thus the QSLINK and
OLINK examples shown in Table 2, are actually rep-
resented as the triplet (flowertrajector, vaselandmark,
intrigger). While QSLINK and OLINK relations can
have only three fixed participants, a MOVELINK re-
lation has two fixed participants and up to six op-
tional participants to capture more precisely the re-
lational information expressed in the sentence. The
two mandatory MOVELINK participants are a mover
(i.e., object in motion), and a trigger (i.e., verb de-
noting motion). The six optional MOVELINK par-
ticipants are: source, midpoint, goal, path, and
landmark, express different aspects of the mover
in space, whereas a motion-signal connects the
spatial aspect to the mover.

Note that all spatial relations are intra-sentential.
In other words, all spatial elements participating in
a relation must appear in the same sentence.

3 Related Work

Recall from Section 2 that spatial relation extraction
is composed of two subtasks, role labeling and rela-
tion classification of spatial elements. Prior systems
have adopted either a pipeline approach or a joint
approach to these subtasks. Given an n-tuple of dis-
tinct spatial elements in a sentence, a pipeline spatial

2In the ISO-Space scheme (Pustejovsky et al., 2013), dif-
ferent spatial entities have different attributes. We omit their
description here owing to space limitations.

relation extraction system first assigns a role to each
spatial element and then uses a binary classifier to
determine whether the elements form a spatial rela-
tion or not (Kordjamshidi et al., 2011; Bastianelli et
al., 2013; Kordjamshidi and Moens, 2014).

One weakness of pipeline approaches is that er-
rors in role labeling can propagate to the relation
classification component. To address this prob-
lem, joint approaches were investigated (Roberts
and Harabagiu, 2012; Roberts et al., 2013). Given
an n-tuple of distinct spatial elements in a sentence
with an assignment of roles to each element, a joint
spatial relation extraction system uses a binary clas-
sifier to determine whether these elements form a
spatial relation with the roles correctly assigned to
all participating elements. In other words, the clas-
sifier will label the n-tuple as TRUE if and only if (1)
the elements in the n-tuple form a relation and (2)
their roles in the relation are correct.

We conclude this section by noting that virtually
all existing systems were developed on datasets that
adopted different or simpler representations of spa-
tial information than SpaceEval’s ISO-Space (2013)
representation (Mani et al., 2010; Kordjamshidi et
al., 2010; Kordjamshidi et al., 2012; Kolomiyets et
al., 2013). In other words, none of these systems
were designed to identify MOVELINKs.

4 Our Approach

To avoid the error propagation problem, we perform
joint role labeling and relation extraction. Unlike
previous work, where a single classifier was trained,
we employ an ensemble of eight classifiers. Creating
the eight classifiers permits (1) separating the treat-
ment of MOVELINKs from QSLINKs and OLINKs;
and (2) simplifying MOVELINK extraction.

We separate MOVELINKs from QSLINKs and
OLINKs for two reasons. First, MOVELINKs in-
volve objects in motion, whereas the other two
link types involve stationary objects. Second,
MOVELINKs are more complicated than the other
two link types: while QSLINKs and OLINKs have
three fixed participants, trajector, landmark and
trigger, MOVELINKs can have up to eight partic-
ipants, including two mandatory participants (i.e.,
mover and trigger) and six optional participants
(i.e., source, midpoint, goal, path, landmark,
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place path spatial-entity non-motion event motion event motion-signal spatial-signal
(e.g., Rome) (e.g., road) (e.g., car) (e.g., is “serving”) (e.g., arrived) (e.g., by car) (e.g., north of)

Table 1: Seven types of spatial elements in SpaceEval.

Relation Description Total
QSLINK Exists between stationary spatial elements with a regional connection. E.g., in The flower is in the

vase, the region of the vase has an internal connection with the region of the flower and hence they
are in a QSLINK.

968

OLINK Exists between stationary spatial elements expressing their relative or absolute orientations. E.g.,
in The flower is in the vase, the flower and the vase also have an OLINK relation conveying that the
flower is oriented inside the vase.

244

MOVELINK Exists between spatial elements in motion. E.g., the sentence He biked from Cambridge to Maine
has a MOVELINK between mover He, motion verb biked, source of motion Cambridge, and goal
of motion Maine.

803

Table 2: Three spatial relation types in SpaceEval. The “Total” column shows the number of instances annotated
with the corresponding relation in the training data.

and motion-signal). Given the complexity of a
MOVELINK, we decompose a MOVELINK into a set
of simpler relations that are to be identified by an
ensemble of classifiers.

In the rest of this section, we describe how we
train and test our ensemble.

4.1 Training the Ensemble

We employ one classifier for identifying QSLINK

and OLINK relations (Section 4.1.1) and seven clas-
sifiers for identifying MOVELINK relations (Sec-
tion 4.1.2).

4.1.1 The LINK Classifier
We collapse QSLINKs and OLINKs to a single rela-

tion type, LINK, identifying these two types of links
using the LINK classifier. To understand why we can
do this, first note that in QSLINKs and OLINKs, the
trigger has to be a spatial-signal element having a
semantic-type attribute. If its semantic-type is topo-
logical, it triggers a QSLINK; if it is directional, it
triggers an OLINK; and if it is both it triggers both
relation types. Hence, if a LINK is identified by
our classifier, we can simply use the semantic-type
value of the relation’s trigger element to automati-
cally determine whether the relation is a QSLINK an
OLINK, or both.

We create training instances for training a LINK

classifier as follows. Following the joint approach
described above, we create one training instance for

each possible role labeling of each triplet of dis-
tinct spatial elements in each sentence in a training
document. The role labels assigned to the spatial
elements in each triplet are subject to the follow-
ing constraints: (1) each triplet contains a trajec-
tor, a landmark, and a trigger; (2) neither the tra-
jector nor the landmark are of type spatial-signal
or motion-signal; and (3) the trigger is a spatial-
signal.3 Note that these role constraints are derived
from the data annotation scheme. It is worth noting
that while we enforce such global role constraints
when creating training instances, Kordjamshidi and
Moens (2014) enforce them at inference time using
Integer Linear Programming.

A training instance is labeled as TRUE if and only
if the elements in the triplet form a relation and
their roles in the relation are correct. As an exam-
ple, for the QSLINK and OLINK sentence in Table 2,
exactly one positive instance, LINK(flowertrajector,
vaselandmark, intrigger), will be created.

Each instance is represented using the 31 features
shown in Table 3. These features are modeled af-
ter those employed by state-of-the-art spatial rela-

3LINKs can have at most one implicit spatial ele-
ment. For example, the sentence The balloon went up has
LINK(balloontrajector ,ontrigger) with an implicit landmark.
To account for LINKs with implicit trajector, landmark, or
trigger participants, we generate three additional triplets from
each LINK triplet, one for each participant having the value IM-
PLICIT.
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1. Lexical (6 features)

1. concatenated lemma strings of e1, e2, and e3

2. concatenated word strings of e1, e2, and e3

3. lexical pattern created from e1, e2, and e3 based on their order in the text (e.g.,
Trajector is Trigger Landmark)

4. words between the spatial elements
5. e3’s words
6. whether e2’s phrase was seen in role r3 in the training data

2. Grammatical (5 features)

1. dependency paths from e1 to e3 to e2 obtained using the Stanford Dependency Parser (de Marneffe
et al., 2006)

2. dependency paths from e1 to e2

3. dependency paths from e3 to e2

4. paths from e3 to e2 concatenated with e3’s string
5. whether e1 is a prepositional object of a preposition of an element posited in role r3 in any other

relation

3. Semantic (9 features)

1. WordNet (Miller, 1995) hypernyms and synsets of e1/e2

2. semantic role labels of e1/e2/e3 obtained using SENNA (Collobert et al., 2011)
3. General Inquirer (Stone et al., 1966) categories shared by e1 and e2

4. VerbNet (Kipper et al., 2000) classes shared by e1 and e2

4. Positional (2 features)

1. order of participants in text (e.g., r2-r1-r3)
2. whether the order is r3-r2-r1

5. Distance (3 features)

1. distance in tokens between e1 and e3 and that between e2 and e3

2. using a bin of 5 tokens, the concatenated binned distance between (e1,e2), (e1,e3), and (e2,e3)

6. Entity attributes (3 features)

1. spatial entity type of e1/e2/e3

7. Entity roles (3 features)

1. predicted spatial roles of e1/e2/e3 obtained using our in-house relation role labeler

Table 3: 31 features for spatial relation extraction. Each training instance corresponds to a triplet (e1,e2,e3),
where e1, e2, and e3 are spatial elements of types t1, t2, and t3, with participating roles r1, r2, and r3, respectively.

tion extraction systems. Recall that these systems
were developed on datasets that adopted different or
simpler representations of spatial information than
SpaceEval’s ISO-Space (2013) representation (Mani
et al., 2010; Kordjamshidi et al., 2010; Kordjamshidi
et al., 2012; Kolomiyets et al., 2013). Hence, these
31 features have not been used to train classifiers for

extracting MOVELINKs.

We train the LINK classifier using the SVM learn-
ing algorithm as implemented in the SVMlight soft-
ware package (Joachims, 1999). To optimize classi-
fier performance, we tune two parameters, the reg-
ularization parameter C (which establishes the bal-
ance between generalizing and overfitting the classi-
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fier model to the training data) and the cost-factor
parameter J (which outweights training errors on
positive examples compared to the negative exam-
ples), to maximize F-score on development data.

4.1.2 The Seven MOVELINK Classifiers
If we adopted the aforementioned joint method

as is for extracting MOVELINKs, each instance
would correspond to an octuple of the form:
MOVELINK(triggeri, moverj , sourcek, mid-pointm,
goaln, landmarko, pathp, motion-signalr), where
each participant in the octuple is either a distinct
spatial element with a role or the NULL element (if
it is not present in the relation). However, gener-
ating role permutations for octuples from all spatial
elements in a sentence is computationally infeasible.
In order to address this tractability problem, we sim-
plify MOVELINK extraction as follows. First, we de-
compose the MOVELINK octuple into seven smaller
tuples including one pair and six triplets. The
seven tuples are: (i) (triggeri, moverj); (ii) (triggeri,
moverj , sourcek); (iii) (triggeri, moverj , mid-
pointm); (iv) (triggeri, moverj , goaln); (v) (triggeri,
moverj , landmarko); (vi) (triggeri, moverj , pathp);
(vii) (triggeri, moverj , motion-signalr). Then, we
create seven separate classifiers for identifying the
seven MOVELINK tuples, respectively.

Using this decomposition for MOVELINK in-
stances, we can generate instances for each classi-
fier using the aforementioned joint approach as is.
For instance, to train classifier (i), we generate can-
didate pairs of the form (triggeri, moverj), where
triggeri and moverj are spatial elements proposed
as a candidate trigger and mover, respectively. Pos-
itive training instances are those (triggeri, moverj)
pairs annotated with a relation in the training data,
while the rest of the candidate pairs are negative
training instances. The instances for training the re-
maining six classifiers are generated similarly.

As in the LINK classifier, we enforce global role
constraints when creating training instances for the
MOVELINK classifiers. Specifically, the roles as-
signed to the spatial elements in each training in-
stance of each of the MOVELINK classifiers are sub-
ject to the following constraints: (1) the trigger
has type motion; (2) the mover has type place,
path, spatial-entity or non-motion event; (3) the
source, the goal, and the landmark can be NULL

or has type place, path, spatial-entity, or non-
motion event; (4) the mid-point can be NULL or has
type place, path, or spatial-entity; (5) the path can
be NULL or has type path; and (6) the motion-signal
can be NULL or has type motion-signal.

Our way of decomposing the octuple along roles
can be justified as follows. Since the shared task
evaluates MOVELINKs only based on its mandatory
trigger and mover participants, we have a classi-
fier for classifying this core aspect of a motion re-
lation. The next six classifiers, (ii) to (vii), aim to
improve the core MOVELINK extraction by exploit-
ing the stronger contextual dependencies with each
of its unique spatial aspects namely the source, the
mid-point, the goal, the landmark, the path, and the
motion-signal.

As an example, for the MOVELINK sentence in
Table 2, we will create three positive instances:
(Hetrigger, bikedmover) for classifier (i), (Hetrigger,
bikedmover, Cambridgesource) for classifier (ii), and
(Hetrigger, bikedmover, Mainegoal) for classifier (iv).

We represent each training instance using the 31
features shown in Table 3, and train each of the
MOVELINK classifiers using SVMlight, with the C
and J values tuned on development data.

4.2 Testing the Ensemble
After training, we apply the resulting classifiers to
classify the test instances, which are created in the
same manner as the training instances. As noted be-
fore, the LINK spatial relations extracted from a test
document by the LINK classifier are further qualified
as QSLINK, OLINK, or both based on the semantic-
type attribute value of its trigger participant. The
MOVELINK relations are extracted from a test doc-
ument by combining the outputs from the seven
MOVELINK classifiers. We explore three different
ways of combining the outputs. The first way is
simply to combine the outputs from all seven classi-
fiers. However, combining outputs in this way could
produce erroneous MOVELINK results, because it
could result in a spatial element being classified with
more than one role in the same relation since the
classifications are made independently. To address
this problem, we adopt a second way of combining
the seven classifier outputs to generate MOVELINKs.
Our second approach resolves multiple role classi-
fications for the same element in a relation by se-
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QSLINK OLINK MOVELINK
OVERALL

False True False True False True
R P F R P F R P F R P F R P F R P F R P F

Training Data 99.5 99.4 99.5 46.9 48.9 47.9 100 99.4 99.7 50.3 100 66.9 91.3 99.8 95.3 84.8 61.5 71.3 78.8 84.8 80.1
Test Data 99.6 99.3 99.4 55.3 68 61 99.9 99.9 99.9 67.9 76 71.7 98.3 97.3 97.8 72.7 81.6 76.9 82.3 87 84.5

Table 4: Results for spatial relation extraction using gold spatial elements.

lecting the role that was predicted with highest con-
fidence by the SVM. Our third approach addresses
this problem, alternatively, by using a predetermined
precedence of roles, decided based on training data
statistics of roles’ frequency, and selecting the role
that appears more frequently in the training data than
the other classified roles. Evaluations of the re-
spective outputs produced by adopting each of these
three ways showed that they all achieved a very sim-
ilar level of performance.

5 Evaluation

In this section, we evaluate our ensemble approach
to spatial relation extraction.

5.1 Experimental Setup

Dataset. We use the 59 travel narratives released
as the SpaceEval challenge training data for system
training and development. For testing, we use the 16
travel narratives released as the SpaceEval challenge
test data.
Evaluation metrics. Evaluation results are ob-
tained using the official SpaceEval challenge scor-
ing program. Results are expressed in terms
of recall (R), precision (P), and F-score (F).
When computing recall and precision, true posi-
tives for QSLINKs and OLINKs are those extracted
(trajector,landmark,trigger) triplets that match
with those in the gold data. True positives for
MOVELINKs are those extracted (trigger,mover)
pairs found in the gold data.4

Parameter tuning. As mentioned in the previous
section, we tune the C and J parameters on de-
velopment data when training each SVM classifier.

4During system development, we observed that
(trigger,mover) extraction can be improved by exploit-
ing its stronger dependencies with the optional MOVELINK

participants. Therefore, we have classifiers (ii) to (vii) in our
ensemble for extracting (trigger,mover) pairs missed by
classifier (i).

More specifically, during system training and devel-
opment, we perform five-fold cross validation. In
each fold experiment, we use three folds for training,
one fold for development, and one fold for testing.

Since joint tuning of these two parameters are
computationally expensive, we tune them as fol-
lows. We first tune C by setting the J parameter to
the default value in SVMlight. After finding the C
parameter that maximizes F-score on the develop-
ment set, we fix C and tune J to maximize F-score
on the development set.5

5.2 Results and Discussion
Table 4 shows the spatial relation extraction results
using gold spatial elements of our classifier ensem-
ble from the official SpaceEval scoring program.

The first row shows results from five-fold cross
validation on the training data. In each fold experi-
ment, we first tune the learning parameters of each
classifier as described in Section 5.1, and then re-
train the classifier on all four folds using the learned
parameters before applying it to the test fold. The
results reported are averaged over the five test folds.
The second row results are obtained from evaluation
on the official test data. Here, we train each classifier
on all of the training data. The learning parameters
of each classifier are tuned based on cross validation
on the training data. Specifically, we select the pa-
rameters that give the best averaged F-score over the
five development folds described in Section 5.1.

The column-wise results in the table show per-
formance on extracting the QSLINK, OLINK, and
MOVELINK spatial relations types, respectively, and
overall. The results under column “False” for each
relation type show performance in rejecting the re-
lation candidates that are not actual relations in the
gold data. And the results under column “True” for

5For parameter tuning, C is chosen from the set
{0.01,0.05,0.1,0.5,1.0,10.0,50.0,100.0} and J is chosen from
the set {0.01,0.05,0.1,0.5,1.0,2.0,4.0,6.0}.
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R P F
Training Data 60.7 70.1 62
Test Data 65.3 75.2 69.9

Table 5: Overall results for spatial relation extrac-
tion of “True” relations using gold spatial elements.

each relation type show performance in extracting
relation candidates that are actual relations in the
gold data.

From Table 4, we see that on both the training
and test data, performance on rejecting the False re-
lation candidates is close to 100%. However, per-
formance on extracting the True relations is rela-
tively much lower. In decreasing order of perfor-
mance, our approach is most effective on extract-
ing MOVELINKs, followed by OLINKs, and then QS-
LINKs. Thus the relation types on which our ap-
proach performs poorly can direct our future efforts
in improving performance on this task. We see close
to 80% overall relation extraction F-score of our sys-
tem on both training and test data. This high perfor-
mance is mainly owing to the high performance of
our approach in rejecting the False relation candi-
dates. To better reflect the overall performance of
our approach, we show in Table 5 our overall re-
sults in extracting True relation types using only the
results in “True” columns of Table 4 for the three
relation types. From these results, we see that our
system performance is in the range of 65-70% F-
score on extracting the “True” spatial relations in
both datasets. Thus we see that there is still more
scope for improvement of our system in order to
make it practically usable for spatial relation extrac-
tion.

6 Conclusion

We employed an ensemble approach to spatial re-
lation extraction. To address the complexity of a
MOVELINK, we decomposed it into smaller relations
so that the roles involved in each relation could be
extracted in a joint fashion without losing computa-
tional tractability. When evaluated on the SpaceEval
official test data for subtask 3a, our approach was
ranked first, achieving an F-score of 84.5%.
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Abstract

In this paper we describe a novel task, namely
the Diachronic Text Evaluation task. A cor-
pus of snippets which contain relevant infor-
mation for the time when the text was created
is extracted from a large collection of newspa-
pers published between 1700 and 2010. The
task, subdivided in three subtasks, requires the
automatic system to identify the time inter-
val when the piece of news was written. The
subtasks concern specific type of information
that might be available in news. The intervals
come in three grades: fine, medium and coarse
according to their length. The systems par-
ticipating in the tasks have proved that this a
doable task with very interesting possible con-
tinuations.

1 Introduction

Language changes over the time, even over rela-
tively small periods. For example, as the main in-
tent of publishing newspapers is to disseminate in-
formation to the population of a whole country, there
is an objective pressure to impose a standard and
to smooth over the dialectical differences. How-
ever, since the late 1600s, each generation has read
pieces of news containing new words, borrowed or
invented, exhibiting new drifts in the meanings of
old words, printed with different spelling etc.

The examples (1), (2), (3) and (4) below exhibit
a series of features which are useful to pin point the
year when the respective piece of news was created.
Well known global events, sense superseding, spe-
cific spelling and new vocabulary entry words are

all time relevant features. At a deeper level of anal-
ysis, time is revealed also by the mentions of named
entities, such as Security Council, the topic and the
linguistic genre are also relevant features.

1. Dictator Saddam Hussein ordered his troops to march into
Kuwait. After the invasion is condemned by the UN Se-
curity Council, the US has forged a coalition with allies.
Today American troops are sent to Saudi Arabia in Opera-
tion Desert Shield, protecting Saudi Arabia from possible
attack. circa 1990

2. We have cabled the English house from which we get it
and expect a reply to-morrow. circa 1900

3. Occasional selfies are acceptable, but uploading a new
picture of yourself every day is not necessary. circa 2014

4. . . . The House of Samuel Sandbroke was brokt and sev-
eral Pistols discharged . . . Her Majesty, for the better Dis-
covery of the Offenders, is pleased to promise Her most
Gracious Pardon for the said Crime. circa 1705

While for humans it is relatively easy to notice the
language differences between two texts, and even to
be accurate in determining the period when a piece
of news was written, for computational systems this
task is challenging. On the other hand, with the
availability of large time-tagged corpora, a computa-
tional system can perform various analyses and ex-
tract correlations that are impossible for humans to
know beforehand or acquire through manual inspec-
tion of the information scattered over huge collec-
tions of texts.

We propose to tackle the task of automatically
identifying the time period when a piece of news was
written. We provide a corpus of fragments of pieces
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of news, for both training and testing. The interest-
ing question is whether it is possible to automati-
cally determine the period when a text was written.
To this end, we have devised a SemEval 2015 task,
called Diachronic Text Evaluation, hence DTE task.
For this task, all aspects of language change may be
taken into account and systems of various levels of
analysis can be developed. The systems could ben-
efit for a training corpus and are evaluated against a
gold standard.

Organizing a diachronic task has proven to be a
difficult one and we made decisions regarding what
type of pieces of news are selected, what type of in-
formation they contain and how the evaluation could
be carried out. In a nutshell, we have selected pieces
of news of variable length ranging from ten to a cou-
ple of hundred words, and we have made a differen-
tiation between pieces of news that mention famous
named entities and those which do not. Our defini-
tion of famous is associated with the possibility of
finding information about the respective named en-
tities in external resources, such as Wikipedia. Con-
sequently, we proposed two subtasks according to
the difference above. For both tasks, the system has
to guess the correct time interval in which the text
was created. The intervals come in three types: fine,
medium and coarse, according to their length. The
third and last subtasks regard the phrases that carry
time information and the systems only have to de-
cide if a certain phrase in a given context is time
relevant, and not to assign a precise time interval to
the text.

The systems could use any type of algorithm to
analyze the text and find the time relevant informa-
tion. In fact, the main goal of the task was to identify
fragments of text which by themselves, or in con-
junction with a publicly available external resource,
are time relevant. As such, the task is a systematic
investigation into the actual capacity of NLP to com-
bine both textual and meta-textual information in or-
der to place a piece of text into a larger, temporal,
context.

To the best of our knowledge, the present task
is one of the very first systematic investigation in
diachronic corpora with a focus on the textual and
meta-textual features that are time relevant. We be-
lieve that systems for finding diachronic information
for pieces of text are very interesting from both theo-

retical and practical point of view. Socio and histori-
cal linguistics are both based on the analyses of spe-
cific linguistics variability in a certain epoch, loca-
tion, social class etc. The statistical methods are able
to discover correlations and linguistic provable evi-
dence of language change at all levels: morphologi-
cal, syntactical, semantic and discourse. It would be
physically impossible for a human, or a team of hu-
mans for what it matters, to analyze and corroborate
the data from hundreds of gigabytes of data and find
all the relevant differences. Looking at the distribu-
tion of words across timeline, salient periods, with
statistically non-random behavior, can be automati-
cally inferred (Popescu and Strapparava, 2013). The
structure of such periods, or epochs, are by far more
complex than what it could be manually performed.
From a practical point of view, diachronic systems
have a wide range of applications from emergent
fields such as computational forensics, computa-
tional journalism to more traditional tasks, such as
discourse similarity, sense shifting, readability and
narrative frameworks, etc.

The paper is organized as follow: in the next sec-
tion we review the relevant literature. In Section 3
we present the main motivation for the DTE task
and the three subtasks with their specific corpora. In
Section 4 we present the data format and the evalua-
tion method together with a simple baseline. In Sec-
tion 5 we discuss the main properties of the submit-
ted systems and their results. The paper ends with
a substantial section on conclusion and main future
research direction in DTE.

2 Related Work

The availability of large time annotated corpora like
Google N-gram open the perspective of a new field
of the research which focuses on the distribution of
the linguistics elements in certain periods. (Popescu
and Strapparava, 2014; Popescu and Strapparava,
2013) showed how such corpora can be used to infer
transition periods between epoch with specific char-
acteristics. A ground breaking paper, (Niculae et
al., 2014) focuses on historical documents in three
languages, English, Portuguese and Romanian. The
paper shows how statistical method can be used to
predict the date when the documents have been cre-
ated. The similarity of the ideas in the present task
and their paper, although developed in completely
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autonomy, prove that there is indeed a major interest
in building diachronic systems and that the time is
high for this task. We believe that there is a lot to do
in this emergent field.

3 Task Description

In this section we present the main motivations for
a diachronic task and in particular, we focus on how
these motivations have influenced the choice in the
present task. Let us start from the example (1)-(4)
presented in Section 1.

We can observe that the choice of words, the mor-
phology and word particular meaning, are an impor-
tant part of time detection. Words like brokt, selfie,
spellings like to-morrow or a sense like the one of
the verb cable in (2) are used only within a certain
period. Also, the topics are time specific and the
reader may not even need to consult other sources
in order to realize that an American war in Saudi
Arabia and Her Majesty pardon for a domestic inci-
dent cannot possibly happen in the same period, as
much as telegraphing and uploading selfies cannot
either. Any of these clues seems to be a strong clue,
but it would have been difficult to consider them be-
fore seeing this particular set of sentences. Intu-
itively, if one would read another set of sentences,
some other clues, equally strong, are found. It makes
sense to ask ourselves: How many such clues exist?
Can such clues be systematically found and consis-
tently organized? A human investigation of large
corpora is hopeless, as billions of sentences must be
inspected.

3.1 From News Corpora to Diachronic Data
and Tasks

To answer this question we may want to link the lin-
guistic information to the timeline. A big quantity of
data, chronologically ordered, allows accurate sta-
tistical statements regarding the covariance between
the frequencies of two or more terms over a certain
period of time. By discovering significant statisti-
cal changes in word usage behavior, it is possible
to define epoch boundaries. Inside these epochs the
news are written in a rather uniform way. However,
small changes as well as reference to famous histor-
ical events may lead to the formation of sub epochs.

Clearly, the mentioning of specific historical
events makes it much easier for a diachronic system.

The system must be able to consult an external
resource such as Wikipedia, in order to assign a
time stamp to the extracted entities. However, an
extra analysis is required in order to make sure that
the text does not refer to the respective historical
event as past experience. On the other hand, surface
features, such as spelling, reference to institutions
that are specific to a epoch, or the usage of words in
specific context, can be used to infer a time interval
within which the text was written. Generally, this
interval is much larger when compared to the time
stamp assigned to the historical events and unless
the system is provided with a crystal globe, no
more accurate predictions can be made. It becomes
clear that one needs to differentiate between the
two types of information discussed above. And,
also, that different precision is to be expected
between these two subtasks. Let us call subtask 1
the diachronic task which considers pieces of news
in which specific historical events, named entities
etc. are clearly mentioned and let us call subtask
2 the diachronic task in which such information
is missing, but in which there is enough surface
information to assign a time interval, at least for a
human. We present and discuss below a few typical
examples for each of the subtasks mentioned here.

Task 1

5. At the Court at St.James’s, the 29th Day of March,
and1744 Present, the King’s most excellent Majesty in
Council. His Majesty’s Declaration of War against the
French King.

6. The Troubles which broke out in Germany on Account
of the Succession of the late Emperor Charles the Sixth,
having been begun, and carried on, by the Instigation, As-
sistance, and Support of the French King

7. By 1971 about one-third of Edison’s electric output will
be generated with nuclear capacity,

8. 1935 Ford V-8 Tudor Sedan Only an year old. not a flaw
in it anywhere.

In example (5) the date is clearly indicated and
the phrase war against the French King anchors the
text very precisely in time. The mention of the late
Emperor Charles the Sixth in example (6) pinpoints
the time very precisely. The epoch is indicated in
example (7) as nuclear capacity cannot possible
happen before mid sixties. The last example, (8),
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requires a subtraction of the dates expressed via
temporal phrase, 1935 and one year old respec-
tively. To sum up, task 1 requires systems to work
with temporal expressions, name entity recognition
and external resources, such as Wikipedia.

Task 2

9. By Letters from the Frontiers there is Advice, that the
French Intendant has given Orders for tracing out a Camp
near Givet for 10000 Men;

10. Receipts at Chicago to-day. Wheats 206 cars; corn fill;
oats, 181 cars. Estimated receipts to-morrow. Wheat, 400
cars; corn, 85 cars; oats, 235 cars; hogs, 16,000 head.

11. There is a theory evolved by a French scientist to the
effect that tho human. race is diminishing In size and
will finally become microscopic and vanish into thin air.
He says that statistics from the days of the giants to the
present time prove that man is getting smaller and shorter
and more diminutive live in every way.

12. Red Blankets $1.98 a pair. White Blankets 69c a pair.Bed
Comforts 69c each. Heavy Knit Skirts 69c each.

Advice was used at the beginning of the 18th cen-
tury for military information. The fact that the event
takes place in Europe, Givet, and what is a small
amount of troops for modern times is mentioned,
plus the whole linguistics register of the text deter-
mines clearly the date of the text in Example (9).
As displayed in example (10), the spelling, to-day
and to-morrow is a characteristics of the period be-
tween 19th and 20th century, and the quantity in-
volved shows that indeed the time stamp is about
that time. The scientific language used in example
(11), especially the term statistics shows that the text
cannot be produced earlier than the second half of
the 19th century, yet the mentioning of days of gi-
ants shows clearly that the science was not yet fully
evolved and it was still tributary to an ecclesiasti-
cal view of the world. Thus, the text must have
been produced around the last quarter of 18th cen-
tury. The prices specified in example (12) are clearly
related to an epoch when the American dollar had a
very high value, but yet, it has to be close enough
to the modern times in order for an advertisement to
the bed comforts to be made.

The examples above, which are prototypical for
task 2, show that in order to identify correctly the
time interval a system must corroborate different

types of information, among which an important
role play the linguistics register and the details spe-
cific to each epoch. In fact, there are few NLP sys-
tems, if any, which are able to identify and cluster
accordingly to these features. This is why our main
effort was directed to provide a good coverage of
diachronic corpus especially for task 2, see next sec-
tion. As we worked on compiling the data for task 2
it becomes clear that a different accuracy is to be ex-
pected between task 1 and task 2, and consequently,
different types of intervals must be provided for the
two subtasks.

The focus of subtask number three is on individ-
ual phrases in context. There are certain phrases
that are time specific. In fact we can distinguish
two categories of such phrases: (i) phrases that have
been used preponderantly in a certain epoch and (ii)
phrases that have a specific meaning within a certain
epoch. For the first type, it is sufficient to recognize
them, while for the second, a deeper analysis is
necessary and the context in which they are used is
relevant. A system able to deal with the challenges
posed by task 1 and, especially task 2, must be able
to correctly make the distinction between phrases,
which carry temporal value and those which do not.

Task 3

13. According to Advices from Germany, a Rupture between
the Courts of Dresden and Berlin is at Hand

14. The Regiments of Guelderland, and another belonging to
this Republick, which were accused to not charging the
Enemy

15. corporal punishment

16. his artillery retreat so that he constantly marched under
the grapeshot

For the contiguous phrases marked with italic for-
mat in the examples (13)-(15), a system must be able
to decide whether, in the provided context, there is
temporal information attached to them. The con-
text is crucial, because, out of context, the temporal
value may be cancelled. In a sentence, more than
a phrase can be proposed. Roughly, all the features
discussed above for task 1 and task 2 are present in
the examples of task 3. From this point of view, task
3 can be viewed as a classical feature selection task.
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3.2 News Corpus and Data Statistics

Instead of considering whole pieces of news, we fo-
cused on individual parts of text that may carry rele-
vant time information. The data proposed for train-
ing and test is made out of snippets of text of variable
length. Typically a snippet will have between tens to
a couple of hundred of words.

We used a series of journals available in electronic
format from extracting the data. Most of the elec-
tronic archive do not make available newspapers that
are older than the beginning of 19th century. How-
ever, we wanted to cover the whole period between
1,700 to 2,010. A second detail to consider is the
diversity of the sources. Most of the archives are
linked to one journal, which restricts the scope of
the news to one location and one community. An-
other aspect that we want to consider for our data is
to be hard to find it by searching the web. That will
kind of prohibiting a simple system that only does
string match to correctly solve the task. A system
that find the whole piece of news and its publishing
date on the web , may produce good results for task
1 , but would fail to do so for task 2 and task 3.
In order to cope with this restriction we subscribed
to several web newspaper archives. The influence of
each of these sources in our data set is specified in
Table 1.

Source address Data task coverage
NPA newspaper.achive.com 75%
SPR archive.spectator.co.uk 12%
BDY www.bodley.ox.ac.uk/ilej/ 10%
OTHER 3%

Table 1: Data Sources.

The separation of the data into trial, training and
test is presented in table 2. The data for task1 is not
very rich. This is because the learning methodology
for task 1 is pretty clear, so we are mainly interested
in having a statistical sufficient pool for drawing ac-
curate conclusions after the evaluation of the task.
For task 2 the methodology is still a matter of re-
search we want to provide as much data as possible
in order for machine learning systems to be able to
learn both the surface and meta-textual features. For
task 3, there is no need for training. A phrase is or
it is not time relevant, and each case must be treated
separately.

data task 1 task 2 task 3
trial 17 87 7
training 167 5, 436 NA
test 267 1, 041 108
total 451 6, 568 115

Table 2: Data size.

Figure 1: Task 2 distribution.

The snippets cover the last three centuries. How-
ever, the number of snippets per year may vary. In
Figure 1 we plot the distribution of the number of
snippets for each time interval of 25 years for task
2. With the notable difference of the first 50 years
of the 18th century, each quarter of the century is
covered by a number between 200 to 400 snippets,
which men an average between 4 to 8 snippets per
year. The first two quarters of the 18th centuries are
substantially better covered: 1, 343 and 780 snippets
respectively. The explanation for this skewness is
two fold: (1) the data for the beginning of the 18th
century is much more difficult to acquire than the
rest of the data. Basically the text exists only as pdf
and the OCRss are not trained to work on this kind
of text. Therefore, it is really hard to get a good cor-
pus for the beginning of 18th century, but, as this is
in fact our goal, we pursued into acquiring the snip-
pets for this period with priority. (2) the data at the
beginning of the 18th century is the one which has
a rich variation of linguistic constructions, and the
present corpus can be used further for different anal-
yses. We note here, that from the point of view of
lexical variability, the 19th century is very rich and
there is a huge jump from the previous century in the
size of vocabulary.

In this section we have defined the broad scope
of the DTE task, we have reviewed the main char-
acteristics of the subtasks, and we have shown to
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what type of information must be extracted and man-
aged by a diachronic system. In the next section we
present the details of task organization - the format
of data, the input and expected output and the evalu-
ation procedure.

4 Task Organization

4.1 Data Format

As this task is the first of its genre, it is hard to
know priorly how accurate a system can be in deter-
mining epochs and sub epochs from a news corpus.
On the basis of our previous experience (Popescu
and Strapparava, 2014; Popescu and Strapparava,
2013), we have reasons to believe that separation
into epochs is not linear: the epochs tend to change
much faster in modern times. However, the topics
seemed to be much better differentiate a couple of
hundred of years ago than in the modern times. All
in all, it seems that a 50 years time interval is some-
thing that could be inferred without carrying out a
special analysis for both tasks T1 and T2. Thus, in
order to be able to judge justly the contribution to
each system, a shorter time interval should be taken
into account. We have decided to consider an inter-
val centered around the year in which the news was
actually produced and to have three types of inter-
vals: fine, medium and coarse. The three intervals
are included one in another, and for all three there is
an equal number of years to the left and to the right
of the actual date. This condition creates intervals
with even number of years. We considered the inter-
vals for task T1 and T2 as presented in Table 3.

accuracy task1 task2
fine 2 6
medium 6 12
coarse 12 20

Table 3: Time intervals.

The system has to choose the correct time period,
e.g. 1700-1720, . . . , 1900-1920, . . . , from the given
set of contiguous intervals which cover the whole
period considered, i.e. from 1700 to 2014. In both
subtasks 1 and 2 the explicit choice of intervals is
available. Only one interval is correct for each level
of accuracy. In the training data each snippet has an
unique ID, followed by three lines, one for each level
of precision and each containing the set of intervals

with the specific length. Only one interval is marked
with yes in training, while in test all are marked with
no. At the evaluation time, the system performances
are compared against the gold standard.

4.2 Evaluation and baseline

The results on each snippet can be evaluated individ-
ually. The system has to specify the chosen interval,
and if this is the same as the one specified in the gold
standard, then the answer is correct, otherwise not.
However, the distance from the chosen interval and
the correct interval is relevant. Between two systems
that have exactly the same number of strictly correct
answers, it is preferable to work with the one that has
the minimal error average. Keeping in mind these
ideas we implemented an evaluation script, which
takes into account the distance between the chosen
and the gold standard interval. The score is normal-
ized to [0,1) interval. The correct answer is marked
with a zero loss and a ten or more interval difference
is marked with 0.99 loss. According to the number
of intervals off, a loss is computed between 0 and 1,
see Table 4. The final score is 1- loss. The evalua-
tion script also outputs the number of years by which
the system was off and their distributions, that is, the
distribution of loss function from 0 to 9.

We have considered a simple baseline, that is ran-
dom choice. Another candidate is to always choose
the median interval, like 1850, for example. How-
ever, both options are bad, and the number of 9 or
more intervals off is very large, these baselines tend
to have a very high loss function. Their behavior
is not actually very different one another. That is
why we choose officially to have just one baseline,
namely random choice. This choice is supported
by the following reason: the median produces ev-
ery time the same output, while the random choice
is different. Averaging over several runs of the ran-
dom choice we have a much better approximation of
what are the baseline performances.

intervals off loss intervals off loss
0 0 5 .5
1 .1 6 .6
2 .15 7 .8
3 .2 8 .9
4 .4 ≥ 9 .99

Table 4: Loss as function of off intervals.
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5 Submitted Runs and Results

There were 7 teams that expressed their interest in
the task, but in the end there were only four teams
which successfully submitted the results. The num-
ber of submitted runs was less, though, as not all
the teams participated in all the tasks. In fact there
is only one team that participated in all three tasks,
namely IXA. As such, we are glad to acknowledge
them as the winner of the tasks, if the average over
the all three task is made.

