Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Wojciech Kryściński

Also published as: Wojciech Kryscinski


2023

pdf bib
SWiPE: A Dataset for Document-Level Simplification of Wikipedia Pages
Philippe Laban | Jesse Vig | Wojciech Kryscinski | Shafiq Joty | Caiming Xiong | Chien-Sheng Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text simplification research has mostly focused on sentence-level simplification, even though many desirable edits - such as adding relevant background information or reordering content - may require document-level context. Prior work has also predominantly framed simplification as a single-step, input-to-output task, only implicitly modeling the fine-grained, span-level edits that elucidate the simplification process. To address both gaps, we introduce the SWiPE dataset, which reconstructs the document-level editing process from English Wikipedia (EW) articles to paired Simple Wikipedia (SEW) articles. In contrast to prior work, SWiPE leverages the entire revision history when pairing pages in order to better identify simplification edits. We work with Wikipedia editors to annotate 5,000 EW-SEW document pairs, labeling more than 40,000 edits with proposed 19 categories. To scale our efforts, we propose several models to automatically label edits, achieving an F-1 score of up to 70.9, indicating that this is a tractable but challenging NLU task. Finally, we categorize the edits produced by several simplification models and find that SWiPE-trained models generate more complex edits while reducing unwanted edits.

pdf bib
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
Liyan Tang | Tanya Goyal | Alex Fabbri | Philippe Laban | Jiacheng Xu | Semih Yavuz | Wojciech Kryscinski | Justin Rousseau | Greg Durrett
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The propensity of abstractive summarization models to make factual errors has been studied extensively, including design of metrics to detect factual errors and annotation of errors in current systems’ outputs. However, the ever-evolving nature of summarization systems, metrics, and annotated benchmarks makes factuality evaluation a moving target, and drawing clear comparisons among metrics has become increasingly difficult. In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model. We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models. Critically, our analysis shows that much of the recent improvement in the factuality detection space has been on summaries from older (pre-Transformer) models instead of more relevant recent summarization models. We further perform a finer-grained analysis per error-type and find similar performance variance across error types for different factuality metrics. Our results show that no one metric is superior in all settings or for all error types, and we provide recommendations for best practices given these insights.

pdf bib
Socratic Pretraining: Question-Driven Pretraining for Controllable Summarization
Artidoro Pagnoni | Alex Fabbri | Wojciech Kryscinski | Chien-Sheng Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In long document controllable summarization, where labeled data is scarce, pretrained models struggle to adapt to the task and effectively respond to user queries. In this paper, we introduce Socratic pretraining, a question-driven, unsupervised pretraining objective specifically designed to improve controllability in summarization tasks. By training a model to generate and answer relevant questions in a given context, Socratic pretraining enables the model to more effectively adhere to user-provided queries and identify relevant content to be summarized. We demonstrate the effectiveness of this approach through extensive experimentation on two summarization domains, short stories and dialogue, and multiple control strategies: keywords, questions, and factoid QA pairs. Our pretraining method relies only on unlabeled documents and a question generation system and outperforms pre-finetuning approaches that use additional supervised data. Furthermore, our results show that Socratic pretraining cuts task-specific labeled data requirements in half, is more faithful to user-provided queries, and achieves state-of-the-art performance on QMSum and SQuALITY.

pdf bib
Long Document Summarization with Top-down and Bottom-up Inference
Bo Pang | Erik Nijkamp | Wojciech Kryscinski | Silvio Savarese | Yingbo Zhou | Caiming Xiong
Findings of the Association for Computational Linguistics: EACL 2023

