@inproceedings{do-rehbein-2017-evaluating,
title = "Evaluating {LSTM} models for grammatical function labelling",
author = "Do, Bich-Ngoc and
Rehbein, Ines",
editor = "Miyao, Yusuke and
Sagae, Kenji",
booktitle = "Proceedings of the 15th International Conference on Parsing Technologies",
month = sep,
year = "2017",
address = "Pisa, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-6318/",
pages = "128--133",
abstract = "To improve grammatical function labelling for German, we augment the labelling component of a neural dependency parser with a decision history. We present different ways to encode the history, using different LSTM architectures, and show that our models yield significant improvements, resulting in a LAS for German that is close to the best result from the SPMRL 2014 shared task (without the reranker)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="do-rehbein-2017-evaluating">
<titleInfo>
<title>Evaluating LSTM models for grammatical function labelling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bich-Ngoc</namePart>
<namePart type="family">Do</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ines</namePart>
<namePart type="family">Rehbein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Parsing Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenji</namePart>
<namePart type="family">Sagae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To improve grammatical function labelling for German, we augment the labelling component of a neural dependency parser with a decision history. We present different ways to encode the history, using different LSTM architectures, and show that our models yield significant improvements, resulting in a LAS for German that is close to the best result from the SPMRL 2014 shared task (without the reranker).</abstract>
<identifier type="citekey">do-rehbein-2017-evaluating</identifier>
<location>
<url>https://aclanthology.org/W17-6318/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>128</start>
<end>133</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating LSTM models for grammatical function labelling
%A Do, Bich-Ngoc
%A Rehbein, Ines
%Y Miyao, Yusuke
%Y Sagae, Kenji
%S Proceedings of the 15th International Conference on Parsing Technologies
%D 2017
%8 September
%I Association for Computational Linguistics
%C Pisa, Italy
%F do-rehbein-2017-evaluating
%X To improve grammatical function labelling for German, we augment the labelling component of a neural dependency parser with a decision history. We present different ways to encode the history, using different LSTM architectures, and show that our models yield significant improvements, resulting in a LAS for German that is close to the best result from the SPMRL 2014 shared task (without the reranker).
%U https://aclanthology.org/W17-6318/
%P 128-133
Markdown (Informal)
[Evaluating LSTM models for grammatical function labelling](https://aclanthology.org/W17-6318/) (Do & Rehbein, IWPT 2017)
- Evaluating LSTM models for grammatical function labelling (Do & Rehbein, IWPT 2017)
ACL
- Bich-Ngoc Do and Ines Rehbein. 2017. Evaluating LSTM models for grammatical function labelling. In Proceedings of the 15th International Conference on Parsing Technologies, pages 128–133, Pisa, Italy. Association for Computational Linguistics.