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Abstract 

Named entity recognition is a fundamental task in 
biological relationship mining.  This paper 
employs protein collocates extracted from a 
biological corpus to enhance the performance of 
protein name recognizers.  Yapex and KeX are 
taken as examples.  The precision of Yapex is 
increased from 70.90% to 81.94% at the low 
expense of recall rate (i.e., only decrease 2.39%) 
when collocates are incorporated.  We also 
integrate the results proposed by Yapex and KeX, 
and employs collocates to filter the merged results.  
Because the candidates suggested by these two 
systems may be inconsistent, i.e., overlap in partial, 
one of them is considered as a basis.  The 
experiments show that Yapex-based integration is 
better than KeX-based integration. 

1 Introduction 

Named entities are basic constituents in a 
document.  Recognizing named entities is a 
fundamental step for document understanding.  In 
a famous message understanding competition 
MUC (Darpa, 1998), named entities extraction, 
including organizations, people, and locations, 
along with date/time expressions and monetary and 
percentage expressions, is one of the evaluation 
tasks.  Several approaches have been proposed to 
capture these types of terms.  For example, 
corpus-based methods are employed to extract 
Chinese personal names, and rule-based methods 
are used to extract Chinese date/time expressions 
and monetary and percentage expressions (Chen 
and Lee, 1996; Chen, et al., 1998).  Corpus-based 
approach is adopted because a large personal name 
database is available for training.  In contrast, 
rules which have good coverage exist for date/time 
expressions, so the rule-based approach is adopted. 

In the past, named entities extraction mainly 
focuses on general domains.  Recently, large 
amount of scientific documents has been published, 
in particular for biomedical domains.  Several 
attempts have been made to mine knowledge from 
biomedical documents (Hirschman, et al., 2002).  
One of their goals is to construct a knowledge base 
automatically and to find new information 
embedded in documents (Craven and Kumlien, 
1999).  Similar information extraction works have 
been explored on this domain.  Named entities 
like protein names, gene names, drug names, 
disease names, and so on, were recognized (Collier, 
et al., 2000; Fukuda, et al., 1998; Olsson, et al., 
2002; Rindflesch, et al., 2000).  Besides, the 
relationships among these entities, e.g., 
protein-protein, protein-gene, drug-gene, 
drug-disease, etc., were extracted (Blaschke, et al., 
1999; Frideman, et al., 2001; Hou and Chen, 2002; 
Marcotte, et al., 2001; Ng and Wong, 1999; Park, 
et al., 2001; Rindflesch, et al., 2000; Thomas, et al., 
2000; Wong, 2001). 

Collocation denotes two or more words having 
strong relationships (Manning and Schutze, 1999).  
The related technologies have been applied to 
terminological extraction, natural language 
generation, parsing, and so on.  This paper deals 
with a special collocation in biological domain – 
say, protein collocation.  We will find out those 
keywords that co-occur with protein names by 
using statistical methods.  Such terms, which are 
called collocates of proteins hereafter, will be 
considered as restrictions in protein name 
extraction.  To improve the precision rate at the 
low expense of recall rate is the main theme of this 
approach. 

The rest of the paper is organized as follows.  
The protein name recognizers used in this study are 
introduced in Section 2.  The collocation method 



we adopted is shown in Section 3.  The filtering 
and integration strategies are explained in Sections 
4 and 5, respectively.  Finally, Section 6 
concludes the remarks and lists some future works. 

2 

3 

Protein Name Recognizers 

The detection of protein names presents a 
challenging task because of their variant structural 
characteristics, their resemblance to regular noun 
phrases and their similarity with other kinds of 
biological substances.  Previous approaches on 
biological named entities extraction can be 
classified into two types – say, rule-based (Fukuda, 
et al., 1998; Humphreys, et al., 2000; Olsson, et al., 
2002) and corpus-based (Collier, et al., 2000).  
KeX developed by Fukuda, et al. (1998) and 
Yapex developed by Olsson, et al. (2002) were 
based on handcrafted rules for extracting protein 
names.  Collier, et al. (2000) trained a Hidden 
Markov Model with a small corpus of 100 
MEDLINE abstracts to extract names of gene and 
gene products. 

