Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Huimin Xu


2024

pdf bib
Don’t Forget Your Reward Values: Language Model Alignment via Value-based Calibration
Xin Mao | Feng-Lin Li | Huimin Xu | Wei Zhang | Wang Chen | Anh Tuan Luu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

While Reinforcement Learning from Human Feedback (RLHF) significantly enhances the generation quality of Large Language Models (LLMs), recent studies have raised concerns regarding the complexity and instability associated with the Proximal Policy Optimization (PPO) algorithm, proposing a series of order-based alignment methods as viable alternatives. This paper delves into existing order-based methods, unifying them into one framework and examining their inefficiencies in utilizing reward values. Building upon these findings, we propose a new Value-based Calibration (VCB) method to better align LLMs with human preferences. Experimental results demonstrate that VCB surpasses existing alignment methods on AI assistant and summarization datasets, providing impressive generalizability, robustness, and diversity in different settings.

pdf bib
Negation Triplet Extraction with Syntactic Dependency and Semantic Consistency
Yuchen Shi | Deqing Yang | Jingping Liu | Yanghua Xiao | Zongyu Wang | Huimin Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Previous works of negation understanding mainly focus on negation cue detection and scope resolution, without identifying negation subject which is also significant to the downstream tasks. In this paper, we propose a new negation triplet extraction (NTE) task which aims to extract negation subject along with negation cue and scope. To achieve NTE, we devise a novel Syntax&Semantic-Enhanced Negation Extraction model, namely SSENE, which is built based on a generative pretrained language model (PLM) of Encoder-Decoder architecture with a multi-task learning framework. Specifically, the given sentence’s syntactic dependency tree is incorporated into the PLM’s encoder to discover the correlations between the negation subject, cue and scope. Moreover, the semantic consistency between the sentence and the extracted triplet is ensured by an auxiliary task learning. Furthermore, we have constructed a high-quality Chinese dataset NegComment based on the users’ reviews from the real-world platform of Meituan, upon which our evaluations show that SSENE achieves the best NTE performance compared to the baselines. Our ablation and case studies also demonstrate that incorporating the syntactic information helps the PLM’s recognize the distant dependency between the subject and cue, and the auxiliary task learning is helpful to extract the negation triplets with more semantic consistency. We further demonstrate that SSENE is also competitive on the traditional CDSR task.

2019

pdf bib
Scaling up Open Tagging from Tens to Thousands: Comprehension Empowered Attribute Value Extraction from Product Title
Huimin Xu | Wenting Wang | Xin Mao | Xinyu Jiang | Man Lan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Supplementing product information by extracting attribute values from title is a crucial task in e-Commerce domain. Previous studies treat each attribute only as an entity type and build one set of NER tags (e.g., BIO) for each of them, leading to a scalability issue which unfits to the large sized attribute system in real world e-Commerce. In this work, we propose a novel approach to support value extraction scaling up to thousands of attributes without losing performance: (1) We propose to regard attribute as a query and adopt only one global set of BIO tags for any attributes to reduce the burden of attribute tag or model explosion; (2) We explicitly model the semantic representations for attribute and title, and develop an attention mechanism to capture the interactive semantic relations in-between to enforce our framework to be attribute comprehensive. We conduct extensive experiments in real-life datasets. The results show that our model not only outperforms existing state-of-the-art NER tagging models, but also is robust and generates promising results for up to 8,906 attributes.

2018

pdf bib
ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Using Effective Features and Machine Learning Models
Huimin Xu | Man Lan | Yuanbin Wu
Proceedings of the 12th International Workshop on Semantic Evaluation

This paper describes our submissions to SemEval 2018 task 1. The task is affect intensity prediction in tweets, including five subtasks. We participated in all subtasks of English tweets. We extracted several traditional NLP, sentiment lexicon, emotion lexicon and domain specific features from tweets, adopted supervised machine learning algorithms to perform emotion intensity prediction.