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Abstract. Emissions to air are reported by countries to
EMEP. The emissions data are used for country compliance
checking with EU emission ceilings and associated emission
reductions. The emissions data are also necessary as input for
air quality modelling. The quality of these “official” emis-
sions varies across Europe.

As alternative to these official emissions, a spatially
explicit high-resolution emission inventory (7× 7 km) for
UNECE-Europe for all years between 2003 and 2009 for the
main air pollutants was made. The primary goal was to sup-
ply air quality modellers with the input they need. The inven-
tory was constructed by using the reported emission national
totals by sector where the quality is sufficient. The reported
data were analysed by sector in detail, and completed with
alternative emission estimates as needed. This resulted in a
complete emission inventory for all countries.

For particulate matter, for each source emissions have been
split in coarse and fine particulate matter, and further disag-
gregated to EC, OC, SO4, Na and other minerals using frac-
tions based on the literature. Doing this at the most detailed
sectoral level in the database implies that a consistent set was
obtained across Europe. This allows better comparisons with
observational data which can, through feedback, help to fur-
ther identify uncertain sources and/or support emission in-
ventory improvements for this highly uncertain pollutant.

The resulting emission data set was spatially distributed
consistently across all countries by using proxy parameters.
Point sources were spatially distributed using the specific lo-
cation of the point source. The spatial distribution for the
point sources was made year-specific.

The TNO-MACC_II is an update of the TNO-MACC
emission data set. Major updates included the time extension

towards 2009, use of the latest available reported data (in-
cluding updates and corrections made until early 2012) and
updates in distribution maps.

1 Introduction

Over the last decades, environmental problems such as acid-
ification, eutrophication, air pollution and climate change
have caused significant adverse impacts on human health and
vegetation (EEA, 2010). Only part of the air pollution emis-
sion reductions set by the 2010 National Emission Ceilings
have been achieved (EEA, 2012a), therefore transboundary
air pollution remains a problem (EEA, 2010). All these en-
vironmental problems are directly related to the emissions
of substances to air. Reliable emission inventories are a pre-
requisite to understand these environmental issues and to de-
velop effective mitigation options.

For a good understanding of environmental problems, not
only the magnitude of the sources but also their location is
important. The spatially distributed emissions need to cover
the complete domain, and describe the emissions in a con-
sistent way, i.e. in all countries the same sources should be
included, and these sources should be assessed as accurately
and consistently as possible.

Emission inventories are typically developed by using a
bottom-up approach, i.e. combining available statistics on
fuel combustion, industrial production, and so forth with
the most appropriate emission factors. For a detailed de-
scription on how emission inventories are constructed see
EEA (2013), IPCC (2006) and Olivier et al. (1999). This
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approach has been taken also by many countries that pro-
duce annual emission inventories for greenhouse gases and
air pollutants, since they have to report their emissions under
the various international treaties. Over time, as experience
and expertise has increased, the number, substances covered
and quality of these inventories has significantly improved
(EMEP, 2013). These in-country systems take into account
all country-specific information and national legislation and
are therefore capable of providing a more accurate estimate
of the emissions compared to a regional or global emission
inventory.

When using regional chemical-transport modelling in pol-
icy studies, the use of these official inventories is often re-
quired. However, the official emissions still contain a num-
ber of gaps and shortcomings, e.g. not all countries report
according to the requirements (EMEP, 2013). This paper
presents a complete, consistent and spatially distributed in-
ventory, which has used the official reported emissions as ba-
sis where possible. This makes this inventory suitable for ap-
plication in policy-related modelling and impact studies for
air pollution. The TNO_MACC-II inventory is the successor
of the widely used GEMS inventory for 2000 (Visschedijk
et al., 2007) and the TNO_MACC inventory for the years
2003–2007 (Kuenen et al., 2011; Pouliot et al., 2012).

2 Methodology

2.1 Emission estimates

The Convention for Long-Range Transboundary Air Pol-
lution (CLRTAP; http://www.unece.org/env/lrtap/) requires
countries to report their emissions. Fifty-one countries in Eu-
rope and North America, including the EU as a whole, have
to annually submit their emissions of air pollutants for the
latest year and all historic years to EMEP (the co-operative
programme for the monitoring and evaluation of long-range
transmission of air pollutants in Europe). The reporting fol-
lows well-defined guidelines and asks countries to complete
a pre-defined template with emissions by year, pollutant and
sector (defined by the Nomenclature for Reporting; NFR).
Countries are encouraged to set up their own inventory sys-
tem and choose the best methodologies for emission esti-
mation which fit their national situation. For larger sources,
Parties have to use more advanced methodologies, with spe-
cific emission factors for each technology. When no spe-
cific national methodology is available, the EMEP/EEA Air
Pollutant Emission Inventory Guidebook (EEA, 2013) pro-
vides default guidance on how to estimate emissions for each
sector. The official submitted data for all countries are col-
lected by the Centre for Emission Inventories and Projections
(http://www.ceip.at/) and made available online. Because of
the more detailed methodologies included in most invento-
ries and the national focus of each of the inventories, the re-
ported emissions often provide the most accurate estimate for

Table 1. Explanation of the SNAP source categories (SNAP 3 and
SNAP 4 are merged to SNAP 34).

