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Abstract: The importance of ensuring the adequacy of urban ecosystem services and green infras-
tructure has been widely highlighted in multidisciplinary research. Meanwhile, the consolidation
of cities has been a dominant trend in urban development and has led to the development and
implementation of the green factor tool in cities such as Berlin, Melbourne, and Helsinki. In this
study, elements of the green factor tool were monitored with laser-scanned and photogrammetrically
derived point cloud datasets encompassing a yard in Espoo, Finland. The results show that with the
support of 3D point clouds, it is possible to support the monitoring of the local green infrastructure,
including elements of smaller size in green areas and yards. However, point clouds generated by
distinct means have differing abilities in conveying information on green elements, and canopy
covers, for example, might hinder these abilities. Additionally, some green factor elements are more
promising for 3D measurement-based monitoring than others, such as those with clear geometrical
form. The results encourage the involvement of 3D measuring technologies for monitoring local
urban green infrastructure (UGI), also of small scale.

Keywords: point cloud; green factor; urban green infrastructure; laser scanning; photogrammetry

1. Introduction

Ensuring the adequacy and quality of urban ecosystem services and green infrastruc-
ture has been widely highlighted in the urban land use and planning literature in recent
years. In an urban setting, ecosystem services distinguish between nature’s functions in
production, regulation, support and cultural services, and also recognize nature’s intrinsic
function [1]. Like ecosystem services, urban green infrastructure (UGI) has become a
central concept in land-use planning and policy [2]. It refers to, or is managed for, both
natural and artificial elements of nature that are designed to provide ecosystem services [3].
UGI covers for example parks, public green space, allotments, green corridors, street trees,
urban forests, roof and vertical greening, and private yards [4].

Urbanization and densification of housing are global phenomena [5]. Apart from
the structural change, urban living seems to be a matter of dwelling preferences, too. At
the same time, observation of and movement in nature have been shown to play a part
in housing desires and proven to enhance human well-being and health [6-8], which the
global circumstances under COVID-19 continue to underline [9-11]. This poses a challenge
for the densification of cities and puts pressure on preserving and promoting the natural
environment as much as possible in densely populated areas. Thus, recent studies on
urban greening have pointed out the environmental justice and importance of small-scale
solutions, as they enable access to nature in cities more widely than large-scale and more
concentrated urban green projects, while most likely being easier to implement [12,13].
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Yards have, until recently, played a minor role in the scope of UGI assessments,
even if their importance is similar to other urban green areas [14,15]. Their proportion
in the urban morphology is usually not insignificant, either; according to the survey of
Loram et al. [16], the urban area covered by domestic yards ranged from 21.8% to 26.8% in
six studied cities in the UK. According to Cameron et al. [4], there are significant differences
in both the form and management of yards which radically influence their benefits; that
is, their quality affects their impact on ecosystem services, such as carbon sequestration
and storage potential [15]. According to Clark et al. [17], in many cities, private trees
dominate tree canopy cover. As densification often means fewer private trees, it might lead
to diminishing urban tree canopy cover. By acknowledging the role of private land and
yards, the discussion on UGI expands into the private realm [18].

Awareness on the importance of local UGI and the requirement for its comprehensive
planning has led to the implementation of the green factor (i.e., green area ratio, green
space factor) tool in cities such as Berlin in 1997 [19], Helsinki in 2014 [20], and Melbourne
in 2020 [18]. The purpose of the green factor is usually to ensure the sufficient amount of
total green [21], as well as quality in the planning of a new district [22] by generating a
numeric value for the planned and remaining green elements of the area. In the case of
Helsinki’s green factor, for example, each element is given a multiplier, which is then used
to calculate the value of the plan. This way;, it is possible to compare distinct plans and
to assess how the sustainability goals and targets are achieved. The green factor is still
less dealt with in research, and only few practical application experiences are described
in the literature [20,21]. However, in Helsinki, for example, the recent political debate has
pointed out the necessity to extend the use of the green factor tool to urban infill projects,
instead of limiting its use to new area development [23]. This puts pressure on developing
the tool further, and on evaluating its possibilities to assess the already existing vegetation,
instead of using it only as a regulative tool in the planning phase.

