Jianfeng Wang
2023
NUWA-XL: Diffusion over Diffusion for eXtremely Long Video Generation
Shengming Yin
|
Chenfei Wu
|
Huan Yang
|
Jianfeng Wang
|
Xiaodong Wang
|
Minheng Ni
|
Zhengyuan Yang
|
Linjie Li
|
Shuguang Liu
|
Fan Yang
|
Jianlong Fu
|
Ming Gong
|
Lijuan Wang
|
Zicheng Liu
|
Houqiang Li
|
Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we propose NUWA-XL, a novel Diffusion over Diffusion architecture for eXtremely Long video generation. Most current work generates long videos segment by segment sequentially, which normally leads to the gap between training on short videos and inferring long videos, and the sequential generation is inefficient. Instead, our approach adopts a “coarse-to-fine” process, in which the video can be generated in parallel at the same granularity. A global diffusion model is applied to generate the keyframes across the entire time range, and then local diffusion models recursively fill in the content between nearby frames. This simple yet effective strategy allows us to directly train on long videos (3376 frames) to reduce the training-inference gap and makes it possible to generate all segments in parallel. To evaluate our model, we build FlintstonesHD dataset, a new benchmark for long video generation. Experiments show that our model not only generates high-quality long videos with both global and local coherence, but also decreases the average inference time from 7.55min to 26s (by 94.26%) at the same hardware setting when generating 1024 frames. The homepage link is [NUWA-XL](https://msra-nuwa.azurewebsites.net)
2021
NICE: Neural Image Commenting with Empathy
Kezhen Chen
|
Qiuyuan Huang
|
Daniel McDuff
|
Xiang Gao
|
Hamid Palangi
|
Jianfeng Wang
|
Kenneth Forbus
|
Jianfeng Gao
Findings of the Association for Computational Linguistics: EMNLP 2021
Emotion and empathy are examples of human qualities lacking in many human-machine interactions. The goal of our work is to generate engaging dialogue grounded in a user-shared image with increased emotion and empathy while minimizing socially inappropriate or offensive outputs. We release the Neural Image Commenting with Empathy (NICE) dataset consisting of almost two million images and the corresponding human-generated comments, a set of human annotations, and baseline performance on a range of models. In-stead of relying on manually labeled emotions, we also use automatically generated linguistic representations as a source of weakly supervised labels. Based on these annotations, we define two different tasks for the NICE dataset. Then, we propose a novel pre-training model - Modeling Affect Generation for Image Comments (MAGIC) - which aims to generate comments for images, conditioned on linguistic representations that capture style and affect, and to help generate more empathetic, emotional, engaging and socially appropriate comments. Using this model we achieve state-of-the-art performance on one of our NICE tasks. The experiments show that the approach can generate more human-like and engaging image comments.