SNAP Sector name

1 Energy industries
2 Non-industrial combustion
34 Industry (combustion+ processes)
5 Extraction and distribution of fossil fuels
6 Product use
7 Road transport
8 Non-road transport and other mobile sources
9 Waste treatment
10 Agriculture

a country. However, in many cases gaps and errors do exist
in the reported emission data. In particular, the consistency
in emissions reporting for consecutive years is problematic.

In order to assess the quality of the reported emissions,
we have downloaded the data from CEIP (CEIP, 2012) for
CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 and from
EEA (EEA, 2012b) for CH4 for all countries for the period
2003–2009. Before analysing the data in detail, we have first
aggregated the NFR sectors to 43 individual sectors (link
table available from the Supplement, Excel file number 1).
These 43 sectors were defined based on the SNAP (Selected
Nomenclature for Air Pollution) at level 1 with one addi-
tional level of detail for most sectors. Industrial combus-
tion (SNAP 3) and industrial process emissions (SNAP 4)
have been aggregated to a new defined SNAP 34. This was
done because there is often confusion between combustion
and process emissions for a particular plant or facility, partly
because countries may have slightly different definitions on
where to draw the line or how to report. In an overarching Eu-
ropean inventory this problem is effectively solved by merg-
ing both categories. An explanation of the SNAP source cat-
egories as used in this study is given in Table 1.

For this data set we have analysed the time series between
2003 and 2009 in detail. Where the time series or the sector
split of the total country emissions was not understandable
(e.g. unexplainable jumps in the trend, multiple years of data
missing, not understandable sector splits), the data were dis-
carded.

In cases where reported data have not been used or were
not available, emissions at the country level were taken from
the GAINS model (IIASA, 2012). The GAINS model com-
bines information on economic and energy development,
emission control potentials and costs, atmospheric disper-
sion characteristics and environmental sensitivities towards
air pollution (Schöpp et al., 1999). For a more detailed de-
scription we refer to Amann (2009) and Amann et al. (2011).
The advantage of using the GAINS data is that they are
consistent across countries and sectors and are regularly up-
dated. Emission data are available at sector and activity level,
comprising more than 200 different categories for 5-yearly
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intervals. To obtain emissions for the years in between, lin-
ear interpolation was used where necessary.

The GAINS model does not calculate emissions of CO.
In the case that no country reported CO emissions of suffi-
cient quality were available the CO emissions are gap-filled
using a bottom-up emission inventory which has been de-
veloped at TNO for the year 2005. Like the GAINS model or
the EDGAR inventory (JRC, 2011), this bottom-up inventory
is built up using activities such as the energy statistics and
industrial production figures as the baseline in combination
with the most appropriate emission factors. In the transport
sector, this means that data from the TREMOVE model (De
Ceuster et al., 2005) were used to disaggregate the energy
use to detailed vehicle classes technologies for each country.
These were combined with state-of-the-art emission factors
for each technology for road transport (Ntziachristos et al.,
2009) to calculate the emissions. When less detail was avail-
able for certain source categories, technology-specific emis-
sion factors were applied to groups of countries with a similar
technology level. Since this bottom-up inventory was orig-
inally only developed for the year 2005, emissions for the
other years were estimated by scaling this inventory. Scal-
ing factors for the different years were calculated from the
EDGAR emission inventory v4.2 (JRC, 2011), which pro-
vides sector-specific annual emission estimates for CO for
each country in the world.

For the countries Armenia, Azerbaijan and Georgia, nei-
ther reported nor GAINS emission data were available.
Therefore, EDGAR (JRC, 2011) data were used at SNAP
level 1 (see Table 1) for these countries for all pollutants
and all years. These were disaggregated to the same subcate-
gories as the other countries by using the relative contribution
of each subsector to the SNAP level 1 sector for Turkey (for
each pollutant and each year) as a blueprint.

To illustrate in more detail the extent to which each data
source has been used, the Supplement (Excel file number 2)
includes a table which shows the main source of the emis-
sions that was used, per country per pollutant. However, for
underlying sectors the choice of which emission source to
use may have been updated based on the checks that were
performed. In the final data set, the share of reported data in
the total emissions varies between 40 % (for PM) and 70 %
(for NH3). In geographical terms, reported emissions were
the primary data source for most EU Member States and
EFTA countries, while for many former Soviet Union coun-
tries and some Balkan countries the use of GAINS or other
alternative data sources was necessary. The Excel file num-
ber 2 in the Supplement also contains a full overview of the
choices made per country, pollutant and sector.

2.1.1 Consistency between countries and across years

Emission data for certain years may be missing (Figs. 1
and 2, left panel), and countries may use different classifica-
tions or differ in what sources they report. To improve con-
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Figure 1. Observed trends in PM10 reported emissions for selected
countries and SNAP level 1 source categories (source: CEIP, 2012).

sistency between countries, a number of updates have been
made to the resulting data set which mainly affected the re-
ported emissions data.