We are going to present the team by including
their own description of their systems. More details
can be found in their system paper, submitted to the
SemEval 2015. Then we present their results and
discuss the performances of their system individu-
ally.

5.1 Systems
A short description of the system follows:

I AMBRA
Our approach is based on the learning-to-rank
framework using pairwise comparisons, pre-
viously proposed for temporal text modelling
by (Niculae et al., 2014). We train a classi-
fier to learn which document out of a pair is
older and which is newer. If two documents
come from overlapping intervals, then their or-
der cannot be determined with certainty, so the
pair is not used in training. We use the prop-
erty of linear models to extend a set of pair-
wise decisions into a ranking of test documents
(Joachims, 1998). In light of this, our system
is named AMBRA (Anachronism Modelling by
Ranking). We used four types of features: doc-
ument length meta-features, stylistic, grammat-
ical, and lexical features. The four stylistic fea-
tures used were previously proposed by (Stajner
and Zampieri, 2013): Average Word Length
(AWL), Average Sentence Length (ASL), Lex-
ical Density (LD) and Lexical Richness (LR).

II IXA
Four different approaches are undertaken in or-
der to automatically determine the period of
time in which a piece of news was written:
the first approach consists of searching for the
mentioned time period within the text. The

second approach, on the other hand, consists
of searching for named entities present in the
text and then establishing the period of time
by linking these to Wikipedia. The third ap-
proach uses Google NGrams and, to conclude,
the fourth approach consists of using linguis-
tic features that are significant with respect to
language change in combination with machine
learning.

III UCD

We approach the task of dating a text (sub-
task 2) as a stylistic classification problem. For
each level of granularity (6-year, 12-year, and
20-year), we train a multi-class SVM classi-
fier using a set of stylistic features extracted
from the texts. These features include fre-
quency counts of character, word, and POS-tag
n-grams, and syntactic phrase-structure rule oc-
currences. We also incorporate date estimates
of syntactic nodes from the Google syntactic
n-grams database. Our submission is a clas-
sifier incorporating all of these features and
trained on the task training data. We find that
of the stylistic features, character n-grams are
the most informative. The Google syntactic n-
gram dates, while weak predictors on their own,
are also among the most informative features in
our combined classifier.

IV USAAR

We built a crawler to crawl the text snippets in
the task and also we found that the webpages
retrieved were dated. We use those dates as an-
swers to the task evaluation. We then crawl the
two webpages fully and then clean the website
to produce a corpus of diachronic texts for fu-
ture use (in total 24,280 articles).

5.2 Evaluation

The results are presented in Table 5. The acc column
lists the score of the system, computed as described
in Section 4.2, and the P shows how many times the
system was perfectly accurate, that is, it found the
exact interval. The fine grade seems to be a prob-
lem for the big majority of the systems. The only
system which reports very high value, USAAR, is
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System Task 1 Task 2 Task 3
F M C F M C

acc P acc P acc P acc P acc P acc P acc
AMBRA .167 .037 .367 .071 .554 .074 .605 .143 .767 .143 .868 .292 NA
IXA .187 .02 .375 .041 .557 .090 0.261 .037 .428 .067 0.622 .098 .573
UCD NA NA NA NA NA NA 0.759 .463 .846 .472 0.910 0.542 .551
USAAR .953 .910 .972 .928 .981 .943 NA NA NA NA NA NA NA
baseL .107 .112 .174 .187 .377 .037 .224 0 .391 0 .524 0 .237

Table 5: DTE results.

based on web crawling, thus is not a generalizable
method. In fact, the team participated only in task 1.
The medium grade seems to be doable, all systems
scoring better than the baseline. For the coarse grade
the systems outperform the baseline by several tens
of percent and obtain very good results, with accu-
racy between 0.868-0.91. These results confirm the
fact that the task is doable and a 20 years interval is
appropriate for DTE. We hope these results can be
further improved in the future.

The results for task 3 show that this task is indeed
difficult, and even if the baseline has been overcome
with a great margin, the results show that the system
could be improved further. We plot the distribution
of errors for the system which participated in task 2,
see Figure 2. Interestingly, AMBRA and UCD have
very similar distributional curves, with the exception
of perfect guess. The IXA system has a more regu-
lar shape and its errors seem to be evenly distributed
with a big exception for the maximum error cate-
gory. Maybe an interpolation between these three
methods could lead to a better overall result.

To conclude, we are glad we received different
systems which produce good and very good results.
These initial ideas represent a valuable pool from
which further work can be developed in the future.

Figure 2: Task 2 medium error distribution.

6 Conclusion and Further Research

In this paper we described the Diachronic Text Eval-
uation task. We explain the main motivation for this
task and we presented what the main issues behind
the diachronic task are and how these issues have
influenced our decisions. We presented the sources
and the distribution of snippets in task data. A short
paragraph description for each of the participating
systems is provided, and we carried out a global
evaluation. Finally we have provided an analysis of
errors for task 2.

We think that there are some very interesting di-
rections we would like to investigate further. The
first one is to consolidate the actual corpus. This a
necessary step in order to build a solid basis for fur-
ther experiments and developments. We would like
to improve the quality and quantity of training text
for allowing search of changes at all linguistics level.
We would like to work more in revealing the connec-
tion between diachronic evaluation and epoch dis-
covery.

Another direction of research is a systematic
study of the textual and meta-textual features that
are relevant for the DTE task and what their individ-
ual contributions to the over all accuracy is. Besides
the overt temporal features we need to identify, the
linguistics register, the topics and the discourse fea-
tures - from grammar to pragmatics must be taken
into account. We believe that DTE is a very good in-
dicator on the performance of machine learning sys-
tems for the meta-textual feature management.

Last, but not least, we would like to bridge the gap
between different old and emergent fields, such as
sociology, socio-historic linguistics and social com-
putational analysis, computational journalism and
forensic linguistics respectively. We think that NLP
systems are able to tackle the difficult issues posed
by this research.
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Abstract

We present our submission to SemEval-2015
Task 7: Diachronic Text Evaluation, in which
we approach the task of assigning a date to
a text as a multi-class classification problem.
We extract n-gram features from the text at
the letter, word, and syntactic level, and use
these to train a classifier on date-labeled train-
ing data. We also incorporate date probabili-
ties of syntactic features as estimated from a
very large external corpus of books. Our sys-
tem achieved the highest performance of all
systems on subtask 2: identifying texts by spe-
cific time language use.

1 Introduction

This paper describes our submission to the
SemEval-2015 Task 7, “Diachronic Text Evalua-
tion” (Popescu and Strapparava, 2015). The aim
of this shared task is to evaluate approaches to-
ward diachronic text analysis of a corpus of English-
language news articles from The Spectator1 archive,
originally published between 1700 and 2014.

We solely address subtask 2: “texts with specific
time language usage.” The goal of this subtask is
to infer the composition date of a text based on im-
plicit clues in language of the text, as opposed to
overt mentions of datable named entities or events.
This task has inherent utility, for example, for his-
torians dating texts in an archive with no external
datable properties. However, it is equally interest-
ing as an investigation into methods for quantifying

1http://www.spectator.co.uk/.

changes in language and writing style over a period
of centuries.

We approach this task in a similar manner as pre-
vious work on stylistic text classification (Argamon-
Engelson et al., 1998) in that we aim to model stylis-
tic, rather than topical, features of the text. From
each text we extract a variety of character, lexical,
and syntactic features, as described in section 3. We
also use a set of syntactic features whose frequencies
over time have been estimated from a very large cor-
pus of books (Goldberg and Orwant, 2013). While
many of these features have previously been used for
stylistic analysis, our approach is not to model style
per se. Many types of variation may be captured
indirectly by our features: the spelling, typogra-
phy, lexicon, and grammar of English have changed
markedly over the past centuries, as has the genre of
news writing. We consider any time-correlated vari-
ation to be useful for dating.

2 Data

We used the two training sets of texts provided by
the challenge organizers for subtask 2. After remov-
ing errors (repeated items, items containing no text,
items with invalid dates), our training set consisted
of 4130 items. Each item contains the text of a snip-
pet of news, typically consisting of a few sentences
(the average length of a text is 70 words), and three
year-range labels: one for each of the Fine (6-year),
Medium (12-year) and Coarse (20-year) granulari-
ties specified in the task.

The given labels are not well-suited for classifica-
tion, since the set of labels used for one text is not
necessarily the same as the set of labels used for an-
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other text. For example, here are the labels provided
for two texts in the training set:
<text id="378rn324911597">
<textF yes="1698-1704" no="1705-1711" ...
<textM yes="1695-1707" no="1708-1720" ...
<textC yes="1691-1711" no="1712-1732" ...

<text id="74gi329732114">
<textF yes="1699-1705" no="1706-1712" ...
<textM yes="1696-1708" no="1709-1721" ...
<textC yes="1692-1712" no="1713-1733" ...

These two texts are very close in date, yet
have completely different (and incomparable) year
ranges. Therefore, we create our own non-
overlapping year-range classes at 6-, 12-, 20-, and
50-year levels. We assume that the true date of a
text is the midpoint of the “yes” year ranges and
assign a non-overlapping class appropriately. All
of our training, cross-evaluation, and prediction is
done using these non-overlapping classes. To make
predictions for our official submission, we predict
whichever given year range has the greatest overlap
with our predicted class.

The training data is unevenly distributed over the
possible range of years from 1700 to 2014. Just three
years (1717, 1817, and 1897) account for 11% (444
of 4130) of the training instances, while 48% (150
of 314) of the years in the possible range are unat-
tested in the training data. Overall, there is a general
bias towards earlier years in the time range. We do
not attempt to control for this bias in the data, since
we assume that the test data will be drawn from a
similar distribution. While the uneven distribution
may artificially boost the accuracy of our classifiers,
the baseline classifier captures this effect.

3 Features for Classification

We extract four types of features from each text:
character n-grams (Char), part-of-speech tag n-
grams (POS), word n-grams (Word) and syntactic
phrase-structure rule occurrences (Syn). We refer to
the combined feature set as CPWS. (Stamou, 2008)
surveys diachronic classification of literary text and
finds that parts of speech, character frequencies, and
function word frequencies are all used in chronolog-
ically dating text composition. Part-of-speech and
word n-grams have been used for stylistic text clas-
sification (Argamon-Engelson et al., 1998), and syn-
tactic phrase-structure rules have successfully been

used as stylometric features for detecting deceptive
writing in online reviews (Feng et al., 2012). We
have not included document-level stylistic features
(e.g. average sentence length, average word length,
lexical richness, lexical density, and readability mea-
sures) although they have been used successfully for
diachronic stylistic analysis (Štajner and Zampien,
2013), and could be incorporated in our classifica-
tion approach. However, our n-gram features may
capture features such as sentence length by proxy
(e.g. in the frequency of periods).

Character n-grams are an expressive feature set
which can capture variation on the morphological
level (word stems), syntactic level (gaps between
words and punctuation) and also word-level fre-
quency fluctuations (prepositions and conjunctions).
Character bigrams were used previously on Latin
text by (Frontini et al., 2008) to date the Donation of
Constantine, a study which did not verify the work
as a forgery but did place it in the correct stylistically
implied period.2 Additionally, character n-grams are
used in stylometric tasks such as authorship attribu-
tion (Keselj et al., 2003) and detection of transla-
tionese (Popescu, 2011).

All n-gram features were extracted for n ∈
{1, 2, 3} using an in-house Java concordancer.
Punctuation and spacing was not modified during
this process, although case information was dis-
carded. No stop words were removed. Raw fre-
quency counts of the features were used in the pro-
cess, and those features with less than 20 occur-
rences in the entire corpus were discarded. Texts
were parsed with the Stanford parser,3 and the 250
most-frequent syntactic rules in the training set were
used as features. The dependency parse was also
produced and used as described below.

3.1 Google Syntactic N-grams
As an external source of data, we used the Google
Books Syntactic N-Grams (GSN) database (Gold-
berg and Orwant, 2013). Due to the size of the
datasets and time limitations, we focused solely on
the nodes collection of the Eng-1M corpus, a sam-
ple of 1 million English-language books dating from
1520 to 2008. Each data point in the nodes collec-

2Verification of forgery was based on false information con-
tained in the text, rather than stylistic idiosyncracy.

3http://nlp.stanford.edu/software/lex-parser.shtml
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tion is a POS-tagged word and the label of the syn-
tactic dependency between that word and its head,
which gives a sense of the word’s syntactic function
in a given sentence. For each node, the total number
of occurrences in each year is provided.

Because the GSN database is particularly sparse
for years prior to 1800, we smoothed all node
counts by averaging over the five nearest years with
nonzero counts. Then the smoothed counts are nor-
malized within each year to estimate the probability
of a node in a given year.

We use a Naive Bayes classifier (Googlenb) to
predict the most likely year for a given text, repre-
sented as a set of nodes extracted from the depen-
dency parse. We also produce a GSN feature set
consisting of 308 features (one for each year in the
range 1700-2008), whose values are based on the to-
tal log probability of the text in that year, normalized
to the interval [0,1] for each text. The normaliza-
tion controls for text length and allows comparison
between texts. These features are then used in the
combined CPWS+G classifier.

3.2 Feature Informativeness
When all features are combined, the GSN features
are the most predictive. In order to assess the ef-
fectiveness of the other features and also to reduce
the feature set for classification, we performed at-
tribute selection using the Weka data mining soft-
ware (Hall et al., 2009). Table 1 shows the top-
ranked CPWS features using the the 50-year class
labels, using Weka’s information gain attribute eval-
uation with 10-fold cross-validation.

Rank Attribute Type
1 NN P-1
2 i C-1

3.5 C-1
3.9 .→ . S
5 ROOT→ S S

5.8 a C-1
7.3 e C-1
8.1 . C-1
8.5 n C-1

10.7 s C-1

Rank Attribute Type
10.9 t C-1
11.7 l C-1
13.3 o C-1
13.8 . W-1
15.7 [ ’ d ] C-2
15.9 [ . ] C-2
16.3 r C-1
18.6 [ JJ NN ] P-2
19.3 JJ P-1
19.8 c C-1

Table 1: Top 20 CPWS features using Information Gain

The rankings show that the character n-gram fea-
tures were particularly expressive in capturing tem-
poral variation, yet it can be difficult to assign a
linguistic motivation to them. Because our feature

counts are not normalized by text length, many of
these features may simply be redundantly capturing
an overall length effect.

Figure 1: Changing frequencies of verb endings in the
Google Books English corpus, 1700-2000.

However, some meaningful features can clearly
be recognized, such as [ ’ d ], refering to the 18th
century abbreviation of -ed as a past participle verb
ending in English. The frequency of verb-final ’d in
the POS-tagged Google N-grams dataset (Lin et al.,
2012), shown in Figure 1, illustrates how use of this
linguistic feature has declined over time.

Another highly informative feature is the charac-
ter bigram [ . ]. In some texts, punctuation has been
separated from the neighboring words with a space,
possibly due to OCR errors on older texts.

4 Classification and Evaluation

We employ attribute selection as above in all of our
cross-validation experiments and our official sub-
mission. Table 2 illustrates how SVM classifica-
tion accuracy varies with feature set size. The value
of 4000 features was chosen to maximize accuracy
while minimizing running time, and was used to pro-
duce all of the results described in this paper.

|F | 6-Year 12-Year 20-Year 50-Year
4000 37.61 39.30 52.07 67.74
2000 35.75 37.61 50.77 67.59
1000 32.55 37.26 51.24 67.53
500 33.09 38.62 52.22 65.94
200 33.77 35.28 50.41 64.07
100 31.87 33.62 47.10 60.32
50 29.57 31.82 44.91 57.07

Table 2: Effect of feature set size (|F |) on classification
accuracy. (Char+POS+Google features)

Assigning a date to a text is not a typical classifi-
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cation problem, because the classes are not indepen-
dent of one another. We experimented with SVM re-
gression, but this produced lower accuracy than the
SVM classifier. Ordinal classification is a method
that may be used when classes exhibit a natural or-
der, as in this task. We performed some experiments
with the Weka implementation of ordinal regression
(Frank and Hall, 2001) using a SVM base classi-
fier, but these produced lower accuracy than the stan-
dard SVM classifier. Therefore, we used a standard
multi-class SVM classifier for all of our evaluations
and predictions.

System 6-Year 12-Year 20-Year 50-Year
Baseline 10.4 12.6 20.5 36.6
Googlenb 10.9 18.7 31.7 52.4
Char 36.1 38.4 47.9 64.5
POS 24.6 26.8 36.3 53.6
Word 26.1 29.6 37.2 54.6
Syn 23.4 26.3 38.5 54.6
CPWS 36.9 40.1 50.7 67.8
CPWS+G 41.5 45.9 55.3 73.3

Table 3: Classification accuracy of various feature sets,
using 10-fold cross-validiation on the training data set.

Table 3 lists the cross-validation classification ac-
curacy for our various models. The baseline clas-
sifier looks only at the class labels and chooses the
most frequent class. The Googlenb classifier is a
Naive Bayes classifier using only the GSN probabil-
ities and assuming a uniform prior over years. This
represents a classifier with no domain knowledge of
the text genre or date range distribution.

The remaining rows show the results for SVM
classifiers trained independently on each of the four
stylistic feature sets. While each feature type outper-
forms the baseline, the character n-gram features are
clearly the single most effective feature type. The
combination of all four features together (CPWS)
outperforms any single feature set individually, and
this represents the maximal performance we achieve
using solely the training data provided by the task
organizers.

The final row shows the performance of a SVM
classifier using all of our stylistic features plus fea-
tures derived from the GSN probabilities. This
achieves the highest accuracy and this is the system
we submitted to the task.

Table 4 shows the official results of the CPWS+G
classifier, trained on the full training set and evalu-
ated on a test set of 1041 texts whose true dates were
unknown to us. The accuracy values are in line with
our cross-validation scores. The score is a weighted
classification metric that rewards predictions that are
not fully correct but are near the correct date. The
third row lists the mean deviation of our predictions
from the true date. By all three measures, our system
was the top performing submission to this subtask.

Fine Medium Coarse
(6-year) (12-year) (20-year)

Accuracy 46.3 47.3 54.3
Score 0.7592 0.8466 0.9104
Avg. Years Off 14 19 19

Table 4: Official results on the SemEval test data.

Our 73.3% accuracy on the 50-year class may
be loosely compared to (Mihalcea and Nastase,
2012), who achieve 62% classification accuracy dat-
ing words in context to 50-year epochs. Their task,
word epoch disambiguation, is comparable but dif-
ferent: they classify words, not texts, using local
context features and a targeted set of 165 words.

5 Conclusion

We have shown that a stylistic classification ap-
proach is capable of accurately predicting the date
when a text from the sample category was written.
Additionally, our approach is straightforward to im-
plement and can function well using only a moderate
sized sample of training data, although its accuracy
can be improved by incorporating features trained
from a large external corpus.

We cast a wide net in order to produce a large fea-
ture set and allow the classifier to select whichever
features most improved the classification accuracy.
While this produces good classification results, it
remains difficult to interpret the linguistic or stylis-
tic significance of the most-predictive features. It
is also unknown how the results would differ on
other data sets in different languages, genres, or
time periods. In addition to the features we have
explored, there are a number of others, such as
sentence length, capitalization, and lexical richness
measures which might be considered in future work.
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Abstract

Human languages exhibit a variety of strate-
gies for communicating spatial information,
including toponyms, spatial nominals, loca-
tions that are described in relation to other lo-
cations, and movements along paths. SpaceE-
val is a combined information extraction and
classification task with the goal of identify-
ing and categorizing such spatial information.
In this paper, we describe the SpaceEval task,
annotation schema, and corpora, and evalu-
ate the performance of several supervised and
semi-supervised machine learning systems de-
veloped with the goal of automating this task.

1 Introduction

SpaceEval builds on the Spatial Role Labeling
(SpRL) task introduced in SemEval 2012 (Kord-
jamshidi et al., 2012) and used in SemEval 2013
(Kolomiyets et al., 2013). The base annotation
scheme of the previous tasks was introduced in (Ko-
rdjamshidi et al., 2010), with empirical practices
in (Kordjamshidi et al., 2011; Kordjamshidi and
Moens, 2015). While those previous tasks are
similar in their goal, SpacEval adopts the annota-
tion specification from ISOspace (Pustejovsky et al.,
2011a; Moszkowicz and Pustejovsky, 2010; ISO/TC
37/SC 4/WG 2, 2014), a new standard for capturing
spatial information. The SpRL in SemEval 2012 had
a focus on the main roles of trajectors, landmarks,
spatial indicators, and the links between these roles
which form spatial relations. The formal semantics
of the relations were considered at a course-grained
level, consisting of three types: directional, regional
(topological), and distal. The related annotated data,
CLEF IAPR TC-12 Image Benchmark (Grubinger et

al., 2006), contained mostly static spatial relations.
In SemEval 2013, the SpRL task was extended to the
recognition of motion indicators and paths, which
are applied to the more dynamic spatial relations.
Accordingly, the data set was expanded and the text
from the Degree Confluence Project (Jarrett, 2013)
webpages were annotated.

SpaceEval extends the task in several dimensions,
first by enriching the granularity of the semantics in
both static and dynamic spatial configurations, and
secondly by broadening the variety of annotated data
and the domains considered. In SpaceEval the con-
cept of place is distinguished from the concept of
spatial entity as a fundamental typing distinction.
That is, the roles of trajector (figure) and landmark
(ground) are roles that are assigned to spatial enti-
ties and places when occurring in spatial relations.
Places, however, are inherently typed as such, and
remain places, regardless of what spatial roles they
may occupy. Obviously, an individual may assume
multiple role assignments, and in both ISOspace and
SpRL this is assumed to be the case. However, be-
cause SpRL focuses on role assignment, it does not
introduce the general concept of spatial entity.

There are other differences in the relational
schemas of SpRL and SpaceEval which can be eas-
ily mapped to each other. For example, in SpRL
the general concept of spatial relation is defined
and the semantics of the relationship (e.g., direc-
tional, regional) is added as an attribute of the re-
lation while in SpceEval these semantics introduce
new types of relations (e.g., QSLINK and OLINK).
In addition to the variations in relational schemas,
there are some additional extensions in the SpaceE-
val annotation. These include augmenting the main
elements with more fine-grained attributes. These
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attributes, in turn, impact the way the spatial seman-
tics are interpreted. For example, the spatial entities
are described with their dimensionality, form, etc.
SpaceEval, also strongly highlights the concepts in-
volved in dynamic spatial relations by introducing
movelink relations and motion tags for annotating
motion verbs or nominal motion events and their
category from the perspective of spatial semantics.
These fine-grained annotations of all the relevant
concepts that contribute to grasping spatial seman-
tics makes this scheme and the accompanying cor-
pus unique. The details of the task, including the an-
notation schema, evaluation configurations, break-
down of the sub-tasks, data set, participant systems,
and evaluation results are described in the rest of the
paper.

2 The Task

The goals of SpaceEval include identifying and clas-
sifying items from an inventory of spatial concepts:

• Places: toponyms, geographic and geopolitical
regions, locations.
• Spatial Entities: entities participating in spatial

relations.
• Paths: routes, lines, turns, arcs.
• Topological relations: in, connected, discon-

nected.
• Orientational relations: North, left, down, be-

hind.
• Object properties: intrinsic orientation, dimen-

sionality.
• Frames of reference: absolute, intrinsic, rela-

tive.
• Motion: tracking objects through space over

time.

Participants were offered three test configurations
for this task.

Configuration 1 Only unannotated test data was
provided.

Configuration 2 Manually annotated spatial ele-
ments, without attributes, were provided.

Configuration 3 Manually annotated spatial ele-
ments, with attributes, were provided.

The SpacEval task is broken down into the fol-
lowing sub-tasks:

Spatial Elements (SE)

a. Identify spans of spatial elements includ-
ing locations, paths, events and other spa-
tial entities.

b. Classify spatial elements according to
type: PATH (road, river, highway), PLACE

(mountain, village), MOTION (walk, fly),
NONMOTION EVENT (sit, read), SPA-
TIAL ENTITY (any entity in a spatial re-
lation).

c. Identify their attributes according to type.

Spatial Signal Identification (SS)
a. Identify spans of spatial signals (in, on,

above).
b. Identify their attributes.

Motion Signal Identification (MI)
a. Identify spans of path-of-motion and

manner-of-motion signals (arrive, leave,
drive, walk).

b. Identify their attributes.

Motion Relation Identification (MoveLink)
a. Identify relations between motion-event

triggers, motion signals, and motion-
event participants (source, goal, landmark,
path).

b. Identify their attributes.

Spatial Configuration Identification (QSLink)
a. Identify qualitative spatial relations be-

tween spatial signals and spatial elements
(connected, unconnected, part-of, etc.).

b. Identify their attributes.

Spatial Orientation Identification (OLink)
a. Identify orientational relations between

spatial signals and spatial elements
(above, under, in front of, etc.).

b. Identify their attributes.

3 The SpaceBank Corpus

The data for this task are comprised of annotated
textual descriptions of spatial entities, places, paths,
motions, localized non-motion events, and spatial
relations. The data set selected for this task, a subset
of the SpaceBank corpus first described in (Puste-
jovsky and Yocum, 2013), consists of submissions
retrieved from the Degree Confluence Project (DCP)
(Jarrett, 2013), Berlitz Travel Guides retrieved from
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the American National Corpus (ANC) (Reppen et
al., 2005), and entries retrieved from a travel we-
blog, Ride for Climate (RFC) (Kroosma, 2012). The
DCP documents are the same set as those annotated
with Spatial Role Labeling (SpRL) for SemEval-
2013 Task 3 (Kolomiyets et al., 2013), however, for
this task, the DCP texts were re-annotated according
to ISO-Space.

3.1 Annotation Schema

The annotation of spatial information in text in-
volves at least the following: a PLACE tag (for
locations and regions participating in spatial rela-
tions); a PATH tag (for paths and boundaries be-
tween regions); a SPATIAL ENTITY tag (for spatial
objects whose location changes over time); link tags
(for topological relations, direction and orientation,
frames of reference, and motion event participants);
and signal tags (for spatial prepositions)1. ISO-
Space has been designed to capture both spatial and
spatio-temporal information as expressed in natural
language texts (Pustejovsky et al., 2012). We have
followed a strict methodology of specification devel-
opment, as adopted by ISO TC37/SC4 and outlined
in (Bunt, 2010) and (Ide and Romary, 2004), and as
implemented with the development of ISO-TimeML
(Pustejovsky et al., 2005) and others in the family of
SemAF standards.

SpaceEval’s three link tags are as follows:

1. MOVELINK – for movement relations;
2. OLINK – orientation relations;
3. QSLINK – qualitative spatial relations;

QSLINKs are used in ISO-Space to capture topo-
logical relationships between tagged elements. The
relType attribute values come from an extension
to the RCC8 set of relations that was first used
by SpatialML (Mani et al., 2010). The possible
RCC8+ values include the RCC8 values (Randell et
al., 1992), in addition to IN, a disjunction of TPP
and NTPP.

Orientation links describe non-topological rela-
tionships. A SPATIAL SIGNAL with a DIRECTIONAL

semantic type triggers such a link. In contrast
to topological spatial relations, OLINK relations are
built around a specific frame of reference type and

1For more information, cf. (Pustejovsky et al., 2012).

a reference point. The referencePt value de-
pends on the frame type of the link. The ABSO-
LUTE frame type stipulates that the referencePt
is a cardinal direction. For INTRINSIC OLINKs,
the referencePt is the same identifier that is
given in the landmark attribute. For OLINKs
with a RELATIVE frame of reference, the identi-
fier for the viewer should be provided as to the
referencePt.

The following samples from the RFC and ANC
sub-corpora have been annotated with a subset of
ISO-Space for the SpaceEval task2:

1. [Arrivingm1] [inms1] the [town of Juanjuipl1], near the
[parkpl2], [Ise1] learned that my map had lied to me.
<MOTION id=m1 extent=‘‘Arriving’’
motion type=PATH motion class=REACH
motion sense=LITERAL>
<MOTION SIGNAL id=ms1 extent=‘‘in’’
motion signal type=PATH>
<PLACE id=pl1 extent=‘‘town of
Juanjui’’ form=NAM countable=TRUE
dimensionality=AREA>
<PLACE id=pl2 extent=‘‘park’’ form=NAM
countable=TRUE dimensionality=AREA>
<SPATIAL ENTITY id=se1 extent=‘‘I’’
form=NOM countable=TRUE
dimensionality=VOLUME>
<MOVELINK id=mvl1 trigger=m1
goal=pl1 mover=se1 goal reached=TRUE
motion signalID=ms1>

2. Just [south ofs1] [Ginzapl3] itself, as [youse2] [walkm2]
[towardms2] the [baypl4], you see [ons2] your [leftpl5]
the red [lanternsse4] and long [bannersse5] of the
[Kabuki-zapl6]. . .
<SPATIAL SIGNAL id=s1 extent=‘‘south
of’’ semantic type=DIRECTIONAL>
<PLACE id=pl3 extent=‘‘Ginza’’
form=NAM countable=TRUE
dimensionality=AREA>
<SPATIAL ENTITY id=se2 extent=‘‘you’’
form=NOM countable=TRUE
dimensionality=VOLUME>
<MOTION id=m2 extent=‘‘walk’’
motion type=COMPOUND
motion class=REACH
motion sense=LITERAL>
<MOTION SIGNAL id=ms2
extent=‘‘toward’’
motion signal type=PATH>
<PLACE id=pl4 extent=‘‘bay’’ form=NAM
countable=TRUE dimensionality=AREA>
<PLACE id=pl5 extent=‘‘left’’ form=NAM
countable=TRUE dimensionality=AREA>
<SPATIAL ENTITY id=se4

2The MEASURE and MLINK tags were not a part of this task.
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extent=‘‘lanterns’’ form=NAM
countable=TRUE dimensionality=VOLUME>
<SPATIAL ENTITY id=se5
extent=‘‘banners’’ form=NAM
countable=TRUE mod=‘‘long’’
dimensionality=VOLUME>
<PLACE id=pl6 extent=‘‘Kabuki-za’’
form=NAM countable=TRUE
dimensionality=VOLUME>
<OLINK id=ol1 trajector=m2
landmark=pl3 trigger=s1
frame type=ABSOLUTE referencePt=SOUTH
projective=FALSE>
<MOVELINK id=mvl2 trigger=m2
mover=se2 goal=pl4 goal reached=NO
motion signalID=ms2>
<QSLINK id=qsl1 trigger=s2
trajector=se5 landmark=pl5 relType=IN>
<QSLINK id=qsl2 trigger=s2
trajector=se6 landmark=pl5 relType=IN>

Since SpaceEval is building on the SpRL shared
tasks, we opted to retain the trajector and
landmark attributes for labeling the participants
in QSLINK and OLINK relations. This is a devia-
tion from the ISO-Space (Pustejovsky et al., 2011b)
standard, which specifies figure and ground
labels based on cognitive-semantic categories ex-
plored in the semantics of motion and location by
Leonard Talmy (Talmy, 1978; Talmy, 2000) and
others. ISO-Space adopted the figure/ground
terminology to identify the potentially asymmetric
roles played by participants within spatial relations.
For MOVELINKs, however, we distinguish the no-
tion of a figure/trajector with the ISO-Space
mover attribute label.

3.2 Corpus Statistics
Table 1 includes corpus statistics broken down into
the ANC, DCP, and RFC sub-corpora in addition to
the train:test partition (∼3:1). The counts of docu-
ment, sentence, and lexical tokens are tabulated as
well as counts of each annotation tag type.

3.3 Annotation and Adjudication
All annotations for this task were of English lan-
guage texts and all annotations were created and ad-
judicated by native English speakers. Due to depen-
dencies of link tag elements on extent tag elements,
the annotation and adjudication tasks were broken
down into the following phases:

Phase 1 Extent tag span and attribute annotation.

Sub-corpus Partition
ANC DCP RFC Train Test Total

words 1577 7673 21048 24150 6148 30298
sents 61 369 821 1001 250 1251
docs 3 22 44 55 14 69

pl 148 691 1250 1661 428 2089
se 34 461 1175 1347 323 1670
qsl 69 348 693 886 224 1110
mvl 15 345 614 779 195 974
m 16 330 588 751 183 934
s 39 216 550 653 152 805

ms 17 260 365 508 134 642
p 19 246 278 415 128 543
e 14 66 301 321 60 381
ol 14 82 191 225 62 287

pl=PLACE; se=SPATIAL ENTITY; qsl=QSLINK;
mvl=MOVELINK; m=MOTION; s=SPATIAL SIGNAL;

ms=MOTION SIGNAL; p=PATH; e=NONMOTION EVENT;
ol=OLINK

Table 1: Corpus Statistics

Phase 2 Extent tag adjudication.

Phase 3 Link tag argument and attribute annotation.

Phase 4 Link tag adjudication.

Phases 2 and 4 produced gold standards from an-
notations in the preceding annotation phases. This
annotation strategy ensured that the intermediate
gold standard extent tag set was adjudicated before
any link tag annotations were performed.

The annotation and adjudication effort was
conducted at Brandeis University using Multi-
document Annotation Environment (MAE) and
Multi-annotator Adjudication Interface (MAI)
(Stubbs, 2011). We used MAE to perform each
phase of the annotation procedure and MAI to
adjudicate and produce gold standard standoff
annotations in XML format. In addition to the
ISO-Space annotation tags and attributes, as a
post-process, we also provided sentence and lexical
tokenization as a separate standoff annotation layer
in the XML data for the training and test sets.

Each document was covered by a minimum of
three annotators for each annotation phase (though
not necessarily the same annotators per phase). As
such, we report inter-annotator agreement (IAA) as
a mean Fleiss’s κ coefficient for all extent tag types
annotated in Phase 1, and individual kappa scores
for each of the three link tag types annotated in
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Phase 3 in Table 2. The scores for extent tags and
MOVELINK indicate high agreement, however link
tag annotation was less consistent for the remaining
link tags. Though the OLINK and QSLINK tag agree-
ment is better than chance, it is not high. We believe
the lower agreement for these link tags reflects the
complexity of the annotation task.

Extent Tags Link Tags
All Types MOVELINK OLINK QSLINK

0.85 0.91 0.39 0.33

Table 2: Overall Fleiss’s κ Scores

4 Evaluation

Participant systems were evaluated for each enumer-
ated configuration as follows:

1 a. SE.a precision, recall, and F1.
b. SE.b precision, recall, and F1 for each

type, and an overall precision, recall, and
F1.

c. SE.c precision, recall, and F1 for each at-
tribute, and an overall precision, recall,
and F1.

d. MoveLink.a, QSLink.a, OLink.a preci-
sion, recall, and F1.

e. MoveLink.b, QSLink.b, OLink.b preci-
sion, recall, and F1 for each attribute, and
an overall precision, recall, and F1.

2 a. SE.b and SE.c precision, recall, and F1 for
each type and its attributes, and an overall
precision, recall, and F1.

b. MoveLink.a, QSLink.a, OLink.a preci-
sion, recall, and F1.

c. MoveLink.b, QSLink.b, OLink.b preci-
sion, recall, and F1 for each attribute, and
an overall precision, recall, and F1.

3 a. MoveLink.a, QSLink.a, OLink.a preci-
sion, recall, and F1.

b. MoveLink.b, QSLink.b, OLink.b preci-
sion, recall, and F1 for each attribute, and
an overall precision, recall, and F1.

5 Submissions and Results

In this section we evaluate results from runs of five
systems. Three systems were submitted by outside

groups including Honda Research Institute Japan
(HRIJP-CRF-VW), Ixa Group in the University of
the Basque Country (IXA), and University of Texas,
Dallas (UTD)3. We also present results for two sys-
tems developed internally at Brandeis University: a
suite of logistic regression classifiers with minimal
feature engineering intended as a performance base-
line covering all sub-tasks in addition to a CRF sys-
tem with more advanced features, but limited to sub-
tasks 1a and 1b for Configuration 1.

BASELINE A suite of logistic regression models
using Scikit-learn (Pedregosa et al., 2011) with
simple bag-of-words and n-gram features.4

BRANDEIS-CRF A system using a conditional
random field (CRF) model (Okazaki, 2007)
with features including Stanford POS and NER
tags (Toutanova et al., 2003) (Finkel et al.,
2005) in combination with Sparser (McDonald,
1996) tags.5

HRIJP-CRF-VW A system using a CRF model us-
ing CoreNLP, (Manning et al., 2014), CRF-
Suite (Okazaki, 2007) and Vowpal Wabbit
(Langford et al., 2007) with lemmatization,
POS, NER, GloVe word vector (Pennington et
al., 2014) and dependency parse features.

IXA X-Space: A system using a binary sup-
port vector machine model from SVM-light
(Joachims, 1999) and a pipeline architecture
using ClearNLP (Choi and Adviser-Palmer,
2012), OpenNLP (OpenNLP, 2014), and lever-
aging computational linguistic resources in-
cluding WordNet (Fellbaum, 1998), PropBank
(Palmer et al., 2003) and the Predicate Matrix
(de la Calle et al., 2014).

UTD A suite of 13 classifiers for classifying spatial
roles and relations including classifiers for sta-
tionary spatial relations and their participants in
addition to classification of participants of mo-
tion events and their attributes.

3UTD submitted three runs, however, after evaluating all the
data, all three runs achieved similar scores; the results reported
here are for their third and final submitted run.

4These baseline classifiers were developed at Brandeis Uni-
versity by Aaron Levine and Zachary Yocum. Cf. Section 5.1
for full description.

5This system was developed at Brandeis University by Seth
Dworman. Cf. Section 5.2 for full description.
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5.1 Baseline

Our baseline classification system (BASE-
LINE) consists of a suite of 47 classifiers built
from Scikit-learn’s (Pedregosa et al., 2011)
sklearn.linear model logistic regression
package. The system builds a collection of extent
objects from the annotation and lexical tokeniza-
tions provided in the SpaceEval XML distribution
data. Each extent instance has attributes for further
feature and label extraction: the target chunk used
to form the extent instance; any annotation tag
associated with the chunk; lists of all surrounding
tokens in the sentence, split between tokens preced-
ing the target and those following, and a pointer to
the original annotation XML for the purposes of
global feature extraction and generating new XML
tags based on the eventual model predictions.

Some extent attributes are optional, depending on
the sub-task. E.g., in sub-task 1a, no attributes are
required since this sub-task is a simple classification
task. For link tags, extent objects are instantiated
using the text chunks associated with the extent tags
that serve as the link trigger. After pre-processing,
the system has a complete collection of extent in-
stances for the corpus.

