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Preface

We are delighted to present you with this volume containing the papers accepted for presentation at the
EACL 2009 Workshop on Computational Approaches to Semitic Languages, held in Athens, Greece, on
March 31st, 2009.

The Workshop is an opportunity for the ACL Special Interest Group on Computational Approaches to
Semitic Languages to meet and discuss current and future directions in Computational Linguistic and
Natural Language Processing approaches to Semitic Languages. Previous workshops took place in 1998
(Montreal), 2002 (Philadelphia), 2005 (Ann Arbor) and 2007 (Prague). We are happy to see more, better
submissions every year. This year we received 19 submissions, of which 9 were selected for presentation
and are included in this volume. These papers address Arabic (both standard and dialectal), Hebrew and
Ancient Syriac, as well as general issues pertaining to all Semitic languages. We are privileged to have
Prof. Michael Gasser (Indiana University) as our keynote speaker this year. Professor Gasser will talk on
Finite state morphology for Ethiopian Semitic languages.

We are extremely grateful to the members of the Program Committee who reviewed the submissions
and helped shape up the Program: Ann Bies (LDC, University of Pennsylvania, USA), Tim Buckwalter
(University of Maryland, USA), Violetta Cavalli-Sforza (Carnegie Mellon University, USA), Joseph
Dichy (University of Lyon 2, France), Michael Elhadad (Ben Gurion University, Israel), Martha W.
Evens (Illinois Institute of Technology, USA), Ray Fabri (University of Malta), Ali Farghaly (Oracle,
USA), Alexander Fraser (University of Stuttgart, Germany), Andrew Freeman (Washington University,
USA), Albert Gatt (University of Aberdeen, UK), Gregory Grefenstette, (Exalead, France), Nizar
Habash (Columbia University, USA), Alon Itai (Technion, Israel), Steven Krauwer (Utrecht University,
Netherlands), Mohamed Maamouri (LDC, University of Pennsylvania USA), Bente Maegaard (CST,
University of Copenhagen, Denmark), Nurit Melnik (Oranim College, Israel), Uzzi Ornan (Technion,
Israel), Owen Rambow (Columbia University, USA), Paolo Rosso (Universidad Politecnica Valencia,
Spain), Khalil Sima’an (University of Amsterdam, Netherlands), Abdelhadi Soudi (Ecole Nationale de
l’Industrie Minerale, Morocco), Adam Ussishkin (University of Arizona, USA), and Imed Zitouni (IBM
Research, USA)

Above all, we would like to thank the authors and the participants of the Workshop. We hope you have
a very enjoyable and productive time in Athens!

Mike Rosner and Shuly Wintner
Program Committee Chairs
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François Barthélemy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Revisiting Multi-Tape Automata for Semitic Morphological Analysis and Generation
Mans Hulden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A Hybrid Approach for Building Arabic Diacritizer
Khaled Shaalan, Hitham M. Abo Bakr and Ibrahim Ziedan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Unsupervised Concept Discovery In Hebrew Using Simple Unsupervised Word Prefix Segmentation for
Hebrew and Arabic

Elad Dinur, Dmitry Davidov and Ari Rappoport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Automatic Treebank-Based Acquisition of Arabic LFG Dependency Structures
Lamia Tounsi, Mohammed Attia and Josef van Genabith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Spoken Arabic Dialect Identification Using Phonotactic Modeling
Fadi Biadsy, Julia Hirschberg and Nizar Habash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Structure-Based Evaluation of an Arabic Semantic Query Expansion Using the JIRS Passage Retrieval
System

Lahsen Abouenour, Karim Bouzoubaa and Paolo Rosso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Syntactic Reordering for English-Arabic Phrase-Based Machine Translation
Jakob Elming and Nizar Habash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v





Conference Program

Tuesday, March 31, 2009

9:00–10:00 Opening Remarks and Invited Talk by Michael Gasser

Session 1: Philology

10:00–10:30 How to Establish a Verbal Paradigm on the Basis of Ancient Syriac Manuscripts
Wido van Peursen

Session 2: Morphology

11:00–11:30 The Karamel System and Semitic Languages: Structured Multi-Tiered Morphology
François Barthélemy
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Abstract 

This paper describes a model that has been de-
veloped in the Turgama Project at Leiden Uni-
versity to meet the challenges encountered in 
the computational analysis of ancient Syriac 
Biblical manuscripts. The small size of the 
corpus, the absence of native speakers, and the 
variation attested in the multitude of textual 
witnesses require a model of encoding—rather 
than tagging—that moves from the formal dis-
tributional registration of linguistic elements 
to functional deductions. The model is illumi-
nated by an example from verb inflection. It 
shows how a corpus-based analysis can im-
prove upon the inflectional paradigms given in 
traditional grammars and how the various or-
thographic representations can be accounted 
for by an encoding system that registers both 
the paradigmatic forms and their attested reali-
zations. 

1 Working with ancient documents 

1.1 Challenges 

If we wish to make a linguistic analysis of an-
cient texts, in our case the Hebrew Bible and its 
Syriac translation, the Peshitta (ca. 2nd century 
CE), we are confronted with a number of chal-
lenges:  

• There is no native speaker of the lan-
guages involved. We do not know in ad-
vance what categories are relevant in the 
linguistic analysis, what functions a cer-
tain construction has, or what functional 
oppositions there exist in the language 
system. For this reason we should avoid as 
much as we can any model that presup-
poses knowledge about the language. 

• We have only written sources. Hence we 
are challenged by the complex interaction 
between orthographic conventions and 
morphological phenomena. There are even 
some orthographic practices which, it is 
claimed, have never been supported by a 
phonological or morphological realization 
(see section 4.5). 

• We are dealing with multiple unique 
documents. In philology, the text of the 
Hebrew Bible or its Syriac translation is 
an abstract notion, a scholarly construct. 
The corpus that we enter into our database 
consists of the concrete witnesses to the 
abstract text. Textual variants provide use-
ful information about language variation 
and development (section 4.5). 

• We are dealing with a small corpus. The 
Hebrew Bible contains about 300.000–
400.000 words (depending on whether we 
count graphic words or functional words); 
the vocabulary consists of about 8.000 lex-
emes. 

Moreover, because of the context in which our 
research takes place, at the boundary of linguis-
tics and philology, our aim is the construction of 
a database with a correctly encoded text. Because 
we want to understand the text, rather than 
merely collect knowledge about the language 
system, we have set high standards of accuracy 
for the encoding of the text. 

1.2 Dilemmas 

These challenges lead to the following dilemmas 
for the computational analysis of ancient texts: 

• Data-oriented or theory-driven? Since 
approaches that presuppose linguistic 
knowledge are problematic, we want to be 
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data-oriented, rather than theory-driven. 
However, approaches that merely try to 
extract knowledge from the corpus with a 
minimum of human input are insufficient 
because of the size of our corpus and be-
cause we want knowledge about the text, 
not just about the language. 

• Priority for the corpus or the language? 
Due to the lack of native speakers, the sole 
basis for our knowledge about the lan-
guage is the corpus, but, at the same time, 
the corpus can only be accessed through 
some linguistic knowledge and some basic 
understanding of the text. We cannot start 
from scratch, avoiding any preliminary 
understanding of the text, its language, its 
features, and its meaning. This under-
standing is shaped by our scholarly and 
cultural tradition. It is based on transmit-
ted knowledge. But we have to find ways 
in which the computational analysis does 
not only imitate or repeat traditional inter-
pretations. 

1.3 Requirements 

The challenges and dilemmas mentioned above 
require a model that is deductive rather than in-
ductive; that goes from form (the concrete tex-
tual data) to function (the categories that we do 
not know a priori); that entails registering the 
distribution of linguistic elements, rather than 
merely adding functional labels—in other words, 
that involves encoding rather than tagging; that 
registers both the paradigmatic forms and their 
realizations; that allows grammatical categories 
and formal descriptions to be redefined on the 
basis of corpus analysis; and that involves inter-
active analytical procedures, which are needed 
for the level of accuracy we aim for. 

In the distributional analysis at word level, for 
example, we mark prefixes and suffixes, rather 
than tagging a form as “imperfect 2ms” etc. 
Similarly on clause level we identify patterns 
such as “subject + participle + complement”, as 
against the usual practice of giving functional 
clause labels such as “circumstantial clause”. 

2 Analytical procedure 

In our project the analysis of Hebrew and Syriac 
involves a bottom-up linguistic analysis at the 
following levels: 

2.1 Word level 

This level concerns the segmentation of words 
into morphemes, the functional deductions from 
the morphological analysis, and the assignment 
of lexically determined word functions. It will be 
described in detail in section 3. 

2.2 Phrase level 

At this level words are combined into phrases 
(e.g. noun + adjective). This entails the morpho-
syntactic analysis and the systematic adaptations 
of word classes in certain environments (e.g. ad-
jective → noun), and the analysis of phrase-
internal relations (e.g. apposition). 

2.3 Clause level 

This level concerns the combination of phrases 
into clauses (e.g. conjunction + VP + determinate 
NP), and the assignment of syntactic functions 
(e.g. subject, predicate). 

2.4 Text level 

This level concerns the determination of the rela-
tionships between clauses and the assignment of 
the syntactical functions of the clauses within the 
text hierarchy (e.g. object clause). 

3 Workflow of word-level analysis 

In the following discussion we will restrict our-
selves to the morphological analysis. At the 
higher linguistic levels the same principles are 
applied, although the consequences are some-
what different (see section 5). 

3.1 Running text 

As an example we take the Syriac translation 
(Peshitta) of the book of Judges. The starting-
point of the analysis is a transliterated running 
text, called P_Judges, which reflects the Leiden 
Peshitta edition. Sample 1 contains the first verse 
of this text. The variant notation between square 
brackets indicates that the first word, whw', ‘and 
it happened’, is missing in a number of manu-
scripts. Between the angle brackets a comment 
has been added. 

Even this first step involves a number of dis-
ambiguating decisions, for example, as to 
whether a dot above a letter is a vowel sign, a 
delimitation marker, or just a spot in the manu-
script.1 
                                                 
1 One has to take similar decisions if one transcribes 
the text of a manuscript to Unicode, because the defi-
nitions of the Unicode characters include both a for-
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1 [whw'/ -6h7, 8a1c, 10c1, 11c1, 12a1fam] 
<check reading in 6h7> mn btr dmyt y$w` brnwn 
`bdh dmry'; 1 $'lw bn:y 'ysryl bmry' w'mr:yn; 
mnw nsq ln `l kn`n:y' bry$'; lmtkt$w `mhwn 
bqrb'; 

Sample 1: P_Judges (running text) 

3.2 Production of graphic text (‘pil2wit’) 

The program pil2wit transforms the running text 
into the so-called graphic text, a transliterated 
text according to an established format that en-
ables the subsequent steps in the analysis (sam-
ple 2). It has another transliteration system;2 in-
structions to select variants have been executed; 
comments have been omitted; and the markers of 
book, chapter and verse have been added. 

1  %bookname Jd 
2  %language syriac 
3 
4  %verse 1,1 
5    WHW> MN BTR DMJT JCW< BRNWN <BDH DMRJ> 

C>LW BN"J >JSRJL BMRJ> W>MR"JN MNW NSQ LN <L 
KN<N"J> BRJC> LMTKTCW <MHWN BQRB> 

Sample 2: P_Judices (graphic text) 

3.3 Production of encoded text (‘Analyse’) 

The grapic text is the input file for the program 
Analyse, which concerns the segmentation of the 
Syriac words into morphemes (as far as concate-
native morphemes are involved3). For this seg-
mentation we use a system of encoding, rather 
than tagging. Thus the imperfect form neqtol “he 
will kill” is encoded as !N!QV&WL[, in which 
the exclamation marks !…! indicate the prefix, 
the ampersand & a paradigmatically unexpected 
letter—the round bracket ( indicates an expected 
but absent letter—and the square bracket to the 
right [ a verbal ending. Sample 3 provides the 
interface in the interactive procedure of Analyse. 

1,1 WHW>      W-HW(J&>[, W-HW(J&>[/ 
1,1 MN        MN, MN= 
1,1 BTR       BTR 
1,1 DMJT      D-M(W&JT[, D-M(W&JT[/:p 
1,1 JCW<      JCW</ 
1,1 BRNWN     BR/-NWN=/ 
1,1 <BDH      <BD=/-H, <BD[-H, <BD==/-H 
1,1 DMRJ>     D-MRJ>/ 

                                                                          
mal description and a functional analysis. There is not 
a character for ‘a dot above the letter’, but rather for 
‘vowel sign above the letter’ etc. 
2 Transliteration alphabet: > B G D H W Z X V J K L 
M N S < P Y Q R C T. 
3 Non-concatenative morphemes are marked with a 
colon at the end of a word. We use :p for the vowel 
pattern of the passive; :d for the doubled verbal stem 
and :c for the construct state vocalization of nouns. 

Sample 3: P_Judices.an (analysed text; automatically 
generated file) 
The first column contains the verse number, the 
second the graphic words (which may contain 
more than one functional word; thus the first 
graphic word contains the conjunction W and the 
verb HW>) and the third column contains propos-
als for the morphological segmentation. These 
proposals are generated from the ‘Analytical 
Lexicon’, a data file containing the results of pre-
vious analyses (sample 4). 
 
9308  WCKR>     W-CKR/~> 
9309  WCLWM     W-CLWM/ 
9310  WCLX      W-CLX[ 
9311  WCLX      W-CLX[(W 
9312  WCLXW     W-CLX[W 
9313  WCLXT     W-CLX[T== 
Sample 4: Excerpt from the Analytical Lexicon 

 
It appears, for example, that up to the moment 
that sample 4 was extracted from the lexicon, the 
form WCLX had received two different encodings 
(lines 9310 and 9311; see below, section 4.3). 

The human researcher has to accept or reject 
the proposals made by Analyse or to add a new 
analysis. We cannot go through all details, but in 
the second line of sample 4, for example, a 
choice has to be made between the preposition 
men (MN) and the interrogative pronoun man 
(MN=; the disambiguating function of the equals 
sign is recorded in the lexicon [section 3.6], 
where both MN and MN= are defined). Likewise, 
in the case of <BDH, the human researcher has to 
decide whether this is a verb (hence the verbal 
ending [), the noun ‘servant’ (<BD=), or the 
noun ‘work’ (<BD==). 

For these disambiguating decisions in the in-
teractive procedure the human researcher follows 
a protocol that describes the relative weight of 
diacritical dots in the oldest manuscripts, the 
vowel signs that are added in some manuscripts, 
the vocalization in printed editions, and gram-
matical and contextual considerations. 

 
1,1 WHW>          W-HW(J&>[ 
1,1 MN            MN 
1,1 BTR           BTR 
1,1 DMJT          D-M(W&JT[ 
1,1 JCW<          JCW</ 
1,1 BRNWN         BR/-NWN=/ 
1,1 <BDH          <BD=/-H 
1,1 DMRJ>         D-MRJ>/ 

Sample 5: P_Judices.an (analysed text; outcome of 
interactive procedure) 
 
After the interactive procedure the analysed text 
contains the ‘correct’ analysis for each word of 
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the graphic text (sample 5). As we shall see be-
low, we do not consider this as the definitive 
analysis, but rather as a hypothesis about the data 
that can be tested in the following steps of the 
analytical procedure. 

3.4 Reformatting and selection (‘Genat’) 

The next step concerns the selection of a chapter 
and the reformatting of the document. This is 
done automatically by the program Genat. The 
result is e.g. P_Judices01.at (sample 6). 

 
1,1  W-HW(J&>[ MN BTR D-M(W&JT[ JCW</ BR/-
NWN=/ <BD=/-H D-MRJ>/ C>L[W BN/J >JSRJL/ B-
MRJ>/ W->MR[/JN MN=-(HW !N!S(LQ[ L-N <L 
KN<NJ/(J~> B-RJC/~> L-!M!@(>T@KTC[/W:d <M-
HWN= B-QRB=/~> 

Sample 6: P_Judices01.at (analysed text, reformatted) 

3.5 Functional deductions (‘at2ps’) 

The next step concerns the functional deductions 
from the morphological analysis (e.g. person, 
number, gender) and the assignment of lexically 
determined word functions (e.g. part of speech). 
For this purpose the program at2ps uses three 
language definition files: a description of the al-
phabet, a lexicon (section 3.6), and a description 
of the morphology (‘Word Grammar’; section 
3.7). 

3.6 The Lexicon 

Each line in the Lexicon contains the lexeme, a 
unique identification number, lexically relevant 
characteristics such as a part of speech (sp) or a 
lexical set (ls), a gloss (gl), which is only in-
tended for the human user and, optionally, a 
comment added after the hash (#). 
 
CLWM 6577:sp=subs:ls=prop:st=abs:gn=m:gl= 

Shallum 
CLX 10753:sp=verb:gl=to send, PA to strip, 

to despoil 
CLX= 15359:sp=subs:ls=prop:st=abs:gn=m:gl= 

Shilhi 
CLX== 32679:sp=subs:de=CLX>:gl=swarm (bees), 

skin (lamb)      # Judges 14,08 

Sample 7: Extract from the Lexicon 

3.7 The ‘Word Grammar’ 

The encoded text is read by the Word Grammar. 
In this auxiliary file are registered (1) the types 
of morphemes recognized; (2) the individual 
morphemes of each morpheme type; (3) a list of 
grammatical functions; and (4) rules for the func-
tional deductions (see samples 8–11). 
 
 

prefix = 
 pfm:  {"!","!"} "preformative" 
 pfx:  {"@","@"} "passive stem formation 

prefix" 
 vbs:  {"]","]"} "verbal stem" 
core = 
 lex:  {} "lexeme" 
suffix = 
 vbe:  {"["} "verbal ending" 
 nme:  {"/"} "nominal ending" 
 emf:  {"~"} "emphatic marker" 
pattern =  
 vpm:  {":"} "vowel pattern" 
functions 
ps: "person" = 
 first: "first", second: "second", third: 

"third" 
nu: "number" = 
 sg: "singular", du: "dual", pl: "plural", 

unknown: "unknown" 
gn: "gender" = 
 f: "feminine", m: "masculine" 

Sample 8: Extract from the Word Grammar, section 1: 
Morpheme types 
  
vbe = "", "W", "WN", "J", "J=", "JN", 

"JN=", "N", "N=", "T", "T=", "T==", 
"TWN", "TJ", "TJN" 

Sample 9: Extract from Word Grammar, section 2: 
Individual morphemes for morpheme types 
 
ps: "person" = 
 first: "first", second: "second", third: 

"third" 
nu: "number" = 
 sg: "singular", du: "dual", pl: "plural", 

unknown: "unknown" 
gn: "gender" = 
 f: "feminine", m: "masculine" 
Sample 10: Extract from the Word Grammar, section 
3: Grammatical functions 
 
shared { exist(pfm) && exist(vbe) && not ex-

ist(nme) :: vt=ipf } 
 shared { pfm == "N" :: ps=third } 
   vbe == "" :: gn=m, nu=sg 
   vbe != {"", "WN", "N="} :: reject 
 end 
shared { pfm == "T=" :: ps=third } 
   vbe == {""} :: gn=f, nu=sg 
    vbe != "" :: reject 
 end 

Sample 11: Extract from the Word Grammar, section 
4: Rules for functional deductions 
 
Each rule concerns the pairing of a morphologi-
cal condition and an action. The condition is 
phrased as a Boolean expression yielding true or 
false indicating whether the condition is met or 
not. If the condition is met, the listed actions are 
undertaken. An action is usually the assignment 
of a value to a word function, but can also in-
volve accepting or rejecting a form, or jumping 
to a rule further down. Thus the rule 
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vbe == "W"   :: gn=m, nu=pl 

can be read as: if there is a verbal ending W, then 
assign the values gender = masculine and num-
ber = plural. 

3.8 Result: the ps2 file 

The result is a ps2 file. Each row contains a verse 
reference, the lexeme, and a list of lexical and 
morphological features such as the lexical set, 
part of speech, verbal prefix, verbal stem, verbal 
ending, nominal ending, verbal tense, person, 
number, gender, nominal state. Thus the second 
line of sample 12 shows that the second word of 
Judges is HWJ, ‘to be’, which has the lexical set 
‘verb of existence’ (-2); it has the part of speech 
‘verb’ (1); it has no verbal prefix (0); it comes 
from the simple verbal stem Peal or Qal (0); it 
has an empty verbal ending (1); it has no nomi-
nal ending (0); it is a perfect form (2) 3rd person 
(3) singular (1), without personal suffix (-1),4 
masculine (2); and the notion of ‘state’ does not 
apply to it (-1), because this notion is only used 
in the case of nominal endings. 

 
01,01 W    0   6 -1 -1 -1 -1 -1   -1 -1 -1 -1    -1 
01,01 HWJ -2   1  0  0  1  0 -1    2  3  1  2    -1 
01,01 MN   0   5 -1 -1 -1 -1 -1   -1 -1 -1 -1    -1 
01,01 BTR  0   5 -1 -1 -1 -1 -1   -1 -1 -1 -1    -1 
01,01 D   -1   5 -1 -1 -1 -1 -1   -1 -1 -1 -1    -1 
01,01 MWT  0   1  0  0  1  0 -1    2  3  1  2    -1 
01,01 JCW< 0   3 -1 -1 -1  1 -1   -1 -1  0  2     2 
01,01 BR   0   2 -1 -1 -1  1 -1   -1 -1  0  2     0 
01,01 NWN= 0   3 -1 -1 -1  1 -1   -1 -1  0  2     2 

Sample 12: P_Judices.ps2 
 
From this file two files are automatically gener-
ated: an encoded surface text (xxx.ct) and a data 
description in human readable form (xxx.dmp). 
 
1  RICHT01,01 W-HW> MN BTR D-MJT JCW< BR-NWN 
<BD-H D-MRJ> C>LW BNJ >JSRJL B-MRJ> W->MRJN 
MN-W NSQ L-N <L KN<NJ> B-RJC> L-MTKTCW <M-HWN 
B-QRB> * 

Sample 13: P_Judices01.ct 
 
1,1 W       W    W sp=conj 
1,1 HW(J&>[ HW>  HWJ vbe="",sp=verb,vo=act,vs=pe, 

vt=pf,ps=third,nu=sg,gn=m, 
ls=vbex 

1,1 MN      MN   MN sp=prep 
1,1 BTR     BTR  BTR sp=prep 

                                                 
4 This column comes from an earlier phase of our 
project. In our present encoding the value is always 
‘inapplicable’ (-1), because we now treat the suffix 
pronoun as an independent lexeme. Its lexeme status 
appears from its own grammatical functions, which 
are different from those of the word to which it is at-
tached. The traditional lexicographical practice, how-
ever, does not treat it as a lexeme (Sikkel, 2008). 

1,1 D       D    D ls=pcon,sp=prep 
1,1 M(W&JT[ MJT  MWT vbe="" sp=verb,vo=act,vs=pe, 

vt=pf,ps=third,nu=sg,gn=m 
1,1 JCW</   JCW< JCW< nme="" sp=subs,+nu,gn=m,st= 

abs,ls=prop 
1,1 BR/     BR   BR nme="" sp=subs,+nu,gn=m,+st 
1,1 NWN=/   NWN  NWN= nme="" sp=subs,+nu,gn=m,st= 

abs,ls=prop 

Sample 14: P_Judices01.dmp 

3.9 Summary of the workflow 

The workflow can be summarized as follows: 
 
Input & output Programs Auxiliary 
 files  files 
 

 
Table 1: workflow of word level analysis 

 
It follows that the following programs and data 
sets are used: 

• Programs that recognize the patterns of 
formal elements that combine to form 
words, phrases, clauses and textual units 
(e.g. at2ps). 

• Language-specific auxiliary files (e.g. 
Lexicon, Word Grammar). 

• Data sets, built up gradually, containing 
all patterns registered in the analysis (e.g. 
Analytical Lexicon) 

• Programs that use the data sets and the 
auxiliary files to make proposals in the in-
teractive procedures for the linguistic 
analysis (e.g. Analyse). 

Analyse 

pil2wit 

Graphic text 

Running text 

genat 

Analytical 
lexicon 

at2ps 

xxx.ps2 

xxx.ct xxx.dmp 

xxx.an 

xxx.at 

Language-
definition 
files (e.g. 
lexicon) 
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3.10 Relation with requirements 

Some typical features of the workflow serve to 
meet the requirements defined in section 1.3. The 
procedure of encoding rather than tagging guar-
antees consistency in the analysis of morphemes, 
because the functional deductions are produced 
automatically. It has the advantage that not only 
the interpretation of a word, but also the data 
which led to a certain interpretation can be re-
trieved, whereas the motivation behind a tagging 
is usually not visible. It also has the advantage 
that both the surface forms and the functional 
analysis are preserved. 

By using the language-specific auxiliary files 
we take our starting-point in the scholarly tradi-
tion of Semitic studies, but the encoding system 
allows us to test alternative interpretations of the 
data (see below, section 4.5). 

4 The verbal paradigm 

4.1 Traditional grammars 

We will now illuminate our model by taking a 
look at the verbal paradigm. For the moment we 
will restrict ourselves to the paradigm of the suf-
fix conjugation. In the traditional grammars we 
find the following inflection paradigm: 
 
 singular plural 
3 m – w [silent] 

– 
wn (un) 

3 f t (at) – 
y [silent] 

2 m t (t) twn (ton) 
2 f ty (t) tyn (ten) 
1 c t (et) n (n) 

nn (nan) 
Table 2: Paradigm of the perfect in Classical Syriac 
according to traditional grammars 

4.2 Manuscript evidence 

Since we work with real manuscripts, we have to 
deal with the forms that are actually attested. As 
appears from the paradigm in table 2, for exam-
ple, the perfect 3mp sometimes has no verbal 
ending. What is not recorded in the traditional 
grammars is that there are also forms 3ms with 
the ending -w. This may be due to the fact that 
the -w in the plural, even if it were represented in 
writing, was not pronounced.5 Traditionally the 

                                                 
5 Admittedly, it can be problematic to make claims 
about the pronunciation on the basis of written 
sources, but there are strong arguments for this claim, 

singular forms with -w are taken as errors, due to 
the confusion with the silent -w in the plural. 

The Leiden Peshitta edition takes such read-
ings as ‘orthographic variants’. They do not ap-
pear in the critical apparatus to the text, but in a 
separate Index Orthographicus. The general pref-
ace to the edition contains a long list of catego-
ries of orthographical variation (cf. sample 15). 

 
2.2 varietates inflectionis 
2.2.1 afformativa 
2.2.1.1 perfectum 
e.g. 3 msg + waw 

3 f.sg yodh 
2 m.sg + yodh 
2 f.sg om yodh 
3 m.pl om waw 
3 f.pl + waw 
3 f. pl + yodh 
1 pl cum des -nan etc., etc. 

Sample 15: Excerpt from General Preface of Leiden 
Peshitta Edition: categories of Index Orthographicus 

 
These categories are referred to in the Index Or-
thographicus of each volume. Thus we find in 
the text of Song of Songs in the sample edition: 
 
2.2 varietates flectionis: 
2.2.1.1. afformativa perfecti 
2 f. sg + yodh 
 (II) ܪî¾ √ ;(I) ܗܘ¿ √
17 II 9l2 
810  I 16g6 19 < ?a1 
 
3 f. pl. + yodh 
√ óÓå (I); √ úàè (II) 
42 II 10m1.3 11m1.2.4-6 13m1 15a2 

17a1.2.4.5.10 18h3 
55  I 13c1 15a2 16g2.31.8.9 17a1-8.10.11 

17c1(vid) 17g2.6 17h2 18c21 18h3 19g51.7 
Sample 16: Excerpt from Index Orthographicus to 
Song of Songs in sample volume of Leiden Peshitta 
edition 

 
Unfortunately, the Peshitta project soon aban-
doned the inclusion of the Index Orthograhicus. 
It appears only in the sample edition and one 
other volume (Vol. IV/6, containing Odes, the 
Prayer of Manasseh, Apocryphal Psalms, Psalms 
of Solomon, Tobit and 1(3) Esdras). 

                                                                          
including the fact that the final letter is ignored in 
punctuation, that it is frequently omitted in writing 
(Nöldeke, 2001:§50), and that it does not affect poetic 
patterns (Brockelmann, 1960:45). 
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4.3 Encoding the attested forms 

In the word-level analysis (cf. section 2.1) the 
forms listed in table 2 are encoded as follows: 

 
 singular plural 
3m KTB[ KTB[W 

KTB[(W 
KTB[W&N 

3f KTB[T== KTB[(J= 
KTB[J= 

2m KTB[T= KTB[TWN 
2f KTB[TJ KTB[TJN 
1c KTB[T KTB[N 

KTB[N&N 

Table 3: Encoded forms of Classical Syriac perfect 
 

As we said above, the square bracket to the right 
marks the verbal ending and the ampersand a 
paradigmatically unexpected letter. Thus our en-
coding in table 3 implies that we take the verbal 
ending -wn as an allomorph of -w with an addi-
tional -n. Alternatively we could decide to intro-
duce a separate morpheme -wn besides -w. The 
equals sign is used for the disambiguation of 
forms that have the same consonantal representa-
tion. We use it to distinguish the three verbal 
endings -t and for distinguishing the -y of the 
perfect 3fs from the -y of the imperative 3fs. 

