We present the second shared task on eye-tracking data prediction of the Cognitive Modeling and Computational Linguistics Workshop (CMCL). Differently from the previous edition, participating teams are asked to predict eye-tracking features from multiple languages, including a surprise language for which there were no available training data. Moreover, the task also included the prediction of standard deviations of feature values in order to account for individual differences between readers.A total of six teams registered to the task. For the first subtask on multilingual prediction, the winning team proposed a regression model based on lexical features, while for the second subtask on cross-lingual prediction, the winning team used a hybrid model based on a multilingual transformer embeddings as well as statistical features.
Medical term normalization consists in mapping a piece of text to a large number of output classes.Given the small size of the annotated datasets and the extremely long tail distribution of the concepts, it is of utmost importance to develop models that are capable to generalize to scarce or unseen concepts.An important attribute of most target ontologies is their hierarchical structure. In this paper we introduce a simple and effective learning strategy that leverages such information to enhance the generalizability of both discriminative and generative models.The evaluation shows that the proposed strategy produces state-of-the-art performance on seen concepts and consistent improvements on unseen ones, allowing also for efficient zero-shot knowledge transfer across text typologies and datasets.
pdf
bib Proceedings of the 29th International Conference on Computational Linguistics Nicoletta Calzolari
|
Chu-Ren Huang
|
Hansaem Kim
|
James Pustejovsky
|
Leo Wanner
|
Key-Sun Choi
|
Pum-Mo Ryu
|
Hsin-Hsi Chen
|
Lucia Donatelli
|
Heng Ji
|
Sadao Kurohashi
|
Patrizia Paggio
|
Nianwen Xue
|
Seokhwan Kim
|
Younggyun Hahm
|
Zhong He
|
Tony Kyungil Lee
|
Enrico Santus
|
Francis Bond
|
Seung-Hoon Na Proceedings of the 29th International Conference on Computational Linguistics
An intelligent system is expected to perform reasonable inferences, accounting for both the literal meaning of a word and the meanings a word can acquire in different contexts. A specific kind of inference concerns the connective and, which in some cases gives rise to a temporal succession or causal interpretation in contrast with the logic, commutative one (Levinson, 2000). In this work, we investigate the phenomenon by creating a new dataset for evaluating the interpretation of and by NLI systems, which we use to test three Transformer-based models. Our results show that all systems generalize patterns that are consistent with both the logical and the pragmatic interpretation, perform inferences that are inconsistent with each other, and show clear divergences with both theoretical accounts and humans’ behavior.
This paper describes the models developed by the AILAB-Udine team for the SMM4H’22 Shared Task. We explored the limits of Transformer based models on text classification, entity extraction and entity normalization, tackling Tasks 1, 2, 5, 6 and 10. The main takeaways we got from participating in different tasks are: the overwhelming positive effects of combining different architectures when using ensemble learning, and the great potential of generative models for term normalization.
Most undeciphered lost languages exhibit two characteristics that pose significant decipherment challenges: (1) the scripts are not fully segmented into words; (2) the closest known language is not determined. We propose a decipherment model that handles both of these challenges by building on rich linguistic constraints reflecting consistent patterns in historical sound change. We capture the natural phonological geometry by learning character embeddings based on the International Phonetic Alphabet (IPA). The resulting generative framework jointly models word segmentation and cognate alignment, informed by phonological constraints. We evaluate the model on both deciphered languages (Gothic, Ugaritic) and an undeciphered one (Iberian). The experiments show that incorporating phonetic geometry leads to clear and consistent gains. Additionally, we propose a measure for language closeness which correctly identifies related languages for Gothic and Ugaritic. For Iberian, the method does not show strong evidence supporting Basque as a related language, concurring with the favored position by the current scholarship.1
Adverse Drug Event (ADE) extraction models can rapidly examine large collections of social media texts, detecting mentions of drug-related adverse reactions and trigger medical investigations. However, despite the recent advances in NLP, it is currently unknown if such models are robust in face of negation, which is pervasive across language varieties. In this paper we evaluate three state-of-the-art systems, showing their fragility against negation, and then we introduce two possible strategies to increase the robustness of these models: a pipeline approach, relying on a specific component for negation detection; an augmentation of an ADE extraction dataset to artificially create negated samples and further train the models. We show that both strategies bring significant increases in performance, lowering the number of spurious entities predicted by the models. Our dataset and code will be publicly released to encourage research on the topic.
