We present a new perspective on how readers integrate context during real-time language comprehension. Our proposals build on surprisal theory, which posits that the processing effort of a linguistic unit (e.g., a word) is an affine function of its in-context information content. We first observe that surprisal is only one out of many potential ways that a contextual predictor can be derived from a language model. Another one is the pointwise mutual information (PMI) between a unit and its context, which turns out to yield the same predictive power as surprisal when controlling for unigram frequency. Moreover, both PMI and surprisal are correlated with frequency. This means that neither PMI nor surprisal contains information about context alone. In response to this, we propose a technique where we project surprisal onto the orthogonal complement of frequency, yielding a new contextual predictor that is uncorrelated with frequency. Our experiments show that the proportion of variance in reading times explained by context is a lot smaller when context is represented by the orthogonalized predictor. From an interpretability standpoint, this indicates that previous studies may have overstated the role that context has in predicting reading times.
Numerous previous studies have sought to determine to what extent language models, pretrained on natural language text, can serve as useful models of human cognition.In this paper, we are interested in the opposite question: whether we can directly optimize a language model to be a useful cognitive model by aligning it to human psychometric data.To achieve this, we introduce a novel alignment technique in which we fine-tune a language model to implicitly optimize the parameters of a linear regressor that directly predicts humans’ reading times of in-context linguistic units, e.g., phonemes, morphemes, or words, using surprisal estimates derived from the language model. Using words as a test case, we evaluate our technique across multiple model sizes and datasets and find that it improves language models’ psychometric predictive power.However, we find an inverse relationship between psychometric power and a model’s performance on downstream NLP tasks as well as its perplexity on held-out test data.While this latter trend has been observed before (Oh et al., 2022; Shain et al., 2024), we are the first to induce it by manipulating a model’s alignment to psychometric data.
The Uniform Information Density (UID) hypothesis posits that speakers tend to distribute information evenly across linguistic units to achieve efficient communication. Of course, information rate in texts and discourses is not perfectly uniform. While these fluctuations can be viewed as theoretically uninteresting noise on top of a uniform target, another explanation is that UID is not the only functional pressure regulating information content in a language. Speakers may also seek to maintain interest, adhere to writing conventions, and build compelling arguments. In this paper, we propose one such functional pressure; namely that speakers modulate information rate based on location within a hierarchically-structured model of discourse. We term this the Structured Context Hypothesis and test it by predicting the surprisal contours of naturally occurring discourses extracted from large language models using predictors derived from discourse structure. We find that hierarchical predictors are significant predictors of a discourse’s information contour and that deeply nested hierarchical predictors are more predictive than shallow ones. This work takes an initial step beyond UID to propose testable hypotheses for why the information rate fluctuates in predictable ways.
Sampling-based decoding strategies are widely employed for generating text from probabilistic models, yet standard ancestral sampling often results in text that is degenerate or incoherent. To alleviate this issue, various modifications to a model’s sampling distribution, such as top-p or top-k sampling, have been introduced and are now ubiquitously used in language generation systems. We propose a unified framework for understanding these techniques, which we term sampling adapters. Sampling adapters often lead to qualitatively better text, which raises the question: From a formal perspective, how are they changing the token-level distributions of language generation models? And why do these local changes lead to higher-quality text? We argue that the shift they enforce can be viewed as a trade-off between precision and recall: while the model loses its ability to produce certain strings, its precision rate on desirable text increases. While this trade-off is not reflected in standard metrics of distribution quality (such as perplexity), we find that several precision-emphasizing measures indeed indicate that sampling adapters can lead to probability distributions more aligned with the true distribution. Further, these measures correlate with higher sequence-level quality scores, specifically, Mauve.
Zipf (1935) posited that wordforms are optimized to minimize utterances’ communicative costs. Under the assumption that cost is given by an utterance’s length, he supported this claim by showing that words’ lengths are inversely correlated with their frequencies. Communicative cost, however, can be operationalized in different ways. Piantadosi et al. (2011) claim that cost should be measured as the distance between an utterance’s information rate and channel capacity, which we dub the channel capacity hypothesis (CCH) here. Following this logic, they then proposed that a word’s length should be proportional to the expected value of its surprisal (negative log-probability in context). In this work, we show that Piantadosi et al.’s derivation does not minimize CCH’s cost, but rather a lower bound, which we term CCH-lower. We propose a novel derivation, suggesting an improved way to minimize CCH’s cost. Under this method, we find that a language’s word lengths should instead be proportional to the surprisal’s expectation plus its variance-to-mean ratio. Experimentally, we compare these three communicative cost functions: Zipf’s, CCH-lower , and CCH. Across 13 languages and several experimental settings, we find that length is better predicted by frequency than either of the other hypotheses. In fact, when surprisal’s expectation, or expectation plus variance-to-mean ratio, is estimated using better language models, it leads to worse word length predictions. We take these results as evidence that Zipf’s longstanding hypothesis holds.