Text summarization aims to condense long documents and retain key information. Critical to the success of a summarization model is the faithful inference of latent representations of words or tokens in the source documents. Most recent models infer the latent representations with a transformer encoder, which is purely bottom-up and thus does not capture long-distance context well. Also, self-attention-based models face the challenge of quadratic complexity with respect to sequence length. We propose a method to improve summarization models on these two aspects. Our method assumes a hierarchical latent structure of a document where the top-level captures the long range dependency at a coarser time scale and the bottom token level preserves the details. Critically, our method enables token representations to be updated in both a bottom-up and top-down manner. In the bottom-up pass, token representations are inferred with local self-attention to leverage its efficiency. Top-down correction is then applied to allow tokens to capture global context. We demonstrate the effectiveness on a diverse set of summarization datasets, including narrative, conversational, scientific documents and news. Our model achieves state-of-the-art performance on a wide range of long document summarization benchmarks, compared to recent efficient transformers. We show that our model can summarize an entire book and achieve competitive performance using 0.27% parameters and much less training data, compared to a recent GPT-3-based model. These results indicate the general applicability and benefits of the framework.

pdf bib
SummEdits: Measuring LLM Ability at Factual Reasoning Through The Lens of Summarization
Philippe Laban | Wojciech Kryscinski | Divyansh Agarwal | Alexander Fabbri | Caiming Xiong | Shafiq Joty | Chien-Sheng Wu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

With the recent appearance of LLMs in practical settings, having methods that can effectively detect factual inconsistencies is crucial to reduce the propagation of misinformation and improve trust in model outputs. When testing on existing factual consistency benchmarks, we find that a few large language models (LLMs) perform competitively on classification benchmarks for factual inconsistency detection compared to traditional non-LLM methods. However, a closer analysis reveals issues with existing evaluation benchmarks, affecting evaluation precision. To address this, we propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits. This new benchmark is 20 times more cost-effective per sample than previous benchmarks and highly reproducible, as we estimate inter-annotator agreement at about 0.9. Most LLMs struggle on SummEdits, with performance close to random chance. The best-performing model, GPT-4, is still 8% below estimated human performance, highlighting the gaps in LLMs’ ability to reason about facts and detect inconsistencies when they occur.

pdf bib
What’s New? Summarizing Contributions in Scientific Literature
Hiroaki Hayashi | Wojciech Kryscinski | Bryan McCann | Nazneen Rajani | Caiming Xiong
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

With thousands of academic articles shared on a daily basis, it has become increasingly difficult to keep up with the latest scientific findings. To overcome this problem, we introduce a new task of disentangled paper summarization, which seeks to generate separate summaries for the paper contributions and the context of the work, making it easier to identify the key findings shared in articles. For this purpose, we extend the S2ORC corpus of academic articles, which spans a diverse set of domains ranging from economics to psychology, by adding disentangled “contribution” and “context” reference labels. Together with the dataset, we introduce and analyze three baseline approaches: 1) a unified model controlled by input code prefixes, 2) a model with separate generation heads specialized in generating the disentangled outputs, and 3) a training strategy that guides the model using additional supervision coming from inbound and outbound citations. We also propose a comprehensive automatic evaluation protocol which reports the relevance, novelty, and disentanglement of generated outputs. Through a human study involving expert annotators, we show that in 79%, of cases our new task is considered more helpful than traditional scientific paper summarization.

2022

pdf bib
HydraSum: Disentangling Style Features in Text Summarization with Multi-Decoder Models
Tanya Goyal | Nazneen Rajani | Wenhao Liu | Wojciech Kryscinski
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Summarization systems make numerous “decisions” about summary properties during inference, e.g. degree of copying, specificity and length of outputs, etc. However, these are implicitly encoded within model parameters and specific styles cannot be enforced. To address this, we introduce HydraSum, a new summarization architecture that extends the single decoder framework of current models to a mixture-of-experts version with multiple decoders. We show that HydraSum’s multiple decoders automatically learn contrasting summary styles when trained under the standard training objective without any extra supervision. Through experiments on three summarization datasets (CNN, Newsroom and XSum), we show that HydraSum provides a simple mechanism to obtain stylistically-diverse summaries by sampling from either individual decoders or their mixtures, outperforming baseline models. Finally, we demonstrate that a small modification to the gating strategy during training can enforce an even stricter style partitioning, e.g. high- vs low-abstractiveness or high- vs low-specificity, allowing users to sample from a larger area in the generation space and vary summary styles along multiple dimensions.

