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Abstract

Dialogue state tracking is an important compo-
nent in task-oriented dialogue systems to iden-
tify users’ goals and requests as a dialogue
proceeds. However, as most previous mod-
els are dependent on dialogue slots, the model
complexity soars when the number of slots in-
creases. In this paper, we put forward a slot-
independent neural model (SIM) to track dia-
logue states while keeping the model complex-
ity invariant to the number of dialogue slots.
The model utilizes attention mechanisms be-
tween user utterance and system actions. SIM
achieves state-of-the-art results on WoZ and
DSTC2 tasks, with only 20% of the model size
of previous models.

1 Introduction

With the rapid development in deep learning, there
is a recent boom of task-oriented dialogue sys-
tems in terms of both algorithms and datasets. The
goal of task-oriented dialogue is to fulfill a user’s
requests such as booking hotels via communica-
tion in natural language. Due to the complex-
ity and ambiguity of human language, previous
systems have included semantic decoding (Mrkšić
et al., 2016) to project natural language input into
pre-defined dialogue states. These states are typ-
ically represented by slots and values: slots indi-
cate the category of information and values specify
the content of information. For instance, the user
utterance “can you help me find the address of any
hotel in the south side of the city” can be decoded
as inform(area, south) and request(address),
meaning that the user has specified the value south
for slot area and requested another slot address.

Numerous methods have been put forward to
decode a user’s utterance into slot values. Some
use hand-crafted features and domain-specific
delexicalization methods to achieve strong perfor-
mance (Henderson et al., 2014; Zilka and Jurci-

cek, 2015). Mrkšić et al. (2016) employs CNN
and pretrained embeddings to further improve the
state tracking accuracy. Mrkšić and Vulić (2018)
extends this work by using two additional statis-
tical update mechanisms. Liu et al. (2018) uses
human teaching and feedback to boost the state
tracking performance. Zhong et al. (2018) uti-
lizes both global and local attention mechanism in
the proposed GLAD model which obtains state-of-
the-art results on WoZ and DSTC2 datasets. How-
ever, most of these methods require slot-specific
neural structures for accurate prediction. For ex-
ample, Zhong et al. (2018) defines a parametrized
local attention matrix for each slot. Slot-specific
mechanisms become unwieldy when the dialogue
task involves many topics and slots, as is typical
in a complex conversational setting like product
troubleshooting. Furthermore, due to the sparsity
of labels, there may not be enough data to thor-
oughly train each slot-specific network structure.
Rastogi et al. (2017); Ramadan et al. (2018) both
propose to remove the model’s dependency on di-
alogue slots but there’s no modification to the rep-
resentation part, which could be crucial to textual
understanding as we will show later.

To solve this problem, we need a state track-
ing model independent of dialogue slots. In other
words, the network should depend on the seman-
tic similarity between slots and utterance instead
of slot-specific modules. To this end, we propose
the Slot-Independent Model (SIM). Our model
complexity does not increase when the number
of slots in dialogue tasks go up. Thus, SIM
has many fewer parameters than existing dialogue
state tracking models. To compensate for the ex-
clusion of slot-specific parameters, we incorpo-
rate better feature representation of user utterance
and dialogue states using syntactic information
and convolutional neural networks (CNN). The re-
fined representation, in addition to cross and self-
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attention mechanisms, make our model achieve
even better performance than slot-specific mod-
els. For instance, on Wizard-of-Oz (WOZ) 2.0
dataset (Wen et al., 2016), the SIM model obtains
a joint-accuracy score of 89.5%, 1.4% higher than
the previously best model GLAD, with only 22%
of the number of parameters. On DSTC2 dataset,
SIM achieves comparable performance with previ-
ous best models with only 19% of the model size.

2 Problem Formulation

As outlined in Young et al. (2010), the dialogue
state tracking task is formulated as follows: at
each turn of dialogue, the user’s utterance is se-
mantically decoded into a set of slot-value pairs.
There are two types of slots. Goal slots indicate
the category, e.g. area, food, and the values spec-
ify the constraint given by users for the category,
e.g. South, Mediterranean. Request slots refer to
requests, and the value is the category that the user
demands, e.g. phone, area. Each user’s turn is thus
decoded into turn goals and turn requests. Fur-
thermore, to summarize the user’s goals so far, the
union of all previous turn goals up to the current
turn is defined as joint goals.