Surprisal theory (Hale, 2001; Levy, 2008) posits that a word’s reading time is proportional to its surprisal (i.e., to its negative log probability given the proceeding context). Since we are unable to access a word’s ground-truth probability, surprisal theory has been empirically tested using surprisal estimates from language models (LMs). Under the premise that surprisal theory holds, we would expect that higher quality language models provide more powerful predictors of human reading behavior—a conjecture we dub the quality–power (QP) hypothesis. Unfortunately, empirical support for the QP hypothesis is mixed. Some studies in English have found correlations between LM quality and predictive power, but other studies using Japanese data, as well as using larger English LMs, find no such correlations. In this work, we conduct a systematic crosslinguistic assessment of the QP hypothesis. We train LMs from scratch on small- and medium-sized datasets from 13 languages (across five language families) and assess their ability to predict eye tracking data. We find correlations between LM quality and power in eleven of these thirteen languages, suggesting that, within the range of model classes and sizes tested, better language models are indeed better predictors of human language processing behaviors.
Prosody—the suprasegmental component of speech, including pitch, loudness, and tempo—carries critical aspects of meaning. However, the relationship between the information conveyed by prosody vs. by the words themselves remains poorly understood. We use large language models (LLMs) to estimate how much information is redundant between prosody and the words themselves. Using a large spoken corpus of English audiobooks, we extract prosodic features aligned to individual words and test how well they can be predicted from LLM embeddings, compared to non-contextual word embeddings. We find a high degree of redundancy between the information carried by the words and prosodic information across several prosodic features, including intensity, duration, pauses, and pitch contours. Furthermore, a word’s prosodic information is redundant with both the word itself and the context preceding as well as following it. Still, we observe that prosodic features can not be fully predicted from text, suggesting that prosody carries information above and beyond the words. Along with this paper, we release a general-purpose data processing pipeline for quantifying the relationship between linguistic information and extra-linguistic features.
We present a targeted, scaled-up comparison of incremental processing in humans and neural language models by collecting by-word reaction time data for sixteen different syntactic test suites across a range of structural phenomena. Human reaction time data comes from a novel online experimental paradigm called the Interpolated Maze task. We compare human reaction times to by-word probabilities for four contemporary language models, with different architectures and trained on a range of data set sizes. We find that across many phenomena, both humans and language models show increased processing difficulty in ungrammatical sentence regions with human and model ‘accuracy’ scores a la Marvin and Linzen (2018) about equal. However, although language model outputs match humans in direction, we show that models systematically under-predict the difference in magnitude of incremental processing difficulty between grammatical and ungrammatical sentences. Specifically, when models encounter syntactic violations they fail to accurately predict the longer reading times observed in the human data. These results call into question whether contemporary language models are approaching human-like performance for sensitivity to syntactic violations.
While state-of-the-art neural network models continue to achieve lower perplexity scores on language modeling benchmarks, it remains unknown whether optimizing for broad-coverage predictive performance leads to human-like syntactic knowledge. Furthermore, existing work has not provided a clear picture about the model properties required to produce proper syntactic generalizations. We present a systematic evaluation of the syntactic knowledge of neural language models, testing 20 combinations of model types and data sizes on a set of 34 English-language syntactic test suites. We find substantial differences in syntactic generalization performance by model architecture, with sequential models underperforming other architectures. Factorially manipulating model architecture and training dataset size (1M-40M words), we find that variability in syntactic generalization performance is substantially greater by architecture than by dataset size for the corpora tested in our experiments. Our results also reveal a dissociation between perplexity and syntactic generalization performance.
Targeted syntactic evaluations have yielded insights into the generalizations learned by neural network language models. However, this line of research requires an uncommon confluence of skills: both the theoretical knowledge needed to design controlled psycholinguistic experiments, and the technical proficiency needed to train and deploy large-scale language models. We present SyntaxGym, an online platform designed to make targeted evaluations accessible to both experts in NLP and linguistics, reproducible across computing environments, and standardized following the norms of psycholinguistic experimental design. This paper releases two tools of independent value for the computational linguistics community: 1. A website, syntaxgym.org, which centralizes the process of targeted syntactic evaluation and provides easy tools for analysis and visualization; 2. Two command-line tools, ‘syntaxgym‘ and ‘lm-zoo‘, which allow any user to reproduce targeted syntactic evaluations and general language model inference on their own machine.
Previous studies investigating the syntactic abilities of deep learning models have not targeted the relationship between the strength of the grammatical generalization and the amount of evidence to which the model is exposed during training. We address this issue by deploying a novel word-learning paradigm to test BERT’s few-shot learning capabilities for two aspects of English verbs: alternations and classes of selectional preferences. For the former, we fine-tune BERT on a single frame in a verbal-alternation pair and ask whether the model expects the novel verb to occur in its sister frame. For the latter, we fine-tune BERT on an incomplete selectional network of verbal objects and ask whether it expects unattested but plausible verb/object pairs. We find that BERT makes robust grammatical generalizations after just one or two instances of a novel word in fine-tuning. For the verbal alternation tests, we find that the model displays behavior that is consistent with a transitivity bias: verbs seen few times are expected to take direct objects, but verbs seen with direct objects are not expected to occur intransitively.