Subsequent to pre-processing, the extent data are
further processed for label and feature extraction.
The label and feature extractors were hand-tweaked
for each sub-task:

• For extent tag identification, the label extractor
checks if a given token occurs at the end of a
chunk, and the feature extractors include capi-
talization and POS tags.
• For classifying extent tag types, the feature

extractors include the target chunk string,
POS tag, and a seven-token context window
(bounded by the sentence) centered on the tar-
get token.
• For extent tag attribute classification, the only

feature extracted was the text of the chunk as-
sociated with the target tag.
• For link tag identification, a heuristic system

was developed to select candidate extent tags
for the trigger argument. The remaining argu-
ments in the relation were identified by their
distance and direction from the trigger. Fea-
ture extractors for this process included the text

of the trigger chunk, a count of the tags in lo-
cal context (the same sentence) before and after
the trigger, and the types of the extent tags that
occur in the context.
• For open-class link tag attributes, feature ex-

tractors included the count of extent tags be-
fore and after the trigger tag in the sentence.
For closed-class link tag attributes feature ex-
tractors were limited to the text of the trigger
chunk and the trigger tag type.6

• For link tag arguments that take an IDREF as a
value, a unique label function was created that
extracts the offsets of the candidate extent tags
in the same sentence as the trigger.

The label and feature vectors were maintained
using the DictVectorizer from Scikit-learn’s
feature extraction module. To train the sys-
tem, the vectors were used to fit the model to the
training data. For decoding, the tag labels and at-
tributes from the test data were discarded and the re-
maining feature vectors were transformed into a hy-
pothesis index based on the model, which was trans-
lated to a final value using a codebook. The hypothe-
ses were then written out to XML in accordance to
the task DTD.

5.2 Brandeis CRF
In addition to the BASELINE system, we also devel-
oped a more advanced pipeline (BRANDEIS-CRF)
to automate the SpaceEval sub-tasks 1a and 1b us-
ing a linear-chain conditional random field model
using lexical, part-of-speech (POS), named-entity-
recognition (NER), and semantic labels. We re-
port overall F1 measures of 0.83 and 0.77 for tasks
1a and 1b, respectively, which are comparable to
other top results (cf. Section 5.3). Our imple-
mentation used the CRFSuite (Okazaki, 2007) open
source package, which facilitated rapid training and
model inspection. The hypotheses were written out
to XML in accordance to the task DTD.

We used a small set of 9 core features, augmented
with bigram contexts, resulting in a total of 27 fea-
tures. These features consist of lexical, syntac-
tic, and semantic information, many of which have

6We experimented with additional features for attribute clas-
sification, such as counting tags and their types in the local con-
text of the trigger, however additional features all resulted in
performance decreases.
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been applied successfully in a variety of informa-
tion extraction tasks (Fei Huang et al., 2014), such
as named entity recognition (Vilain et al., 2009b) or
coreference resolution (Fernandes et al., 2014). The
complete set of features are outlined in Table 3.

Type Id Value

Lexical
word[-1,0,1] string
isupper[-1,0,1] binary
wordlen[-1,0,1] ternary7

Syntactic pos[-1,0,1] POS tag
Semantic ner[-1,0,1] NER tag

Sparser

CATEGORY[-1,0,1] Sparser category
FORM[-1,0,1] Sparser form
LCATEGORY[-1,0,1] Sparser category
LFORM[-1,0,1] Sparser form

Table 3: BRANDEIS-CRF Features

For part-of-speech (POS) and named entity (NE)
tags, we used the Stanford Log-linear Part-of-
Speech Tagger (Toutanova et al., 2003) and the Stan-
ford Named Entity Recognizer (Finkel et al., 2005).
Additionally, we made use of Sparser (McDonald,
1996), a rule-based natural language parser in order
to provide rich semantic features. Sparser parses un-
structured text in cycles, where a variety of hand-
written rules apply given the applications of pre-
vious rules or the current parse of the text. After
parsing, Sparser provides a set of edges, which pro-
vide both semantic and syntactic information. For
our purposes, we used the CATEGORY and FORM
attributes of the resulting edges. Table 4 shows
that the Sparser features can be informative for this
task, as five of the top ten positive weights are
from Sparser. As a disclaimer, we acknowledge that
model weights are not always sufficient for deter-
mining the most informative features (Vilain et al.,
2009a).

However, there were several problems using
Sparser. One issue is that Sparser performs its own
internal tokenization and chunking, as it expects un-
structured text as input, i.e. a string. To align the al-
ready tokenized sentences with a Sparser parse, we
used a matching algorithm that aligned a token with
its corresponding Sparser edge. A second problem
was that Sparser frequently fails on inputs, and the
points of failure can be difficult to identify due to the
interaction of its various phases and context based

7Token character length is ≤ 5, (5..10], or > 10.

Weight Feature State
3.45 LCATEGORY=PATH-TYPE p
2.95 LCATEGORY=REGION-TYPE pl
2.66 word=( ∅
2.66 LCATEGORY=BE ∅
2.47 word=) ∅
2.33 word=near me
2.28 word=border p
2.21 LCATEGORY=TIME-UNIT ∅
2.17 LCATEGORY=NEAR me
2.16 pos=PRP se

p=PATH; pl=PLACE; me=MEASURE; se=SPATIAL ENTITY

Table 4: Top Ten Positive Feature Weights

rules. Thus, we were not able to get CATEGORY and
FORM for all tokens. As a remedy, we included lo-
cal forms of these Sparser features (prefixed with L),
which were collected by inputting tokens by them-
selves to Sparser. This suggests that word lists could
be very informative for this task.

5.3 Evaluation Results

Table 5 shows mean precision (P), recall (R), F1,
and accuracy (ACC) scores for each group for each
evaluation configuration and sub-task that was at-
tempted. The overall precision and recall measures
we report are the arithmetic means of the precision
and recall for each tag label or attribute in the cor-
responding sub-task. The overall, macro-average F1
measures we report are the harmonic mean of the
overall P and R. Accuracy is computed as the num-
ber of correctly classified labels or attributes divided
by the total number of labels or attributes in the gold
standard. Overall accuracy and F1 are plotted in Ap-
pendix A.

Not all groups attempted all of the evaluation con-
figurations8. The HRIJP-CRF-VW system was eval-
uated only for Configuration 1 tasks 1a, 1b, 1d, and
1e (not 1c), and Configuration 3 sub-tasks 3a and
3b. HRIJP-CRF-VW was not evaluated for Config-
uration 2 since those sub-tasks were not attempted.
The UTD submission only covered Configuration 3,
thus was only evaluated for sub-tasks 3a and 3b.

8The IXA system was the only one to complete all evalua-
tion configurations.
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System Task P R F1 ACC

BASELINE

1

a 0.55 0.52 0.53 0.75
b 0.55 0.51 0.53 0.86
c 0.10 0.02 0.04 0.05
d 0.50 0.50 0.50 0.50
e 0.05 0.02 0.02 0.06

2
a 0.27 0.28 0.27 0.76
b 0.79 0.58 0.67 0.90
c 0.19 0.20 0.19 0.66

3 a 0.86 0.84 0.85 0.98
b 0.26 0.26 0.26 0.79

BRANDEIS-CRF 1 a 0.85 0.80 0.83 0.89
b 0.78 0.76 0.77 0.92

HRIJP-CRF-VW
1

a 0.84 0.83 0.83 0.89
b 0.77 0.76 0.76 0.91
d 0.56 0.51 0.53 0.57
e 0.03 0.04 0.03 0.25

3 a 0.78 0.57 0.66 0.86
b 0.05 0.06 0.05 0.48

IXA

1

a 0.81 0.72 0.76 0.88
b 0.75 0.72 0.74 0.90
c 0.18 0.15 0.16 0.30
d 0.54 0.51 0.53 0.55
e 0.06 0.05 0.05 0.25

2
a 0.26 0.33 0.29 0.63
b 0.55 0.51 0.53 0.89
c 0.06 0.08 0.07 0.46

3 a 0.63 0.51 0.56 0.89
b 0.07 0.09 0.08 0.48

UTD 3 a 0.87 0.82 0.85 0.98
b 0.05 0.09 0.07 0.51

Table 5: Overall Performance

6 Conclusion

It is clear from the participating system results
that recognizing spatial entities as a sub-task is a
fairly well-understood area, with reasonable per-
formance. All systems using CRF models for
recognizing places, paths, motion and non-motion
events, and spatial entities performed well. Fur-
thermore, MOVELINK recognition results were ex-
tremely promising, due to the general tendency for
movement to be accompanied by recognizable clues.
The overall poor performance for recognition of spa-
tial relations between entities, on the other hand
(QSLINKs and OLINKs) indicates that these are dif-
ficult relational identification tasks, reflected in the
lower IAA scores for these relations as well.

For the next SpaceEval evaluation, we believe that
a more focused task, possibly embedded within an
application, would lower the barrier to entry in the
competition. It would also permit us to use an extrin-
sic evaluation for performance of the systems. We
also hope to release the SpaceBank corpus through
LDC later this year. This would enable the commu-

nity to become more familiar with the dataset and
specification.
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Figure 2: Overall F1 for All Sub-tasks
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Abstract

In this paper we describe the SpRL-CWW en-
try into SemEval 2015: Task 8 SpaceEval.
It detects spatial and motion relations as de-
fined by the ISO-Space specifications in two
phases: (1) it detects spatial elements and spa-
tial/motion signals with a Conditional Ran-
dom Field model that uses a combination of
distributed word representations and lexico-
syntactic features; (2) given relation candidate
tuples, it simultaneously detects relation types
and labels the spatial roles of participating ele-
ments by using a combination of syntactic and
semantic features in independent multi-class
classification models for each relation type. In
evaluation on the shared task data, our system
performed particularly well on detection of el-
ements and relations in unannotated data.

1 Introduction
Understanding human language about location and
motion is important for many applications includ-
ing robotics, navigation systems, and wearable com-
puting. Shared tasks dedicated to the problem of
representing and detecting spatial and motion rela-
tions have been organized for SemEval 2012 (Ko-
rdjamshidi et al., 2012), 2013 (Kolomiyets et al.,
2013), and 2015. In this paper we present SpRL-CWW,
our entry to SemEval 2015 Task 8: SpaceEval, and
present extended evaluation of our system to inves-
tigate the impact of the task annotations and system
configurations on task performance.

2 SpaceEval Task Definition
Kordjamshidi et al. (2011) proposed the task of
Spatial Role Labeling (SpRL) to detect spatial and
motion relations in text. SpRL was modeled after

semantic role labeling (see (Fillmore et al., 2003;
Màrquez et al., 2008)), with spatial indicators in-
stead of predicates signaling the presence of rela-
tions, and spatial roles instead of semantic roles.

A canonical example of a spatial relation from
(Kordjamshidi et al., 2011) is:

(1) Give me the [grey book]TR [on]SP the [large
table]LM .

The spatial indicator (SP ) on indicates that there
is a spatial relation between the trajector (TR; pri-
mary object of spatial focus) and the landmark
(LM ; secondary object of spatial focus). SpRL
was formalized as a task of classifying tuples of
< wSP , wTR, wLM > as spatial relations or not.

The SpRL task was reformulated and reintro-
duced in SpaceEval1 using the ISO-Space annota-
tion specifications (Pustejovsky et al., 2012). The
biggest change was the decoupling of the semantic
type and role of spatial relation arguments. A taxon-
omy of Spatial Element (SE) types was introduced
to describe the meaning of arguments independent
of their participation in relations, and spatial roles
were treated as instance-specific annotations on spa-
tial and motion relations.

The SE types introduced are: SPATIAL_ENTITY,
PATH, PLACE, MOTION, NON_MOTION_EVENT, and
MEASURE. Two types were also introduced to rep-
resent expressions that indicated the presence of re-
lations: SPATIAL_SIGNAL and MOTION.

Spatial and motion relations were redefined as:

• MOVELINK: motion relation
• QSLINK: qualitative spatial relation
• OLINK: spatial orientation relation

1http://alt.qcri.org/semeval2015/task8/
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Figure 1: Example relations from the SpaceEval shared task. Only annotations that are targets are shown.

1. Only Unannotated Text is Provided

a. SE: precision, recall, and F1
b. SE: precision, recall, and F1 for each type, and an

overall precision, recall, and F1 precision, recall, and
F1

d. MOVELINK, QSLINK, OLINK: precision, recall, and F1
e. MOVELINK, QSLINK, OLINK: precision, recall, and F1

for each attribute, and an overall precision, recall,
and F1

3. Spatial Elements, their Types, and their Attributes
are Provided

a. MOVELINK, QSLINK, OLINK: precision, recall, and F1
b. MOVELINK, QSLINK, OLINK: precision, recall, and F1

for each attribute, and an overall precision, recall,
and F1

Figure 2: SpaceEval task configurations participated in
by SpRL-CWW.

Examples of SpaceEval annotations are given in
Figure 1. The training data for SpaceEval consists
of portions of the corpora from past SemEval SpRL
tasks as well as a new dataset consisting of passages
from guidebooks. Following the schema described
in this section, a total of 6,782 spatial elements and
signals comprising 2,186 relations were annotated.

We participated in the task configurations given
in Figure 2, as defined by the official SpaceEval task
description.

3 Related Research

KUL-SKIP-CHAIN-CRF (Kordjamshidi et al., 2011)
was a skip-chain CRF-based sequential labeling
model. It used a combination of lexico-syntactic in-
formation and semantic role information and used
preposition templates to represent long distance de-
pendencies. It was used as a baseline system in the

SemEval 2012 and 2013 SpRL tasks.
UTD-SpRL (Roberts and Harabagiu, 2012) was

an entry into the SemEval 2012 SpRL task that
adopted a joint relation detection and role label-
ing approach with the motivation that roles in spa-
tial relations were dependent on each other. The
approach used heuristics to gather spatial relation
candidate tuples. A hand-crafted dictionary was
used to detect SPATIAL_INDICATOR candidates, and
noun phrase heads were treated as TRAJECTOR and
LANDMARK candidates. A model for relation classifi-
cation and role labeling was then trained with lib-
LINEAR using POS, lemma, and dependency-path-
based features, with feature selection used to prune
away ineffective features.

UNITOR-HMM-TK (Bastianelli et al., 2013) was an
entry into the SemEval 2013 SpRL task. It used a
pipeline approach with three sub-tasks: (1) spatial
indicator detection, (2) spatial role2 classification
and (3) spatial relation identification.

Spatial indicators and roles were detected with se-
quential labeling using SV Mhmm with detected in-
dicators used as features for spatial role labeling. In
addition, shallow grammatical features in the form
of POS n-grams were used in place of richer syntac-
tic information in order to avoid overfitting. The
model also used PMI-score based word space repre-
sentations as described in (Sahlgren, 2006).

UNITOR-HMM-TK’s approach to spatial relation
identification avoided feature engineering by em-
ploying an SVM model with a smoothed partial tree

2Referred to as spatial annotations in the paper.
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Spatial
Element and Signal 

Detection

Spatial Relation 
Classification and 
Argument Labeling

Candidate Tuple 
Generation

Trigger 
Dictionary

QSLINK(arg1=trajector,arg2=landmark)

QSLINK(arg1=landmark,arg2=trajector)

NONE{ }
OLINK(arg1=trajector,arg2=landmark)

OLINK(arg1=landmark,arg2=trajector)

NONE{ }

MOVELINK(arg1=mover,arg2=goal)

MOVELINK(arg1=goal,arg2=mover)

NONE{ }

Figure 3: The SpRL-CWW system architecture. Spatial elements and signals are detected, from which relation candidate
tuples are generated, and then relations with their arguments labeled are identified by a separate classifier for each
relation type. The red arrow indicates special trigger dictionary processing that is only carried out for SpaceEval
tasks 1d and 1e, and for Setting F of the relation classification task extended evaluation in Table 3.

EF.1 Raw string in a 5-word window
(i.e. Saitama is northwest of Tokyo)

EF.2 Lemma in a 5-word window
(i.e. Saitama be northwest of Tokyo)

EF.3 POS in a 5-word window
(i.e. NNP VBZ RB IN NNP)

EF.4 Named Entity in a 5-word window
(i.e. LOC NONE NONE NONE LOC)

EF.5 Lemma concatenated with the POS in a 3-word window
(i.e be::VBZ northwest::RB of::IN)

EF.6 Named Entity concatenated with the POS in a 3-word
window
(i.e NONE::VBZ NONE::RB NONE ::IN)

EF.7 Direct dependency on the head of the sentence if present
(i.e. advmod)

EF.8 Direct dependency on the head of the sentence concate-
nated with the lemma of the head
(i.e. advmod::be)

EF.9 300-dimension GloVe word vector
EF.10 POS bigrams for a 5-word window

(i.e. NNP_VBZ VBZ_RB RB_IN IN_NNP)
EF.11 Raw string n-grams for 3-word window

(i.e. is_northwest northwest_of )

Figure 4: Features for spatial element/signal detection
for the sentence “Saitama is northwest of Tokyo.”

kernel over modified dependency trees to capture
syntactic information.

More recent work on spatial relation identification
includes (Kordjamshidi and Moens, 2014).

4 Spatial Element and Signal Detection
4.1 Approach
SpRL-CWW uses a feature-rich CRF model to jointly
label spatial elements and spatial/motion signals.
Previous approaches (Kordjamshidi et al., 2011;

Bastianelli et al., 2013) proposed a two-step sequen-
tial labeling method for this task. In the first step,
they label spatial signals3 since they indicate the
presence of a relation, which spatial roles depend
on. In the second step, they label all the other spa-
tial roles in the sentence using the extracted sig-
nals as features. However, any errors made in the
first step will deteriorate the performance of the sec-
ond. Furthermore, for SpaceEval 2015 the spatial
element annotations are less likely to depend on the
presence of a relation and can be detected indepen-
dently. Thus, our system avoids the performance
degradation associated with pipeline approaches by
combining the two steps.

SpRL-CWW’s CRF model labels each word in a sen-
tence with one of the labels described in Section 2,
or with NONE. In line with UNITOR-HMM-TK (Bas-
tianelli et al., 2013), shallow lexico-syntactic fea-
tures are applied instead of the full syntax of the
sentence to avoid over-fitting the training data. We
use word vectors trained on Web-scale corpora for a
fine-grained lexical representation.

An example of our feature representation for the
sentence “Saitama is northwest of Tokyo.” is given
in Figure 4.

4.2 Evaluation
4.2.1 Setup

Sentences were processed with Stanford CoreNLP
(Manning et al., 2014) for POS tagging, lemmatiza-

3Also known as spatial indicators.

897



Task Overall
Precision

Overall
Recall

Overall
F1

Mean
F1

Overall
Accuracy

1a 0.84 0.83 0.83 0.83 0.89
1b 0.77 0.76 0.76 0.76 0.91
1d 0.56 0.51 0.53 0.40 0.57
1e 0.03 0.04 0.03 0.03 0.25
3a 0.78 0.57 0.66 0.57 0.86
3b 0.05 0.06 0.05 0.05 0.48

Table 1: Official SpaceEval submission results.

Training
5-fold cross validation Test

Label P R F1 P R F1
MEASURE 0.889 0.707 0.788 0.869 0.726 0.791
MOTION 0.823 0.700 0.756 0.808 0.733 0.769
MOTION_SIGNAL 0.766 0.600 0.673 0.801 0.772 0.786
NON_MOTION_EVENT 0.663 0.371 0.476 0.688 0.478 0.564
PATH 0.815 0.614 0.701 0.759 0.519 0.617
PLACE 0.802 0.777 0.789 0.742 0.752 0.747
SPATIAL_ENTITY 0.793 0.653 0.716 0.858 0.763 0.808
SPATIAL_SIGNAL 0.750 0.603 0.668 0.740 0.681 0.709
OVERALL 0.795 0.674 0.730 0.785 0.712 0.746

Table 2: Spatial Element/Signal detection results on
training data and test data. Results are reproduced in-
dependently of official evaluation.

tion, NER, and dependency parsing. The word rep-
resentations are publicly-available 300-dimension
GloVe4 word vectors trained on 42 billion tokens
of Web data (Pennington et al., 2014). The model
was trained using CRFsuite (Okazaki, 2007) with
L-BFGS using L2 regularization with λ2 = 1 ∗10−5.

4.2.2 Datasets
We evaluated our system on the SpaceEval train-

ing data as described in Section 2, and additionally
on the SpaceEval Task 3 test data, which was dis-
tributed with gold labeled Spatial Elements, Indi-
cators, and Motions. The test data consisted of 16
files with 317 sentences and 1,609 spatial roles.

4.2.3 Results
Official task results for spatial element/signal

identification (Task 1a) and classification (Task 1b)
are shown in Table 1.

We performed more detailed evaluation using 5-
fold cross validation on the training data and on
the released gold test data. Our results are pre-
sented in Table 2. These results and have an f1-
score that is slightly lower than the official reported
result.5Evaluation over the test data produced a

4http://www-nlp.stanford.edu/projects/glove/
5As the official evaluation data and scripts have not been

fully released at the time of writing, it is not possible to deter-
mine the cause of the discrepancy in f1-scores. Comparison
between strict and “relaxed” matching as used in prior Se-
mEval SpRL tasks did not account for the difference.

Features representing the extracted trigger:

RF.1 Raw string
RF.2 Lemma
RF.3 POS
RF.4 RF.2 concatenated with RF.3

Features representing each of the two arguments:

RF.5 Raw string
RF.6 Lemma
RF.7 POS
RF.8 RF.6 concatenated with RF.7
RF.9 Spatial element type (i.e Place, Path, etc.)
RF.10 RF.9 of each argument concatenated together
RF.11 RF.10 concatenated with RF.2
RF.12 Direction of the argument with the respect to the ex-

tracted trigger (i.e left/right)
RF.13 RF.12 of each argument concatenated together
RF.14 RF.13 concatenated with RF.2
RF.15 Boolean value representing whether there are other spa-

tial elements in between the argument and the extracted
trigger

RF.16 RF.15 of each argument concatenated together
RF.17 Dependency path between the argument and the ex-

tracted trigger (i.e. ↑ conj ↓ dep ↓ nsubj)
RF.18 RF.17 of each argument concatenated together
RF.19 Dependency path between the two arguments
RF.20 Length of the dependency path between the argument

and the extracted trigger
RF.21 Bag-of-words of tokens in between the argument and the

extracted trigger
RF.22 Number of tokens in between the argument and the ex-

tracted trigger
RF.23 RF.22 of each argument added together
RF.24 Boolean value representing whether either of the argu-

ments are null values

Features representing the spatial elements that are di-
rectly to the left and to the right of the trigger:

RF.25 Raw string
RF.26 Lemma
RF.27 POS
RF.28 RF.26 concatenated with RF.27
RF.29 Number of tokens in between the spatial element and

the extracted trigger

Figure 5: Features for joint spatial relation classification
and role labeling. Underlined features are withheld from
quadratic feature Settings D and E of Table 3.

slightly higher f1-score than on the training data.
We theorize that this is due to cross-fold validation
using a smaller dataset for its model.

5 Spatial Relation Classification and
Argument Labeling

5.1 Approach
To identify spatial relations, the SpRL-CWW system
determines which spatial elements and signals, can
be combined to form valid spatial relations. Since
the type of a relation (MOVELINK, QSLINK, or OLINK)
is dependent upon its arguments, our method, in-
spired by UTD-SpRL (Roberts and Harabagiu, 2012),
jointly classifies spatial relations and labels partici-
pating arguments in one classification step. We aim
to simplify our model and improve learning by only
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Setting Regularization Features SEs Triggers P R F1
A no all gold gold 0.560 0.500 0.527
B yes all gold gold 0.599 0.496 0.544
C yes -SE types gold gold 0.597 0.430 0.500
D yes all + semantic types gold gold 0.636 0.501 0.561
E yes pre-quadratic gold gold 0.575 0.411 0.480
F yes quadratic gold gold 0.762 0.345 0.463
G yes all predicted dictionary 0.423 0.427 0.425
H yes all predicted predicted 0.382 0.364 0.372

Table 3: Settings for extended relation detection evaluation over the SpaceEval 2015 training data. All evaluation is
conducted with 5-fold cross validation, the full RE feature set from Figure 5, gold standard SEs, and gold standard
triggers. The overall precision, recall, and f1-scores are reported for each setting with the highest performing in bold.
Setting A was used for our official submission. Where indicated, L2 regularization was performed with λ2 = 1∗10−14.

considering relations that contain a trigger and by
labeling only the following attributes which corre-
spond to primary spatial and motion roles:

• MOVELINK: trigger, mover, goal
• QSLINK and OLINK: trigger, trajector, landmark

5.1.1 Candidate Trigger Extraction
First, candidate triggers are extracted from each

sentence. The model we presented for detecting
signals in Section 4.1 has a high f1-score but low
precision. Because we want to prioritize recall for
generating candidate tuples, when classifying rela-
tions on unannotated text, dictionaries of triggers
automatically compiled from the training data are
used to extract potential triggers from sentences.
These dictionaries are used in Task 1d and 1e in
Figure 2. In Task 3, where gold spatial roles are pro-
vided, MOTIONs are used as potential MOVELINK trig-
gers, SPATIAL_SIGNALs are used as potential QSLINK
and OLINK triggers. Evaluation of the trigger dic-
tionaries shows that they have much higher recall
than CRF models6. Additional relation classifica-
tion evaluation in Table 3 show that the dictionar-
ies (Setting F) achieve an f1-score improvement of
0.055 over the CRF models (Setting G).

5.1.2 Candidate Tuple Generation
All possible candidate relations in a sentence are

then generated using the extracted triggers and the
spatial elements in the sentence. A candidate tuple
consists of an extracted trigger and two other spa-
tial elements: arg1 and arg2. Since some relations,
such as the one represented in Figure 1 Example
6, can have undefined arguments, tuples with unde-
fined arguments are also generated. For Example 4

6In particular, recall for SPATIAL_SIGNALS increases from
0.603 to 0.936 and MOTION recall increases from 0.700 to 0.812
on the SpaceEval test data.

in Figure 1, the following candidate tuples will be
generated for MOVELINK classification:

• < trigger:biked, arg1:I, arg2:store >
• < trigger:biked, arg1:I, arg2:home >
• < trigger:biked, arg1:I, arg2:∅ >
• < trigger:biked, arg1:home, arg2:store >
• < trigger:biked, arg1:home, arg2:∅ >
• < trigger:biked, arg1:store, arg2:∅ >

Each tuple is represented by three main groups
of features outlined in Figure 5. A one-against-all
multi-class classifier is then applied to classify each
candidate relation tuple into one of three possible
classes. Three independent classifiers are trained,
one for each spatial relation type, using Vowpal
Wabbit (Agarwal et al., 2011). The classes used
by the MOVELINK classifier are:

Class 1 - REL(arg1=mover,arg2=goal)
Class 2 - REL(arg1=goal,arg2=mover)
Class 3 - NONE

The classes used by the QSLINK and OLINK classi-
fiers are:

Class 1 - REL(arg1=trajector,arg2=landmark)
Class 2 - REL(arg1=landmark,arg2=trajector)
Class 3 - NONE

5.2 Evaluation
5.2.1 Setup

Once again, Stanford CoreNLP was used for POS
tagging, lemmatization and dependency parsing.
The classification models were trained with Vowpal
Wabbit’s one-against-all multi-class classifier using
its online stochastic gradient descent implementa-
tion with all the default settings.
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Relation Type P R F1
QSLINK 0.661 0.538 0.594
MOVELINK 0.571 0.451 0.504
OLINK 0.691 0.517 0.591
OVERALL 0.636 0.501 0.561

Table 4: SpRL-CWW’s relation classification results for the
highest-performing Setting D.

5.2.2 Datasets
We evaluated our system on the trial and train-

ing data that was released for SpaceEval, with the
exception of 9 files that didn’t have spatial relations
annotated. Since our system focuses on relations
with a trigger, we filtered out the relations that con-
tained no trigger. The resulting dataset of 1,801
relations was used for training and evaluation.

5.2.3 Results
Official task results for relation classification are

shown in Table 1. Task 1d results use the SEs that
were detected in the previous step (Task 1b). Task
3a results are for relation classification using gold
spatial elements and signals.

6 Discussion

Participation in SpaceEval raised several questions
which we attempt to answer by conducting extended
evaluation of our system on the SpaceEval training
data using 5-fold cross validation7. The settings and
results are summarized in Table 3.

Which features were effective?
The feature ablation results in Table 5 show the
three features with the largest contribution to SE
and SI classification. They verify the contribution
of word vectors trained on Web-scale data and sup-
port Bastianelli’s et al. (2013)’s claim that shallow
grammatical information is essential.

Does the fine-grained SpaceEval annotation
scheme help or hinder?
In order to explore this, we compare the top per-
forming setting with SE type-related features (Set-
ting B) to a setting with them removed (Setting C).
Absence of these features decrease the f1-score by
0.044, providing evidence that fine-grained SE types
help relation classification, though the relation and
spatial role taxonomy requires consideration.

7Partitions were made by taking a stratified split of the
document set when ordered by decreasing size.

Features P R F1 ∆F1
all 0.795 0.674 0.730 -
-EF.1 0.807 0.604 0.691 -0.039
-EF.9 0.808 0.602 0.690 -0.040
-EF.10 0.761 0.600 0.671 -0.059

Table 5: The three spatial element classification features
with the largest delta in feature ablation.

Furthermore, each gold Spatial Signal that was
provided for Task 3 had one of three possible se-
mantic types; DIRECTIONAL, TOPOLOGICAL
or DIR_TOP (both). Instead of using all Spa-
tial Signals as candidate triggers for QSLINKs and
OLINKs, we only considered TOPOLOGICAL Spa-
tial Signals as candidate triggers for QSLINK and
DIRECTIONAL Spatial Signals as candidate trig-
gers for OLINK. This setting (Setting D) achieved
the highest f1-score and recall, demonstrating the
importance of Spatial Signal semantic types in rela-
tion classification. Full relation classification results
for Setting D are summarized in Table 4.8

Is less (or no) feature engineering feasible?

We attempt this by automatically generating fea-
tures using Vowpal Wabbit’s quadratic feature gen-
eration. We disable all features underlined in Fig-
ure 5) and instruct VW to automatically construct
features by generating all possible feature combina-
tions. Settings E and F compare the base feature
set before and after quadratic features are added.
While quadratic features achieve a lower f1-score,
they have the highest precision of all settings, sug-
gesting feature generation may be useful for increas-
ing precision of relation classification, but the low f1-
score of Setting F indicates care is needed in select-
ing the base feature set. We are exploring feature
engineering reduction further with a phrase vector-
based model inspired by (Hermann et al., 2014).

7 Conclusion

In this paper we presented the SpRL-CWW entry to
SpaceEval 2015: Task 8. Official evaluation showed
that it performed especially well on unannotated
data. Extended evaluation verified the contribution
of Web-scale word vectors, trigger dictionaries, and
SE type information; and automatic feature gener-
ation showed promise. For future work, we plan to
explore phrase vector-based approaches to SpRL.

8We thank an anonymous reviewer for the suggestion to
use Spatial Signal semantic types.
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Abstract

This paper describes the first shared task
on Taxonomy Extraction Evaluation organ-
ised as part of SemEval-2015. Participants
were asked to find hypernym-hyponym re-
lations between given terms. For each of
the four selected target domains the partici-
pants were provided with two lists of domain-
specific terms: a WordNet collection of terms
and a well-known terminology extracted from
an online publicly available taxonomy. A total
of 45 taxonomies submitted by 6 participating
teams were evaluated using standard structural
measures, the structural similarity with a gold
standard taxonomy, and through manual qual-
ity assessment of sampled novel relations.

1 Introduction

SemEval-2015 Task 17 is concerned with the auto-
matic extraction of hierarchical relations from text
and subsequent taxonomy construction. A taxon-
omy is a hierarchy of concepts that expresses parent-
child or broader-narrower relationships. Because of
their many applications in search, retrieval, website
navigation, and records management, taxonomies
are valuable resources for libraries, publishing com-
panies, online databases, and e-commerce compa-
nies. Taxonomies are most often manually created
resources that are expensive to construct and main-
tain, and therefore there is a need for automatic
methods for taxonomy enrichment and construction.
Recently, the task of taxonomy learning from text,
also called taxonomy induction, has received an in-
creased interest in the natural language processing

community, as taxonomical information is a valu-
able input to many semantically intensive tasks in-
cluding inference, question answering (Harabagiu et
al., 2003) and textual entailment (Geffet and Dagan,
2005).

Taxonomy learning can be divided into three main
subtasks: term extraction, relation discovery, and
taxonomy construction. Term extraction is a rel-
atively well-known task, hence we decided to ab-
stract from this stage and provide a common ground
for the next steps by making available the list of
terms beforehand. Most approaches for relation dis-
covery from text rely on lexico-syntactic patterns
(Hearst, 1992; Kozareva et al., 2008), co-occurrence
information (Sanderson and Croft, 1999), substring
inclusion (Nevill-Manning et al., 1999), or exploit
semantic relations provided in textual definitions
(Navigli and Velardi, 2010). Any asymmetrical rela-
tion that indicates subordination between two terms
can be considered, but here the focus is mainly on
hyponym-hypernym relations. Depending on the ap-
proach selected, the task may or may not require
large amounts of text to extract relations between
terms, therefore no corpus is provided as part of the
shared dataset.

This stage usually produces a large number of
noisy, inconsistent relations, that assign multiple
parents to a node and that contain cycles, i.e., se-
quences of vertices that start and end at the same
vertex. Hence, the third stage of taxonomy learn-
ing, taxonomy construction, focuses on the overall
structure of the resulting graph and aims to organ-
ise terms into a hierarchical structure, more specifi-
cally a directed acyclic graph (Kozareva and Hovy,
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Figure 1: The task workflow.

2010; Navigli et al., 2011; Wang et al., 2013). To
address the inherent complexity of evaluating tax-
onomy quality, several methods have been consid-
ered in the past including manual evaluation by do-
main experts, structural evaluation, and automatic
evaluation against a gold standard (Velardi et al.,
2012). In this task, all these existing evaluation ap-
proaches are considered, using a voting scheme to
aggregate the results for the final ranking of the sys-
tems. We introduce four new domains that have not
previously been considered for this task, covering
general knowledge domains such as food and equip-
ment and technical domains such as chemicals and
science. For each domain, we provide a gold stan-
dard taxonomy gathered exclusively from WordNet
(Fellbaum, 2005), as well as a gold standard tax-
onomy that combines terms and relations gathered
from other domain-specific sources.

2 Task workflow

In this section we present the task workflow, the con-
sidered dataset, and the evaluation method used in
this task.
Competition setup: In order to provide a common
ground to all the competing teams, we applied the
task workflow described in Figure 1, as follows: 1)
select and announce a set of target domains (see Sec-
tion 2.1 for more details); 2) define and collect gold
standard taxonomies that will be used for evalua-
tion and extract and release the set of terms that they
cover; 3) select and produce baseline taxonomies us-
ing naive baselines to be compared against the team
outputs in the competition.
Competition and evaluation flow: As described in

Table 1: Structural measures of Combined and WordNet
gold standard taxonomies.

Combined WordNet
taxonomies taxonomies

Domain Root concept |V| |E| |V| |E|
Chemicals chemical 17584 24817 1351 1387
Equipment equipment 612 615 475 485
Food food 1156 1587 1486 1533
Science science 452 465 429 441

Figure 1, the next steps of the workflow concern the
participation of the competing teams and the eval-
uation of the resulting outputs as follows: 4) in this
stage participants produce and submit the output tax-
onomies. For each domain, test data consists of a
list of domain terms that participants have to struc-
ture into a taxonomy, with the possibility of adding
further intermediate terms. Each system will return
a list of pairs (term, hypernym). In this way, taxon-
omy learning is limited to finding relations between
pairs of terms and organising them into a hierarchi-
cal structure. Participants are encouraged to con-
sider polyhierarchies when organising terms. In this
setting, nodes can have more than one parent and
the final structure of the taxonomy is not necessar-
ily a tree; 5) compare system outputs (4) and base-
line taxonomies (3) with taxonomies produced as
gold standards (2); 6) manually annotate a sample of
system outputs to estimate the quality of hypernym-
hyponym relationships that are not in the gold stan-
dards; 7) create a combined rank of the teams based
on the individual rank that each team reached on dif-
ferent aspects of the evaluation.

2.1 Data

We selected four target domains with a rich, deep,
hierarchical structure (i.e. Chemicals, Equipment,
Food and Science) with four root concepts (i.e.
chemical, equipment, food and science, respec-
tively). Then, for each domain we produced two
kinds of gold standard taxonomies.

WordNet taxonomy Concepts and relation-
ships in the WordNet hypernym-hyponym hierarchy
rooted on the corresponding root concept.

Combined taxonomy Domain-specific terms and
relations from well-known, publicly available, tax-
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onomies other than WordNet: CheBI1 for Chemi-
cals, “The Google product taxonomy”2 for Foods,
the “Material Handling Equipment”3 taxonomy for
Equipment, and the “Taxonomy of Fields and their
Subfields”4 for Science. Hypernym-hyponym rela-
tionships were also gathered from a general purpose
resource, the Wikipedia Bitaxonomy (WiBi) (Flati
et al., 2014), using a semi-automatic approach. For
each domain we first manually identified domain
sub-hierarchies from WiBi (W ); Second we auto-
matically searched for the terms of W in common
with the corresponding gold standard G. For each
common term t we added in G the taxonomy rooted
on t from W .

Table 1 shows the resulting number of vertices
|V |, i.e., the number of terms given to the partic-
ipants, and the number of edges |E| of the pro-
duced gold standard taxonomies for the four target
domains. Finally, test data consists of eight lists of
domain concepts, for which participants were asked
to output a set of hypernym-hyponym relationships.

2.2 Evaluation method

Let S = (VS , ES) be an output taxonomy produced
by a system for a given domain, where VS includes
the set of domain concepts initially provided by the
task organisers and ES is the set of taxonomy edges
extracted by the system. To broadly analyze the
quality of the produced set of hypernymy relation-
ships ES , these results are benchmarked against two
naive baselines, described in Section 2.2.1, using
the following evaluation approaches: i) analyse the
graph structure and check if the produced taxonomy
is a Directed Acyclic Graph (DAG); ii) compare the
edges ES , against the set of relations from each type
of gold standard; iii) manually validate a sample of
novel relationships produced by the system that are
not contained in the gold standard.