Prior research has explored the ability of computational models to predict a word semantic fit with a given predicate. While much work has been devoted to modeling the typicality relation between verbs and arguments in isolation, in this paper we take a broader perspective by assessing whether and to what extent computational approaches have access to the information about the typicality of entire events and situations described in language (Generalized Event Knowledge). Given the recent success of Transformers Language Models (TLMs), we decided to test them on a benchmark for the dynamic estimation of thematic fit. The evaluation of these models was performed in comparison with SDM, a framework specifically designed to integrate events in sentence meaning representations, and we conducted a detailed error analysis to investigate which factors affect their behavior. Our results show that TLMs can reach performances that are comparable to those achieved by SDM. However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge, and their predictions often depend on surface linguistic features, such as frequent words, collocations and syntactic patterns, thereby showing sub-optimal generalization abilities.
Eye-tracking data from reading represent an important resource for both linguistics and natural language processing. The ability to accurately model gaze features is crucial to advance our understanding of language processing. This paper describes the Shared Task on Eye-Tracking Data Prediction, jointly organized with the eleventh edition of the Work- shop on Cognitive Modeling and Computational Linguistics (CMCL 2021). The goal of the task is to predict 5 different token- level eye-tracking metrics of the Zurich Cognitive Language Processing Corpus (ZuCo). Eye-tracking data were recorded during natural reading of English sentences. In total, we received submissions from 13 registered teams, whose systems include boosting algorithms with handcrafted features, neural models leveraging transformer language models, or hybrid approaches. The winning system used a range of linguistic and psychometric features in a gradient boosting framework.
Word embeddings are vectorial semantic representations built with either counting or predicting techniques aimed at capturing shades of meaning from word co-occurrences. Since their introduction, these representations have been criticized for lacking interpretable dimensions. This property of word embeddings limits our understanding of the semantic features they actually encode. Moreover, it contributes to the “black box” nature of the tasks in which they are used, since the reasons for word embedding performance often remain opaque to humans. In this contribution, we explore the semantic properties encoded in word embeddings by mapping them onto interpretable vectors, consisting of explicit and neurobiologically motivated semantic features (Binder et al. 2016). Our exploration takes into account different types of embeddings, including factorized count vectors and predict models (Skip-Gram, GloVe, etc.), as well as the most recent contextualized representations (i.e., ELMo and BERT). In our analysis, we first evaluate the quality of the mapping in a retrieval task, then we shed light on the semantic features that are better encoded in each embedding type. A large number of probing tasks is finally set to assess how the original and the mapped embeddings perform in discriminating semantic categories. For each probing task, we identify the most relevant semantic features and we show that there is a correlation between the embedding performance and how they encode those features. This study sets itself as a step forward in understanding which aspects of meaning are captured by vector spaces, by proposing a new and simple method to carve human-interpretable semantic representations from distributional vectors.
Pretrained transformer-based models, such as BERT and its variants, have become a common choice to obtain state-of-the-art performances in NLP tasks. In the identification of Adverse Drug Events (ADE) from social media texts, for example, BERT architectures rank first in the leaderboard. However, a systematic comparison between these models has not yet been done. In this paper, we aim at shedding light on the differences between their performance analyzing the results of 12 models, tested on two standard benchmarks. SpanBERT and PubMedBERT emerged as the best models in our evaluation: this result clearly shows that span-based pretraining gives a decisive advantage in the precise recognition of ADEs, and that in-domain language pretraining is particularly useful when the transformer model is trained just on biomedical text from scratch.
While contrastive learning is proven to be an effective training strategy in computer vision, Natural Language Processing (NLP) is only recently adopting it as a self-supervised alternative to Masked Language Modeling (MLM) for improving sequence representations. This paper introduces SupCL-Seq, which extends the supervised contrastive learning from computer vision to the optimization of sequence representations in NLP. By altering the dropout mask probability in standard Transformer architectures (e.g. BERT-base), for every representation (anchor), we generate augmented altered views. A supervised contrastive loss is then utilized to maximize the system’s capability of pulling together similar samples (e.g., anchors and their altered views) and pushing apart the samples belonging to the other classes. Despite its simplicity, SupCL-Seq leads to large gains in many sequence classification tasks on the GLUE benchmark compared to a standard BERT-base, including 6% absolute improvement on CoLA, 5.4% on MRPC, 4.7% on RTE and 2.6% on STS-B. We also show consistent gains over self-supervised contrastively learned representations, especially in non-semantic tasks. Finally we show that these gains are not solely due to augmentation, but rather to a downstream optimized sequence representation.
