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Problem Statement

Judiciously select labeled data from assisting language to improve
the NER performance in the primary language for multilingual
learning
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Why need to judiciously select data from assisting language?

• Many language have less named entity annotated data
• Several approaches have explored use of data from one or more
languages (assisting languages) [Gillick et al. [2016], Yang et al.
[2017]]

• However, annotated data from assisting languages might
negatively influence the performance on the primary language
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What can go wrong in multilingual learning for NER?

• Vocabulary
• False Friends
• Dataset Characteristics

• Sub-word features
• Capitalization feature

• Religions, Languages, Nationalities, etc. uppercase in English but not
in Spanish

• Contextual features
• Different Word Order
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Why need to judiciously select data from assisting language?

• Vocabulary
• False Friends
• Dataset Characteristics

English

Word Per Loc Org Misc

China - 91 7 -
France - 123 4 1
Reuters - 40 18 -
...

Spanish

Word Per Loc Org Misc

China - 20 49 1
France - - 10 -
Reuters - 3 1 -
...
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Related Work

Axelrod et al. [2011]
Moore and Lewis [2010]

• Select sentences from general domain data most similar
to in-domain data

• Used language model to measure similarity of general
domain data with the in-domain training data

Ruder and Plank [2017] • Learn to weigh various data selection measures using
Bayesian Optimization

Zhao et al. [2018] • Select assisting data for multi-task domain adaptation
• Assisting language sentences with highest log likelihood
value were selected

Ponti et al. [2018] • Measure cross-lingual syntactic variation considering
both morphological and structural properties

• Selecting a assisting language with a lower degree of
anisomorphism is crucial for knowledge transfer

Table 1: Literature most relevant to our work
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Proposed Approach

Select sentences based on the agreement in tag distribution of
common entities
Goal: Improve Spanish NER performance by adding English NER
annotated data

English

Word Per Loc Org Misc

China - 91 7 -
France - 123 4 1
Reuters - 40 18 -
...

Spanish

Word Per Loc Org Misc

China - 20 49 1
France - - 10 -
Reuters - 3 1 -
...

Select English sentences containing entities with similar tag distribution

Use Symmetric Kl-Divergence to calculate the tag disagreement for
common entities between English and Spanish

English Spanish
Word Per Loc Org Misc Per Loc Org Misc KL(Eng∥Esp) KL(Esp∥Eng) SKL

China - 91 7 - - 20 49 1 0.9314 1.3972 2.3287
France - 123 - 4 1 - - 10 - 10.4332 2.6388 13.0721
Reuters - 40 18 - - 3 1 - 0.1088 0.1531 0.2620
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Proposed Approach

for every sentence X, in assisting language do
Score(X)← 0.0
for every word xi, in sentence X do
if word xi appears in primary language then
SKL(xi)←

[
KL(Pp(xi)||Pa(xi)) + KL(Pa(x)||Pp(x))

]
/2 {Pp(xi) and

Pa(xi) are tag distributions of xi in primary and assisting lan-
guages}
Score(X)← Score(X) + SKL(xi)

end if
end for

end for

Add assisting language sentences with sentence score Score(X) less
than a threshold θ to the primary language data
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Dataset Statistics

Language Source Train Test Word Embeddings(#Tokens) (#Tokens)

English Tjong Kim Sang and
De Meulder [2003]

204,567 46,666

Dhillon et al. [2015]
(Spectral embeddings)Spanish Tjong Kim Sang [2002] 264,715 51,533

Dutch Tjong Kim Sang [2002] 202,931 68,994
Italian Speranza [2009] 149,651 86,420
German Faruqui and Padó [2010] 74,907 20,696

Hindi Lalitha Devi et al. [2014] 81,817 23,696

Bojanowski et al. [2017]
(fastText embeddings)

Marathi In-house 71,299 36,581
Tamil Lalitha Devi et al. [2014] 66,143 18,646
Bengali Lalitha Devi et al. [2014] 34,387 7,614
Malayalam Lalitha Devi et al. [2014] 26,295 8,275

Table 2: Dataset Statistics
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Network Details

Figure 1: Architecture of the Neural
Network (Murthy and Bhattacharyya
[2016])