The final ranking of the systems takes into consid-
eration these three types of evaluation by aggregat-
ing the achieved ranks using a voting scheme. First,

1http://www.ebi.ac.uk/chebi/init.do
2http://www.google.com/basepages/

producttype/taxonomy.en-US.txt
3http://www.ise.ncsu.edu/kay/mhetax/

index.htm
4http://sites.nationalacademies.org/PGA/

Resdoc/PGA_044522

the output taxonomies are ranked on the basis of the
average performance obtained for each evaluated as-
pect and for each domain. The resulting ranks are
simply summed up, favouring systems at the top of
the ranked list and penalising systems at the lower
end.

2.2.1 Baselines
The main purpose of introducing the baselines de-

scribed in this section is to check the performance
of a system that relies mainly on the fact that the
root of the domain is known and implements simple
string-based approaches. In this task, the following
two naive approaches for taxonomy construction are
implemented and used for benchmarking systems:

Baseline 1 Simply connect all the nodes to the
root concept: B1 = (VB1 , EB1) where EB1 =
{(root, a), a ∈ VB1 \ {root}};

Baseline 2 A basic string inclusion approach that
covers relations between compound terms such as
(science, network science): B2 = (VB2 , EB2) where
EB2 = {(a, b), b starts with a or ends with a and
|b| > |a|}, and where a is a term and b is a com-
pound term that includes a as a substring.

Both approaches require only the root of the tax-
onomy and the list of terms and do not require any
external corpora or other structured information.

2.2.2 Structural analysis
The main goal of the structural evaluation of a tax-

onomy is to quantify the size of the taxonomy under
investigation in terms of nodes and edges. A second
objective is to evaluate whether the overall structure
connects all the nodes in the graph with the root and
whether it is consistent with the semantics of the ISA
relation. Hierarchical relations are generally incon-
sistent with the presence of cycles. Also, we high-
light the number of nodes located on higher levels of
a taxonomy, called intermediate nodes. These nodes
are considered more important than leaves, to favour
taxonomies with a deep, rich structure.

Based on these considerations, structural evalua-
tion is performed by computing the cardinality of
|VS | and |ES |. A topological sorting-based algo-
rithm (Kahn, 1962) is used to establish if the taxon-
omy S contains simple directed cycles (self loop in-
cluded). We then use an approach based on the Tar-
jan algorithm (Tarjan, 1972) to calculate the number
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of connected components in S. Finally, we compute
the number of intermediate nodes as the number of
nodes |VS | − |LS | where LS is the set of leaf nodes
in S. A leaf node is a node with out-degree = 0.

2.2.3 Comparison against Gold Standard
Previous datasets for evaluating taxonomy extrac-

tion (Kozareva et al., 2008) mainly rely on Word-
Net to gather gold standards from several general
knowledge domains, such as animals, plants, and
vehicles. The datasets proposed in (Velardi et al.,
2013) enrich this experimental setting by including
two specialized domains, Virus and Artificial Intel-
ligence, that have low coverage in WordNet. A lim-
itation of these datasets is that currently there is no
gold standard taxonomy for these domains, therefore
only a manual evaluation is possible. The dataset
introduced here, instead, covers four new domains,
providing two separate gold standards for each do-
main: one collected from WordNet, a general pur-
pose resource, and a second one that combines re-
lations from domain-specific resources and from a
collaborative resource, Wikipedia, for a higher cov-
erage of the domain. This dataset allows us to in-
vestigate how a system performs when taxonomis-
ing frequently used terms in comparison with more
specialised, rarely used terms.

Given a gold standard taxonomy G = (VG, EG),
the comparison between a target taxonomy and a
gold standard taxonomy is quantified using the fol-
lowing measures:

• common nodes: |VS ∩ VG|
• vertex coverage: |VS ∩ VG|/|VG|
• number of common edges: |ES ∩ EG|
• edge coverage: |ES ∩ EG|/|EG|
• ratio of novel edges: (|ES | − |ES ∩ EG|)/|EG|
• edge precision: P = |ES ∩ EG|/|ES |
• edge recall: R = |ES ∩ EG|/|EG|
• F-score: F = 2(P ∗R)/(P + R)

Additionally, we consider the Cumulative
Fowlkes&Mallows (Cumulative F&M) measure
(Velardi et al., 2013): the value BS,G between 0.0
and 1.0 which measures level by level how well a
target taxonomy S clusters similar nodes compared
to a gold standard taxonomy G. BS,G is calculated
as follows: let k be the maximum depth of both

S and G, and Hij a cut of the hierarchy, where
i ∈ {0, ..., k} is the cut level and j ∈ {G, S} selects
the clustering of interest. Then, for each cut i, the
two hierarchies can be seen as two flat clusterings
CiS and CiG of the n concepts. When i = 0 the cut
is a single cluster incorporating all the objects, and
when i = k we obtain n singleton clusters. Now
let: n11 be the number of object pairs that are in
the same cluster in both CiS and CiG; n00 be the
number of object pairs that are in different clusters
in both CiS and CiG; n10 be the number of object
pairs that are in the same cluster in CiS but not in
CiG; n01 be the number of object pairs that are in
the same cluster in CiG but not in CiS .

The generalized Fowlkes&Mallows measure of
cluster similarity for the cut i (i ∈ {0, ..., k}), as
reformulated in (Wagner and Wagner, 2007), is de-
fined as:

Bi
S,G =

ni
11√

(ni
11 + ni

10) · (ni
11 + ni

01)
. (1)

And the cumulative Fowlkes&Mallows Measure:

BS,G =

∑k−1
i=0

i+1
k Bi

S,G∑k−1
i=0

i+1
k

=

∑k−1
i=0

i+1
k Bi

S,G

k+1
2

. (2)

2.2.4 Manual quality assessments
The gold standard taxonomies are not complete,

therefore it is possible for systems to identify cor-
rect relations that are not covered by the gold stan-
dard. Normally these relations are considered incor-
rect using a simple comparison with the gold stan-
dard taxonomy. For this reason we manually evalu-
ate a subset of new relations proposed by each sys-
tem to estimate the number of relations in ES that
do not belong to EG. A random sample is extracted
from all the taxonomies submitted by the partici-
pants and then manually annotated to compute the
precision P as: |correctISA|/|sample|. A total of
100 term pairs were evaluated by three different an-
notators for each system and each domain, for a total
of 800 pairs per system.

The chemical domain is not considered for this
evaluation because it requires a considerable amount
of domain knowledge and we did not have access to
experts in the chemical domain. Two of the authors
of this paper independently annotated each sample
relation, while the third assessment was done by
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a group of five annotators who have a background
in Computational Linguistics, with the exception of
one annotator who focused on the food domain. An-
notators were provided with a list of term pairs or-
ganised by domain and were asked if the relation
was a correct ISA relation, if the relation and the
terms were domain specific, and if the relation was
too generic. In our evaluation, a relation is con-
sidered correct only if it is a correct hypernym-
hyponym relation, if it is relevant for the given do-
main and not over-generic. Take for example the
following edges from the food domain: (linguine,
pasta) and (lemon, food). Both edges are correct
ISA relations and are domain specific, but the sec-
ond edge is over-generic because lemons are also
fruits. The agreement for identifying correct edges
is measured using the Fleiss kappa statistic and is
overall substantial (Fleiss kappa 0.65). The easi-
est domain is Food (Fleiss kappa 0.69), followed
by Equipment (Fleiss kappa 0.63). Not surprisingly,
the Science domain is the most challenging (Fleiss
kappa 0.60), as this is a rapidly changing domain
and there is in general less consensus about the rela-
tions between fields.

3 Submitted runs

Overall, 6 teams participated in the task. Partici-
pants were allowed to submit two runs for each of
the four domains, one for each type of gold standard,
for a total of 8 different runs. Most teams submit-
ted a run for each domain and type of gold standard,
with the exception of the LT3 team, which did not
submit a system for the Chemical domain and the
QASSIT team, which submitted only one run for the
WordNet Chemical taxonomy. Next, we will pro-
vide a short description of each approach in alpha-
betical order, discussing corpora collection and the
approaches adopted for relation discovery and tax-
onomy construction.

INRIASAC (supervised) Corpus: Wikipedia
search using terms; Relation discovery: substring
inclusion, lexico-syntactic patterns, co-occurrence
information based on sentences and documents; Tax-
onomy construction: none.

LT3 (unsupervised) Corpus: web corpus con-
structed using BootCat (Baroni and Bernardini,
2004) using the provided terms as seed terms; Re-

lation discovery: lexico-syntactic patterns, mor-
phological structure of compound terms, WordNet
lookup (Lefever et al., 2014); Taxonomy construc-
tion: none.

ntnu (unsupervised) Corpus: Wikipedia and
WordNet definitions; Relation discovery: hyper-
nym extraction from definitions, WordNet lookup,
Wikipedia categories, similarity between keywords;
Taxonomy construction: none.

QASIT (semi-supervised) Corpus: Wikipedia,
DBpedia; Relation discovery: lexico-syntactic pat-
terns, co-occurrence information; Taxonomy con-
struction: Learning Pretopological Spaces (LPS)
method that learns a Parameterized Space by using
an evolutionary strategy.

TALN-UPF (semi-supervised) Corpus:
Wikipedia definitions retrieved using BabelNet
(Navigli and Ponzetto, 2012); Relation discovery:
based on (Navigli and Velardi, 2010), CRF model
trained with the WCL dataset, linguistic rules added
to traverse the dependency tree, missing nodes
connected to root; Taxonomy construction: none.

USAAR (semi-supervised) Corpus: Wikipedia
documents; Relation discovery: lexico-syntactic
patterns, co-occurrence information used to con-
struct a vector space model using the word2vec
tool;5 Taxonomy construction: none.

4 Results

Table 2 presents the results of the structural anal-
ysis (see Section 2.2.2) for all the system outputs
and for the two baselines. Only 20 out of 45 sub-
mitted taxonomies consist of one weakly connected
component (c.c. = 1), and 18 out of 45 are di-
rected acyclic graphs (Cycles=N). Overall, only 10
taxonomies comply with the ideal structural require-
ments of a taxonomy and are directed acyclic graphs
consisting of one connected component. 6 of these
were submitted by the only system that addressed
the taxonomy construction subtask, QASSIT. Table
3 shows the average edge precision, recall and F-
score of the six systems compared to the baselines
(see Sections 2.2.3 and 2.2.4). LT3 outperforms the
other systems on all the measures. It is worth not-
ing that our string-based baseline (B2) achieves the

5https://code.google.com/p/word2vec/
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Table 2: Structural analysis of the submitted taxonomies and of the baseline taxonomies, including the number of:
nodes (|V |), edges (|E|), connected components (c.c.), and intermediate nodes (i.n.).

Combined gold standard taxonomies

INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Chemicals |V| 12432 n.a. 1114 n.a. 17584 13785 17584 10120
|E| 28444 1563 17606 30392 17583 12672
c.c. 293 116 1 302 1 991

Cycles Y N N Y N N
i.n. 5808 1052 34 13766 1 10117

Equipment |V| 520 260 251 610 612 337 612 248
|E| 1168 282 247 614 665 548 611 244
c.c. 6 10 35 1 1 28 1 17

Cycles N Y N N Y Y N N
i.n. 164 174 251 70 20 320 1 229

Food |V| 1518 819 834 1550 1549 1118 1549 636
|E| 4363 1632 1227 1560 1569 2692 1548 627
c.c. 2 6 27 1 1 23 1 47

Cycles Y N Y Y N Y N N
i.n. 397 159 810 72 18 1105 1 631

Science |V| 417 187 338 453 1280 355 452 232
|E| 1164 441 386 511 1623 952 451 214
c.c. 3 8 23 1 1 14 1 28

Cycles N Y N N Y Y N N
i.n. 151 88 329 80 422 261 1 207

WordNet gold standard taxonomies
INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Chemicals |V| 1913 n.a. 1475 1351 1347 1173 1351 820
|E| 4611 1855 1380 1451 3107 1350 808
c.c. 2 28 1 1 31 1 129

Cycles Y Y N Y Y N N
i.n. 1262 1272 56 63 920 1 819

Equipment |V| 468 462 1081 476 2574 354 475 232
|E| 1369 1452 1333 490 3370 547 474 188
c.c. 1 1 12 1 1 43 1 46

Cycles Y Y Y N Y Y N N
i.n. 371 142 1036 65 1025 339 1 213

Food |V| 1458 1471 1843 1487 1486 1200 1486 826
|E| 4238 6913 2760 1539 1548 3465 1485 812
c.c. 2 1 35 1 1 23 1 79

Cycles N Y Y N N Y N N
i.n. 478 374 1386 60 53 1189 1 813

Science |V| 366 370 524 371 370 307 370 217
|E| 1102 1573 681 436 393 892 369 174
c.c. 1 1 11 1 1 8 1 48

Cycles Y Y N N N Y N N
i.n. 135 114 505 74 25 255 1 208

highest precision, which leads to high F-score, sec-
ond only to the best system. This is an indication
that the test dataset can be improved by removing
relations that do not require more sophisticated ap-
proaches. The first baseline (B1) is not competitive,
because the gold standard taxonomies are specifi-
cally selected to have a rich, deep structure. A large
number of novel relations produced by the USAAR
system are too generic because they apply a simi-
lar strategy. The results of the manual analysis of
previously unknown edges are shown in the last line
of Table 3. Again, LT3 and INRIASAC systems take
the lead. The ntnu system discovers the largest num-

ber of novel edges compared to other systems on
the WordNet Science taxonomy. In this case, LT3
discovers a larger number of new edges than other
participants on Combined taxonomies. In Table 4
we report the Cumulative F&M measure (see Sec-
tion 2.2.3) for the 45 systems and for the 16 base-
line taxonomies. Results are grouped on the basis
of the source of the gold standard, that is, combined
taxonomies and WordNet taxonomies. LT3 outper-
forms the other systems on all three submitted Word-
Net taxonomies by a wide margin (there is no sub-
mission for the Chemicals domain), but for the com-
bined taxonomies the INRIASAC system holds the
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Table 3: Average Precision, Recall and F-score of ISA relationships across gold standards and Average Precision of
novel relations based on human judgement.

Comparison against gold standards
INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Average Precision 0.1725 0.3612 0.1754 0.1564 0.0720 0.2015 0.0226 0.5432
Average Recall 0.4279 0.6307 0.2756 0.1589 0.1165 0.3139 0.0212 0.2413
Average F-score 0.2427 0.3886 0.2076 0.1575 0.0799 0.2377 0.0219 0.3326

Manual evaluation

Average Precision 0.4800 0.5967 0.4200 0.3533 0.2467 0.1017 - -

Table 4: Cumulative Fowlkes&Mallows measure for 45 system runs and for 16 baselines.

Combined gold standard taxonomies
INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR B1 B2

Chemicals 0.2353 n.a 0.0009 n.a 0.2225 0.00001 0.2281 0.0
Equipment 0.4905 0.1137 0.0000 0.4881 0.4482 0.0000 0.3970 0.0012
Food 0.4522 0.2163 0.0076 0.3405 0.3267 0.0037 0.3162 0.0007
Science 0.4706 0.3303 0.0088 0.5232 0.2202 0.2249 0.4214 0.0108

WordNet gold standard taxonomies

Chemicals 0.0084 n.a 0.0719 0.3947 0.2787 0.2103 0.2683 0.0
Equipment 0.0700 0.6892 0.0935 0.3637 0.0901 0.0015 0.2969 0.0007
Food 0.4804 0.5899 0.2673 0.3153 0.3091 0.0036 0.2933 0.0022
Science 0.4153 0.5391 0.0158 0.2921 0.2126 0.1721 0.1963 0.0016

lead. This difference is explained by the fact that
LT3 makes use of a WordNet lookup of hypernym-
hyponym relations, which is similar to the method
used to collect the WordNet gold standard. More
detailed statistics and charts are available on the
task website6. Finally, in order to obtain an over-
all rank of the system outputs we first assigned a
penalty score (from 1 to 6) for six cue aspects of the
evaluation: presence of Cycles, Cumulative F&M
measure, number of Intermediate Nodes, F-score
from Gold Standard Evaluation, number of Submit-
ted Domains and estimated precision from Manual
Evaluation. Then, the total number of penalty points
was computed and, following the inverse order of
the total penalty scores, we finally ranked the teams
(see Table 5).

At the end of the evaluation it emerged that the
INRIASAC team had outperformed the other teams
in the production of taxonomies for the selected tar-
get domains. Although the LT3 team achieved bet-
ter performance for quantitative approaches (preci-
sion, F-score, Cumulative F&M), it was penalised
in the final ranking because the constructed tax-

6http://alt.qcri.org/semeval2015/task17/
index.php?id=evaluation

Table 5: Overall ranking of submitted systems: IN-
RIASAC (INR), LT3, ntnu, QASSIT (QA), TALN-UPF
(TA), USAAR (US).

INR LT3 ntnu QA TA US

Cycles 3 4 2 1 3 4
Cumulative F&M 2 1 6 3 4 5
Intermediate Nodes 2 5 3 6 4 1
Gold Standard Evaluation 2 1 4 5 6 3
Submitted Domains 1 3 1 2 1 1
Manual Evaluation 2 1 4 5 6 3

Total 12 15 20 22 24 17
Final Ranking 1 2 4 5 6 3

onomies were generally smaller than the taxonomies
produced by INRIASAC, the LT3 team did not sub-
mit a taxonomy for Chemicals, and they submitted a
larger number of taxonomies with cycles.

5 Discussion

A main limitation of this shared task is that partic-
ipants were allowed to use the same resources as
those used to create the gold standards, and were
able to apply simple lookups to retrieve the relations.
No recall was computed on the basis of the man-
ual evaluation because of the relatively small num-
ber of evaluated relations. A possible solution for
this problem would be to use result pooling from
all the systems to estimate recall. But this solu-

908



Figure 2: Intermediate nodes of the QASSIT taxon-
omy on Science.

Figure 3: Intermediate nodes of the gold standard
taxonomy on Science.

tion would be more appropriate when there was a
larger number of systems. Most participants de-
cided not to address the taxonomy construction sub-
task, focusing mainly on relation discovery. This
could be because the subtask is less well-known and
more recently introduced, but also because exist-
ing approaches for taxonomy construction are com-
plex and difficult to reimplement. None of the sys-
tems was able to address this subtask for the com-
bined Chemicals taxonomy, which is the largest in
our dataset. This points to the computational lim-
its of existing algorithms for taxonomy construction.
The choice of corpora shows a trend towards us-
ing Wikipedia-based corpora instead of web-based
corpora (Hovy et al., 2013). Only one participant
team relied on web-based corpora. Another les-
son that can be drawn from this shared task is that
lexico-syntactic patterns, known to have high preci-
sion but low recall, can benefit from co-occurrence
based approaches, even if these tend to be less re-
liable. A visualisation of the top levels of the tax-
onomy constructed by the QASSIT system is pre-
sented in Figure 2. The relative size of the nodes
within a graph is proportional to the degree of the
node. Compared to the gold standard taxonomy for
the same domain presented in Figure 3, the QAS-
SIT taxonomy connects a larger number of leaves
directly to the Science root, introducing a large num-
ber of over-generic relations. There are three times

more relations between intermediate nodes and the
root node than in the gold standard taxonomy. The
QASSIT hierarchy is more shallow than the gold
standard, and contains a smaller number of interme-
diate nodes.

6 Conclusion

This paper provides an overview of the SemEval
2015 task on Taxonomy Extraction. The task aimed
to foster research in hierarchical relation extraction
from text and taxonomy construction. We con-
structed and released benchmark datasets for four
domains (chemicals, equipment, foods, science).
The task attracted 45 submissions from six teams
that were automatically evaluated against gold stan-
dards collected from WordNet, as well as other well
known sources. This evaluation was complemented
by a structural analysis of the submitted taxonomies
and a manual evaluation of previously unknown
edges. Most systems focused on the relation ex-
traction subtask, with the exception of the QASSIT
team who addressed the taxonomy construction sub-
task as well. In future, the datasets can be improved
by removing relations that can be identified through
string-based inclusion.
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Abstract 

For information retrieval, it is useful to classi-
fy documents using a hierarchy of terms from 
a domain. One problem is that, for many do-
mains, hierarchies of terms are not available. 
The task 17 of SemEval 2015 addresses the 
problem of structuring a set of terms from a 
given domain into a taxonomy without manu-
al intervention. Here we present some simple 
taxonomy structuring techniques, such as term 
overlap and document and sentence co-
occurrence in large quantities of text (English 
Wikipedia) to produce hypernym pairs for the 
eight domain lists supplied by the task organ-
izers. Our submission ranked first in this 2015 
benchmark, which suggests that overly com-
plicated methods might need to be adapted to 
individual domains. We describe our generic 
techniques and present an initial evaluation of 
results.  

1 Introduction 

This paper describes two simple hypernym extrac-
tion methods, given a list of domain terms and a 
large amount of text divided into documents. Task 
17 of the 2015 Semeval campaign (Bordea et al., 
2015) consists in structuring a flat list of pre-
identified domain terms into a list of hypernym 
pairs. Task organizers provide two lists of terms 
for each of four domains: equipment, food, chemi-
cal, science, one extracted from WordNet and one 
from an unknown source. Participants in the task 
were allowed to use any resource  (except existing 
taxonomies) to automatically transform the lists of 
terms into lists of pairs of terms, the first term be-
ing a hyponym of the more general second term. 
For example, if the words airship and blimp 
were included in the lists of terms for a domain, 
the system was expected to return lines such as: 

blimp  airship 

The task organizers provided training data from 
the domains of Artificial Intelligence, vehicles and 
plants, different from the test domains. The train-
ing data consisted in term lists (for plants), and 
term lists and lists of hypernyms (for AI and for 
vehicles). We examined these files to get an under-
standing of the task but did not exploit them.  
 
We used the English text of Wikipedia (download-
ed from http://dumps.wikimedia.org on August 13, 
2014) as our only resource for discovering these 
relations. We extracted only the text of each arti-
cle, ignoring titles, section headings, categories, 
infoboxes, or other meta-information present in the 
article. We recognized task terms in these articles 
and gathered statistics on document and sentence 
co-occurrence between domain terms, as well as 
term frequency. To recognize hypernyms, we used 
term inclusion (explained in section 3.1 below) and 
co-occurrence statistics (see section 3.2) to decide 
whether two terms were possibly in a hypernym 
relation, and document frequency to chose which 
term was the hypernym. Our submission ranked 
first in the SemEval 2015 task 17 benchmark. 

2 Domain Lists  

Participants were provided with the eight lists of 
domain terms, each containing between 370 and 
1555 terms. Some terms examples: 
chemical: agarose, nickel sulfate heptahydrate, aminoglycan, 
pinoquercetin, … 
equipment: storage equipment, strapping, traveling micro-
scope, minneapolis-moline, …  
food: sauce gribiche, botifarra, phitti, food colouring, bean, 
limequat, kalach, … 
science: biological and physical, history of religions of east-
ern origins, linguistic anthropology, religion, semantics… 
WN_chemical: abo antibodies, acaricide, acaroid resin, ac-
ceptor, acetal, acetaldehyde… 
WN_equipment: acoustic modem, aerator, air search radar, 
amplifier, anti submarine rocket, apishamore, apparatus, … 
WN_food: absinth, acidophilus milk, adobo, agar, aioli, alco-
hol, ale, alfalfa, allemande, allergy diet, …  
WN_science: abnormal psychology, acoustics, aerology, aer-
omechanics, aeronautics, … 
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Terms consisted of one to nine words. Some terms 
were very short and ambiguous (only two or three 
characters: ga, os, tu, ada, aji, …) and some 
very long (e.g., udp-n-acetyl-alpha-d-
muramoyl-l-alanyl-gamma-d-glutamyl-l-
lysyl-d-alanyl-d-alanine,  korea advanced 
institute of science and technology sat-

ellite 4). It is specified that the taxonomies pro-
duced during the task should be rooted on 
chemical for the two chemical domain lists, on 
equipment for the equipment lists, on food for 
the food lists, and on science for the science lists, 
even though the term chemical was absent from 
the WN_chemical domain list. Participants were 
allowed to add additional nodes, i.e. terms, in the 
hierarchy as they consider appropriate. We did not 
add any new terms, except for chemical in the 
WN_chemical list.  

2.1 Preprocessing the resource 

Our only resource for discovering hypernym rela-
tions was the English Wikipedia. Starting from the 
wiki-latest-pages-articles.xml, we extracted all the 
text between <text> markers, and marked off doc-
ument boundaries using <title> markers. No other 
information (infoboxes, categories, etc.) was kept. 
The text was then tokenized and output as one sen-
tence per line. The first English Wikipedia sen-
tence extracted looked like this:  ' Anarchism ' is 
a political philosophy that advocates stateless 
societies often defined as self-governed volun-
tary institutions , but that several authors 
have defined as more specific institutions 
based on non-hierarchical free associations. 
We applied Porter stemming (Willet, 2006) and 
replaced stopwords (Buckley et al., 1995) by un-
derscores. The first sentence then becomes:  
anarch  _   _   _  polit philosophi  _  advoc 
stateless societi  _  defin  _  self-govern 
voluntari institut  _   _   _  sever author  _  
defin  _   _  specif institut base  _  non-
hierarch free associ  
  

We applied the same Porter stemming and stop-
word removal to the task-supplied domain terms. 
So the science term list, for example, becomes 
 
0 electro-mechan system 
1 biolog _ physic 
2 histori _ religion _ eastern origin 
3 linguist anthropolog 
4 metaphys 
 

We retained both Porter-stemmed versions of the 
Wikipedia sentences and domain terms as well as 
the original unstemmed versions for the treatment 
described below. 

3 Extracting Hypernyms 

In order to extract hypernyms, we used the follow-
ing features: (i) presence of terms in the same sen-
tence, (ii) presence in the same document (iii) term 
frequency (iv) document frequency, and (v) subse-
quences. 

3.1 Subterms 

In addition to domain lists supplied for the 
Semeval task, we were supplied with training data. 
One file in this training data, ontolearn_AX.taxo, 
gives ground truth for the training file on-
tolearn_AX.terms, and contains: 
 
source code < code 
theory of inheritance < theory 
 
From these validated examples, we concluded that 
an ‘easy’ way to find hypernyms is to check 
whether one term is a suffix of the other (e.g., com-
munications satellite as a type of satel-

lite), or whether one term B is the prefix of 
another term B A C where A is any two-letter 
word (e.g. helmet of coţofeneşti as a type of 
helmet; caterpillar d9 as a type of cater-
pillar).  We chose two letters for the second term 
to cover English prepositions such as of, in, by, … 
This heuristic was unexpectedly productive in the 
chemical domain where many hypernym pairs 
were similar to: ginsenoside mc as a type of 
ginsenoside (see Table 1). But our prefix 
matching using second words of length two missed 
hypernyms such as fortimicin b as a type of 
fortimicin or ginsenoside c-y as a type of 
ginsenoside. Obviously chemical terms should 
have their own heuristics for subterm matching. 
 
Other examples of errors, false positives, caused 
by these heuristics are licorice as a type of 
rice or surface to air missile system as a 
type of surface. 
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3.2 Sentence and Document Co-occurrence 
Statistics 

For other domain terms (which could include the 
hypernyms found by the suffix and prefix heuris-
tics), we use the statistics of document presence, 
and of co-occurrence of terms in sentences to pre-
dict hypernym relations. Let Dporter(term) be the 
document frequency of a Porter-stemmed term in 
the stemmed version of Wikipedia. Since Wikipe-
dia article boundaries were stored, we considered 
each Wikipedia article as a new document. Let 
SentCoocporter(termi, termj) be the number of times 
that the Porter-stemmed versions of termi and termj 
appear in the same sentence in the stemmed Eng-
lish Wikipedia. Given two terms, termi and termj,  
if termi is appears in more documents than  termj, 
then termi is a candidate hypernym for termj.  

CandHypenym(termi) = { termj :  
  SentCoocporter(termi, termj) > 0 && 

Dporter(termj) > Dporter(termi)     } 
This heuristically derived set is meant to capture 
the intuition that general terms are more widely 
distributed than more specific terms (e.g., dog ap-
pears in more Wikipedia articles than poodle).  
 

Domain suffix prefix cooc 
Total 

hypernyms 
produced 

WN_chemical 750 10 3766 4001 
WN_equipment 171 3 1338 1369 
WN_food 616 25 4121 4238 
WN_science 174 0 1070 1102 
chemical 10780 91 19322 28443 
equipment 241 17 1126 1168 
food 471 33 4277 4363 
science 193 17 1130 1164 
Table 1. Number of  prefix and suffix hypernyms pro-
duced, compared to the total number of hypernyms re-
turned for each domain.  
 
Next, we define the best hyperym candidate for 
termi as being the term termk that appears in the 
most documents (from Wikipedia in this case):  

BestHypernym(termi) = termk  
such that   
∀ termj ∈ CandHypernym(termi) :  
     Dporter(termk) ≥ Dporter(termj) 

Next, we remove this term termk from CandHyper-
nym(termi) and repeat the heuristic twice, retain-
ing, then, the three candidate hypernyms appearing 

in the most documents for each term not found by 
using the prefix or suffix heuristics.  

3.2.1 Co-occurrence Example 

Consider the following example. In the domain file 
science.terms there is the term biblical stud-
ies.  The Porter-stemmed version of this term 
biblic studi appears in 887 documents. Con-
sidering all the other terms in science.terms, we 
find that biblic studi appears 215 times in 
the same sentence as the stemmed version of the-
ology (theologi), 111 times in the same sentenc-
es as stemmed history (histori), 50 times with 
religion, 43 times with music, and 42 times with 
science (scienc).  
 
215 887 21977 biblic studi theologi 
111 887 383927  biblic studi histori 
50  887 64044    biblic studi religion 
43  887 412791 biblic studi music 

 
We decided to keep the top three for simplicity, so 
this term contributed three bolded lines above to 
our submitted science.taxo file.  

3.3 Other Attempts at Finding Relations 

We tried a number of other methods to find hyper-
nyms, none of which gave results that looked good 
from a cursory glance. We implemented a method 
to recognize sentences containing Hearst patterns 
(list from (Cimiano et al., 2005)) involving the 
domain terms. For example, tape is in equipment, 
and were able to find stemmed sentences of the 
form A, B and other C … such as todai , 
sticki note , 3m #tape# @, and other@ 
#tape# ar exampl of psa ( pressure-sensit 

adhes ) from which we should have been able to 
extract relations such as 3m tape is a type of tape, 
and sticky note is a type of tape. But we would 
have had to the parse the sentence, and been will-
ing to add new terms (which was permitted by the 
organizers) to the derived hypernym lists but we 
did not want to make that processing investment 
yet. We also tried to discover the basic vocabulary 
(Kit, 2002) of each domain without success. 

4 Evaluation 

Each participant in Task 17 of SemEval 2015 was 
allowed to submit one run for each of the 8 do-
mains (see Table 1 for the names of the domains, 
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and the number of hypernym pairs we submitted. 
Suffix and prefix subterms account for 10% to 
36% of the hypernyms we produced. The 
cooccurence technique produced the most hyper-
nym candidates). The task organizers evaluated the 
submissions of the six participating teams, using 
automated and manual methods, and published 
their evaluation three weeks after the submission 
deadline. Our team placed first in the official rank-
ing of the six teams. 
 

Domain suffix prefix cooc union gold 
to find 

WN_chemical 377 5 574 644 1387 
WN_equipment 119 0 168 184 485 
WN_food 371 2 681 726 1533 
WN_science 119 0 230 240 441 
chemical 2019 9 715 2407 24817 
equipment 184 1 286 305 615 
food 279 1 807 822 1587 
science 121 7 193 209 465 

Table 2. Number of gold standard relations to find in 
the last column. Columns 2, 3 and 4 are the number of 
gold standard relations found by each technique. “un-
ion” is the union of columns 2, 3 and 4. Since the co-
occurrence technique can find relations that have been 
found by the suffix and prefix techniques.  
 

Domain suffix prefix cooc union gold 
to find 

WN_chemical 26% 0.3% 40% 46% 1387 
WN_equipment 24% 0% 34% 38% 485 
WN_food 23% 0.1% 43% 47% 1533 
WN_science 26% 0% 51% 54% 441 
chemical 8% 0.03% 3% 10% 24817 
equipment 30% 0.02% 47% 50% 615 
food 18% 0.06% 51% 52% 1587 
science 26% 1.8% 42% 45% 465 

Table 3. Percentage of correct answers found by each 
method.  
 
The evaluation criteria, which were not published 
before the submission, combined the presences of 
cycles in the hypernyms submitted, the Fowlkes & 
Mallows measure of the overlap between the sub-
mitted hierarchy and the gold standard hierarchy,  
the F-score ranking, the number of domains sub-
mitted (not all teams returned results for all do-
mains), and a manual precision ranking (for 
hypernyms not present in the gold standard). The 
gold standards used by the task organizers came 
from published taxonomies, or from subtrees of 
WordNet (prefixed as WN_ above). A quick eval-
uation of how well our simple hypernym extrac-

tion techniques fared on each gold standard is 
shown in Table 2. 
As Table 3 shows, most of the correct answers 
found come from the sentence and document co-
occurrence method described in section 3.2. 

5 Conclusion   

Even though training data was provided for this 
taxonomy creation task, we did not exploit it in 
this our first participation in Semeval. We imple-
mented some simple frequency-based co-
occurrence statistics, and substring inclusion heu-
ristics to propose a set of hypernyms. We did not 
implement any graph algorithms (cycle detection, 
branch deletion) that would be useful to build a 
true hierarchy. Future plans involve examining and 
eliminating cycles generated by this method. Since 
we only used wikipedia as a resource, the method 
depends on the given terms being present in Wik-
ipedia, which was not always the case, especially 
in the chemical domain. In future work, we will 
also examine using web documents, in lieu of or to 
supplement Wikipedia.  

Acknowledgments 

This research is partially funded by a research grant from 
INRIA, and the Paris-Saclay Institut de la Société Numérique 
funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02. 

References  
Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and 

Roberto Navigli. 2015. Semeval-2015 task 17: Tax-
onomy Extraction Evaluation. Proceedings of the 9th 
International Workshop on Semantic Evaluation. As-
sociation for Computational Linguistics 

Chris Buckley, Gerard Salton, James Allan, and Amit 
Singhal. 1995. Automatic query expansion using 
SMART: TREC3. Proceedings of the 3rd Text RE-
trieval Conference (TREC-3). NIST Special Publica-
tion 500–226. National Institute of Standards and 
Technology (NIST), Gaithersburg, MD, pp: 69–80. 

Philipp Cimiano, Aleksander Pivk, Lars Schmidt-
Thieme, and Steffen Staab.  2005. Learning taxo-
nomic relations from heterogeneous sources of evi-
dence. Ontology Learning from Text: Methods, 
evaluation and applications. IoS Press. 

Chunyu Kit. 2002. Corpus tools for retrieving and de-
riving termhood evidence. Proceedings of the 5th 
East Asia Forum of Terminology, pp. 69-80. 

Peter Willett. 2006. The Porter stemming algorithm: 
then and now. Program 40(3): 219-223 

914



Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 915–926,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

SemEval 2015 Task 18:
Broad-Coverage Semantic Dependency Parsing

Stephan Oepen♣♠, Marco Kuhlmann♥, Yusuke Miyao♦, Daniel Zeman◦,
Silvie Cinková◦, Dan Flickinger•, Jan Hajič◦, and Zdeňka Urešová◦
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Abstract

Task 18 at SemEval 2015 defines Broad-
Coverage Semantic Dependency Parsing (SDP)
as the problem of recovering sentence-internal
predicate–argument relationships for all con-
tent words, i.e. the semantic structure consti-
tuting the relational core of sentence meaning.
In this task description, we position the prob-
lem in comparison to other language analysis
sub-tasks, introduce and compare the semantic
dependency target representations used, and
summarize the task setup, participating sys-
tems, and main results.

1 Background and Motivation

Syntactic dependency parsing has seen great ad-
vances in the past decade, but tree-oriented parsers
are ill-suited for producing meaning representations,
i.e. moving from the analysis of grammatical struc-
ture to sentence semantics. Even if syntactic parsing
arguably can be limited to tree structures, this is not
the case in semantic analysis, where a node will often
be the argument of multiple predicates (i.e. have more
than one incoming arc), and it will often be desirable
to leave nodes corresponding to semantically vacu-
ous word classes unattached (with no incoming arcs).
Thus, Task 18 at SemEval 2015, Broad-Coverage
Semantic Dependency Parsing (SDP 2015),1 seeks
to stimulate the parsing community to move towards

1See http://alt.qcri.org/semeval2015/
task18/ for further technical details, information on how to
obtain the data, and official results.

more general graph processing, to thus enable a more
direct analysis of Who did What to Whom?

Extending the very similar predecessor task
SDP 2014 (Oepen et al., 2014), we make use of three
distinct, parallel semantic annotations over the same
common texts, viz. the venerable Wall Street Journal
(WSJ) and Brown segments of the Penn Treebank
(PTB; Marcus et al., 1993) for English, as well as
comparable resources for Chinese and Czech. Fig-
ure 1 below shows example target representations,
bi-lexical semantic dependency graphs in all cases,
for the WSJ sentence:

(1) A similar technique is almost impossible to apply to other
crops, such as cotton, soybeans, and rice.

Semantically, technique arguably is dependent on the
determiner (the quantificational locus), the modifier
similar, and the predicate apply. Conversely, the
predicative copula, infinitival to, and the vacuous
preposition marking the deep object of apply can
be argued to not have a semantic contribution of
their own. Besides calling for node re-entrancies
and partial connectivity, semantic dependency graphs
may also exhibit higher degrees of non-projectivity
than is typical of syntactic dependency trees.

Besides its relation to syntactic dependency pars-
ing, the task also has some overlap with Se-
mantic Role Labeling (SRL; Gildea & Jurafsky,
2002).2 However, we require parsers to identify ‘full-

2In much previous SRL work, target representations typi-
cally draw on resources like PropBank and NomBank (Palmer
et al., 2005; Meyers et al., 2004), which are limited to argu-
ment identification and labeling for verbal and nominal predi-
cates. A plethora of semantic phenomena—for example negation
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A similar technique is almost impossible to apply to other crops , such as cotton, soybeans and rice .
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(a) DELPH-IN Minimal Recursion Semantics–derived bi-lexical dependencies (DM).
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(c) Parts of the tectogrammatical layer of the Prague Czech-English Dependency Treebank (PSD).

