Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Roldano Cattoni


2024

pdf bib
FINDINGS OF THE IWSLT 2024 EVALUATION CAMPAIGN
Ibrahim Said Ahmad | Antonios Anastasopoulos | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | William Chen | Qianqian Dong | Marcello Federico | Barry Haddow | Dávid Javorský | Mateusz Krubiński | Tsz Kin Lam | Xutai Ma | Prashant Mathur | Evgeny Matusov | Chandresh Maurya | John McCrae | Kenton Murray | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | Atul Kr. Ojha | John Ortega | Sara Papi | Peter Polák | Adam Pospíšil | Pavel Pecina | Elizabeth Salesky | Nivedita Sethiya | Balaram Sarkar | Jiatong Shi | Claytone Sikasote | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Brian Thompson | Alex Waibel | Shinji Watanabe | Patrick Wilken | Petr Zemánek | Rodolfo Zevallos
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 17 teams whose submissions are documented in 27 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf bib
Automatic Subtitling and Subtitle Compression: FBK at the IWSLT 2024 Subtitling track
Marco Gaido | Sara Papi | Mauro Cettolo | Roldano Cattoni | Andrea Piergentili | Matteo Negri | Luisa Bentivogli
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

The paper describes the FBK submissions to the Subtitling track of the 2024 IWSLT Evaluation Campaign, which covers both the Automatic Subtitling and the Subtitle Compression task for two language pairs: English to German (en-de) and English to Spanish (en-es). For the Automatic Subtitling task, we submitted two systems: i) a direct model, trained in constrained conditions, that produces the SRT files from the audio without intermediate outputs (e.g., transcripts), and ii) a cascade solution that integrates only free-to-use components, either taken off-the-shelf or developed in-house. Results show that, on both language pairs, our direct model outperforms both cascade and direct systems trained in constrained conditions in last year’s edition of the campaign, while our cascade solution is competitive with the best 2023 runs. For the Subtitle Compression task, our primary submission involved prompting a Large Language Model (LLM) in zero-shot mode to shorten subtitles that exceed the reading speed limit of 21 characters per second. Our results highlight the challenges inherent in shrinking out-of-context sentence fragments that are automatically generated and potentially error-prone, underscoring the need for future studies to develop targeted solutions.

2023

pdf bib
FINDINGS OF THE IWSLT 2023 EVALUATION CAMPAIGN
Milind Agarwal | Sweta Agrawal | Antonios Anastasopoulos | Luisa Bentivogli | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | Mingda Chen | William Chen | Khalid Choukri | Alexandra Chronopoulou | Anna Currey | Thierry Declerck | Qianqian Dong | Kevin Duh | Yannick Estève | Marcello Federico | Souhir Gahbiche | Barry Haddow | Benjamin Hsu | Phu Mon Htut | Hirofumi Inaguma | Dávid Javorský | John Judge | Yasumasa Kano | Tom Ko | Rishu Kumar | Pengwei Li | Xutai Ma | Prashant Mathur | Evgeny Matusov | Paul McNamee | John P. McCrae | Kenton Murray | Maria Nadejde | Satoshi Nakamura | Matteo Negri | Ha Nguyen | Jan Niehues | Xing Niu | Atul Kr. Ojha | John E. Ortega | Proyag Pal | Juan Pino | Lonneke van der Plas | Peter Polák | Elijah Rippeth | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Yun Tang | Brian Thompson | Kevin Tran | Marco Turchi | Alex Waibel | Mingxuan Wang | Shinji Watanabe | Rodolfo Zevallos
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

2022

pdf bib
Findings of the IWSLT 2022 Evaluation Campaign
Antonios Anastasopoulos | Loïc Barrault | Luisa Bentivogli | Marcely Zanon Boito | Ondřej Bojar | Roldano Cattoni | Anna Currey | Georgiana Dinu | Kevin Duh | Maha Elbayad | Clara Emmanuel | Yannick Estève | Marcello Federico | Christian Federmann | Souhir Gahbiche | Hongyu Gong | Roman Grundkiewicz | Barry Haddow | Benjamin Hsu | Dávid Javorský | Vĕra Kloudová | Surafel Lakew | Xutai Ma | Prashant Mathur | Paul McNamee | Kenton Murray | Maria Nǎdejde | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | John Ortega | Juan Pino | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Yogesh Virkar | Alexander Waibel | Changhan Wang | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.

2021

pdf bib
FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN
Antonios Anastasopoulos | Ondřej Bojar | Jacob Bremerman | Roldano Cattoni | Maha Elbayad | Marcello Federico | Xutai Ma | Satoshi Nakamura | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Alexander Waibel | Changhan Wang | Matthew Wiesner
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2021) featured this year four shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Multilingual speech translation, (iv) Low-resource speech translation. A total of 22 teams participated in at least one of the tasks. This paper describes each shared task, data and evaluation metrics, and reports results of the received submissions.