pdf bib
CTRLsum: Towards Generic Controllable Text Summarization
Junxian He | Wojciech Kryscinski | Bryan McCann | Nazneen Rajani | Caiming Xiong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Current summarization systems yield generic summaries that are disconnected from users’ preferences and expectations. To address this limitation, we present CTRLsum, a generic framework to control generated summaries through a set of keywords. During training keywords are extracted automatically without requiring additional human annotations. At test time CTRLsum features a control function to map control signal to keywords; through engineering the control function, the same trained model is able to be applied to control summaries on various dimensions, while neither affecting the model training process nor the pretrained models. We additionally explore the combination of keywords and text prompts for more control tasks. Experiments demonstrate the effectiveness of CTRLsum on three domains of summarization datasets and five control tasks: (1) entity-centric and (2) length-controllable summarization, (3) contribution summarization on scientific papers, (4) invention purpose summarization on patent filings, and (5) question-guided summarization on news articles. Moreover, when used in a standard, unconstrained summarization setting, CTRLsum is comparable or better than strong pretrained systems.

pdf bib
Improving the Faithfulness of Abstractive Summarization via Entity Coverage Control
Haopeng Zhang | Semih Yavuz | Wojciech Kryscinski | Kazuma Hashimoto | Yingbo Zhou
Findings of the Association for Computational Linguistics: NAACL 2022

Abstractive summarization systems leveraging pre-training language models have achieved superior results on benchmark datasets. However, such models have been shown to be more prone to hallucinate facts that are unfaithful to the input context. In this paper, we propose a method to remedy entity-level extrinsic hallucinations with Entity Coverage Control (ECC). We first compute entity coverage precision and prepend the corresponding control code for each training example, which implicitly guides the model to recognize faithfulness contents in the training phase. We further extend our method via intermediate fine-tuning on large but noisy data extracted from Wikipedia to unlock zero-shot summarization. We show that the proposed method leads to more faithful and salient abstractive summarization in supervised fine-tuning and zero-shot settings according to our experimental results on three benchmark datasets XSum, Pubmed, and SAMSum of very different domains and styles.

pdf bib
Exploring Neural Models for Query-Focused Summarization
Jesse Vig | Alexander Fabbri | Wojciech Kryscinski | Chien-Sheng Wu | Wenhao Liu
Findings of the Association for Computational Linguistics: NAACL 2022

Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization. While recently released datasets, such as QMSum or AQuaMuSe, facilitate research efforts in QFS, the field lacks a comprehensive study of the broad space of applicable modeling methods. In this paper we conduct a systematic exploration of neural approaches to QFS, considering two general classes of methods: two-stage extractive-abstractive solutions and end-to-end models. Within those categories, we investigate existing models and explore strategies for transfer learning. We also present two modeling extensions that achieve state-of-the-art performance on the QMSum dataset, up to a margin of 3.38 ROUGE-1, 3.72 ROUGE2, and 3.28 ROUGE-L when combined with transfer learning strategies. Results from human evaluation suggest that the best models produce more comprehensive and factually consistent summaries compared to a baseline model. Code and checkpoints are made publicly available: https://github.com/salesforce/query-focused-sum.

pdf bib
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization
Wojciech Kryscinski | Nazneen Rajani | Divyansh Agarwal | Caiming Xiong | Dragomir Radev
Findings of the Association for Computational Linguistics: EMNLP 2022