– Emissions of NOx and NMVOC from agriculture have
been removed for all countries, since reporting of this
source is found to be very inconsistent between coun-
tries. For NOx, 3/4 of the removed NOx (approximately
150 kt annually) was reported by Germany as emissions
from biological N fixation and crop residues, which is
not reported by other countries. There is a risk that some
of the other countries reported emissions from agricul-
tural machinery in SNAP 10 instead of SNAP 8 which
is then “lost”.

– Emission estimates for national shipping were found to
be very inconsistent between countries, partly due to
different definitions for the various sectors (allocation
issue). To avoid inconsistencies and double counted or
missing emissions to the extent possible, all national
shipping including international inland shipping emis-
sions have been replaced with TNO estimates, which
distinguish inland shipping and coastal shipping as sep-
arate sources. Especially with international inland nav-
igation, countries may treat this differently in their in-
ventories.

– Estimates for emissions from agricultural waste burn-
ing have been replaced by GAINS emissions because
only few countries reported emissions from this source,
while emissions are significant especially for PM. This
adds about 350 kt PM10 per year to our inventory, where
the sum of the country values adds up only to 16 kt (in
2009).

– For particulate matter, numerous cases were found
where reported PM2.5 exceeded reported PM10. These
have been corrected by increasing PM10 emissions to
PM2.5 levels. This implies that in such cases the coarse
fraction was set to zero and can be seen as a conser-
vative correction. In nearly all cases the difference was
very small, therefore this change did not affect the total
PM emissions in the inventory very much.
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Figure 2. Trends in reported emissions (left panel) and TNO_MACC-II (right panel) normalized to 2009= 1.

Table 2. Sulfur content assumed in the fuel for the calculation of
in-port emissions (in %).

Year North Sea Baltic Sea Other EU(27) Non-EU(27)

2005 1.335 1.335 1.335 1.335
2006 1.335 1.095 1.335 1.335
2007 1.305 0.975 1.335 1.335
2008 0.975 0.975 1.335 1.335
2009 0.975 0.975 1.335 1.335
2010 0.1 0.1 0.1 1.335

– Emissions from international shipping have been taken
from CEIP (2012) for all years and pollutants.

– NMVOC, SO2, NOx, CO and PM shipping emissions
for the 43 largest North Sea ports (including oil ter-
minals) were additionally included. For the year 2009,
these data were taken from MARIN (Cotteleer and Van
der Tak, 2009). For SO2 and PM a strong decreasing
emission trend for the period 2005 to 2010 is expected
as a result of implementation of European sulfur reduc-
tion policies (EC, 2011). The assumed average sulfur
contents in marine fuel used for the calculation of in-
port emissions is presented in Table 2. SO2 and PM
emissions have been scaled accordingly from the 2009
emission data. Emissions of other substances are as-
sumed to be constant at 2009 level for the 2003–2009
period. From the MARIN emission data, implied emis-
sion factors based on port turnover capacity were de-
rived and applied to the 1200 other ports in Europe, for
which capacity data was taken from the PAREST emis-
sion database (Denier van der Gon et al., 2010). Based
on Google Maps and visual identification of port activ-
ities the 1/8 × 1/16◦ cells occupied by the 43 MARIN
ports have been manually selected (e.g. the Port of Rot-
terdam occupies seven of such cells). Geographical dis-
tribution of emission within cells associated with a cer-
tain port is assumed to be uniform. The location of the
centre point of the 1200 other ports in Europe has been

taken from the PAREST emission database (Denier van
der Gon et al., 2010).

To be suitable as model input the emissions need to be
distributed on a grid (see Sect. 2.3), for which a more de-
tailed sectoral breakdown is needed to allow for a different
spatial distribution of different subsectors and fuels under-
lying the 43 sectors. Therefore, emissions have been dis-
aggregated using the more detailed data available from the
GAINS model and the TNO bottom-up inventory (for CO).
For power plants, residential combustion and road transport
(exhaust) the emissions are disaggregated to main fuel type
(coal, gas, solid biomass, waste or light, medium or heavy
liquid fuels). For some other sectors such as the iron and
steel and non-ferrous metal industries, emissions are disag-
gregated to subsectors. An overview of the disaggregated
sectoral classification is given in the Supplement (Excel file
number 3).

2.2 Particulate matter composition

For particulate matter, the emissions have been further dis-
aggregated from PM2.5 and PM10 to various components in
the coarse and fine mode. To calculate this PM split, more
detailed sectoral information is needed, for example the fuel
type used in combustion installations and the type of instal-
lation. Therefore, the emission data are first disaggregated
to GAINS sector and activity combinations (more than 200
categories).

For each GAINS category, a fractional split between 5 PM
components (EC, OC, SO4, Na and other minerals) was made
separately for the coarse and the fine mode. The fractional
split is constructed in such a way that it adds up to 1, provided
that OC is converted from a C-mass basis to full molecular
mass (FMM). To convert to FMM, OC was multiplied by
a factor 1.3 that accounts for other elements present on OC
(e.g. O, N or S). It is known that the conversion factor of
OC to FMM ranges between 1.1 and 1.8 but here a weighted
average of 1.3 was used for all sources. Since the PM split
provides fractions and not absolute emissions, this has no in-
fluence on total PM emissions. For EC and OC, the split is
based on a recent bottom-up EC and OC inventory for the
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year 2005 (Visschedijk et al., 2007). This inventory involved
creating “best estimates” per GAINS sector and activity com-
bination for EC and OC fractions in PM, based on literature
data and three earlier EC and OC emission inventories.