Different taggers have their specific features.  
KeX was evaluated by using 30 abstracts on SH3 
domain and 50 abstracts on signal transduction, 
and achieved 94.70% precision and 98.84% recall.  
Yapex was applied to a test corpus of 101 abstracts.   
Of these, 48 documents were queried from protein 
binding and interaction, and 53 documents were 
randomly chosen from GENIA corpus.  The 
performance of tagging protein names is 67.8% 
precision and 66.4% recall.  While the same test 
corpus was applied to KeX, it got 40.4% precision 
and 41.1% recall.  It reveals that each tagger has 
its own characteristics.  Changing the domain 
may result in the variant performance.  
Consequently, how to select the correct molecular 
entities proposed from the existing taggers is an 
interesting issue. 

Statistical Methods for Collocation 

The overall flow of our method is shown in Figure 
1.  To extract protein collocates, we need a corpus 
in which protein names have been tagged.  Thus, 
we prepare a tagged biological corpus by looking 
up the protein lexicon in the first step.  Then, 
common stop words are removed and the 
stemming procedure is applied to gather and group 
more informative words.  Next, the collocation 

values of proteins and their surrounding words are 
calculated.  Finally, we use these values to tell 
which neighbouring words are the desired 
collocates.  The major modules are specified in 
detail in the following subsections. 
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Figure 1. Flow of Mining Protein Collocates 

3.1 Step 1: Tagging the Corpus 

On the one hand, to calculate the collocation 
values of words with proteins from a corpus, it is 
necessary to recognize protein names at first.  On 
the other hand, the goal of this paper deals with 
performance issue of protein name tagging.  
Hence, preparing a protein name tagged corpus and 
developing a high performance protein name 
tagger seem to be a chicken-egg problem.  
Because the corpus developed in the first step is 
used to extract the contextual information of 
proteins, a completely tagged corpus is not 
necessary at the first step.  Dictionary-based 
approach for name tagging, i.e., full pattern 
matching between the dictionary entries and the 
words in the corpus, is simple.  The major 
argument is its coverage.  Those protein names 
which are not listed in the dictionary, but appear in 
the corpus will not be recognized.  Thus this 
approach only produces a partial-tagged corpus, 
but it is enough to acquire contextual information 
for latter use. 



3.2 Step 2: Preprocessing 

3.2.1 Step 2.1: Exclusion of Stopwords 

Stopwords are common English words (such as 
preposition “in” and article “the”) that frequently 
appear in the text but are not helpful in 
discriminating special classes.  Because they are 
distributed largely in the corpus, they should be 
filtered out.  The stopword list in this study was 
collected with reference to the stoplists of Fox 
(1992), but the words also appearing in the protein 
lexicon are removed.  For example, “of” is a 
constituent of the protein name “capsid of the 
lumazine”, so that “of” is excluded from the 
stoplist.  Finally, 387 stopwords were used. 

3.2.2 Step 2.2: Stemming 

Stemming is a procedure of transforming an 
inflected form to its root form.  For example, 
“inhibited” and “inhibition” will be mapped into 
the root form “inhibit” after stemming.  
Stemming can group the same word semantics and 
reflect more information around the proteins. 

3.3 Step 3: Computing Collocation Statistics 

The collocates of proteins are those terms that 
often co-occur with protein names in the corpus.  
In this step, we calculate three collocation statistics 
to find the significant terms around proteins. 

Frequency 

The collocates are selected by frequency.  In 
order to gather more flexible relationships, here we 
define a collocation window that has five words on 
each side of protein names.  And then collocation 
bigrams at a distance are captured.  In general, 
more occurrences in the collocation windows are 
preferred, but the standard criteria for frequencies 
are not acknowledged.  Hence, other collocation 
models are also considered. 

