
Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 51–55,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

Hybrid Stemmer for Gujarati 

Pratikkumar Patel     Kashyap Popat 
Department of Computer Engineering 

Dharmsinh Desai University 
pratikpat88@gmail.com 
kan.pop@gmail.com 

Pushpak Bhattacharyya 
Department of Computer Science and 

Engineering 
Indian Institute of Technology Bombay 

pb@cse.iitb.ac.in 

 

Abstract 

In this paper we present a lightweight 
stemmer for Gujarati using a hybrid ap-
proach. Instead of using a completely 
unsupervised approach, we have har-
nessed linguistic knowledge in the form 
of a hand-crafted Gujarati suffix list in 
order to improve the quality of the stems 
and suffixes learnt during the training 
phase. We used the EMILLE corpus for 
training and evaluating the stemmer’s 
performance. The use of hand-crafted 
suffixes boosted the accuracy of our 
stemmer by about 17% and helped us 
achieve an accuracy of 67.86 %. 

1 Introduction 

Stemming is the process of conflating related 
words to a common stem by chopping off the 
inflectional and derivational endings. Stemming 
plays an important role in Information Retrieval 
(IR) systems by reducing the index size and in-
creasing the recall by retrieving results contain-
ing any of the various possible forms of a word 
present in the query. This is especially true in 
case of a morphologically rich language like 
Gujarati, where a single word may take many 
forms. The aim is to ensure that related words 
map to common stem, irrespective of whether or 
not the stem is a meaningful word in the voca-
bulary of the language.   

Current state of the art approaches to stem-
ming can be classified into three categories, viz., 
rule based, unsupervised and hybrid. Building a 
rule based stemmer for a morphologically rich 
language is an uphill task considering the dif-
ferent inflectional and morphological variations 
possible. Purely unsupervised approaches on the 

other hand fail to take advantage of some lan-
guage phenomenon which can be easily ex-
pressed by simple rules. We thus follow a hybr-
id approach by enhancing an unsupervised sys-
tem with a list of hand-crafted Gujarati suffixes. 

The remainder of this paper is organized as 
follows. We describe related work in section 2. 
Section 3 explains the morphological structure 
of Gujarati. We describe our approach in section 
4. The experiments and results are described in 
section 5. Section 6 concludes the paper hig-
hlighting the future work. 

2 Background and Related Work 

The earliest English stemmer was developed by 
Julie Beth Lovins in 1968. The Porter stemming 
algorithm (Martin Porter, 1980), which was 
published later, is perhaps the most widely used 
algorithm for English stemming. Both of these 
stemmers are rule based and are best suited for 
less inflectional languages like English. 

A lot of work has been done in the field of 
unsupervised learning of morphology. 
Goldsmith (2001, 2006) proposed an unsuper-
vised algorithm for learning the morphology of 
a language based on the minimum description 
length (MDL) framework which focuses on 
representing the data in as compact manner as 
possible. Creutz (2005, 2007) uses probabilistic 
maximum a posteriori (MAP) formulation for 
unsupervised morpheme segmentation. 

Not much work has been reported for stem-
ming for Indian languages compared to English 
and other European languages. The earliest 
work reported by Ramanathan and Rao (2003) 
used a hand crafted suffix list and performed 
longest match stripping for building a Hindi 
stemmer. Majumder et al. (2007) developed 
YASS: Yet Another Suffix Stripper which uses 
a clustering based approach based on string dis-
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tance measures and requires no linguistic know-
ledge. They concluded that stemming improves 
recall of IR systems for Indian languages like 
Bengali. Dasgupta and Ng (2007) worked on 
unsupervised morphological parsing for Benga-
li. Pandey and Siddiqui (2008) proposed an un-
supervised stemming algorithm for Hindi based 
on Goldsmith's (2001) approach. 

Unlike previous approaches for Indian lan-
guages which are either rule based or complete-
ly unsupervised, we propose a hybrid approach 
which harnesses linguistic knowledge in the 
form of a hand-crafted suffix list. 

3 Gujarati Morphology 

Gujarati has three genders (masculine, neuter 
and feminine), two numbers (singular and plur-
al) and three cases (nominative, obli-
que/vocative and locative) for nouns. The gend-
er of a noun is determined either by its meaning 
or by its termination. The nouns get inflected on 
the basis of the word ending, number and case. 
The Gujarati adjectives are of two types – dec-
linable and indeclinable. The declinable adjec-
tives have the termination -ũ (◌ુ◌ં) in neuter ab-
solute. The masculine absolute of these adjec-
tives ends in -o (◌ો) and the feminine absolute in 
-ī (◌ી). For example, the adjective સાἘં (sārũ - 
good) takes the form સાἘં (sārũ), સારો (sāro) and 
સારી (sārī) when used for a neuter, masculine 
and feminine object respectively. These adjec-
tives agree with the noun they qualify in gender, 
number and case. The adjectives that do not end 
in -ũ in neuter absolute singular are classified as 
indeclinable and remain unaltered when affixed 
to a noun. 