A round bracket marks a paradigmatically ex-
pected but absent letter. Thus we have taken the 
imperfect form 3fs KTBJ as the paradigmatic 
form, although KTB occurs as well. 

4.4 Paradigmatic forms and their realiza-
tions 

To deal with this material in an appropriate way 
it is important to use an encoding system in 
which both the attested surface forms and the 
abstract morphemes can be retrieved. Thus 
’wqdw ‘they burnt (it)’ (Judges 1:8; our tran-
scription: >WQDW) is a form of the verb yqd 
(JQD), with the causative prefix ’- (>). We mark 
the causative stem morpheme with two square 
brackets to the left (cf. sample 8), indicate with 
the round bracket to the right that the first letter 
of the lexeme is absent, and mark with the am-
persand the w that has come instead. The square 
bracket to the right marks the verbal ending. This 
results in the following encoding: 

Encoding:           ]>](J&WQD[W 
Paradigmatic forms:  >  JQD   W 
Realizations:        >  WQD   W 

4.5 Language variation and language de-
velopment 

This way of encoding the verb forms attested in 
multiple textual witnesses provides us with a 
large database from which language variation 
data can be retrieved. In some cases language 
development is involved as well, and the data 
can be used for diachronic analysis. For this re-
search we can build upon the work done by the 
Syriac scholar Sebastian Brock. One of the phe-
nomena Brock (2003:99–100) observed was that 
in West Syriac Biblical manuscripts some ortho-
graphic innovations are attested, including the 
addition of a -y to the perfect 3fp, the imperfect 
3fs and, on analogy, the perfect 3fs. It is a de-
bated issue whether this ending reflects a mor-
pheme that was once pronounced (thus Boyarin, 
1981) or just an orthographic convention (thus 
Brock, 2003; cf. Van Peursen, 2008:244). 

4.6 An experiment 

Our approach enables us to deploy a practice that 
is completely new in Syriac scholarship, namely 
the possibility of testing assumptions upon the 
data (cf. Talstra & Dyk, 2006). We can test, for 
example, what happens if we redefine the distri-
bution of ktb and ktbw (cf. section 4.2) and take 
the zero ending and the -w as allomorphs for the 
3rd person masculine. 

In our model such a reinterpretation of the ma-
terial can be registered formally by changing the 
relevant sections in the Word Grammar. Since 
the lemmatization is done automatically on the 
basis of the morphologically encoded text and a 
functional description of the morphemes, there is 
no need to change the lemmatization in all sepa-
rate instances manually. 

We have done this experiment for Judges 1 in 
nineteen manuscripts. This chapter contains 54 
perfect forms 3m (except for third-weak verbs). 
In the bottom-up analysis (cf. section 2) the ef-
fect is that the decision on whether a 3m verb is 
singular or plural is not taken at word level, but 
at a later stage of the procedure, in which the 
verb is matched with a subject or another ele-
ment that reveals its number. 

At first sight the results of our experiment 
were not exciting. In those 26 cases where the 
grammatical number of the subject is unambigu-
ous, the ‘regular’ forms are dominant: Only three 
times is there an irregular form (singular ktbw or 
plural ktb), once in one manuscript, twice in two 
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manuscripts.6 Nevertheless, our experiment 
yielded some interesting observations. 

In the first place we discovered that in 28 
cases the grammatical number remained am-
biguous even in the clause-level analysis because 
the subject was a collective noun (which in 
Syriac can take either a singular or a plural). 

In these ambiguous cases the traditional analy-
sis of ktb as a singular and ktbw as a plural im-
plies a striking alternation of singular and plural 
forms, e.g. 1:10 ‘and Judah went (w’zl, singular) 
… and [they] killed (wqṭlw, plural)’. In our ex-
periment, this became mere orthographic varia-
tion. Consequently, in the final stage of the bot-
tom-up analytical procedure, the text hierarchical 
analysis (section 2.4), we arrived at a more ele-
gant text hierarchical structure, because many of 
the recurrent subject changes caused by the sin-
gular/plural alternation had been resolved. 

Secondly, the experiment overcame the rather 
arbitrary division between ‘real’ and ortho-
graphic variants in the Leiden Peshitta edition. In 
this edition, whenever there may be some doubt 
as to whether the verb is in the singular or in the 
plural, variation between ktb and ktbw forms is 
taken as ‘real’ and the variant is included in the 
critical apparatus; whenever there is no doubt, 
the variation is considered orthographic and the 
variant is listed in the Index Orthographicus 
(sample edition and vol. IV/6) or not mentioned 
at all (other volumes; cf. Dirksen, 1972:vii-ix). 

This editorial policy leads to the somewhat ar-
bitrary decision that nḥt ‘descended’ in 1:9 (Ms 
16c1, 16g3; other manuscripts: nḥṭw) is an or-
thographic variant, because the subject is the plu-
ral bny yhwd’ ‘sons of Judah, Judahites’, whereas 
in 1:10, where the subject is just yhwd’ ‘Judah’, 
’zlw ‘went’ (Ms 17a3; other manuscripts: ’zl) is a 
real variant. In 1:26, the same form ’zlw (Ms 
19c1; other manuscripts have again ’zl) is taken 
as orthographic, because the subject is the singu-
lar noun gbr’ ‘(the) man’. In our experiment all 
these variant readings are treated equally. 

5 Conclusions 

We hope to have shown how the analytical pro-
cedure (section 2) and the workflow of the word-
level analysis (section 3) meet the challenges of 
working with ancient documents (section 1), due 
to their form-to-function approach, their use of 
encoding rather than tagging, their distinction 
                                                 
6 26 forms × 19 manuscripts = 494 forms in all the 
manuscripts together. Accordingly, the 5 (1+2×2) 
irregular forms make up 1%. 

between paradigmatic forms and their realiza-
tions, and because of the exigencies of accuracy 
in the case of an ancient limited corpus. 

In the word-level analysis we lean heavily on 
existing grammars. For that reason our approach 
could be regarded as theory-driven, even though 
we consider it one of our main tasks to revise and 
refine the paradigm on the basis of the actual 
corpora. Our encodings should be considered as 
hypotheses about the data that can be subjected 
to testing and experiment (section 4.6). 

Unlike projects that concern the acceleration 
of POS tagging (Ringger et al., 2007; Caroll et 
al., 2007) we start one level below, with the 
morphology. ‘Encoding rather than tagging’ is 
not just a practical, but a crucial methodological 
characteristic of our model. (For new insights 
that it produced regarding Syriac morphology see 
the publications by Bakker, Van Keulen and Van 
Peursen in the bibliography). We differ from the 
computer implementation of morphological rules 
(Kiraz, 2001) in that our work is more deductive 
and focused on the interaction between orthogra-
phy and morphology, because we start with the 
actual forms attested in the manuscripts. Our po-
sition in relation to these other projects is mainly 
determined by the philological demands that di-
rect our research (see section 1). 

Whereas at the morphological level the infor-
mation provided by traditional grammars is rela-
tively stable, at the higher linguistic levels they 
provide much less solid ground. The gradually 
built up datasets (analogous to the Analytical 
Lexicon at word level) of phrase patterns, clause 
patterns, or verbal valence contain much infor-
mation that is not properly dealt with in tradi-
tional grammars. At these levels the analysis be-
comes more data-oriented. Thus in the analysis 
of phrase structure Van Peursen (2007) found 
many complex patterns that have not been dealt 
with in traditional grammars. 

We have taken our examples from Syriac, but 
the same analytical procedures have been applied 
to other forms of Aramaic (Biblical Aramaic and 
Targum Aramaic) and Biblical Hebrew. Because 
of the separation of the analytical programs and 
the language-specific auxiliary files, it should be 
possible to apply it to other languages as well. 
This would mainly require writing the appropri-
ate language definition files. Although our model 
is in principle language-independent, the mor-
phological analysis presented in this paper is es-
pecially apt for Semitic languages because of 
their rich morphology. 
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Abstract

Karamel is a system for finite-state mor-
phology which is multi-tape and uses a
typed Cartesian product to relate tapes in
a structured way. It implements stati-
cally compiled feature structures. Its lan-
guage allows the use of regular expres-
sions and Generalized Restriction rules to
define multi-tape transducers. Both simul-
taneous and successive application of local
constraints are possible. This system is in-
teresting for describing rich and structured
morphologies such as the morphology of
Semitic languages.

1 Introduction

Karamel is a system for defining and executing
multi-tape finite-state transducers where relation-
ships between tapes are expressed using a tree
structure. This structure is obtained through em-
bedded units, which are used to analyze a tuple of
strings recognized by the transducer. For instance,
the units considered in an example may be affix,
form and sentence.

The system includes a language and an Inte-
grated Development Environment. The language
uses extended regular expressions, computations
and contextual rules. The environment provides a
graphical interface to write and execute finite-state
descriptions.

Karamel has many applications. For Natural
Language Processing, it may be used for morpho-
logical analysis, transliteration, parsing, etc. This
paper is dedicated to the application of Karamel to
the morphological analysis of Semitic languages,
for which both multiple tapes and complex struc-
tures are useful.

Some descriptions of the morphology of
Semitic Languages use several tiers. For instance,
(McCarthy, 1981) uses four tiers, one for prefixes,

one for the root, one for the template (consonant-
vowel pattern) and the last one for the vocaliza-
tion.

Such a multi-tiered description may be im-
plemented using a cascade of 2-tape machines
(Beesley, 1998) or using a multi-tape transducer
where each tier is described by a tape and the sur-
face form by an additional tape. This is the ap-
proach of G. A. Kiraz for the Syriac language (Ki-
raz, 2000). Karamel is designed for the later solu-
tion.

The multi-tape feature is also interesting for de-
scribing related dialects, whenever a great part of
the analysis may be shared. A separate tape is ded-
icated to the surface form in each dialect.

The Semitic Morphology is strongly structured
by the roots. The basis of an analysis is the identi-
fication of the root. Furthermore, several layers of
affixes may be distinguished around the core con-
taining the roots: paradigmatic prefixes; affixes
encoding the person, gender and number; clitics
such as pronouns. This structure is conveniently
defined using Karamel’s units.

In the following section of the paper, we present
Karamel’s language, its theoretical background
and its syntax. Section 3 describe the other as-
pects of the Karamel System: its development en-
vironment, its current state and future evolutions.
Then comes an example of Semitic morphology
written in Karamel, the description of Akkadian
verbal flexion. The last section compares Karamel
to some other systems.

2 The Karamel language

The language is based on a subclass of ratio-
nal n-ary relations calledmulti-grain relations
which is closed under intersection and difference
(Barthélemy, 2007b). They are defined using ra-
tional expressions extended with a typed Cartesian
product. This operator implements the notion of
unit used to give a tree-structure to tuples of the
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relations. A unit is an inner-node of the structure.
A project is a set of finite-state machine defined

over the same universe: the same alphabet, the
same tape set, the same units. A project begins
with declarations defining this universe. It contin-
ues with an ordered sequence of machine defini-
tions.

The declaration section contains several clauses
including classes, tapes and unit definitions. A
class of symbols is a finite set of symbols. Here
are some examples of class definitions:

class short_v is a, e, i, u;
class long_v is aa, ee, ii, uu;
class vow is a, e, i, u, long_v;

A symbol may belong to several classes. In the
definition of a class, another class name may ap-
pear and is just an abbreviation for all its members.
The class names are also used in regular expres-
sions to denote the disjunction of their members.

The symbols written using several letters and/or
digits, when there is a risk of confusion with a
string of symbols, must be written enclosed by<
and>. For instance, the long a is writtenaa in the
class definition (long_v ) but in a regular expres-
sion, it must be written<aa> becauseaa denotes
a string of two short vowels. The bracketing with
< and> is also used for special characters such as
the space< >, punctuation marks (e.g.<,> ) and
the empty string<>.

A tape is declared with its name and the alpha-
bet of the symbols which may appear on it.

tape dig: <digit>,
fr, en: <letter>|< >|<->;

The alphabet is defined using a regular expression
made with symbols, classes and length-preserving
operators such as the disjunction and the differ-
ence.

A Karamel unit is a typed Cartesian product.
The type consists in i) a number of components
and ii) the tapes contained by each component. In
the declaration, there is also a default value for
each component.

unit seg is {d: dig = <digit> * ;
f: fr = <letter> * ;
e: en = <letter> * }

unit num is
{c: dig, fr, en={seg}+}

The unitseg (for segment) contains three compo-
nents, each using a single tape. The unitnum (for

number) has one component which contains three
tapes (dig, fr anden).

The default value is a non-empty sequence
of units of type seg . Cartesian products are
written in regular expressions as tuples with
the type name followed by the components:
{seg: 2(0?),vingt,twenty} . Compo-
nent names may be used instead of their posi-
tion {seg:e=twenty,f=vingt,d=2(0?)} .
When a component is omitted, the default value
is implied. The notation{seg} (cf. the default
value of the componentc in num) is a unitseg
with default values in all the components. Units
may be embedded:

{num:{seg:2,vingt,twenty}
{seg:2,-deux,-two}}

This example is a structured representation of the
triplet (22,vingt-deux,twenty-two) .

In Karamel, there are three ways of defining a
finite-state transducer: by a regular expression, by
a computation or by a contextual rule. Regular
expressions use symbols, classes of symbols, ra-
tional operations and standard extensions (for in-
stance, optionality written ?). Furthermore, inter-
section, difference and negation are also available
although these operations are usually not defined
on transducers.

Regular expressions are defined using the
regexp construction:

regexp zero is
{seg: 0,z éro,(zero|naught) };
{seg: <digit> * -0 };

end

A regexpcontains a non empty sequence of regular
expressions ended with a semicolon. It denotes the
disjunction of these expressions.

The second way of defining a machine is by ap-
plying operators to already defined machines. All
the operators used in regular expressions may ap-
pear in such a computation, but there are some
other operators as well. The first one is theprojec-
tion which removes one or several tapes from its
operand. The second one is theexternal product
which combines a n-ary relation with a language
on a given tape. It is used toapply a transducer
to a given input which is not split in units yet. All
possible partitioning of the input in units is first
computed, and then it is intersected with one tape
of the transducer. The reverse operation is the ex-
ternal projection which extracts a language from a
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relation on a given tape by first applying the sim-
ple projection and then removing unit boundaries.
These two operations are used to transduce a given
possibly non-deterministic input into an output.

let segments=
union(star(non_zero),zero);

The let is followed by an expression in prefixed
notation with the operators written with letters.
The literals are the names of previously defined
machine. In our example, the expression uses the
machineszero defined by the previousregexp
andnon_zero (not given here).

The last way for defining a machine consists in
the Generalized Restriction Rules defined in (Yli-
Jyrä and Koskenniemi, 2004). Roughly speak-
ing, these rules are a modernized version of clas-
sical Two-Level Rules such as Context Restriction
and Surface Coercion rules (Koskenniemi, 1983).
They also are comparable to the rewrite rules of
Xerox Finite-State Tools (Beesley and Karttunen,
2003), the difference being that rewrite rules are
applied in cascades whereas GR rules may be si-
multaneous.

Contextual rules are defined using three regular
expressions:

gr_rule rzero is
{num}

constraint
{num:seg= {seg }* {seg:#0 }{seg }* }

=> {num:seg= {seg:#0,z éro }}
end

The first expression defines a universe. All the ex-
pressions in the universe which match the pattern
on the left of the arrow must also match the pat-
tern on the right. The sharp symbol is an auxiliary
symbol used to make sure that the 0 on both sides
is the same occurrence of this symbol. It identi-
fies thecenterof the contextual rule. For more de-
tails about the semantics of Generalized Restric-
tion rules, see (Yli-Jyrä and Koskenniemi, 2004).

Karamel implements non-recursive feature
structures. Feature values are ordinary symbols
and feature structures are typed. The types must
be declared in the declaration section of the de-
scription. Feature Structures may appear any-
where in regular expressions. They are usually put
on one or several specific tapes. They are stati-
cally compiled. Feature Structures are to be used
with caution, because they allow the expression of
long-distance dependencies which are costly and

may lead to a combinatorial explosion. The fea-
ture structure compilation techniques come from
(Barthélemy, 2007a).

A type is defined as follows:

fstruct Name is
[gen=gender,num=1|2|3]

where gender is a class and 1, 2, 3 are sym-
bols. Each feature is defined with its name and
its domain of values, which is a finite set of sym-
bols defined by a regular expression. A fea-
ture structure of this type is written as follows:
[Name:gen=masc,num=2] . As usual, it is
possible to specify only part of the features and
their order is not important. The type name at
the beginning is mandatory. Feature structures are
compiled using auxiliary symbols which are not
known by the user. The type name denotes a class
of symbols containing all the symbols which may
be used to compile a structure of this type, includ-
ing auxiliary symbols.

Regular expressions and contextual rules may
use variables which take their values in finite set
of symbols. An expression with such a variable
stands for the disjunction of all the possible val-
uation of the variables. Variables are especially
useful to express feature structure unification.

The language offers macros calledabbrevia-
tions. An abbreviation is a notation for an already
declared unit where part of the components is de-
fined in the declaration and another part is defined
in the call. Here is an example.

abbrev teen is {d: dig = <digit>;
f: fr =<letter> * ;

e: en = <letter> * }
for {seg: 1 @d, @f,@e teen}

In an expression,{teen: 6, seize,six}
is expanded in{seg: 16,seize,sixteen}
before the compilation.

3 The Karamel System

The core of the system consists in a compiler writ-
ten in Python which compiles Karamel descrip-
tions into finite-state automata which are inter-
preted as transducers by the system. The com-
piler uses theFSMandLextoolstoolkits by AT&T
Research. A Karamel regular expression is first
compiled in the Lextools format, then the Lextools
compiler is called to compile it in FSM binary for-
mat. Some Karamel operations over transducers
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such as the intersection, the union, the concatena-
tion are directly implemented by the correspond-
ing FSM operation on automata. Some other op-
erations such as the two projections and the ex-
ternal product are performed by a script calling a
sequence of FSM computations.

The development environment uses a Graph-
ical User Interface written in HTML, CSS and
Javascript. There are three main subparts: project
management (creation, deletion, import, export,
duplication); project development: creation, dele-
tion, renaming, reordering, checking, compilation
of a machine; machine execution, with optional in-
troduction of run-time input, filtering of the result,
projection on one or several tapes.

A dependency graph is maintained in order to
ensure that a change in one machine is taken into
account in all the machines which depend on it.
For instance if there is the following definition:
let m3=union(m1,m2); , any change inm1

implies a recompilation ofm3. This recompila-
tion is not necessarily immediate. A status is asso-
ciated to each machine. The change inm1 results
in a change in the statuses ofm1 andm3.

At the moment, the execution of a machine is
possible only through the GUI, using a browser.
The development of a C++ or Python function to
interpret the FSM machine with the Karamel se-
mantics is not a difficult task, but it is still to be
done. Another weakness of the current version
of the system is the type-checking which is not
fully implemented. The type system is simple and
the language is strongly typed, so every type error
should be found at compile time. It is not the case
yet.

Karamel will be distributed to a few kind beta-
testers in a near future. We plan to add some test
facilities to the environment. At medium term, a
migration from FSM to openFST (Allauzen et al.,
2007) and a distribution under the LGPL license
are envisaged.

So far, Karamel has been used for morphology.
A morphological analyzer for the Akkadian verb is
presented in the next section. It is a medium size
grammar. Another project describes the French
morphology. It is the translation in Karamel of
a grammar developed for the MMORPH system
(Petitpierre and Russel, 1995). The grammar has
a large coverage. It has been tested with a toy
lexicon only. The other domain of application ex-
plored so far is the transliteration domain. There

is a multilingual description of numbers that re-
lates the notation with digits to a written form in
several languages (French, English, Finnish). A
tape is devoted to each language, a tape to the dig-
its and several tapes for feature structures, some
of which are language specific. Another project
transliterates Egyptian hieroglyphs into the Latin
alphabet, using an intermediate representation on
a third tape.

4 An example: the Akkadian verb

In this section, we present an application of
Karamel to Semitic morphology, namely a de-
scription of Akkadian verbal forms.

Akkadian is the language of the ancient
Mesopotamia. It was written in cuneiform, from
around 2500 B.C. up to the first century B.C. It
is the main representative of the eastern branch of
Semitic languages. It is divided in seven main di-
alects with many local variations. Its verbal mor-
phology is a typical semitic one, with a great num-
ber of triliteral roots, some stems with usual flex-
ion (prefixation, reduplication, infixation, vocal-
ization). There are two infixes,t and tn . Their
presence is almost orthogonal with the presence of
a stem prefix and the reduplication of the second
radical.

The description of the morphology in Karamel
is based on a two-level structure. The first level
separates verbal forms in three layers:

• a core, which contains the root, its vocaliza-
tion, and also the prefixes which depend on
the stem and/or aspect, infixes and gemina-
tion.

• personal affixes (prefixes and suffixes), which
encode the person, the number, the gender
and the case (when relevant).

• the clitics: enclitic pronoun and proclitic par-
ticles.

In the following, these units will be calledbig
grains.

The second level is used for the core only, which
is divided in smaller parts using the two following
criteria: firstly, a unit must be significant in the
analysis; secondly, it is determined by a set of fea-
tures in such a way that no smaller part is uniquely
determined by a subset of these features and no
greater part is determined by the same set of fea-
tures. Such a component is invariable for a given
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value of its features, except some surface transfor-
mations.

Following the proposition of (Malbran-Labat,
2001), three kinds of vowels are distinguished.
The first kind of vowel depends on the stem and
the aspect. They are calledaspectual vowels. The
second kind, calledlexical voweldepends on the
stem, the aspect and a lexical category attached
to the root. The third kind of vowels, thesup-
port vowelsare not related to morphological fea-
tures. They are necessary to pronounce and/or
write1 the form. The first two kinds of vow-
els are systematically preserved in weak forms
whereas support vowels disappear in weak con-
sonant neighborhood. Support vowel are member
of the small grain containing the preceding conso-
nant whereas lexical and aspectual vowels consti-
tute small grains.

The different subparts of the core and their fea-
tures are given in figure 1. They will be called
small grains.

The figure 2 gives some extracts of the project.
It begins with the declaration section. There is a
class of all letters, subclasses of consonants, weak
consonants, strong consonants, vowels, long vow-
els, short vowels. There is also a class for each
feature domain. Several types of feature structures
are defined: one for each kind of big grain (core,
personal affix, pronoun, enclitic particle); a unique
type for all the kinds of small grains.

The description has five tapes. The first tape
contains the feature structures associated with big
grains, the second tape contains the feature struc-
tures covering small grains. The third tape con-
tains a canonical form of each grain. It corre-
spond to thelexical formof traditional Two-Level
grammars. The last two tapes contain the surface
forms respectively in the Babylonian and the As-
syrian dialects, which are slightly different, mostly
in their vocalization.

Here is an example of structured analysis of the
form iptaras̄u.

pers core pers
pref suff

rad stem rad lex rad
1 infix 2 vowel 3

i p ta r a s ū

The tape scheme does not correspond to a multi-

1The cuneiform writing is syllabic. It is impossible to
write a consonant without a vowel immediately before or af-
ter it.

tiered analysis. There are several reasons for this.
The first one comes from the Akkadian language.
The stems and aspects are not described by pat-
terns but divided in smaller analysis units, in par-
ticular stem analysis uses the two orthogonal di-
mensions called herestem1and stem2: the first
one notes stem gemination and prefixation and the
later, infixation. A stem is a pair (stem1,stem2).
The vocalization does not require patterns of two
vowels separated by the middle radical, but in
most cases a pattern of only one vowel.

Another reason comes from the Karamel lan-
guage: the information usually encoded in tiers
appears in the unit types. For instance the infor-
mation about the root tier appears in small grains
of typeradical. Similarly, the vocalization appears
in the small grains of typesaspect voweland lex-
ical vowel. The rich tree structure is sufficient to
express clearly the analysis.

The morphotactics of the language is described
as the sum of local constraints. It involves only
the first three tapes. The elementary units, namely
small grains and all the big grains but the core,
are described separately. For instance, the ma-
chine aspect_infix (cf. figure 2) distin-
guishes two cases: if the featureaspect has
perfect as value, then there is a small grain of
type ifx_parf containing the infixta ; if the
featureaspect has another value, then there is
no grain of typeifx_parf in the core. The two
cases are given using two different regular expres-
sions. For more complex small grains, more cases
are to be described, up to 13 for the lexical vowels
which have different colors and length depending
on 4 features.

Two finite-state machines describe the order of
respectively small and big grains. The one for
small grains calledcore_morphotactics is
sketched in the figure.

The lexicon is given using a macro called
lexent . A lexent (for lexical entry) tuple
looks like a usual lexicon entry, with only lexi-
cal information, although it is a regular expression
denoting a complete core, with its prefix, infixes,
vowels, etc. Thelexicon finite state machine
may be directly intersected with thesg_order
machine previously defined and all the other con-
straints in order to obtain a machine describing all
the possible cores build on the roots given in the
lexicon.

The computation of the two surface forms for

14



subpart stem1 stem2 aspect class root example
aspect prefix X X X muparrisu
stem prefix X šuprusu

radical X iprus
core infix X iptaras

stem1 gemination X uparr as
aspect gemination X X X iparr as

aspect vowel X X X uparris
lexical vowel X X X X iprus

Figure 1: Subparts and features

the two dialects is performed by a set of con-
straints written using regular expressions and con-
textual rules. They relate the lexical form and one
or both surface forms. The features are used in
some of them.

Rules are used for phenomena which may occur
several times in a given form. For instance, the
deletion of support vowels before another vowel
may appear in several places: before lexical and
aspectual vowels, but also when a weak consonant
disappears or changes to a vowel.

In many cases however, surface transformation
occur only in one given place of a form and the use
of a rule is not necessary. The tree structure helps
in characterizing this place. The example given
in the figure is the coloration of the first vowel in
some stems (II and III).

The grammar presently covers strong forms, 1-
weak verbs and part of 2-weak and 3-weak verbs.
Verbs with two or three weak consonants2 and
quadriliteral roots are not covered at all. The de-
scription uses 27regexp clauses, 22let and 6
rules.

4.1 Comparisons with other systems

There are many systems for writing finite-state
machines. In this section we compare Karamel
with some of them which are specialized in mor-
phological descriptions.

The most popular system is probably the Xerox
Finite State Tool (Beesley and Karttunen, 2003).
It has been used, among others, for the descrip-
tion of Arabic morphology (Beesley, 1998). The
interdigitation is handled using a compile-replace
process using the replace operator (Karttunen and
Beesley, 2000) (Karttunen, 1995).

The computational model is a sequential one,
where two-tape transducers are merged using the

2There is a Akkadian verb with 3 weak consonants as root.

compositionoperation. The descriptions are ori-
ented, with an input and an output, but the trans-
duction has not to be deterministic and the ma-
chines are invertible. The strings are not struc-
tured, but some structure may be marked using
auxiliary symbols inserted when necessary by the
user.

In order to fulfill the constraints that there are
only two tapes, grammars often put heterogeneous
data on a tape. For instance, the features and the
lexical representations are put together on the in-
put tape. Intermediate forms in the cascade often
contain a mix of lexical and surface representa-
tions.

There are no feature structures in XFST, but fea-
tures written as ordinary symbols. The scope and
the unifications are written by the user.

Karamel is more declarative than XFST. Infor-
mation of different natures are put on different
tapes. Abstract feature structures are available.
Their compilation and the unifications are auto-
mated. On the other hand, XFST is more efficient.
The structure information is put only where neces-
sary.