Mean and Variance 

The mean value of collocations can indicate how 
far collocates are typically located from protein 
names.  Furthermore, variance shows the 
deviation from the mean.  The standard deviation 
of value zero indicates that the collocates and the 
protein names always occur at exactly the same 

distance equal to the mean value.  If the standard 
deviation is low, two words usually occur at about 
the same distance, i.e., near the mean value.  If 
the standard deviation is high, then the collocates 
and the protein names occur at random distance. 

t-test Model 

When the values of mean and variance have been 
computed, it is necessary to know if two words do 
not co-occur by chance.  Moreover, we also have 
to know if the standard deviation is low enough.  
In other words, we have to set a threshold in the 
above approach.  To get the statistical confidence 
that two words have a collocation relationship, 
t-test hypothesis testing is adopted. 

The t-value for each word i is formulated as 
follows: 
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proteinp  is the probability of protein. 
When α (confidence level) is equal to 0.005, the 

value of t is 2.576.  In the t-test model, if the 
t-value is larger than 2.576, the word is regarded as 
a good collocate of protein with 99.5% confidence. 

3.4 Step 4: Extraction of Collocates 

We applied the above procedure to a corpus 
downloaded from the PASTA website in Sheffield 
University with 1,514 MEDLINE abstracts 
[http://www.dcs.shef.ac.uk/nlp/pasta].  Of the 
4,782 different stemmed words appearing in the 
collocation windows, there are 541 collocations 
generated in Step 3.  The collocates are not 
tagged with parts of speech, so that the output may 
contain nouns, prepositions, numbers, verbs, etc. 

The collocates extracted in a corpus cannot only 
serve as conditions of protein names, but also 
facilitate the relationship discovery between 
proteins.  From the past papers on the extraction 
of the biological information, such as Blaschke, et 



al. (1999), Ng, et al. (1999), and Ono, et al. (2001) 
etc., verbs are the major targets.  This is because 
many of the subjects and the objects related to 
these verbs are names of genes or proteins.  To 
assure that the collocates selected in Step 3 are 
verbs, we assign parts of speech to these words.  
Appendix A lists the collocates and their 
variations. 

4 Filtering Strategies 

For protein name recognition, rule-based systems 
and dictionary-based systems are usually 
complementary.  Rule-based systems can 
recognize those protein names not listed in a 
dictionary, but some false entities may also pass at 
the same time.  Dictionary-based systems can 
recognize those proteins in a dictionary, but the 
coverage is its major deficiency.  In this section, 
we will employ collocates of proteins mined earlier 
to help identify the molecular entities.  Yapex 
system (Olsson et al., 2002) is adopted to propose 
candidates, and collocates are served as restrictions 
to filter out less possible protein names. 

The following filtering strategies are proposed.  
Assume the candidate set M0 is the output 
generated by Yapex. 
z M1: For each candidate in M0, check if a 

collocate is found in its collocation window.  
If yes, tag the candidate as a protein name.  
Otherwise, discard it. 

z M2: Some of the collocates may be 
substrings of protein names.  We relax the 
restriction in M1 as follows.  If a 
collocate appears in the candidate or in the 
collocation window of the candidate, then 
tag the candidate as a protein name; 
otherwise, discard it. 

z M3: Some protein names may appear more 
than once in a document.  They may not 
always co-occur with some collocate in 
each occurrence.  In other words, the 
protein candidate and some collocates may 
co-occur in the first occurrence, the second 
occurrence, or even the last occurrence.  
We revise M1 and M2 as follows to 
capture this phenomenon.  During 
checking if there exists a collocate 
co-occurring with a protein candidate, the 
candidate without any collocate is kept 
undecidable instead of definite no.  After 

all the protein names are examined, those 
undecidable candidates may be considered 
as protein names when one of their 
co-occurrences containing any collocate.  
In other words, as long as a candidate has 
been confirmed once, it is assumed to be a 
protein throughout.  In this way, there are 
two filtering alternatives M31 and M32 
from M1 and M2, respectively. 

To get more objective evaluation, we utilized 
another corpus of 101 abstracts used by Yapex 
[http://www.sics.se/humle/projects/prothalt].  
Using the test corpus and answer keys supported in 
Yapex project, the evaluation results on filtering 
strategies are listed in Table 1. 