Figure 1: Sample semantic dependency graphs for Example (1).

sentence’ semantic dependencies, i.e. compute a rep-
resentation that integrates all content words in one
structure. Finally, a third related area of much interest
is often dubbed ‘semantic parsing’, which Kate and
Wong (2010) define as “the task of mapping natural
language sentences into complete formal meaning
representations which a computer can execute for
some domain-specific application.” In contrast to
much work in this tradition, our SDP target represen-
tations aim to be task- and domain-independent.

2 Target Representations

We use three distinct target representations for seman-
tic dependencies. As is evident in our running exam-
ple (Figure 1), showing what are called the DM, PAS,
and PSD semantic dependencies, there are contentful
differences among these annotations, and there is of
course not one obvious (or even objective) truth. Ad-
vancing in-depth comparison of representations and
underlying design decisions, in fact, is among the mo-

and other scopal embedding, comparatives, possessives, various
types of modification, and even conjunction—often remain un-
analyzed in SRL. Thus, its target representations are partial to
a degree that can prohibit semantic downstream processing, for
example inference-based techniques.

tivations for the SDP task series. Please see Oepen
et al. (2014) and Miyao et al. (2014) for additional
background.

DM: DELPH-IN MRS-Derived Bi-Lexical De-
pendencies These semantic dependency graphs
originate in a manual re-annotation, dubbed Deep-
Bank, of Sections 00–21 of the WSJ Corpus and of
selected parts of the Brown Corpus with syntactico-
semantic analyses of the LinGO English Resource
Grammar (Flickinger, 2000; Flickinger et al., 2012).
For this target representation, top nodes designate
the highest-scoping (non-quantifier) predicate in the
graph, e.g. the (scopal) adverb almost in Figure 1.3

PAS: Enju Predicate–Argument Structures The
Enju Treebank and parser4 are derived from the au-
tomatic HPSG-style annotation of the PTB (Miyao,
2006). Our PAS semantic dependency graphs are
extracted from the Enju Treebank, without contentful
conversion, and from the application of the same ba-
sic techniques to the Penn Chinese Treebank (CTB;

3However, non-scopal adverbs act as mere intersective modi-
fiers, e.g. in a structure like Abrams sang loudly, the adverb is a
predicate in DM, but the main verb nevertheless is the top node.

4See http://kmcs.nii.ac.jp/enju/.
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Xue et al., 2005). Top nodes in this representation
denote semantic heads.

PSD: Prague Semantic Dependencies The
Prague Czech-English Dependency Treebank
(PCEDT; Hajič et al., 2012)5 is a set of parallel
dependency trees over the WSJ texts from the PTB,
and their Czech translations. Our PSD bi-lexical
dependencies have been extracted from what is called
the tectogrammatical annotation layer (t-trees). Top
nodes are derived from t-tree roots; i.e. they mostly
correspond to main verbs. In case of coordinate
clauses, there are multiple top nodes per sentence.

3 Data Format

The SDP target representations can be characterized
as labeled, directed graphs. Nodes are labeled with
five pieces of information: word form, lemma, part
of speech, a Boolean flag indicating whether the
node represents a top predicate, and optional frame
(or sense) information—for example the distinction
between causative vs. inchoative predicates like in-
crease. Edges are labeled with semantic relations
that hold between source and target.

All data provided for the task uses a column-based
file format that extends the format of the SDP 2014
task by a new frame column (thus making it a little
more SRL-like). More details about the file format
are available at the task website.

4 Data Sets

All three target representations for English are anno-
tations of the same text, Sections 00–21 of the WSJ
Corpus, as well as of a balanced sample of twenty
files from the Brown Corpus (Francis & Kučera,
1982). For this task, we have synchronized these
resources at the sentence and tokenization levels and
excluded from the SDP 2015 training and testing
data any sentences for which (a) one or more of the
treebanks lacked a gold-standard analysis; (b) a one-
to-one alignment of tokens could not be established
across all three representations; or (c) at least one
of the graphs was cyclic. Of the 43,746 sentences
in these 22 first sections of WSJ text, DeepBank
lacks analyses for some 11%, and the Enju Tree-

5See http://ufal.mff.cuni.cz/pcedt2.0/.

bank has gaps for a little more than four percent.6

Finally, 139 of the WSJ graphs obtained through the
above conversions were cyclic. In total, we were
left with 35,657 sentences (or 802,717 tokens; eight
percent more than for SDP 20147) as training data
(Sections 00–20), 1,410 in-domain testing sentences
(31,948 tokens) from WSJ Section 21, and 1,849 out-
of-domain testing sentences (31,583 tokens) from the
Brown Corpus.

Besides the additions of out-of-domain test data
and frame (or sense) identifiers for English, another
extension beyond the SDP 2014 task concerns the
inclusion of additional languages, albeit only for se-
lect target representations. Our training data included
an additional 31,113 Chinese sentences (649,036 to-
kens), taken from Release 7.0 of the CTB, for the
PAS target representation, and 42,076 Czech sen-
tences (985,302 tokens), drawing on the translations
of the WSJ Corpus in PCEDT 2.0, for the PSD target
representation. Additional out-of-domain Czech test
data was drawn from the Prague Dependency Tree-
bank 3.0 (PDT; Bejček et al., 2013). For these addi-
tional languages, the task comprised 1,670 sentences
(38,397 tokens) of in-domain Chinese test data, and
1,670 sentences (38397 tokens) and 5,226 sentences
(87,927 tokens) of in- and out-of-domain Czech data,
respectively.

Quantitative Comparison As a first attempt at
contrasting our three target representations, Table 1
shows some high-level statistics of the graphs com-
prising the training and testing data.8 In terms
of distinctions drawn in dependency labels (1),
there are clear differences between the representa-
tions, with PSD appearing linguistically most fine-

6Additionally, some 500 sentences show tokenization mis-
matches, most owing to DeepBank correcting PTB idiosyn-
crasies like 〈G.m.b, H.〉, 〈S.p, A.〉, and 〈U.S., .〉, and
introducing a few new ones (Fares et al., 2013).

7In comparison to the SDP 2014 data, our DM graphs were
extracted from a newer, improved release of DeepBank (Version
1.1), and its conversion to bi-lexical dependencies was moder-
ately revised to provide more systematic analyses of contracted
negated auxiliaries and comparatives. At the same time, the
extraction of PSD graphs from the PCEDT t-trees was refined
to include edges representing grammatical coreference, e.g. re-
entrancies introduced by control verbs.

8These statistics are obtained using the ‘official’ SDP toolkit.
Our notions of singletons, roots, re-entrancies, and projectivity
follow common graph terminology, but see Oepen et al. (2014)
for formal definitions.
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EN i-d CS i-d ZH i-d EN o-o-d CS o-o-d

DM PAS PSD PSD PAS DM PAS PSD PSD

(1) # labels 59 42 91 61 32 47 41 74 64
(2) % singletons 22.97 4.38 35.76 28.91 0.11 25.40 5.84 39.11 29.04
(3) edge density 0.96 1.02 1.01 1.03 0.98 0.95 1.02 0.99 1.00
(4) %g trees 2.30 1.22 42.19 37.66 3.49 9.68 2.38 51.43 51.49
(5) %g noncrossing 69.03 59.57 64.58 63.22 67.61 74.58 65.28 74.26 72.41
(6) %g projective 2.91 1.64 41.92 38.32 12.89 8.82 3.46 54.35 53.02
(7) %g fragmented 6.55 0.23 0.69 1.17 15.22 4.71 0.65 1.73 3.50
(8) %n reentrancies 27.44 29.36 11.42 11.80 24.96 26.14 29.36 11.46 11.44
(9) %g topless 0.31 0.02 – 0.04 6.92 1.41 – – 0.02

(10) # top nodes 0.9969 0.9998 1.1276 1.2242 0.9308 0.9859 1.0000 1.2645 1.2771
(11) %n non-top roots 44.91 55.98 4.35 4.73 46.65 39.89 50.93 5.27 5.31
(12) # frames 297 – 5426 – – 172 – 1208 –
(13) %n frames 13.52 – 16.77 – – 15.79 – 19.50 –
(14) average treewidth 1.30 1.72 1.61 1.66 1.35 1.31 1.69 1.50 1.49
(15) maximum treewidth 3 3 7 6 3 3 3 5 5

Table 1: Contrastive high-level graph statistics across target representations, languages, and domains.

grained, and PAS showing the smallest label inven-
tory. Unattached singleton nodes (2) in our setup
correspond to tokens analyzed as semantically vacu-
ous, which (as seen in Figure 1) include most punc-
tuation marks in PSD and DM, but not PAS. Fur-
thermore, PSD (unlike the other two) analyzes some
high-frequency determiners as semantically vacuous.
Conversely, PAS on average has more edges per (non-
singleton) nodes than the other two (3), which likely
reflects its approach to the analysis of functional
words (see below).

Judging from both the percentage of actual trees
(4), the proportions of noncrossing graphs (5), pro-
jective graphs (6), and the proportions of reentrant
nodes (8), PSD is more ‘tree-oriented’ than the other
two, which at least in part reflects its approach to
the analysis of modifiers and determiners (again, see
below). We view the small percentages of graphs
without at least one top node (9) and of graphs with
at least two non-singleton components that are not
interconnected (7) as tentative indicators of general
well-formedness. Intuitively, there should always be
a ‘top’ predicate, and the whole graph should ‘hang
together’. Only DM exhibits non-trivial (if small) de-
grees of topless and fragmented graphs, which may
indicate imperfections in DeepBank annotations or
room for improvement in the conversion from full
logical forms to bi-lexical dependencies, but possi-
bly also exceptions to our intuitions about semantic
dependency graphs.

Directed Undirected

DM PAS PSD DM PAS PSD

DM − .6425 .2612 − .6719 .5675
PAS .6688 − .2963 .6993 − .5490
PSD .2636 .2963 − .5743 .5630 −

Table 2: Pairwise F1 similarities, including punctua-
tion (upper right diagonals) or not (lower left).

Frame or sense distinctions are a new property in
SDP 2015 and currently are only available for the
English DM and PSD data. Table 1 reveals a stark
difference in granularity: DM limits itself to argu-
ment structure distinctions that are grammaticized,
e.g. causative vs. inchoative contrasts or differences
in the arity or coarse semantic typing of argument
frames; PSD, on the other hand, draws on the much
richer sense inventory of the EngValLex database
(Cinková, 2006). Accordingly, the two target repre-
sentations represent quite different challenges for the
predicate disambiguation sub-task of SDP 2015.

Finally, in Table 2 we seek to quantify pairwise
structural similarity between the three representations
in terms of unlabeled dependency F1 (dubbed UF
in Section 5 below). We provide four variants of
this metric, (a) taking into account the directionality
of edges or not and (b) including edges involving
punctuation marks or not. On this view, DM and PAS
are structurally much closer to each other than either
of the two is to PSD, even more so when discarding
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punctuation. While relaxing the comparison to ignore
edge directionality also increases similarity scores
for this pair, the effect is much more pronounced
when comparing either to PSD. This suggests that
directionality of semantic dependencies is a major
source of diversion between DM and PAS on the one
hand, and PSD on the other hand.

Linguistic Comparison Among other aspects,
Ivanova et al. (2012) categorize a range of syntactic
and semantic dependency annotation schemes accord-
ing to the role that functional elements take. In Fig-
ure 1 and the discussion of Table 1 above, we already
observed that PAS differs from the other represen-
tations in integrating into the graph auxiliaries, the
infinitival marker, the case-marking preposition in-
troducing the argument of apply (to), and most punc-
tuation marks;9 while these (and other functional
elements, e.g. complementizers) are analyzed as se-
mantically vacuous in DM and PSD, they function
as predicates in PAS, though do not always serve as
‘local’ top nodes (i.e. the semantic head of the cor-
responding sub-graph): For example, the infinitival
marker in Figure 1 takes the verb as its argument, but
the ‘upstairs’ predicate impossible links directly to
the verb, rather than to the infinitival marker as an
intermediate.

At the same time, DM and PAS pattern alike in their
approach to modifiers, e.g. attributive adjectives, ad-
verbs, and prepositional phrases. Unlike in PSD (or
common syntactic dependency schemes), these are
analyzed as semantic predicates and, thus, contribute
to higher degrees of node reentrancy and non-top
(structural) roots. Roughly the same holds for de-
terminers, but here our PSD projection of Prague
tectogrammatical trees onto bi-lexical dependencies
leaves ‘vanilla’ articles (like a and the) as singleton
nodes.

The analysis of coordination is distinct in the three
representations, as also evident in Figure 1. By de-
sign, DM opts for what is often called the Mel’čukian
analysis of coordinate structures (Mel’čuk, 1988),
with a chain of dependencies rooted at the first con-
junct (which is thus considered the head, ‘standing
in’ for the structure at large); in the DM approach,

9In all formats, punctuation marks like dashes, colons, and
sometimes commas can be contentful, i.e. at times occur as both
predicates, arguments, and top nodes.

coordinating conjunctions are not integrated with the
graph but rather contribute different types of depen-
dencies. In PAS, the final coordinating conjunction
is the head of the structure and each coordinating
conjunction (or intervening punctuation mark that
acts like one) is a two-place predicate, taking left and
right conjuncts as its arguments. Conversely, in PSD
the last coordinating conjunction takes all conjuncts
as its arguments (in case there is no overt conjunc-
tion, a punctuation mark is used instead); additional
conjunctions or punctuation marks are not connected
to the graph.10

A linguistic difference between our representations
that highlights variable granularities of analysis and,
relatedly, diverging views on the scope of the prob-
lem can be observed in Figure 2. Much noun phrase–
internal structure is not made explicit in the PTB, and
the Enju Treebank from which our PAS representa-
tion derives predates the bracketing work of Vadas
and Curran (2007). In the four-way nominal com-
pounding example of Figure 2, thus, PAS arrives at
a strictly left-branching tree, and there is no attempt
at interpreting semantic roles among the members of
the compound either; PSD, on the other hand, anno-
tates both the actual compound-internal bracketing
and the assignment of roles, e.g. making stock the
PAT(ient) of investment. In this spirit, the PSD anno-
tations could be directly paraphrased along the lines
of plans by employees for investment in stocks. In a
middle position between the other two, DM disam-
biguates the bracketing but, by design, merely assigns
an underspecified, construction-specific dependency
type; its compound dependency, then, is to be inter-
preted as the most general type of dependency that
can hold between the elements of this construction
(i.e. to a first approximation either an argument role
or a relation parallel to a preposition, as in the above
paraphrase). The DM and PSD annotations of this
specific example happen to diverge in their bracket-
ing decisions, where the DM analysis corresponds to
[...] investments in stock for employees, i.e. grouping

10As detailed by Miyao et al. (2014), individual conjuncts can
be (and usually are) arguments of other predicates, whereas the
topmost conjunction only has incoming edges in nested coordi-
nate structures. Similarly, a ‘shared’ modifier of the coordinate
structure as a whole would take as its argument the local top
node of the coordination in DM or PAS (i.e. the first conjunct or
final conjunction, respectively), whereas it would depend as an
argument on all conjuncts in PSD.
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employee stock investment plans

compound compound compound

employee stock investment plans

ARG1

ARG1
ARG1

employee stock investment plans

ACT

PAT REG

Figure 2: Analysis of nominal compounding in DM, PAS, and PSD, respectively .

the concept employee stock (in contrast to ‘common
stock’).

Without context and expert knowledge, these deci-
sions are hard to call, and indeed there has been much
previous work seeking to identify and annotate the re-
lations that hold between members of a nominal com-
pound (see Nakov, 2013, for a recent overview). To
what degree the bracketing and role disambiguation
in this example are determined by the linguistic signal
(rather than by context and world knowledge, say)
can be debated, and thus the observed differences
among our representations in this example relate
to the classic contrast between ‘sentence’ (or ‘con-
ventional’) meaning, on the one hand, and ‘speaker’
(or ‘occasion’) meaning, on the other hand (Quine,
1960; Grice, 1968; Bender et al., 2015). In turn,
we acknowledge different plausible points of view
about which level of semantic representation should
be the target representation for data-driven parsing
(i.e. structural analysis guided by the grammatical
system), and which refinements like the above could
be construed as part of a subsequent task of interpre-
tation.

5 Task Setup

English training data for the task, providing all
columns in the file format sketched in Section 3
above, together with a first version of the SDP
toolkit—including graph input, basic statistics, and
scoring—were released to candidate participants in
early August 2014. In mid-November, cross-lingual
training data, a minor update to the English data, and
optional syntactic ‘companion’ analyses (see below)
were provided. Anytime between mid-December
2014 and mid-January 2015, participants could re-
quest an input-only version of the test data, with just
columns (1) to (4) pre-filled; participants then had
six days to run their systems on these inputs, fill
in columns (5), (6), (7), and upwards, and submit
their results (from up to two different runs) for scor-
ing. Upon completion of the testing phase, we have
shared the gold-standard test data, official scores, and

system results for all submissions with participants
and are currently preparing all data for general re-
lease through the Linguistic Data Consortium.

Evaluation Systems participating in the task were
evaluated based on the accuracy with which they can
produce semantic dependency graphs for previously
unseen text, measured relative to the gold-standard
testing data. For comparability with SDP 2014,
the primary measures for this evaluation were la-
beled and unlabeled precision and recall with respect
to predicted dependencies (predicate–role–argument
triples) and labeled and unlabeled exact match with
respect to complete graphs. In both contexts, identifi-
cation of the top node(s) of a graph was considered
as the identification of additional, ‘virtual’ dependen-
cies from an artificial root node (at position 0). Below
we abbreviate these metrics as (a) labeled precision,
recall, and F1: LP, LR, LF; (b) unlabeled precision,
recall, and F1: UP, UR, UF; and (c) labeled and unla-
beled exact match: LM, UM.

The ‘official’ ranking of participating systems is
determined based on the arithmetic mean of the la-
beled dependency F1 scores (i.e. the geometric mean
of labeled precision and labeled recall) on the three
target representations (DM, PAS, and PSD). Thus, to
be competitive in the overall ranking, a system had
to submit semantic dependencies for all three target
representations.

In addition to these metrics, we apply two addi-
tional metrics that aim to capture fragments of seman-
tics that are ‘larger’ than individual dependencies but
‘smaller’ than the semantic dependency graph for the
complete sentence, viz. what we call (a) complete
predications and (b) semantic frames. A complete
predication is comprised of the set of all core argu-
ments to one predicate, which for the DM and PAS
target representations corresponds to all outgoing
dependency edges, and for the PSD target represen-
tation to only those outgoing dependencies marked
by an ‘-arg’ suffix on the edge label. Pushing the
units of evaluation one step further towards inter-
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DM PAS PSD

LF LF LP LR FF LF LP LR PF LF LP LR FF

TurkuG 86.81 88.29 89.52 87.09 58.39 95.58 95.94 95.21 87.99 76.57 78.24 74.97 56.85
Lisbon* 86.23 89.44 90.52 88.39 00.20 91.67 92.45 90.90 84.18 77.58 79.88 75.41 00.06
Peking 85.33 89.09 90.93 87.32 63.08 91.26 92.90 89.67 79.08 75.66 78.60 72.93 49.95
Lisbon 85.15 88.21 89.84 86.64 00.15 90.88 91.87 89.92 81.74 76.36 78.62 74.23 00.03
Riga 84.00 87.90 88.57 87.24 58.12 90.75 91.50 90.02 80.03 73.34 75.25 71.52 52.54

Turku* 83.47 86.17 87.80 84.60 54.67 90.62 91.38 89.87 80.60 73.63 76.10 71.32 53.20
Minsk 80.74 84.13 86.28 82.09 54.24 85.24 87.28 83.28 64.66 72.84 74.65 71.13 51.63

In-House* 61.61 92.80 92.85 92.75 83.79 92.03 92.07 91.99 87.24 – – – –

DM PAS PSD

LF LF LP LR FF LF LP LR PF LF LP LR FF

TurkuG 83.50 82.11 84.26 80.07 42.89 92.92 93.52 92.33 83.80 75.47 77.77 73.31 42.37
Lisbon* 82.53 83.77 85.79 81.84 00.35 87.63 88.88 86.41 80.19 76.18 80.12 72.61 02.25
Lisbon 81.15 81.75 84.81 78.90 00.27 86.88 88.52 85.30 78.47 74.82 78.68 71.31 02.09
Peking 80.78 81.84 84.29 79.53 47.49 87.23 89.47 85.10 74.75 73.28 77.36 69.61 34.28
Riga 79.23 80.69 81.69 79.72 41.88 86.63 87.56 85.72 76.26 70.37 73.23 67.71 40.76

Turku* 78.85 79.01 81.54 76.63 39.15 85.95 86.95 84.98 76.38 71.59 74.92 68.55 38.75
Minsk 75.79 77.24 80.24 74.46 42.18 80.44 83.07 77.96 62.00 69.68 72.26 67.27 41.25

In-House* 59.24 89.69 89.80 89.58 76.39 88.03 88.10 87.96 81.69 – – – –

Table 3: Results of the gold track (marked G), open track (marked *) and closed track (unmarked) submissions
for the English in-domain (top) and out-of-domain (bottom) data. For each system, the second column (LF)
indicates the averaged LF score across all representations, used to rank the systems. The best closed track
scores are highlighted in italices.

LF LP LR PF

Peking 83.43 84.75 82.15 66.09
Riga 82.47 83.12 81.84 66.05

Lisbon 82.02 83.81 80.31 66.05
Turku* 79.64 80.81 78.51 62.04
Minsk 77.68 79.27 76.15 58.23

LF LP LR PF

Lisbon 79.33 83.52 75.54 55.91
Peking 78.45 83.61 73.89 55.36
Riga 75.34 78.77 72.19 50.90

Turku* 75.30 77.53 73.20 54.26

LF LP LR PF

Peking 64.37 69.41 60.02 48.82
Turku* 63.70 65.11 62.35 51.04
Lisbon 63.50 67.94 59.61 43.10
Riga 61.32 64.50 58.44 44.34

Table 4: Results of the open (Turku) and closed (other teams) tracks for the Chinese in-domain (left) and
Czech in- (center) and out-of-domain (right) data. The systems are ranked according to their LF scores.

pretation, a semantic frame is comprised of a com-
plete predication combined with the frame (or sense)
identifier of its predicate. Both complete-predicate
and semantic-frame evaluation are restricted to pred-
icates corresponding to verbal parts of speech (as
determined by the gold-standard part of speech), and
semantic frames are further restricted to those target
representations for which frame or sense information
is available in our data (English DM and PSD). As
with the other metrics, we score precision, recall, and
F1, which we abbreviate as PP, PR, and PF for com-
plete predications, and FP, FR, and FF for semantic

frames.

Closed vs. Open vs. Gold Tracks Much like in
2014, the task distinguished a closed track and an
open track, where systems in the closed track could
only be trained on the gold-standard semantic de-
pendencies distributed for the task. Systems in
the open track, on the other hand, could use ad-
ditional resources, such as a syntactic parser, for
example—provided that they make sure to not use
any tools or resources that encompass knowledge of
the gold-standard syntactic or semantic analyses of
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the SDP 2015 test data.11 To simplify participation
in the open track, the organizers prepared ready-to-
use ‘companion’ syntactic analyses, sentence- and
token-aligned to the SDP data, in the form of Stan-
ford Basic syntactic dependencies (de Marneffe et al.,
2006) produced by the parser of Bohnet and Nivre
(2012).

Finally, to more directly gauge the the contribu-
tions of syntactic structure on the semantic depen-
dency parsing problem, an idealized gold track was
introduced in SDP 2015. For this track, gold-standard
syntactic companion files were provided in a varity
of formats, viz. (a) Stanford Basic dependencies, de-
rived from the PTB, (b) HPSG syntactic dependen-
cies in the form called DM by Ivanova et al. (2012),
derived from DeepBank, and (c) HPSG syntactic de-
pendencies derived from the Enju Treebank.

6 Submissions and Results

From almost 40 teams who had registered for the
task, twelve teams obtained the test data, and test
runs were submitted for six systems—including one
‘inofficial’ submission by a sub-set of the task orga-
nizers (Miyao et al., 2014). Each team submitted up
to two test runs per track. In total, there were seven
runs submitted to the English closed track, five to
the open track and two to the gold track; seven runs
were submitted to the Chinese closed track, two to
the open track; and five runs submitted to the Czech
closed track, two to the open track. One team sub-
mitted only to the open and gold tracks, three teams
submitted only to the closed track, one team submit-
ted to open and closed tracks in English but only to
the closed tracks in the other two languages. The
main results are summarized and ranked in Tables 3
and 4. The ranking is based on the average LF score
across all three target representations. Besides LF,
LP and LR we also indicate the F1 score of prediction
of semantic frames (FF), or, where frame (or sense)
identifiers are not available, of complete predications
(PF). In cases where a team submitted two runs to
a track, only the highest-ranked score is included in
the table.

In the English closed track, the average LF scores

11This restriction implies that typical off-the-shelf syntactic
parsers have to be re-trained, as many data-driven parsers for
English include WSJ Section 21 in their default training data.

across target representations range from 85.33 to
80.74. Comparing the results for different target rep-
resentations, the average LF scores across systems
are 89.13 for PAS, 87.09 for DM, and 74.24 for PSD.
The scores for semantic frames show a much larger
variation across representations and systems.12

The Lisbon team is the only one that submitted to
both the open and the closed tracks; with the addi-
tional resources allowed in the open track, they were
able to improve over all closed-track submissions.
Similarly, the perfect Stanford dependencies in the
gold track helped the Turku team a lot in PAS and
somewhat in DM and PSD; interestingly, they did not
obtain the best results in the latter two representa-
tions, but their cross-representation average was still
the best. The In-House system is ranked low because
its submission was incomplete (no of-the-shelf parser
for PSD being available); however, for DM and PAS
they yielded the best open-track scores.

We see very similar trends for the out-of-domain
data, though the scores are a few points lower.

Chinese PAS seems to be more difficult than En-
glish (cross-system average LF being 81.05, as op-
posed to English 90.07). The Czech and English
in-domain data are actually parallel translations and
the Czech PSD average LF is slightly higher (77.11,
as opposed to English 74.90). The Turku open-track
system shined in the Czech out-of-domain data, pre-
sumably because the additional dependency parser
they used was trained on data from the target domain.

7 Overview of Approaches

Table 5 shows a summary of the tracks in which each
submitted system participated, and Table 6 shows
an overview of approaches and additionally used re-
sources. All the teams except In-House submitted
results for cross-lingual data (Czech and Chinese).
Teams except Lisbon also tackled with predicate dis-
ambiguation. Only Turku participated in the Gold
track.

The submitted teams explored a variety of ap-
proaches. Riga and Peking relied on the graph-to-tree
transformation of Du et al. (2014) as a basis. This
method converts semantic dependency graphs into
tree structures. Training data of semantic dependency

12Please see the task web page at the address indicated above
for full labeled and unlabeled scores.
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Team Closed Open Cross-Lingual Predicate Disambiguation Gold

In-House X X
Lisbon X X X
Minsk X X X
Peking X X X
Riga X X X
Turku X X X X

Table 5: Summary of tracks in which submitted systems participated

Team Approach Resources

In-House grammar-based parsing (Miyao et al., 2014) ERG & Enju
Lisbon graph parsing with dual decomposition (Martins & Almeida, 2014) companion
Minsk transition-based dependency graph parsing in the spirit of Titov et al. (2009) —
Peking (Du et al., 2014) extended with weighted tree approximation, parser ensemble —
Riga (Du et al., 2014)’s graph-to-tree transformation, Mate, C6.0, parser ensemble —
Turku sequence labeling for argument detection for each predicate, SVM classifiers

for top node recognition and sense prediction
companion

Table 6: Overview of approaches and additional resources used (if any).

graphs are converted into tree structures, and well-
established parsing methods for tree structures are
applied to converted structures. In run-time, the tree
parser is applied, and predicted trees are converted
back into graph structures. Labels of tree edges en-
code additional information to recover original graph
structures. This idea was applied in Du et al. (2014)
and contributed to their best-performing system in
the 2014 SDP task.

In addition to applying the Mate parser to the tree-
transformed data of Du et al. (2014), Riga developed
a high-precision but low-recall semantic parser. This
method applies a decision tree classifier (C6.0) to
edge detection. C6.0 learns patterns of semantic de-
pendencies, which means it outputs highly reliable
prediction when a learned pattern applies, while in
most cases it cannot produce any predictions. These
two types of parsers are finally combined by parser
ensemble. They also applied C6.0 to frame (or sense)
label prediction for DM and PSD. Graph parsing and
frame prediction are performed independently.

Peking proposed a novel method for graph-to-tree
transformation, namely weighted tree approximation.
The intuition behind this method is that the core part
of graph-to-tree transformation is the extraction of
an essential tree-forming subset of edges from se-
mantic dependency graphs, but it is not trivial to
determine a reasonable subset. Therefore, the idea

of weighted tree approximation is to define an edge
score to quantify importance of each edge, and ex-
tract tree-forming edges that maximizes the sum of
edge scores globally. After defining edge scores, tree-
forming edges with optimal scores can be extracted
by applying decoding methods like maximum span-
ning tree and the Eisner algorithm. They applied this
method as well as the previous method proposed in
Du et al. (2014) with several variations on encod-
ing edge labels, finally obtaining nine tree parsers.
In the final submission, outputs from these parsers
are combined by the parser ensemble technique. For
predicate disambiguation, they independently applied
a sequence labeling technique.

Turku took a completely different approach. They
consider each predicate separately, and apply se-
quence labeling for each predicate individually, to
recognize arguments of the target predicate. That is,
the task is reduced to assign each word an argument
tag (e.g. ARG1) or a negative ‘pseudo-’label indi-
cating it is not an argument of the target predicate.
Outputs from sequence labeling for each predicate
are combined to derive final semantic dependencies.
Top node recognition and frame label prediction are
performed separately. Turku is the only team who
participated in the Gold track; they used gold syntac-
tic dependencies as features for sequence labeling.

Lisbon and In-House applied their parsers from
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SDP 2014 without substantive changes. The Lisbon
parser (TurboSemanticParser) computes globally op-
timal semantic dependencies using rich second order
features on semantic dependencies, such as siblings
and grand parents. This optimization is impractical
in general, but they achieve tractable parsing time by
applying dual decomposition. In-House uses deep
parsers with specifically developed linguistically mo-
tivated grammars, namely the LinGO English Re-
source Grammar and the Enju grammar. As described
in Section 2, these same grammars were used for de-
riving the training and test data sets of this task, i.e.
these components of the In-House ensemble exclu-
sively support the DM and PAS target representations,
respectively.

Peking and Lisbon tend to attain high scores in
their participated tracks in LF. Riga ranked third in
LF in the closed tracks (both in-domain and out-of-
domain), while it achieved higher scores than others
in FF. This might be due to high-precision rules ob-
tained by their model, although this does not apply in
the cross-lingual track. The Turku results in the gold
track achieved considerably higher scores, which in-
dicate that better syntactic parsing will help improve
semantic dependency parsing.13 It is difficult to de-
scribe a tendency in the out-of-domain track; all the
systems scree three to five points lower scores than
the in-domain track, indicating that domain variation
is still a significant challenge in semantic dependency
parsing.

8 Conclusion

We have described the motivation, design, and out-
comes of the SDP 2015 task on semantic dependency
parsing, i.e. retrieving bi-lexical predicate–argument
relations between all content words within an En-
glish sentence. We have converted to a common
format three existing annotations (DM, PAS, and
PSD) over the same text and have put this to use
in training and testing data-driven semantic depen-
dency parsers. In contrast to SDP 2014 the task was
extended by cross-domain testing and evaluation at
the level of ‘complete’ predications and semantic
frame (or sense) disambiguation. Furthermore, we

13The SDP 2014 and 2015 task setups, however, somewhat
artificially constrain the possible contributions of syntactic anal-
ysis, as all training and testing data (even in the closed track)
includes high-quality parts of speech and lemmata.

provided comparable annotations of Czech and Chi-
nese texts to enable cross-linguistic comparison. To
start further probing of the role of syntax in the re-
covery of predicate–argument relations, we added a
third (idealized) ‘gold’ track, where syntactic depen-
dencies are provided directly from available syntactic
annotations of the underlying treebanks.
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Abstract

This paper is a description of our system
for SemEval-2015 Task 18: Broad-Coverage
Semantic Dependency Parsing. We imple-
ment a hybrid parser which benefits from both
transition-based and graph-based parsing ap-
proaches. In particular, the tree approximation
method is explored to take advantage of well-
studied tree parsing techniques. Evaluation on
multilingual data sets demonstrates that con-
siderably good semantic analysis can be au-
tomatically built by applying state-of-the-art
data-driven parsing techniques.

1 Introduction

Dependency grammar is a long-standing tradition
that determines syntacto-semantic structures on the
basis of word-to-word connections. It names a
family of approaches to linguistic analysis that all
share a commitment to typed relations between or-
dered pairs of words. Partially due to the power-
ful expressiveness of bi-lexical dependency struc-
tures, the corresponding parsing problem has been
widely studied especially in the last decade. The
majority of these studies, however, only focus on
tree-structured representations. Beyond tree-shaped
structures, SemEval-2014 Task 8 (Oepen et al.,
2014) seeked to stimulate the dependency parsing
community to move towards more general graph
processing. Quite a number of teams all over the
world participated in this shared task, which sug-
gests a growing community interest in parsing into
graph-shaped dependency representations.

∗Email correspondence.

SemEval-2015 Task 18 is a subsequent task of
SemEval-2014 Task 8. Following several well-
established syntactic theories, this task proposes us-
ing graphs to represent semantics and provides high-
quality annotations for three typologically different
languages. We have developed a system, dubbed
DZSW14 (Du et al., 2014) for the task last year.
The system employed a hybrid architecture which
benefits from both transition-based and graph-based
parsing approaches. Evaluation on multiple English
data sets provided by SemEval-2014 indicated that
DZSW14 is able to obtain high-quality parsing re-
sults. Following the key idea to employ hetero-
geneous models to enhance hybrid parsing, we ex-
tend DZSW14 by developing more tree approxima-
tion models, namely the weighted tree approxima-
tion models. Evaluation on multilingual data sets
provided by this year’s task confirms the effective-
ness of the techniques we have studied.

In this paper, we first give an introduction of the
architecture of the baseline system DZSW14. Then
we demonstrate the weighted tree approximation
models. Finally we show the experiment results on
SemEval-2015 Task 18. The tree approximation sys-
tem can be downloaded at http://www.icst.
pku.edu.cn/lcwm/grass.

2 Baseline System: DZSW14

Our system is based on the system we constructed
for SemEval-2014 Task 8. In this section we present
a brief overview of its architecture. Refer to (Du et
al., 2014) for more information.

Inspired by the research on discriminative de-
pendency tree parsing, DZSW14 employed a hy-
brid parsing architecture. DZSW14 explored two
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kinds of heterogeneous approaches: transition-based
and tree approximation approaches. The transition-
based model use transitions on configurations to
obtain graph parses, while the tree approximation
model transform graphs into trees for training and
test. To further combine the complementary predic-
tion power, DZWS14 applied a voting-based ensem-
ble method.

2.1 Transition-Based Models

Transition-based models consist of transitions and
configurations that can be manipulated by the tran-
sitions. The configurations generally encode the in-
formation of the current parsing state, especially in-
cluding partial parsing results, and the transitions
can be applied to a configuration, turning it into a
new one. When the system reaches any acceptable
configuration, a coherent semantic graph is also suc-
cessfully built. The key to the success of building
transition-based parsers is to train good classifiers
to approximate transition oracles. DZSW14 imple-
ments 5 different transition systems for graph pars-
ing. Experiments from last year’s evaluation suggest
that this method can be applied to build considerably
good parsers for more general linguistic graphs.

2.2 Tree Approximation Models

The core of tree approximation is transformations
between graphs and trees. At the training time,
we convert the dependency graphs from the training
data into dependency trees, and train second-order
arc-factored models1 (Bohnet, 2010). At the test
phase, we parse sentences using this tree parser, and
convert the output trees back into semantic graphs.
In DZSW14, We develop several different methods
to convert a semantic graph into a tree. The main
idea is to apply graph traversal algorithms to con-
vert a directed graph to a directed tree. During the
traversal, we may lose or modify some dependency
relations in order to make a tree.

2.3 Experience from DZSW14

From a lot of experiments on DZSW14, we learned
several lessons as follows.

1The mate parser (code.google.com/p/
mate-tools/) is used.

• Overall, the tree approximation models per-
form better than the transition-based models.

• The outputs of the different models exhibit sig-
nificant diversity.

• The model ensemble is quite effective, result-
ing in a boost in performance.

This motivates us to explore more heterogeneous
tree approximation models for this year’s evaluation.

3 Weighted Tree Approximation Models

In our system for SemEval-2015, we develop more
tree approximation models for model ensemble. We
call the graph-to-tree conversions in DZSW14 un-
weighted conversions since every edge in the graph
are treated equally. In this section, we demonstrate
weighted conversions which assign weights for dif-
ferent edges.

3.1 Weighted Conversion
Given a graph G = 〈V,E〉, the edge selection in
the unweighted conversion is locally decided by its
current traversal state. In the weighted conversion,
we take the importance of different edges into ac-
count and try to globally improve the integrity with
respect to the losing edges. For example, in the
top of Figure 1, the undirected edges (Ward, was),
(Ward, relieved), (was, relieved) form a cycle. Only
two edges can be kept by the converted tree T . It
allows us to decide which edges to keep according
to the sum of the weights of them.

Let x →t y denote edges in the tree, and x →g y
edges in the graph. We assign each possible edge
x →t y a heuristic value ω(x, y), and intend to ob-
tain a tree with maximum weight . More formally,
the result T max = (V,Emax

t ) contains the maximum
sum of values of edges:

T max = arg max
T=(V,Et)

∑
(x,y)∈Et

ω(x, y)

3.2 Weight
We define weight ω(x, y) as follows, where I is the
indicator function:

• ω(x, y) = A(x, y) + B(x, y) + C(x, y): The
weight is separate into 3 parts.
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• A(x, y) = Ix→y∈E∨y→x∈E(x, y) × a: a is the
weight for the existing edge on graph ignoring
direction.

• B(x, y) = Ix→y∈E(x, y) × b: b is the weight
for the directed edge in the graph.

• C(x, y) = n− |x− y|: This is to value the im-
portance of edges where n is the length of sen-
tence. We consider edges linking closer words
more important because they are generally eas-
ier to be predicted.