Adverse Events (AE) are harmful events resulting from the use of medical products. Although social media may be crucial for early AE detection, the sheer scale of this data makes it logistically intractable to analyze using human agents, with NLP representing the only low-cost and scalable alternative. In this paper, we frame AE Detection and Extraction as a sequence-to-sequence problem using the T5 model architecture and achieve strong performance improvements over the baselines on several English benchmarks (F1 = 0.71, 12.7% relative improvement for AE Detection; Strict F1 = 0.713, 12.4% relative improvement for AE Extraction). Motivated by the strong commonalities between AE tasks, the class imbalance in AE benchmarks, and the linguistic and structural variety typical of social media texts, we propose a new strategy for multi-task training that accounts, at the same time, for task and dataset characteristics. Our approach increases model robustness, leading to further performance gains. Finally, our framework shows some language transfer capabilities, obtaining higher performance than Multilingual BERT in zero-shot learning on French data.
While neural embeddings represent a popular choice for word representation in a wide variety of NLP tasks, their usage for thematic fit modeling has been limited, as they have been reported to lag behind syntax-based count models. In this paper, we propose a complete evaluation of count models and word embeddings on thematic fit estimation, by taking into account a larger number of parameters and verb roles and introducing also dependency-based embeddings in the comparison. Our results show a complex scenario, where a determinant factor for the performance seems to be the availability to the model of reliable syntactic information for building the distributional representations of the roles.
The shared task of the CogALex-VI workshop focuses on the monolingual and multilingual identification of semantic relations. We provided training and validation data for the following languages: English, German and Chinese. Given a word pair, systems had to be trained to identify which relation holds between them, with possible choices being synonymy, antonymy, hypernymy and no relation at all. Two test sets were released for evaluating the participating systems. One containing pairs for each of the training languages (systems were evaluated in a monolingual fashion) and the other proposing a surprise language to test the crosslingual transfer capabilities of the systems. Among the submitted systems, top performance was achieved by a transformer-based model in both the monolingual and in the multilingual setting, for all the tested languages, proving the potentials of this recently-introduced neural architecture. The shared task description and the results are available at https://sites.google.com/site/cogalexvisharedtask/.
The alarming spread of fake news in social media, together with the impossibility of scaling manual fact verification, motivated the development of natural language processing techniques to automatically verify the veracity of claims. Most approaches perform a claim-evidence classification without providing any insights about why the claim is trustworthy or not. We propose, instead, a model-agnostic framework that consists of two modules: (1) a span extractor, which identifies the crucial information connecting claim and evidence; and (2) a classifier that combines claim, evidence, and the extracted spans to predict the veracity of the claim. We show that the spans are informative for the classifier, improving performance and robustness. Tested on several state-of-the-art models over the Fever dataset, the enhanced classifiers consistently achieve higher accuracy while also showing reduced sensitivity to artifacts in the claims.
Most modern Information Extraction (IE) systems are implemented as sequential taggers and only model local dependencies. Non-local and non-sequential context is, however, a valuable source of information to improve predictions. In this paper, we introduce GraphIE, a framework that operates over a graph representing a broad set of dependencies between textual units (i.e. words or sentences). The algorithm propagates information between connected nodes through graph convolutions, generating a richer representation that can be exploited to improve word-level predictions. Evaluation on three different tasks — namely textual, social media and visual information extraction — shows that GraphIE consistently outperforms the state-of-the-art sequence tagging model by a significant margin.