 
Table 1.  Evaluation on Filtering Strategies 
 Precision Recall F-score 
M0 70.90% 69.53% 70.22% 
M1 79.18% 56.10% 67.64% 
M2 79.29% 56.66% 67.98% 
M31 81.97% 66.84% 74.41% 
M32 81.94% 67.14% 74.54% 
 

Compared with the baseline model M0, the 
precision rates of all the four models using 
collocates were improved more than 8%.  The 
recall rates of M1 and M2 decreased about 13%. 
Thus, the overall F-scores of M1 and M2 
decreased about 2% compared to M0.  In contrast, 
if the decision of tagging was deferred until all the 
information were considered, then the recall rate 
decreased only 2% and the overall F-scores of M31 
and M32 increased 4% relative to M0.  The best 
one, M32, improved the precision rate from 
70.90% to 81.94%, and the F-score from 70.22% 
to 74.54%.  That meets our expectation, i.e., to 
enhance the precision rate, but not to reduce the 
significant recall rate. 

5 Integration Strategies 

Now we consider how to improve the recall rates. 
Integration strategies based on a hybrid concept are 
introduced.  The basic idea is that different 
protein name taggers have their own specific 
features such that they can recognize some tagging 
objects according to their rules or recognition 
methods.  Among the proposed protein names by 
different recognizers, there may exist some 
overlaps and some differences.  In other words, a 



protein name recognizer may tag a protein name 
that another recognizer cannot identify, or both of 
them may accept certain common proteins.  The 
integration strategies are used to select correct 
protein names proposed by multiple recognizers.  
In this study, we made experiments on Yapex and 
KeX because they are freely available on the web. 

Because protein candidates are proposed by two 
named entity extractors independently, they may 
be totally separated, totally overlap, overlapped in 
between, overlapped in the beginning, and 
overlapped in the end.  Figure 2 demonstrates 
these five cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 

 

The integration strategies shown as follows 
combine the results from two sources. 
z When the protein names produced from 

two recognizers are totally separated (i.e., 
type A), retain them as the protein 
candidates.  This integration strategy 
postulates that one protein name 
recognizer may extract some proteins that 
another one cannot identify. 

z When the protein names produced from 
two recognizers are exactly the same (i.e., 
type B), retain them as the protein 

candidates.  Because both taggers accept 
the same protein names, there must exist 
some special features that fit protein 
names. 

z When the protein names tagged by two 
taggers have partial overlap (i.e., types C, 
D and E), two additional integration 
strategies are employed, i.e., Yapex-based 
and KeX-based strategies.  In the former 
strategy, we adopt protein names tagged 
by Yapex as candidates and discard the 
ones produced by KeX.  In contrast, the 
names tagged by KeX are kept in the latter 
strategy.  The integration strategy is 
made because each recognizer has its own 
characteristics, and we do not know which 
one is performed better in advance. 

Type A: totally separated 

The above integration strategies put together all 
the possible protein candidates except the 
ambiguous cases (i.e., types C, D and E).  That 
tends to increase the recall rate.  To avoid 
decreasing the precision rate, we also employ the 
collocates mentioned in Section 3 to filter out the 
less possible protein candidates.  Furthermore, to 
objectively evaluate the performance of the 
proposed collocates, we employ the same 
strategies to the same test corpus with some terms 
suggested by human experts.  Total 48 verbal 
keywords which were used to find the pathway of 
proteins are used and listed in Appendix B. 

Type B: totally overlap 

Type C: overlapped in between 

Type D: overlapped in the beginning 

Four sets of experiments were designed as 
follows for Yapex- and KeX-based integration 
strategies, respectively. 

Type E: overlapped in the end 

(1)YA and KA: Use the collocates automatically 
extracted in Section 3 to filter out the candidates as 
described in Section 4. 

(2)YB and KB: Use the terms suggested by 
human experts for the filtering strategies. 

Figure 2. Candidates Proposed by Two Systems 

(3)YA-C and KA-C: If Yapex and KeX 
recommend the same protein names (i.e., type B), 
regard them as protein names without 
consideration of collocates.  Otherwise, use the 
collocates proposed in this study to make filtering. 