XFST is distributed under a commercial license.
The system MAGEAD is another system of

finite-state morphology developed for Arabic di-
alects (Habash and Rambow, 2006). It follows the
multi-tape approach proposed by George Anton
Kiraz for the Syriac language (Kiraz, 2000). It has
a rule-based language following the principles of
(Grimley-Evans et al., 1996) in which a notion of
partition splits forms in a sequence of units com-
parable to Karamel’s units. But in this approach,
there is only one kind of unit which relates all the
tapes. Like Karamel, MAGEAD is a layer above
Lextools and FSM. The system is not distributed
and its description in published papers is not very
detailed.
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Declarations

class vowel is a, e, i, u, aa, ee, ii, uu;
class cons is b, d, g, h, ...
class num is sing, dual, plur;
class aspect is present, preterit, perfect, ...
...
fstruct fspers is [asp=aspect,pers=pers,num=num,gen=ge n]
fstruct fscore is [stem1=stem1,stem2=stem2,asp=aspect, lex=lex]
...
tape lex: letter, bab: letter, assy: letter, sg: fssg,

bg : fspers|fscore|fsclit;
unit sgrain is {sg: sg = [fssg]; lex: lex = <letter> * ,

bab: bab =<letter> * , assy: assy = <letter> * }
unit core is {bg: bg = [fscore];

smallg: sg, lex, bab, assy = {sgrain }* }
...
abbrev sgi is {r1: bg = [fscore]; r2: sg = [fssg];

r3: lex = <letter> * }
for {core: @r1, {sgrain }* {sgrain: @r2, @r3 } {sgrain }* }

abbrev lexent is {cfs: bg = [fscore]; fst: lex = <cons>;
snd: lex = <cons>; thd: lex = <cons> }

for {core: @cfs, {sgrain: [fssg:typ=typ-rad] }*
{sgrain: [fssg:typ=rad], @fst } {sgrain: [fssg:typ=typ-rad] }*
{sgrain: [fssg:typ=rad], @snd } {sgrain: [fssg:typ=typ-rad] }*
{sgrain: [fssg:typ=rad], @thd } }

Small grains morphotactics

regexp aspect_infix is
{sgi: [fscore:asp=perfect],[fssg:typ=ifx_parf], ta };
{core: [fscore:asp=aspect-perfect],

{sgrain: [fssg:typ=typ-ifx_parf] }* };
end
...
regexp small_grain_order is

{core: smallg=
{sgrain: [fssg:typ=asp_pref] }? {sgrain: [fssg:typ=rad] }
{sgrain: [fssg:typ=ifx_parf] }? {sgrain: [fssg:typ=ifx_parf] }?
...

let core_morphotactics=intersect(aspect_infix,stem_g emination,
...,small_grain_order);

regexp lexicon is
{lexent: [fscore:lex=a_u,stem1=I|II|IV],p,r,s };
{lexent: [fscore:lex=a,stem1=I|III],s . ,b,t };
...

let actual_cores=intersect(core_morphotactics,lexico n);

Figure 2: extracts from the Akkadian project
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Surface transformations

gr_rule delete_support_vowels is
{core }

constraint
{core: smallg= {sgrain }*

#{sgrain: lex=<letter>+<vowel>,bab=<letter><cons> }
{sgrain }* }

=>
{core: smallg= {sgrain }* #{sgrain }

{sgrain: bab=<> }? {sgrain: lex=<vowel> } {sgrain }* }
end
regexp color_u is

{core: [fscore:stem1=II|III],
{sgrain:lex=<cons>?<vowel>,bab=<cons>?u }{sgrain }* };

{core: [fscore:stem1=I|IV],
{sgrain:lex=<cons>?<vowel>,bab=<cons>?(<vowel>-u) }
{sgrain }* };

end

Figure 3: extracts from the Akkadian project

The main difference is that MAGEAD has only
one level of structure using only one type of Carte-
sian Products. Another difference is that the two
systems use different kinds of contextual rules.
The rules differ both by their syntax and their se-
mantics. Furthermore, contextual rules are the
main syntactic construction in MAGEAD whereas
Karamel uses also regular expressions.

MMORPH is another system of partition-based
morphology based on the work by Pulman and
Hepple (Pulman and Hepple, 1993). There are two
parts in a description: first, the morphotactics is
described using a Unification Grammar where the
terminals are lexical affixes and the non-terminals
are feature structures; transformation rules relate
the lexical and surface levels. The features are flat.
Feature structures are evaluated dynamically by a
unification machine.

Karamel statically compiles Feature Structures
and their unification into finite-state transducers.
This is efficient and part of the structures are
shared. On the other hand, the grammar of fea-
ture structures must be regular and there is a risk
of combinatorial explosion. MMORPH uses two
kinds of units: one relates affixes to Feature Struc-
tures, the other relates small parts of lexical and
surface forms (typically, substrings of length 0
to 2). Karamel uses a richer and more flexible

structuration. Furthermore, the number of tapes is
fixed in MMORPH and user defined in Karamel.
MMORPH is distributed under the GPL license. It
is not maintained any more.

5 Conclusion

In this paper, we have emphasized the application
of Karamel to morphological descriptions. The
multiplicity of tapes is useful at all the levels of
the analysis. The abstract representation typically
uses feature structures. Several tapes are to be
used if different kinds of feature structures have
different spans with respect to the surface form. At
the intermediate level, several tapes may be used
by a multi-tiered analysis. It is not the case in our
example, but Karamel is compatible with an ap-
proach where each tier is put on a different tape
(Kiraz, 2000). The surface level may also use sev-
eral tapes. In our example, two tapes are used for
two different dialects. It is also possible to use sev-
eral tapes for several writings of the surface forms,
for instance, a standard written form, a phonetic
representation using the International Phonetic Al-
phabet (IPA) and a transcription in Latin alphabet.

The other main feature of Karamel is to use em-
bedded units to relate the different tapes. This is
useful to define the scope of feature structure and
to distinguish several parts in the forms.
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Abstract

Various methods have been devised to pro-
duce morphological analyzers and gen-
erators for Semitic languages, ranging
from methods based on widely used finite-
state technologies to very specific solu-
tions designed for a specific language
or problem. Since the earliest propos-
als of how to adopt the elsewhere suc-
cessful finite-state methods to root-and-
pattern morphologies, the solution of en-
coding Semitic grammars using multi-tape
automata has resurfaced on a regular ba-
sis. Multi-tape automata, however, require
specific algorithms and reimplementation
of finite-state operators across the board,
and hence such technology has not been
readily available to linguists. This paper,
using an actual Arabic grammar as a case
study, describes an approach to encoding
multi-tape automata on a single tape that
can be implemented using any standard
finite-automaton toolkit.

1 Introduction

1.1 Root-and-pattern morphology and
finite-state systems

The special problems and challenges embodied by
Semitic languages have been recognized from the
early days of applying finite-state methods to nat-
ural language morphological analysis. The lan-
guage model which finite-state methods have been
most successful in describing—a model where
morphemes concatenate in mostly strict linear
order—does not translate congenially to the type
of root-and-pattern morphology found in e.g. Ara-
bic and Hebrew (Kataja and Koskenniemi, 1988;
Lavie et al., 1988).

In Arabic, as in most Semitic languages, verbs
have for a long time been analyzed as consist-

ing of three elements: a (most often) triconsonan-
tal root, such as ktb (H.

�
H ¼), a vowel pattern

containing grammatical information such as voice
(e.g. the vowel a) and a derivational template,
such as CVCVC indicating the class of the verb, all
of which are interdigitated to build a stem, such
as katab (I.

��
J
�
»).1 This stem is in turn subject to

more familiar morphological constructions includ-
ing prefixation and suffixation, yielding informa-
tion such as number, person, etc, such as kataba
( �
I.

�
J»), the third person singular masculine perfect

form.
The difficulty of capturing this interdigitation

process is not an inherent shortcoming of finite-
state automata or transducers per se, but rather
a result of the methods that are commonly used
to construct automata. Regular expressions that
contain operations such as concatenation, union,
intersection, as well as morphotactic descriptions
through right-linear grammars offer an unwieldy
functionality when it comes to interleaving strings
with one another in a regulated way. But, one
could argue, since large scale morphological ana-
lyzers as finite-state automata/transducers have in-
deed been built (see e.g. Beesley (1996, 1998b,a)),
the question of how to do it becomes one of con-
struction, not feasibility.

1.2 Multitape automata

One early approach, suggested by Kay (1987) and
later pursued in different variants by Kiraz (1994,
2000) among others, was to, instead of modeling
morphology along the more traditional finite-state
transducer, modeling it with a n-tape automaton,
where tapes would carry precisely this interleaving

1Following autosegmental analyses, this paper assumes
the model where the vocalization is not merged with the pat-
tern, i.e. we do not list separate patterns for vocalizations
such as CaCaC as is assumed more traditionally. Which anal-
ysis to choose largely a matter of convenience, and the meth-
ods in this paper apply to either one.
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that is called for in Semitic interdigitation. How-
ever, large-scale multitape solutions containing the
magnitude of information in standard Arabic dic-
tionaries such as Wehr (1979) have not been re-
ported.

To our knowledge, two large-scale morphologi-
cal analyzers for Arabic that strive for reasonable
completeness have been been built: one by Xerox
and one by Tim Buckwalter (Buckwalter, 2004).
The Xerox analyzer relies on complex extensions
to the finite-state calculus of one and two-tape
automata (transducers) as documented in Beesley
and Karttunen (2003), while Buckwalter’s system
is a procedural approach written in Perl which de-
composes a word and simultaneously consults lex-
ica for constraining the possible decompositions.
Also, in a similar vein to Xerox’s Arabic analyzer,
Yona and Wintner (2008) report on a large-scale
system for Hebrew built on transducer technology.
Most importantly, none of these very large systems
are built around multi-tape automata even though
such a construction from a linguistic perspective
would appear to be a fitting choice when dealing
with root-and-pattern morphology.

1.3 n-tape space complexity

There is a fundamental space complexity problem
with multi-tape automata, which is that when the
number of tapes grows, the required joint sym-
bol alphabet grows with exponential rapidity un-
less special mechanisms are devised to curtail this
growth. This explosion in the number of transi-
tions in an n-tape automaton can in many cases
be more severe than the growth in the number of
states of a complex grammar.

To take a simple, though admittedly slightly ar-
tificial example: suppose we have a 5-tape au-
tomaton, each tape consisting of the same alpha-
bet of, say 22 symbols {s1, . . . , s22}. Now, as-
sume we want to restrict the co-occurrence of s1
on any combination of tapes, meaning s1 can only
occur once on one tape in the same position, i.e.
we would be accepting any strings containing a
symbol such as s1:s2:s2:s2:s2 or s2:s2:s2:s2:s3
but not, s1:s2:s3:s4:s1. Without further treatment
of the alphabet behavior, this yields a multi-tape
automaton which has a single state, but 5,056,506
transitions—each transition naturally representing
a legal combination of symbols on the five tapes.
This kind of transition blow-up is not completely
inevitable: of course one can devise many tricks

to avoid it, such as adding certain semantics to
the transition notation—in our example by per-
haps having a special type of ‘failure’ transition
which leads to non-acceptance. For the above ex-
ample this would cut down the number of tran-
sitions from 5,056,506 to 97,126. The drawback
with such methods is that any changes will tend
to affect the entire finite-state system one is work-
ing with, requiring adaptations in almost every un-
derlying algorithm to construct automata. One is
then unable to leverage the power of existing soft-
ware designed for finite-state morphological anal-
ysis, but needs to build special-purpose software
for whatever multi-tape implementation one has in
mind.2

1.4 The appeal of the multi-tape solution

The reason multi-tape descriptions of natural lan-
guage morphology are appealing lies not only
in that such solutions seem to be able to han-
dle Semitic verbal interdigitation, but also in
that a multi-tape solution allows for a natural
alignment of information regarding segments and
their grammatical features, something which is
often missing in finite-state-based solutions to
morphological analysis. In the now-classical
way of constructing morphological analyzers, we
have a transducer that maps a string represent-
ing an unanalyzed word form, such as kataba
( �
I.

��
J
�
») to a string representing an analyzed one,

e.g. ktb +FormI +Perfect +Act +3P
+Masc +Sg. Such transductions seldom pro-
vide grammatical component-wise alignment in-
formation telling which parts of the unanalyzed
words contribute to which parts of the grammat-
ical information. Particularly if morphemes signi-
fying a grammatical category are discontinuous,
this information is difficult to provide naturally
in a finite-automaton based system without many
tapes. A multi-tape solution, on the other hand,

2Two anonymous reviewers point out the work by Habash
et al. (2005) and Habash and Rambow (2006) who report an
effort to analyze Arabic with such a multitape system based
on work by Kiraz (2000, 2001) that relies on custom algo-
rithms devised for a multitape alphabet. Although Habash
and Rambow do not discuss the space requirements in their
system, it is to be suspected that the number of transitions
grows quickly using such an method by virtue of the argu-
ment given above. These approaches also use a small number
of tapes (between 3 and 5), and, since the number of tran-
sitions can increase exponentially with the number of tapes
used, such systems do not on the face of it appear to scale
well to more than a handful of tapes without special precau-
tions.
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Tinput k a t a b a
Troot k t b
Tform Form I
Tptrn C V C V C
Tpaff a
Taffp +3P

+Masc
+Sg

Tvoc a a
Tvocp +Act

. . .

Table 1: A possible alignment of 8 tapes to capture
Arabic verbal morphology.

can provide this information by virtue of its con-
struction. The above example could in an 8-tape
automaton encoding be captured as illustrated in
table 1, assuming here that Tinput is the input tape,
the content of which is provided, and the subse-
quent tapes are output tapes where the parse ap-
pears.

In table 1, we see that the radicals on the root
tape are aligned with the input, as is the pattern on
the pattern tape, the suffix -a on the suffix tape,
which again is aligned with the parse for the suf-
fix on the affix parse tape (affp), and finally the
vocalization a is aligned with the input and the pat-
tern. This is very much in tune with both the type
of analyses linguists seem to prefer (McCarthy,
1981), and more traditional analyses and lexicog-
raphy of root-and-pattern languages such as Ara-
bic.

In what follows, we will present an alternate
encoding for multi-tape automata together with
an implementation of an analyzer for Arabic ver-
bal morphology. The encoding simulates a multi-
tape automaton using a simple one-tape finite-state
machine and can be implemented using standard
toolkits and algorithms given in the literature. The
encoding also avoids the abovementioned blow-up
problems related to symbol combinations on mul-
tiple tapes.

2 Notation

We assume the reader is familiar with the basic
notation regarding finite automata and regular ex-
pressions. We will use the standard operators of
Kleene closure (L∗), union (L1 ∪ L2), intersec-
tion (L1 ∩ L2), and assume concatenation when-
ever there is no overt operator specified (L1L2).

We use the symbol Σ to specify the alphabet, and
the shorthand \a to denote any symbol in the al-
phabet except a. Slight additional notation will be
introduced in the course of elaborating the model.

3 Encoding

In our implementation, we have decided to encode
the multi-tape automaton functionality as consist-
ing of a single string read by a single-tape automa-
ton, where the multiple tapes are all evenly inter-
leaved. The first symbol corresponds to the first
symbol on tape 1, the second to the first on tape 2,
etc.:

T1 ↓ ↓ ↓
. . .

Tn−1 ↓ ↓ ↓
Tn ↗ ↗ ↓

. . .

For instance, the two-tape correspondence:

T1 a
T2 b c

would be encoded as the string abεc, ε being a spe-
cial symbol used to pad the blanks on a tape to
keep all tapes synchronized.

This means that, for example, for an 8-tape rep-
resentation, every 8th symbol from the beginning
is a symbol representing tape 1.

Although this is the final encoding we wish to
produce, we have added one extra temporary fea-
ture to facilitate the construction: every symbol on
any ‘tape’ is always preceded by a symbol indi-
cating the tape number drawn from an alphabet
T1, . . . , Tn. These symbols are removed eventu-
ally. That means that during the construction, the
above two-tape example would be represented by
the string T1aT2bT1εT2c. This simple redundancy
mechanism will ease the writing of grammars and
actually limit the size of intermediate automata
during construction.

4 Construction

4.1 Overview
We construct a finite-state n-tape simulation gram-
mar in two steps. Firstly we populate each ‘tape’
with all grammatically possible strings. That
means that, for our Arabic example, the root tape
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should contain all possible roots we wish to ac-
cept, the template tape all the possible templates,
etc. We call this language the Base. The second
step is to constrain the co-occurrence of symbols
on the individual tapes, i.e. a consonant on the root
tape must be matched by a consonant of the input
tape as well as the symbol C on the pattern tape,
etc. Our grammar then consists of all the permit-
ted combinations of tape symbols allowed by a)
the Base and b) the Rules. The resulting lan-
guage is simply their intersection, viz.:

Base ∩ Rules

4.2 Populating the tapes

We have three auxiliary functions, TapeL(X,Y),
TapeM(X,Y), and TapeA(X,Y), where the ar-
gument X is the tape number, and Y the language
we with to insert on tape X.3 TapeL(X,Y) cre-
ates strings where every symbol from the language
Y is preceded by the tape indicator TX and where
the entire tape is left-aligned, meaning there are
no initial blanks on that tape. TapeM is the same
function, except words on that tape can be pre-
ceded by blanks and succeeded by blanks. TapeA
allows for any alignment of blanks within words
or to the left or right. Hence, to illustrate this
behavior, TapeL(4,C V C V C) will produce
strings like:

XT4CXT4VXT4CXT4VXT4CY

where X is any sequence of symbols not contain-
ing the symbol T4, and Y any sequence possibly
containing T4 but where T4 is always followed by
ε, i.e. we pad all tapes at the end to allow for syn-
chronized strings on other tapes containing more
material to the right.

Now, if, as in our grammar, tape 4 is the tem-
plate tape, we would populate that tape by declar-
ing the language:

TapeM(4,Templates)

assuming Templates is the language that ac-
cepts all legal template strings, e.g. CVCVC,
CVCCVC, etc.

Hence, our complete Base language (continu-
ing with the 8-tape example) is:

3See the appendix for exact definitions of these functions.

TapeL(1,Inputs) ∩
TapeA(2,Roots) ∩
TapeL(3,Forms) ∩
TapeM(4,Templates) ∩
TapeA(5,Affixes) ∩
TapeM(6,Parses) ∩
TapeA(7,Voc) ∩
TapeL(8,VocParses) ∩
(T1ΣT2ΣT3ΣT4ΣT5ΣT6ΣT7ΣT8Σ)∗

This will produce the language where all strings
are multiples of 16 in length. Every other sym-
bol is the TX tape marker symbol and every other
symbol is the actual symbol on that tape (allowing
for the special symbol ε also to represent blanks on
a tape). Naturally, we will want to define Inputs
occurring on tape 1 as any string containing any
combination of symbols since it represents all pos-
sible input words we wish to parse. Similarly, tape
2 will contain all possible roots, etc. This Base
language is subsequently constrained so that sym-
bols on different tapes align correctly and are only
allowed if they represent a legal parse of the word
on the input tape (tape 1).

4.3 Constructing the rules

When constructing the rules that constrain the co-
occurrence of symbols on the various tapes we
shall primarily take advantage of the ⇒ oper-
ator first introduced for two-level grammars by
Koskenniemi (1983).4 The semantics is as fol-
lows. A statement:

X ⇒ L1 R1, . . . , Ln Rn

where X and Li, Ri are all regular languages
defines the regular language where every instance
of a substring drawn from the languageX must be
surrounded by some pair Li and Ri to the left and
right, respectively.5

Indeed, all of our rules will consist exclusively
of⇒ statements.

To take an example: in order to constrain the
template we need two rules that effectively say that
every C and V symbol occurring in the template

4There is a slight, but subtle difference in notation,
though: the original two-level⇒ operator constrained single
symbols only (such as a:b, which was considered at compile-
time a single symbol); here, the argument X refers to any
arbitrary language.

5Many finite-state toolkits contain this as a separate op-
erator. See Yli-Jyrä and Koskenniemi (2004) and Hulden
(2008) for how such statements can be converted into regular
expressions and finite automata.
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tape must be matched by 1) a consonant on the root
tape and 2) a vowel on the input tape. Because of
our single-tape encoding the first rule translates to
the idea that every T4 C sequence must be directly
preceded by T2 followed by some consonant fol-
lowed by T3 and any symbol at all:

T4 C ⇒ T2 Cons T3 Σ (1)

and the second one translates to:

T4 V ⇒ T1 Vow T2 Σ T3 Σ (2)

assuming that Vow is the language that contains
any vowel and Cons the language that contains
any consonant.

Similarly, we want to constrain the Forms
parse tape that contains symbols such as Form I,
Form II etc., so that if, for example, Form I oc-
curs on that tape, the pattern CVCVCmust occur on
the pattern tape.6

T3 Form I⇒ TapeM(4,C V C V C) (3)

and likewise for all the other forms. It should be
noted that most constraints are very strictly local
to within a few symbols, depending slightly on the
ordering and function of the tapes. In (1), for in-
stance, which constrains a symbol on tape 4 with
a consonant on tape 2, there are only 2 interven-
ing symbols, namely that of tape 3. The ordering
of the tapes thus has some bearing on both how
simple the rules are to write, and the size of the re-
sulting automaton. Naturally, tapes that constrain
each other are ideally placed in adjacent positions
whenever possible.

Of course, some long-distance constraints will
be inevitable. For example, Form II is generally
described as a CVCCVC pattern, where the extra
consonant is a geminate, as in the stem kattab,
where the t of the root associates with both C’s
in the pattern. To distinguish this C behavior
from that of Form X which is also commonly de-
scribed with two adjacent C symbols where, how-
ever, there is no such association (as in the stem
staktab) we need to introduce another symbol.

6To be more exact, to be able to match and parse both
fully vocalized words such as wadarasat (

��
I

�
� �P

�
X

�
ð), and un-

vocalized ones, such as wdrst ( �
I�PXð), we want the pattern

CVCVC to actually be represented by the regular expression
C (V) C (V) C, i.e. where the vowels are optional. Note,
however, that the rule that constrains T4 V above only re-
quires that the V matches if there indeed is one. Hence,
by declaring vowels in patterns (and vocalizations) to be op-
tional, we can always parse any partially, fully, or unvocalized
verb. Of course, fully unvocalized words will be much more
ambiguous and yield more parses.

This symbol C2 occurs in Form II, which becomes
CVCC2VC. We then introduce a constraint to the
effect that any C2-symbol must be matched on the
input by a consonant, which is identical to the pre-
vious consonant on the input tape.7 These long-
distance dependencies can be avoided to some ex-
tent by grammar engineering, but so long as they
do not cause a combinatorial explosion in the num-
ber of states of the resulting grammar automaton,
we have decided to include them for the sake of
clarity.

To give an overview of some of the subsequent
constraints that are still necessary, we include here
a few descriptions and examples (where the starred
(***) tape snippets exemplify illegal configura-
tions):

• Every root consonant has a matching conso-
nant on the input tape

T1 k a t a b a
T2 k t b
T1 k a t a b a
T2*** d r s

• A vowel in the input which is matched by a
V in the pattern, must have a corresponding
vocalization vowel

T1 k a t a b a
T4 C V C V C
T7 a a
T1 k a t a b a
T4 C V C V C
T7*** u i

• A position where there is a symbol in the in-
put either has a symbol in the pattern tape or
a symbol in the affix tape (but not both)

T1 k a t a b a
T4 C V C V C
T5 a
T1 k a t a b a
T4 C V C V C
T5***

7The idea to preserve the gemination in the grammar is
similar to the solutions regarding gemination and spreading
of Forms II, V, and IX documented in Beesley (1998b) and
Habash and Rambow (2006).
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4.4 The final automaton

As mentioned above, the symbols {T1, . . . , Tn}
are only used during construction of the automa-
ton for the convenience of writing the grammar,
and shall be removed after intersecting the Base
language with the Rules languages. This is a sim-
ple substitution TX → ε, i.e. the empty string.
Hence, the grammar is compiled as:

Grammar = h(Base ∩ Rules)

where h is a homomorphism that replaces TX

symbols with ε, the empty string.

5 Efficiency Considerations

Because the construction method proposed can
very quickly produce automata of considerable
size, there are a few issues to consider when de-
signing a grammar this way. Of primary concern
is that since one is constructing deterministic au-
tomata, long-distance constraints should be kept
to a minimum. Local constraints, which the ma-
jority of grammar rules encode, yield so-called k-
testable languages when represented as finite au-
tomata, and the state complexity of their inter-
section grows additively. For larger k, however,
growth is more rapid which means that, for ex-
ample, when one is designing the content of the
individual tapes, care should be taken to ensure
that segments or symbols which are related to each
other preferably align very closely on the tapes.
Naturally, this same goal is of linguistic interest as
well and a grammar which does not align gram-
matical information with segments in the input is
likely not a good grammar. However, there are a
couple of ways in which one can go astray. For
instance, in the running example we have pre-
sented, one of the parse tapes has included the
symbol +3P +Masc +Sg, aligned with the affix
that represents the grammatical information:

. . .
T5 a
T6 +3P

+Masc
+Sg

. . .

However, if it be the case that what the parse
tape reflects is a prefix or a circumfix, as will be
the case with the imperfective, subjunctive and

jussive forms, the following alignment would be
somewhat inefficient:

. . .
T5 t a
T6 +3P

+Fem
+Sg

. . .

This is because the prefix ta, which appears
early in the word, is reflected on tape 6 at the end
of the word, in effect unnecessarily producing a
very long-distance dependency and hence dupli-
cates of states in the automaton encoding the in-
tervening material. A more efficient strategy is to
place the parse or annotation tape material as close
as possible to the segments which have a bearing
on it, i.e.:

. . .
T5 t a
T6 +3P

+Fem
+Sg

. . .

This alignment can be achieved by a constraint
in the grammar to the effect that the first non-blank
symbol on the affix tape is in the same position as
the first non-blank symbol on the affix parse tape.

It is also worth noting that our implementation
does not yet restrict the co-occurrence of roots and
forms, i.e. it will parse any word in any root in the
lexicon in any of the forms I-VIII, X. Adding these
restrictions will presumably produce some growth
in the automaton. However, for the time being we
have also experimented with accepting any trilit-
eral root—i.e. any valid consonantal combination.
This has drastically cut the size of the resulting
automaton to only roughly 2,000 states without
much overgeneration in the sense that words will
not incorrectly be matched with the wrong root.
The reason for this small footprint when not hav-
ing a ‘real’ lexicon is fairly obvious—all depen-
dencies between the root tape and the pattern tape
and the input tape are instantly resolved in the span
of one ‘column’ or 7 symbols.

6 Algorithmic additions

Naturally, one can parse words by simply inter-
secting TapeL(1, word) ∩ Grammar, where
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word is the word at hand and printing out all the
legal strings. Still, this is unwieldy because of
the intersection operation involved and for faster
lookup speeds one needs to consider an algorith-
mic extension that performs this lookup directly
on the Grammar automaton.

6.1 Single-tape transduction

For our implementation, we have simply modified
the automaton matching algorithm in the toolkit
we have used, foma8 to, instead of matching ev-
ery symbol, matching the first symbol as the ‘in-
put’, then outputting the subsequent n (where n
is 7 in our example) legal symbols if the subse-
quent input symbols match. Because the grammar
is quite constrained, this produces very little tem-
porary ambiguity in the depth-first search traversal
of the automaton and transduces an input to the
output tapes in nearly linear time.

7 Future work

The transduction mechanism mentioned above
works well and is particularly easy to implement
when the first ‘tape’ is the input tape containing
the word one wants to parse, since one can simply
do a depth-first search until the the next symbol
on the input tape (in our running example with 8
tapes, that would be 7 symbols forward) and dis-
card the paths where the subsequent tape 1 sym-
bols do not match, resulting in nearly linear run-
ning time. However, for the generation problem,
the solution is less obvious. If one wanted to sup-
ply any of the other tapes with a ready input (such
as form, root, and a combination of grammatical
categories), and then yield a string on tape 1, the
problem would be more difficult. Naturally, one
can intersect various TapeX(n, content) languages
against the grammar, producing all the possible in-
put strings that could have generated such a parse,
but this method is rather slow and results only in
a few parses per second on our system. Devis-
ing a fast algorithm to achieve this would be desir-
able for applications where one wanted to, for in-
stance, generate all possible vocalization patterns
in a given word, or for IR purposes where one
would automatically apply vocalizations to Arabic
words.

8See the appendix.

8 Conclusion

We have described a straightforward method by
which morphological analyzers for languages that
exhibit root-and-pattern morphology can be built
using standard finite-state methods to simulate
multi-tape automata. This enables one to take
advantage of already widely available standard
toolkits designed for construction of single-tape
automata or finite-state transducers. The feasibil-
ity of the approach has been tested with a limited
implementation of Arabic verbal morphology that
contains roughly 2,000 roots, yielding automata of
manageable size. With some care in construction
the method should be readily applicable to larger
projects in Arabic and other languages, in partic-
ular to languages that exhibit root-and-pattern or
templatic morphologies.
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9 Appendix

The practical implementation described in the pa-
per was done with the freely available (GNU Li-
cence) foma finite-state toolkit.9. However, all of
the techniques used are available in other toolk-
its as well, such as xfst (Beesley and Karttunen,
2003), or fsa (van Noord, 2000)), and translation
of the notation should be straightforward.