Particle-bound sulfate is mostly emitted through the com-
bustion of high-sulfur fuels such as coal and residual fuel oil.
In the LOTOS-EUROS model (Schaap et al., 2008) it is esti-
mated that around 2 % of the sulfur is emitted in the form of
particles. When particle mass is calculated based on the SO2
emissions using this estimation, the fraction of sulfur emit-
ted in the form of particles ranges from 0.1 % for gasoline
and diesel combustion in road transport to 10–20 % for coal
and residual fuel oil combustion in energy and manufacturing
industries and in shipping.

The sodium fraction is relatively unimportant to the total
PM but may be useful when looking at base cation deposi-
tion. The sodium content is based on reported sodium content
for 40 PM sources calculated in Van Loon et al. (2005).

The fraction “Other minerals” contains other non-
carbonaceous particles and is calculated as the remaining
fraction after the other fractions have been calculated.

The fractions per GAINS category have been applied to
the emissions of coarse PM (PM10–PM2.5) and fine PM
(PM2.5) for each GAINS category, and subsequently been ag-
gregated to the 77 source categories which are used as input
to the spatial distribution.

EC and OC country total emissions (for both fine and
coarse mode) are given for all years in the Supplement, Excel
file number 5.

2.3 Spatial distribution

The final step in the inventory was the distribution of the
complete emission data set across the European emission do-
main at 0.125◦ × 0.0625◦ longitude–latitude resolution. For
each of the 77 source categories for which emissions are
available, one or more proxies were identified. These proxies
provide the mapping of the emissions of a certain pollutant to
the grid for a given sector and year. For each country, pollu-
tant, sector and year the most appropriate proxy was chosen
in a selection table. An overview of all the proxies used per
sector is given in the Supplement (Excel file number 3).

For point sources, we have made use of the E-PRTR
database (http://prtr.ec.europa.eu/) which provides informa-
tion on the location (longitude, latitude) and emissions of
major facilities in Europe. E-PRTR data were available on an
annual basis from 2007 onwards, while data from the years
2001 and 2004 were available from its predecessor EPER
(EC, 1996). For the intermediate years, data from the closest
year available were used. Since the EPER and E-PRTR data
only contain emissions from facilities above a certain thresh-
old, using these data to distribute total emissions for a certain
sector can only be done for those sectors comprised of large
facilities, e.g. the cement and aluminium industries. Further-
more, a judgement has been made on the quality of the data

before actually using them. For example, there are multi-
ple facilities where the geographical location points to the
administrative location (e.g. company headquarters) rather
than the location where the actual emissions occur. For the
other point sources, and also those in countries which are not
covered by E-PRTR, TNO’s own point source database (de-
scribed in more detail in Denier van der Gon et al., 2010)
was used as a proxy for the distribution of these point source
emissions.

For non-point sources (e.g. residential combustion, trans-
port sectors, agriculture), proxies were selected to distribute
country total emissions over the grid. These proxies include
(among others) total, rural and urban population, arable land,
TRANSTOOLS road network (JRC, 2005). The proxies for
the area sources were assumed to be static in time, e.g.
changes in the population density are not taken into account.
Most proxy maps were taken from Denier van der Gon et
al. (2010) but a number of modifications and improvements
have been made. A new population map for the year 2005
has been implemented at high resolution, and a special proxy
has been developed for the distribution of residential wood
combustion. The latter takes into account both the population
density, but also the proximity to wood. Despite this modifi-
cation for the distribution of residential wood combustion,
an overallocation of the emissions in urbanized centres may
well be present in the spatial distribution. This has previously
been described by Timmermans et al. (2013). However, a
universal, representative and well-documented approach that
justifies a modification of the spatial distribution between ur-
ban and rural areas for Europe does not exist at this moment.

For the actual calculation of the emissions grids, a SQL
server system has been set up which performs all the calcu-
lations. Emissions that could not be distributed (e.g. because
the proxy was not available for that specific country) are by
default distributed using either total population, rural popu-
lation or arable land. In a last step the gridded emissions are
aggregated to SNAP level 1, primarily to reduce the size of
the output emission grid file.

3 Results and discussion

3.1 Analysis of reported emissions

To illustrate that consistency is an issue with reported emis-
sions, Fig. 1 shows reported emissions for five selected com-
binations of country and SNAP level 1 source categories. It
is shown that in a number of cases reporting only started
somewhere during the time series. Also, some of the time
series show unexplained trends (e.g. high emission in LVA
SNAP 34 for 2004; very strong increase in Hungary SNAP
2 in the last years; small emission in the Russian Federation
from SNAP 2 compared to other countries in 2009).

The issue of missing data for earlier years is particularly
important to the total emissions, as illustrated by Fig. 2. The
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Table 3.Overview of total emissions (kilotonne) per pollutant and year for UNECE-Europe (including international shipping), and the overall
reduction in the time period 2009–2003.