(4)YB-C and KB-C: Similar to (3) except that 
the collocates are replaced by the terms suggested 
by human experts. 

The experimental results are listed in Tables 2 
and 3.  The tendency M32>M31>M2>M1 is still 
kept in the new experiments.  The strategy of 
delaying the decision until clear evidence is found 
is workable.  The performances of YA, YA-C, KA, 



and KA-C are better than the performances of the 
corresponding models (i.e., YB, YB-C, KB, and  

 
Table 2. Evaluation Results on Yapex-based 
Integration Strategy 
YA Precision Recall F-score 

M0 61.98% 77.52% 69.75% 
M1 64.97% 62.82% 63.90% 
M2 65.02% 63.53% 64.28% 
M31 65.94% 74.26% 70.10% 
M32 65.90% 74.62% 70.26% 

YB    
M1 66.79% 44.30% 55.55% 
M2 66.79% 44.81% 55.80% 
M31 70.20% 65.06% 67.63% 
M32 70.19% 65.51% 67.85% 

YA-C    
M1 65.76% 69.18% 67.47% 
M2 65.88% 69.84% 67.86% 
M31 65.39% 75.43% 70.41% 
M32 65.38% 75.69% 70.54% 

YB-C    
M1 68.92% 58.09% 63.51% 
M2 68.78% 58.49% 63.64% 
M31 69.07% 69.08% 69.13% 
M32 69.07% 69.63% 69.35% 

 
Table 3. Evaluation Results on KeX-based 
Integration Strategy 
KA Precision Recall F-score 

M0 60.43% 70.60% 65.52% 
M1 63.82% 56.61% 60.22% 
M2 63.52% 57.22% 60.37% 
M31 64.39% 65.56% 64.98% 
M32 64.03% 65.92% 64.98% 

KB    
M1 67.56% 41.20% 54.38% 
M2 66.99% 41.71% 54.35% 
M31 69.57% 55.70% 61.64% 
M32 69.25% 56.26% 62.76% 

KA-C    
M1 64.72% 63.17% 63.95% 
M2 64.44% 63.68% 64.06% 
M31 63.83% 66.79% 65.31% 
M32 63.49% 67.04% 65.27% 

KB-C    
M1 69.57% 55.60% 62.59% 
M2 69.15% 56.10% 64.06% 
M31 68.36% 60.22% 64.29% 
M32 68.09% 60.78% 64.44% 

KB-C).  It shows that the set of collocates 
proposed by our system is more complete than the 
set of terms suggested by human experts.  
Compared with the recall rate of M0 in Table 1 
(i.e., 69.53%), the recall rates of both Yapex- and 
KeX-based integration are increased, i.e., 77.52% 
and 70.60%, respectively.  That matches our 
expectation.  However, the precision rates are 
decreased more than the increase of recall rates.  
In particular, the F-score of KeX-based integration 
strategy is 4.70% worse than that of the baseline 
M0.  It shows that KeX performed not well in this 
test set, so it cannot recommend good candidates in 
the integration stage.  Moreover, the F-scores of 
M31 and M32 of YA and YA-C are better than that 
of M0 in Table 1.  It reveals that Yapex 
performed better in this test corpus, so that we can 
enhance the performance by both the filtering and 
integration strategies.  Nevertheless, the models 
in Tables 2 and 3 still cannot compete to M32 in 
Table 1.  The reason may be some heuristic rules 
used in Yapex are modified from KeX (Olsson et 
al., 2002). 

6 Concluding Remarks 

This paper shows a fully automatic way of mining 
collocates from scientific text in the protein 
domain, and employs them to improve the 
performance of protein name recognition 
successfully.  The same approach can be extended 
to other domains like gene, DNA, RNA, drugs, and 
so on.  The collocates extracted from a domain 
corpus are also important keywords for pathway 
discovery, so that a systematic way from basic 
named entities finding to complex relationships 
discovery can be established. 