Similarly, the dialogue system’s reply from the
previous round is labeled with a set of slot-value
pairs denoted as system actions. The dialogue
state tracking task requires models to predict turn
goal and turn request given user’s utterance and
system actions from previous turns.

Formally, the ontology of dialogue, O, consists
of all possible slots S and the set of values for
each slot, V (s), ∀s ∈ S. Specifically, req is the
name for request slot and its values include all the
requestable category information. The dialogue
state tracking task is that, given the user’s utter-
ance in the i-th turn, U , and system actions from
the (i − 1)-th turn, A = {(s1, v1), ..., (sq, vq)},
where sj ∈ S, vj ∈ V (sj), the model should pre-
dict:

1. Turn goals: {(s1, v1), ..., (sb, vb)}, where
sj ∈ S, vj ∈ V (sj),

2. Turn requests: {(req, v1), ..., (req, vt)},
where vj ∈ V (req).

The joint goals at turn i are then computed by
taking the union of all the predicted turn goals
from turn 1 to turn i.

Usually this prediction task is cast as a bi-
nary classification problem: for each slot-value

pair (s, v), determine whether it should be
included in the predicted turn goals/requests.
Namely, the model is to learn a mapping function
f(U,A, (s, v))→ {0, 1}.

3 Slot-Independent Model

To predict whether a slot-value pair should be in-
cluded in the turn goals/requests, previous models
(Mrkšić et al., 2016; Zhong et al., 2018) usually
define network components for each slot s ∈ S.
This can be cumbersome when the ontology is
large, and it suffers from the insufficient data prob-
lem: the labelled data for a single slot may not
suffice to effectively train the parameters for the
slot-specific neural networks structure.

Therefore, we propose that in the classification
process, the model needs to rely on the semantic
similarity between the user’s utterance and slot-
value pair, with system action information. In
other words, the model should have only a single
global neural structure independent of slots. We
heretofore refer to this model as Slot-Independent
Model (SIM) for dialogue state tracking.

3.1 Input Representation

Suppose the user’s utterance in the i-th turn con-
tains m words, U = (w1, w2, ..., wm). For
each word wi, we use GloVe word embed-
ding ei, character-CNN embedding ci, Part-Of-
Speech (POS) embedding POSi, Named-Entity-
Recognition (NER) embedding NERi and exact
match feature EMi. The POS and NER tags are
extracted by spaCy and then mapped into a fixed-
length vector. The exact matching feature has two
bits, indicating whether a word and its lemma can
be found in the slot-value pair representation, re-
spectively. This is the first step to establish a
semantic relationship between user utterance and
slots. To summarize, we represent the user utter-
ance as XU = {u1,u2, ...,um} ∈ Rm×du ,ui =
[ei; ci; POSi; NERi; EMi].

For each slot-value pair (s, v) either in system
action or in the ontology, we get its text represen-
tation by concatenating the contents of slot and
value1. We use GloVe to embed each word in
the text. Therefore, each slot-value pair in sys-
tem actions is represented as XA ∈ Ra×d and
each slot-value pair in ontology is represented as

1To align with previous work, we prepend the word “in-
form” to goal slot.
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Figure 1: SIM model structure.

XO ∈ Ro×d, where a and o is the number of
words in the corresponding text.

3.2 Contextual Representation
To incorporate contextual information, we employ
a bi-directional RNN layer on the input represen-
tation. For instance, for user utterance,

RU = BiLSTM (XU ) ∈ Rm×drnn (1)

We apply variational dropout (Kingma et al.,
2015) for RNN inputs, i.e. the dropout mask is
shared over different timesteps.

After RNN, we use linear self-attention to get
a single summarization vector for user utterance,
using weight vector w ∈ Rdrnn and bias scalar b:

α = RUw + b ∈ Rm (2)

p = softmax(α) ∈ Rm (3)

sU = (RU )T p ∈ Rdrnn (4)

For each slot-value pair in the system actions
and ontology, we conduct RNN and linear self-
attention summarization in a similar way. As the
slot-value pair input is not a sentence, we only
keep the summarization vector sA ∈ Rdrnn and
sO ∈ Rdrnn for each slot-value pair in system ac-
tions and ontology respectively.