2003 2004 2005 2006 2007 2008 2009 Reduction
2003–2009

CH4 48 857 47 965 47 636 47 547 47 390 47 282 46 857 4 %
CO 48 642 47 602 44 905 43 271 41 608 40 739 38 157 22 %
NH3 5786 5732 5675 5624 5645 5576 5543 4 %
NMVOC 15 744 15 367 14 936 14 525 14 123 13 577 12 943 18 %
NOx 20 996 20 913 20 737 20 329 19 941 19 121 18 248 13 %
PM10 5430 5432 5414 5328 5257 5142 5029 7 %
PM2.5 3775 3779 3761 3695 3656 3590 3513 7 %
SO2 17 921 17 353 16 689 16 144 15 815 14 483 13 189 26 %

left panel shows the time series for NOx and PM10 for all sec-
tors, by country group, relative to the emission in 2009. For
the EU15 countries (15 Member States of the EU as of 1995
plus Norway and Switzerland) the trend is a small decrease
indicating improvements in technology and more abatement
in later years. For the EU13 (New EU Member States joined
after 1995, including Croatia) and the other (non-EU) coun-
tries, clearly a large part of the emissions is missing in earlier
years.

The right panel of Fig. 2 shows the same trend data, but
now for the final data set. In this data set, all missing emission
data and erroneous time series were corrected and/or gap-
filled by replacement with other data. NOx and PM trends in
EU countries are decreasing faster than in non-EU countries.
In fact, for PM10 in non-EU countries the total emission is
even slightly increasing.

EMEP (2011) provides an overview of submissions under
the Convention of Long-Range Transboundary Air Pollution.
The report shows that out of the 50 countries that have to
report (excluding the EU as a separate Party), 42 countries
actually did submit an inventory, while 34 submitted their in-
ventory in time with the deadlines. Seven countries submit-
ted an inventory without emission data for particulate matter
(EMEP, 2011). For gridded data, data are to be reported ev-
ery 5 years at a spatial resolution of 50× 50 km2. As for the
reporting in the year 2005, only 17 out of 48 countries in
the EMEP area reported gridded emissions for the main pol-
lutants, and only 15 countries reported gridded data for PM
(EMEP, 2011).

3.2 Resulting emissions

Table 3 lists the total emissions in each year per pollutant
per year. The trend shows that emissions of all pollutants
are decreasing in time. The decrease is most pronounced for
CO and SO2, for which emissions in 2009 are about 25 %
reduced compared to 2003. However, the change in emis-
sions is not uniform. Figure 3 shows the relative reduction
in 2009 compared to 2003 by country group. It can be seen
that for the EU15 countries (plus Norway and Switzerland)
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Figure 3.Relative reduction in emissions per country group in 2009
compared to 2003.

the highest emission reductions were achieved (up to 50 %
for SO2), and also for EU13 countries significant reductions
were found. For the non-EU countries however, emission
reductions were much smaller and even emission increases
were found for CH4 and particulate matter. On the European
seas, most emissions increased going from 2003 to 2009,
most notably for NOx, CO and NMVOC (Fig. 3).

In the Supplement, an Excel file is included which lists
emissions by pollutant for each year between 2003 and 2009.
The file contains an overview of country totals as well as a
more detailed overview with emissions by sector.

3.2.1 Comparing to other data sets

To assess the quality of the resulting data set, and get some
feeling for the major uncertainties, we have compared our
results to the official reported emissions, GAINS (IIASA,
2012) and EDGAR (JRC, 2011). Figure 4 shows a compari-
son between the different emission inventories for NOx and
PM10, for all countries included in our inventory, per SNAP
level 1 source category. It is observed that our inventory,
GAINS and EDGAR match reasonably well, while reported
emissions are much lower. At sector level, differences be-
tween our inventory and GAINS are minor, while EDGAR
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Figure 4. Comparison between the TNO_MACC-II results and the
reported emissions, GAINS and EDGAR v4.2, for NOx (upper
graph) and PM10 (lower graph), by SNAP level 1 sector.

shows higher emissions from SNAP 1 (electricity generation)
and lower emissions for SNAP 8 (non-road transport), and
also includes NOx emissions from SNAP 10 (agriculture) not
included in any other inventory. The latter is most likely an
allocation issue, since NOx emissions from agricultural ma-
chinery are included in SNAP 8 in our inventory, as well as
in GAINS.

Figure 5 shows the same figure, but now per country
group, for SO2 and PM10. This figure not only includes re-
ported emissions, but also the selection of the reported emis-
sions that was used in this study. As described in Sect. 2.1,
some of the reported data may not be used due to inconsistent
time series or other reasons. It is shown that for EU15 (EU
Member States as of 1995, plus Norway and Switzerland) the
differences are small, while for the EU12 (here, the newer EU
Member States) the reported emissions are lower due to gaps
in these data. For the non-EU countries (NONEU) reported
emissions are negligible compared to the other data sets, es-
pecially for PM. Our emission data set is similar to GAINS,
while EDGAR shows a different picture. SO2 emissions from
EU15 are higher, from EU12 lower. Higher NONEU emis-
sions may be partly explained by the fact that the Russian
Federation is completely included in EDGAR, while in our
inventory and in GAINS only the European part (west of
60◦ E) is included.
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Figure 5. Comparison between the TNO_MACC-II results and
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Figure 6. Total EC and OC emissions per SNAP in coarse (2.5–
10 µm) and fine mode (< 2.5 µm) for UNECE-Europe (including sea
regions) for the year 2005. Note that fine EC and OC are plotted on
the left y-axis, while coarse EC and OC are plotted on the right
y-axis.