• a � b � n or a > b × n > n × n: First
the transformed tree should contain the original
edges in G as many as possible. Then we need
to consider the quantity of edges with correct
direction in G. And the distance between nodes
in the sentence is in the last place.

3.3 Decoding
After the edges are weighted, the core decoding task
for graph transformation can be solved by maximum
spanning tree (MST) algorithms, where the search
space T consists of all projective and non-projective
dependency trees. To transform a graph to a pro-
jective tree, we use Eisner’s algorithm, and for non-
projective, we use Chu-Liu-Edmonds algorithm.

3.4 Adding Labels
Now we get the MST T max(V,Emax

t ). For each
(x, y) ∈ Emax

t , we assign a new label to (x, y) as
follows,

Case 1: x →g y, add the original label in G(V,E)
to the new edge x→t y;

Case 2: y →g x, add the original label with symbol
R̃ to x→t y;

Case 3: x→g y ∧ y →g x, add label as Case 1;

Case 4: x 9g y ∧ y 9 x, add label None to the
edge x→t y.

To improve the coverage of original edges, a vari-
ant model with modified labels in trees to help en-
code more edges in graphs.Suppose that x → y is a
lost edge which is not on the new dependency tree
but is on the original dependency graph. The statis-
tic shows the structure of a majority of lost edges are
in one of three different types:

Mrs Ward was relieved

noun ARG1 verb ARG1 verb ARG2

adj ARG1
root

Mrs Ward was relieved

... verb ARG1;!bn1adj ARG1 ...
root

Mrs Ward was relieved

... ...

adj ARG1;!fverb ARG1
root

Figure 1: One dependency graph and two possible depen-
dency trees after converting.

1. The nodes are siblings.

2. One is the grandparent of the other.

3. One is the great-grandparent of the other.

The conversions can be enhanced by adding more
symbols to labels to indicate lost edges if they are
of the three types above. The method is to append
semicolon (;) and exclamation mark (!) to some de-
gree and then add new label with information of lost
edge directly. If x →g y is not in the converted tree
and its structure is of one of aforementioned types,
we change the label connecting node y and its parent
node with assumption that y is not higher than x in
the dependency tree.

• x is great-grandparent node of y: New label is
the label of x→g y following the symbol ‘g’.

• x is grandparent node of y: New label is the
label of x→g y following the symbol ‘f ’.

• x and y are siblings: Let z be the two nodes’
parent. We sort all the z’s children by the or-
der of position in the sentence And we use an
integer P to indicate the position. If the two
siblings are on the same side of z, P will be
the distance of the two siblings’ positions in
the sorted children sequence and extra symbol
will be ‘y’. If the two siblings are on the dif-
ferent sides of z, extra symbol will be ‘n’ and
P will be x’s rank in the same side’s nodes in
the sorted children sequence. New label is the
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symbol ‘b’ with extra symbol followed and the
label of x→g y.

If node y is higher than x in the dependency tree, we
would add symbol R̃ to indicate the additional edge
is reversed. Figure 1 is an example of a converted
tree.

4 Model Ensemble

We select 9 tree approximation models from
DZSW14, and propose 4 new weighted models
({projective, non-projective} × {original, label-
modification-variant}). Together with the transition
models, we have to combine the outputs of them into
one. We use a simple voter to combine the outputs
just like in DZSW14. For each pair of words of a
sentence, we count the number of the models that
give positive predictions. If the number is greater
than a threshold, we put this arc to the final graph,
and label the arc with the most common label of
what the models give.

Furthermore, we find that the performance of the
tree approximation models are better than the tran-
sition based models, so we assign weights for indi-
vidual models too. Then instead of just counting,
we sum the weights of the models that give positive
predictions. The tree approximation models are as-
signed higher weights.

5 Sense Labeling

In this task, two representations DM and PSD of En-
glish require to label the words additional sense la-
bel. We develop a sequence labeler for this require-
ment. The sequence labeler is based on a second-
order linear-chain global linear model and utilize the
perceptron algorithm for parameter estimation. To
accelerate processing, we apply a Viterbi decoder
but constrain it with beam search. In particular, the
number of cells in the dynamic programming table
for each word is bounded by a fixed beam size. This
decoder can be also viewed as a beam decoder with
state-merging.

The representation DM can be labeled directly.
However due to the large amount of different senses
in representation PSD, it is difficult to label senses
without preprocessing. We finally decide to filter out
the rare senses that have a frequency lower than 10,
substituting “unknown” for them.

Algorithm DMen PASen PSDen PAScs PSDcz

PROJ 4.24 6.31 8.89 9.36 3.56
NON-PROJ 2.31 6.16 8.42 9.04 2.81

PROJ′ 2.30 1.85 2.73 3.26 2.21
NON-PROJ′ 0.60 1.62 2.33 3.07 1.55

Table 1: Edge loss of conversion algorithms (%).

Domain Format LP LR LF LM

id

DMen 0.9093 0.8732 0.8909 0.2702
PASen 0.9290 0.8967 0.9126 0.3028
PSDen 0.7860 0.7293 0.7566 0.0872
PAScs 0.8191 0.7434 0.7794 0.1144
PSDcz 0.8475 0.8215 0.8343 0.2809

ood

DMen 0.8429 0.7953 0.8184 0.2499
PASen 0.8947 0.8510 0.8723 0.3012
PSDen 0.7736 0.6961 0.7328 0.1790
PAScs 0.6941 0.6002 0.6437 0.1146

Table 2: Final results of the ensembled model.

6 Experiments

We participated in the closed track. The tree approx-
imation algorithms may cause some edge loss, and
the statistics for the weighted conversions are shown
in Table 1. We can see that all the algorithms cause
edge loss, and edge loss of the variants is much
lower. In addition, non-projective tree conversions
cause less loss compared to projective tree conver-
sions. Edge loss may result in a lower recall and
higher precision, but we can tune the final results
during model ensemble.

The final results given by the organizers are
shown in Table 2. Here we only give the labeled
score.

7 Conclusion

Based on our previous system DZSW14, we devel-
oped a hybrid system for SemEval-2015 Task 18.
Our new system extends DZSW14 by providing sev-
eral more tree approximation models. The final re-
sult shows that our system as well as our new models
are effective.
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Abstract

This paper describes the USAAR-WLV tax-
onomy induction system that participated in
the Taxonomy Extraction Evaluation task of
SemEval-2015. We extend prior work on
using vector space word embedding models
for hypernym-hyponym extraction by simpli-
fying the means to extract a projection matrix
that transforms any hyponym to its hypernym.
This is done by making use of function words,
which are usually overlooked in vector space
approaches to NLP. Our system performs best
in the chemical domain and has achieved com-
petitive results in the overall evaluations.

1 Introduction

Traditionally, broad-coverage semantic taxonomies
such as CYC (Lenat, 1995) and WordNet ontol-
ogy (Miller, 1995) have been manually created with
much effort and yet they suffer from coverage spar-
sity. This motivated the move towards unsupervised
approaches to extract structured relational knowl-
edge from texts (Lin and Pantel, 2001; Snow et al.,
2006; Velardi et al., 2013).1

Previous work in taxonomy extraction focused on
rule-based, clustering and graph-based approaches.
Although vector space approaches are popular in
current NLP researches, ontology induction studies
have yet to catch on the frenzy. Fu et al. (2014)
proposed a vector space approach to hypernym-
hyponym identification using word embeddings that

1For the rest of the paper, taxonomy and ontology will be
used interchangeably to refer to a hierarchically structure that
organizes a list of concepts.

trains a projection matrix2 that converts a hyponym
vector to its hypernym. However, their approach
requires an existing hypernym-hyponym pairs for
training before discovering new pairs.

Our system submitted to the SemEval-2015 tax-
onomy building task is most similar to the approach
by Fu et al. (2014) in using word embeddings pro-
jections to identify hypernym-hyponym pairs. As
opposed to previous method our method does not re-
quires prior taxonomical knowledge.

Instead of training a projection matrix, we capi-
talize on the fact that hypernym-hyponym pair often
occurs in a sentence with an ‘is a’ phrase, e.g. “The
goldfish (Carassius auratus auratus) is a freshwa-
ter fish”.3 Intuitively, if we single-tokenize the ‘is
a’ phrase prior to training a vector space, we can
make use of the vector that represents the phrase
in capturing a hypernym-hyponym pair as such
the multiplication of v(goldfish) and v(is-a)
will be similar to the cross product v(fish)
(v(goldfish)×v(is-a) ≈ v(fish)).

There is little or no previous work that manipu-
lates non-content word vectors in vector space mod-
els studies for natural language processing. Of-
ten, non-content words4 were implicitly incorpo-
rated into the vector space models by means of syn-
tactic frames (Sarmento et al., 2009) or syntactic
parses (Thater et al., 2010).

Our main contribution for ontological induction

2In this case, the projection matrix is a vector space feature
function.

3From http://en.wikipedia.org/wiki/Goldfish.
4Words that are not noun (entities/arguments), verbs (predi-

cates), adjectives or adverbs (adjuncts).
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using vector space models are primarily (i) the use
of non-content word vectors and (ii) simplifying a
previously complex process of learning a hypernym-
hyponym transition matrix. The implementation of
our ontological induction approach is open-sourced
and available on our GitHub repository.5

1.1 Task Definition

Similar to Fountain and Lapata (2012), the
SemEval-2015 Taxonomy Extraction Evaluation
(TaxEval) task addresses taxonomy learning without
the term discovery step, i.e. the terms for which to
create the taxonomy are given (Bordea et al., 2015).
The focus is on creating the hypernym-hyponym re-
lations.

In the TaxEval task, taxonomies are evaluated
through comparison with gold standard taxonomies.
There is no training corpus provided by the organ-
isers of the task and the participating systems are to
generate hyper-hyponyms pairs using a list of terms
from four different domains, viz. chemicals, equip-
ment, food and science.

The gold standards used in evaluation are the
ChEBI ontology for the chemical domain (Degt-
yarenko et al., 2008), the Material Handling Equip-
ment taxonomy6 for the equipment domain, the
Google product taxonomy7 for the food domain
and the Taxonomy of Fields and their Different
Sub-fields8 for the science domain. In addition,
all four domains are also evaluated against the
sub-hierarchies from the WordNet ontology that
subsumes the Suggested Upper Merged Ontology
(Pease et al., 2002).

2 Related Work

There are a variety of methods used in taxonomy
induction. They can be broadly categorized as (i)
pattern/rule based, (ii) clustering based, (iii) graph
based and (iv) vector space approaches.

5https://github.com/alvations/USAAR-SemEval-
2015/tree/master/task17-USAAR-WLV

6http://www.ise.ncsu.edu/kay/mhetax/index.htm
7http://www.google.com/basepages/producttype/taxonomy.en-

US.txt
8http://sites.nationalacademies.org/PGA/Resdoc/PGA 044522

2.1 Pattern/Rule Based Approaches

Hearst (1992) first introduced ontology learning by
exploiting lexico-syntactic patterns that explicitly
links a hypernym to its hyponym, e.g. “X and other
Ys” and “Ys such as X”. These patterns could be
manually constructed (Berland and Charniak, 1999;
Kozareva et al., 2008) or automatically bootstrapped
(Girju, 2003).

These methods rely on surface-level patterns and
incorrect items are frequently extracted because of
parsing errors, polysemy, idiomatic expressions, etc.

2.2 Clustering Approaches

Clustering based approaches are mostly used to dis-
cover hypernym (is-a) and synonym (is-like) rela-
tions. For instance, to induce synonyms, Lin (1998)
clustered words based on the amount of informa-
tion needed to state the commonality between two
words.9

Contrary to most bottom-up clustering ap-
proaches for taxonomy induction (Caraballo, 2001;
Lin, 1998), Pantel and Ravichandran (2004) intro-
duced a top-down approach, assigning the hyper-
nyms to clusters using co-occurrence statistics and
then pruning the cluster by recalculating the pair-
wise similarity between every hyponym pair within
the cluster.

2.3 Graph-based Approaches

In graph theory (Biggs et al., 1976), similar ideas are
conceived with a different jargon. In graph notation,
nodes/vertices form the atom units of the graph and
nodes are connected by directed edges. A graph, un-
like an ontology, regards the hierarchical structure of
a taxonomy as a by-product of the individual pairs of
nodes connected by a directed edges. In this regard,
a single root node is not guaranteed and to produce
a tree-like structure.

Disregarding the overall hierarchical structure,
the crux of graph induction focuses on the differ-
ent techniques of edge weighting between individ-
ual node pairs and graph pruning or edge collaps-
ing (Kozareva and Hovy, 2010; Navigli et al., 2011;
Fountain and Lapata, 2012; Tuan et al., 2014).

9Commonly known as Lin information content measure.
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2.4 Vector Space Approaches

Semantic knowledge can be thought of as a two-
dimensional vector space where each word is rep-
resented as a point and semantic association is in-
dicated by word proximity. The vector space repre-
sentation for each word is constructed from the dis-
tribution of words across context, such that words
with similar meaning are found close to each other
in the space (Mitchell and Lapata, 2010; Tan, 2013).

Although vector space models have been used
widely in other NLP tasks, ontology/taxonomy in-
ducing using vector space models has not been pop-
ular. It is only since the recent advancement in
neural nets and word embeddings that vector space
models are gaining ground for ontology induction
and relation extraction (Saxe et al., 2013; Khashabi,
2013).

3 Methodology

This section provides a brief overview of our sys-
tem’s approach to taxonomy induction. The full sys-
tem is released as open-source and contains docu-
mentation with additional implementation details.10

3.1 Projecting a Hyponym to its Hypernym
with Transition Matrix

Fu et al. (2014) discovered that hypernym-
hyponyms pairs have similar semantic properties as
the linguistics regularities discussed in Mikolov et
al. (2013b). For instance: v(shrimp)-v(prawn)
≈ v(fish)-v(goldfish).

Intuitively, the assumption is that all words can be
projected to their hypernyms based on a transition
matrix. That is, given a word x and its hypernym
y, a transition matrix Φ exists such that y = Φx, e.g.
v(goldfish) = Φ×v(fish).

Fu et al. proposed two projection approaches to
identify hypernym-hyponym pairs, (i) uniform lin-
ear projection where Φ is the same for all words and
Φ is learnt by minimizing the mean squared error of
‖Φx-y‖ across all word-pairs (i.e. a domain inde-
pendent Φ) and (ii) piecewise linear projection that
learns a separate projection for different word clus-
ters (i.e. a domain dependent Φ, where a taxonomy’s
domain is bounded by its terms’ cluster(s)). In both

10https://github.com/alvations/USAAR-SemEval-
2015/blob/master/task17-USAAR-WLV/README.md

projections, hypernym-hyponym pairs are required
to train the transition matrix Φ.

3.2 Inducing a Hypernym with is-a Vector
Instead of learning a supervised transition matrix Φ,
we propose a simpler unsupervised approach where
we learn a vector for the phrase “is-a”. We single-
tokenize the adjacent “is” and “a” tokens and learn
the word embeddings with is-a forming part of the
vocabulary in the input matrix.

Effectively, we hypothesize that Φ can be re-
placed by the “is-a” vector. To achieve the piece-
wise projection effects of Φ, we trained a differ-
ent deep neural net model for each TaxEval do-
main and assume that the “is-a” scales automati-
cally across domains. For instance, the multiplica-
tion of the v(tiramisu) and the v(is-afood)
vectors yields a proxy vector and we consider
the top ten word vectors that are most similar to
this proxy vector as the possible hypernyms, i.e.
v(tiramisu)×v(is-afood) ≈ v(cake).

4 Experimental Setup

4.1 Training Data
There is no specified training corpus released for the
SemEval-2015 TaxEval task. To produce a domain
specific corpus for each of the given domains in the
task, we used the Wikipedia dump and preprocessed
it using WikiExtractor11 and then extracted docu-
ments that contain the terms for each domain indi-
vidually.

We trained a skip-gram model phrasal word2vec
neural net (Mikolov et al., 2013a) using gensim
(Řehůřek and Sojka, 2010). The neural nets were
trained for 100 epochs with a window size of 5 for
all words in the corpus.12

4.2 Evaluation Metrics
For the TaxEval task, the multi-faceted evaluation
scheme presented in Navigli (2013) was adopted
to compare the overall structure of the taxonomy
against a gold standard, with an approach used for
comparing hierarchical clusters. The multi-faceted

11We use the same Wikipedia dump to text extraction process
from the SeedLing - Human Language Project (Emerson et al.,
2014).

12i.e. words with minimum count of 1; other parameters set
for the neural nets can be found on our GitHub repository.
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|V| |E| #c.c cycles #VC %VC #EC %EC :NE
Chemical 13785 30392 302 YES 13784 0.7838 2427 0.0977 1.1268
Equipment 337 548 28 YES 336 0.549 227 0.3691 0.5219
Food 1118 2692 23 YES 948 0.6092 428 0.2696 1.4265
Science 355 952 14 YES 354 0.7831 173 0.3720 1.6752
WN Chemical 1173 3107 31 YES 1172 0.8675 532 0.3835 1.8566
WN Equipment 354 547 43 YES 353 0.7431 149 0.3072 0.8206
WN Food 1200 3465 23 YES 1199 0.8068 549 0.3581 1.9021
WN Science 307 892 8 YES 306 0.7132 156 0.3537 1.6689

Table 1: Structural Measures and Comparison against Gold Standards for USAAR-WLV. The labels of the columns
refer to no. of distinct vertices and edges in induced taxonomy (|V| and |E|), no. of connected components (#c.c),
whether the taxonomy is a Directed Acyclic Graph (cycles), vertex and edge coverage, i.e. proportion of gold standard
vertices and edges covered by system (%VC and %EC), no. of vertices and edges in common with gold standard
(#VC and #EC) and ratio of novel edges (:NE).

INRIASAC LT3 NTNU QASSIT TALN-UPF USAAR-WLV
Avg. F&M 0.3270 0.4130 0.0580 0.3880 0.2630 0.0770
Avg. Precision 0.1721 0.3612 0.1754 0.1563 0.0720 0.2014
Avg. Recall 0.4279 0.6307 0.2756 0.1588 0.1165 0.3139
Avg. F-Score 0.2427 0.3886 0.2075 0.1575 0.0798 0.2377
Avg. Precision of NE 0.4800 0.5960 0.3530 0.2470 0.1020 0.4200

Table 2: Averaged F&M Measure, Precision, Recall, F-score for All Systems Outputs when Compared to Gold Stan-
dard and Manually Evaluated Average Precision of Novel Edges.

evaluation scheme evaluates (i) the structural mea-
sures of the induced taxonomy (left columns of Ta-
ble 1), (ii) the comparison against gold standard tax-
onomy (right columns of Table 1 and leftmost col-
umn of Table 2) and (iii) manual evaluation of novel
edges precision (last row of Table 2).

Regarding the two types of automatic evaluation
measures, the structural measures provides a gauge
of the system’s coverage and the ontology struc-
tural integrity, i.e. “tree-likeness” of the ontology
produced by the hypernym-hyponym pairs, and the
comparison against the gold standards gives an ob-
jective measure of the “human-likeness” of the sys-
tem in producing a taxonomy that is similar to the
manually-crafted taxonomy.

5 Results

Table 1 presents the evaluation scores for our system
in the TaxEval task, the %VC and %EC scores sum-
marize the performance of the system in replicating
the gold standard taxonomies.

In terms of vertex coverage, our system performs
best in the chemical and WordNet chemical domain.
Regarding edge coverage, our system achieves high-

est coverage for the science domain and WordNet
chemical domain. Having high edge and vertex cov-
erage significantly lowers false positive rate when
evaluating hypernym-hyponyms pairs with preci-
sion, recall and F-score.

We also note that the wikipedia corpus extracted
that we used to induce the vectors lacks coverage
for the food domain. In the other domains, we dis-
covered all terms in the wikipedia corpus plus the
domains’ root hypernym (i.e. |V| = #VC + 1).

Table 2 presents the comparative results between
the participating teams in the TaxEval task aver-
aged over all domains. We performed reasonable
well as compared to the other systems in all mea-
sures. While our system’s F&M measure is low, it is
only representative of the clusters we have induced
as compared to the gold standard. To improve our
F&M measure, we could reduce the number of re-
dundant novel edges by pruning our system outputs
and achieve comparable results to the other teams
given our relatively precision of novel edges.

A detailed evaluation on the results for the indi-
vidual domains is presented on Bordea et al. (2015).
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6 Conclusion

In this paper, we have described our submissions to
the Taxonomy Evaluation task for SemEval-2015.
We have simplified a previously complex process
of inducing a hypernym-hyponym ontology from a
neural net by using the word vector for the non-
content word text pattern, ”is a”.

Our system achieved modest results when com-
pared against other participating teams. Given the
simple approach to hypernym-hyponym relations, it
is possible that future research can apply the method
to other non-content words vectors to induce other
relations between entities. The implementation of
our system is released as open-source.

Acknowledgements

The research leading to these results has received
funding from the People Programme (Marie Curie
Actions) of the European Union’s Seventh Frame-
work Programme FP7/2007-2013/ under REA grant
agreement no 317471. We would like to thank the
Daniel Cer and other anonymous reviewers for their
helpful suggestions and comments.

References
Matthew Berland and Eugene Charniak. 1999. Finding

Parts in Very Large Corpora. In Proceedings of the
37th annual meeting of the Association for Computa-
tional Linguistics on Computational Linguistics, pages
57–64.

Norman Biggs, E. Keith Lloyd, and Robin J. Wilson.
1976. Graph theory 1736-1936. Clarendon Press.

Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and
Roberto Navigli. 2015. Semeval-2015 task 17: Tax-
onomy Extraction Evaluation. In Proceedings of the
9th International Workshop on Semantic Evaluation.

Sharon Ann Caraballo. 2001. Automatic Construction of
a Hypernym-labeled Noun Hierarchy from Text. Ph.D.
thesis, Providence, RI, USA. AAI3006696.

Kirill Degtyarenko, Paula De Matos, Marcus Ennis,
Janna Hastings, Martin Zbinden, Alan Mcnaught,
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Abstract 

Taxonomy structures are important tools in 
the science of classification of things or 
concepts, including the principles that un-
derlie such classification. This paper pre-
sents an approach to the problem of 
taxonomy construction from texts focusing 
on the hyponym-hypernym relation between 
two terms. Given a set of terms in a particu-
lar domain, the approach in this study uses 
Wikipedia and WordNet as knowledge 
sources and applies the information extrac-
tion methods to analyze and establish the 
hyponym-hypernym relationship between 
two terms.  Our system is ranked fourth 
among the participating systems in 
SemEval-2015 task 17. 

1 Introduction 

Taxonomies are essential tools for many Natural 
Language Processing (NLP) applications and the 
backbone of many structured knowledge re-
sources. Taxonomies specific to a domain are 
becoming indispensable to a growing number of 
applications (Velardi et al., 2013). Several state-
of-the-art approaches already exist to extract tax-
onomies to characterize the domains of interest 
from the corpus using the information extraction 
techniques. Recently, attention has been devoted 
to inducing the taxonomy from a set of keyword 
phrases instead of from a text corpus (Liu et al., 
2012). Such approaches enrich the set of key-

word phrases by aggregating search results for 
each keyword phrase into a text corpus to over-
come the lack of explicit relationships between 
keyword phrases from which the taxonomy can 
be induced. 

This approach faces a key challenge of ex-
tracting explicit relationships among keyword 
phrases. However, semantic relatedness between 
concepts in a domain is an important clue to ex-
tracting their taxonomy relationships. An im-
portant contribution in relation to this is reported 
by Gabrilovich et al. (2007) that present an ex-
plicit semantic analysis using the natural con-
cepts and propose a uniform method of 
computing relatedness of both individual concept 
and arbitrarily long text fragments. Lexical data-
bases such as WordNet (Miller, 1995) encode 
relations between words such as synonymy and 
hypernymy. Quite a few metrics have been de-
fined that compute relatedness using various 
properties of the underlying graph structures of 
these resources. The obvious drawback of this 
approach is that the creation of lexical resources 
requires the lexicographic expertise as well as a 
lot of time and effort, and consequently such re-
sources cover only a small fragment of the lan-
guage lexicon. Specifically, such the resources 
contain few proper names, neologisms, slang, 
and domain-specific technical terms. Further-
more, these resources have strong lexical orienta-
tion and mainly contain information about 
individual words but little world knowledge in 
general. 
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With the advent of new information sources, 
many new methods and ideas are developed for 
the large scale information extraction taking ad-
vantages of huge amounts of unstructured availa-
ble resources. Barbu and Poesio (2009) propose a 
novel method for acquisition of knowledge for 
taxonomies of concepts from the raw Wikipedia 
text. Their approach uses the learning process to 
derive concept hierarchies from WordNet and 
maps them to Wikipedia pages for extraction of 
appropriate knowledge. Most state-of-the-art ap-
proaches for the domain-specific taxonomy in-
duction use the text corpus as its input and some 
information extraction methods to extract onto-
logical relationships from the text corpus, and 
finally apply the relationships to build the taxon-
omy. Other automatic approaches to taxonomy 
construction from texts include a statistical meth-
od to compare the syntactic context of terms for 
taxonomic relations identification (Tuan et al., 
2014). 

There have been a number of handcrafted, 
well-structured taxonomies publicly available 
online, including WordNet (Miller, 1995). How-
ever, such taxonomies are also not perfect since 
human experts are liable to miss some relevant 
terms. 

In this study, we consider the challenging 
problem of deriving taxonomies of a set of con-
cepts under a specific domain of interest. Consid-
er for illustration, the domain vehicle containing 
concepts such as car, bicycle, Toyota, automo-
bile, bus, Toyota_cambire, cruiser and Motorcy-
cle. Establishing hyponym-hypernym 
relationships among concepts is a difficult task if 
no other information is provided. We propose an 
approach to the taxonomy extraction task in 
SemEval-2015 (Bordea et al., 2015) with the fol-
lowing contributions: 

 
 To derive the statistical information 

about individual concepts in a given do-
main, the study uses WordNet and Wik-
ipedia to find the definition for the 
concept. 

 Using the definitions of concepts, the sta-
tistical information derived from these 
definitions is used to determine concept 
relationships and to represent the con-

cepts in a domain with a Bayesian Rose 
Tree (BRT). 

 The study finally extracts taxonomies for 
domain concepts using the BRT tree and 
WordNet type binary relations.  

 
Bayesian hierarchical clustering algorithm 

(BRT) is used to cluster concepts having hypo-
nym-hypernym relationships (Blundell et al., 
2012). Figure 1 presents our level approach to 
constructing the taxonomy for the domain con-
cepts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Approach to Taxonomy Extraction. 
 

In Figure 1, resources WordNet and Wikipe-
dia are first used to help the extraction of the def-
initions of the concepts. Then, information 
extracted from WordNet sense and Wikipedia 
categories are utilized to build the concept binary 
trees. With the concept binary trees, the system 
can construct the BRT tree and furthermore gen-
erate the relationships in the taxonomy for the 
concepts. Details in each step are described in the 
following sections. 

2 Concept Definition and Bayesian Ross 
Tree 

 
Definitions for describing concepts can be ex-
tracted from a variety of sources: dictionaries, 

WordNet Sense Wikipedia 
Categories 

Concept Binary 
Trees 

BRT Trees 
Rela-

tionship 

939



databases, corpora, web directories and others. 
Wikipedia and WordNet have drawn attentions 
on derivation of concepts for taxonomy construc-
tion (Barbu and Poesio, 2009; Song et al., 2011) 
and the syntactic conceptual taxonomy (Tuan et 
al. 2014). 

In this study, to generate definitions for con-
cepts and map concepts and keywords in defini-
tions to a BRT tree for taxonomy extraction, we 
follow the steps below: 

 First, given a concept, we use WordNet 
and Wikipedia to derive its definitions. In 
addition, the related WordNet synset and 
Wikipedia category are extracted for the 
taxonomy induction. 

 Using the Wikipedia categories that de-
scribe the corresponding concept article, 
the WordNet sense, and the WordNet 
hyponym tree from the first step, the 
study uses a binary tree to represent each 
concept in the given domain. The left 
node represents the set of terms consid-
ered to be hypernyms and the right node 
represents the set of terms considered to 
be hyponyms. 

Applying the above steps, the binary tree rep-
resentation of concepts in the given domain is 
used to construct the BRT tree for the taxonomy 
construction. One example of the BRT tree is 
shown in Figure 2 as below. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. BRT Tree for a Term “Alienism,” in Sci-
ence Domain. 
 

Figure 2 illustrates the concept of BRT tree 
for a domain term, “alienism.” Each node repre-
sents a hypernym of the child node. For example, 
“psychiatry” is the hypernym of “alienism,” and 
“therapy” is the hypernym of “psychiatry” and 
“psychopathology” respectively. 

 

3 Concept Binary Tree Construction 

This study defines a set of concepts derived from 
the Wikipedia category structure, a set of terms 
in the WordNet hypernym sense, whyp, and a set 
of terms in the WordNet hyponym, whypo, for a 
given concept in the domain.1 For the set of terms 
in the Wikipedia category, a syntax-based meth-
od is employed by referencing the research of 
Tuan et al. (2014) to derive the taxonomy struc-
ture for the category terms. In our case of study, 
is_a relationship is an identification of the hyper-
nym and hyponym relationship between terms in 
the category set. That is, “X is_a Y” is translated 
as “X is a hyponym of Y.” However, this only 
shows a relationship among terms in the category 
set. To identify the hypernym-hyponym relation-
ship between the domain concept and the terms 
in the category, the study uses the semantic relat-
edness approach proposed in the research of Wu 
et al. (2009). Finally, set operations are used to 
collect hypernyms and hyponyms and we use 
these features to construct a binary tree with the 
domain concept as the root, if no category term is 
a hypernym of domain concept. If there exists a 
category term that is a hypernym of the domain 
concept, the term becomes the root. For a given 
concept in the domain, a set of hypernym, hyper, 
and a set of hyponym, hypo are defined. After 
deriving the category taxonomy, wt, for Wikipe-
dia categories, the following operations are de-
fined:  
 

hyper = whyper ∩ wt.hypernym (1) 
 

hypo = whypo ∩ wt.hyponym (2) 

                                                        
1Wikipedia can be downloaded at 
http://downlaod.wikimedia.org. This study uses the English 
Wikipedia database dump 
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where wt.hypernym represents all hypernym 
terms connected to the category taxonomy wt and 
wt.hyponym represents all hyponym terms con-
nected to the category taxonomy wt. 

The multiple binary trees are used to construct 
BRT trees for the taxonomy extraction. However, 
it is worth to note that a cascading binary tree can 
be used instead of a BRT tree. For efficiency and 
computational purposes, a BRT tree is used, 
since a concept hypernym (parent node) can have 
more than two hyponyms (child node). The ob-
jective is to find relatedness between root con-
cepts and the assigned parent node to the root 
concept of the binary tree. Figure 3 shows an il-
lustration presenting concepts in our example 
domain in Section 3. 

 
Figure 3. An Illustration of Concept Representation. 

4 Extraction of Taxonomy Relationships 

To extract the hypernym-hyponym relation be-
tween concepts, our approach uses the taxonomy 
de-scribed in Section 3. The concepts from the 
given domain are replaced by their concept IDs 
to distinguish them from the rest of the concepts 
in the BRT tree. The root of the BRT tree is an 
empty node, label entity. We use the Breath First 
Traversal algorithm to extract concepts and their 
corresponding hyponyms from the BRT tree.2 

                                                        
2BFT is efficient in traversing a tree level by level and from 
left to right http://en.wikipedia.org/wikiTree_traversal  

For a given concept in the BRT tree, we con-
sider the concepts in the immediate child nodes, 
and extract the corresponding hypernyms and the 
hyponyms. Consequently, we can build the rela-
tionships of hypernyms and hyponyms for the 
concept. 

5 Evaluation Matrix and Result 

Our system is ranked fourth among the compara-
tive evaluation final ranking of the task partici-
pant.3 The table below shows the performance of 
participants’ system based on average precision 
(Avg. P), recall (Avg. R), and average F-score 
measure (Avg. F) for the taxonomy extraction.   
 

Participant Rank Avg. P Avg. R Avg. F 
INRIASAC 1 0.1721 0.4279 0.2427 
LT3 2 0.3612 0.6307 0.3886 
ntnu 4 0.1754 0.2756 0.2075 
QASSIT 5 0.1563 0.1588 0.1575 
TALNUPF 6 0.0720 0.1165 0.0798 
USAARWLV 3 0.2014 0.3139 0.2377 

 
Table 1. Comparative evaluation results for SemEval-
2015 Task 17, showing our system result in bold let-
ters.  
 

The evaluation tool measures a system-
generated taxonomy against the gold standard 
taxonomy by comparing the following items:4 

 
 The overall structure of the taxonomy 

against a gold standard, with an approach 
used for comparing hierarchical clusters. 

 Structural measures. 
 Manual quality assessment of novel edg-

es.  
In comparison against the gold standard data, 

the system’s average performance under certain 
domain terms (chemical (CH), equipment (EQ), 
food and science (SC) domains) with respect to 
vertices in common, edge coverage and ratio of 
novel edges are shown in the table below. 

                                                        
3 
http://alt.qcri.org/semeval2015/task17/index.php?id=evalua-
tion   
4 
http://alt.qcri.org/semeval2015/task17/index.php?id=evalua-
tion   

Entity

Automobile

Motocycle

Cruiser

Car

Toyota

Toyota_cambire

Bus Bicycle
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Features CH EQ Food SC 

Vertices in 
coverage 

0.3149 0.3144 0.3165 0.4390 

Edge cover-
age 

0.2803 0.2331 0.2603 0.3287 

Ratio of 
Novel edges 

0.4198 1.3419 1.0264 0.8584 

 
Table 2. System’s comparison against gold standard 
data. 

In the table, the feature “vertices in coverage” 
represent the ratio of number of vertices in com-
mon with the gold standard taxonomy to the 
number of the gold standard vertices. The feature 
“edge coverage” is the fraction of number of 
edges in common with the gold standard over the 
number of edges in the gold standard. The ration 
of the product of the number of taxonomy edges 
and the number of edges in common with the 
gold standard to the number of gold standard 
edges is represented by “Ratio of Novel edges” in 
the result in Table 2. 

From Table 2, it can be observed that, the sys-
tem has the best and the worst performance in 
taxonomies for the science and equipment do-
mains respectively. The bases of these differ-
ences in the system’s performance are its 
precision for individual domain against its gold 
standard. For instance, from 452 vertices for the 
gold standard science domain from the taxonomy 
of fields and their subfields, the system was able 
to extract 338 vertices. Furthermore, the system’s 
cumulative measure of the similarity against the 
gold standard is affected by the precision rate. 
For instance, in the worst performance for the 
gold standard domain of material handling 
equipment combined with IS-A relations from 
WiBi (Flati et al., 2014), our system has a preci-
sion of 1.61% as shown in the evaluation result5 
while SC has good results in edge and vertex re-
trieval due to the good cumulative results. 

6 Conclusion 

 
In this paper, we present an approach for the un-
supervised knowledge extraction for taxonomies 

                                                        
5 http://alt.qcri.org/semeval2015/task17/index.php?id=evalu-
ation 

of concepts using WordNet and Wikipedia as the 
sources of information. We first induce the con-
struction of binary tree structures for each term in 
the domain using the extracted hypernym and 
hyponym. From the set of binary trees, we at-
tempt to construct a BRT tree for the taxonomy 
extraction.  

We regard this work as initial, as there is 
some improvement space to be made as well as 
many related areas to look into. First, in any fu-
ture work we will investigate what better evalua-
tion framework we can propose for the system. 
Second, we would like to give more attention to 
optimize the system result to a more formalized 
taxonomy. Third, we would like to include more 
concepts of relatedness extraction to obtain the 
stronger features. 
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Abstract

This paper describes our contribution to the
SemEval-2015 task 17 on “Taxonomy Extrac-
tion Evaluation”. We propose a hypernym de-
tection system combining three modules: a
lexico-syntactic pattern matcher, a morpho-
syntactic analyzer and a module retrieving hy-
pernym relations from structured lexical re-
sources. Our system ranked first in the compe-
tition when considering the gold standard and
manual evaluation, and second in the overall
ranking. In addition, the experimental results
show that all modules contribute to finding hy-
pernym relations between terms.

1 Introduction

Because of globalization and rapid technological
evolution, it is no longer feasible to manually cre-
ate and manage taxonomies for the large variety of
scientific and technological (sub)domains. In ad-
dition to domain-specific terminology, also com-
panies desire to build their own mono- or bilin-
gual taxonomies containing the relevant sector- and
company-specific terminology. This clear need for
automatisation has encouraged researchers to inves-
tigate how terminological and semantically struc-
tured resources such as taxonomies or ontologies
can be automatically constructed from text (Bie-
mann, 2005).

Different approaches have been proposed to au-
tomatically detect hierarchical relations between
terms: pattern-based approaches (Hearst, 1992; Pan-
tel and Ravichandran, 2004), statistical and machine

learning techniques (Ritter et al., 2009), distribu-
tional approaches (Caraballo, 1999; van der Plas and
Bouma, 2005; Lenci and Benotto, 2012), morpho-
syntactic approaches (Tjong Kim Sang et al., 2011)
and word class latices (Navigli and Velardi, 2010).

The SemEval-2015 “Taxonomy Extraction Eval-
uation” Task (Bordea et al., 2015) is concerned
with automatically finding relations between pairs
of terms and organizing them in a hierarchical struc-
ture. In this way, the task assumes that a list of do-
main specific terms is already available in order to
focus on the relation detection between these terms.

To tackle this SemEval taxonomy learning task,
we propose a multi-modular approach that combines
lexico-syntactic, morphological and external struc-
tured lexical information. We will describe our hy-
pernym detection system in Section 2. The results
of the evaluation are presented in Section 3, while
Section 4 concludes this paper.

2 System Description

Our hypernym detection system contains three main
components: a lexico-syntactic pattern-based ap-
proach, a morpho-syntactic analyzer and a module
retrieving hypernym relations from a structured lex-
ical resource. Each module takes as input a domain
specific term list.

2.1 Pattern-based Approach

The first module that automatically detects hyper-
nym relations is a lexico-syntactic pattern-based ap-
proach, based on Hearst (1992). These patterns are
implemented as a list of regular expressions contain-
ing lexicalized expressions (e.g. like), as well as iso-
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lated Part-of-Speech tags (e.g. noun) and chunk tags,
which represent different Part-of-Speech sequences
(e.g. noun phrase (NP) = determiner + adjective +
noun, adjective + noun, etc.). An example of these
manually defined patterns is “NP {, NP}* {,} or/and
other NP”,1 as in “green beans, carrots, peas and
other vegetables”, which results in four hypernym
pairs, being (vegetables, green beans), (vegetables,
carrots), (vegetables, peas) and (vegetables, onions).