The majority of existing text summarization datasets include short-form source documents that lack long-range causal and temporal dependencies, and often contain strong layout and stylistic biases. While relevant, such datasets will offer limited challenges for future text summarization systems. We address these issues by introducing BOOKSUM, a collection of datasets for long-form narrative summarization. Our dataset covers documents from the literature domain, such as novels, plays and stories, and includes highly abstractive, human written summaries on three levels of granularity of increasing difficulty: paragraph-, chapter-, and book-level. The domain and structure of our dataset poses a unique set of challenges for summarization systems, which include: processing very long documents, non-trivial causal and temporal dependencies, and rich discourse structures. To facilitate future work, we trained and evaluated multiple extractive and abstractive summarization models as baselines for our dataset.

pdf bib
FeTaQA: Free-form Table Question Answering
Linyong Nan | Chiachun Hsieh | Ziming Mao | Xi Victoria Lin | Neha Verma | Rui Zhang | Wojciech Kryściński | Hailey Schoelkopf | Riley Kong | Xiangru Tang | Mutethia Mutuma | Ben Rosand | Isabel Trindade | Renusree Bandaru | Jacob Cunningham | Caiming Xiong | Dragomir Radev | Dragomir Radev
Transactions of the Association for Computational Linguistics, Volume 10

Existing table question answering datasets contain abundant factual questions that primarily evaluate a QA system’s comprehension of query and tabular data. However, restricted by their short-form answers, these datasets fail to include question–answer interactions that represent more advanced and naturally occurring information needs: questions that ask for reasoning and integration of information pieces retrieved from a structured knowledge source. To complement the existing datasets and to reveal the challenging nature of the table-based question answering task, we introduce FeTaQA, a new dataset with 10K Wikipedia-based table, question, free-form answer, supporting table cells pairs. FeTaQA is collected from noteworthy descriptions of Wikipedia tables that contain information people tend to seek; generation of these descriptions requires advanced processing that humans perform on a daily basis: Understand the question and table, retrieve, integrate, infer, and conduct text planning and surface realization to generate an answer. We provide two benchmark methods for the proposed task: a pipeline method based on semantic parsing-based QA systems and an end-to-end method based on large pretrained text generation models, and show that FeTaQA poses a challenge for both methods.

pdf bib
CREATIVESUMM: Shared Task on Automatic Summarization for Creative Writing
Divyansh Agarwal | Alexander R. Fabbri | Simeng Han | Wojciech Kryscinski | Faisal Ladhak | Bryan Li | Kathleen McKeown | Dragomir Radev | Tianyi Zhang | Sam Wiseman
Proceedings of The Workshop on Automatic Summarization for Creative Writing

This paper introduces the shared task of summrizing documents in several creative domains, namely literary texts, movie scripts, and television scripts. Summarizing these creative documents requires making complex literary interpretations, as well as understanding non-trivial temporal dependencies in texts containing varied styles of plot development and narrative structure. This poses unique challenges and is yet underexplored for text summarization systems. In this shared task, we introduce four sub-tasks and their corresponding datasets, focusing on summarizing books, movie scripts, primetime television scripts, and daytime soap opera scripts. We detail the process of curating these datasets for the task, as well as the metrics used for the evaluation of the submissions. As part of the CREATIVESUMM workshop at COLING 2022, the shared task attracted 18 submissions in total. We discuss the submissions and the baselines for each sub-task in this paper, along with directions for facilitating future work.

2021

pdf bib
SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
Jesse Vig | Wojciech Kryscinski | Karan Goel | Nazneen Rajani
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SummVis, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness. The tool together with several pre-computed model outputs is available at https://summvis.com.

pdf bib
SummEval: Re-evaluating Summarization Evaluation
Alexander R. Fabbri | Wojciech Kryściński | Bryan McCann | Caiming Xiong | Richard Socher | Dragomir Radev
Transactions of the Association for Computational Linguistics, Volume 9