The Gujarati verbs are inflected based upon a 
combination of gender, number, person, aspect, 
tense and mood. 

There are several postpositions in Gujarati 
which get bound to the nouns or verbs which 
they postposition. e.g. -nũ (નંુ : genitive marker), 
-mā̃ (માં : in), -e (◌ે : ergative marker), etc. These 
postpositions get agglutinated to the nouns or 
verbs and not merely follow them. 

We created a list of hand crafted Gujarati suf-
fixes which contains the postpositions and the 
inflectional suffixes for nouns, adjectives and 
verbs for use in our approach. 

4 Our Approach 

Our approach is based on Goldsmith's (2001) 
take-all-splits method. Goldsmith's method was 
purely unsupervised, but we have used a list of 
hand crafted Gujarati suffixes in our approach 
to learn a better set of stems and suffixes during 
the training phase. In our approach, we make 
use of a list of Gujarati words extracted from 
EMILLE corpus for the purpose of learning the 
probable stems and suffixes for Gujarati during 
the training phase. This set of stems and suffix-
es will be used for stemming any word provided 
to the stemmer. We have described the details 
of our approach below. 

4.1 Training Phase 
During the training phase, we try to obtain the 
optimal split position for each word present in 
the Gujarati word list provided for training. We 
obtain the optimal split for any word by taking 
all possible splits of the word (see Figure 1) and 
choosing the split which maximizes the function 
given in Eqn 1 as the optimal split position. The 
suffix corresponding to the optimal split 
position is verified against the list of 59 Gujarati 
suffixes created by us. If it cannot be generated 
by agglutination of the hand crafted suffixes, 
then the length of the word is chosen as the 
optimal split position. i.e. the entire word is 
treated as a stem with no suffix. 

 

 

 
The function used for finding the optimal 

split position reflects the probability of a partic-
ular split since the probability of any split is 
determined by the frequencies of the stem and 
suffix generated by that split. The frequency of 
shorter stems and suffixes is very high when 
compared to the slightly longer ones. Thus the 
multipliers i (length of stemi) and L-i (length of 
suffixi) have been introduced in the function in 
order to compensate for this disparity. 

 

f(i) = i*log(freq(stemi)) + (L-i)*log(freq(suffixi)) 
 

(Eqn 1) 
i: split position (varies from 1 to L) 
L: Length of the word 

Figure 1. All Possible Word Segmentations 

{stem1+suffix1,stem2+suffix2, ... ,stemL+suffixL} 
ઘરના= {ઘ + રના, ઘર + ના, ઘરન + ◌ા,ઘરના + NULL} 
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Once we obtain the optimal split of any word, 
we update the frequencies of the stem and suffix 
generated by that split. We iterate over the word 
list and re-compute the optimal split position 
until the optimal split positions of all the words 
remain unchanged. The training phase was ob-
served to take three iterations typically. 

4.2 Signatures 
After the training phase, we have a list of stems 
and suffixes along with their frequencies. We 
use this list to create signatures. As shown in 
Figure 2, each signature contains a list of stems 
and a list of suffixes appearing with these stems. 

The signatures which contain very few stems 
or very few suffixes may not be useful in stem-
ming of unknown words, thus we eliminate the 
signatures containing at most one stem or at 
most one suffix. The stems and suffixes in the 
remaining signatures will be used to stem new 
words. An overview of the training algorithm is 
shown in Figure 3. 

 

 

4.3 Stemming of any unknown word 
For stemming of any word given to the stemmer, 
we evaluate the function in Eqn 1 for each poss-

ible split using the frequencies of stems and suf-
fixes obtained from the training process. The 
word is stemmed at the position for which the 
value of the function is maximum.  

5 Experiments and Result 

We performed various experiments to evaluate 
the performance of the stemmer using EMILLE 
Corpus for Gujarati. We extracted around ten 
million words from the corpus. These words 
also contained Gujarati transliterations of Eng-
lish words. We tried to filter out these words by 
using a Gujarati to English transliteration engine 
and an English dictionary. We obtained 
8,525,649 words after this filtering process. 

We have used five-fold cross validation for 
evaluating the performance. We divided the ex-
tracted words into five equal parts of which four 
were used for training and one for testing. In 
order to create gold standard data, we extracted 
thousand words from the corpus randomly and 
tagged the ideal stem for these words manually. 

For each of the five test sets, we measured 
the accuracy of stemming the words which are 
present in the test set as well as gold standard 
data. Accuracy is defined as the percentage of 
words stemmed correctly.  