Three-dimensional point clouds generated with laser scanning and photogrammetry
allow monitoring of physical properties and visually detectable elements of the environ-
ment. 3D point clouds are applied in natural resource management and forestry [24-26],
disaster management [27,28], landscape monitoring and planning [29,30] as well as in
the monitoring of individual urban buildings and urban scenery [31], urban trees [32,33],
and streetscapes [34,35]. However, especially in 3D city modeling, the emphasis has tradi-
tionally been on buildings, rather than on small-scale natural environments, yards, and
their elements. The applications on forestry research have been widely studied from both
structural [36-38] and individual tree points of view [39-43], including forest inventory
and change prediction [44-46]. Studies in forestry have also specified levels of detail for a
single tree model [47]; however, methods in the field mainly concentrate on tree attributes.
According to Casalegno et al. [48], Alavipanah et al. [49], and Feltynowski et al. [50], until
recent years, the use of laser scanning and photogrammetry-aided methods have been
implemented in surprisingly few applications in UGI assessments, even if its 2D-based
applications, such as satellite data and mapping, are diverse.

The existing point cloud-based applications for UGI include, for example, quantitative
metrics to estimate its overall volume and to demonstrate the spatial and volumetric
heterogeneity of it. Casalegno et al. [48] demonstrated a voxel (volumetric pixels)-based
assessment of UGI from waveform airborne lidar, including three different structures:
grass, shrubs, and trees. The study resulted in differing outcomes with the evaluations
based on other remote sensing data. A similar result has been achieved with the so-called
green view index (GVI), a method usually utilizing panoramic photographs to assess the
greenery of urban views enabling the local vertical assessment of the views. Larkin and
Hystad [51] noted that the green views did not always correlate with the satellite-based
normalized difference vegetation index (NDVI). Hence, UGI research could benefit from
digital vertical (3D) data to supplement the hegemonic role of horizontal (2D) data.

Our aim is to develop 3D point cloud-based assessment of local UGI. We assess how
well the green elements central to green factor assessment are visible and detectable in 3D
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point cloud data, focusing on the local scale. The idea is therefore not to include the existing
criteria of the green factor in the study set, as it is, in many ways, bound to the planning
phase, as well as to the two-dimensional information used in the planning documents.
Instead, the idea is to point out aspects and possibilities that could be useful in the future’s
3D measuring-assisted assessment of local green infrastructure. Hence, our approach
advocates the use of digital 3D data for built and existing local green elements in contrast
to the typical approach in which the green factor tool is used mainly for planning and as
2D information.

More specifically, our objective is to explore the distinct point cloud data sets” ability
to convey information on green elements, especially when comparing them qualitatively in
terms of geometry and appearance, and further with details and completeness of various
green elements. Finally, the results are discussed in terms of the development of 3D point
cloud-based assessments for local UGI.

2. Materials and Methods
2.1. Study Site, Measurements, and Data Sets

The study field encompasses the yard of Traskdnda, an 1890s manor located in south-
ern Finland (60.2370° N, 24.7090° E), 18 km from the Helsinki city center. Currently owned
by the city of Espoo, the Traskdnda manor and its yard are part of a nature reserve and
park [52]. The diversity of its green elements makes the manor yard a practical study field
for monitoring the use of point clouds for the purposes of the green factor, since many of
the green factor elements can be found in the well-managed park area.

Detection of the reference elements was tested with four distinct point cloud data sets
collected during August and September 2020. The devices utilized were (1) GeoSLAM ZEB
Revo RT (mobile laser scanning), (2) Leica RTC360 (terrestrial laser scanning), (3) Tarot T960
(unmanned aerial vehicle (UAV) photogrammetry from 61 m), and (4) DJI Phantom 4 Pro+
(UAV photogrammetry from 32 m). All the datasets were georeferenced and presented in
an ETRS-TM35FIN (EPSG:3067) coordinate system.

Reference data were gathered during two field inspections in August 2020. Pho-
tographs taken with an iPhone 6, and notes were utilized as reference material and in study
designs. These were also used for including and excluding elements from the analysis
(see Section 2.2). The characteristics of the point cloud data sets were explored visually,
acknowledging the special characteristics of the study field, that is, acknowledging the
elements that were located only under the canopy.

2.1.1. Tarot T960

The Tarot T960 hexacopter is an unmanned aircraft system (UAS). In its basic config-
uration, the UAV is equipped with a 3-axis gimbal stabilized Sony 36.3-megapixel A7R
digital single-lens mirrorless (DSLM) camera fitted with a Zeiss Loxia 21 mm f/2.8 lens,
resulting in a field of view (FoV) of 91° [53]. The drone system was configured for a
lightweight survey mission with half-capacity battery, the simulated hover flight time
being 19 min.