Text attribute transfer aims to automatically rewrite sentences such that they possess certain linguistic attributes, while simultaneously preserving their semantic content. This task remains challenging due to a lack of supervised parallel data. Existing approaches try to explicitly disentangle content and attribute information, but this is difficult and often results in poor content-preservation and ungrammaticality. In contrast, we propose a simpler approach, Iterative Matching and Translation (IMaT), which: (1) constructs a pseudo-parallel corpus by aligning a subset of semantically similar sentences from the source and the target corpora; (2) applies a standard sequence-to-sequence model to learn the attribute transfer; (3) iteratively improves the learned transfer function by refining imperfections in the alignment. In sentiment modification and formality transfer tasks, our method outperforms complex state-of-the-art systems by a large margin. As an auxiliary contribution, we produce a publicly-available test set with human-generated transfer references.
Fact verification requires validating a claim in the context of evidence. We show, however, that in the popular FEVER dataset this might not necessarily be the case. Claim-only classifiers perform competitively with top evidence-aware models. In this paper, we investigate the cause of this phenomenon, identifying strong cues for predicting labels solely based on the claim, without considering any evidence. We create an evaluation set that avoids those idiosyncrasies. The performance of FEVER-trained models significantly drops when evaluated on this test set. Therefore, we introduce a regularization method which alleviates the effect of bias in the training data, obtaining improvements on the newly created test set. This work is a step towards a more sound evaluation of reasoning capabilities in fact verification models.
Word Embeddings have recently imposed themselves as a standard for representing word meaning in NLP. Semantic similarity between word pairs has become the most common evaluation benchmark for these representations, with vector cosine being typically used as the only similarity metric. In this paper, we report experiments with a rank-based metric for WE, which performs comparably to vector cosine in similarity estimation and outperforms it in the recently-introduced and challenging task of outlier detection, thus suggesting that rank-based measures can improve clustering quality.
This paper describes the SemEval 2018 Shared Task on Hypernym Discovery. We put forward this task as a complementary benchmark for modeling hypernymy, a problem which has traditionally been cast as a binary classification task, taking a pair of candidate words as input. Instead, our reformulated task is defined as follows: given an input term, retrieve (or discover) its suitable hypernyms from a target corpus. We proposed five different subtasks covering three languages (English, Spanish, and Italian), and two specific domains of knowledge in English (Medical and Music). Participants were allowed to compete in any or all of the subtasks. Overall, a total of 11 teams participated, with a total of 39 different systems submitted through all subtasks. Data, results and further information about the task can be found at https://competitions.codalab.org/competitions/17119.
This paper describes BomJi, a supervised system for capturing discriminative attributes in word pairs (e.g. yellow as discriminative for banana over watermelon). The system relies on an XGB classifier trained on carefully engineered graph-, pattern- and word embedding-based features. It participated in the SemEval-2018 Task 10 on Capturing Discriminative Attributes, achieving an F1 score of 0.73 and ranking 2nd out of 26 participant systems.
This paper explores the information-theoretic measure entropy to detect metaphoric change, transferring ideas from hypernym detection to research on language change. We build the first diachronic test set for German as a standard for metaphoric change annotation. Our model is unsupervised, language-independent and generalizable to other processes of semantic change.
In this paper, we introduce a new distributional method for modeling predicate-argument thematic fit judgments. We use a syntax-based DSM to build a prototypical representation of verb-specific roles: for every verb, we extract the most salient second order contexts for each of its roles (i.e. the most salient dimensions of typical role fillers), and then we compute thematic fit as a weighted overlap between the top features of candidate fillers and role prototypes. Our experiments show that our method consistently outperforms a baseline re-implementing a state-of-the-art system, and achieves better or comparable results to those reported in the literature for the other unsupervised systems. Moreover, it provides an explicit representation of the features characterizing verb-specific semantic roles.
The fundamental role of hypernymy in NLP has motivated the development of many methods for the automatic identification of this relation, most of which rely on word distribution. We investigate an extensive number of such unsupervised measures, using several distributional semantic models that differ by context type and feature weighting. We analyze the performance of the different methods based on their linguistic motivation. Comparison to the state-of-the-art supervised methods shows that while supervised methods generally outperform the unsupervised ones, the former are sensitive to the distribution of training instances, hurting their reliability. Being based on general linguistic hypotheses and independent from training data, unsupervised measures are more robust, and therefore are still useful artillery for hypernymy detection.