3.3 Inter-Attention

To determine whether the current user utterance
refers to a slot-value pair (s, v) in the ontology, the
model employs inter-attention between user utter-
ance, system action and ontology. Similar to the
framework in Zhong et al. (2018), we employ two
sources of interactions.

The first is the semantic similarity between the
user utterance, represented by embedding RU and
each slot-value pair from ontology (s, v), repre-
sented by embedding sO. We linearly combine
vectors in RU via the normalized inner product
with sO, which is then employed to compute the
similarity score y1:

α = RUsO ∈ Rm (5)

p1 = softmax(α) ∈ Rm (6)

q1 = (RU )T p1 ∈ Rdrnn (7)

y1 = wT
1 q1 + b1 ∈ R (8)

The second source involves the system actions.
The reason is that if the system requested certain
information in the previous round, it is very likely
that the user will give answer in this round, and
the answer may refer to the question, e.g. “yes” or
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“no” to the question. Thus, we first attend to sys-
tem actions from user utterance and then combine
with the ontology to get similarity score. Suppose
there are L slot-values pairs in the system actions
from previous round2, represented by sA1 , ..., s

A
L :

p2 = softmax({sAj
T
sU}Lj=1) ∈ RL (9)

q2 =

L∑
j=1

pjs
A
j ∈ Rdrnn (10)

y2 = qT2 s
O ∈ R (11)

The final similarity score between the user utter-
ance and a slot-value pair (s, v) from the ontology
is a linear combination of y1 and y2 and normal-
ized using sigmoid function.

p(s,v) = σ(y1 + βy2) ∈ R, (12)

where β is a learned coefficient. The loss function
is the sum of binary cross entropy over all slot-
value pairs in the ontology:

L(θ) = −
∑

(s,v)∈O

y(s,v)logp(s,v)+ (13)

(1− y(s,v))log(1− p(s,v)), (14)

where y(s,v) ∈ {0, 1} is the ground truth. We il-
lustrate the model structure of SIM in Figure 1.

4 Experiment

4.1 Dataset

We evaluated our model on Wizard of Oz (WoZ)
(Wen et al., 2016) and the second Dialogue System
Technology Challenges (Williams et al., 2013).
Both tasks are for restaurant reservation and have
slot-value pairs of both goal and request types.
WoZ has 4 kinds of slots (area, food, price range,
request) and 94 values in total. DSTC2 has an ad-
ditional slot name and 220 values in total. WoZ
has 800 dialogues in the training and development
set and 400 dialogues in the test set, while DSTC2
dataset consists of 2118 dialogues in the training
and development set, and 1117 dialogues in the
test set.

4.2 Metrics

We use accuracy on the joint goal and turn re-
quest as the evaluation metrics. Both are sets of

2This includes a special sentinel action which refers to
ignoring the system action.

slot-value pairs, so the predicted set must exactly
match the answer to be judged as correct. For
joint goals, if a later turn generates a slot-value
pair where the slot has been specified in previous
rounds, we replace the value with the latest con-
tent.

4.3 Training Details

We fix GloVe (Pennington et al., 2014) as the word
embedding matrix. The models are trained using
ADAM optimizer (Kingma and Ba, 2014) with an
initial learning rate of 1e-3. The dimension of
POS and NER embeddings are 12 and 8, respec-
tively. In character-CNN, each character is embed-
ded into a vector of length 50. The CNN window
size is 3 and hidden size is 50. We apply a dropout
rate of 0.1 for the input to each module. The hid-
den size of RNN is 125.

During training, we pick the best model with
highest joint goal score on development set and
report the result on the test set.

For DSTC2, we adhere to the standard proce-
dure to use the N-best list from the noisy ASR
results for testing. The ASR results are very
noisy. We experimented with several strategies
and ended up using only the top result from the
N-best list. The training and validation on DSTC2
are based on noise-free user utterance. The WoZ
task does not have ASR results available, so we
directly use noise-free user utterance.