The functions for populating the tapes in section
4.2, were defined in foma as follows:

TapeL(X,Y) =
[[Y ◦ [[0×\X \X]* [0×X]

∑
]*]2

[X E|\X \X]*]
TapeM(X,Y) = [[Y ◦ [0×[\X \X|X E]]*
[0×\X \X]* [0×X]

∑
]*]2 [X E|\X \X]*]

TapeA(X,Y) = [[Y ◦
[0×\X \X|X E]* 0×X

∑
]*]2;

Here, TapeX is a function of two variables, X
and Y. Transducer composition is denoted by ◦,
cross-product by ×, the lower projection of a re-
lation by L2, and union by |. Brackets indicate
grouping and Σ any symbol. The notation \X de-
notes any single symbol, except X . The symbol ε
here is the special ‘blank’ symbol used to pad the
tapes and keep them synchronized.

9http://foma.sourceforge.net
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Abstract 

 

Modern standard Arabic is usually written 
without diacritics. This makes it difficult for 
performing Arabic text processing. Diacritiza-
tion helps clarify the meaning of words and 
disambiguate any vague spellings or pronun-
ciations, as some Arabic words are spelled the 
same but differ in meaning. In this paper, we 
address the issue of adding diacritics to undia-
critized Arabic text using a hybrid approach. 
The approach requires an Arabic lexicon and 
large corpus of fully diacritized text for train-
ing purposes in order to detect diacritics. Case-
Ending is treated as a separate post processing 
task using syntactic information. The hybrid 
approach relies on lexicon retrieval, bigram, 
and SVM-statistical prioritized techniques.  
We present results of an evaluation of the pro-
posed diacritization approach and discuss var-
ious modifications for improving the perfor-
mance of this approach. 

1 Introduction 

Modern Arabic written texts usually include 
Arabic scripts without short vowels and other 
diacritic marks. This often leads to considerable 
ambiguity since several words that have differ-
ent diacritic patterns may appear identical in a 
diacritic-less setting. Educated modern Arabic 
speakers are able to accurately derive/restore 
diacritics in a document. This is based on the 
context and their linguistic knowledge of Arabic. 
However, a text without diacritics brings diffi-
culties for Arabic readers. It is also problematic 
for Arabic processing applications, such as text-
to-speech, speech-to-text, and text analysis, 
where the lack of diacritics adds another layer of 
ambiguity when processing the input data. As an 
example, full vocalization of Arabic text is re-
quired for text-to-speech applications, where the 

mapping from graphemes to phonemes is com-
plicated compared to languages such as English 
and French; where there is, in most cases, simple 
one-to-one relationship. Nevertheless, using 
Arabic text with diacritics has proven an im-
provement in the accuracy of speech-recognition 
applications (Zitouni et al., 2006).  

The problem of automatic restoration (i.e., deri-
vation) of the diacritic signs of Arabic text can 
be solved by two approaches. The first is a rule-
based approach that involves a complex integra-
tion of the Arabic morphological, syntactic, and 
semantic tools with significant efforts to acquire 
respective linguistic rules. A morphological ana-
lyzer gets the breakdowns of the undiacritized 
word according to known patterns or templates 
and recognizes its prefixes and suffixes. A syn-
tax analyzer applies specific syntactic rules to 
determine the case-ending diacritics, usually, by 
techniques such as finite-state automata. Seman-
tics handling helps to resolve ambiguous cases 
and to filter out hypothesis. Hence, rule-based 
diacritization approach is a complicated process 
and takes longer time to process an Arabic sen-
tence which is naturally long. The second ap-
proach is the statistical approach that requires 
linguistic resources such as a large tagged cor-
pus (in particular a TreeBank) to extract lan-
guage statistics for estimating the missing dia-
critical marks. The approach is fully automated 
and does not require efforts to acquire respective 
linguistic knowledge. Results are usually im-
proved by increasing the size of the corpus. 

It is worth noting that identifying some of the 
diacritic marks can be seen as a morphological 
problem and the relevant letters are called inter-
nal characters in this paper. Moreover, diacritic 
mark of the last character of the Arabic is called 
case ending (علامة الاعراب). The identification of 
case-ending diacritics is determined at the syn-
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tactic processing level (case ending depends on 
the position of the word within the sentence) 
whereas detecting the internal diacritics is de-
termined at the morphological processing level. 
In widespread cases, the case-ending come in-
ternally rather than with the last character such 
as "بِقَلمِها" (by-her-pen). 

In this paper, an Arabic diacritizer is proposed. 
Internal diacritization was restored by a model 
based on the synergy of three different tech-
niques:  retrieval of unambiguous lexicon en-
tries, retrieval of two-word expression from a 
preprocessed diacritized bigram database, and a 
prediction using statistical approach based on 
SVM-learning technique, (Cristianini and Tay-
lor, 2000) and (Hearst, 1998). The later tech-
nique tokenizes a text and provides a Reduced 
Tag Set (RTS) of Part of Speech (POS)1 for each 
token. The tags are used to restore the diacritics. 
From the obtained diacritization results of these 
techniques, the most consistent one is selected. 

The Case-Ending diacritization is treated as a 
post-process of the internal diacritization task 
using the same machine learning approach that 
was trained on Base phrase (BP)-Chunk as well 
as POS features of individual tokens with correct 
case-ending tags. A utility has been designed to 
extract correct case-ending tags from the LDC’s 
Arabic Tree Bank (ATB).  

This paper presents a new simple but efficient 
approach that gets results comparable with the 
best performing systems, to our knowledge, 
(Habash and Rambow, 2007). The achieved re-
sults are: 11.795% Word Error Rate (WER) and 
about 3.245% Diacritics Error Rate (DER). The 
paper is structured as follows. Section 2 reviews 
closely related work. Section 3 introduces the 
proposed diacritization approach. Section 4 de-
scribes the training process. Section 5 presents 
the evaluation experiment. Section 6 concludes 
the article and gives direction for future re-
search. 

2 Related Work 

Diacritic restoration has been receiving increas-
ing attention and has been the focus of several 
studies. In El-Sadany and Hashish (1988), a rule-
                                                 
1 List of POS and RTS that are used here can be found at: 
http://www.ircs.upenn.edu/arabic/Jan03release/arabic-
POStags-collapse-to-PennPOStags.txt 
 

based approach that uses morphological analyzer 
for vowelization was proposed. Another, rule-
based grapheme to sound conversion approach 
appeared in 2003 by Y. El-Imam (2003). 
There are many related works dealing with the 
problem of Arabic diacritization in general (Zi-
touni et al., 2006), (Habash and Rambow, 2007), 
(Ananthakrishnan, 2005), (Kirchhoff, 2005).  and 
(Elshafei et al, 2006); all trying to handle this 
problem using statistical approaches but they 
tend to handle the case ending diacritic mark in 
the same way they used to handle the internal 
(any letter but the last) diacritics. In our proposed 
approach we differentiate between them as the 
detection of case-ending diacritics is a syntactic-
based problem whereas detecting the internal 
diacritics is a morphological-based problem. Ha-
bash et al. (2007) introduced a system called 
MADA-D that uses Buckwalter’s Arabic mor-
phological analyzer where they used 14 taggers 
and a lexeme-based language model. MADA is 
so far the best performing system to date. It has 
been reported that it achieved a WER of 14.9% 
and a DER of 4.8%. 

3 The Proposed Diacritization Ap-
proach  

The Arabic internal diacritization problem will 
be addressed from three different proposed tech-
niques, each of which has its own strengths and 
weaknesses. Such techniques are integrated to 
optimize the performance of the Arabic diacritiz-
er and to a large extent remove ambiguities. 
These proposed techniques are: 1) Lexicon Re-
trieval, 2) diacritized bigram, and 3) SVM-
statistical-based diacritizer. Then, the case end-
ing diacritization will be determined after the 
internal discrimination is performed. Figure 1 
shows the architecture of Arabic Diacritization 
System. 
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Figure 1: Arabic Diacritization System 

 
Lexicon Retrieval Technique (LR) 
Lexicon retrieval approach tries to find the result 
(diacritized word) returned from an Arabic lex-
icon for a specific input undiacritized word. If 
only one diacritization is returned, then there is 
no ambiguity. This solution is final and we do 
not need to look at the results form the other two 
techniques. However, this situation is usually 
rare but when it occurs the result is confirmed. 

 
Diacritized Bigram Technique (DB) 
When more than one solution is retrieved for an 
unvowelized input word, i.e., ambiguous diacrti-
cazation, the bigram technique comes into play. 
The idea behind this technique is to make use of 
the multiword expressions in Arabic texts.  When 
such expressions are analyzed as separate words, 
the possibility for ambiguity is increased.  In this 
work, we considered a two-word expression (bi-
gram) that usually occurs with high frequency in 
Arabic texts such that one word can determine 
the diacritization of the other. Once the expres-
sion is identified and diacritized correctly, it adds 
a sense of certitude to the diacritization which 
significantly reduces the ambiguity. Table 1 

shows an extraction of the diacritized bigram 
database. 
   

1st 
Word 

2nd 
Word 

Cat Diac. 1st 
Word 

Diac. 2nd 
Word 

 القَدَم لِكُرَة 3 القدم لكرة
 المُتَّحِدَة الوِلايات 1 المتحدة الولايات
 الوُزَراء رَئِيس 1 الوزراء رئيس
 برِس فرانْس 1 برس فرانس
 الغَرْبِيَّة الضِفَّة 1 الغربية الضفة

Table 1: Diacritized Bigram Database 
 
SVM-Statistical Technique (SVM) 

The previous two diacritization techniques can 
be viewed as a lookup process; either for a word 
in the lexicon or for a two-word expression in a 
large bigram database. However, statistical me-
thods can be viewed as general approaches be-
cause they are heavily dependent on the Arabic 
syntactic analysis that was manually performed 
by Arabic specialists. 

The main idea of this approach is to tokenize 
and automatically annotate tokens with the cor-
rect POS tags. Then, by searching the Arabic 
lexicon using a token and the corresponding 
POS, the correct diacritization result can reached, 
even though multiple ambiguous words are re-
trieved from the lexicon. 

 Buckwalter's morphological analyzer (Buck-
walter, 2002) takes an inflected Arabic word and 
returns fully diacritized ambiguous words. We 
claim in our approach that only internal diacritics 
should be handled morphologically whereas case 
ending should be handled syntactically. Hence, 
we have used the Buckwalter's morphological 
analyzer after removing all case ending diacritics 
from the suffixes table in order to prevent the 
generation of the case ending output. One advan-
tage of this modification is to considerably re-
duce the number of alternatives (i.e., overgenera-
tions) returned from the morphological analyzer. 
Another advantage is that some NLP tasks, such 
as Information Retrieval, require only diacritic 
restoration of internal (lexical) vowels which can 
benefit from such modification. For example, 
given the word “ عامل “ to this morphological 
analyzer, it returns 7 results that have the same 
internal diacritics with one having no case-
ending and 6 having different case-ending dia-
critics. Consequently, splitting the diacrization 
into two stages (internal and case ending) will 
avoid such morphological ambiguity and at the 
second stage the syntactic case ending is treated 
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separately as a post processing which ultimately 
leads to a fully efficient diacritized Arabic word. 
A Hybrid of All Internal Techniques 

When we apply each of the three proposed 
techniques on an input undiacritized Arabic sen-
tence we may get different diacritization results 
for each word within this sentence. The selection 
criteria depend on the agreement among these 
techniques. Two or more matched results can 
determine the discrimination of a word. In case 
of disagreement, a priority is applied in the fol-
lowing, highest to lowest, order: lexicon retriev-
al, bigram and SVM-Statistical technique respec-
tively. If no solution is reached from all tech-
niques, the undiacritized input word is returned.  
 
Case Ending Model 

The main idea is to relate the case-ending for 
each token with its POS and chunk position as 
well as its position within the sentence (Abo 
Bakr et al., 2008). We made a training using 
Support Vector Machines (SVM) technique with 
undiacritized tokens. This technique involves an 
Arabic Treebank. 

An Arabic Treebank usually created on top of 
a corpus that has already been annotated with 
POS tags. We have used the Penn Arabic Tree-
bank (ATB) (Maamouri et al, 2004). ATB has 
begun in the fall of 2001 and has now completed 
four full releases of morphologically and syntac-
tically annotated data: Version 1 of the ATB has 
three parts with different releases; some versions 
like Part 1 V3.0 and Part 2 V 2.0 are fully diacri-
tized trees. For example, consider the following 
undiacritized statement: 
 
 
 
 
 

The following tree representation is partially 
extracted from the tree fileU-
MAAH_UM.ARB_20020120-a.0007.tree that is part 
of  the ATB Part 2 V.2.  
 
 
 
 
 
 

Figure 2 shows a graphical representation of this 
tree2. Case-ending is indicated, ovals in Figure 2, 
by one of the following tags: NCE, 
CASE_DEF_GEN, CASE_INDEF_GEN, 
CASE_DEF_NOM, CASE_DEF_ACC, 
CASE_INDEF_NOM, CASE_DEF_ACCGEN, 
CASE_INDEF ACC, and 
CASE_INDEF_ACCGEN. 
Table 2 gives the complete description of these 
tags. 

 
Figure 2: A graphical representation of an Arabic sen-

tence extracted from the Penn Arabic Treebank 
 

Case Ending Tags Description 
NCE No Case Ending 
CASE_DEF_GEN  Kasra  ِـ 
CASE_INDEF_GEN  kasratan ٍـ 
CASE_DEF_NOM Damma ُـ 
CASE_DEF_ACC Fat-ha َـ 
CASE_DEF_ACCGEN  Maftouh bi Kasra ِـ 
CASE_INDEF_NOM  Damatan  ٌـ 
CASE_INDEF_ACCGEN  Fathatan ًـ or  ٍـ 
CASE_INDEF_ACC Fathatan ًـ 

Table 2: Description of Case-Ending tags found in 
ATB 

 
A sequence of tokens with its POS, BP-chunk 

and Case-Ending is extracted from Treebank us-
ing YamCha File Creator (YFC utility3). The 

                                                 
2 This graphical representation of the Treebank files is ex-
tracted from our Treebank Viewer tool that is freely availa-
ble at: http://www.staff.zu.edu.eg/hmabobakr/ 
 
3 We developed YFC utility to extract information from 
Penn Arabic Treebank ATB and produce the Yamcha stan-
dard input format to be able to use this information in the 
training process. 
http://www.staff.zu.edu.eg/hmabobakr/page.asp?id=53 

 لليوم الثاني على التوالي تظاهر طلاب ينتمون الى"
 ...."جماعة

"llywm AlvAny ElY AltwAly tZAhr TlAb 

(S (S (S (PP-TMP (PREP li-) (NP (NP 
(DET+NOUN+CASE_DEF_GEN -Al+yawom+i) 
(DET+ADJ Al+vAniy)) (PP (PREP EalaY) (NP 
(DET+NOUN Al+tawAliy))))) (VP 
(VERB_PERFECT+PVSUFF_SUBJ:3MS N 
Al+musolim+iyona) ….. 
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basic approach used in YFC is inspired by the 
work of Sabine for Treebank-to-chuck conver-
sion script (Sang and Buchholz, 2000), which we 
have extended to be used with Arabic. This has 
required adding some features like Case-Ending. 
The output produced from YFC utility for case 
ending training process is shown in Table 3. 
 
Token POS Chunk Case Ending
L IN B-PP NCE 
Al DT B-NP NCE 
ywm NN I-NP CASE_DEF_GEN 
Al DT I-NP NCE 
vAny JJ I-NP NCE 
ElY IN B-PP NCE 
Al DT B-NP NCE 
twAly NN I-NP NCE 
tZAhr VBD B-VP NCE 
TlAb NN B-NP CASE_INDEF_NOM 
Yntmwn VBP B-VP NCE 
<lY IN B-PP NCE 
jmAEp NN B-NP CASE_DEF_GEN 

Table 3: Training file format for detecting Case-
Ending 

4 Training of the Arabic Diacritizer 

The diacritization system we present here is 
trained and evaluated on the LDC’s Arabic Tree-
bank of diacritized news articles – Part 2 v2.0: 
catalog number LDC2004T02 and 1-58563-282-
1. The corpus includes complete vocalization 
(including case endings). We introduce here a 
clearly defined and replicable split of the corpus, 
so that the reproduction of the results or future 
investigations can accurately and correctly be 
established. This corpus includes 501 stories 
from the Ummah Arabic News Text. There are a 
total of 144,199 words (counting non-Arabic to-
kens such as numbers and punctuation) in the 
501 files - one story per file.   We split the cor-
pus into two sets: training data and development 
test (devtest) data. The devtest data are the files 
ended by character “7” like 
“UMAAH_UM.ARB_20020120-a.0007.tree” 
and its count was 38 files. The remaining files 
are used for training. 

5 Evaluation 

For Arabic tokenizer, POS tagger, BP-chunk, 
and statistical Case-Ending, we used a standard 
SVM with a polynomial kernel of degree 2 and 
C=1.0. Evaluation of the system was done by 

calculating the performance using the standard 
evaluation measures: accuracy, precision, recall, 
and the f-measure4.We used YamCha (Kudo and 
Matsumoto, 2003) implementation of SVMs. 
Diacritization evaluation of our experiments is 
reported in terms of word error rate (WER), and 
diacritization error rate (DER)5. 
We conducted experiments to: 

1. Evaluate the impact of tokenization, part-of-
speech, chunking, and case-ending parame-
ters on the training models, see Section 5.1. 

2. Evaluate the impact of including and ex-
cluding the case-ending on the performance 
of the Arabic diacritizer, see Section 5.2. 

3. Compare our approach of Tokenization and 
POS tagger with the ArabicSVMTools tag-
ger using different parameters and fea-
ture(s), see Section 5.2. 

 

5.1 Results of Tokenization, Part-of-Speech, 
BP-chunking, and case-ending  

The results obtained for tokenization (TOK), 
part-of-speech (POS), and Chunking (BP-chunk) 
tasks are comparable with the results presented 
in the most notable literature (Diab et al, 2007; 
Diab et al, 2004). We did some modifications of 
the feature list to compromise between the speed 
and accuracy. The case ending task is novel, and 
did not get enough handling in other research. It 
achieved acceptable results. 
 
Evaluation of the impact of the tokenization 
parameter on the training process 

Two tokenization tasks was performed on 
window sizes of -2 /+2 and -4/+4, for illustration 
see TOK1 and TOK2 tasks in Figure 3. For each 
window size there are two columns. The first one 
contains a sequence of Buckwalter's translite-
rated Arabic letters shown from top to bottom 
that resembles the left-to-right Arabic writing 
system (e.g., ….wyblg Eddhm ….. are the trans-
literation of the Arabic words ...ويبلغ عددهم... , re-
spectively). The second column contains the cor-
responding tokenization tags presented by In-
side-Outside-Beginning (I-O-B) of a chunk, i.e., 

                                                 
4 These results were computed using our developed evlua-
tion tool that was developed and tested against Evaluation 
Tools for CONLL 2000 
http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt. 
 
5 These results were computed using our developed evalua-
tion tool that was developed based on information presented 
in (Habash and Rambow, 2007). 
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prefix (PRE), word (WRD), and suffix (SUFF), 
respectively, (Kudo and Matsumoto, 2003). The 
tokenization tags are: B-PRE1, I-PRE1, B-PRE2, 
I-PRE2, B-PRE3, I-PRE3, B-WORD-1, I-
WORD-1, B-SUFF1, I-SUFF1 and O for outside 
word boundary. We made segmentation for the 
determiner "Al" – "ال". This segmentation is im-
portant for the case-ending detection for: the ad-
jective and the noun it modifies “الصفة والموصوف”, 
1st and 2nd Particle of the construction Annexed 
and Annexed noun “المضاف و المضاف إليه”, and Nu-
nation  التنوين" ". The result of the evaluation of the 
two tokenization tasks is shown in Table 4. 
 

 
Figure 3: Tokenization evaluation with window sizes 

of -2/+2 and -4/+4 
 

Measurement TOK1 TOK2
Accuracy 98.59% 99.56% 
Precision 97.17% 98.95% 
Recall 97.29% 99.06% 
F-Measure 97.23% 99.00% 

Table 4: Tokenization results with window sizes of     
-2/+2 and -4/+4 

 
Evaluation of the impact of the part-of-speech 
parameter on the training process 
A POS tagging (POS1) task was performed on a 
sequence of tokens produced from the tokeniza-
tion task. A window size of +2/ -2 tokens centered 
at the focus token. We made another POS tag-
ging (POS2) task by adding the last two charac-
ters as an extra feature for enhancing the accura-
cy of some tags such as plural or dual noun 
(NNS) and singular noun (NN). For illustration 
see POS1 and POS2 tasks in Figure 4. The result 
of the evaluation of the two POS tagging tasks is 
shown in Table 5. 
 

 
Figure 4: POS evaluations with window size of -2/+2; 
with and without using the last two characters as an 

added feature 
Measurement POS1 POS2 
Accuracy 94.34% 95.97% 

Table 5: POS results for different window sizes 
 
Evaluation of the impact of chunking parame-
ters on the training process 
The chunking task was performed on tokens pro-
duced from the tokenization and POS tasks. The 
evaluation included 16 tag-set (features) of a 
window size of -2/+2 for both tokens and POS, 
and only the previous two chunk tags. For illu-
stration see Figure 5. The result of the evaluation 
of is shown in Table 6. 

 
Figure 5: Chunk evaluation with window size of -2/+2 
 

Measurement Results 
Accuracy 95.52% 
Precision 93.19% 
Recall 95.90% 
F-Measure 94.52% 

Table 6: Results for BP-chunk 
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Evaluation of the impact case-ending parame-
ters on the training process 

Two case-ending tasks were performed. The 
first case-ending (CE1) task was discussed in a 
previous work (Abo Bakr et al., 2008). It was 
performed on window size of -3/+3 and 8 tag 
sets. For illustration see Figure 6. 

 
Figure 6: Case-ending evaluation with window size of 

-3/+3 
 

The evaluation has achieved 95.35% in accu-
racy. We noticed that in some cases the system 
can produce unacceptable case ending (e.g., 
Tanween on the sound plural masculine “ جمع
 :that we could improved by (”المذآر السالم

1- Enhancing the POS tagging (POS2) task 
by adding last two characters (L2Ch) as 
a feature.  

2- Enhancing the case ending (CE2) task by 
adding the last character (LCh) and the 
last two characters (L2Ch) as features. 

 

 
Figure 7: Case-Ending evaluation with widow size of 
-3/3 and using the last two characters (L2Ch) and the 

last character (LCh) as added features 
 

The following modifications were done to 
conduct the second case-ending (CE2) task, for 
illustration see Figure 7:  
• Adding the last two characters (L2Ch) and 

the last character (LCh) as features.  
• Enhancing the case ending representation by 

adding an extra tagset for “indeclension of 
the fatha” - “مبني على الفتح” that is presented in 
Treebank as “PVSUFF_SUNJ:3MS”. 

 
Table 7 presents the results obtained for the two 
case ending (CE1 and CE2) tasks. As shown, the 
performance is improved.  
 

 Measurement CE1 CE2 
Accuracy 95.35% 96.57% 

Table 7: Results of Case Ending evaluation 

5.2 Diacritization Results 

In this section, we compare our approach of To-
kenization and POS tagger with Ara-
bicSVMTools tagger. We evaluate the impact of 
including and excluding different techniques of 
internal diacritization and case-ending on the 
overall performance of our Arabic diacritizer. In 
particular, we show the results from the follow-
ing techniques:  lexicon retrieval (LR), diacri-
tized bigram (DB), SVM, and case-ending (CE), 
techniques. Results for different combinations 
were reported and compared. All results were 
performed using TOK1, POS1, and CE1 tasks 
and shown in Table 8 through Table 10. 
 

Including CE Excluding CE6

Technique WER DER WER DER
LR 90.35% 40.85%  31.38%  36.67%
SVM 69.94% 23.36%  16.28%  11.36%

Table 8: WER and DER for Lexicon Retrieval and 
Statistical SVM techniques for including and exclud-

ing case ending 
 
Table 8 shows that excluding case ending (letter) 
from the evaluation gives better results in terms 
of WER and DER.  
As shown in Table 9, it is noted that including 
the case ending technique has enhanced dramati-
cally the results of diacritic restoration. Further 
enhancement was obtained by adopting a new 
method to restore internal diacritics, when all of 
the hybrid techniques fail to return any solution; 
the new method, we call it “accepts any” (AA), 

                                                 
6 Results for “Excluding CE” are calculated manually for a 
limited number of test files because Case-Ending diacritic is 
not always at the last character.  
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is used for arbitrary accepting results from lex-
icon. 
 

Technique WER DER
LR+DB  35.81%  9.77%
LR+DB+SVM  33.51%  7.99%
LR+DB+SVM+CE 17.31% 4.41%
LR+DB+SVM+CE+AA 16.66%  3.84%

Table 9: WER and DER for different combination of 
diacritization techniques 

 
To investigate the effect of enhancing POS tag-
ging on the internal SVM statistical technique, 
we adapted our modules to interact with Ara-
bicSVMTools, the up-to-date most famous free 
tagger7.  Some modification were made to our 
module to accept the article ‘Al’ as it may occur 
as radical letters inside the Noun (we handle ‘Al’ 
separately in our tokenizer). We evaluated our 
statistical diacritization approach using Ara-
bicSVMTools and our proposed tagger. The use 
of ArabicSVMTools has improved the perfor-
mance of our diacrtizer as shown in Table 10. 
ArabicSVMTools gave better results than our 
proposed tagger. However, our proposed tagger 
is about 4 times faster than ArabicSVMTools 
because we use less features. 
 

Tagger WER DER
ArabicSVMTools  12.79% 9.94% 
Proposed SVM  16.28% 11.36% 

Table 10: WER and DER for statistical approach us-
ing different taggers without considering case-ending 

diacritics. 
 
Table 11, shows the results after modifying both 
the statistical and the case ending approaches for 
TOK2, POS2, and CE2 tasks. The last row 
represent results after adding some simple heu-
ristic rules (SHR) to correctly add Tanween Ka-
sra instead of Tanween el Fatha in case of sound 
plural  feminine "جمع المؤنث السالم" . 
 

Technique WER DER
LR+DB+SVM 31.86% 7.92% 
LS+DB+SVM+CE 12.16% 3.78% 
LS+DB+SVM+CE+SHR 11.795% 3.245%

Table 11: WER and DER for different techniques 

                                                 
7 ArabicSVMTools: 
http://www.cs.columbia.edu/~mdiab/downloads/ArabicSV
MTools.tar.gz 
 

6 Conclusions and Future work 

In this paper, we proposed a diacritization model 
that distinguishes between internal and case end-
ing diacritization. The overall performance is 
comparable with the best diacritization model 
that was reported in the literature so far. 
Statistically based methods show great promise 
in addressing the ambiguity resolution problem 
in Arabic language diacritization.  
The proposed system yields good results in the 
DER and WER compared with MADA-D sys-
tem, the modifications for case ending algorithm 
have enhanced the performance. 
The proposed system has an advantage that we 
can use all internal diacritics approaches in paral-
lel because there is no such dependency between 
algorithms. Nevertheless, the case ending algo-
rithm can also be processed in parallel with the 
statistical approach. Such parallel processing ad-
vantage can improve the response time that could 
be critical for some diacritization-based real time 
systems. 
Maintaining the bigram database up-to-date will 
significantly enhance the performance of the sys-
tem. 
Our future work will include adding some heu-
ristic rules for the proposed model as a post 
processing. This  will enhance the performance 
for the system especially to restore correct dia-
critics of the possessive personal pronounce suf-
fixes “ نا“،“ه ”. Moreover, adding extra POS tag 
sets to distinguish between dual noun and plural 
nouns will enhance the diacritization results. We 
plan also to enrich the system by increasing the 
training set by using latest fully diacritized Tree-
bank like Part1 V3.0 (Maamouri et al, 2008) 
which is not available due to limitation of our 
budget. This has the effect of enhancing the sys-
tem performance and allow us to make a compar-
ison with other systems, such as (Habash and 
Rambow, 2007) and (Zitouni et al. , 2006) . 
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Abstract

Fully unsupervised pattern-based methods
for discovery of word categories have been
proven to be useful in several languages.
The majority of these methods rely on the
existence of function words as separate
text units. However, in morphology-rich
languages, in particular Semitic languages
such as Hebrew and Arabic, the equiva-
lents of such function words are usually
written as morphemes attached as prefixes
to other words. As a result, they are missed
by word-based pattern discovery methods,
causing many useful patterns to be unde-
tected and a drastic deterioration in per-
formance. To enable high quality lexical
category acquisition, we propose a sim-
ple unsupervised word segmentation algo-
rithm that separates these morphemes. We
study the performance of the algorithm for
Hebrew and Arabic, and show that it in-
deed improves a state-of-art unsupervised
concept acquisition algorithm in Hebrew.