2020

pdf bib
Gender in Danger? Evaluating Speech Translation Technology on the MuST-SHE Corpus
Luisa Bentivogli | Beatrice Savoldi | Matteo Negri | Mattia A. Di Gangi | Roldano Cattoni | Marco Turchi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Translating from languages without productive grammatical gender like English into gender-marked languages is a well-known difficulty for machines. This difficulty is also due to the fact that the training data on which models are built typically reflect the asymmetries of natural languages, gender bias included. Exclusively fed with textual data, machine translation is intrinsically constrained by the fact that the input sentence does not always contain clues about the gender identity of the referred human entities. But what happens with speech translation, where the input is an audio signal? Can audio provide additional information to reduce gender bias? We present the first thorough investigation of gender bias in speech translation, contributing with: i) the release of a benchmark useful for future studies, and ii) the comparison of different technologies (cascade and end-to-end) on two language directions (English-Italian/French).

pdf bib
FINDINGS OF THE IWSLT 2020 EVALUATION CAMPAIGN
Ebrahim Ansari | Amittai Axelrod | Nguyen Bach | Ondřej Bojar | Roldano Cattoni | Fahim Dalvi | Nadir Durrani | Marcello Federico | Christian Federmann | Jiatao Gu | Fei Huang | Kevin Knight | Xutai Ma | Ajay Nagesh | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Xing Shi | Sebastian Stüker | Marco Turchi | Alexander Waibel | Changhan Wang
Proceedings of the 17th International Conference on Spoken Language Translation

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2020) featured this year six challenge tracks: (i) Simultaneous speech translation, (ii) Video speech translation, (iii) Offline speech translation, (iv) Conversational speech translation, (v) Open domain translation, and (vi) Non-native speech translation. A total of teams participated in at least one of the tracks. This paper introduces each track’s goal, data and evaluation metrics, and reports the results of the received submissions.

2019

pdf bib
MuST-C: a Multilingual Speech Translation Corpus
Mattia A. Di Gangi | Roldano Cattoni | Luisa Bentivogli | Matteo Negri | Marco Turchi
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Current research on spoken language translation (SLT) has to confront with the scarcity of sizeable and publicly available training corpora. This problem hinders the adoption of neural end-to-end approaches, which represent the state of the art in the two parent tasks of SLT: automatic speech recognition and machine translation. To fill this gap, we created MuST-C, a multilingual speech translation corpus whose size and quality will facilitate the training of end-to-end systems for SLT from English into 8 languages. For each target language, MuST-C comprises at least 385 hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual transcriptions and translations. Together with a description of the corpus creation methodology (scalable to add new data and cover new languages), we provide an empirical verification of its quality and SLT results computed with a state-of-the-art approach on each language direction.

pdf bib
Enhancing Transformer for End-to-end Speech-to-Text Translation
Mattia Antonino Di Gangi | Matteo Negri | Roldano Cattoni | Roberto Dessi | Marco Turchi
Proceedings of Machine Translation Summit XVII: Research Track

2018

pdf bib
Fine-tuning on Clean Data for End-to-End Speech Translation: FBK @ IWSLT 2018
Mattia Antonino Di Gangi | Roberto Dessì | Roldano Cattoni | Matteo Negri | Marco Turchi
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes FBK’s submission to the end-to-end English-German speech translation task at IWSLT 2018. Our system relies on a state-of-the-art model based on LSTMs and CNNs, where the CNNs are used to reduce the temporal dimension of the audio input, which is in general much higher than machine translation input. Our model was trained only on the audio-to-text parallel data released for the task, and fine-tuned on cleaned subsets of the original training corpus. The addition of weight normalization and label smoothing improved the baseline system by 1.0 BLEU point on our validation set. The final submission also featured checkpoint averaging within a training run and ensemble decoding of models trained during multiple runs. On test data, our best single model obtained a BLEU score of 9.7, while the ensemble obtained a BLEU score of 10.24.

2015

pdf bib
The IWSLT 2015 Evaluation Campaign
Mauro Cettolo | Jan Niehues | Sebastian Stüker | Luisa Bentivogli | Roldano Cattoni | Marcello Federico
Proceedings of the 12th International Workshop on Spoken Language Translation: Evaluation Campaign

2012

pdf bib
The KnowledgeStore: an Entity-Based Storage System
Roldano Cattoni | Francesco Corcoglioniti | Christian Girardi | Bernardo Magnini | Luciano Serafini | Roberto Zanoli
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

This paper describes the KnowledgeStore, a large-scale infrastructure for the combined storage and interlinking of multimedia resources and ontological knowledge. Information in the KnowledgeStore is organized around entities, such as persons, organizations and locations. The system allows (i) to import background knowledge about entities, in form of annotated RDF triples; (ii) to associate resources to entities by automatically recognizing, coreferring and linking mentions of named entities; and (iii) to derive new entities based on knowledge extracted from mentions. The KnowledgeStore builds on state of art technologies for language processing, including document tagging, named entity extraction and cross-document coreference. Its design provides for a tight integration of linguistic and semantic features, and eases the further processing of information by explicitly representing the contexts where knowledge and mentions are valid or relevant. We describe the system and report about the creation of a large-scale KnowledgeStore instance for storing and integrating multimedia contents and background knowledge relevant to the Italian Trentino region.