The experiments were aimed at studying the 
impact of (i) using a hand-crafted suffix list, (ii) 
fixing the minimum permissible stem size and 
(iii) provide unequal weightage to the stem and 
suffix for deciding the optimal split position. 
Various results based on these experiments are 
described in the following subsections. 

5.1 Varying Minimum Stem Size 
We varied the minimum stem size from one to 
six and observed its impact on the system per-
formance. We performed the experiment with 
and without using the hand-crafted suffix list. 
The results of this experiment are shown in Ta-
ble 1 and Figure 4. 

The results of this experiment clearly indicate 
that there is a large improvement in the perfor-
mance of the stemmer with the use of hand-
crafted suffixes and the performance degrades if 
we keep a restriction on the minimum stem size. 
For higher values of minimum stem size, all the 
valid stems which are shorter than the minimum 
stem size do not get generated leading to a de-
cline in accuracy. 

Stems Suffixes 

પશ ુ(pashu - animal) ના (nā) 

જંગ (jang - war) નો (no) 

 ને (ne) 

 નંુ (nũ) 

 ની (nī) 
Figure 2. Sample Signature 

 

Step 1: Obtain the optimal split position for  each 
word in the word list provided for training 
using Eqn 1 and the list of hand crafted suf-
fixes 

 
Step 2: Repeat Step 1 until the optimal split  posi-

tions of all the words remain unchanged 
 
Step 3: Generate signatures using the stems  and 

suffixes generated from the training phase 
 
Step 4: Discard the signatures which contain either 

only one stem or only one suffix 

Figure 3. Overview of training algorithm 
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Min Stem 
Size 

Accuracy 

With hand-
crafted suffixes 

Without hand-
crafted suffix-

es 
1 67.86 % 50.04 % 
2 67.70 % 49.80 % 
3 66.43 % 49.60 % 
4 59.46 % 46.35 % 
5 51.65 % 41.22 % 
6 43.81 % 36.89 % 

 

Table 1. Effect of use of hand-crafted suffixes and 
fixing min. stem size on stemmer’s performance 

 

 

 
Figure 4. Variation stemmer’s accuracy with the var-

iation in min. stem size 
 
There are several spurious suffixes which get 

generated during the training phase and degrade 
the performance of the stemmer when we don’t 
use the hand-crafted suffix list. e.g. ‘ક’ is not a 
valid inflectional Gujarati suffix but it does get 
generated if we don’t use the hand-crafted suf-
fix list due to words such as ‘અનેક’ (anek - many) 
and ‘અને’ (ane - and). A simple validation of the 
suffixes generated during training against the 
hand-crafted suffix list leads to learning of bet-
ter suffixes and in turn better stems during the 
training phase thereby improving the system’s 
performance. 

Thus we decided to make use of the hand-
crafted suffix list during training phase and not 
to put any restriction on the minimum stem size. 

5.2 Providing unequal weightage to stem 
and suffix 

We have provided equal weightage to stem and 
suffix in Eqn 1 which is responsible for deter-
mining the optimal split position of any word. 
We obtained Eqn 2 from Eqn 1 by introducing a 

parameter ‘α’ in order to provide unequal 
weightage to the stem and suffix and observe its 
effect on system performance. We used Eqn 2 
instead of Eqn 1 and varied α from 0.1 to 0.9 in 
this experiment. The results of this experiment 
are shown in Table 2. 

 

 
 

α Accuracy 
0.1 53.52 % 
0.2 61.71 % 
0.3 65.43 % 
0.4 67.30 % 
0.5 67.86 % 
0.6 67.48 % 
0.7 67.49 % 
0.8 67.72 % 
0.9 66.45 % 

Table 2. Effect of α on the stemmer’s performance 
 

The accuracy was found to be maximum 
when value of α was fixed to 0.5 i.e. stem and 
suffix were given equal weightage for determin-
ing the optimal split of any word. 

6 Conclusion and Future Work 

We developed a lightweight stemmer for Guja-
rati using a hybrid approach which has an accu-
racy of 67.86 %. We observed that use of a 
hand-crafted Gujarati suffix list boosts the accu-
racy by about 17 %. We also found that fixing 
the minimum stem size and providing unequal 
weightage to stem and suffix degrades the per-
formance of the system. 

Our stemmer is lightweight and removes only 
the inflectional endings as we have developed it 
for use in IR system. The list of hand-crafted 
suffixes can be extended to include derivational 
suffixes for performing full fledged stemming 
which may be required in applications such as 
displaying words in a user interface. 

We have measured the performance of the 
stemmer in terms of accuracy as of now. We 
plan to evaluate the stemmer in terms of the in-
dex compression achieved and the impact on 
precision and recall of Gujarati IR system. 

 

f(i)  =  α * i * log(freq(stemi)) + 
     (1-α) * (L-i) * log(freq(suffixi)) 

(Eqn 2) 
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