1 Introduction

In many NLP tasks, we wish to extract informa-
tion or perform processing on text using minimal
knowledge on the input natural language. Towards
this goal, we sometimes find it useful to divide the
set of words in natural language to function words
and content words, a division that applies in the
vast majority of languages. Function words (or
grammatical words, e.g., a, an, the, in, of, etc) are
words that have little or highly ambiguous lexi-
cal meaning, and serve to express grammatical or
semantic relationships with the other words in a
sentence.

In some morphologically-rich languages, im-
portant function words are not written as space-
separated units but as morphemes attached as pre-
fixes to other words. This fact can cause prob-
lems when statistically analyzing text in these lan-
guages, for two main reasons: (1) the vocabulary
of the language grows, as our lexical knowledge
comes solely from a corpus (words appear with
and without the function morphemes); (2) infor-
mation derived from the presence of these mor-
phemes in the sentence is usually lost.

In this paper we address the important task of
a fully unsupervised acquisition of Hebrew lexical
categories (or concepts – words sharing a signifi-
cant aspect of their meaning). We are not aware of
any previous work on this task for Hebrew. Due
to the problem above, the performance of many
acquisition algorithms deteriorates unacceptably.
This happens, for example, in the (Davidov and
Rappoport, 2006) algorithm that utilizes automati-
cally detected function words as the main building
block for pattern construction.

In order to overcome this problem, one should
separate such prefixes from the compound words
(words consisting of function morphemes attached
to content words) in the input corpus. When
we consider some particular word, there are fre-
quently many options to split it to smaller strings.
Fortunately, the set of function words is small and
closed, and the set of grammatical sequences of
function prefixes is also small. Hence we assume
it does not cost us much to know in advance what
are the possible sequences for a specific language.

Even when considering the small number of
possible function words, the task of separating
them is not simple, as some words may be ambigu-
ous. When reading a word that starts with a prefix
known to be a function morpheme, the word may
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be a compound word, or it may be a meaningful
word by itself. For example, the word “hsws” in
Hebrew1 can be interpreted as “hsws” (hesitation),
or “h sws” (the horse). The segmentation of the
word is context dependent – the same string may
be segmented differently in different contexts.

One way of doing such word prefix segmenta-
tion is to perform a complete morphological dis-
ambiguation of the sentence. The disambigua-
tion algorithm finds for each word its morpho-
logical attributes (POS tag, gender, etc.), and de-
cides whether a word is a compound word or a
word without prefixes. A disambiguation algo-
rithm generally relies on a language-specific mor-
phological analyzer. It may also require a large
manually tagged corpus, construction of which for
some particular language or domain requires sub-
stantial human labor. We avoid the utilization of
such costly and language-specific disambiguation
algorithms and manually annotated data.

In this paper we present a novel method to sep-
arate function word prefixes, and evaluate it us-
ing manually labeled gold standards in Hebrew
and Arabic. We incorporate the method into a
pattern-based Hebrew concept acquisition frame-
work and show that it greatly improves state-of-art
results for unsupervised lexical category acquisi-
tion. This improvement allows the pattern-based
unsupervised framework to use one-tenth of the
Hebrew data in order to reach a similar level of
results.

Section 2 discusses related work, and Section 3
reviews the word categories discovery algorithm.
Section 4 presents the word prefix segmentation
algorithm. Results are given in Section 5.

2 Related Work

In this paper we develop an unsupervised frame-
work for segmentation of the function words for
languages where context is important for correct
segmentation. Our main target language is He-
brew, and we experimented with Arabic as well.
As far as we know, there is no work on unsu-
pervised segmentation of words in Hebrew which
does not utilize language-specific tools such as
morphological analyzers.

Lee et al. (2003) addressed supervised word
segmentation in Arabic and have some aspects
similar to our approach. As in their study, we

1Transcription is according to (Ornan, 2005), except for
Shin which is denoted by “$”.

also have a pre-supplied list of possible prefix
sequences and assume a trigram model in order
to find the most probable morpheme sequence.
Both studies evaluate performance on a segmented
text, and not just on words in the lexicon. How-
ever, their algorithm, while achieving good per-
formance (97% accuracy), relies on a training set
– a manually segmented corpus of about 110,000
words, while our unsupervised framework does
not require any annotation and is thus easier to im-
plement and to apply to different domains and lan-
guages.

Snyder and Barzilay (2008) study the task of un-
supervised morphological segmentation of multi-
ple languages. Their algorithm automatically in-
duces a segmentation and morpheme alignment of
short parallel phrases from a multilingual corpus.
Their corpus (The Hebrew Bible and translations)
contains parallel phrases in English, Arabic, He-
brew and Aramaic. They obtain 63.87 F-Score
for Hebrew words segmentation (prefix and suf-
fix), where recall and precision is calculated based
on all possible segmentation points.

Another type of segmentation algorithms in-
volves utilization of language-specific morpholog-
ical analyzers for complete morphological disam-
biguation. In Hebrew each word usually has more
than one possible POS (along with other attributes,
such as gender, number, etc.). Assuming we have
a morphological analyzer (producing the set of
possible analyses for a given word), we can try to
discover the correct segmentation of each word.

Levinger et al. (1995) developed a method for
disambiguation of the results provided by a mor-
phological analyzer for Hebrew. Adler and El-
hadad (2006) proposed an unsupervised algorithm
for word segmentation. They estimate an initial
language model (using (Levinger et al., 1995))
and improve this model with EM. Direct compar-
ison to their work is problematic, however, since
we avoid utilization of a language-specific mor-
phology/POS analyzer. There are also studies of
this type that utilize labeled data (Bar-Haim et al.,
2005), where the language model is learned from
the training data.

Extensive research has been done on word seg-
mentation, where, unlike in our study, the segmen-
tation is evaluated for everyword, regardless of its
context. Creutz (2003) presents an algorithm for
unsupervised segmentation under these assump-
tions. He proposes a probabilistic model which
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utilizes the distributions of morpheme length and
frequency to estimate the quality of the induced
morphemes. Dasgupta and Ng (2007) improves
over (Creutz, 2003) by suggesting a simpler ap-
proach. They segment a prefix using the word
frequency with and without a prefix. Other re-
cent studies that follow the context-independent
setup include (Creutz and Lagus, 2005; Keshava
and Pitler, 2005; Demberg, 2007). They test
their methods on English, Finnish and Turkish.
All of these studies, however, assume context-
independency of segmentation, disregarding the
ambiguity that may come from context. This
makes it problematic to apply the proposed meth-
ods to context-dependent morphology types as in
Hebrew and Arabic.

The guiding goal in the present paper is the con-
cept acquisition problem. Concept acquisition of
different kinds has been studied extensively. The
two main classification axes for this task are the
type of human input and annotation, and the basic
algorithmic approach used. The two main algo-
rithmic approaches are clustering of context fea-
ture vectors and pattern-based discovery.

The first approach is to map each word to a fea-
ture vector and cluster these vectors. Example of
such algorithms are (Pereira et al., 1993) and (Lin,
1998) that use syntactic features in the vector def-
inition. Pantel and Lin (2002) improves on the lat-
ter by clustering by committee.

Recently, there is a growing interest in the sec-
ond main algorithmic approach, usage of lexico-
syntactic patterns. Patterns have been shown to
produce more accurate results than feature vectors,
at a lower computational cost on large corpora
(Pantel et al., 2004). Thus (Dorow et al., 2005)
discover categories using two basic pre-specified
patterns (“x and y”, “x or y”).

Some recent studies have proposed frameworks
that attempt to avoid any implicit or explicit pre-
specification of patterns. Davidov and Rappoport
(2006) proposed a method that detects function
words by their high frequency, and utilizes these
words for the discovery of symmetric patterns.
Their method is based on two assumptions: (1)
some function words in the language symmetri-
cally connect words belonging to the same cat-
egory; (2) such function words can be detected
as the most frequent words in language. While
these assumptions are reasonable for many lan-
guages, for some morphologically rich languages

the second assumption may fail. This is due to
the fact that some languages like Hebrew and Ara-
bic may express relationships not by isolated func-
tion words but by morphemes attached in writing
to other words.

As an example, consider the English word
“and’, which was shown to be very useful in con-
cept acquisition (Dorow et al., 2005). In Hebrew
this word is usually expressed as the morpheme
“w” attached to the second word in a conjunc-
tion (“... wsws” – “... and horse”). Patterns dis-
covered by such automatic pattern discovery al-
gorithms are based on isolated words, and hence
fail to capture “and”-based relationships that are
very useful for detection of words belonging to the
same concept. Davidov and Rappoport (2006) re-
ports very good results for English and Russian.
However, no previous work applies a fully unsu-
pervised concept acquisition for Hebrew.

In our study we combine their concept ac-
quisition framework with a simple unsupervised
word segmentation technique. Our evaluation con-
firms the weakness of word-based frameworks for
morphology-rich languages such as Hebrew, and
shows that utilizing the proposed word segmen-
tation can overcome this weakness while keeping
the concept acquisition approach fully unsuper-
vised.

3 Unsupervised Discovery of Word
Categories

In this study we use word segmentation to improve
the (Davidov and Rappoport, 2006) method for
discovery of word categories, sets of words shar-
ing a significant aspect of their meaning. An ex-
ample for such a discovered category is the set of
verbs{dive, snorkel, swim, float, surf, sail, drift,
...}. Below we briefly describe this category ac-
quisition algorithm.

The algorithm consists of three stages as fol-
lows. First, it discovers a set of pattern candidates,
which are defined by a combination of high fre-
quency words (denoted by H) and slots for low
frequency (content) words (denoted by C). An ex-
ample for such a pattern candidate is ‘x belongs to
y’, where ‘x’ and ‘y’ stand for content word slots.
The patterns are found according to a predefined
set of possible meta-patterns. The meta-patterns
are language-independent2 and consist of up to 4

2They do not include any specific words, only a relative
order of high/low frequency words, and hence can be used on
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words in total, from which two are (non-adjacent)
content words. Four meta-patterns are used: CHC,
CHCH, CHHC, HCHC.

Second, those patterns which give rise to sym-
metric lexical relationships are identified. The
meaning of phrases constructed from those pat-
terns is (almost) invariant to the order of the con-
tent words contained in them. An example for
such a pattern is ‘x and y’. In order to iden-
tify such useful patterns, for each pattern we build
a graph following (Widdows and Dorow, 2002).
The graph is constructed from a node for each con-
tent word, and a directed arc from the node ‘x’ to
‘y’ if the corresponding content words appear in
the pattern such that ‘x’ precedes ‘y’. Then we
calculate several symmetry measures on the graph
structure and select the patterns with best values
for these measures.

The third stage is the generation of categories.
We extract tightly connected sets of words from
the unified graph which combines all graphs of se-
lected patterns. Such sets of words define the de-
sired categories.

The patterns which include the ‘x and y’ sub-
string are among the most useful patterns for gen-
eration of categories (they were used in (Dorow et
al., 2005) and discovered in all 5 languages tested
in (Davidov and Rappoport, 2006)). However, in
Hebrew such patterns can not be found in the same
way, since the function word ‘and’ is the prefix ‘w’
and not a standalone high frequency word.

Another popular set of patterns are ones includ-
ing ‘x or y’. Such patterns can be identified in
Hebrew, as ‘or’ in Hebrew is a separate word.
However, even in this case, the content word rep-
resented by ‘x’ or ‘y’ may appear with a pre-
fix. This damages the construction of the pattern
graph, since two different nodes may be created
instead of one – one for a regular content word,
the other for the same word with a prefix. Conse-
quently, it is reasonable to assume that segmenting
the corpus in advance should improve the results
of discovery of word categories.

4 Word Segmentation Algorithm

We assume we know the small and closed set of
grammatical function word prefix sequences in the
language3. Our input is a sentence, and our ob-

any languages with explicit word segmentation.
3Unlike development of labeled training data, handcraft-

ing such a closed set is straightforward for many languages
and does not requires any significant time/human labor

jective is to return the correct segmentation of the
sentence. A sentenceL is a sequence of words
{w1, w2, ..., wn}. A segmentationSi of L is a se-
quence of morphemes{m1, m2, ..., mk} andl(Si)
is the number of morphemes in the sequence. Note
that l(Si) may be different for each segmentation.
The best segmentationS will be calculated by:

P (Si) = p(m1)p(m2|m1)

l(Si)
∏

i=3

p(mi|mi−1mi−2)

S = arg max
Si

P (Si)

Calculation of joint probabilities requires a tri-
gram model of the language. Below we describe
the construction of the trigram model and then we
detail the algorithm for efficient calculation ofS.

4.1 Construction of trigram model

Creating the trigram language model is done in
two stages: (1) we segment a corpus automati-
cally, and (2) we learn a trigram language model
from the segmented corpus.

4.1.1 Initial corpus segmentation

For initial corpus segmentation, we define a sta-
tistical measure for the segmentation of individual
words. Letwx be a word, such thatw is the pre-
fix of the word composed of a sequence of func-
tion word prefixes andx is a string of letters. Let
f(x) be the frequency of the wordx in the cor-
pus. Denote byal the average length of the strings
(with prefixes) in the language. This can be eas-
ily estimated from the corpus – every string that
appears in the corpus is counted once.l(x) is the
number of characters in the wordx. We utilize
two parametersG, H, whereG < H (we used
G = 2.5, H = 3.5) and define the following func-
tions :

factor(x) =

{

al−G−l(x)
al−H

l(x) < al − G

0 otherwise

Rank(wx) =
f(wx)

f(wx) + f(x)
+ factor(x)

Note that the expression f(wx)
f(wx)+f(x) is a number

in (0, 1], inversely correlated with the frequency of
the prefixed word. Thus higherRank(wx) values
indicate that the word is less likely to be composed
of the prefixw followed by the wordx.
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The expressional−G−l(x)
al−H

is a number in(0, 1],
thereforefactor(x) ∈ [0, 1]. H is G − 1 in order
to keep the expression smaller than 1. The term
factor(x) is greater asx is shorter. The factor
is meant to express the fact that short words are
less likely to have a prefix. We have examined
this in Hebrew – as there are no words of length
1, two letter words have no prefix. We have ana-
lyzed 102 randomly chosen three letter words, and
found that only 19 of them were prefixed words.
We have analyzed 100 randomly chosen four let-
ter words, and found that 40 of them were pre-
fixed words. The result was about the same for
five letter words. In order to decide whether a
word needs to be separated, we define a thresh-
old T ∈ [0, 1]. We allow word separation only
when Rank(wx) is lower thanT . When there
are more than two possible sequences of function
word prefixes (“mhsws”,“ m hsws”, “ mh sws”),
we choose the segmentation with the lower rank.

4.1.2 Learning the trigram model

The learning of the language model is based on
counts of the corpus, assigning a special symbol,
“u/k” (unknown) for all words that do not appear
in the corpus. As estimated by (Lee et al., 2003),
we set the probability of “u/k” to be1E − 9. The
value of the symbol “u/k” was observed to be sig-
nificant. We found that the value proposed by (Lee
et al., 2003) for Arabic gives good results also for
Hebrew.

4.2 Dynamic programming approach for
word segmentation

The naive method to findS is to iterate over
all possible segmentations of the sentence. This
method may fail to handle long sentences, as
the number of segmentations grows exponentially
with the length of the sentence. To overcome this
problem, we use dynamic programming.

Each morpheme has an indexi to its place in a
segmentation sequence. Iteratively, for indexi, for
every morpheme which appears in some segmen-
tation in indexi, we calculate the best segmen-
tation of the sequencem1 . . .mi. Two problems
arise here: (1) we need to calculate which mor-
phemes may appear in a given index; (2) we need
to constrain the calculation, such that only valid
segmentations would be considered.

To calculate which morphemes can appear in a
given index we define the objectMorpheme. It
contains the morpheme (string), the index of a

word in the sentence the morpheme belongs to,
reference to the precedingMorpheme in the same
word, and indication whether it is the last mor-
pheme in the word. For each index of the sen-
tence segmentation, we create a list ofMorphemes
(index-list).

For each word wi, and for segmentation
m1

i , .., m
k
i , we createMorphemes M1

i , .., Mk
i . We

traverse sequentially the words in the sentence,
and for each segmentation we add the sequence of
Morphemes to all possible index-lists. The index-
list for the firstMorpheme M1

i is the combination
of successors of all the index-lists that contain a
Morpheme Mk

i−1. The constraints are enforced

easily – if aMorpheme M
j
i is the first in a word,

the precedingMorpheme in the sequence must be
the lastMorpheme of the previous word. Oth-
erwise, the precedingMorpheme must beM

j−1
i ,

which is referenced byM j
i .

4.3 Limitations

While our model handles the majority of cases, it
does not fully comply with a linguistic analysis of
Hebrew, as there are a few minor exceptions. We
assumed that there is no ambiguity in the function
word prefixes. This is not entirely correct, as in
Hebrew we have two different kinds of exceptions
for this rule. For example, the prefix “k$” (when),
can also be interpreted as the prefix “k” (as) fol-
lowed by the prefix “$” (that). As the second in-
terpretation is rare, we always assumed it is the
prefix “k$”. This rule was applied wherever an
ambiguity exists. However, we did not treat this
problem as it is very rare, and in the development
set and test set it did not appear even once.

A harder problem is encountered when process-
ing the word “bbyt”. Two interpretations could
be considered here: “b byt” (“in a house”), and
“b h byt” (“in the house”). Whether this actu-
ally poses a problem or not depends on the ap-
plication. We assume that the correct segmenta-
tion here is “b byt”. Without any additional lin-
guistic knowledge (for example, diacritical vowel
symbols should suffice in Hebrew), solving these
problems requires some prior discriminative data.

5 Evaluation and Results

We evaluate our algorithm in two stages. First we
test the quality of our unsupervised word segmen-
tation framework on Hebrew and Arabic, compar-
ing our segmentation results to a manually anno-
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With factor(x) Withoutfactor(x)
T Prec. Recall F-Measure Accuracy Prec. Recall F-Measure Accuracy

0.70 0.844 0.798 0.820 0.875 0.811 0.851 0.830 0.881
0.73 0.841 0.828 0.834 0.883 0.808 0.866 0.836 0.884
0.76 0.837 0.846 0.841 0.886 0.806 0.882 0.842 0.887
0.79 0.834 0.870 0.851 0.893 0.803 0.897 0.847 0.890
0.82 0.826 0.881 0.852 0.892 0.795 0.904 0.846 0.888
0.85 0.820 0.893 0.854 0.892 0.787 0.911 0.844 0.886
0.88 0.811 0.904 0.855 0.891 0.778 0.917 0.841 0.882

Table 1: Ranks vs. ThresholdT for Hebrew.

With factor(x) Withoutfactor(x)
T Prec. Recall F-Measure Accuracy Prec. Recall F-Measure Accuracy

0.91 0.940 0.771 0.846 0.892 0.903 0.803 0.850 0.891
0.93 0.930 0.797 0.858 0.898 0.903 0.840 0.870 0.904
0.95 0.931 0.810 0.866 0.904 0.902 0.856 0.878 0.909
0.97 0.927 0.823 0.872 0.906 0.896 0.869 0.882 0.911
0.99 0.925 0.848 0.872 0.915 0.878 0.896 0.886 0.913
1.00 0.923 0.852 0.886 0.915 0.841 0.896 0.867 0.895

Table 2: Ranks vs. ThresholdT for Arabic.

Algorithm P R F A
Rank seg. 0.834 0.870 0.851 0.893
Baseline 0.561 0.491 0.523 0.69

Morfessor 0.630 0.689 0.658 0.814

Table 3: Segmentation results comparison.

tated gold standard. Then we incorporate word
segmentation into a concept acquisition frame-
work and compare the performance of this frame-
work with and without word segmentation.

5.1 Corpora and annotation

For our experiments in Hebrew we used a 19MB
Hebrew corpus obtained from the “Mila” Knowl-
edge Center for Processing Hebrew4. The cor-
pus consists of 143,689 different words, and a
total of 1,512,737 word tokens. A sample text
of size about 24,000 words was taken from the
corpus, manually segmented by human annotators
and used as a gold standard in our segmentation
evaluation. In order to estimate the quality of our
algorithm for Arabic, we used a 7MB Arabic news
items corpus, and a similarly manually annotated
test text of 4715 words. The Arabic corpus is too
small for meaningful category discovery, so we
used it only in the segmentation evaluation.

5.2 Evaluation of segmentation framework

In order to estimate the performance of word seg-
mentation as a standalone algorithm we applied
our algorithm on the Hebrew and Arabic corpora,

4http://mila.cs.technion.ac.il.

using different parameter settings. We first cal-
culated the word frequencies, then applied initial
segmentation as described in Section 4. Then we
used SRILM (Stolcke, 2002) to learn the trigram
model from the segmented corpus. We utilized
Good-Turing discounting with Katz backoff, and
we gave words that were not in the training set the
constant probability1E − 9. Finally we utilized
the obtained trigram model to select sentence seg-
mentations. To test the influence of thefactor(x)
component of theRank value, we repeated our
experiment with and without usage of this com-
ponent. We also ran our algorithm with a set of
different thresholdT values in order to study the
influence of this parameter.

Tables 1 and 2 show the obtained results for He-
brew and Arabic respectively. Precision is the ra-
tio of correct prefixes to the total number of de-
tected prefixes in the text. Recall is the ratio of pre-
fixes that were split correctly to the total number
of prefixes. Accuracy is the number of correctly
segmented words divided by the total number of
words.

As can be seen from the results, the best F-score
with and without usage of thefactor(x) compo-
nent are about the same, but usage of this compo-
nent gives higher precision for the same F-score.
From comparison of Arabic and Hebrew perfor-
mance we can also see that segmentation decisions
for the task in Arabic are likely to be easier, since
the accuracy for T=1 is very high. It means that,
unlike in Hebrew (where the best results were ob-
tained for T=0.79), a word which starts with a pre-
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Method us k-means random
avg ‘shared meaning’(%) 85 24.61 10

avg triplet score(1-4) 1.57 2.32 3.71
avg category score(1-10) 9.35 6.62 3.5

Table 4: Human evaluation results.

abuse, robbery, murder, assault, extortion
good, cheap, beautiful, comfortable

son, daughter, brother, parent
when, how, where

essential, important, central, urgent

Table 5: A sample from the lexical categories dis-
covered in Hebrew (translated to English).

fix should generally be segmented.
We also compared our best results to the base-

line and to previous work. The baseline draws a
segmentation uniformly for each word, from the
possible segmentations of the word. In an at-
tempt to partially reproduce (Creutz and Lagus,
2005) on our data, we also compared our results
to the results obtained from Morfessor Categories-
MAP, version 0.9.1 (Described in (Creutz and La-
gus, 2005)). The Morfessor Categories-MAP al-
gorithm gets a list of words and their frequen-
cies, and returns the segmentation for every word.
Since Morfessor may segment words with prefixes
which do not exist in our predefined list of valid
prefixes, we did not segment the words that had
illegal prefixes as segmented by Morfessor.

Results for this comparison are shown in Table
3. Our method significantly outperforms both the
baseline and Morfessor-based segmentation. We
have also tried to improve the language model by
a self training scheme on the same corpus but we
observed only a slight improvement, giving 0.848
Precision and 0.872 Recall.

5.3 Discovery of word categories

We divide the evaluation of the word categories
discovery into two parts. The first is evaluating
the improvement in the quantity of found lexical
categories. The second is evaluating the quality
of these categories. We have applied the algo-
rithm to a Hebrew corpus of size 130MB5, which
is sufficient for a proof of concept. We compared
the output of the categories discovery on two dif-
ferent settings, with function word separation and
without such separation. In both settings we omit-

5Again obtained from the “Mila” Knowledge Center for
Processing Hebrew.

N A J
With Separation 148 4.1 1
No Separation 36 2.9 0

Table 6: Lexical categories discovery results com-
parison. N: number of categories. A: average cat-
egory size. J: ‘junk’ words.

ted all punctuation symbols. In both runs of the
algorithm we used the same parameters. Eight
symmetric patterns were automatically chosen for
each run. Two of the patterns that were chosen
by the algorithm in the unseparated case were also
chosen in the separated case.

5.3.1 Manual estimation of category quality

Evaluating category quality is challenging since
no exhaustive lists or gold standards are widely
accepted even in English, certainly so in resource-
poor languages such as Hebrew. Hence we follow
the human judgment evaluation scheme presented
in (Davidov and Rappoport, 2006), for the cate-
gories obtained from the segmented corpus.

We compared three methods of word categories
discovery. The first is random sampling of words
into categories. The second is k-means, where
each word is mapped to a vector, and similarity is
calculated as described in (Pantel and Lin, 2002).
We applied k-means to the set of vectors, with sim-
ilarity as a distance function. If a vector had low
similarity with all means, we leave it unattached.
Therefore some clusters contained only one vec-
tor. Running the algorithm 10 times, with different
initial means each time, produced 60 clusters with
three or more words. An interesting phenomenon
we observed is that this method produces very nice
clusters of named entities. The last method is the
one in (Davidov and Rappoport, 2006).

The experiment contained two parts. In Part
I, subjects were given 40 triplets of words and
were asked to rank them using the following scale:
(1) the words definitely share a significant part
of their meaning; (2) the words have a shared
meaning but only in some context; (3) the words
have a shared meaning only under a very un-
usual context/situation; (4) the words do not share
any meaning; (5) I am not familiar enough with
some/all of the words.

The 40 triplets were obtained as follows. 20 of
our categories were selected at random from the
non-overlapping categories we have discovered,
and three words were selected from each of these
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at random. 10 triplets were selected in the same
manner from the categories produced by k-means,
and 10 triplets were selected at random from con-
tent words in the same document.

In Part II, subjects were given the full categories
represented by the triplets that were graded as 1 or
2 in Part I (the full “good” categories in terms of
sharing of meaning). Subjects were asked to grade
the categories from 1 (worst) to 10 (best) accord-
ing to how much the full category had met the ex-
pectations they had when seeing only the triplet.

Nine people participated in the evaluation. A
summary of the results is given in Table 4.

The categories obtained from the unsegmented
corpus are too few and too small for a significant
evaluation. Therefore we applied the evaluation
scheme only for the segmented corpus.

The results from the segmented corpus contain
some interesting categories, with a 100% preci-
sion, like colors, Arab leaders, family members
and cities. An interesting category is{Arabic, En-
glish, Russian, French, German, Yiddish, Polish,
Math}. A sample of some other interesting cate-
gories can be seen in Table 5.

5.3.2 Segmentation effect on category
discovery

In Table 6, we find that there is a major improve-
ment in the number of acquired categories, and an
interesting improvement in the average category
size. One might expect that as a consequence of
an incorrect segmentation of a word, “junk” words
may appear in the discovered categories. As can
be seen, only one “junk” word was categorized.

Throughout this paper we have assumed that
function word properties of languages such as He-
brew and Arabic decrease performance of whole-
word pattern-based concept acquisition methods.
To check this assumption, we have applied the
concept acquisition algorithm on several web-
based corpora of several languages, while choos-
ing corpora size to be exactly equal to the size of
the Hebrew corpus (130Mb) and utilizing exactly
the same parameters. We did not perform quality
evaluation6, but measured the number of concepts
and concept size. Indeed the number of categories
was (190, 170, 159, 162, 150, 29) for Russian, En-
glish, Spanish, French, Turkish and Arabic respec-
tively, clearly inferior for Arabic in comparison to
these European and Slavic languages. A similar

6Brief manual examination suggests no significant drops
in concept quality.

tendency was observed for average concept size.
At the same time prefix separation does help to ex-
tract 148 concepts for Hebrew, making it nearly in-
line with other languages. In contrast, our prelim-
inary experiments on English and Russian suggest
that the effect of applying similar morphological
segmentation on these languages in insignificant.

In order to test whether more data can substi-
tute segmentation even for Hebrew, we have ob-
tained by means of crawling and web queries a
larger (while potentially much more noisy) web-
based 2GB Hebrew corpus which is based on fo-
rum and news contents. Our goal was to estimate
which unsegmented corpus size (if any) can bring
similar performance (in terms of concept number,
size and quality). We gradually increased corpus
size and applied the concept acquisition algorithm
on this corpus. Finally, we have obtained similar,
nearly matching, results to our 130MB corpus for
a 1.2GB Hebrew subcorpus of the 2GB Hebrew
corpus. The results remain stable for 4 different
1.2GB subsets taken from the same 2GB corpus.
This suggests that while segmentation can be sub-
stituted with more data, it may take roughly x10
more data for Hebrew to obtain the same results
without segmentation as with it.

6 Summary

We presented a simple method for separating func-
tion word prefixes from words. The method re-
quires very little language-specific knowledge (the
prefixes), and it can be applied to any morpholog-
ically rich language. We showed that this segmen-
tation dramatically improves lexical acquisition in
Hebrew, where nearly×10 data is required to ob-
tain the same number of concepts without segmen-
tation.