2008

pdf bib
FBK @ IWSLT-2008.
Nicola Bertoldi | Roldano Cattoni | Marcello Federico | Madalina Barbaiani
Proceedings of the 5th International Workshop on Spoken Language Translation: Evaluation Campaign

This paper reports on the participation of FBK at the IWSLT 2008 Evaluation. Main effort has been spent on the Chinese-Spanish Pivot task. We implemented four methods to perform pivot translation. The results on the IWSLT 2008 test data show that our original method for generating training data through random sampling outperforms the best methods based on coupling translation systems. FBK also participated in the Chinese-English Challenge task and the Chinese-English and Chinese-Spanish BTEC tasks, employing the standard state-of-the-art MT system Moses Toolkit.

pdf bib
Phrase-based statistical machine translation with pivot languages.
Nicola Bertoldi | Madalina Barbaiani | Marcello Federico | Roldano Cattoni
Proceedings of the 5th International Workshop on Spoken Language Translation: Papers

Translation with pivot languages has recently gained attention as a means to circumvent the data bottleneck of statistical machine translation (SMT). This paper tries to give a mathematically sound formulation of the various approaches presented in the literature and introduces new methods for training alignment models through pivot languages. We present experimental results on Chinese-Spanish translation via English, on a popular traveling domain task. In contrast to previous literature, we report experimental results by using parallel corpora that are either disjoint or overlapped on the pivot language side. Finally, our original method for generating training data through random sampling shows to perform as well as the best methods based on the coupling of translation systems.

2007

pdf bib
FBK@IWSLT 2007
Nicola Bertoldi | Mauro Cettolo | Roldano Cattoni | Marcello Federico
Proceedings of the Fourth International Workshop on Spoken Language Translation

This paper reports on the participation of FBK (formerly ITC-irst) at the IWSLT 2007 Evaluation. FBK participated in three tasks, namely Chinese-to-English, Japanese-to-English, and Italian-to-English. With respect to last year, translation systems were developed with the Moses Toolkit and the IRSTLM library, both available as open source software. Moreover, several novel ideas were investigated: the use of confusion networks in input to manage ambiguity in punctuation, the estimation of an additional language model by means of the Google’s Web 1T 5-gram collection, the combination of true case and lower case language models, and finally the use of multiple phrase-tables. By working on top of a state-of-the art baseline, experiments showed that the above methods accounted for significant BLEU score improvements.

2006

pdf bib
The ITC-irst SMT system for IWSLT 2006
Boxing Chen | Roldano Cattoni | Nicola Bertoldi | Mauro Cettolo | Marcello Federico
Proceedings of the Third International Workshop on Spoken Language Translation: Evaluation Campaign

pdf bib
A Web-based Demonstrator of a Multi-lingual Phrase-based Translation System
Roldano Cattoni | Nicola Bertoldi | Mauro Cettolo | Boxing Chen | Marcello Federico
Demonstrations

2005

pdf bib
The ITC-irst SMT System for IWSLT-2005
Boxing Chen | Roldano Cattoni | Nicola Bertoldi | Mauro Cettolo | Marcello Federico
Proceedings of the Second International Workshop on Spoken Language Translation

2004

pdf bib
The ITC-irst statistical machine translation system for IWSLT-
Nicola Bertoldi | Roldano Cattoni | Mauro Cettolo | Marcello Federico
Proceedings of the First International Workshop on Spoken Language Translation: Evaluation Campaign

pdf bib
The Italian NESPOLE! Corpus: a Multilingual Database with Interlingua Annotation in Tourism and Medical Domains
Nadia Mana | Roldano Cattoni | Emanuele Pianta | Franca Rossi | Fabio Pianesi | Susanne Burger
Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04)

2002

pdf bib
Balancing Expressiveness and Simplicity in an Interlingua for Task Based Dialogue
Lori Levin | Donna Gates | Dorcas Pianta | Roldano Cattoni | Nadia Mana | Kay Peterson | Alon Lavie | Fabio Pianesi
Proceedings of the ACL-02 Workshop on Speech-to-Speech Translation: Algorithms and Systems

pdf bib
A Multi-Perspective Evaluation of the NESPOLE! Speech-to-Speech Translation System
Alon Lavie | Florian Metze | Roldano Cattoni | Erica Costantini
Proceedings of the ACL-02 Workshop on Speech-to-Speech Translation: Algorithms and Systems

pdf bib
ADAM: The SI-TAL Corpus of Annotated Dialogues
Roldano Cattoni | Morena Danieli | Vanessa Sandrini | Claudia Soria
Proceedings of the Third International Conference on Language Resources and Evaluation (LREC’02)

2000

pdf bib
ADAM- An Architecture for xml-based Dialogue Annotation on Multiple levels
Claudia Soria | Roldano Cattoni | Morena Danieli
1st SIGdial Workshop on Discourse and Dialogue

Search
Co-authors
Venues