Domain specific corpus. As this module aims to
find hypernym relations by detecting terms occur-
ring in specific lexico-syntactic constructions, we
first needed to compile a domain specific corpus
containing these terms. To compile the corpus, we
used the the BootCaT toolkit (Baroni and Bernar-
dini, 2004), which can be used to build a specialized
web-based corpus starting from a list of seed terms.
We considered the different term lists for task 17 as
the “seed terms” to build the domain specific cor-
pora, by allowing 10 queries per seed term. Due
to technical reasons (the Bing search engine that is
used by BootCat only allows 5000 queries per user
account), we only compiled corpora for three do-
mains, being equipment, food and science. As a
post-processing step, we removed all sentences con-
taining (1) only URL links or (2) no domain specific
term, resulting in three corpora containing about 12
million tokens for the food domain, 6 million tokens
for the equipment domain and 27 million tokens for
the science domain.

Linguistic preprocessing. We performed a num-
ber of linguistic preprocessing steps in order to en-
rich the original web-based corpus: (1) tokenisa-
tion, (2) Part-of-Speech Tagging, (3) Lemmatisa-
tion and (4) Chunking. All linguistic preprocessing
was per performed by means of the LeTs Preprocess
toolkit (Van de Kauter et al., 2013).

Lexico-syntactic pattern matching. The result-
ing linguistically preprocessed corpus is the input
for the pattern-based module. Example 1 shows a
sentence matching the pattern:

{other}* NP such as NP {, NP}* {(and-or) NP}*

1Curly brackets indicate optional parts of the pattern.

resulting in the two hypernym pairs (cranberry
products, tablets) and (cranberry products, cap-
sules). As can be seen in example 1, the lexi-
calised parts of the patterns (other and such as in
this case) are not considered for the generation of
the hyponym–hypernym tuples.

(1) other other JJ B-NP
cranberry cranberry NN I-NP
products product NNS I-NP
such such JJ B-AP
as as IN I-AP
tablets tablet NNS B-NP
and and CC O
capsules capsule NNS B-NP

We optimized the pattern-based model presented
by (Lefever et al., 2014) in different ways. The ef-
ficiency of the module was improved by only con-
sidering noun phrases containing a maximum of 6
consecutive nouns and by ignoring named entities.
This appeared to be necessary as the web-based cor-
pus contains a lot of lists and enumerations, causing
problems for the recursive way the regular expres-
sions are built. Precision, on the other hand, was im-
proved by ignoring tuples containing both terms as
hypernym and hyponym (e.g. hand truck – truck and
truck – hand truck) and by only considering patterns
that revealed to obtain high precision in previous re-
search (Lefever et al., 2014).

Finally, the output of the pattern-based module is
filtered by only considering tuples where both terms
(either lemma or full form) occur in the term list of
the considered domain.

2.2 Morpho-syntactic Analyzer
Our second hypernym detection module applies a
morpho-syntactic approach where the morphologi-
cal structure of compound terms is used to extract a
hypernym-hyponym relation from this term. This
approach is inspired by the head-modifier princi-
ple (Sparck Jones, 1979) stating that in a compound
noun, the linear arrangement of the compound parts
expresses the kind of information being conveyed,
the head referring to the more general semantic cat-
egory, whereas the modifiers restrict the sense of the
compound term. This way, the complete compound
term can be considered as a hyponym of the head
term. We implemented rules for three different syn-
tactic hypernym-hyponym relations in compounds:
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1. Single-word terms: If term T0 is a suffix string
of term T1, T0 is considered to be a hyper-
nym of T1. Examples of hypernym pairs de-
tected within single-word terms are (sacher-
torte, torte), (candlepin, pin) and (psycholin-
guistics, linguistics).

2. Multiword terms: If term T0 is the head term
of term T1, T0 is considered to be a hypernym
of T1. It is important to mention that we also
allow multiple possible hypernyms in case dif-
ferent terms occur as suffixes of the compound
term, e.g. phu quoc fish sauce is the hyponym
of both sauce and fish sauce. As the head of
a nominal phrase appears at the right edge of
a multiword NP in English, the last constituent
of the NP is regarded as the head of the com-
pound, and thus as the hypernym of the com-
plete term, as is the case in the generated hy-
pernym pair (béarnaise sauce, sauce).

3. Complex prepositional phrases: If term T0 is
the first part of a term T1 containing a noun
phrase + preposition + noun phrase, T0 is
considered to be a hypernym of T1. In the
case of a prepositional compound phrase, the
head is situated at the left edge of the com-
pound term. Examples of such hypernym pairs
are (sociology of culture, sociology) and (soup
all’imperatrice, soup)

In addition, we added some restrictions to these
general rules in order to improve the precision of the
module. First, we set a threshold of minimum three
characters for the detection of valid hypernyms. An
example of invalid hypernyms filtered out this way
is tu that could be detected as a hypernym of pe-
sarattu, both terms occurring in the food term list.
Second, we noticed that food terms (etc. dishes) are
often loan words from other languages. Therefor we
added a list of foreign adjectival affixes (e.g. french
affix al/ale) that should not be considered as a hy-
pernym of the compound term. This way we pre-
vent for instance ale to be detected as the hypernym
of chicken provencale or café royale.

2.3 Structured Lexical Resources: WordNet
The third hypernym detection module retrieves in-
formation from an external lexical resource, being

WordNet in this case. This module looks up the
synsets in WordNet for all domain-specific terms
and retrieves all hypernyms appearing in the full hi-
erarchical path of these synsets. Hypernym tuples
containing identical terms were removed. Examples
of hyponym-hypernym pairs retrieved from Word-
Net are (semantics, science) and (semantics, linguis-
tics).

2.4 Combined System
To generate the final list of hypernym relations, we
combined the output of all three modules and re-
moved all doubles from the hyponym–hypernym
pair list.

3 Results

The resulting taxonomies are evaluated through
comparison with gold standard relations collected
from existing domain specific ontologies and Word-
Net. In addition, expert evaluation has been per-
formed on the hypernym relations submitted by the
participants. The system organizers calculated pre-
cision, recall and F-score as well as a cumulative
Fowlkes & Mallows measure, which is inspired by
clustering evaluation and takes into account the hi-
erarchical structure of the gold standard taxonomy
and the taxonomy that is produced by the system.

In addition, a number of structural measures were
calculated such as the number of distinct vertices
and edges, the number of connected components and
intermediate nodes to evaluate whether the taxon-
omy connects all nodes with the root. From this
evaluation it was clear that our taxonomy contains
cycles, which is conflicting with correct hierarchical
relations. For more detailed information about the
gold standards and evaluation metrics, we refer to
(Bordea et al., 2015). Table 1 lists the averaged Pre-
cision, Recall, F-measure and Fowlkes & Mallows
scores for all participating systems, while Table 2
lists the individual scores for the three domains in
which we participated. The very high recall scores
for the WN data sets can be explained by the fact
that our system also contains a module that retrieves
hypernym relations from WordNet.2

2We included a WordNet module, since originally only Ba-
belNet was specified as the gold standard for the task. At eval-
uation time, however, WordNet was also used to evaluate the
taxonomies.
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INRIASAC LT3 ntnu QASSIT TALN-UPF USAAR-WLV
Precision 0.1721 0.3612 0.1754 0.1563 0.0720 0.2014
Recall 0.4279 0.6307 0.2756 0.1588 0.1165 0.3139
F-score 0.2427 0.3886 0.2075 0.1575 0.0798 0.2377
Fowlkes & Mallows 0.3278 0.4130 0.0582 0.3882 0.2635 0.0770

Table 1: Comparative evaluation of all participating systems considering the average Precision, Recall, F-measure and
Cumulative Fowlkes & Mallows measure scores.

Test set Precision Recall F-Score F&M
Equipment 0.7021 0.3219 0.4414 0.1137
Food 0.2892 0.2974 0.2932 0.2163
Science 0.4013 0.3806 0.3907 0.3303
WN Equipment 0.3168 0.9484 0.4749 0.6892
WN Food 0.2155 0.9719 0.3528 0.5899
WN Science 0.2422 0.8639 0.3783 0.5391

Table 2: Precision, Recall, F-measure and Cumulative
Fowlkes & Mallows measure scores for all test sets.

As we wanted to gain more insights in the contri-
bution of the different modules, we also calculated
precision and recall per module for the different term
lists. The results per module and for the combined
system are shown in Table 3.

Morpho- Pattern- Word- full
syntactic based Net system
Module Module Module

WN Equip P 0.696 0.143 0.320 0.317
R 0.245 0.008 0.932 0.948

Equipment P 0.791 0.214 0.310 0.702
R 0.307 0.005 0.021 0.322

WN Food P 0.613 0.204 0.230 0.216
R 0.242 0.091 0.958 0.972

Food P 0.602 0.191 0.219 0.289
R 0.176 0.059 0.134 0.297

WN Science P 0.696 0.215 0.778 0.242
R 0.270 0.063 0.857 0.864

Science P 0.641 0.292 0.277 0.401
R 0.273 0.045 0.144 0.381

Table 3: Precision (P) and recall (R) from relation overlap
scores per hypernym detection module per domain.

We notice that the WordNet module indeed
achieves very high recall for the WN test sets, but
that the recall for the more technical term lists is
much lower (with only 0.021 for the Equipment data
set). The recall achieved by the pattern-based mod-
ule is also very modest, with scores ranging from
0.005 (Equipment) to 0.063 (WN Science). The
Morpho-syntactic Module, on the other hand, con-
tributes in a consistent way to the recall for all term
lists. Finally, table 3 also shows that the obtained re-
call by the system that combines all different mod-

ules consistently beats the recall of the individual
modules for all test sets. With regard to precision,
we observe that the morpho-syntactic approach ob-
tains very good results for all the different test do-
mains, resulting in system precision scores that out-
perform all participating systems.

A qualitative analysis of the output revealed short-
comings of the different hypernym detection mod-
ules. As discussed above, the morpho-syntactic
module achieves good recall. The downside is that
the module clearly over generates. Examples of
invalid hypernym pairs are for instance (pineapple
juice, apple juice), (hot and sour soup, sour soup)
and (ice cream, cream). Although WordNet is a
manually verified taxonomy, we also discovered in-
valid hypernym pairs in the output of the WordNet
module. For the food domain, for instance, we dis-
covered that all beverages have “food” as an inher-
ited hypernym, resulting in hypernym pairs such as
(pineapple juice, food) and (absinth, food).

4 Conclusion

To tackle the SemEval “Taxonomy Extraction Eval-
uation” task, we proposed a hypernym detection sys-
tem combining a lexico-syntactic pattern matcher,
a morpho-syntactic analyzer and a module retriev-
ing hypernym relations from WordNet and showed
promising results for the different test domains. An-
alyzing the recall per hypernym detection module
revealed that all modules contribute to the final
hyponym–hypernym list generated by the combined
system.
In future work, we would like to improve the recall
of the system by adding additional hypernym detec-
tion modules (e.g. a distributional model built on the
basis of the domain corpora). We will also add a
dedicated module to construct the taxonomy based
on the hierarchical relations in order to remove the
cycles from the resulting taxonomy.
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Abstract

This paper describes the system submitted
by the TALN-UPF team to SEMEVAL Task
17 (Taxonomy Extraction Evaluation). We
present a method for automatically learning
a taxonomy from a flat terminology, which
benefits from a definition corpus obtained
by querying the BabelNet semantic network.
Then, we combine a machine-learning al-
gorithm for term-hypernym extraction with
linguistically-motivated heuristics for hyper-
nym decomposition. Our approach performs
well in terms of vertex coverage and newly
added vertices, while it shows room for im-
provement in terms of graph topology, edge
coverage and precision of novel edges.

1 Introduction

Learning semantic relations out of flat terminologies
is an appealing task due to its potential application
in tasks like Question Answering (Cui et al., 2005;
Boella et al., 2014), automatic glossary construction
(Muresan and Klavans, 2002), Ontology Learning
(Navigli et al., 2011) or Textual Entailment (Roller
et al., 2014). Today, in the context of massive web-
enabled data, hypernym (is-a) relations are the focus
of much research, as they constitute the backbone of
ontologies (Navigli et al., 2011). However, one chal-
lenge remains open in the automatic construction of
knowledge bases that exploit this type of relation. It
is unfeasible to have up-to-date semantic resources
for each domain, as they are limited in scope and
domain, and their manual construction is knowledge
intensive and time consuming (Fu et al., 2014).

Given this rationale, Task 17 (Bordea et al., 2015)
in the SEMEVAL 2015 set of shared tasks focuses
on Taxonomy Extraction Evaluation, i.e. the con-
struction of a taxonomy out of a flat set of terms be-
longing to one of the four domains of choice (food,
chemical, equipment and science). These terms have
to be hierarchically organized, and new terms are al-
lowed to be included in the taxonomy. As for eval-
uation, for each domain, two taxonomies were used
as gold standard: One created by domain experts;
and one derived from the WordNet taxonomy rooted
at the domain node, e.g. food1. Finally, evaluation
is carried out from two standpoints: (1) The taxon-
omy topology and the rate of replicated nodes and
edges are taken into account when compared to a
gold standard taxonomy; and (2) Human experts val-
idated as correct or incorrect a subset of the newly
added edges.

In this paper we describe our contribution to
this shared task. Our approach relies on a set of
definitional sentences for each term, from which
term→hypernym relations are extracted using a
machine-learning classifier. In a second step,
linguistically-motivated rules are applied in order to
(1) extract a hypernym candidate when the confi-
dence of the classifier was below a threshold, and
(2) decompose multiword hypernyms in more gen-
eral concepts (e.g. from coca-cola→carbonated soft
drink to carbonated soft drink→soft drink and soft
drink→drink).

1For our domain notation we simply use the name of the
domain for manually constructed taxonomies (e.g. “food”),
and add the prefix wn for the WordNet taxonomies (e.g.
“wn food”).
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The remainder of the paper is structured as fol-
lows: Section 3 describes the modules of our ap-
proach, Section 4 presents and discusses the evalua-
tion procedure as well as results, and finally Section
5 analyzes the performance of our system as well as
the difficulties encountered, and suggests potential
avenues for future work.

2 Background

Generally, taxonomy learning from text has been
carried out either following rule-based or distribu-
tional approaches. In terms of rule-based meth-
ods reported in the literature, (Hearst, 1992) in-
troduced lexico-syntactic patterns, which were ex-
ploited in subsequent work (Berland and Charniak,
1999; Kozareva et al., 2008; Widdows and Dorow,
2002; Girju et al., 2003). Distributional approaches,
on the other hand, have become increasingly pop-
ular due to the availability of large corpora. Sys-
tems aimed at extracting hypernym relations from
text have exploited hybrid patterns as word-class lat-
tices (Navigli and Velardi, 2010), syntactic relations
as features for an SVM classifier (Boella et al., 2014)
or word-embedding-based semantic projections (Fu
et al., 2014; Roller et al., 2014). Inspired by the re-
ported success in the latter methods, we opted for
combining syntactic patterns with machine learning
to extract hypernyms from domain sentences.

3 Method

This section describes the main modules that consti-
tute our taxonomy learning system.

3.1 Definition corpus compilation

We benefit from BabelNet, a very large multilin-
gual semantic network that combines, among other
resources, Wikipedia and WordNet (Navigli and
Ponzetto, 2010). We get a set of BabelNet synsets
associated to each term and for each synset, we ex-
tract its definition. In this step we assume that a
term’s definition appears in the first sentence of its
Wikipedia article, which is a regular practice in the
literature (see (Navigli and Velardi, 2010) or (Boella
et al., 2014)). This step allowed us to compile a
domain corpus of definitional knowledge, and thus
maximizing the number of relevant terms defini-
tions. However, noise is also introduced in our cor-

pus. For example, given the term botifarra (a Cata-
lan type of sausage), we add two definitions to our
corpus:

Relevant: Botifarra is a type of sausage and
one of the most important dishes of the Catalan
cuisine.

Noisy: Botifarra is a point trick-taking card
game for four players in fixed partnerships
played in Catalonia.

3.2 Hypernym Extraction
Given a set of definitional text fragments where the
definiendum2 term is known, i.e. can be extracted
from the url of the Wikipedia page, our goal is to tag
the tokens of the definition that correspond to one or
more hypernyms. To this end, we train a Conditional
Random Fields (Lafferty et al., 2001) classifier3 with
the WCL Dataset (Navigli and Velardi, 2010). We
argue that CRFs are a valid approach for sequential
classification, and particularly for this task, due to
their potential to capture prior and posterior token
features on the current iteration. The WCL dataset
includes near 2000 definitional sentences with terms
and hypernyms manually annotated. We preprocess
and parse the WCL dataset with a dependency parser
(Bohnet, 2010), and then train our classifier with the
following set of features.

surface: A word’s surface form.

lemma: The lemma of the word.

pos: The word’s part-of-speech.

head id: The id of the word to which the cur-
rent token depends in a dependency syntactic
tree.

deprel: Syntactic function of the current word
in relation to its head.

def—nodef: Whether the current token ap-
pears before or after the first verb of the sen-
tence.

2The classic components lexicographic genus-et-differentia
definition are (1) Definiendum (concept being defined); (2)
genus (hypernym or immediate superordinate that describes the
definiendum); and (3) definiens or cluster of words that differ-
entiate a definiendum from others of its kind.

3https://code.google.com/p/crfpp/
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term—noterm: Whether the token is part of
the definiendum term or not.

Our CRF classifier learns the above word-level
features in a word window of [−2, 2]. The predic-
tion the classifier must learn follows the classic BIO
format, i.e. whether a word is at the beginning of
a hypernym phrase, inside or outside. We evalu-
ate this hypernym extraction module on the WCL
dataset (Navigli and Velardi, 2010) performing 10-
fold cross-validation. It achieves and F-score of
79.86, outperforming existing state-of-the-art sys-
tems described in the literature (Navigli and Velardi,
2010; Boella et al., 2014).

Despite the good performance of this module,
we observe two potential drawbacks in terms of
its fitness for the taxonomy learning task. Firstly,
we aim at recovering hypernym candidates even in
cases in which they are predicted with low confi-
dence at the classification step. We build on the as-
sumption that all encyclopedic definitions are very
likely to include a hypernym, and hypothesize that
it will help increasing recall while keeping preci-
sion at a reasonable rate. Secondly, when a mul-
tiword hypernym is retrieved by our module, it
might not match exactly a term from the seed ter-
minology (e.g. original term→soft drink, and re-
trieved term→carbonated soft drink). Therefore,
we aim at decomposing it by dropping one modifier
at a time and creating new arcs recursively. These
two steps are described in more detail in the follow-
ing subsection.

Post-classification Heuristic
Our recall-enhancing strategy consists in a post-

classification heuristic inspired by Flati et al. (2014):
(1) We exploit the tree-like dependency structure of
a parsed sentence in order to find the most likely to-
ken to be the head of a hypernymic phrase. We look
for definitions where no hypernym was identified.
Then, we find the node with the Predicative Com-
plement (PRD) syntactic function. If such node is
not a stop-hypernym (such as type, class, family or
kind), we consider it a valid head of a hypernymic-
phrase4. Then, we collect all its noun and adjec-
tive children with the syntactic function Modifier of

4The full list of stop-hypernyms is available at
www.wibitaxonomy.org

Nominal (NMOD). If, however, such node is a stop-
hypernym, we go down the syntactic tree one level
and look for a direct Preposition node with syntactic
function NMOD. Then, we extract this preposition’s
adjective and noun children if they have the syntac-
tic function Modifier of Prepositional (PMOD).

For example, consider the following sentence:
“Whisky or whiskey is a type of distilled alcoholic
beverage made from fermented grain mash”. Here,
type is the Predicative Complement node but it is an
uninformative word for describing the term whisky.
Therefore, our algorithm goes one level down the
syntactic tree and identifies the token beverage as
the direct child of the preposition and therefore ex-
tracts this token as hypernym.

3.3 Hypernym Decomposition

This step is aimed at generating deeper paths from
a term and its hypernym by recursively decompos-
ing a candidate hypernym. For example, consider
the previous example’s term→hypernym relation if
the hypernym’s modifiers are taken into account:
whisky→distilled alcoholic beverage. Our objective
is to generate the following set of relations: distilled
alcoholic beverage→alcoholic beverage and alco-
holic beverage→beverage. In this way, we improve
the taxonomy since, in taxonomy learning, longer
hypernymy paths should be preferred (Navigli et al.,
2011), and we enable other potential distilled alco-
holic beverages to be connected with alcoholic bev-
erage rather than the more generic term beverage.

We achieve this by performing a similar algorithm
as in the post-classification heuristic, i.e. exploiting
head and modifier relations in a dependency tree.

3.4 Graph Generation

At this stage, we have a dataset of term→hypernym
pairs, and from here populating the taxonomy is a
trivial task. For each pair, if neither term nor hy-
pernym exist in the graph, add both nodes and con-
nect them. If term exists in the graph, only add the
hypernym and connect the existing term node with
it. If on the contrary, only the hypernym is found in
the graph, connect the term to the existing hypernym
node. Finally, we go back to the initial flat terminol-
ogy and, if no path is found between a term node and
the root node, add a direct edge between them. This
last step guarantees that the taxonomy will preserve
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chem wn chem equip wn equip food wn food sci wn sci

VC 1 0.997 1 1 0.8695 1 0.9977 0.8624

EC 0.0004 0.093 0.1577 0.0453 0.0359 0.0782 0.0172 0.1111

RNE 0.7089 0.9531 0.9235 6.903 0.9527 0.9315 3.4731 0.78

F&M 0.2225 0.2787 0.4482 0.0901 0.3267 0.3091 0.2202 0.2126

Cycles no yes yes yes no yes yes no

Precision 0.0006 0.0889 0.1458 0.0287 0.0363 0.0775 0.0733 0.1246

Recall 0.0004 0.093 0.1577 0.2 0.0359 0.0782 0.2559 0.1111

F-Score 0.0005 0.0909 0.1515 0.0503 0.0361 0.0778 0.1139 0.1175

Table 1: Summary of the results obtained with our approach in the structural evaluation in terms of vertex coverage
(VC), edge coverage (EC), ratio of novel edges (RNE), cumulative Fowlkes and Mallows Measure (F&M), whether
the taxonomy contains cycles (Cycles), and Precision, Recall and F-Score against gold standard taxonomies.

the vast majority of the initial terms (if not all, as can
be seen in Table 1).

4 Evaluation

Evaluation is carried out considering the structural
properties of the taxonomy, as well as its qual-
ity when compared to gold-standard (see Table 1).
These gold taxonomies can be either the subgraphs
rooted at one relevant WordNet term (chemical,
food, equipment or science), or taxonomies manu-
ally crafted by domain experts.

These results suggest that the approach described
in this paper can be safely followed to construct a
taxonomy from a flat terminology as input, provided
major issues like domain-specificity or WSD are ad-
dressed. Our approach strongly depends of available
definitions of terms in Wikipedia, which was not the
case in very specific domains (such as the chemical
terminology). On the other hand, however, the hy-
pernym extraction pass worked well and thus we are
encouraged to work in this direction, stressing the
importance of an appropriate domain dataset from
which definitional knowledge can be extracted.

In order to compare the system and reference tax-
onomies, the evaluation consists in computing node
and edge coverage by taking into account the num-
ber of nodes and edges in common and the sizes of
the taxonomies. In addition, the results of a struc-
tural metric are also provided, such metric being the

Fowlkes&Mallows measure (Fowlkes and Mallows,
1983), a method for comparing hierarchical clusters.
The results show poor performance of our system in
inferring relations among concepts at deeper levels
in the taxonomy. One of the reasons this might be
due to is the fact that the lexicalization of a term does
not necessarily have to be exact between a BabelNet
synset and an associated Wikipedia definition.

Regarding the manual evaluation of the quality of
newly acquired edges, our system is unsurprisingly
weak (P=10.2%)5 due to the inherent term ambigu-
ity which makes our system retrieve noisy defini-
tions at each step. We hypothesize that our results
might be higher in the chemical domain, since termi-
nology would be less prone to be polysemous. How-
ever, this domain was not considered for this evalua-
tion measure. These negative results together with
the good performance of the hypernym-extraction
module stress the need to retrieve valid domain spe-
cific definitional sentences for our approach to work
well.

5 Conclusions and Discussion

We have described a system designed for construct-
ing a taxonomy from a flat list of terms. It is based
on a module that queries BabelNet for Wikipedia
definitions in order to obtain definitional knowledge

5Full results for all systems are reported in
http://alt.qcri.org/semeval2015/task17/index.php?id=evaluation.
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for each term. Then, a machine-learning algorithm
is trained with a manually annotated dataset with
hypernym relations in definitional sentences, and
applied to our definition dataset. Different post-
classification heuristics are afterwards incorporated
to the pipeline with a two-fold objective: (1) Extract
a candidate hypernym in cases where the classifier
lacked the confidence to tag one or more tokens as
possible hypernyms, and (2) Decompose candidate
hypernyms exploiting the syntactic relation between
their head and its modifiers in a syntactic depen-
dency tree. Finally, with a set of term→hypernym
pairs we populate a domain taxonomy by connect-
ing terms and hypernyms, and finally by fixing dis-
connected nodes from the root.

We have demonstrated that our approach has very
high vertex coverage, and on the other hand is flawed
in capturing deep taxonomic relations among en-
tities. The hypernym extraction module achieves
state-of-the-art performance and due to the simplic-
ity of the features used is open for improvements,
either by incorporating semantic similarity among
tokens, frequencies in domain corpora, or a token’s
position in the syntactic tree.

We observe a clear room for improvement in the
domain corpus compilation part, and for the future
we are investigating the potential of the Wikipedia
Categories Graph in order to gather domain defini-
tions from pages that are in recurrent categories in
the BabelNet synset list.
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Abstract

This paper presents our participation to the
SemEval Task-17, related to “Taxonomy Ex-
traction Evaluation” (Bordea et al., 2015).
We propose a new methodology for semi-
supervised and auto-supervised acquisition of
lexical taxonomies from raw texts. Our ap-
proach is based on the theory of pretopology
which offers a powerful formalism to model
subsumption relations and transforms a list of
terms into a structured term space by combin-
ing different discriminant criteria. In order to
reach a good pretopological space, we define
the Learning Pretopological Spaces method
that learns a parameterized space by using an
evolutionary strategy.

1 Introduction

Lexical Taxonomies (LTs) play an essential role in
Information Retrieval (IR) and Natural Language
Processing (NLP). By coding the semantic relations
between terminological concepts, LTs can enrich the
reasoning capabilities of applications in IR and NLP.
However, the globalized development of semantic
resources is largely limited by the efforts required
for their construction (Kozareva and Hovy, 2010).
As a consequence, instead of manually creating LTs,
many research studies have emerged to automati-
cally learn such structures (Buitelaar et al., 2005;
Biemann, 2005; Cimiano et al., 2009; Kozareva and
Hovy, 2010; Velardi et al., 2013).

The two main stages for the automatic construc-
tion of LTs are Term Extraction and Term Structur-
ing. The proposed approach is focused on the sec-

ond stage, thus matching with the aim of the Se-
mEval task, by inducing LTs from pre-existing lists
of terms (provided by the organizers).

As starting point, we consider the work from
(Cleuziou et al., 2011) which introduced new
statistically-based criteria (e.g. Nearest-Neighbor-
like relations) and combined them using the the-
ory of pretopology (Brissaud, 1975). This formal-
ism offers a new framework to model the subsump-
tion relation at the term set level rather than consid-
ering (binary) subsumption relations only between
pairs of terms. Based on the concepts of (pseudo-
)closure and closed subsets the authors transform
the list of terms into a semantic space. A structur-
ing algorithm based on the work of Largeron and
Bonevay (2002) is then applied to transform the se-
mantic space of terms into a LT i.e. an acyclic di-
rected (non-triangular) graph.

This theory should allow to combine both
associative- and pattern-based methods within a vir-
tuous multi-criteria structuring process. To achieve
this objective, we consider pretopology on the multi-
criteria analysis point of view, where criteria are
statistical indices and linguistic patterns retrieved
from a corpus. In particular, we define the concept
of Parameterized pretopological space (P-space),
where parameters express the confidence that ex-
ists over each criterion. As such, LT induction can
be viewed as learning the set of parameters (confi-
dences), which best (1) approximates the expected
LT structure and (2) verifies a given number of lin-
guistic patterns constraints.

In order to learn the parameters, we define a new
Learning Pretopological Spaces (LPS) method and
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use an evolutionary strategy which leads to induce a
LT from an “optimized” P-space.

In the remaining of this paper, we first introduce
the new concept of P-Space in Section 2. Then, we
present the general LPS learning process in Section
3. Finally, we describe in Section 4 the use of the
LPS paradigm in the particular context of the Se-
mEval Task-17 and discuss the obtained results.

2 Pretopology and P-Spaces

Pretopology is a theory introduced by Brissaud
(1975) that generalizes both Topology and Graph
theories. This formalism, as reviewed by (Belmandt,
2011) is commonly used to model complex propaga-
tion phenomena thanks to a pseudo-closure operator,
recently employed in (Cleuziou et al., 2011) for LT
acquisition.

Let us consider a non-empty set E, and its pow-
erset P(E). A (V -type) pretopological space is
noted (E, a), where a(.) is a pseudo-closure func-
tion (P(E)→ P(E)) such that :

i) a(∅) = ∅,
ii) ∀A ∈ P(E), A ⊆ a(A),

iii) ∀A,B ∈ P(E), A ⊆ B ⇒ a(A) ⊆ a(B).

It is crucial to notice that a(.) is not necessarily
idempotent unlike in Topology (where a(a(A)) =
a(A)). So, the pseudo-closure behaves as an ex-
pansion operator that enlarges any non-empty subset
A ⊂ E. As a consequence, successive applications
of a(.) on A lead to a fix-point, called closed subset
and noted FA (or F (A)). At this stage, the reader
has to consider E as a set of unstructured terms and
the pseudo-closure operator a(.) modeling the prop-
agation of the term domination (or subsumption) re-
lation.

Let us also define the notions of elementary
closed subset (F{x}) that refers to the closure of a
singleton that is maximal if 66 ∃y, F{x} ⊂ F{y}. In
the scope of LT acquisition, these concepts will be
used to model the domination/subsumption inheri-
tance between terms, F{x} referring to a set of terms
dominated by a term x that has no dominator when
F{x} is maximal.

In order to perform the expansion process, we
define a P-Space as a V-type pretopological space

with a parameterized pseudo-closure function a(.)
defined for any A ∈ P(E) by

a(A) = {x ∈ E |
∑

Nk∈N
wk.1Nk(x)∩A6=∅ ≥ w0} (1)

withN a family of neighborhoods over E and such
that w0 > 0,

∑K
k=1wk ≥ w0 and ∀k 6= 0, wk ≥ 0.

Here, a neighborhood can be viewed as a statis-
tical indice or a linguistic pattern retrieved from a
corpus which identifies a subsumption relation be-
tween terms. In particular, each parameter wk in (1)
quantifies a kind of reliability on the kth neighbor-
hood and w0 represents a global required confidence
to expand the subset A. Thus, a subset A will be ex-
panded to an element x only if the sum of the confi-
dences on the criteria in agreement with the expan-
sion exceeds the global required confidence w0. The
P-Space concept thus offers a wide range of neigh-
borhood combinations by considering the set of any
monotonic linear threshold functions.

Given a V -type pretopological space, (Largeron
and Bonnevay, 2002) proposed an algorithm that
structures the set E into a DAG (Directly Acyclic
Graph).

3 Learning P-Spaces process (LPS)

We propose a learning pretopological spaces frame-
work (LPS), illustrated in Figure 1. Considering a
partial knowledge S providing a true partial struc-
turing on E, LPS aims to find a P-Space - namely a
function as in (1) and more concretely a set of pa-
rameters w - inducing a good structuring according
to a fitness function defined by :

Score(w, S) = FMeasure(w, S)× Istructure(w) (2)

with F and I , two terms quantifying respectively
the satisfactions about :

(1) the constraints implied by the partial knowl-
edge S and

(2) the expected structural properties of the output :
a taxonomy-like structuring in the specific LT
acquisition context.

The score (2) is used to guide the exploration of the
space of solutions through a learning strategy based
on a Genetic Algorithm (GA).
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Figure 1: The LPS process uses partial knowledge on the expected structure in order to improve the parameterization
of the pseudo-closure operator.

4 LPS for the SemEval Task 17

Let us recall that, in addition to the list of terms E to
structure, the LPS system requires as input : a family
of neighborhoodsN overE and a partial knowledge
S.

Three kinds of associative criteria served as basis
neighborhoods :

NkSand corresponds to the subsumption relation
modeled by Sanderson and Croft (1999) :
y ∈ NkSand(x) iff P (y|x) ≈ hits(x,y)

hits(x) ≥
σk ∧ P (y|x) > P (x|y).

NkNP associates to each term x its k Nearest Par-
ents in the sense of P (y|x): y ∈ NkNP (x)
iff P (y|x) is one of the k best {P (z|x)}z∈E .

NkNC associates to each term x its k Nearest Chil-
dren: y ∈ NkNC(x) iff P (y|x) is one of the
k best {P (y|z)}z∈E .

All criteria depend of the parameter k that controls
the number of selected relations. In particular, we
adjust the thresholds σk in such a way that NkSand

selects as many relations as the two other criteria
for a same value of k (i.e. k.|E| relations). So,
each type of criterion provides several effective cri-
teria depending of the parameter k. We considered
three different values for k ({1 . . . 3}) leading to
nine neighborhood, plus the partial knowledge (that
can also serve as a neighborhood).

The english subpart of wikipedia.org has been
used as corpus for frequency counts extraction. For

each pair of terms (x, y), we retrieve the number of
wikipedia pages where both terms occur (hits(x, y))
in the corresponding sub-domain of wikipedia. Sub-
domains are artificially identified by introducing the
root term of the taxonomy into the wikipedia query.
For example, hits(memory, politics) is retrieved
with the following query [“memory” AND “poli-
tics” AND “science”] as memory and politics are
two terms contained into the wn science list of terms
to structure.

The partial knowledge has been obtained by first
extracting a list of candidate subsumption pairs ob-
serving linguistic patterns into a corpus and then by
manually correcting the candidate list and/or adding
new pairs of subsumptions with the aim to reach
at least two hundreds subsumption relations into S.
The 10 linguistic patterns used, from (Kozareva and
Hovy, 2010; Snow et al., 2004), are the following :
{X are Y that - X is a Y that - X is an Y that - Y such
as X - Y including X - Y like X - X and other Y - X or
other Y - such Y as X - Y, specially X}

For any pairs of terms (x, y) from the list E, each
pattern is tested on en.wikipedia.org and each time a
pattern is observed between x and y, an edge x _ y
(x subsumes y) is added to S (after manual valida-
tion). A quantitative summary of the partial knowl-
edge construction for each considered domain is re-
ported in Table 1.

The LPS process has been applied on the four first
lists of terms : wn science, science, wn equipment
and equipment of limited sizes (less than 1,000).

957



Table 1: Quantitative summary of semi-automatic acquisition of the partial knowledges S.
List of terms Nb. terms Nb. candidate pairs Nb. selected pairs Nb. added pairs Size of S
WN Science 370 341 272 0 272
Science 462 347 230 0 230
WN Equipment 475 296 162 133 295
Equipment 612 83 38 169 207
WN Food 1485 2130 200 52 252
Food 1555 1630 144 83 227
WN Chemical 1350 1908 227 0 227
Chemical 17,584 not processed

GA was parameterized so that it iterates crossings
and mutations on a population of 200 P-Spaces and
finally selected the one maximizing the score (2).
For example, on the science list, the P-Space ac-
quired induces a LT reaching a score of 0.948, with
a matching of 0.98 with S (the F term) and a struc-
turing term (I) of 0.97. The underlying parameters
w can be interpreted as a logical propagation rule
combining neighborhoods from the given family N
; the obtained rule is

δS(x) ∨ (δN1NS
(x) ∧ δN2NF

(x))
∨(δN3NS

(x) ∧ δN1NF
(x) ∧ δN1Sand

(x))
∨(δN3NS

(x) ∧ δN2NF
(x))

(3)

formalizing the extension of a subset A to an ele-
ment x when either :

• the neighborhood NS(x) intersects A (i.e. x is
dominated by a term y ∈ A according to the
partial knowledge S) or,

• both neighborhoods N1NS(x) and N2NF (x)
intersect A or,

• neighborhoods N3NS(x) and N1NF (x) and
N1Sand(x) intersect A or,

• neighborhoods N3NS(x) and N2NF (x) inter-
sect A.

The final external evaluation (comparison against
the gold standard) revealed that the LT induced by
the previous P-Space obtains the best score (0.523)
using the cumulative Fowlkes&Mallows measure
(Fowlkes and Mallows, 1983).

Due to time limitations, learning P-Spaces with
LPS was not possible for the domains wn food, food
and wn chemical. For these domains, we computed

Table 2: Results obtained on the 8 domains in terms of
fitness and gold standard evaluation ; symbol * indicates
domains for which a learning stage has been performed.

Domains internal F&M Best rank
score (2) measure F&M

WN Science* 0.97 0.29 0.54 3/6
Science* 0.95 0.52 0.52 1/6
WN Equip.* 0.63 0.36 0.69 2/6
Equipment* 0.34 0.49 0.49 2/6
WN Food 0.56 0.32 0.59 3/6
Food 0.73 0.34 0.45 2/6
WN Chemical 0.54 0.39 0.39 1/6
Chemical not processed

the neighborhoods and rather than learning a com-
bination rule fitting to the dataset, we tested the four
combination rules acquired from the four previous
domains, computed their ability to induce a good LT
(by computing the score (2)) and finally we kept the
best one. Table 2 finally summarizes the results ob-
tained by the team QASSIT and its relative position-
ing into the task.