Applying filtering strategy only demonstrates 
better performance than applying both filtering and 
integration strategies together in this paper.  One 
of the possible reasons is that the adopted systems 
are similar, i.e., both systems are rule-based, and 
some heuristic steps used in one system are 
inherited from another.  The effects of combining 
different types of protein name taggers, e.g., 
rule-based and corpus-based, will be investigated 
in the future. 
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-s) / bound, bond (-, -ed, -ing, -s), bridge (-, -d, -s), 
calculat (-ed, -ion), called, carr (-ied, -ier, -ies), 
cataly (-sed, -ses, -stic, -ze, -zed, -zes, -zing), cause 
(-, -d, -s), center (-, -ed) / centre (-, -s), chang (-e, 
-ed, -es, -ing), characteriz (-ation, -e, -ed, -es, -ing), 
charg (-e, -ed), class (-, -es, -ified, -ifying), cleav 
(-e, -ed, -es, -ing), clos (-e, -ed, -ing), coil (-, -ed), 
compar (-e, -ed, -ing, -ison, -isons), complex (-, -ed, 
-es), composed, compris (-es, -ing), conclu (-de, 
-ded, -sion, -sions), conserved, consist (-, -ed, -ent, 
-ing, -s), constitut (-e, -ed, -es), contact (-, -s), 
contain (-, -ed, -ing, -s), coordinat (-e, -ed, -es, 
-ion), correlat (-e, -ed), correspond (-, -ing), crystal 
(-, -lize, -lized, -lizes, -s), cycl (-e, -es, -ing), define 
(-d, -s), demonstrat (-e, -ed, -es, -ing), depend (-, 
-ent, -ing), derived, describe (-, -d), design (-, -ed, 
-ing), detail (-, -ed, -s), determin (-ation, -ations, -e, 
-ed, -es, -ing), differ (-ence, -ences, -s), diffract 
(-ing, -ion), digest (-ed, -s), dimer (-, -ic, -ization, 
-ize), direct (-, -ed, -s), discuss (-, -ed), display (-, 
-s), disrupt (-, -ed, -ing, -s), effect (-, -s), encod (-e, 
-ed, -ing), enhanc (-e, -ed, -er, -es, -ing), exhibit (-, 
-ed, -s), exist (-, -s), explain (-, -ed, -ing, -s), 
express (-ed, -ing), extend (-, -ed), facilitat (-e, -es, 
-ing), finding / found, fold (-, -ed, -ing, -s), form (-, 
-ed, -ing, -s), function (-, -al, -ing, -s), groove (-, 
-s), hydroly (-sis, -zed, -zes), identif (-ied, -ies, -y), 
implicat (-e, -ed, -ions), inactiv (-ated, -ates, -e), 
includ (-ed, -es, -ing), indicat (-e, -ed, -es, -ing), 
induc (-e, -ed, -es, -ing), inhibit (-, -ed, -ing, -ion, 
-or, -ors, -s), initiat (-ed, -es), insert (-, -ed, -ing), 
interact (-, -ing, -ion, -ions, -s), involv (-e, -ed, -es, 
-ing), isolated, lack (-, -s), lead (-, -ing, -s), ligand 
(-, -ed, -s), like, link (-, -ed, -ing), located, loop (-, 
-ing, -s), mediat (-e, -ed, -es, -ing), model (-, -ed, 
-ing, -s), modul (-ate, -ates, -ating, -e, -es), mutat 
(-ed, -ions), observ (-e, -ed), obtain (-, -ed), occup 
(-ied, -ies), occur (-, -red, -s), organiz (-ation, -ed), 
oxidiz (-ed, -ing), phosphorylate (-d, -s), play (-, 
-s), position (-, -ed, -ing, -s), predict (-, -ed, -ing), 
presen (-ce, -ted, -ting), produc (-e, -ed, -es, -ing), 
promot (-e, -er, -es, -ing), proposed, proton (-, 
-ated, -s), provid (-e, -ed, -es, -ing), purif (-ied, -y), 
react (-, -ion, -tive, -s), recogni (-tion, -zed, -zes, 
-ing), reduc (-ed, -es, -ing, -tase, -tion), refined, 
regulat (-e, -ed, -es, -ing, -ion, -ory), relat (-ed, -es, 