4.4 Baseline models and result

We compare our model SIM with a number of
baseline systems: delexicalization model (Wen
et al., 2016; Henderson et al., 2014), the neu-
ral belief tracker model (NBT) (Mrkšić et al.,
2016), global-locally self-attentive model GLAD
(Zhong et al., 2018), large-scale belief tracking
model LSBT (Ramadan et al., 2018) and scal-
able multi-domain dialogue state tracking model
SMDST (Rastogi et al., 2017).

Table 1 shows that, on WoZ dataset, SIM
achieves a new state-of-the-art joint goal accu-
racy of 89.5%, a significant improvement of 1.4%
over GLAD, and turn request accuracy of 97.3%,
0.2% above GLAD. On DSTC2 dataset, where
noisy ASR results are used as user utterance dur-
ing test, SIM obtains comparable results with
GLAD. Furthermore, the better representation in
SIM makes it significantly outperform previous
slot-independent models LSBT and SMDST.
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Model WoZ DSTC2
Joint goal Turn request Joint goal Turn request

SMDST / / 70.3% /
Delex. Model + Semantic Dictionary 83.7% 87.6% 72.9% 95.7%
Neural Belief Tracker (NBT) 84.2% 91.6% 73.4% 96.5%
LSBT 85.5% / / /
GLAD 88.1% 97.1% 74.5% 97.5%
SIM 89.5% 97.3% 74.7% 96.2%

Table 1: Joint goal and turn request accuracies on WoZ and DSTC2 restaurant reservation datasets.

Furthermore, as SIM has no slot-specific neural
network structures, its model size is much smaller
than previous models. Table 2 shows that, on WoZ
and DSTC2 datasets, SIM model has the same
number of parameters, which is only 23% and
19% of that in GLAD model.

Ablation Study. We conduct an ablation study
of SIM on WoZ dataset. As shown in Table 3,
the additional utterance word features, including
character, POS, NER and exact matching embed-
dings, can boost the performance by 2.4% in joint
goal accuracy. These features include POS, NER
and exact match features. This indicates that for
the dialogue state tracking task, syntactic informa-
tion and text matching are very useful. Character-
CNN captures sub-word level information and is
effective in understanding spelling errors, hence it
helps with 1.2% in joint goal accuracy. Variational
dropout is also beneficial, contributing 0.9% to the
joint goal accuracy, which shows the importance
of uniform masking during dropout.

Model WoZ DSTC2

SIM 1.47M 1.47M
GLAD (Zhong et al., 2018) 6.41M 7.69M

Table 2: Model size comparison between SIM and
GLAD (Zhong et al., 2018) on WoZ and DSTC2.

Model Joint Goal Turn Request

SIM 89.5 97.3
–Var. dropout 88.6 97.1
–Char. CNN 88.3 97.0
–Utt. features 87.1 97.1

Table 3: Ablation study of SIM on WoZ. We pick the
model with highest joint goal score on development set
and report its performance on test set.

5 Conclusion

In this paper, we propose a slot-independent neural
model, SIM, to tackle the dialogue state tracking
problem. Via incorporating better feature repre-
sentations, SIM can effectively reduce the model
complexity while still achieving superior or com-
parable results on various datasets, compared with
previous models.

For future work, we plan to design general
slot-free dialogue state tracking models which can
be adapted to different domains during inference
time, given domain-specific ontology information.
This will make the model more agile in real appli-
cations.

Acknowledgement

We thank the anonymous reviewers for the insight-
ful comments. We thank William Hinthorn for
proof-reading our paper.

References
Matthew Henderson, Blaise Thomson, and Steve

Young. 2014. Word-based dialog state tracking with
recurrent neural networks. In Proceedings of the
15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDIAL), pages 292–
299.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma, Tim Salimans, and Max Welling.
2015. Variational dropout and the local reparame-
terization trick. In Advances in Neural Information
Processing Systems, pages 2575–2583.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2018. Dialogue learning with
human teaching and feedback in end-to-end train-
able task-oriented dialogue systems. arXiv preprint
arXiv:1804.06512.



45
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