Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Pegah Jandaghi


2024

pdf bib
Faithful Persona-based Conversational Dataset Generation with Large Language Models
Pegah Jandaghi | Xianghai Sheng | Xinyi Bai | Jay Pujara | Hakim Sidahmed
Findings of the Association for Computational Linguistics: ACL 2024

High-quality conversational datasets are essential for developing AI models that can communicate with users.One way to foster deeper interactions between a chatbot and its user is through *personas*, aspects of the user’s character that provide insights into their personality, motivations, and behaviors.Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations.The Generator is an LLM prompted to output conversations.The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations.These experts select the best generated conversations, which we then use to improve the Generator.We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat.We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during an AI detection test decreases from 17.2% to 8.8% over three iterations.

pdf bib
Faithful Persona-based Conversational Dataset Generation with Large Language Models
Pegah Jandaghi | Xianghai Sheng | Xinyi Bai | Jay Pujara | Hakim Sidahmed
Proceedings of the 6th Workshop on NLP for Conversational AI (NLP4ConvAI 2024)

High-quality conversational datasets are essential for developing AI models that can communicate with users. One way to foster deeper interactions between a chatbot and its user is through personas, aspects of the user’s character that provide insights into their personality, motivations, and behaviors. Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations. The Generator is an LLM prompted to output conversations. The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations. These experts select the best generated conversations, which we then use to improve the Generator. We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat. We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during an AI detection test decreases from 17.2% to 8.8% over three iterations.

2023

pdf bib
Identifying Quantifiably Verifiable Statements from Text
Pegah Jandaghi | Jay Pujara
Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)

Humans often describe complex quantitative data using trend-based patterns. Trend-based patterns can be interpreted as higher order functions and relations over numerical data such as extreme values, rates of change, or cyclical repetition. One application where trends abound are descriptions of numerical tabular data. Therefore, the alignment of numerical tables and textual description of trends enables easier interpretations of tables. Most existing approaches can align quantities in text with tabular data but are unable to detect and align trend-based patterns about data. In this paper, we introduce the initial steps for aligning trend-based patterns about the data, i.e. the detection of textual description of trends and the alignment of trends with a relevant table. We introduce the problem of identifying quantifiably verifiable statements (QVS) in the text and aligning them with tables and datasets. We define the structure of these statements and implement a structured based detection. In our experiments, we demonstrate our method can detect and align these statements from several domains and compare favorably with traditional sequence labeling methods.

2022

pdf bib
Reflect, Not Reflex: Inference-Based Common Ground Improves Dialogue Response Quality
Pei Zhou | Hyundong Cho | Pegah Jandaghi | Dong-Ho Lee | Bill Yuchen Lin | Jay Pujara | Xiang Ren
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Human communication relies on common ground (CG), the mutual knowledge and beliefs shared by participants, to produce coherent and interesting conversations. In this paper, we demonstrate that current response generation (RG) models produce generic and dull responses in dialogues because they act reflexively, failing to explicitly model CG, both due to the lack of CG in training data and the standard RG training procedure. We introduce Reflect, a dataset that annotates dialogues with explicit CG (materialized as inferences approximating shared knowledge and beliefs) and solicits 9k diverse human-generated responses each following one common ground. Using Reflect, we showcase the limitations of current dialogue data and RG models: less than half of the responses in current data is rated as high quality (sensible, specific, and interesting) and models trained using this data have even lower quality, while most Reflect responses are judged high quality. Next, we analyze whether CG can help models produce better quality responses by using Reflect CG to guide RG models. Surprisingly, we find that simply prompting GPT3 to “think” about CG generates 30% more quality responses, showing promising benefits to integrating CG into the RG process.

pdf bib
FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue
Alon Albalak | Yi-Lin Tuan | Pegah Jandaghi | Connor Pryor | Luke Yoffe | Deepak Ramachandran | Lise Getoor | Jay Pujara | William Yang Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Task transfer, transferring knowledge contained in related tasks, holds the promise of reducing the quantity of labeled data required to fine-tune language models. Dialogue understanding encompasses many diverse tasks, yet task transfer has not been thoroughly studied in conversational AI. This work explores conversational task transfer by introducing FETA: a benchmark for FEw-sample TAsk transfer in open-domain dialogue.FETA contains two underlying sets of conversations upon which there are 10 and 7 tasks annotated, enabling the study of intra-dataset task transfer; task transfer without domain adaptation. We utilize three popular language models and three learning algorithms to analyze the transferability between 132 source-target task pairs and create a baseline for future work.We run experiments in the single- and multi-source settings and report valuable findings, e.g., most performance trends are model-specific, and span extraction and multiple-choice tasks benefit the most from task transfer.In addition to task transfer, FETA can be a valuable resource for future research into the efficiency and generalizability of pre-training datasets and model architectures, as well as for learning settings such as continual and multitask learning.

2021

pdf bib
Probing Commonsense Explanation in Dialogue Response Generation
Pei Zhou | Pegah Jandaghi | Hyundong Cho | Bill Yuchen Lin | Jay Pujara | Xiang Ren
Findings of the Association for Computational Linguistics: EMNLP 2021

Humans use commonsense reasoning (CSR) implicitly to produce natural and coherent responses in conversations. Aiming to close the gap between current response generation (RG) models and human communication abilities, we want to understand why RG models respond as they do by probing RG model’s understanding of commonsense reasoning that elicits proper responses. We formalize the problem by framing commonsense as a latent variable in the RG task and using explanations for responses as textual form of commonsense. We collect 6k annotated explanations justifying responses from four dialogue datasets and ask humans to verify them and propose two probing settings to evaluate RG models’ CSR capabilities. Probing results show that models fail to capture the logical relations between commonsense explanations and responses and fine-tuning on in-domain data and increasing model sizes do not lead to understanding of CSR for RG. We hope our study motivates more research in making RG models emulate the human reasoning process in pursuit of smooth human-AI communication.