The shared task of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V) aims at providing a common benchmark for testing current corpus-based methods for the identification of lexical semantic relations (synonymy, antonymy, hypernymy, part-whole meronymy) and at gaining a better understanding of their respective strengths and weaknesses. The shared task uses a challenging dataset extracted from EVALution 1.0, which contains word pairs holding the above-mentioned relations as well as semantically unrelated control items (random). The task is split into two subtasks: (i) identification of related word pairs vs. unrelated ones; (ii) classification of the word pairs according to their semantic relation. This paper describes the subtasks, the dataset, the evaluation metrics, the seven participating systems and their results. The best performing system in subtask 1 is GHHH (F1 = 0.790), while the best system in subtask 2 is LexNet (F1 = 0.445). The dataset and the task description are available at https://sites.google.com/site/cogalex2016/home/shared-task.
In this paper, we describe ROOT 18, a classifier using the scores of several unsupervised distributional measures as features to discriminate between semantically related and unrelated words, and then to classify the related pairs according to their semantic relation (i.e. synonymy, antonymy, hypernymy, part-whole meronymy). Our classifier participated in the CogALex-V Shared Task, showing a solid performance on the first subtask, but a poor performance on the second subtask. The low scores reported on the second subtask suggest that distributional measures are not sufficient to discriminate between multiple semantic relations at once.
ROOT9 is a supervised system for the classification of hypernyms, co-hyponyms and random words that is derived from the already introduced ROOT13 (Santus et al., 2016). It relies on a Random Forest algorithm and nine unsupervised corpus-based features. We evaluate it with a 10-fold cross validation on 9,600 pairs, equally distributed among the three classes and involving several Parts-Of-Speech (i.e. adjectives, nouns and verbs). When all the classes are present, ROOT9 achieves an F1 score of 90.7%, against a baseline of 57.2% (vector cosine). When the classification is binary, ROOT9 achieves the following results against the baseline. hypernyms-co-hyponyms 95.7% vs. 69.8%, hypernyms-random 91.8% vs. 64.1% and co-hyponyms-random 97.8% vs. 79.4%. In order to compare the performance with the state-of-the-art, we have also evaluated ROOT9 in subsets of the Weeds et al. (2014) datasets, proving that it is in fact competitive. Finally, we investigated whether the system learns the semantic relation or it simply learns the prototypical hypernyms, as claimed by Levy et al. (2015). The second possibility seems to be the most likely, even though ROOT9 can be trained on negative examples (i.e., switched hypernyms) to drastically reduce this bias.
In this paper, we claim that Vector Cosine ― which is generally considered one of the most efficient unsupervised measures for identifying word similarity in Vector Space Models ― can be outperformed by a completely unsupervised measure that evaluates the extent of the intersection among the most associated contexts of two target words, weighting such intersection according to the rank of the shared contexts in the dependency ranked lists. This claim comes from the hypothesis that similar words do not simply occur in similar contexts, but they share a larger portion of their most relevant contexts compared to other related words. To prove it, we describe and evaluate APSyn, a variant of Average Precision that ― independently of the adopted parameters ― outperforms the Vector Cosine and the co-occurrence on the ESL and TOEFL test sets. In the best setting, APSyn reaches 0.73 accuracy on the ESL dataset and 0.70 accuracy in the TOEFL dataset, beating therefore the non-English US college applicants (whose average, as reported in the literature, is 64.50%) and several state-of-the-art approaches.
Distributional semantic models (DSMs) are currently being used in the measurement of word relatedness and word similarity. One shortcoming of DSMs is that they do not provide a principled way to discriminate different semantic relations. Several approaches have been adopted that rely on annotated data either in the training of the model or later in its evaluation. In this paper, we introduce a dataset for training and evaluating DSMs on semantic relations discrimination between words, in Mandarin, Chinese. The construction of the dataset followed EVALution 1.0, which is an English dataset for the training and evaluating of DSMs. The dataset contains 360 relation pairs, distributed in five different semantic relations, including antonymy, synonymy, hypernymy, meronymy and nearsynonymy. All relation pairs were checked manually to estimate their quality. In the 360 word relation pairs, there are 373 relata. They were all extracted and subsequently manually tagged according to their semantic type. The relatas’ frequency was calculated in a combined corpus of Sinica and Chinese Gigaword. To the best of our knowledge, EVALution-MAN is the first of its kind for Mandarin, Chinese.