While in this paper we evaluated our framework
on the discovery of concepts, we have recently
proposed fully unsupervised frameworks for the
discovery of different relationship types (Davidov
et al., 2007; Davidov and Rappoport, 2008a; Davi-
dov and Rappoport, 2008b). Many of these meth-
ods are mostly based on function words, and may
greatly benefit from the proposed segmentation
framework.
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Abstract

A number of papers have reported on meth-
ods for the automatic acquisition of large-scale,
probabilistic LFG-based grammatical resources
from treebanks for English (Cahill and al., 2002),
(Cahill and al., 2004), German (Cahill and al.,
2003), Chinese (Burke, 2004), (Guo and al.,
2007), Spanish (O’Donovan, 2004), (Chrupala
and van Genabith, 2006) and French (Schluter
and van Genabith, 2008). Here, we extend the
LFG grammar acquisition approach to Arabic and
the Penn Arabic Treebank (ATB) (Maamouri and
Bies, 2004), adapting and extending the methodol-
ogy of (Cahill and al., 2004) originally developed
for English. Arabic is challenging because of its
morphological richness and syntactic complexity.
Currently 98% of ATB trees (without FRAG and
X) produce a covering and connected f-structure.
We conduct a qualitative evaluation of our annota-
tion against a gold standard and achieve an f-score
of 95%.

1 Introduction

Treebank-based statistical parsers tend to achieve
greater coverage and robustness compared to ap-
proaches using handcrafted grammars. However,
they are criticised for being too shallow to mark
important syntactic and semantic dependencies
needed for meaning-sensitive applications (Ka-
plan, 2004). To treat this deficiency, a number
of researchers have concentrated on enriching
shallow parsers with deep dependency informa-
tion. (Cahill and al., 2002), (Cahill and al., 2004)
outlined an approach which exploits information
encoded in the Penn-II Treebank (PTB) trees to
automatically annotate each node in each tree
with LFG f-structure equations representing deep
predicate-argument structure relations. From this
LFG annotated treebank, large-scale unification
grammar resources were automatically extracted

and used in parsing (Cahill and al., 2008) and
generation (Cahill and van Genabith, 2006).
This approach was subsequently extended to
other languages including German (Cahill and
al., 2003), Chinese (Burke, 2004), (Guo and al.,
2007), Spanish (O’Donovan, 2004), (Chrupala
and van Genabith, 2006) and French (Schluter
and van Genabith, 2008).

Arabic is a semitic language and is well-known
for its morphological richness and syntactic
complexity. In this paper we describe the porting
of the LFG annotation methodology to Arabic in
order to induce LFG f-structures from the Penn
Arabic Treebank (ATB) (Bies, 2003), (Maamouri
and Bies, 2004). We evaluate both the coverage
and quality of the automatic f-structure annotation
of the ATB. Ultimately, our goal is to use the f-
structure annotated ATB to derive wide-coverage
resources for parsing and generating unrestricted
Arabic text. In this paper we concentrate on the
annotation algorithm.
The paper first provides a brief overview of
Lexical Functional Grammar, and the Penn
Arabic Treebank (ATB). The next section presents
the architecture of the f-structure annotation
algorithm for the acquisition of f-structures from
the Arabic treebank. The last section provides
an evaluation of the quality and coverage of the
annotation algorithm.

1.1 Lexical Functional Grammar

Lexical-Functional Grammar (LFG) (Kaplan and
Bresnan, 1982); (Bresnan, 2001), (Falk, 2001)
2001, (Sells, 1985) is a constraint-based theory
of grammar. LFG rejects concepts of configura-
tionality and movement familiar from generative
grammar, and provides a non-derivational alterna-
tive of parallel structures of which phrase structure
trees are only one component.
LFG involves two basic, parallel forms of
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knowledge representation: c(onstituent)-structure,
which is represented by (f-structure annotated)
phrase structure trees; and f(unctional)-structure,
represented by a matrix of attribute-value pairs.
While c-structure accounts for language-specific
lexical idiosyncrasies, syntactic surface config-
urations and word order variations, f-structure
provides a more abstract level of representation
(grammatical functions/ labeled dependencies),
abstracting from some cross-linguistic syntactic
differences. Languages may differ typologically
as regards surface structural representations, but
may still encode similar syntactic functions (such
as, subject, object, adjunct, etc.). For a recent
overview on LFG-based analyses of Arabic see
(Attia, 2008) who presents a hand-crafted Arabic
LFG parser using the XLE (Xerox Linguistics En-
vironment).

1.2 The Penn Arabic Treebank (ATB)

The Penn Arabic Treebank project started in
2001 with the aim of describing written Modern
Standard Arabic newswire. The Treebank consists
of 23611 sentences (Bies, 2003), (Maamouri and
Bies, 2004) .
Arabic is a subject pro-drop language: a null
category (pro) is allowed in the subject position
of a finite clause if the agreement features on
the verb are rich enough to enable content to be
recovered (Baptista, 1995), (Chomsky, 1981).
This is represented in the ATB annotation by an
empty node after the verb marked with a -SBJ
functional tag. The ATB annotation, following
the Penn-II Treebank, utilises the concept of
empty nodes and traces to mark long distance
dependencies, as in relative clauses and questions.
The default word order in Arabic is VSO. When
the subject precedes the verb (SVO), the con-
struction is considered as topicalized. Modern
Standard Arabic also allows VOS word order
under certain conditions, e.g. when the object is
a pronoun. The ATB annotation scheme involves
24 basic POS-tags (497 different tags with mor-
phological information ), 22 phrasal tags, and 20
individual functional tags (52 different combined
tags).
The relatively free word order of Arabic means
that phrase structural position is not an indicator
of grammatical function, a feature of English
which was heavily exploited in the automatic LFG
annotation of the Penn-II Treebank (Cahill and

al., 2002). Instead, in the ATB functional tags are
used to mark the subject as well as the object.
The syntactic annotation style of the ATB follows,
as much as possible, the methodologies and
bracketing guidelines already used for the English
Penn-II Treebank. For example, in the Penn
English Treebank (PTB) (Marcus, 1994), small
clauses are considered sentences composed of
a subject and a predicate, without traces for an
omitted verb or any sort of control relationship, as
in example (1) for the sentence ”I consider Kris a
fool”.

(1) (S (NP-SBJ I)
(VP consider

(S (NP-SBJ Kris)
(NP-PRD a fool))))

The team working on the ATB found this
approach very convenient for copula construc-
tions in Arabic, which are mainly verbless
(Maamouri and Bies, 2004). Therefore they used
a similar analysis without assuming a deleted
copula verb or control relationship, as in (2).

(2) (S (NP-SBJ Al-mas>alatu �éË

A�ÖÏ @)

(ADJ-PRD basiyTatuN
�é¢J
��.))

�é¢J
��.
�éË

A�ÖÏ @

Al-mas>alatu basiyTatuN
the-question simple
‘The question is simple.’

2 Architecture of the Arabic Automatic
Annotation Algorithm

The annotation algorithm for Arabic is based on
and substantially revises the methodology used for
English.
For English, f-structure annotation is very much
driven by configurational information: e.g. the
leftmost NP sister of a VP is likely to be a direct
object and hence annotated ↑ OBJ =↓. This infor-
mation is captured in the format of left-right anno-
tation matrices, which specify annotations for left
or right sisters relative to a local head.
By contrast, Arabic is a lot less configurational and
has much richer morphology. In addition, com-
pared to the Penn-II treebank, the ATB features a
larger functional tag set. This is reflected in the de-
sign of the Arabic f-structure annotation algorithm
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(Figure 1), where left-right annotation matrices
play a much smaller role than for English. The
annotation algorithm recursively traverses trees in
the ATB. It exploits ATB morpho-syntactic fea-
tures, ATB functional tags, and (some) configura-
tional information in the local subtrees.
We first mask (conflate) some of the complex
morphological information available in the pre-
terminal nodes to be able to state generalisations
for some of the annotation components. We then
head-lexicalise ATB trees identifying local heads.
Lexical macros exploit the full morphological an-
notations available in the ATB and map them to
corresponding f-structure equations. We then ex-
ploit ATB functional tags mapping them to SUBJ,
OBJ, OBL, OBJ2, TOPIC and ADJUNCT etc.
grammatical functions. The remaining functions
(COMP, XCOMP, SPEC etc.) as well as some
cases of SUBJ, OBJ, OBL, OBJ2, TOPIC and AD-
JUNCT, which could not be identified by ATB
tags, are treated in terms of left-right context anno-
tation matrices. Coordination is treated in a sepa-
rate component to keep the other components sim-
ple. Catch-all & Clean-Up corrects overgenerali-
sations in the previous modules and uses defaults
for remaining unannotated nodes. Finally, non-
local dependencies are handled by a Traces com-
ponent.
The next sub-sections describe the main modules
of the annotation algorithm.

2.1 Conflation

ATB preterminals are very fine-grained, encod-
ing extensive morpho-syntactic details in addi-
tion to POS information. For example, the word	�® 	J� sanaqifu ‘[we will] stand’ is tagged as
(FUT+IV1P+IV+IVSUFF MOOD:I) denoting an
imperfective (I) verb (V) in the future tense (FUT),
and is first person (1) plural (P) with indicative
mood (IVSUFF MOOD:I). In total there are over
460 preterminal types in the treebank. This level
of fine-grainedness is an important issue for the
annotation as we cannot state grammatical func-
tion (dependency) generalizations about heads and
left and right contexts for such a large tag set. To
deal with this problem, for some of the annotation
algorithm components we masked the morpho-
syntactic details in preterminals, thereby conflat-
ing them into more generic POS tags. For exam-
ple, the above-mentioned tag will be conflated as
VERB.

Figure 1: Architecture of the Arabic annotation al-
gorithm

2.2 Lexical Macros

Lexical macros, by contrast, utilise the de-
tailed morpho-syntactic information encoded in
the preterminal nodes of the Penn Arabic Tree-
bank trees and provide the required functional an-
notations accordingly. These tags usually include
information related to person, number, gender,
definiteness, case, tense, aspect, mood, etc.
Table 1 lists common tags for nouns and verbs and
shows the LFG functional annotation assigned to
each tag.

2.3 Functional Tags

In addition to monadic POS categories, the ATB
treebank contains a set of labels (called functional
tags or functional labels) associated with func-
tional information, such as -SBJ for ‘subject’ and
-OBJ for ‘object’. The functional tags module
translates these functional labels into LFG func-
tional equations, e.g. -OBJ is assigned the anno-
tation ↑OBJ=↓. An f-structure equation look-up
table assigns default f-structure equations to each
functional label in the ATB (Table 2).
A particular treatment is applied for the tag -PRD
(predicate). This functional tag is used with cop-
ula complements, as in (3) and the correspond-
ing c-structure in Figure 2. Copula complements
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Tag Annotation
Nouns

MASC ↑ GEND = masc (masculine)
FEM ↑ GEND = fem (feminine)
SG ↑ NUM = sg (singular)
DU ↑ NUM = dual
PL ↑ NUM = pl (plural)
ACC ↑ CASE = acc (accusative)
NOM ↑ CASE = nom (nominative)
GEN ↑ CASE = gen (genitive)

Verbs
1 ↑ PERS = 1
2 ↑ PERS = 2
3 ↑ PERS = 3
S ↑ NUM = sg
D ↑ NUM = dual
P ↑ NUM = pl
F ↑ GEND = masc
M ↑ GEND = fem

Table 1: Morpho-syntactic tags and their functional anno-

tations

Functional Label Annotation
-SBJ (subject) ↑ SUBJ = ↓
-OBJ (object) ↑ OBJ = ↓
-DTV (dative), ↑ OBJ2 =↓
-BNF (Benefactive)
-TPC (topicalized) ↑ TOPIC=↓
-CLR (clearly related) ↑ OBL =↓
-LOC (locative),
-MNR (manner),
-DIR (direction), ↓∈↑ ADJUNCT
-TMP (temporal),
-ADV (adverbial)
-PRP (purpose),

Table 2: Functional tags used in the ATP Treebank and their

default annotations

correspond to the open complement grammatical
function XCOMP in LFG and the ATB tag -PRD
is associated with the annotation in (4) in order to
produce the f-structure in Figure 3. The resulting
analysis includes a main predicator ‘null be’ and
specifies the control relationship through a func-
tional equation stating that the main subject is co-
indexed with the subject of the XCOMP.

(3) �é�K
PðQå 	�
�é 	KYêË @

Al-hudonapu Daruwriy˜apN
the-truce necessary
‘The truce is necessary.’

(4) ↑ PRED = ’null be’
↑ XCOMP = ↓
↑ SUBJ= ↓ SUBJ

S

NP-SBJ

N

Alhudonapu

NP-PRD

N

DaruwriyapN

Figure 2: C-structure for example (3)

2
6666666666666666666666664

PRED ‘null be
D

SUBJ , XCOMP
E
’

SUBJ

2
666664

PRED ‘Al-hudonapu’
NUM sg
GEND fem
DEF +
CASE nom

3
777775

1

XCOMP

2
666666664

PRED ‘Daruwriy˜apN’
NUM sg
GEND fem
DEF -
CASE nom
SUBJ

h i
1

3
777777775

3
7777777777777777777777775

Figure 3: F-structure for example (3)

2.4 Left-Right Context Rules

The left-right context annotation module is based
on a tripartite division of local subtrees into a left-
hand-side context (LHS) followed by a head (H)
followed by a right-hand-side context (RHS). We
developed our own head finding, or head lexical-
ization, rules based on a variety of heuristics and
manual inspection of the PS rules.

Initially, we extracted 45785 Phrase Structure (PS)
rules from the treebank. The reason for the rela-
tively large number of PS rules is the fine-grained
nature of the tags encoding morphological infor-
mation for pre-terminal nodes. When we conflate
pre-terminals containing morphological informa-
tion to basic POS tags, the set of PS rules is re-
duced to 9731.
Treebanks grammars follow the Zipfian law: for
each category, there is a small number of highly
frequent rules expanding that category, followed
by a large number of rules with a very low fre-
quency. Therefore, for each LHS category we se-
lect the most frequent rules which together give
85% coverage. This results is a reduced set of 339
(most frequent) PS rules. These rules are manu-
ally examined and used to construct left-right LFG
f-structure annotation matrices for the treebank.
The annotation matrices encode information about
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the left and right context of a rule’s head and state
generalisations about the functional annotation of
constituents to the left and right of the local head.

Consider sentence (5), where an NP is expanded
as NP NP ADJP. The first NP is considered the
head and is given the annotation ↑=↓. The second
NP and the ADJP are located to the left (Arabic
reading) of the head (LHS). The left-right context
matrix for NP constituents analyses these phrases
as adjuncts and assigns them the annotation ↓ ∈ ↑
ADJUNCT.

(5) �é�J
Ëñm.�
	' B@ 	áK
PA

�J
¢Ë@
�é�J
ªÔg.

jamoEiy˜apu Al-Tay˜Ariyna Al->anoguwliy˜apu

society the-pilot the-Angolian
’Angolian Pilot Society‘

The left-right annotation matrices also cover
other non-subcategorisable functions (such as
XADJUNCT, SPEC, etc.) as well as constituents
with subcategorisable grammatical functions
(SUBJ, OBJ, OBL, COMP, etc.) which are not
identified via ATB functional tags (and hence left
unannotated by the Functional Tags component)

2.5 Coordination

Treebanks tend to encode co-ordination in a rather
flat manner. In the LFG framework coordinated
constituents are treated as sets. The phrase
structure functional annotations for creating a
set function for such constituents is given in (6)
where the f-structures of the two coordinated NPs
on the right-hand side are members of the set
valued f-structure of the NP on the left-hand side.

(6) NP → NP CONJ NP
↑∈↓ ↑∈↓

To keep the other modules simple and perspicuous
coordination is treated in the annotation algorithm
as a separate component. The coordination mod-
ule localizes the coordinating conjunct, marks it
as head and adds the coordinated elements to the
f-structure set representation of the coordination
↓∈↑ COORD. Figure 2.5 shows the f-structure for
the NP in sentence (7).
(7) �H@YK
Y�

��Ë @ð �H@QºË@
Al-kurAtu wa-Al-tasodiydAtu

the-balls and-the-scores

2
66666666666666664

COORD FORM ‘wa-’

COORD

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

2
664

PRED ‘Al-kurAtu’
NUM pl
GEND fem
CASE nom

3
775

2
664

PRED ‘Al-tasodiydAtu’
NUM pl
GEND fem
CASE nom

3
775

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

3
77777777777777775

Figure 4: An Arabic coordination example

2.6 Catch-All and Clean-Up

The previous components of the annotation algo-
rithm give concise statements of linguistic gen-
eralisations, but sometimes they overgeneralise.
Such overgeneralisations are detected and cor-
rected by the Catch-All and Clean-Up component
of the algorithm.
For example, the mutiword expression

�	à

@ B

�
@

’illaA ’anna ‘but’ is annotated in the tree-
bank as two subsequent subordinating con-
junctions: (SUB CONJ ’illaA) (SUB CONJ
’anna). In the f-structure annotation this leads to
a conflict as to which lexical item should occupy
the value of the SUBORD FORM feature. The
Catch-All and Clean-Up component sidelines the
problem by moving the second part of the MWE
to an adjunct position.

Another example is provided by quantifiers. In
Arabic, quantifiers have the same syntactic struc-
ture as the construct state (similar to the genitive
construction in English as in the boys’ book), so
that sentences (8) and (9) are syntactically equiv-
alent. The word ‘students’ is in the second part of
the construct state in both phrases, but it is a mod-
ifier in the first and a head in the second. There-
fore, a list of quantifiers (Table 3) is used in the
Catch-All and Clean-Up module, so that they are
identified and properly annotated according to cer-
tain context conditions.

The Catch-All and Clean-Up module also pro-
vides default annotations for nodes that remain
unannotated by the previous components.
(8)H. C

�
¢Ë@ I.

�J»
kutubu Al-Tul˜abi
books the-students
‘students’ books’
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(9) H. C
�
¢Ë@ 	�ªK.

baEoDu Al-Tul˜abi
some the-students
‘some students’

biDoEapu
�éª 	��. some

kAf˜apu
�é
�	̄ A¿ all

>ay˜u �ø


@ any

jamiyEu ©J
Ôg. all

muEoZamu Ñ 	¢ªÓ most
biDoEu © 	��. few

kul˜u
�
É¿ all

baEoDu YªK. some
baqiy˜apu

�é�J

�®K. rest

nafosu �	®	K same

>aHadu Yg

@ one-masc

<iHodaY øYg@ one-fem

Table 3: List of Arabic quantifiers

2.7 Traces

The f-structure generated prior to the Traces
module is called a proto-f-structure (i.e. a partial
representation), as it is not complete with respect
to long-distance dependency resolution. In order
to produce proper f-structures, long-distance
dependencies such as topicalisation and wh-
movement must be captured. In our annotation
algorithm we exploit trace information in the ATB
treebank and translate long-distance dependencies
into cooresponding reentrancies at the f-structure
level using coindexation.
Figure 5 gives the ATB tree for the phrase in (10)
containing a trace. The trace is used to capture
A-movement, and the indices on the WHNP-2
and NP-SBJ-2 indicate that these constituents are
related.
In the annotation algorithm we assign the equa-
tion ↑SUBJ = ↑TOPICREL to the empty node
to indicate that the relative pronoun ‘which’ is
interpreted as the subject of the verb ‘threaten’.
This annotation produces the proper f-structure in
Figure 6.

(10) ÐC�Ë@ X �YîE
 ø

	Y
�
Ë @ 		JªË@

Al-Eunofu Al˜a*iy yuhad˜idu Al-salAma

violence which threatens peace

Once every node in a tree is annotated with f-
structure equations, the equations are then passed

NP

NP

N

Al-Eunofu

SBAR

WHNP-2

Ala*iy

S

V

yuhadidu

NP-SBJ-2

*

NP-OBJ

Al-salAma

Figure 5: C-structure with a long-distance depen-
dency

2
666666666666666666666666666664

PRED ‘Al-Eunofu’
DEF +
CASE genitive

RELMOD

2
6666666666666666666664

TOPICREL

2
64

PRED pro
PRON FORM ‘Al˜a*iy’
PRON TYPE relative

3
75 1

PRED ‘yuhad˜idu’
ASPECT imperfect
MOOD indicative

SUBJ
h i

1

OBJ

2
64

DEF +
CASE accusative
PRED ‘Al-salAma’

3
75

3
7777777777777777777775

3
777777777777777777777777777775

Figure 6: Proper f-structure with long-distance de-
pendencies captured

to a constraint solver. Ideally one f-structure rep-
resentation is produced for each sentence. If there
are conflicts in the f-structure equations, no f-
structure is produced.

3 Evaluation

We conduct two types of evaluation: quantitative
and qualitative evaluation.
The quantitative evaluation evaluates the coverage
of our annotation algorithm, while the qualitative
evaluation compares the f-structures generated by
the automatic annotation procedure against a gold
standard of manually constructed f-structures for
250 sentences (Al-Raheb and al., 2006) selected
at random from the ATB treebank. The aim of
the qualitative evaluation is to ensure that the an-
notation quality is of a high standard, particularly
as the annotation algorithm is used for extracting
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wide-coverage syntactic and lexical resources.
In the quantitative evaluation experiment, the an-
notation algorithm achieves good coverage for
19 273 ATB sentences (remaining after removing
trees with FRAG and X - labeled constituents);
98% of trees produce a complete and connected
f-structure (no fragments) and 2% of trees do not
produce an f-structure because of feature-value
clashes.
For the qualitative evaluation, we use the eval-
uation methodology of (Crouch and al., 2002)
and (Riezler, 2002) in order to calculate preci-
sion and recall on descriptions of f-structures.
In this methodology, each f-structure is rep-
resented as a set of triples of the form:
relation(argument1,argument2). For example the
triples num(riHol+At+i, pl), case(riHol+At+i,
genitive), gender(riHol+At+i, fem) encode that
the number of the word riHol+At+i �HCgP ‘jour-
neys’ is plural; its case is genitive; and its gen-
der is feminine. The triple subj(ta+bolug+u: to
reach,HarAr+ap+a: temperature) indicates that
the subject of the verb to reach is temperature. The
results of the evaluation of the quality of the an-
notation against the DCU 250 gold standard are
presented in Table 4. We achieve an f-score of
95%. In comparison, the f-scores for French, Eng-
lish and Chinese languages are 95%-96%. Table 5
presents the results by selected grammatical func-
tions.

Precision Recall F-score
Results 95.49 94.43 94.96

Table 4: Evaluation of the automatically produced
f-structures against gold standard (all features).

Precision Recall F-score
adjunct 91 91 91
coord 80 87 83
obj 81 88 85
obl 100 94 97
poss 96 89 92
subj 89 68 77
topic 93 92 92
topicrel 89 88 88

Table 5: Evaluation of the automatically pro-
duced f-structures against gold standard by se-
lected grammatical functions.

4 Conclusion

In this paper, we have shown how the methodol-
ogy for automatically annotating treebanks with

LFG f-structure equations originally developed for
English has been successfully adapted to Arabic.
Arabic is known for its rich morphology and syn-
tactic flexibility which allows SVO, VSO, VOS
word orders. We exploit the rich morphological
information in the annotation algorithm by utilis-
ing the morphological tags to add information to
the f-structures. We also use ATB functional tags
to specify default syntactic functions, e.g. -SBJ
(subject) and -OBJ (object), provide left-right an-
notation matrices for the remaining constituents,
treat coordination and represent non-local depen-
dencies. The evaluation measured coverage as
well as the quality of the automatic annotation al-
gorithm. 98% of ATB trees (without FRAG and
X) produce a complete and connected f-structure.
When evaluated against a gold standard of 250
manually constructed f-structures, the algorithm
scores an f-measure of 95%. The work presented
in this paper is the first step in automatically ac-
quiring deep resources for wide coverage parsing
and generation for Arabic.
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Abstract
The Arabic language is a collection of
multiple variants, among which Modern
Standard Arabic (MSA) has a special sta-
tus as the formal written standard language
of the media, culture and education across
the Arab world. The other variants are in-
formal spoken dialects that are the media
of communication for daily life. Arabic di-
alects differ substantially from MSA and
each other in terms of phonology, mor-
phology, lexical choice and syntax. In this
paper, we describe a system that automat-
ically identifies the Arabic dialect (Gulf,
Iraqi, Levantine, Egyptian and MSA) of a
speaker given a sample of his/her speech.
The phonotactic approach we use proves
to be effective in identifying these di-
alects with considerable overall accuracy
— 81.60% using 30s test utterances.

1 Introduction

For the past three decades, there has been a great
deal of work on the automatic identification (ID)
of languages from the speech signal alone. Re-
cently, accent and dialect identification have be-
gun to receive attention from the speech science
and technology communities. The task of dialect
identification is the recognition of a speaker’s re-
gional dialect, within a predetermined language,
given a sample of his/her speech. The dialect-
identification problem has been viewed as more
challenging than that of language ID due to the
greater similarity between dialects of the same lan-
guage. Our goal in this paper is to analyze the ef-
fectiveness of a phonotactic approach, i.e. making
use primarily of the rules that govern phonemes
and their sequences in a language — a techniques
which has often been employed by the language
ID community — for the identification of Arabic
dialects.

The Arabic language has multiple variants, in-
cluding Modern Standard Arabic (MSA), the for-

mal written standard language of the media, cul-
ture and education, and the informal spoken di-
alects that are the preferred method of communi-
cation in daily life. While there are commercially
available Automatic Speech Recognition (ASR)
systems for recognizing MSA with low error rates
(typically trained on Broadcast News), these rec-
ognizers fail when a native Arabic speaker speaks
in his/her regional dialect. Even in news broad-
casts, speakers often code switch between MSA
and dialect, especially in conversational speech,
such as that found in interviews and talk shows.
Being able to identify dialect vs. MSA as well as to
identify which dialect is spoken during the recog-
nition process will enable ASR engines to adapt
their acoustic, pronunciation, morphological, and
language models appropriately and thus improve
recognition accuracy.

Identifying the regional dialect of a speaker will
also provide important benefits for speech tech-
nology beyond improving speech recognition. It
will allow us to infer the speaker’s regional origin
and ethnicity and to adapt features used in speaker
identification to regional original. It should also
prove useful in adapting the output of text-to-
speech synthesis to produce regional speech as
well as MSA – important for spoken dialogue sys-
tems’ development.

In Section 2, we describe related work. In Sec-
tion 3, we discuss some linguistic aspects of Ara-
bic dialects which are important to dialect iden-
tification. In Section 4, we describe the Arabic
dialect corpora employed in our experiments. In
Section 5, we explain our approach to the identifi-
cation of Arabic dialects. We present our experi-
mental results in Section 6. Finally, we conclude
in Section 7 and identify directions for future re-
search.

2 Related Work

A variety of cues by which humans and machines
distinguish one language from another have been
explored in previous research on language identi-
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fication. Examples of such cues include phone in-
ventory and phonotactics, prosody, lexicon, mor-
phology, and syntax. Some of the most suc-
cessful approaches to language ID have made
use of phonotactic variation. For example, the
Phone Recognition followed by Language Model-
ing (PRLM) approach uses phonotactic informa-
tion to identify languages from the acoustic sig-
nal alone (Zissman, 1996). In this approach, a
phone recognizer (not necessarily trained on a re-
lated language) is used to tokenize training data for
each language to be classified. Phonotactic lan-
guage models generated from this tokenized train-
ing speech are used during testing to compute lan-
guage ID likelihoods for unknown utterances.

Similar cues have successfully been used for
the identification of regional dialects. Zisssman
et al. (1996) show that the PRLM approach yields
good results classifying Cuban and Peruvian di-
alects of Spanish, using an English phone recog-
nizer trained on TIMIT (Garofolo et al., 1993).
The recognition accuracy of this system on these
two dialects is 84%, using up to 3 minutes of test
utterances. Torres-Carrasquillo et al. (2004) devel-
oped an alternate system that identifies these two
Spanish dialects using Gaussian Mixture Models
(GMM) with shifted-delta-cepstral features. This
system performs less accurately (accuracy of 70%)
than that of (Zissman et al., 1996). Alorfi (2008)
uses an ergodic HMM to model phonetic dif-
ferences between two Arabic dialects (Gulf and
Egyptian Arabic) employing standard MFCC (Mel
Frequency Cepstral Coefficients) and delta fea-
tures. With the best parameter settings, this system
achieves high accuracy of 96.67% on these two
dialects. Ma et al. (2006) use multi-dimensional
pitch flux features and MFCC features to distin-
guish three Chinese dialects. In this system the
pitch flux features reduce the error rate by more
than 30% when added to a GMM based MFCC
system. Given 15s of test-utterances, the system
achieves an accuracy of 90% on the three dialects.