5 Conclusion

The automatic evaluation against the gold standards
has been then completed by a manual analysis that
revealed lower comparative results for the seven tax-
onomies acquired with the LPS approach. But the
main lesson to learn from this second type of evalua-
tion is the high discrepancy between the taxonomies
obtained with a learning stage (at least 0.20 of F-
measure each time) and the the ones obtained by
reusing combination rules (less than 0.10 each time).
These results encourages future research toward the
scalability of the LPS learning process and various
improvements in terms of statistical neighborhoods
enhancement and linguistic patterns selection.
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Johanna Völker. 2009. Ontology learning. In Hand-
book of Ontologies, pages 245–267. Springer Verlag.

Guillaume Cleuziou, Davide Buscaldi, Vincent Levorato,
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Abstract 

For the purposes of SemEval-2015 Task-18 

on the semantic dependency parsing we com-

bined the best-performing closed track ap-

proach from the SemEval-2014 competition 

with state-of-the-art techniques for FrameNet 

semantic parsing. In the closed track our sys-

tem ranked third for the semantic graph accu-

racy and first for exact labeled match of 

complete semantic graphs. These results can 

be attributed to the high accuracy of the C6.0 

rule-based sense labeler adapted from the 

FrameNet parser. To handle large SemEval 

training data the C6.0 algorithm was extended 

to provide multi-class classification and to use 

fast greedy search without significant accura-

cy loss compared to exhaustive search. A 

method for improved FrameNet parsing using 

semantic graphs is proposed. 

1 Introduction 

The trend of natural language processing in recent 

years is shifting towards multilingual natural lan-

guage understanding based on full-text shallow 

semantic parsing (e.g., Banarescu et al., 2013). De-

spite various formalisms proposed, these ap-

proaches are characterized by direct extraction of a 

bi-lexical semantic graph rather than a bi-lexical 

dependency tree from the surface form of the sen-

tence.  

Following the best practice for semantic parsing 

established already by the SemEval-2014 Task 8 

(Oepen et al., 2014) we modified the best-

performing closed-track system there (Du et al., 

2014) by removing some less essential components 

while adding a new component of our own. The 

newly added component is the C6.0 rule-based 

classifier (Barzdins et al., 2014) used both for 

graph parsing and for sense labeling. Sense label-

ing is a novelty of SemEval-2015 Task 18 and was 

not present in the previous year competition. Se-

mantic frame is comprised of a complete predica-

tion combined with the sense identifier of its 

predicate as shown in Figure 1. Semantic frames 

are similar to FrameNet (Fillmore et al., 2003) 

frames, except that FrameNet argument labels are 

sense-specific – this mismatch can be resolved by 

feeding the semantic graph (instead of dependency 

tree) through the regular FrameNet parser. 
 

 
Figure 1. Semantic frame from the PSD corpus. 

 

We participated only in the closed track. Despite 

ranking third for the semantic graph accuracy, our 

system ranked first for exact labeled match of 

complete semantic graphs, and close second for 

semantic frame accuracy. 

2 Baseline Architecture 

For semantic graph parsing we started by imple-

menting a straight-forward baseline architecture 

described on the SemEval-2015 Task-18 evalua-

tion page by the task organizers. The baseline ar-

chitecture consists of two components: reduction 
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of the SDP graphs to trees and training the Mate-

tools dependency parser (Bohnet, 2010) to produce 

such trees from the unparsed text. Instead of a de-

structive reduction of the SDP graphs to trees, we 

implemented a fully reversible depth-first trans-

formation from the last year best-performing sys-

tem (Du et al., 2014). This simple approach 

immediately produced competitive graph parsing 

results (Table 1) in line with the best-performing 

systems from the last year.  
 

 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 87.34 87.05 87.19 79.95 79.42 79.68 

en.pas 90.47 90.03 90.25 85.98 85.48 85.73 

en.psd 72.81 71.05 71.92 70.34 67.55 68.92 

cs.psd 74.44 71.56 72.97 60.19 57.43 58.78 

cz.pas 82.15 81.74 81.94 - - - 

 

Table 1. Baseline architecture labeled scores.  

 

For sense labeling in en.dm and en.psd representa-

tions (a new task not present in the previous 

SemEval-2014 competition) we reused a technique 

from prior work on FrameNet labeling (Barzdins et 

al., 2014) based on C6.0 classifier
1
. For this task 

the C6.0 classifier was modified (see Section 3) to 

directly produce the multi-class output. By using as 

the features values from the form, lemma, POS 

columns for the previous, current, and next word, 

this approach gave good results on the develop-

ment set: 93.86% accuracy for en.psd representa-

tion and 94.50% accuracy for en.dm 

representation. We did not try to improve it any 

further and the same baseline approach was used 

also for producing senses in the final submitted 

parses.  

In the submitted parses we carried out the graph 

parsing and sense labeling completely inde-

pendently, naively combining both annotations 

afterwards. Later experiments have shown that us-

ing graph parsing results as additional features for 

sense labeling would improve sense accuracy by 

approximately 0.2%. 

3 Sense Labeling with C6.0 Rules 

C6.0 rule-based classification algorithm (Barzdins 

et al., 2014) was inspired by the popular C4.5 deci-

sion-tree classification algorithm (Quinlan, 1993) 

                                                           
1 Available at http://c60.ailab.lv 

and has been used in the state-of-the-art FrameNet 

parser.  

To accommodate the large training data sets 

provided in SemEval competition we extended the 

original C6.0 algorithm with support for the multi-

class classification and with the fast greedy search 

as a replacement for the exhaustive search in the 

original C6.0 version.  

Given k training examples of the form: 

 

(a11, a12, a13, … a1n, class1) 

(a21, a22, a23, … a2n, class2) 

… 

(ak1, ak2, ak3, … akn, classk) 

 

where features aij and classi are arbitrary character 

strings, C6.0 classifier builds a list of rules (illus-

trated in Figure 2) for predicting the class of un-

seen examples. The left side of the rule is a pattern 

where any feature position may contain a specific 

character string to be matched or an unspecified 

value denoted by “_”.  

 
 lemma POS  Predicted 

sense 
p n Laplace 

ratio 

if( the, DT )then q:i-h-h 227 0 0.996 

if( _, CD )then card:i-i-c 147 9 0.937 

if( _, DT )then q:i-h-h 336 31 0.913 

if( trade, _ )then n_of:x-i 13 1 0.875 

 
Figure 2. Classification rules generated by C6.0. Rule 

quality is estimated by the Laplace ratio based on posi-

tive p and negative n matching training examples.  

 

The greedy search algorithm for building a mul-

ti-class classifier can be described as follows. 

Training data is converted to a pool of classifier 

training examples. Each training example is con-

sidered positive for the class it belongs to, and 

negative for any other class. A candidate rule is 

matched against all positive and negative training 

examples relative to its class. The count of 

matched positive and negative training examples 

allows to calculate rule’s Laplace ratio 

(p+1)/(p+n+2), where p is the number of matching 

positive training examples and n is the number of 

matching negative training examples. The rules 

with higher Laplace ratio are better. 

For each training example a set of rules correct-

ly classifying this training example is generated by 

incrementally adding to the left side of the rule 

feature values from this training example. Fast 

greedy search one-by-one adds the features in such 
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order that the resulting rule has the highest possible 

Laplace ratio in every feature adding iteration. This 

is contrary to the original C6.0 exhaustive search 

strategy which tried all feature relaxation combina-

tions instead. The greedy approach eliminates ex-

ponential complexity of C6.0 with respect to 

feature count and when tested, yielded as good re-

sults as the exhaustive search on SemEval data. 

All generated rules (regardless of the class they 

predict) are sorted by the highest Laplace ratio. 

The resulting list of rules is a multi-class classifier 

which can be considered consisting of multiple 

binary classifiers (individual rules). For unseen 

examples the class is assigned by the matching rule 

with the highest Laplace ratio.  

Fig. 2 shows some classification rules for pre-

dicting the sense column value in en.dm training 

dataset from two features. The actual production 

classifier for sense labeling uses more features 

(listed in Section 2) and generates several thousand 

rules. 

4 Semantic Graph Parsing  

We tried three approaches described below to im-

prove the graph parsing results above the baseline. 

4.1 Peking and MateTools Graph Parser 

The primary approach chosen for semantic graph 

parsing is to implement a fully reversible transfor-

mation between the semantic graph and a tree rep-

resentation that encodes the extra information in 

edge labels. It allows training a dependency parser 

(Bohnet, 2010) on the labeled tree data, and using it 

to parse text to structures that can be converted 

back to a semantic graph. 

For reversible graph to tree transformation we 

have implemented the depth-first search transfor-

mation and the auxiliary label system used by last 

year’s best-performing Peking system (Du et al, 

2014). The auxiliary labels encode: 

 A separator to indicate multiple original 

edges encoded in this label; 

 Ancestor-number indicating that in the 

original graph, an edge with this label is 

drawn from the dependent to the n-th an-

cestor instead of the direct parent of this 

tree edge; 

 A reverse-edge symbol to indicate edges 

that have reversed direction compared to 

the original graph. 

For the multi-root sentences that appear in some of 

the datasets, we choose the first root (according to 

word order in sentence) as the main tree root, and 

iteratively link all the other sentence fragments to 

the nearest node in the accumulated tree according 

to the number of words between them; in case of 

ties preferring the leftmost node. When creating 

the transformed tree, we also used special labels to 

distinguish the secondary root nodes of other 

fragments, so that the transformation is reversible 

for graphs with multiple root nodes. 

After parsing, a tree may contain labels that are 

invalid according to the principles of this transfor-

mation – i.e., a reference to the grandparent of a 

node that does not have one. In this case, we draw 

an edge with the appropriate label to the closest 

possible node. 

In this approach the cyclic graph structures are 

transformed to the different tree branch topologies 

depending on the traversal order. Traversal order 

thus affects the likelihood of the parser to correctly 

reconstruct these cyclic graph structures. To im-

prove cyclic graph structure reconstruction we de-

veloped multiple parser variations for ensemble 

voting based on the following traversal orders for 

each node: 

 Linear distance of linked words, starting 

with the closest words and preferring the 

left node in case of ties; 

 Frequency of the edge labels, prioritizing 

the most frequent labels; 

In addition, we also applied the same transfor-

mations for sentences with reversed word order to 

provide further variation. The resulting parsers 

have comparable accuracy, but produce different 

mistakes, making them useful for ensemble voting. 

Simple ensemble voting improves graph parsing 

accuracy over the baseline (Table 2).  

 
 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 88.63 87.12 87.87 81.75 79.61 80.67 

en.pas 91.46 90.01 90.73 87.55 85.71 86.62 

en.psd 75.25 71.29 73.22 73.28 67.52 70.28 

cs.psd 78.66 71.73 75.04 64.27 57.72 60.82 

cz.pas 83.10 81.85 82.47 - - - 

 

Table 2. Ensemble method labeled scores.  
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4.2 C6.0 Rule Based Graph Parser 

We also applied our C6.0 rule-based classifier (de-

scribed in Section 3) for semantic graph parsing 

through exact dependency phrase matching. Due to 

low recall rate it provided only a tiny positive 

boost to the final ensemble voting result (Table 4) 

despite the high precision of the rules method (Ta-

ble 3). Here we considered only edges of length up 

to 4 and C6.0 rules with Laplace ratio above 90%. 

Due to low recall we signaled “abstain” vote for 

the edges not covered by these rules.  

 
 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 92.80 33.47 49.20 91.84 19.78 32.56 

en.pas 92.94 35.53 51.40 92.58 28.07 43.08 

en.psd 88.34 18.76 30.94 86.70 11.34 20.05 

cs.psd 95.29 16.70 28.42 80.46 8.13 14.77 

cz.pas 90.97 22.91 36.60 - - - 

 

Table 3. Labeled scores for the rules method. 

4.3 Other parsing approaches 

Experiments with transition based parsers (Malt-

Parser/MaltOptimizer) showed approximately 2% 

lower accuracy than Mate-tools on the same trans-

formed tree data. This is consistent with findings 

made by others during the earlier SemEval-2014 

Task-8. We chose not to use those parsers for the 

final submission.  

5 Final Results 

We submitted two runs but report results only for  

run-1, because run-2 was discovered to include a 

corrupted Mate-tools dataset. 

Our final semantic graph and semantic frames 

parsing results are shown in Tables 4 and 5. Se-

mantic frames results measure overall sense label-

ing and graph parsing accuracy, which is the 

novelty of this year SemEval task. 
 

 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 88.57 87.24 87.90 81.69 79.72 80.69 

en.pas 91.50 90.02 90.75 87.56 85.72 86.63 

en.psd 75.25 71.52 73.34 73.23 67.71 70.37 

cs.psd 78.66 71.84 75.10 64.29 57.83 60.89 

cz.pas 83.12 81.84 82.47 - - - 

 

Table 4. Labeled scores for the submitted result. 

 

 in domain out of domain 

FP  FR FF FP FR FF 

en.dm 58.45 57.79 58.12 42.62 41.17 41.88 

en.psd 52.48 52.59 52.54 40.60 40.93 40.76 

 

Table 5. Semantic frame scores for the submitted result. 

 

Table 6 shows ranking of averaged SemEval scor-

ing metrics for the best runs of the systems partici-

pating in the closed task. Although we ranked third 

for the semantic graph (labeled dependencies) met-

ric, our system ranked close second for semantic 

frame accuracy, and first for labeled exact match 

of the complete semantic dependency graphs. The-

se results suggest that the C6.0 rule accuracy for 

sense labeling and for exact match semantic graph 

parsing was able to compensate for slightly lower 

overall graph parsing accuracy. 
 

System LF LM PF SF FF 

Peking 80.51 21.14 62.64 69.45 48.70 

Lisbon 80.42 20.05 63.59 -- -- 

Riga 78.68 21.84 61.29 73.76 48.33 

Minsk 78.18 15.04 56.40 79.40 47.32 

 

Table 6. Ranking of scores averaged over all available 

datasets for the best runs of the systems in the closed 

track: labeled dependencies (LF), labeled exact match of 

the complete semantic dependency graphs (LM), com-

plete predications (PF), sense identification (SF), se-

mantic-frames (FF).  

6 Conclusions 

Variations of Peking depth-first reversible graph-

to-tree conversion algorithm in combination with 

state-of-the-art dependency parser is still a compet-

itive graph parsing approach.  

C6.0 rule-based classifier provides competitive 

sense labeling accuracy and some improvement 

also for graph parsing accuracy. 

An ensemble method with “abstain” voting op-

tion for joining outputs of various graph parsing 

approaches boosts the results by ironing out the 

weaknesses of individual parsers. Required compu-

tational resources are the main limitation here. 
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Abstract

This paper presents the University of Turku
entry to the SemEval-2015 task on Broad-
Coverage Semantic Dependency Parsing. The
system uses an existing transition-based parser
as a sequence classifier to jointly predict all ar-
guments of one candidate predicate at a time.
Compared to our 2014 entry, the 2015 system
gains about 3pp in terms of F-score for a frac-
tion of the development time. Depending on
the subtask, the difference between our entry
and the winning system ranges between 1 and
5pp.

1 Introduction

The SemEval-2015 task on Broad-Coverage Seman-
tic Dependency Parsing is a continuation to the se-
mantic parsing shared task organized for the first
time in 2014. The objective of the shared task is
to produce a rich semantic analysis for a given sen-
tence in three distinct annotation formats. In contrast
to the 2014 task, this year predicate disambiguation
and two additional languages are included: Czech
data from the Prague Czech–English Dependency
Treebank (Hajič et al., 2012) and Chinese data from
the Penn Chinese Treebank (Xue et al., 2005). For
English and Czech also out-of-domain test data is
provided in order to test the generalization ability of
the systems.

The semantic parsing task includes three differ-
ent tracks. In the closed track the systems must be
trained using only the official training data, whereas
in the open track all additional sources of infor-
mation are allowed. Together with the training

data the organizers provided also syntactic depen-
dency parses produced in the Stanford Dependen-
cies scheme (De Marneffe and Manning, 2008) with
the dependency parser of Bohnet and Nivre (2012).
In addition to the closed and open tracks, also a gold
track is included, where gold standard dependency
parses are given for both training and test data.

This paper describes our system used to take part
in the open and gold tracks of the shared task. The
system is a sequence classifier built on top of an
existing dependency parser. The main idea behind
the implementation is to turn the task of predicting
all arguments for a single predicate to a sequence
classification problem, but still process each pred-
icate independently. Predicting one predicate at a
time feels very natural when working with data an-
notated in PropBank style (Palmer et al., 2005), and
since our main objective is to develop an SRL sys-
tem optimized for Finnish PropBank (Haverinen et
al., 2013), we did not want to merely follow the
main methods from last year. Our system also re-
quires syntactic analyses of the data, which is why
we participated only on the tasks which allow their
use (open and gold tracks). The system will be de-
scribed in detail in Section 3.

2 Related Work

The main approaches in the 2014 semantic depen-
dency parsing task (Oepen et al., 2014) relied on the
methods developed in the context of syntactic pars-
ing, and existing state-of-the-art dependency parsers
were widely used. Systems using dependency
parsers are mainly based on graph-to-tree transfor-
mations (Koller, 2014; Schluter et al., 2014), parsers
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able to produce directed acyclic graphs (Ribeyre et
al., 2014; Kuhlmann, 2014), or a combination of
these two (Du et al., 2014). The winner system of
the 2014 open track is based on the graph-based de-
pendency parser able to produce full non-projective
graphs (Martins and Almeida, 2014).

The system we used to participate in the same
task last year was a pipeline of three different sup-
port vector machine classifiers trained separately
for dependency detection, role assignment and top
node prediction, where each governor–dependent
pair was classified individually without any global
view of the semantic structures (Kanerva et al.,
2014a). A similar approach with the exception of
using a structured support vector machine and there-
fore gaining a bit more of a global view to the prob-
lem was introduced by Jeffrey et al. (2014).

3 System Architecture

The main approach is based on the recent progress
on syntactic dependency parsing, yet taking a
completely different approach than the mainstream
graph-to-tree transformation methods and DAG
parsers discussed in Section 2. Our main focus is
to process each predicate independently (i.e. other
predicates and their arguments do not affect the de-
cision), but when assigning arguments for one pred-
icate, keep a global view of arguments already pre-
dicted for this particular predicate.

The system is built on top of the open-source
Turku transition-based dependency parser1 to obtain
the full functionality of such a parser and to be able
to freely modify it to fit to the needs of our approach.
The Turku Dependency Parser is an implementa-
tion of the parser of Bohnet and Kuhn (2012), with
full functionality of that parser, including e.g. online
learning implemented with the generalized percep-
tron (Collins, 2002), beam search and graph-based
completion features, and the full feature representa-
tion taken from the Bohnet and Nivre (2012).

3.1 Data Processing

Before training the parser, the data is processed to
meet the requirements of the standard, off-the-shelf
dependency parsers. As the arguments are predicted

1https://github.com/jmnybl/
Turku-Dependency-Parser

separately for each predicate, semantic graphs can
be subtracted into several smaller units where each
subgraph preserves the semantic arguments of one
particular predicate. This means that each sentence
is turned into as many pseudotrees as there are to-
kens in the sentence, where each token in turns acts
as a candidate predicate and preserves only its own
arguments and all other relations are dropped from
this particular pseudotree. These pseudotrees are fi-
nalized by attaching all other tokens to the candi-
date predicate with an empty relation type NOTARG,
which at the same time causes the candidate predi-
cate to be the root token of the tree. Since the data
does not include self-loops or multiple arguments
between the same governor and dependent pair, this
transformation can be made without losing any in-
formation. These pseudotrees created from one sen-
tence can again be merged into a one semantic graph
by just preserving the real semantic relations and
leaving out the empty NOTARG relations.

As will be explained later, syntactic parses are a
major source of features. For English, the syntac-
tic parses are obtained from the companion and gold
data provided by the organizers. Since for Czech and
Chinese no companion data was available, the Czech
syntactic representation is obtained using the Malt-
Parser (Nivre et al., 2007) trained on the training sec-
tion of the Prague Dependency Treebank (Hajič et
al., 2000) and the Chinese analysis is acquired using
DuDuPlus, a graph-based dependency parser (Chen
et al., 2009) with a model trained on the training sec-
tion of the Chinese Treebank (Xue et al., 2005).

3.2 Transition System

Since the structure of the input trees is completely
flat (i.e. all words are attached to the sentence root,
which is the predicate under inspection) the transi-
tion system of the parser can be simplified substan-
tially. For every token other than the root, only the
relation type must be predicted (using the NOTARG
relation for tokens which are not arguments of this
particular predicate). Thus, the transition system is
modified to keep the root token always in the pars-
ing stack, and one by one taking the next token from
the queue, predicting its relation type and reducing
it from the stack in a single operation.

Since the simplified transition system requires
that the root token is in the stack already when the
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parsing starts, the order of the tokens in the pars-
ing queue must be manipulated. Manipulating the
parsing queue also changes the order in which the
predictions are made and since the parser is beam
searched and the system has an ability to recover
from a wrong prediction made earlier on, the dif-
ferent order of predictions may affect the final se-
quence of predictions. Two different approaches are
tested. First and by far the simplest method is to
use the normal linear order of the tokens and just
remove the sentence root from the queue (run 1 in
the official results). Second method is to reorder
the tokens based on the syntactic distance, where
the tokens closest to sentence root in the syntactic
tree are first in the queue (and thus their relations
are also predicted first) (run 2 in the official results).
The idea behind this is to assume that tokens which
are most likely to be arguments of the predicate are
close to it in the syntactic representation and there-
fore predicted first. Official results showed that the
first method performed better and therefore all num-
bers reported in this paper are based on the first run.

3.3 Feature Generation

The basic features used are based on the standard
features of dependency parsers. However, few mod-
ifications to the parser feature representation were
made. The function of the graph-based completion
features is to model the partial structures of the tree
already built at any given point. Since in the simpli-
fied transition system all tokens are forced to be de-
pendents of the sentence root, taking into account all
created relations would not distinguish semantically
meaningful tokens from all other tokens (as is in the
case of syntactic parsing where only real syntactic
dependents are attached to any given token). Thus,
tokens attached with the empty relation NOTARG
are discarded and the graph-based completion fea-
tures are created only from the real semantic rela-
tions.

Additional features are created from the syntactic
structure of the sentence. The most important fea-
ture extracted from the syntactic tree is the path be-
tween the predicate and the potential argument. Two
variations of the syntactic path are used; the depen-
dency types and the part-of-speech tags between the
two tokens. If the distance of the tokens is smaller
than seven dependencies, full paths are used as fea-

P R F UF
Open in-domain
DM 87.80 84.60 86.17 88.07
PAS 91.38 89.87 90.62 91.91
PSD 76.10 71.32 73.63 86.44
Overall 85.09 81.93 83.47 88.81
Open out-of-domain
DM 81.54 76.63 79.01 81.68
PAS 86.95 84.98 85.95 87.83
PSD 74.92 68.55 71.59 86.54
Overall 81.14 76.72 78.85 85.35

Table 1: English open track (in-domain & out-of-domain)
results in terms of precision (P), recall (R), labeled F-
score (F) and unlabeled F-score (UF).

tures, otherwise only the beginning and the end of
the path are used. Finally, from each aforementioned
path all dependency type and part-of-speech tag tri-
grams are created.

3.4 Top Node and Sense Prediction
Prediction of top nodes and predicate senses are im-
plemented as separate steps and carried out after the
argument prediction. The top nodes are predicted
in the same manner as in our 2014 system (Kanerva
et al., 2014a), where a support vector classifier is
trained to classify individual tokens.

Predicate senses are predicted with the approach
introduced by Kanerva and Ginter (2014), where
vector space representations of tokens are used to
calculate an average vector to represent each indi-
vidual sense. Then for each predicate the sense is
assigned by calculating a vector to represent this par-
ticular predicate and taking the sense which maxi-
mizes the cosine similarity of the predicate vector
and the sense vector.

4 Results

The final system performance is shown in Table 1.
The overall labeled F-score in the English in-domain
data is 83.47%. When compared to our overall score
in the 2014 shared task (overall labeled F-score
80.49%) a clear improvement of 3pp can be seen.
This reflects the fact that predicting all arguments
for a single predicate as a sequence is better than pre-
dicting them independently. The same behavior can
be seen also from the methods using pure syntac-
tic dependency parsing techniques, which have been
shown to achieve the current state-of-the-art perfor-
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P R F UF
Czech Open
ID 77.53 73.20 75.30 83.03
OOD 65.11 62.35 63.70 83.10
Chinese Open
ID 80.81 78.51 79.64 81.36

Table 2: Results for Czech and Chinese data in the open
track. The Czech data is in PSD format and includes
both in-domain (ID) and out-of-domain (OOD) test sets,
whereas the Chinese data is in PAS format and has only
in-domain test set.

DM PAS PSD Overall
Gold in-domain
SD 88.29 95.58 76.57 86.81
DB 93.88 92.63 75.00 87.17
Overall-max 88.68
Gold out-of-domain
SD 82.11 92.92 75.47 83.50
DB 88.60 88.93 73.43 83.65
Overall-max 85.66

Table 3: English gold track (in-domain & out-of-domain)
results in terms of labeled F-score when using Stanford
Dependencies (SD) and DeepBank (DB) style syntactic
annotations.

mance. From out-of-domain scores we see that our
system performs clearly better on in-domain data,
the overall labeled F-score being 4.6pp lower when
tested with out-of-domain data. Czech and Chinese
open track scores are shown in Table 2.

We also provide evaluation on gold syntactic trees
(gold track) using both Stanford Dependencies and
DeepBank syntactic representations.2 As can be
seen from the gold track results (see Table 3) our
system clearly benefits from gold-standard syntactic
analyses. When comparing the performances of two
syntactic representations on different formats, we
can see that the optimal syntactic representation for
DM format is DeepBank, whereas Stanford Depen-
dencies fare better on PAS and PSD formats. When
the best-performing syntactic representation is cho-
sen for each format, the overall benefit on in-domain
data is 5.2pp and 6.8pp on out-of-domain data com-
pared to the open track results. Out-of-domain re-
sults improving more than in-domain results points
out that better syntactic analyses help the system
make more universal decisions.

2Unfortunately, Enju parses are not included since we could
not overcome some of the problems they had in time.

The system is better at predicting relations be-
tween tokens close to each other. For example in
the case of DM in-domain, relations between tokens
next to each other are predicted at F-score of 92.04%
while relations longer than 10 tokens at a rate of
65.11%. However, the gold syntactic analyses help
predicting long relations. If we look only the rela-
tions which are ten or more tokens apart, the max-
imum improvement brought by gold standard syn-
tax is 19pp for out-of-domain PAS and the minimum
improvement is 6pp for in-domain DM.

5 Conclusions

Our entry in the shared task was based on an ex-
isting dependency parser, whose transition system
we modified so as to essentially use the parser as
a sequence classifier based on online learning and
beam search. Compared to our last year’s entry, the
arguments of a single predicate are thus no longer
predicted independently. This is accompanied by
a notable gain in accuracy over the previous sys-
tem which used similar features but predicted all
arguments independently. From a technical point
of view, basing the work on an existing parser was
rather straightforward and the entire development
was carried out over a period of less than two weeks.

Even though clearly better than our last year’s sys-
tem, the overall performance still leaves room for
improvement. One possible direction would be to
carry out a proper feature selection and improve the
underlying machine learning algorithm of the parser
to, for example, incorporate regularization. As the
parser generates a large number of features opti-
mized for syntactic parsing, it is likely that many of
these are irrelevant and potentially harmful for the
online-trained linear classifier.

Finally, we will evaluate the system on the Finnish
PropBank data, and intend to apply it at scale to
carry out SRL of the 3.2 billion token Finnish In-
ternet Parsebank (Kanerva et al., 2014b).

Acknowledgments

This work was supported by the Emil Aaltonen
Foundation and the Kone Foundation. Computa-
tional resources were provided by CSC – IT Center
for Science. We would like to thank Dan Zeman for
providing us the MaltParser model for Czech.

968



References
Bernd Bohnet and Jonas Kuhn. 2012. The best of

both worlds: a graph-based completion model for
transition-based parsers. In Proceedings of the 13th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 77–87.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 1455–1465.

Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto,
and Kentaro Torisawa. 2009. Improving dependency
parsing with subtrees from auto-parsed data. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 2 - Vol-
ume 2, EMNLP ’09, pages 570–579, Stroudsburg, PA,
USA.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
EMNLP’02, pages 1–8.

Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun Wan.
2014. Peking: Profiling syntactic tree parsing tech-
niques for semantic graph parsing. SemEval 2014,
page 459.
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{atm,mla}@priberam.pt

Abstract

As part of the SemEval-2015 shared task on
Broad-Coverage Semantic Dependency Pars-
ing, we evaluate the performace of our last
year’s system (TurboSemanticParser) on mul-
tiple languages and out-of-domain data. Our
system is characterized by a feature-rich lin-
ear model, that includes scores for first and
second-order dependencies (arcs, siblings,
grandparents and co-parents). For decoding
this second-order model, we solve a linear re-
laxation of that problem using alternating di-
rections dual decomposition (AD3). The ex-
periments have shown that, even though the
parser’s performance in Chinese and Czech at-
tains around 80% (not too far from English
performance), domain shift is a serious issue,
suggesting domain adaptation as an interest-
ing avenue for future research.

1 Introduction

The last years have witnessed a continuous progress
in statistical multilingual models for syntax, thanks
to shared tasks such as CoNLL 2006-7 (Buchholz
and Marsi, 2006; Nivre et al., 2007) and, more re-
cently, SPMRL 2013-14 (Seddah et al., 2013; Sed-
dah et al., 2014). As a global trend, we observe
that models that incorporate rich global features are
typically more accurate, even if pruning is neces-
sary or decoding needs to be approximate (McDon-
ald et al., 2006; Koo and Collins, 2010; Bohnet and
Nivre, 2012; Martins et al., 2009, 2013). The same
rationale applies to semantic dependency parsing,
also a structured prediction problem, but where the
output variable is a semantic graph, rather than a
syntactic tree. Indeed, the best performing systems

in last year shared task on broad-coverage seman-
tic dependency parsing follow this principle (Oepen
et al., 2014). This year, a new challenge was put
forth: how to handle multiple languages and out-of-
domain data?

Our proposed parser (§2) is essentially the same
that we submitted in the previous year to the same
SemEval task (Martins and Almeida, 2014), where
we scored top in the open challenge and second in
the closed track. This year, we report results using
new out-of-domain and multilingual data (namely,
Czech and Chinese, in addition to English). For the
English language, we participated in the closed and
open tracks, using as additional resources the syn-
tactic dependency annotations provided by the orga-
nizers. For Czech and Chinese, we only addressed
the closed track, since no companion data were pro-
vided for these languages. We did not participate in
the gold track that uses gold-standard syntactic an-
notations; and we did not address the prediction of
predicate senses.

2 Semantic Parser

For this year’s shared task, we re-run the semantic
parser that we developed last year, which is fully
desc1ribed in Martins and Almeida (2014), on the
new datasets. Since this parser was designed to
be multi-lingual, it was straightforward to apply it
to the languages introduced this year (Chinese and
Czech), as well as on the out-of-domain data.

We briefly describe our semantic parser (which
we dub TurboSemanticParser and release as open-
source software1), and refer the interested reader to

1http://labs.priberam.com/Resources/
TurboSemanticParser
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Figure 1: Parts considered by our semantic parser. The
top row illustrate the basic parts, representing the event
that a word is a predicate, or the existence of an arc be-
tween a predicate and an argument, eventually labeled
with a semantic role. Our second-order model looks at
some pairs of arcs: arcs bearing a grandparent relation-
ship, arguments of the same predicate, predicates shar-
ing the same argument, and consecutive versions of these
two.

Martins and Almeida (2014) for further details.
The parser was built as an extension of a re-

cent dependency parser, TurboParser (Martins et al.,
2010, 2013), with the goal of performing semantic
parsing using any of the three formalisms consid-
ered in the shared task (DM, PAS, and PSD). We
have followed prior work in semantic role label-
ing (Toutanova et al., 2005; Johansson and Nugues,
2008; Das et al., 2012; Flanigan et al., 2014), by
adding constraints and modeling interactions among
arguments within the same frame; however, we went
beyond such sibling interactions to consider more
complex grandparent and co-parent structures, ef-
fectively correlating different predicates. The over-
all set of parts used by our parser is illustrated in Fig-
ure 1; note that by using only a subset of the parts
(predicate, arc, labeled arc, and sibling parts), the
semantic parser decodes each predicate frame inde-
pendently from other predicates; it is the co-parent
and grandparent parts that have the effect of creating
inter-dependence among predicates; we will analyze
the effect of these dependencies in the experimental
section (§3).

For each part in our model (shown in Figure 1),
we computed binary features based on various com-
bination of lexical forms, lemmas, POS tags and
syntactic dependency relations of words related to
the corresponding predicates and arguments. Most
of these features were taken from TurboParser (Mar-
tins et al., 2013), and others were inspired by the

semantic parser of Johansson and Nugues (2008).
To tackle all the parts, we formulate parsing as a

global optimization problem and solve a relaxation
through AD3 (Martins et al., 2011), a fast dual de-
composition algorithm in which several simple local
subproblems are solved iteratively. Through a rich
set of features, we arrive at top accuracies at parsing
speeds around 1,000 tokens per second. See Mar-
tins and Almeida (2014) for details on the model,
features and decoding process that were used.

3 Experimental Results

All models were trained by running 10 epochs of
max-loss MIRA with C = 0.01 (Crammer et al.,
2006). The cost function takes into account mis-
matches between predicted and gold dependencies,
with a cost cP on labeled arcs incorrectly predicted
(false positives) and a cost cR on gold labeled arcs
that were missed (false negatives). These values
were set through cross-validation in the dev set,
yielding cP = 0.4 and cR = 0.6 in all runs, ex-
cept for the English PSD dataset in the closed track,
for which cP = 0.3 and cR = 0.7.

As in the previous work, we speed up decoding by
training a probabilistic unlabeled first-order pruner
and discarding the arcs whose posterior probability
is below 10−4. This allows a significant reduction of
the search space with a very small drop in recall.

Table 1 shows our final results in the test set, for
a model trained in the train and development par-
titions. Note that we do not report scores for com-
plete predications, since we did not predict predicate
sense. Our system achieved the best final score in 3
out of the 4 tracks for the English language, and for
the in-domain closed track in the Czech language.
For the remaining 3 tracks we scored relatively close
to the best system (Peking), which consists of an
ensemble of various methods. For all languages,
the runtimes are in par with last year’s submission
(around 1,000 tokens per second).

As expected, the scores obtained for out-of-
domain data are significantly below those obtained
with in-domain data. This degradation becomes par-
ticularly striking for Czech, with F1-scores dropping
more than 15%. This suggests that domain adap-
tation (Blitzer et al., 2006; Daumé III, 2007) is an
interesting research avenue for future work. In ad-
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Our System Peking
UP UR UF LP LR LF Avg. LF Avg. LF

Eng. DM, closed, id 91.13 87.88 89.48 89.84 86.64 88.21
Eng. PAS, closed, id 93.12 91.14 92.12 91.87 89.92 90.88 85.15 85.33
Eng. PSD, closed, id 89.83 84.81 87.25 78.62 74.23 76.36
Eng. DM, open, id 91.62 89.46 90.52 90.52 88.39 89.44
Eng. PAS, open, id 93.50 91.93 92.71 92.45 90.90 91.67 86.23 –
Eng. PSD, open, id 91.27 86.16 88.64 79.88 75.41 77.58
Eng. DM, closed, ood 86.78 80.74 83.65 84.81 78.90 81.75
Eng. PAS, closed, ood 90.17 86.89 88.50 88.52 85.30 86.88 81.15 80.78
Eng. PSD, closed, ood 88.32 80.05 83.98 78.68 71.31 74.82
Eng. DM, open, ood 87.56 83.52 85.49 85.79 81.84 83.77
Eng. PAS, open, ood 90.42 87.91 89.15 88.88 86.41 87.63 82.53 –
Eng. PSD, open, ood 89.91 81.47 85.48 80.12 72.61 76.18
Chi. PAS, closed, id 85.56 81.99 83.74 83.81 80.31 82.02 82.02 83.43
Cze. PSD, closed, id 90.15 81.55 85.63 83.52 75.54 79.33 79.33 78.45
Cze. PSD, closed, ood 86.58 75.97 80.93 67.93 59.61 63.50 63.50 64.37

Table 1: Final scores in the test data. For comparison, we show the scores of the Peking system – our best competitor.

dition, as found last year for English, the gap be-
tween labeled and unlabeled scores is much higher
in the PSD formalism (for English and Czech) then
it is for the DM and PAS formalism (for English and
Chinese).

Finally, to assess the importance of the second or-
der features, Table 2 reports experiments in the dev-
set that progressively add several groups of features.
We can see that second order features provide valu-
able information that improves the final scores. In
particular, the higher-order features are extremely
useful for Chinese and Czech, where we can observe
gains of 1.5–2.0% over a sibling model that factors
over predicates.

4 Conclusions

Our system, which is inspired by prior work in
syntactic parsing, implements a linear model with
second-order features, being able to model interac-
tions between siblings, grandparents and co-parents.
We have shown empirically that, for all the three lan-
guages, second-order features that correlate multiple
predicates have a strong impact in the final scores.
However, there is a large drop in accuracy when
moving to out-of-domain data.

UF LF
Eng. DM, arc-factored 90.19 89.20
Eng. DM, arc-factored, pruned 90.13 89.16

+siblings 90.56 89.53
full system 91.21 90.12

Eng. PAS, arc-factored 92.42 91.52
Eng. PAS, arc-factored, pruned 92.44 91.54

+siblings 92.50 91.53
full system 92.98 91.98

Eng. PSD, arc-factored 87.54 79.69
Eng. PSD, arc-factored, pruned 87.47 79.73

+siblings 88.10 79.87
full system 89.82 80.08

Chi. PAS, arc-factored 81.10 79.49
Chi. PAS, arc-factored, pruned 81.06 79.43

+siblings 81.54 79.70
full system 83.48 81.62

Cze. PSD, arc-factored 84.27 79.77
Cze. PSD, arc-factored, pruned 83.96 79.39

+siblings 85.53 80.44
full system 87.90 81.82

Table 2: Unlabeled/labeled F1 scores in the dev-set, pro-
gressively adding groups of features. English results are
for the open track, while Czech and Chinese results are
for the closed track.
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Hall Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proc. of Annual Meeting of the Association
for Computational Linguistics (ACL), pages 256–263.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the abstract meaning represen-
tation. In Proc. of the Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1426–1436.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based syntactic–semantic analysis
with PropBank and NomBank. Int. Conf. on Natural
Language Learning (CoNLL), pages 183–187.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proc. of Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1–11.
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