3.2.2 PM fractions

PM10 and PM2.5 are broken down into components (EC, OC,
SO4, Na and other minerals) using the developed PM split.
Figure 6 shows the EC and OC emissions per SNAP cate-
gory for the European domain. In terms of total mass, the
particulate carbonaceous emissions < 2.5 µm were about 5
times higher than the coarse fraction (< 2.5–10 µm) emis-
sions. The most important source of fine OC is residential
combustion (SNAP 2), particularly related to wood combus-
tion. For coarse OC however, agriculture is the most impor-
tant source of emissions. For EC residential combustion and
transport (diesel combustion) are the most important sources
for fine EC, while for coarse EC power plants and industry
are the main sources.

The relative importance of source sector contributions
varies substantially between countries. As an example, the
EC emissions (for coarse and fine mode separately) for

www.atmos-chem-phys.net/14/10963/2014/ Atmos. Chem. Phys., 14, 10963–10976, 2014



10970 J. J. P. Kuenen et al.: TNO-MACC_II emission inventory

0

2

4

6

8

10

12

14

16

18

20

1 2 34 5 6 7 8 9 10

Em
is

si
on

 (k
to

n)
 

SNAP level 1 source category 

EC emissions for Poland in 2009 

EC_coarse

EC_fine

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 34 5 6 7 8 9 10

Em
is

si
on

 (k
to

n)
 

SNAP level 1 source category 

EC emissions for Netherlands in 2009 

EC_coarse

EC_fine

Figure 7. EC emissions in Poland (left panel) and the Netherlands (right panel) per SNAP level 1 source category in 2009.

Figure 8. Spatially distributed NOx emissions from the year 2009 for all sources.

Poland and the Netherlands are shown (Fig. 7). In Poland,
high EC emissions resulted from coal and wood combustion
in the residential sector, which are much less relevant for the
Netherlands. Total emissions from the road transport sector
in the Netherlands and Poland are quite similar – the larger
fleet size in Poland is more or less compensated by the lower
share of diesel in the fuel mix.

3.3 Spatial distribution

The result of spatially distributing the emissions using the
various proxies is shown for NOx and EC (< 2.5 µm) for the
year 2009 (Figs. 8 and 9, respectively). The major cities, ma-
jor transport routes and shipping routes at sea can be identi-
fied as important sources in these maps.

Figures 10 and 11 show also NOx and EC (< 2.5 µm), but
now the difference from 2003 to 2009. Positive numbers
(blue colour in the maps) indicate a decrease in emissions

from 2003 to 2009, while negative numbers (red colour)
show an increase in emissions. For NOx, it is shown that
most land-based emissions decrease, but in some countries
in eastern Europe an increase is seen, e.g. in road transport
for Poland, Slovak Republic and Bulgaria.

For fine particulate EC emissions are decreasing in most
countries, but also increases are found especially in eastern
Europe and at sea. Highest reductions are achieved in cities
and urban areas, since the initial 2003 emissions in these re-
gions were higher. Increases can be due to a growth in ac-
tivity – e.g. for the Slovak Republic, the increase is due to
higher reported emissions of PM2.5 from road transport in
2009 compared to 2003. Emissions from international ship-
ping increased on all seas (CEIP, 2012).

To ensure consistency at borders, we have chosen to use a
generic spatial distribution methodology. To account for sud-
den changes in point source emissions, e.g. due to implemen-
tation of emission abatement measures, E-PRTR data were
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Figure 9. Spatially distributed EC emissions (fine mode) from the year 2009 for all sources.

used on an annual basis for the distribution of the emissions
over the various point sources. As an example, the share of
each major power plant in the total SO2 emission from the
power plant sector in Spain is shown in Fig. 12. The largest
emitters in 2003 have reduced their emissions drastically.
This causes some of the less important plants to become rel-
atively more important, even though their absolute emission
did not change. It was confirmed that in these specific cases
for Spain, the power plants switched fuel (using coal with
less or no sulfur) or installed advanced control technologies
for desulfurization. The use of annual E-PRTR data for these
large point sources enables us to reflect these changes from
year to year. As mentioned earlier, for the years 2003, 2005
and 2006 no point source information was available and the
closest year available has been used instead.

3.4 Uncertainties

A typical emission inventory is compiled by collecting ac-
tivity data and appropriate emission factors, according to the
EMEP/EEA Guidebook (EEA, 2013):

Emissionpollutant=
∑

activities
Activity rateactivity× (1)

Emission factoractivity,pollutant

Although for some sectors the equation to be used to es-
timate emissions is more complicated than a simple mul-
tiplication of a variable (Activity rateactivity) and a parame-
ter (Emission factoractivity,pollutant), in general such a simple
equation can be used to obtain uncertainty estimates. For a

more detailed treatment of the uncertainty calculations see
EEA (2013, Chapter A5, Uncertainties).