Parameter sharing configurations
considered
• Sub-word feature extractors
shared across languages
(Yang et al. [2017])

• Neural network trained in
language independent way
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Results

Primary Assisting Layers Data Selection Primary Assisting Layers Data Selection

Language Language Shared All SKL Language Language Shared All SKL

German

Monolingual None 87.64 -

Italian

Monolingual None 75.98 -

English All 89.08 89.46 English All 76.22 76.91†
Sub-word 88.76 89.10 Sub-word 79.44 79.44

Spanish All 89.02 91.61† Spanish All 74.94 76.92†
Sub-word 88.37 89.10† Sub-word 76.99 77.45†

Dutch All 89.66 90.85† Dutch All 75.59 77.29†
Sub-word 89.94 90.11 Sub-word 77.38 77.56

Table 3: F-Score for German and Italian Test data using Monolingual and Multilingual learning
strategies. † indicates that the SKL results are statistically significant compared to adding all
assisting language data with p-value < 0.05 using two-sided Welch t-test.
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Analysis

Histogram of assisting language sentences ranked by their sentence
scores

Figure 2: English-Italian: Histogram of
English Sentences

Figure 3: Spanish-Italian: Histogram
of Spanish Sentences

12



Analysis: European Languages

• Adding all Spanish/Dutch sentences to Italian data, leads to
drop in Italian NER performance

• Label drift from overlapping entities is one of the reasons for
the poor results

• We compare the histograms of English and Spanish sentences
ranked by the SKL scores for Italian multilingual learning

• Similar pattern is observed in the case of Dutch sentences
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Results

Primary Language
Assisting Language

Hindi Marathi Bengali Malayalam Tamil

ALL SKL ALL SKL ALL SKL ALL SKL ALL SKL

Hindi 64.93 - 59.30 66.33 58.51 59.30 58.21 59.13 56.75 58.75
Marathi 54.46 63.30 61.46 - 47.67 61.28 50.13 61.05 59.04 58.62

Bengali 44.34 51.05† 41.28 55.77† 40.02 - 48.79 49.84† 38.38 44.14†
Malayalam 59.74 64.00† 65.88 66.42† 58.01 63.65† 57.94 - 58.25 58.92
Tamil 60.13 61.51† 60.54 61.67† 53.27 60.32† 61.03 61.45 53.13 -

Table 4: Test set F-Score from monolingual and multilingual learning on Indian languages.
Result from monolingual training on the primary language is underlined. † indicates SKL results
statistically significant compared to adding all assisting language data with p-value < 0.05 using
two-sided Welch t-test.

14



Analysis: Indian Languages

• Bengali, Malayalam, and Tamil (low-resource languages)
benefits from our data selection strategy

• Hindi and Marathi NER performance improves when the other is
used as assisting language

• Hindi and Marathi are not benefited from multilingual learning
with Bengali, Malayalam and Tamil
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Analysis

Influence of SKL Threshold

Figure 4: Spanish-Italian Multilingual Learning: Influence of Sentence score
(SKL) on Italian NER

16



Analysis: Influence of SKL Threshold

• Train for Italian NER by adding Spanish training sentences and
sharing all layers except for output layer across languages

• We vary the threshold value from 0.0 to 9.0 in steps of 1
• Italian test F-Score increases initially as we add more and more
Spanish sentences and then drops due to influence of drift
becoming significant
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Conclusion And Future Work

• We address the problem of divergence in tag distribution between
primary and assisting languages for multilingual Neural NER

• We show that filtering out the assisting language sentences exhibiting
significant divergence in the tag distribution can improve NER accuracy

• A more principled approach for data selection would be exploring the
work of Ponti et al. [2018]

• We plan to study the influence of data selection for multilingual
learning on other NLP tasks like sentiment analysis, question
answering, neural machine translation

• We also plan to explore more metrics for multilingual learning,
specifically for morphologically rich languages
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Why need to judiciously select data from assisting language?

• Vocabulary
• False Friends
• Dataset Characteristics

• Sub-word features
• Capitalization feature

• Religions, Languages, Nationalities, etc. uppercase in English but not
in Spanish

• Contextual features
• Different Word Order

• I am going to Washington

में वािशगंटन जा रहा हĩ ँ
mein washington jaa raha hun
me washington going to
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