Humans can learn structural properties about a word from minimal experience, and deploy their learned syntactic representations uniformly in different grammatical contexts. We assess the ability of modern neural language models to reproduce this behavior in English and evaluate the effect of structural supervision on learning outcomes. First, we assess few-shot learning capabilities by developing controlled experiments that probe models’ syntactic nominal number and verbal argument structure generalizations for tokens seen as few as two times during training. Second, we assess invariance properties of learned representation: the ability of a model to transfer syntactic generalizations from a base context (e.g., a simple declarative active-voice sentence) to a transformed context (e.g., an interrogative sentence). We test four models trained on the same dataset: an n-gram baseline, an LSTM, and two LSTM-variants trained with explicit structural supervision. We find that in most cases, the neural models are able to induce the proper syntactic generalizations after minimal exposure, often from just two examples during training, and that the two structurally supervised models generalize more accurately than the LSTM model. All neural models are able to leverage information learned in base contexts to drive expectations in transformed contexts, indicating that they have learned some invariance properties of syntax.
We investigate the extent to which the behavior of neural network language models reflects incremental representations of syntactic state. To do so, we employ experimental methodologies which were originally developed in the field of psycholinguistics to study syntactic representation in the human mind. We examine neural network model behavior on sets of artificial sentences containing a variety of syntactically complex structures. These sentences not only test whether the networks have a representation of syntactic state, they also reveal the specific lexical cues that networks use to update these states. We test four models: two publicly available LSTM sequence models of English (Jozefowicz et al., 2016; Gulordava et al., 2018) trained on large datasets; an RNN Grammar (Dyer et al., 2016) trained on a small, parsed dataset; and an LSTM trained on the same small corpus as the RNNG. We find evidence for basic syntactic state representations in all models, but only the models trained on large datasets are sensitive to subtle lexical cues signaling changes in syntactic state.
State-of-the-art LSTM language models trained on large corpora learn sequential contingencies in impressive detail, and have been shown to acquire a number of non-local grammatical dependencies with some success. Here we investigate whether supervision with hierarchical structure enhances learning of a range of grammatical dependencies, a question that has previously been addressed only for subject-verb agreement. Using controlled experimental methods from psycholinguistics, we compare the performance of word-based LSTM models versus Recurrent Neural Network Grammars (RNNGs) (Dyer et al. 2016) which represent hierarchical syntactic structure and use neural control to deploy it in left-to-right processing, on two classes of non-local grammatical dependencies in English—Negative Polarity licensing and Filler-Gap Dependencies—tested in a range of configurations. Using the same training data for both models, we find that the RNNG outperforms the LSTM on both types of grammatical dependencies and even learns many of the Island Constraints on the filler-gap dependency. Structural supervision thus provides data efficiency advantages over purely string-based training of neural language models in acquiring human-like generalizations about non-local grammatical dependencies.
Neural language models have achieved state-of-the-art performances on many NLP tasks, and recently have been shown to learn a number of hierarchically-sensitive syntactic dependencies between individual words. However, equally important for language processing is the ability to combine words into phrasal constituents, and use constituent-level features to drive downstream expectations. Here we investigate neural models’ ability to represent constituent-level features, using coordinated noun phrases as a case study. We assess whether different neural language models trained on English and French represent phrase-level number and gender features, and use those features to drive downstream expectations. Our results suggest that models use a linear combination of NP constituent number to drive CoordNP/verb number agreement. This behavior is highly regular and even sensitive to local syntactic context, however it differs crucially from observed human behavior. Models have less success with gender agreement. Models trained on large corpora perform best, and there is no obvious advantage for models trained using explicit syntactic supervision.
Work using artificial languages as training input has shown that LSTMs are capable of inducing the stack-like data structures required to represent context-free and certain mildly context-sensitive languages — formal language classes which correspond in theory to the hierarchical structures of natural language. Here we present a suite of experiments probing whether neural language models trained on linguistic data induce these stack-like data structures and deploy them while incrementally predicting words. We study two natural language phenomena: center embedding sentences and syntactic island constraints on the filler–gap dependency. In order to properly predict words in these structures, a model must be able to temporarily suppress certain expectations and then recover those expectations later, essentially pushing and popping these expectations on a stack. Our results provide evidence that models can successfully suppress and recover expectations in many cases, but do not fully recover their previous grammatical state.
RNN language models have achieved state-of-the-art perplexity results and have proven useful in a suite of NLP tasks, but it is as yet unclear what syntactic generalizations they learn. Here we investigate whether state-of-the-art RNN language models represent long-distance filler–gap dependencies and constraints on them. Examining RNN behavior on experimentally controlled sentences designed to expose filler–gap dependencies, we show that RNNs can represent the relationship in multiple syntactic positions and over large spans of text. Furthermore, we show that RNNs learn a subset of the known restrictions on filler–gap dependencies, known as island constraints: RNNs show evidence for wh-islands, adjunct islands, and complex NP islands. These studies demonstrates that state-of-the-art RNN models are able to learn and generalize about empty syntactic positions.