Intonational cues have been shown to be good
indicators to human subjects identifying regional
dialects. Peters et al. (2002) show that human sub-
jects rely on intonational cues to identify two Ger-
man dialects (Hamburg urban dialects vs. North-
ern Standard German). Similarly, Barakat et
al. (1999) show that subjects distinguish between
Western vs. Eastern Arabic dialects significantly
above chance based on intonation alone.

Hamdi et al. (2004) show that rhythmic dif-

ferences exist between Western and Eastern Ara-
bic. The analysis of these differences is done by
comparing percentages of vocalic intervals (%V)
and the standard deviation of intervocalic inter-
vals (∆C) across the two groups. These features
have been shown to capture the complexity of the
syllabic structure of a language/dialect in addition
to the existence of vowel reduction. The com-
plexity of syllabic structure of a language/dialect
and the existence of vowel reduction in a language
are good correlates with the rhythmic structure of
the language/dialect, hence the importance of such
a cue for language/dialect identification (Ramus,
2002).

As far as we could determine, there is no
previous work that analyzes the effectiveness of
a phonotactic approach, particularly the parallel
PRLM, for identifying Arabic dialects. In this pa-
per, we build a system based on this approach and
evaluate its performance on five Arabic dialects
(four regional dialects and MSA). In addition, we
experiment with six phone recognizers trained on
six languages as well as three MSA phone recog-
nizers and analyze their contribution to this classi-
fication task. Moreover, we make use of a discrim-
inative classifier that takes all the perplexities of
the language models on the phone sequences and
outputs the hypothesized dialect. This classifier
turns out to be an important component, although
it has not been a standard component in previous
work.

3 Linguistic Aspects of Arabic Dialects

3.1 Arabic and its Dialects

MSA is the official language of the Arab world.
It is the primary language of the media and cul-
ture. MSA is syntactically, morphologically and
phonologically based on Classical Arabic, the lan-
guage of the Qur’an (Islam’s Holy Book). Lexi-
cally, however, it is much more modern. It is not
a native language of any Arabs but is the language
of education across the Arab world. MSA is pri-
marily written not spoken.

The Arabic dialects, in contrast, are the true na-
tive language forms. They are generally restricted
in use to informal daily communication. They
are not taught in schools or even standardized, al-
though there is a rich popular dialect culture of
folktales, songs, movies, and TV shows. Dialects
are primarily spoken, not written. However, this
is changing as more Arabs gain access to elec-
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tronic media such as emails and newsgroups. Ara-
bic dialects are loosely related to Classical Ara-
bic. They are the result of the interaction between
different ancient dialects of Classical Arabic and
other languages that existed in, neighbored and/or
colonized what is today the Arab world. For ex-
ample, Algerian Arabic has many influences from
Berber as well as French.

Arabic dialects vary on many dimensions –
primarily, geography and social class. Geo-
linguistically, the Arab world can be divided in
many different ways. The following is only one
of many that covers the main Arabic dialects:

• Gulf Arabic (GLF) includes the dialects of
Kuwait, Saudi Arabia, Bahrain, Qatar, United
Arab Emirates, and Oman.

• Iraqi Arabic (IRQ) is the dialect of Iraq. In
some dialect classifications, Iraqi Arabic is
considered a sub-dialect of Gulf Arabic.

• Levantine Arabic (LEV) includes the di-
alects of Lebanon, Syria, Jordan, Palestine
and Israel.

• Egyptian Arabic (EGY) covers the dialects
of the Nile valley: Egypt and Sudan.

• Maghrebi Arabic covers the dialects of
Morocco, Algeria, Tunisia and Mauritania.
Libya is sometimes included.

Yemenite Arabic is often considered its own
class. Maltese Arabic is not always consid-
ered an Arabic dialect. It is the only Arabic
variant that is considered a separate language
and is written with Latin script.

Socially, it is common to distinguish three sub-
dialects within each dialect region: city dwellers,
peasants/farmers and Bedouins. The three degrees
are often associated with a class hierarchy from
rich, settled city-dwellers down to Bedouins. Dif-
ferent social associations exist as is common in
many other languages around the world.

The relationship between MSA and the dialect
in a specific region is complex. Arabs do not think
of these two as separate languages. This particular
perception leads to a special kind of coexistence
between the two forms of language that serve dif-
ferent purposes. This kind of situation is what lin-
guists term diglossia. Although the two variants
have clear domains of prevalence: formal written
(MSA) versus informal spoken (dialect), there is

a large gray area in between and it is often filled
with a mixing of the two forms.

In this paper, we focus on classifying the di-
alect of audio recordings into one of five varieties:
MSA, GLF, IRQ, LEV, and EGY. We do not ad-
dress other dialects or diglossia.

3.2 Phonological Variations among Arabic
Dialects

Although Arabic dialects and MSA vary on many
different levels — phonology, orthography, mor-
phology, lexical choice and syntax — we will
focus on phonological difference in this paper.1

MSA’s phonological profile includes 28 conso-
nants, three short vowels, three long vowels and
two diphthongs (/ay/ and /aw/). Arabic dialects
vary phonologically from standard Arabic and
each other. Some of the common variations in-
clude the following (Holes, 2004; Habash, 2006):

The MSA consonant (/q/) is realized as a glot-
tal stop /’/ in EGY and LEV and as /g/ in GLF and
IRQ. For example, the MSA word /t

¯
ari:q/ ‘road’

appears as /t
¯
ari:’/ (EGY and LEV) and /t

¯
ari:g/ (GLF

and IRQ). Other variants also are found in sub di-
alects such as /k/ in rural Palestinian (LEV) and
/dj/ in some GLF dialects. These changes do not
apply to modern and religious borrowings from
MSA. For instance, the word for ‘Qur’an’ is never
pronounced as anything but /qur’a:n/.

The MSA alveolar affricate (/dj/) is realized as
/g/ in EGY, as /j/ in LEV and as /y/ in GLF. IRQ

preserves the MSA pronunciation. For example,
the word for ‘handsome’ is /djami:l/ (MSA, IRQ),
/gami:l/ (EGY), /jami:l/ (LEV) and /yami:l/ (GLF).

The MSA consonant (/k/) is generally realized
as /k/ in Arabic dialects with the exception of GLF,
IRQ and the Palestinian rural sub-dialect of LEV,
which allow a /č/ pronunciation in certain con-
texts. For example, the word for ‘fish’ is /samak/
in MSA, EGY and most of LEV but /simač/ in IRQ

and GLF.
The MSA consonant /θ/ is pronounced as /t/ in

LEV and EGY (or /s/ in more recent borrowings
from MSA), e.g., the MSA word /θala:θa/ ‘three’
is pronounced /tala:ta/ in EGY and /tla:te/ in LEV.
IRQ and GLF generally preserve the MSA pronun-
ciation.

1It is important to point out that since Arabic dialects are
not standardized, their orthography may not always be con-
sistent. However, this is not a relevant point to this paper
since we are interested in dialect identification using audio
recordings and without using the dialectal transcripts at all.
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The MSA consonant /δ/ is pronounced as /d/
in LEV and EGY (or /z/ in more recent borrow-
ings from MSA), e.g., the word for ‘this’ is pro-
nounced /ha:δa/ in MSA versus /ha:da/ (LEV) and
/da/ EGY. IRQ and GLF generally preserve the
MSA pronunciation.

The MSA consonants /d
¯
/ (emphatic/velarized

d) and /δ
¯
/ (emphatic /δ/) are both normalized to

/d
¯
/ in EGY and LEV and to /δ

¯
/ in GLF and IRQ.

For example, the MSA sentence /δ
¯
alla yad

¯
rubu/

‘he continued to hit’ is pronounced /d
¯
all yud

¯
rub/

(LEV) and /δ
¯
all yuδ

¯
rub/ (GLF). In modern bor-

rowings from MSA, /δ
¯
/ is pronounced as /z

¯
/ (em-

phatic z) in EGY and LEV. For instance, the word
for ‘police officer’ is /δ

¯
a:bit

¯
/ in MSA but /z

¯
a:bit

¯
/

in EGY and LEV.
In some dialects, a loss of the emphatic feature

of some MSA consonants occurs, e.g., the MSA
word /lat

¯
i:f/ ‘pleasant’ is pronounced as /lati:f/ in

the Lebanese city sub-dialect of LEV. Empha-
sis typically spreads to neighboring vowels: if a
vowel is preceded or succeeded directly by an em-
phatic consonant (/d

¯
/, /s

¯
/, /t

¯
/, /δ

¯
/) then the vowel

becomes an emphatic vowel. As a result, the loss
of the emphatic feature does not affect the conso-
nants only, but also their neighboring vowels.

Other vocalic differences among MSA and the
dialects include the following: First, short vow-
els change or are completely dropped, e.g., the
MSA word /yaktubu/ ‘he writes’ is pronounced
/yiktib/ (EGY and IRQ) or /yoktob/ (LEV). Sec-
ond, final and unstressed long vowels are short-
ened, e.g., the word /mat

¯
a:ra:t/ ‘airports’ in MSA

becomes /mat
¯
ara:t/ in many dialects. Third, the

MSA diphthongs /aw/ and /ay/ have mostly be-
come /o:/ and /e:/, respectively. These vocalic
changes, particularly vowel drop lead to different
syllabic structures. MSA syllables are primarily
light (CV, CV:, CVC) but can also be (CV:C and
CVCC) in utterance-final positions. EGY sylla-
bles are the same as MSA’s although without the
utterance-final restriction. LEV, IRQ and GLF al-
low heavier syllables including word initial clus-
ters such as CCV:C and CCVCC.

4 Corpora

When training a system intended to classify lan-
guages or dialects, it is of course important to use
training and testing corpora recorded under simi-
lar acoustic conditions. We are able to obtain cor-
pora from the Linguistic Data Consortium (LDC)
with similar recording conditions for four Arabic

dialects: Gulf Arabic, Iraqi Arabic, Egyptian Ara-
bic, and Levantine Arabic. These are corpora of
spontaneous telephone conversations produced by
native speakers of the dialects, speaking with fam-
ily members, friends, and unrelated individuals,
sometimes about predetermined topics. Although,
the data have been annotated phonetically and/or
orthographically by LDC, in this paper, we do not
make use of any of annotations.

We use the speech files of 965 speakers (about
41.02 hours of speech) from the Gulf Arabic
conversational telephone Speech database for our
Gulf Arabic data (Appen Pty Ltd, 2006a).2 From
these speakers we hold out 150 speakers for test-
ing (about 6.06 hours of speech).3 We use the Iraqi
Arabic Conversational Telephone Speech database
(Appen Pty Ltd, 2006b) for the Iraqi dialect, se-
lecting 475 Iraqi Arabic speakers with a total du-
ration of about 25.73 hours of speech. From
these speakers we hold out 150 speakers4 for test-
ing (about 7.33 hours of speech). Our Levan-
tine data consists of 1258 speakers from the Ara-
bic CTS Levantine Fisher Training Data Set 1-3
(Maamouri, 2006). This set contains about 78.79
hours of speech in total. We hold out 150 speakers
for testing (about 10 hours of speech) from Set 1.5

For our Egyptian data, we use CallHome Egyp-
tian and its Supplement (Canavan et al., 1997)
and CallFriend Egyptian (Canavan and Zipperlen,
1996). We use 398 speakers from these corpora
(75.7 hours of speech), holding out 150 speakers
for testing.6 (about 28.7 hours of speech.)

Unfortunately, as far as we can determine, there
is no data with similar recording conditions for
MSA. Therefore, we obtain our MSA training data
from TDT4 Arabic broadcast news. We use about
47.6 hours of speech. The acoustic signal was pro-
cessed using forced-alignment with the transcript
to remove non-speech data, such as music. For
testing we again use 150 speakers, this time iden-
tified automatically from the GALE Year 2 Dis-
tillation evaluation corpus (about 12.06 hours of
speech). Non-speech data (e.g., music) in the test

2We excluded very short speech files from the corpora.
3The 24 speakers in devtest folder and the last 63 files,

after sorting by file name, in train2c folder (126 speakers).
The sorting is done to make our experiments reproducible by
other researchers.

4Similar to the Gulf corpus, the 24 speakers in devtest
folder and the last 63 files (after sorting by filename) in
train2c folder (126 speakers)

5We use the last 75 files in Set 1, after sorting by name.
6The test speakers were from evaltest and devtest folders

in CallHome and CallFriend.
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corpus was removed manually. It should be noted
that the data includes read speech by anchors and
reporters as well as spontaneous speech spoken in
interviews in studios and though the phone.

5 Our Dialect ID Approach

Since, as described in Section 3, Arabic dialects
differ in many respects, such as phonology, lex-
icon, and morphology, it is highly likely that
they differ in terms of phone-sequence distribu-
tion and phonotactic constraints. Thus, we adopt
the phonotactic approach to distinguishing among
Arabic dialects.

5.1 PRLM for dialect ID

As mentioned in Section 2, the PRLM approach to
language identification (Zissman, 1996) has had
considerable success. Recall that, in the PRLM
approach, the phones of the training utterances of
a dialect are first identified using a single phone
recognizer.7 Then an n-gram language model is
trained on the resulting phone sequences for this
dialect. This process results in an n-gram lan-
guage model for each dialect to model the dialect
distribution of phone sequence occurrences. Dur-
ing recognition, given a test speech segment, we
run the phone recognizer to obtain the phone se-
quence for this segment and then compute the per-
plexity of each dialect n-gram model on the se-
quence. The dialect with the n-gram model that
minimizes the perplexity is hypothesized to be the
dialect from which the segment comes.

Parallel PRLM is an extension to the PRLM ap-
proach, in which multiple (k) parallel phone rec-
ognizers, each trained on a different language, are
used instead of a single phone recognizer (Ziss-
man, 1996). For training, we run all phone recog-
nizers in parallel on the set of training utterances
of each dialect. An n-gram model on the outputs of
each phone recognizer is trained for each dialect.
Thus if we have m dialects, k x m n-gram models
are trained. During testing, given a test utterance,
we run all phone recognizers on this utterance and
compute the perplexity of each n-gram model on
the corresponding output phone sequence. Finally,
the perplexities are fed to a combiner to determine
the hypothesized dialect. In our implementation,

7The phone recognizer is typically trained on one of the
languages being identified. Nonetheless, a phone recognize
trained on any language might be a good approximation,
since languages typically share many phones in their phonetic
inventory.

we employ a logistic regression classifier as our
back-end combiner. We have experimented with
different classifiers such as SVM, and neural net-
works, but logistic regression classifier was supe-
rior. The system is illustrated in Figure 1.

We hypothesize that using multiple phone rec-
ognizers as opposed to only one allows the system
to capture subtle phonetic differences that might
be crucial to distinguish dialects. Particularly,
since the phone recognizers are trained on differ-
ent languages, they may be able to model different
vocalic and consonantal systems, hence a different
phonetic inventory. For example, an MSA phone
recognizer typically does not model the phoneme
/g/; however, an English phone recognizer does.
As described in Section 3, this phoneme is an
important cue to distinguishing Egyptian Arabic
from other Arabic dialects. Moreover, phone rec-
ognizers are prone to many errors; relying upon
multiple phone streams rather than one may lead
to a more robust model overall.

5.2 Phone Recognizers
In our experiments, we have used phone recogniz-
ers for English, German, Japanese, Hindi, Man-
darin, and Spanish, from a toolkit developed by
Brno University of Technology.8 These phone rec-
ognizers were trained on the OGI multilanguage
database (Muthusamy et al., 1992) using a hybrid
approach based on Neural Networks and Viterbi
decoding without language models (open-loop)
(Matejka et al., 2005).

Since Arabic dialect identification is our goal,
we hypothesize that an Arabic phone recognizer
would also be useful, particularly since other
phone recognizers do not cover all Arabic con-
sonants, such as pharyngeals and emphatic alveo-
lars. Therefore, we have built our own MSA phone
recognizer using the HMM toolkit (HTK) (Young
et al., 2006). The monophone acoustic models
are built using 3-state continuous HMMs without
state-skipping, with a mixture of 12 Gaussians per
state. We extract standard Mel Frequency Cepstral
Coefficients (MFCC) features from 25 ms frames,
with a frame shift of 10 ms. Each feature vec-
tor is 39D: 13 features (12 cepstral features plus
energy), 13 deltas, and 13 double-deltas. The fea-
tures are normalized using cepstral mean normal-
ization. We use the Broadcast News TDT4 corpus
(Arabic Set 1; 47.61 hours of speech; downsam-
pled to 8Khz) to train our acoustic models. The

8www.fit.vutbr.cz/research/groups/speech/sw/phnrec
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Figure 1: Parallel Phone Recognition Followed by Language Modeling (PRLM) for Arabic Dialect Identification.

pronunciation dictionary is generated as described
in (Biadsy et al., 2009). Using these settings we
build three MSA phone recognizers: (1) an open-
loop phone recognizer which does not distinguish
emphatic vowels from non-emphatic (ArbO), (2)
an open-loop with emphatic vowels (ArbOE), and
(3) a phone recognizer with emphatic vowels and
with a bi-gram phone language model (ArbLME).
We add a new pronunciation rule to the set of
rules described in (Biadsy et al., 2009) to distin-
guish emphatic vowels from non-emphatic ones
(see Section 3) when generating our pronunciation
dictionary for training the acoustic models for the
the phone recognizers. In total we build 9 (Arabic
and non-Arabic) phone recognizers.

6 Experiments and Results

In this section, we evaluate the effectiveness of the
parallel PRLM approach on distinguishing Ara-
bic dialects. We first run the nine phone recog-
nizers described in Section 5 on the training data
described in Section 4, for each dialect. This pro-
cess produces nine sets of phone sequences for
each dialect. In our implementation, we train a
tri-gram language model on each phone set using
the SRILM toolkit (Stolcke, 2002). Thus, in total,
we have 9 x (number of dialects) tri-grams.

In all our experiments, the 150 test speakers of
each dialect are first decoded using the phone rec-
ognizers. Then the perplexities of the correspond-
ing tri-gram models on these sequences are com-
puted, and are given to the logistic regression clas-
sifier. Instead of splitting our held-out data into
test and training sets, we report our results with
10-fold cross validation.

We have conducted three experiments to eval-
uate our system. The first is to compare the per-

formance of our system to Alorfi’s (2008) on the
same two dialects (Gulf and Egyptian Arabic).
The second is to attempt to classify four collo-
quial Arabic dialects. In the third experiment, we
include MSA as well in a five-way classification
task.

6.1 Gulf vs. Egyptian Dialect ID

To our knowledge, Alorfi’s (2008) work is the
only work dealing with the automatic identifica-
tion of Arabic dialects. In this work, an Ergodic
HMM is used to model phonetic differences be-
tween Gulf and Egyptian Arabic using MFCC and
delta features. The test and training data used in
this work was collected from TV soap operas con-
taining both the Egyptian and Gulf dialects and
from twenty speakers from CallHome Egyptian
database. The best accuracy reported by Alorfi
(2008) on identifying the dialect of 40 utterances
of duration of 30 seconds each of 40 male speakers
(20 Egyptians and 20 Gulf speakers) is 96.67%.

Since we do not have access to the test collec-
tion used in (Alorfi, 2008), we test a version of our
system which identifies these two dialects only on
our 150 Gulf and 150 Egyptian speakers, as de-
scribed in Section 4. Our best result is 97.00%
(Egyptian and Gulf F-Measure = 0.97) when us-
ing only the features from the ArbOE, English,
Japanese, and Mandarin phone recognizers. While
our accuracy might not be significantly higher than
that of Alorfi’s, we note a few advantages of our
experiments. First, the test sets of both dialects
are from telephone conversations, with the same
recording conditions, as opposed to a mix of dif-
ferent genres. Second, in our system we test 300
speakers as oppose to 40, so our results may be
more reliable. Third, our test data includes female
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4 dialects

seconds accuracy Gulf Iraqi Levantine Egyptian

5 60.833 49.2 52.7 58.1 83

15 72.83 60.8 61.2 77.6 91.9

30 78.5 68.7 67.3 84 94

45 81.5 72.6 72.4 86.9 93.7

60 83.33 75.1 75.7 87.9 94.6

120 84 75.1 75.4 89.5 96
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Figure 2: The accuracies and F-Measures of the four-way
classification task with different test-utterance durations

speakers as well as male, so our results are more
general.

6.2 Four Colloquial Arabic Dialect ID
In our second experiment, we test our system on
four colloquial Arabic dialects (Gulf, Iraqi, Levan-
tine, and Egyptian). As mentioned above, we use
the phone recognizers to decode the training data
to train the 9 tri-gram models per dialect (9x4=36
tri-gram models). We report our 10-fold cross val-
idation results on the test data in Figure 2. To
analyze how dependent our system is on the du-
ration of the test utterance, we report the system
accuracy and the F-measure of each class for dif-
ferent durations (5s – 2m). The longer the ut-
terance, the better we expect the system to per-
form. We can observe from these results that re-
gardless of the test-utterance duration, the best dis-
tinguished dialect among the four dialects is Egyp-
tian (F-Measure of 94% with 30s test utterances),
followed by Levantine (F-Measure of 84% with
30s), and the most confusable dialects, according
to the classification confusion matrix, are those of
the Gulf and Iraqi Arabic (F-Measure of 68.7%,
67.3%, respectively with 30s). This confusion is
consistent with dialect classifications that consider
Iraqi a sub-dialect of Gulf Arabic, as mentioned in
Section 3.

We were also interested in testing which phone
recognizers contribute the most to the classifica-
tion task. We observe that employing a subset of
the phone recognizers as opposed to all of them
provides us with better results. Table 1 shows
which phone recognizers are selected empirically,
for each test-utterance duration condition.9

9Starting from all phone recognizers, we remove one rec-
ognizer at a time; if the cross-validation accuracy decreases,

Dur. Acc. (%) Phone Recognizers
5s 60.83 ArbOE+ArbLME+G+H+M+S
15s 72.83 ArbOE+ArbLME+G+H+M
30s 78.50 ArbO+H+S
45s 81.5 ArbE+ArbLME+H+G+S
60s 83.33 ArbOE+ArbLME+E+G+H+M
120s 84.00 ArbOE+ArbLME+G+M

Table 1: Accuracy of the four-way classification (four col-
loquial Arabic dialects) and the best combination of phone
recognizers used per test-utterances duration; The phone
recognizers used are: E=English, G=German, H=Hindi,
M=Mandarin, S=Spanish, ArbO=open-loop MSA without
emphatic vowels, ArbOE=open-loop MSA with emphatic
vowels, ArbLME=MSA with emphatic vowels and bi-gram
phone LM

We observe that the MSA phone recognizers are
the most important phone recognizers for this task,
usually when emphatic vowels are modeled. In all
scenarios, removing all MSA phone recognizers
leads to a significant drop in accuracy. German,
Mandarin, Hindi, and Spanish typically contribute
to the classification task, but English, and Japanese
phone recognizers are less helpful. It is possible
that the more useful recognizers are able to cap-
ture more of the distinctions among the Arabic di-
alects; however, it might also be that the overall
quality of the recognizers also varies.

6.3 Dialect ID with MSA

Considering MSA as a dialectal variant of Ara-
bic, we are also interested in analyzing the perfor-
mance of our system when including it in our clas-
sification task. In this experiment, we add MSA as
the fifth dialect. We perform the same steps de-
scribed above for training, using the MSA corpus
described in Section 4. For testing, we use also
our 150 hypothesized MSA speakers as our test
set. Interestingly, in this five-way classification,
we observe that the F-Measure for the MSA class
in the cross-validation task is always above 98%
regardless of the test-utterance duration, as shown
in Figure 3.

It would seem that MSA is rarely confused with
any of the colloquial dialects: it appears to have a
distinct phonotactic distribution. This explanation
is supported by linguists, who note that MSA dif-
fers from Arabic dialects in terms of its phonology,
lexicon, syntax and morphology, which appears to
lead to a profound impact on its phonotactic distri-
bution. Similar to the four-way classification task,

we add it back. We have experimented with an automatic
feature selection methods, but with the empirical (‘greedy’)
selection we typically obtain higher accuracy.
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4 dialects

seconds accuracy Gulf Iraqi Levantine Egyptian

5 68.6667 54.5 50.7 60 77.9

15 76.6667 57.3 62.6 73.8 90.7

30 81.6 68.3 71.7 79.4 90.2

45 84.8 69.9 73.6 86.2 94.9

60 86.933 76.8 76.5 85.4 96.3

120 87.86 79.1 77.4 90.1 93.6
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Figure 3: The accuracies and F-Measures of the five-way
classification task with different test-utterance durations

Dur. Acc. (%) Phone Recognizers
5s 68.67 ArbO+ArbLME+H+M
15s 76.67 ArbLME+G+H+J+M
30s 81.60 ArbO+ArbOE+E+G+H+J+M+S
45s 84.80 ArbOE+ArbLME+E+G+H+J+M+S
60s 86.93 ArbOE+ArbLME+G+J+M+S
120s 87.86 ArbO+ArbLME+E+S

Table 2: Accuracy of the five-way classification (4 colloquial
Arabic dialects + MSA) and the best combination of phone
recognizers used per test-utterances duration; The phone
recognizers used are: E=English, G=German, H=Hindi,
J=Japanese, M=Mandarin, S=Spanish, ArbO=open-loop
MSA without emphatic vowels, ArbOE=open-loop MSA
with emphatic vowels, ArbLME=MSA with emphatic vow-
els and bi-gram phone LM

Egyptian was the most easily distinguished dialect
(F-Measure=90.2%, with 30s test utterance) fol-
lowed by Levantine (79.4%), and then Iraqi and
Gulf (71.7% and 68.3%, respectively). Due to the
high MSA F-Measure, the five-way classifier can
also be used as a binary classifier to distinguish
MSA from colloquial Arabic (Gulf, Iraqi, Levan-
tine, and Egyption) reliably.

It should be noted that our classification results
for MSA might be inflated for several reasons: (1)
The MSA test data were collected from Broad-
cast News, which includes read (anchor and re-
porter) speech, as well as telephone speech (for in-
terviews). (2) The identities of the test speakers in
the MSA corpus were determined automatically,
and so might not be as accurate.

As a result of the high identification rate of
MSA, the overall accuracy in the five-way clas-
sification task is higher than that of the four-way
classification. Table 2 presents the phone recog-
nizers selected the accuracy for each test utterance
duration. We observe here that the most impor-
tant phone recognizers are those trained on MSA

(ArbO, ArbOE, and/or ArbLME). Removing them
completely leads to a significant drop in accu-
racy. In this classification task, we observe that all
phone recognizers play a role in the classification
task in some of the conditions.

7 Conclusions and Future Work

In this paper, we have shown that four Arabic
colloquial dialects (Gulf, Iraqi, Levantine, and
Egyptian) plus MSA can be distinguished using
a phonotactic approach with good accuracy. The
parallel PRLM approach we employ thus appears
to be effective not only for language identification
but also for Arabic dialect ID.

We have found that the most distinguishable
dialect among the five variants we consider here
is MSA, independent of the duration of the test-
utterance (F-Measure is always above 98.00%).
Egyptian Arabic is second (F-Measure of 90.2%
with 30s test-utterances), followed by Levantine
(F-Measure of 79.4%, with 30s test). The most
confusable dialects are Iraqi and Gulf (F-Measure
of 71.7% and 68.3%, respectively, with 30s test-
utterances). This high degree of Iraqi-Gulf confu-
sion is consistent with some classifications of Iraqi
Arabic as a sub-dialect of Gulf Arabic. We have
obtained a total accuracy of 81.60% in this five-
way classification task when given 30s-duration
utterances. We have also observed that the most
useful phone streams for classification are those
of our Arabic phone recognizers — typically those
with emphatic vowels.

As mentioned above, the high F-measure for
MSA may be due to the MSA corpora we have
used, which differs in genre from the dialect cor-
pora. Therefore, one focus of our future research
will be to collect MSA data with similar record-
ing conditions to the other dialects to validate
our results. We are also interested in including
prosodic features, such as intonational, durational,
and rhythmic features in our classification. A more
long-term and general goal is to use our results to
improve ASR for cases in which code-switching
occurs between MSA and other dialects.
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Abstract

We investigate syntactic reordering within
an English to Arabic translation task. We
extend a pre-translation syntactic reorder-
ing approach developed on a close lan-
guage pair (English-Danish) to the dis-
tant language pair, English-Arabic. We
achieve significant improvements in trans-
lation quality over related approaches,
measured by manual as well as automatic
evaluations. These results prove the viabil-
ity of this approach for distant languages.

1 Introduction

The emergence of phrase-based statistical ma-
chine translation (PSMT) (Koehn et al., 2003a)
has been one of the major developments in statis-
tical approaches to translation. Allowing transla-
tion of word sequences (phrases) instead of single
words provides PSMT with a high degree of ro-
bustness in word selection and in local-word re-
ordering. Recent developments have shown that
improvements in PSMT quality are possible us-
ing syntax. One such development is the pre-
translation reordering approach, which adjusts the
source sentence to resemble target-language word
order prior to translation. This is typically done
using rules that are either manually created or
automatically learned from word-aligned parallel
corpora.