The flight was planned with Mission Planner (version 1.3.68 build 1.3.7105.26478) as
a cross-grid oblique imaging survey, and the flight path length was 2771 m. The survey
flight altitude was 61 m according to Agisoft Metashape Professional (version 1.6.5), and
the ground sample distance (GSD) was 12 mm/px. The take-off and landing were operated
manually, while the rest of the flight was controlled by the flight control unit (FCU). The
survey was conducted as a single flight with a 12 min flight time. The resulting 354 images
were processed with Agisoft Metashape Professional to form a georeferenced point cloud
with a control point root mean square error (RMSE) of 12 mm. Georeferencing was done
using five ground survey global navigation satellite system (GNSS) control points. The
survey area was 3.45 hectares. Figure 1 shows the Tarot T960 survey flight plan and the
resulting flight path. The planned path is shown in yellow, while the red path illustrates
the realized flight path.
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Table 1. Tested green factor elements according to, and adapted from, the Helsinki green factor tool.

Element Description Location in the Test Area
Large (>10 m) tree in good condition, at least 3 m In cluster, open area
Small (<10 m) tree in good condition, at least 3 m In cluster, open area
Tree in good condition (1.5-3 m) In cluster, open area
Natural ground vegetation Under the canopy
Large shrubs (3 m? each) Under the canopy
Flowering shrubs Open area
Perennials Open area
Lawn Open area
Perennial vines Mostly open area
Semipermeable pavements: grass stones Open area
Permeable pavements: gravel and sand surfaces Open area
Plants with impressive blooming Open area
Dead wood/stumps Under the canopy

2.3. Study Design

In this study, we assessed how well the elements central to green factor assessment
were visible and detectable via 3D point cloud data. We combined the concept of the
green factor and means of 3D measuring, namely, photogrammetry and laser scanning.
In our approach, we examined monitoring the existing local green infrastructure with
semi-automated digital means, focusing on the green elements that are not usually in-
cluded in urban assessment with 3D point clouds, but which could benefit the green
factor assessment.

Based on a qualitative inspection, the point clouds of different sensing methods
were compared in terms of their ability to convey information on the green elements
and their characteristics. In 3D visualization and modeling studies, along the geometric
representativeness, appearance has long been recognized as an important variable for
qualification of a 3D visualization [61-63]. Appearance is non-geometric information that
is defined here as the visual comprehensiveness and informativeness that is bound to the
interplay of the colors and surface of the object. Since it was possible that an element
had an exact geometry but non-informative coloring, or vice versa, the geometry and
appearance of the element were distinguished. Appearance is represented by the RGB
color information captured from the surface of the objects in the scene by camera sensors.

In addition, we found it essential to evaluate the capability of the point cloud data
to convey information both on the quality and details, as well as on the volume and/or
amount of green elements. For this, we analyzed green elements by rating their (1) details
(i.e., especially green elements’ characteristics and distinctiveness) and (2) completeness
(i.e., especially green elements’ volume and/or amount). As with the geometry and
appearance, the details and completeness were distinguished; elements such as flowers of
a shrub may have been well-identifiable from the point cloud, but the size of the shrub was
still difficult to determine, or vice versa.

We analyzed the quality of geometry by rating each data set according to the height
ramp colored point cloud. This way, the geometric differences between the point clouds
could be highlighted. In turn, we analyzed the appearance by rating each data set according
to their RGB colored point clouds (i.e., the RGB colors retrieved from the photographs
generated with the respective measuring system). To conclude, we ended up with four
categories (Figure 5) that scored according to a four-point (0-3) grading table (Table 2).
By identifying these parameters, the study seeks to broaden the possibilities of 3D-based
assessment of UGL
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Table 3. The point cloud data sets” ability to convey information on the green elements’ geometry, with 3 denoting
good ability, 2 denoting moderate ability, 1 denoting low ability, and 0 denoting no ability to convey information on the
given parameter.

Geometry: Point Cloud Data Sets’ Ability to Convey Information

Tarot T960 DJI Phantom 4 Pro+ Leica RTC360 GeoSLAM ZEB Revo RT
Details Completeness Details Completeness Details Completeness Details Completeness
Large (>10 m') 'treel in good 2 By 5 ) 3 ’ ’ ’
condition
- -
Small (<10 m) tree1 in 3 3 3 3 3 3 2 2
good condition
Very small tree in good
condition (1.5-3 m) ! 1 2 3 3 3 3 3 3
Perennials ! 2 3 2 3 3 3 3 3
Lawn ! 1 2 2 2 2 2 1 2
Perennial vines ! 2 2 2 2 3 3 3 3
Semipermeable sulrfaces: 0 0 0 0 0 0 0 0
grass stones
Permeable pavemlents: 0 0 0 0 0 0 0 0
sand surfaces
Flowering shrubs ! 1 2 1 2 3 3 3 3
Plants with {mpgesswe 2 5 5 3 3 3 3 3
blooming
Large shrubs (3 m? each) 2 1 1 1 1 3 3 3 2
Natural g'rouznd 1 1 1 1 3 3 3 3
vegetation
Dead wood/stumps 2 0 0 0 0 2 2 2 2

! Located in An Open Area; > Located under the Canopy.