For activity data like statistics the overall estimate of un-
certainty would be 5–10 % (EEA, 2013). However, for the
emission factors this is much more complicated as it may
differ by source and pollutant and is often not known. To
tackle this issue, a system has been developed that rates the
uncertainty of emission factors (Table 4). This system makes
it possible to give different ratings to various pollutant emis-
sion factors for a single source. As an illustration and indi-
cation of uncertainty we reproduce the general assessment of
emission factors uncertainties for European emissions (Ta-
ble 5). The values in Table 5 provide a good approximation
of the uncertainty in the TNO_MACC-II emission inventory,
as well as the country reported data being at the base of
our inventory. A more elaborate uncertainty analysis has not
been made. Although such an uncertainty analysis is desir-
able it should be realized that it is a highly complicated and
time consuming endeavour. The mixing of the different ap-
proaches to obtain the most reliable and consistent data set
asks for a complicated weighing of uncertainties, that differs
country by country. Moreover, it may not be entirely feasible
as we use country reported data (for good reasons) but the
detailed information such as uncertainty in national statis-
tics and often country-specific emission factors is simply not
available.

The PM10, NOx, SO2 and NH3 emissions data offi-
cially submitted by EU Member States and other EEA
member countries follow common calculation (EEA, 2009)
and reporting guidelines (UNECE, 2003). The European
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Table 4.Uncertainty rating definitions used for air pollutants in the Emission Inventory Guidebook (source: EEA, 2013).

Rating Definition Typical error range

A An estimate based on a large number of measurements made at a 10 to 30 %
large number of facilities that fully represent the sector

B An estimate based on a large number of measurements made at a 20 to 60 %
large number of facilities that represent a large part of the sector

C An estimate based on a number of measurements made at a 50 to 200 %
small number of representative facilities, or an engineering
judgement based on a number of relevant facts

D An estimate based on single measurements, or an engineering 100 to 300 %
calculation derived from a number of relevant facts

E An estimate based on an engineering Order of magnitude
calculation derived from assumptions only

Figure 10.Change in NOx emissions between 2003 and 2009 in Europe, for all sources.

Environment Agency (EEA, 2011) assesses the uncertainty
in emissions for the SO2, NOx and NH3 as follows:

– Sulfur dioxide emission estimates in Europe are thought
to have an uncertainty of about 10 % as the sulfur emit-
ted comes from the fuel burnt and therefore can be
more accurately estimated. However, because of the
need for interpolation to account for missing data the
complete data set used here will have higher uncertainty.
EMEP has compared modelled (using emission inven-
tory data) and measured concentrations throughout Eu-
rope (EMEP, 1998). From these studies differences in
the annual averages have been estimated in the order of
30 % consistent with an inventory uncertainty of 10 %

(there are also uncertainties in the measurements and
especially the modelling).

– Nitrogen oxide emission estimates in Europe are
thought to have an uncertainty of about±20 % (EMEP,
2009), as the NOx emitted comes both from the fuel
burnt and the combustion air and so cannot be estimated
accurately from fuel nitrogen alone. However, because
of the need for interpolation to account for missing data,
the complete data set used will have higher uncertainty.

– Ammonia emissions are relatively uncertain. NH3 emis-
sion estimates in Europe are more uncertain than those
for NOx or SO2 due largely to the diverse nature of
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Table 5.Main relevant NFR source categories with applicable quality data ratings (source: EEA, 2013).

NFR Source category SO2 NOx VOC CO NH3

1.A.1 Public power, cogeneration and district heating A B C B
1.A.2 Industrial combustion A B C B

1.A.3.b Road transport C C C C E
1.A.3.a,c,d,e Other mobile sources and machinery C D D D

1.A.4 Commercial, institutional and residential combustion B C C C
1.B Extraction and distribution of fossil fuels C C C C
2 Industrial processes B C C C E
3 Solvent use B
4 Agricultural activities D D D D
6 Waste treatment B B B C
6 Disposal activities C C C C E

Figure 11.Change in EC (< 2.5 µm) emissions between 2003 and 2009 in Europe, for all sources.

agricultural sources – which account for the vast major-
ity of NH3 emissions. It is estimated that they are around
±30 % (EMEP, 2011). The trend is likely to be more ac-
curate than the individual absolute annual values – the
annual values are not independent of each other.

The above estimates are in line with De Leeuw (2002) (but
also largely based on the same methodologies) who reported
uncertainties in emissions as about 50 % for NH3, VOC and
CH4. NOx emission estimates in Europe were thought to
have an uncertainty of about±30 % and SO2 emission esti-
mates in Europe were thought to have an uncertainty of about
±10 % as the sulfur emitted comes from the fuel burnt and
so can be relatively accurately estimated. However, because
of the need for interpolation to account for missing data the

complete EU data set studied by De Leeuw (2002) will have
higher uncertainty.