-ive), repeat (-, -ed, -s), replaced, report (-, -ed), 
represent (-, -ed, -ing, -s), requir (-e, -ed, -es, -ing), 
resembl (-e, -ed, -es, -ing), resol (-ution, -ve), 
result (-, -ed, -ing, -s), reveal (-, -ed, -s), select (-ed, 
-ive, -ively), sequence (-, -d, -s), serve (-, -s), shape 
(-, -d), share (-, -d, -s), show (-, -n, -s), signal (-, 
-ing, , -ling, -s), sol (-ution, -ved), stabili (sed, -ty, 
-ze, -zed, -zes, -zing), stimulat (-e, -ed, -es, -ion, 
-ory), strain (-, -s), strand (-, -ed, -s), structur (-al, 
-ally, -e, -ed, -es), stud (-ied, -ies, -y, -ying), 
substitut (-e, -es, -ion, -ions), substrate (-, -s), 
suggest (-, -ed, -ing, -ion, -s), support (-, -ing, -s), 
switch (-, -es), synthesi (-s, -ze, -zed), target (-, -ed, 
-ing, -s), transfer (-, -red), transport (-, -s), 
understand (-, -ing) / understood, unexpected, us 
(-e, -ing) 

Appendix B. Terms suggested by an expert 
accompan (-ied, -ies, -y, -ying), activat (-e, -ed, -es, 
-ing, -ion, -or, -ors, -ory), affect (-, -ed, -ing, -s), 
aggregat (-e, -ed, -es, -ing, -ion), assembl (-e, -ed, 
-es, -ing, -y), associat (-e, -ed, -es, -ing, -ion), 
attract (-, -ed, -ing, -ion, -s), bind (-, -ing, -s) / 
bound, catalys (-e, -ed, -es, -ing, -tic), catalyz (-e, 
-ed, -es, -ing), cluster (-, -ed, -ing, -s), communicat 
(-e, -ed, -es, -ing, -ion), complex (-, -ed, -es, -ing), 
construct (-, -ed, -ing, -ion, -s), control (-, -ed, -ing, 
-led, -ling, -s), cooperat (-e, -ed, -es, -ing, -ion, -or, 
-ors), correlat (-e, -ed, -es, -ing, -ion), coupl (-e, 
-ed, -es, -ing), crosslink (-, -ed, -ing, -s), 
deglycosylat (-e, -ed, -es, -ing, -ion, -ory), 
demethylat (-e, -ed, -es, -ing, -ion, -ory), 
dephosphorylat (-e, -ed, -es, -ing, -ion, -ory), effect 
(-, -ed, -ing, -s), eliminat (-e, -ed, -es, -ing, -ion), 
enabl (-e, -ed, -es, -ing), enhanc (-e, -ed, -er, -es, 
-ing), glycosylat (-e, -ed, -es, -ing, -ion, -ory), 
group (-, -ed, -ing, -s), help (-, -ed, -ing, -s), hinder 
(-, -ed, -ing, -s), inactivat (-e, -ed, -es, -ing, -ion, 
-or, -ors, -ory), inhibit (-, -ed, -ing, -ion, -or, -ors, 
-ory, -s), integrat (-e, -ed, -es, -ing, -ion), interact (-, 
-ed, -ing, -ion, -s), link (-, -ed, -ing, -s), methylat 
(-e, -ed, -es, -ing, -ion), obstacl (-e, -ed, -es, -ing), 
participat (-e, -ed, -es, -ing, -ion), phosphorylat (-e, 
-ed, -es, -ing, -ion, -ory), prim (-e, -ed, -es, -ing), 
process (-, -ed, -es, -ing), react (-, -ed, -ing, -ion, 
-or, -ors, -ory, s), regulat (-e, -ed, -es, -ing, 
-ion, ,-or, -ory), relat (-e, -ed, -es, -ing, -ion), signal 
(-, -ed, -ing, , -led, -ling, -s), stimulat (-e, -ed, -es, 
-ing, -ion, ,-or, -ory), suppress (-, -ed, -es, -ing, 
-ion), transduc (-e, -ed, -es, -ing, -tion, ,-tor, -tory), 
trigger (-, -ed, -ing, -s) 
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