The scarcity of comprehensive up-to-date studies on evaluation metrics for text summarization and the lack of consensus regarding evaluation protocols continue to inhibit progress. We address the existing shortcomings of summarization evaluation methods along five dimensions: 1) we re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion using neural summarization model outputs along with expert and crowd-sourced human annotations; 2) we consistently benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics; 3) we assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset and share it in a unified format; 4) we implement and share a toolkit that provides an extensible and unified API for evaluating summarization models across a broad range of automatic metrics; and 5) we assemble and share the largest and most diverse, in terms of model types, collection of human judgments of model-generated summaries on the CNN/Daily Mail dataset annotated by both expert judges and crowd-source workers. We hope that this work will help promote a more complete evaluation protocol for text summarization as well as advance research in developing evaluation metrics that better correlate with human judgments.

2020

pdf bib
Sketch-Fill-A-R: A Persona-Grounded Chit-Chat Generation Framework
Michael Shum | Stephan Zheng | Wojciech Kryscinski | Caiming Xiong | Richard Socher
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI

Human-like chit-chat conversation requires agents to generate responses that are fluent, engaging and consistent. We propose Sketch- Fill-A-R, a framework that uses a persona-memory to generate chit-chat responses in three phases. First, it generates dynamic sketch responses with open slots. Second, it generates candidate responses by filling slots with parts of its stored persona traits. Lastly, it ranks and selects the final response via a language model score. Sketch-Fill-A-R outperforms a state-of-the-art baseline both quantitatively (10-point lower perplexity) and qualitatively (preferred by 55% in head-to-head single-turn studies and 20% higher in consistency in multi-turn user studies) on the Persona-Chat dataset. Finally, we extensively analyze Sketch-Fill-A-R’s responses and human feedback, and show it is more consistent and engaging by using more relevant responses and questions.

pdf bib
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kryscinski | Bryan McCann | Caiming Xiong | Richard Socher
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The most common metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and generated summaries. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks: 1) predict whether each summary sentence is factually consistent or not, 2) in either case, extract a span in the source document to support this consistency prediction, 3) for each summary sentence that is deemed inconsistent, extract the inconsistent span from it. Transferring this model to summaries generated by several neural models reveals that this highly scalable approach outperforms previous models, including those trained with strong supervision using datasets from related domains, such as natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency. We also release a manually annotated dataset for factual consistency verification, code for training data generation, and trained model weights at https://github.com/salesforce/factCC.

2019

pdf bib
Neural Text Summarization: A Critical Evaluation
Wojciech Kryscinski | Nitish Shirish Keskar | Bryan McCann | Caiming Xiong | Richard Socher
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text summarization aims at compressing long documents into a shorter form that conveys the most important parts of the original document. Despite increased interest in the community and notable research effort, progress on benchmark datasets has stagnated. We critically evaluate key ingredients of the current research setup: datasets, evaluation metrics, and models, and highlight three primary shortcomings: 1) automatically collected datasets leave the task underconstrained and may contain noise detrimental to training and evaluation, 2) current evaluation protocol is weakly correlated with human judgment and does not account for important characteristics such as factual correctness, 3) models overfit to layout biases of current datasets and offer limited diversity in their outputs.

2018

pdf bib
Improving Abstraction in Text Summarization
Wojciech Kryściński | Romain Paulus | Caiming Xiong | Richard Socher
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Abstractive text summarization aims to shorten long text documents into a human readable form that contains the most important facts from the original document. However, the level of actual abstraction as measured by novel phrases that do not appear in the source document remains low in existing approaches. We propose two techniques to improve the level of abstraction of generated summaries. First, we decompose the decoder into a contextual network that retrieves relevant parts of the source document, and a pretrained language model that incorporates prior knowledge about language generation. Second, we propose a novelty metric that is optimized directly through policy learning to encourage the generation of novel phrases. Our model achieves results comparable to state-of-the-art models, as determined by ROUGE scores and human evaluations, while achieving a significantly higher level of abstraction as measured by n-gram overlap with the source document.