More recently, Nielsen et al. (2014) reported Danish un-
certainty estimates for the total emissions of air pollutants
from Denmark. The Danish uncertainty estimates were still
based on the simple Tier 1 approach described by Pulles
and Van Aardenne (2004). The uncertainty estimates are
based on uncertainties for fuel consumption and emission
factors for each of the main SNAP source categories. Un-
certainty in total Danish emissions for pollutants as used in
the TNO-MACC_II inventory were estimated as SO2 (16 %),
NOx (39 %), NMVOC (23 %),CO (42 %), NH3 (29 %), PM10
(289 %) and PM2.5 (347 %) (Nielsen et al., 2014). For SO2,
NOx and NH3 this is all rather consistent but it should be
noted that always rather simple Tier 1 methods were used
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Figure 12. Contribution of the top-7 SO2 emitting power plants in Spain in 2003 to the annual total SO2 emissions from the power plant
sector.

because the data to do a complete detailed uncertainty anal-
ysis of all relevant source are simply not available. Remark-
able in the reporting by Nielsen et al. (2014) is the high un-
certainty in PM emissions. This is mostly due to the high
uncertainty in emission factors for residential combustion
which is one of the key sources of PM in Europe. However, it
is not so much uncertainty as well as definition of PM mea-
surement methodology which is especially variable for resi-
dential combustion stoves (Nussbaumer et al., 2008). Since
different countries use different methodologies this results in
extremely high uncertainty of the order of 200–300 % as re-
ported by Nielsen et al. (2014).

Independent of the uncertainty in national total emissions
is the uncertainty in spatial distribution of the emissions
within a country which is done using proxy data. Some prox-
ies are more accurate than others. For example a point source
database for power plants is fairly accurate although some
uncertainty is present related to the specific fuel use, fuel
quality and operation times. For some other proxies, e.g. the
population density used to distribute the emission from wood
stoves, the accuracy of this proxy is not known as we do not
really know where the wood stoves are. The uncertainty of
using such a proxy increases when going from a large to a
smaller grid size. Moreover, for some countries the proxy
data like road networks or industrial activity may more de-
tailed than for other countries. Hence the uncertainty may
vary from country to country.

4 Conclusions

A model-ready emission inventory at high spatial resolution
for UNECE-Europe for 7 consecutive years (2003–2009)
was constructed, which combines the advantage of using of-
ficial reported emissions to the extent possible. For air qual-
ity modelling and environmental impact assessment studies,

a good understanding of the magnitude and location of the
sources of pollution is of crucial importance for deriving pol-
icy conclusions. The main advantages of this inventory are:

– We use source sector-specific data in a harmonized way,
which allows both tracking of sources in the modelled
data as well as trend analysis without artifacts such
as differences between annual reporting years. For in-
stance, NMVOC and NOx from agriculture were ex-
cluded for all countries as reporting was found to be
very inconsistent.

– The application of a consistent gridding methodology
for all countries ensures patterns across borders do not
show sudden changes or jumps – e.g. consistent land
use and animal density maps to distribute agricultural
emissions.

– To model particulate matter concentration and fate,
models need to break down PM into components with
different behaviour. We now provide such data which
are not available from the official reporting.

– By using the point source data from E-PRTR and EPER,
better locations of point sources were brought into the
database. Moreover, the point source gridding data is
now year-specific, whereas earlier the 2005 distribution
was used as a proxy for all years.

– Emissions in ports were added in a harmonized way for
the whole of Europe.

– Elemental carbon and/or black carbon is increasingly
important in discussion of health effects of PM expo-
sure as well as climate discussion focusing on short-
lived climate forcers. By bringing this component into
the gridded emission data sets, the models are able to
better cater for policy makers in this respect.
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– Finally, since the data are as much as possible (given
our quality criteria) from the official reported data, the
data can be readily used for policy evaluation.

Our emission data set has been compared to other emis-
sion inventories to assess the quality of the inventory. Since
GAINS was a primary data source used, a good match
was found with this inventory. Between our inventory and
EDGAR differences were found, which can partly be ex-
plained by allocation issues and by a somewhat different do-
main definition.

Uncertainties in emission inventories are difficult to quan-
tify, especially when multiple sources are combined. General
approaches to uncertainty exist, but data collection is difficult
especially at European scale.

A potentially new way to address uncertainty in large point
sources is by comparing the emission maps with satellite
measurement. A first comparison between OMI satellite data
and SO2 source strength of major point sources (Visschedijk
et al., 2012) revealed that for some major point sources in
eastern Europe, no OMI signal was found, which could indi-
cate that the point source closed, or changed fuel. The result-
ing information from this type of comparisons is very useful
to further improve the point source databases in the future.

All in all, this paper presents a significantly improved spa-
tially explicit emission data set for the European domain.
However, one should bear in mind the limitations of the Eu-
ropean scale emission inventory. Since the spatial distribu-
tion of national emissions is done using a generic system of
point sources and proxies, differences with other inventories
may exist, especially when zooming in to the local scale such
as a large city or urban area.

A next step would be to include the “semi-natural” sources
in our emission inventory, which are not covered by official
inventory data (e.g. resuspension of dust and NOx emissions
from soils). With decreasing emissions from most anthro-
pogenic sources, these become increasingly important for the
comparison between modelled and observed concentrations.

The Supplement related to this article is available online
at doi:10.5194/acp-14-10963-2014-supplement.
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