One particular variety of this approach, pro-
posed by Elming (2008), uses a large set of
linguistic features to automatically learn re-
ordering rules. The rules are applied non-
deterministically; however, phrase-internal word-
alignments are used to ensure that the intended re-
ordering does not come undone because of phrase
internal reordering (Elming, 2008). This approach

was shown to produce improved MT output on
English-Danish MT, a relatively closely-related
and similarly-structured language pair. In this
paper, we study whether this approach can be
extended to distant language pairs, specifically
English-to-Arabic. We achieve significant im-
provement in translation quality over related ap-
proaches, measured by manual as well as auto-
matic evaluations on this task. This proves the
viability of this approach on distant languages.
We also examined the effect of the alignment
method on learning reordering rules. Interestingly,
our experiments produced better translation using
rules learned from automatic alignments than us-
ing rules learned from manual alignments.

In the next section, we discuss and contrast re-
lated work. Section 3 describes aspects of English
and Arabic structure that are relevant to reorder-
ing. Section 4 describes the automatic induction
of reordering rules and its integration in PSMT. In
section 5, we describe the SMT system used in the
experiments. In section 6, we evaluate and discuss
the results of our English-Arabic MT system.

2 Related Work

Much work has been done in syntactic reorder-
ing for SMT, focusing on both source and target-
language syntax. In this paper, we adapt an ap-
proach that utilizes source-syntax information as
opposed to target-side syntax systems (Yamada
and Knight, 2001; Galley et al., 2004). This is
because we are translating from English to Arabic
and we are discouraged by recent results indicat-
ing Arabic parsing is not at a stage that makes it
usable in MT (Habash et al., 2006). While sev-
eral recent authors using a pre-translation (source-
side) reordering approach have achieved positive
results, it has been difficult to integrate syntactic
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information while retaining the strengths of the
statistical approach. In some studies, reordering
decisions are done “deterministically” by supply-
ing the decoder with a canonical word order (Xia
and McCord, 2004; Collins et al., 2005; Wang
et al., 2007; Habash, 2007). These reordering
rules are either manually specified or automati-
cally learned from alignments; and they are al-
ways placed outside the actual PSMT system. By
contrast, other studies (Crego and Mariño, 2007;
Zhang et al., 2007; Li et al., 2007; Elming, 2008)
are more in the spirit of PSMT, in that multi-
ple reorderings are presented to the PSMT sys-
tem as (possibly weighted) options that are al-
lowed to contribute alongside other parameters.
Specifically, we follow the pre-translation reorder-
ing approach of Elming (2008). This approach
has been proven to remedy shortcomings of other
pre-translation reordering approaches by reorder-
ing the input word sequence, but scoring the out-
put word sequence.

Elming (2008) only examined the approach
within English – Danish, a language pair that dis-
plays little reordering. By contrast, in this pa-
per, we target the more demanding reordering task
of translating between two distant languages, En-
glish and Arabic. While much work has been
done on Arabic to English MT (Habash and Sa-
dat, 2006; Lee, 2004) mostly focusing on ad-
dressing the problems caused by the rich mor-
phology of Arabic, we handle the less described
translation direction: English to Arabic. Recently,
there are some new publications on English to
Arabic MT. Sarikaya and Deng (2007) use joint
morphological-lexical language models to re-rank
the output of English dialectal-Arabic MT, and
Badr et al. (2008) report results on the value of
the morphological decomposition of Arabic dur-
ing training and describe different techniques for
re-composition of Arabic in the output. We differ
from the previous efforts targeting Arabic in that
(1) we do not address morphology issues through
segmentation (more on this in section 3) and (2)
we focus on utilizing syntactic knowledge to ad-
dress the reordering challenges of this translation
direction.

3 Arabic Syntactic Issues

Arabic is a morphologically and syntactically
complex language with many differences from En-
glish. Arabic morphology has been well studied
in the context of MT. Previous results all sug-

gest that some degree of tokenization is helpful
when translating from Arabic (Habash and Sa-
dat, 2006; Lee, 2004). However, when trans-
lating into a morphologically rich language, tar-
get tokenization means that the translation process
is broken into multiple steps (Badr et al., 2008).
For our experiments, Arabic was not segmented
apart from simple punctuation tokenization. This
low level of segmentation was maintained in or-
der to agree with the segmentation provided in
the manually aligned corpus we used to learn our
rules (section 6.1). We found no simple means for
transferring the manual alignments to more seg-
mented language. We expect that better perfor-
mance would be achieved by introducing more
Arabic segmentation as reported by Badr et al.
(2008).1 As such, and unlike previous work in
PSMT translating into Arabic, we focus here on
syntax. We plan to investigate different tokeniza-
tion schemes for syntactic preprocessing in future
work. Next, we describe three prominent English-
Arabic syntactic phenomena that have motivated
some of our decisions in this paper.

First is verb-subject order. Arabic verb subjects
may be: (a.) pro-dropped (verb conjugated), (b.)
pre-verbal (SVO), or (c.) post-verbal (VSO). Al-
though the English SVO order is possible in Ara-
bic, it is not always preferred, especially when the
subject is particularly long. Unfortunately, this is
the harder case for PSMT to handle. For small
subject noun phrases (NP), PSMT might be able
to handle the reordering in the phrase table if the
verb and subject were seen in training. But this be-
comes much less likely with very long NPs that ex-
ceed the size of the phrases in a phrase table. The
example in Figure 1 illustrates this point. Bolding
and italics are used to mark the verb and subor-
dinating conjunction that surround the subject NP
(19 tokens) in English and what they map to in
Arabic, respectively.2

Secondly, Arabic adjectival modifiers typically
follow their nouns with the exception of some su-
perlative adjectives. However, English adjectival
modifiers can follow or precede their nouns de-
pending on the size of the adjectival phrase: single
word adjectives precede but multi-word adjectives
phrases follow (or precede while hyphenated). For
example, a tall man translates as ÉK
ñ£ Ég. P rjl

1Our results are not comparable to their results, since they
report on non-standard data sets.

2All Arabic transliterations in this paper are provided in
the Habash-Soudi-Buckwalter scheme (Habash et al., 2007).
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[NP-SBJ The general coordinator of the railroad project among the countries of the Gulf Coopera-
tion Council , Hamid Khaja ,] [V announced] [SUB that ...]
[ ék. A
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[V Aςln] [NP-SBJ Almnsq AlςAm lmšrwς Alsk~ AlHdyd byn dwl mjls AltςAwn Alxlyjy HAmd
xAjh] [SUB An ...]

Figure 1: An example of long distance reordering of English SVO order to Arabic VSO order

t7 · · · · · · �
t6 · · � · · · ·
t5 · � · · · · ·
t4 · · · · � · ·
t3 · · · · · � ·
t2 · · · � · · ·
t1 � · · · · · ·

s1 s2 s3 s4 s5 s6 s7

Figure 2: Abstract alignment matrix example of
reordering.

Twyl ‘man tall’; however, the English phrase a
man tall of stature translates with no reordering as
�
éÓA

�
®Ë @ ÉK
ñ£ Ég. P rjl Twyl AlqAm~ ‘man tall the-

stature’. So does the superlative the tallest man
translating into Ég. P Èñ£@ ATwl rjl ‘tallest man.’

Finally, Arabic has one syntactic construction,
called Idafa, for indicating possession and com-
pounding, while English has three. The Idafa con-
struction typically consists of one or more indef-
inite nouns followed by a definite noun. For ex-
ample, the English phrases the car keys, the car’s
keys and the keys of the car all translate into the
Arabic �

èPAJ
�Ë@ iJ

�
KA

	
®Ó mfAtyH AlsyAr~ ‘keys the-

car.’ Only one of the three English constructions
does not require content word reordering.

4 Reordering rules

4.1 Definition of reordering

Following Elming (2008), we define reordering as
two word sequences, left sequence (LS) and right
sequence (RS), exchanging positions. These two
sequences are restricted by being parallel consecu-
tive, maximal and adjacent. The sequences are not
restricted in length, making both short and long
distance reordering possible. Furthermore, they
need not be phrases in the sense that they appear
as an entry in the phrase table.

Figure 2 illustrates reordering in a word align-
ment matrix. The matrix contains reorderings be-
tween the light grey sequences (s3

2 and s6
4)3 and

3Notation: sy
x means the consecutive source sequence

the dark grey sequences (s5
5 and s6

6). On the other
hand, the sequences s3

3 and s5
4 are not considered

for reordering, since neither one is maximal, and
s5
4 is not consecutive on the target side.

4.2 Learning rules

Table 1 contains an example of the features avail-
able to the algorithm learning reordering rules.
We include features for the candidate reorder-
ing sequences (LS and RS) and for their possi-
ble left (LC) and right (RC) contexts. In addi-
tion to words and parts-of-speech (POS), we pro-
vide phrase structure (PS) sequences and subordi-
nation information (SUBORD). The PS sequence
is made up of the highest level nodes in the syntax
tree that cover the words of the current sequence
and only these. Subordinate information can also
be extracted from the syntax tree. A subordinate
clause is defined as inside an SBAR constituent;
otherwise it is a main clause. Our intuition is that
all these features will allow us to learn the best
rules possible to address the phenomena discussed
in section 3 at the right level of generality.

In order to minimize the amount of training
data, word and POS sequences are annotated as
too long (T/L) if they are longer than 4 words,
and the same for phrase structure (PS) sequences
if they are longer than 3 units. A feature vector
is only used if at least one of these three levels is
not T/L for both LS and RS, and T/L contexts are
not included in the set. This does not constrain
the possible length of a reordering, since a PS se-
quence of length 1 can cover an entire sentence.
In the example in Table 1, LS and RS are single
words, but they are not restricted in length. The
span of the contexts varies from a single neighbor-
ing word to all the way to the sentence border. In
the example, LS and RS should be reordered, since
adjectives appear as post-modifiers in Arabic.

In order to learn rules from the annotated data,
we use a rule-based classifier, Ripper (Cohen,

covering word positions x to y.
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Level LC LS RS RC
WORD <s> he bought || he bought || bought new books today || today . || today . < /s>

POS <S> NN VBD || NN VBD || VBD JJ NNS NN || NN . || NN . < /S>
PS <S> NP VBD || NP VBD || VBD JJ NNS NP || NP . || NP . < /S>

SUBORD MAIN MAIN MAIN MAIN

Table 1: Example of features for rule-learning. Possible contexts separated by ||.

Figure 3: Example word lattice.

1996). The motivation for using Ripper is that it
allows features to be sets of strings, which fits well
with our representation of the context, and it pro-
duces easily readable rules that allow better under-
standing of the decisions being made. In section
6.3, extracted rules are exemplified and analyzed.

The probabilities of the rules are estimated us-
ing Maximum Likelihood Estimation based on
the information supplied by Ripper on the perfor-
mance of the individual rules on the training data.
These logarithmic probabilities are easily integrat-
able in the log-linear PSMT model as an additional
parameter by simple addition.

5 The PSMT system

Our baseline is the PSMT system used for the
2006 NAACL SMT workshop (Koehn and Monz,
2006) with phrase length 3 and a trigram language
model (Stolcke, 2002). The decoder used for the
baseline system is Pharaoh (Koehn, 2004) with
its distance-penalizing reordering model. Since
Pharaoh does not support word lattice input, we
use our own decoder for the experiments. Ex-
cept for the reordering model, it uses the same
knowledge sources as Pharaoh, i.e. a bidirectional
phrase translation model, a lexical weight model,
phrase and word penalties, and a target language
model. Its behavior is comparable to Pharaoh
when doing monotone decoding.

The search algorithm of our decoder is similar
to the RG graph decoder of (Zens et al., 2002). It
expects a word lattice as input. Figure 3 shows
the word lattice for the example in table 2. In the
example used here, we choose to focus on the re-
ordering of adjective and noun. For readability,
we do not describe the possibility of reordering the

subject and verb. This will also be the case in later
use of the example.

Since the input format defines all possible word
orders allowed by the rule set, a simple monotone
search is sufficient. Using a language model of or-
der n, for each hypothesized target string ending
in the same n-1-gram, we only have to extend the
highest scoring hypothesis. None of the others can
possibly outperform this one later on. This is be-
cause the maximal context evaluating a phrase ex-
tending this hypothesis, is the history (n-1-gram)
of the first word of that phrase. The decoder is
not able to look any further back at the preceding
string.

5.1 The reordering approach
Similar to Elming (2008), the integration of the
rule-based reordering in our PSMT system is car-
ried out in two separate stages:

1. Reordering the source sentence to assimilate
the word order of the target language.

2. Weighting of the target word order according
to the rules.

Stage (1) is done in a non-deterministic fashion
by generating a word lattice as input. This way, the
system has both the original word order, and the
reorderings predicted by the rule set. The different
paths of the word lattice are merely given as equal
suggestions to the decoder. They are in no way
individually weighted.

Separating stage (2) from stage (1) is motivated
by the fact that reordering can have two distinct
origins. They can occur because of stage (1), i.e.
the lattice reordering of the original English word
order (phrase external reordering), and they can
occur inside a single phrase (phrase internal re-
ordering). The focus of this approach lies in do-
ing phrase-independent word reordering. Rule-
predicted reorderings should be promoted regard-
less of whether they owe their existence to a syn-
tactic rule or a phrase table entry.

This is accomplished by letting the actual scor-
ing of the reordering focus on the target string.
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Source: he1 bought2 new3 books4 today5

Rule: 3 4→ 4 3
Hypothesis Target string Alignment

H1 Aštrý jdyd~ ktbA 1+2 3 4
H2 Aštrý ktbA jdyd~ 1+2 4 3

Table 2: Example of the scoring approach during
decoding at source word 4.

The decoder is informed of where a rule has pre-
dicted a reordering, how much it costs to do the
reordering, and how much it costs to avoid it. This
is then checked for each hypothesized target string
via a word alignment.

The word alignment keeps track of which
source position the word in each target position
originates from. In order to access this informa-
tion, each phrase table entry is annotated with its
internal word alignment, which is available as an
intermediate product from phrase table creation.
If a phrase pair has multiple word alignments, the
most frequent one is chosen.

Table 2 exemplifies the scoring approach, again
with focus on the adjective-noun reordering. The
source sentence is ‘he bought new books today’,
and a rule has predicted that source word 3 and
4 should change place. Due to the pro-drop na-
ture of Arabic, the first Arabic word is linked to
the two first English words (1+2). When the de-
coder has covered the first four input words, two
of the hypothesis target strings might be H1 and
H2. At this point, it becomes apparent that H2
contains the desired reordering (namely what cor-
responds to source word order ‘4 3’), and it get
assigned the reordering cost. H1 does not contain
the rule-suggested reordering (instead, the words
are in the original order ‘3 4’), and it gets the vi-
olation cost. Both these scorings are performed
in a phrase-independent manner. The decoder as-
signs the reordering cost to H2 without knowing
whether the reordering is internal (due to a phrase
table entry) or external (due to a syntactic rule).

Phrase internal reorderings at other points of the
sentence, i.e. points that are not covered by a rule,
are not judged by the reordering model. Our rule
extraction does not learn every possible reorder-
ing between the two languages, but only the most
general ones. If no rule has an opinion at a certain
point in a sentence, the decoder is free to choose
the phrase translation it prefers without reordering
cost.

Separating the scoring from the source lan-
guage reordering also has the advantage that the
approach in essence is compatible with other
approaches such as a traditional PSMT system
(Koehn et al., 2003b) or a hierarchical phrase sys-
tem (Chiang, 2005). We will, however, not exam-
ine this possibility further in the present paper.

6 Evaluation

6.1 Data
We learn the reordering rules from the IBM
Arabic-English aligned corpus (IBMAC) (Itty-
cheriah and Roukos, 2005). Of its total 13.9K sen-
tence pairs, we only use 8.8K sentences because
the rest of the corpus uses different normalizations
for numerals that make the two sets incompatible.
6.6K of the sentences (179K English and 146K
Arabic words) are used to learn rule, while the rest
are used for development purposes. In addition to
the manual alignment supplied with these data, we
create an automatic word alignment for them using
GIZA++ (Och and Ney, 2003) and the grow-diag-
final (GDF) symmetrization algorithm (Koehn et
al., 2005). This was done together with the data
used to train the MT system. The English side
is parsed using a state-of-the-art statistical English
parser (Charniak, 2000). Two rule sets are learned
based on the manual alignments (MAN) and the
automatic alignments (GDF).

The MT system is trained on a corpus con-
sisting of 126K sentences with 4.2M English
and 3.3M Arabic words in simple tokeniza-
tion scheme. The domain is newswire (LDC-
NEWS) taken from Arabic News (LDC2004T17),
eTIRR (LDC2004E72), English translation of
Arabic Treebank (LDC2005E46), and Ummah
(LDC2004T18). Although there are additional
corpora available, we restricted ourselves to this
set to allow for a fast development cycle. We plan
to extend the data size in the future. The Ara-
bic language model is trained on the 5.4M sen-
tences (133M words) of newswire text in the 1994
to 1996 part of the Arabic Gigaword corpus. We
restricted ourselves to this part, since we are not
able to run Pharaoh with a larger language model.4

For test data, we used NIST MTEval test sets
from 2004 (MT04) and 2005 (MT05)5. Since
these data sets are created for Arabic-English eval-
uation with four English reference sentences for

4All of the training data we use is available from the Lin-
guistic Data Consortium (LDC): http://www.ldc.upenn.edu/.

5 http://www.nist.gov/speech/tests/mt/
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System Dev MT04 MT05
Pharaoh Free 28.37 23.53 24.79
Pharaoh DL4 29.52 24.72 25.88
Pharaoh Monotone 27.93 23.55 24.72
MAN NO weight 29.53 24.72 25.82

SO weight 29.43 24.74 25.82
TO weight 29.40 24.78 25.93

GDF NO weight 29.87 25.11 26.04
SO weight 29.84 25.06 26.01
TO weight 29.95 25.17 26.09

Table 3: Automatic evaluation scores for different
systems using rules extracted from manual align-
ments (MAN) and automatic alignments (GDF).
The TO system using GDF rules is significantly
better than the light grey cells at a 95% confidence
level (Zhang et al., 2004).

each Arabic sentence, we invert the sets by con-
catenating all English sentences to one file. This
means that the Arabic reference file contains four
duplicates of each sentence. Each duplicate is the
reference of a different English source sentence.
Following this merger, MT04 consists of 5.4K
sentences with 193K English and 144K Arabic
words, and MT05 consists of 4.2K sentences with
143K English and 114K Arabic words. MT04 is
a mix of domains containing speeches, editorials
and newswire texts. On the other hand, MT05 is
only newswire.

The NIST MTEval test set from 2002 (MT02)
is split into a tuning set for optimizing decoder pa-
rameter weights and a development set for ongo-
ing experimentation. The same merging procedure
as for MT04 and MT05 is employed. This results
in a tune set of 1.0K sentences with 34K English
and 26K Arabic words, and a development set of
3.1K sentences with 102K English and 79K Ara-
bic words.

6.2 Results and discussion

The reordering approach is evaluated on the MT04
and MT05 test sets. Results are listed in table 3
along with results on the development set. We re-
port on (a) Pharaoh with no restriction on reorder-
ing (Pharaoh Free), (b) Pharaoh with distortion
limit 4 (Pharaoh DL4), (c) Pharaoh with monotone
decoding (Pharaoh Monotone), and (d) a system
provided with a rule reordered word lattice but no
(NO) weighting in the spirit of (Crego and Mariño,
2007), (e) the same system but with a source order

System MT04 MT05 Avr. human
Pharaoh Free 24.07 25.15 3.0 (2.80)
Pharaoh DL4 25.42 26.51 —
NO scoring 25.68 26.29 2.5 (2.43)
SO scoring 25.42 26.02 2.5 (2.64)
TO scoring 25.98 26.49 2.0 (2.08)

Table 4: Evaluation on the diff set. Average hu-
man ratings are medians with means in parenthe-
sis, lower scores are better, 1 is the best score.

(SO) weighting in the spirit of (Zhang et al., 2007;
Li et al., 2007), and finally (f) the same system but
with the target order (TO) weighting.

In addition to evaluating the reordering ap-
proaches, we also report on supplying them with
different reordering rule sets: a set that was
learned on manually aligned data (MAN), and a
set learned on the same data but with automatic
alignments (GDF).

6.2.1 Overall Results
Pharaoh Monotone performs similarly to Pharaoh
Free. This shows that the question of improved
reordering is not about quantity, but rather qual-
ity: what constraints are optimal to generate the
best word order. The TO approach gets an increase
over Pharaoh Free of 1.3 and 1.6 %BLEU on the
test sets, and 0.2 and 0.5 %BLEU over Pharaoh
DL4.

Improvement is less noticeable over the other
pre-translation reordering approaches (NO and
SO). A possible explanation is that the rules do not
apply very often, in combination with the fact that
the approaches often behave alike. The difference
in SO and TO scoring only leads to a difference
in translation in ∼14% of the sentences. This set,
the diff set, is interesting, since it provides a focus
on the difference between these approaches. In ta-
ble 4, we evaluate on this set.

6.2.2 Diff Set
Overall the TO approach seems to be a superior
reordering method. To back this observation, 50
sentences of MT04 are manually evaluated by a
native speaker of Arabic. Callison-Burch et al.
(2007) show that ranking sentences gives higher
inter-annotator agreement than scoring adequacy
and fluency. We therefore employ this evaluation
method, asking the evaluator to rank sentences
from four of the systems given the input sentence.
Ties are allowed. Table 4 shows the average rat-
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Decoder choice NO SO TO
MT04 Phrase internal 20.7 0.6 21.2

Phrase external 30.1 43.0 33.1
Reject 49.2 56.5 45.7

MT05 Phrase internal 21.3 0.7 21.6
Phrase external 29.5 42.9 31.8

Reject 49.2 56.4 46.5

Table 5: The reordering choices made based on
the three pre-translation reordering approaches for
the 20852 and 17195 reorderings proposed by the
rules for the MT04 and MT05 test sets. Measured
in %.

ings of the systems. This shows the TO scoring
to be significantly superior to the other methods
(p < 0.01 using Wilcoxon signed-rank testing).

6.2.3 MAN vs GDF
Another interesting observation is that reordering
rules learned from automatic alignments lead to
significantly better translation than rules learned
from manual alignment. Due to the much higher
quality of the manual alignment, the opposite
might be expected. However, this may be just
a variant on the observation that alignment im-
provements (measured against human references)
seldom lead to MT improvements (Lopez and
Resnik, 2006). The MAN alignments may in fact
be better than GDF, but they are most certainly
more different in nature from real alignment than
the GDF alignments are. As such, the MAN align-
ments are not as powerful as we would have liked
them to be. In our data sets, the GDF rules, seem
less specific, and they therefore apply more fre-
quently than the MAN rules. On average, this re-
sults in more than 7 times as many possible re-
ordering paths per sentence. This means that the
GDF rules supply the decoder with a larger search
space, which in turn means more proposed trans-
lation hypotheses. This may play a big part in the
effect of the rule sets.

6.2.4 Reordering Choices
Table 5 shows the reordering choices made by the
approaches in decoding. Most noticeable is that
the SO approach is strongly biased against phrase
internal reorderings; TO uses more than 30 times
as many phrase internal reorderings as SO. In ad-
dition, TO is less likely to reject a rule proposed
reordering.

The 50 sentences from the manual evaluation

are also manually analyzed with regards to re-
ordering. For each reordering in these sentences,
the four systems are ranked according to how well
the area affected by the reordering is translated.
This indicates that the SO approach’s bias against
phrase internal reorderings may hurt performance.
25% of the time, when SO chooses an external re-
ordering, while the TO approach chooses an in-
ternal reordering, the TO approach gets a better
translation. Only in 7% of the cases is it the other
way around.

Another discovery from the analysis is when TO
chooses an internal reordering and NO rejects the
reordering. Here, TO leads to a better translation
45% of the time, while NO never outperforms TO.
In these cases, either approach has used a phrase
to cover the area, but via rule-based motivation,
TO has forced a less likely phrase with the correct
word order through. This clearly shows that lo-
cal reordering is not handled sufficiently by phrase
internal reordering alone. These need to be con-
trolled too.

6.3 Rule analysis

The rule learning resulted in 61 rules based on
manual alignments and 39 based on automatic
alignments. Of these, the majority handled the
placement of adjectives, while only a few handled
the placement of the verb.

A few of the rules that were learned from the
manual alignment are shown in table 6. The first
two rules handle the placement of the finite verb
in Arabic. Rule 16 states that if a finite verb
appears in front of a subordinate clause, then it
should be moved to sentence initial position with
a probability of 68%. Due to the restrictions of
sequence lengths, it can only swap across maxi-
mally 4 words or a sequence of words that is de-
scribable by maximally 3 syntactic phrases. The
SBAR condition may help restrict the reordering
to finite verbs of the main clause. This rule and its
probability goes well with the description given in
sections 3, since VSO order is not obligatory. The
subject may be unexpressed, or it may appear in
front of the verb. This is even more obvious in
rule 27, which has a probability of only 43%.

Rules 11 and 1 deal with the inverse ordering of
adjectives and nouns. The first is general but un-
certain, the second is lexicalized and certain. The
reason for the low probability of rule 11 is primar-
ily that many proper names have been mis-tagged
by the parser as either JJ or NN, and to a lesser
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No LC LS RS RC Prob.
16 WORD: <s> POS: FVF PS: SBAR 68%
27 WORD: <s> PS: NP POS: FVF 43%
11 POS: IN POS: JJ POS: NN 46%
1 ! POS: JJ POS: JJ WORD: president 90%

37 ! POS: NN POS: NN POS: NNS POS: IN 71%
! POS: JJ

Table 6: Example rules. ! specifies negative conditions.

extent that the rule should often not apply if the
right context is also an NN. Adding the latter re-
striction narrows the scope of the rule but would
have increased the probability to 54%.

Rule 1, on the other hand, has a high proba-
bility of 90%. It is only restricted by the con-
dition that the left context should not be an ad-
jective. In these cases, the adjectives should of-
ten be moved together, as is the case with ‘the
south african president’→ ù
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Alrŷys Aljnwb Afryqy where ‘south african’ is
moved to the right of ‘president’.

Finally, rule 37 handles compound nouns. Here
a singular noun is moved to the right of a plural
noun, if the right context is a preposition, and the
left context is neither an adjective nor a singular
noun. This rule handles compound nouns, where
the modifying function of the first noun often is
hard to distinguish from that of an adjective. The
left context restrictions server the same purpose as
the left context in rule 1; these should often be
moved together with the singular noun. The func-
tion of the right context is harder to explain, but
without this restriction, the rule would have been
much less successful; dropping from a probability
of 71% to 51%.

An overall comparison of the rules produced
based on the manual and automatic alignments
shows no major difference in quality. This is espe-
cially interesting in light of the better translation
using the GDF rules. It is also very interesting
that it seems possible to get as good rules from the
GDF as from the MAN alignments. This is a new
result compared to Elming (2008), where results
on manual alignments only are reported.

7 Conclusion and Future Plans

We have explored the syntactic reordering ap-
proach previously presented in (Elming, 2008)
within a more distant language pair, English-
Arabic. A translation direction that is highly

under-represented in MT research, compared to
the opposite direction. We achieve significant im-
provement in translation quality over related ap-
proaches, measured by manual as well as auto-
matic evaluations on this task. Thus proving the
viability of the approach on distant languages.

We also examined the effect of the alignment
method on learning reordering rules. Interestingly,
our experiments produced better translation using
rules learned from automatic alignments than us-
ing rules learned from manual alignments. This is
an aspect we want to explore further in the future.

In future work, we would also like to address
the morphological complexity of Arabic together
with syntax. We plan to consider different seg-
mentations for Arabic and study their interaction
with translation and syntactic reordering.

An important aspect of the TO approach is that
it uses phrase internal alignments during transla-
tion. In the future, we wish to examine the effect
their quality has on translation. We are also inter-
ested in examining the approach within a standard
phrase-based decoder such as Moses (Koehn et al.,
2003b) or a hierarchical phrase system (Chiang,
2005).

The idea of training on reordered source lan-
guage is often connected with pre-translation re-
ordering. The present approach does not em-
ploy this strategy, since this is no trivial matter
in a non-deterministic, weighted approach. Zhang
et al. (2007) proposed an approach that builds
on unfolding alignments. This is not an opti-
mal solution, since this may not reflect their rules.
Training on both original and reordered data may
strengthen the approach, but it would not remedy
the problems of the SO approach, since it would
still be ignorant of the internal reorderings of a
phrase. Nevertheless, it may strengthen the TO
approach even further. We also wish to examine
this in future work.
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