Table 4. The point cloud data sets” ability to convey information on the green elements” appearance, with 3 denoting
good ability, 2 denoting moderate ability, 1 denoting low ability, and 0 denoting no ability to convey information on the
given parameter.

Appearance: Point Cloud Data Sets’ Ability to Convey Information

Tarot T960 DJI Phantom 4 Pro+ Leica RTC360 GeoSLAM ZEB Revo RT
Details Completeness Details Completeness Details Completeness Details Completeness
Large (>10 m) 'treel in 3 2 2 2 2 2 1 1
good condition
Small (<10 n‘1)‘ tree1 in 3 3 3 3 5 5 1 1
good condition
Very small tree in good
1 1 2 1 2
condition (1.5-3 m) ! 3 3 3
Perennials ! 3 3 3 3 1 1 1 1
Lawn! 3 2 3 2 2 3 1 1
Perennial vines ! 2 2 3 2 2 2 1 1
Semipermeable ) 3 3 3 3 1 1 0 0
surfaces: grass stones
Permeable pavemfnts: 5 3 2 3 5 3 5 5
sand surfaces
Flowering shrubs ! 3 2 2 2 3 3 1 1
Plants with {mpgesswe 3 3 3 3 3 3 1 1
blooming
Large shrubs
(3 m? each) 2 1 1 2 1 1 2 1 1
Natural grou?d 1 1 2 1 2 5 1 5
vegetation
Dead wood /stumps > 1 1 2 1 2 1 1 0

! Located in An Open Area; 2 Located under the Canopy.
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cloud generated by GeoSLAM ZEB Revo RT. For the Very small tree, the point cloud
generated with Tarot T960 could not provide a complete form (as the trunk was missing)
which eventually also affected the appearance.
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The location of the investigated green elements affected the results; the elements
located under the tree canopy were generally less visible in the data than elements located
in the open area, as shown in Figures 8, 10 and 11.

Apart from the location in the study field (under the canopy vs. open area), the form
of the element affected the results; sand surfaces and lawns were given lower scores than
elements with a more geometric form. For those elements, laser scanning-based solutions
could more likely provide a well-presented geometry; however, the results show the
strengths in appearance of the UAV-based solutions in conveying information on distinct
visual details in elements, such as perennials (Figures 12 and 13).

As shown for blooming shrubs (Figure 14), the laser scanning-based data were more
likely to cover the geometry of the element as a whole. However, for the appearance,
the RGB visualization of the colors was not as informative with GeoSLAM ZEB Revo RT
(Figure 14d,h). RGB visualization would be essential in defining the blooming element of
the shrub.

4. Discussion

By implementing a case test study in Espoo, Finland, our study aim was to support
the monitoring of existing UGI on a local scale. We tested the suitability of distinct 3D
point cloud data by exploring the detectability of visible green elements. In the following,
we conclude the most interesting results with all the tested green elements.

In the case of large trees, the appearance of the top canopy was somewhat lower
in quality in the laser scanning-derived point cloud data due to the perspective of the
terrestrial sensors (Figure 6). The small trees were captured almost equally with all the
tested sensing methods; however, the appearance rating was slightly lower in the laser
scanning -derived point cloud data (Figure 7). In the case of very small trees, the higher
flight altitude reduced Tarot T960’s capacity to capture minor geometries of the elements,
leaving the trunks of the trees missing (Figure 8). The large shrub was located under
a large tree canopy in the test area, which negatively affected both the appearance and
geometry of the element in the UAV-based point cloud data sets. However, the appearance
of the large shrub was also generally low in the laser scanning-derived point cloud data
sets, while its geometry was generally good in them (Figure 9). The results with natural
vegetation (Figure 10) and dead wood (Figure 11) were similar to the large shrub due to a
similar location under a large tree canopy, even if the elements itself were of different size
and geometry.

The tested pavements, including grass stones and sand surfaces (Figure 12), were
not detectable in terms of geometry in any of the point cloud data, and thus were rated
with the lowest possible scores. However, from the appearance point of view and due to
the RGB-coloring, these elements were varyingly detectable. The geometry of the lawn
showed slightly better results in all the point cloud data sets (Figure 12). Geometry of the
perennials, perennial wines (Figure 12), and plants with impressive blooming (Figure 13)
resulted in moderate to good ratings in the photogrammetrically derived point clouds,
and good ratings in the laser scanning-derived point clouds. For these elements, the
appearance was somewhat better with the photogrammetrically derived point clouds,
except for the plants with impressive blooming, for which Leica RTC360 generated equally
good appearance ratings. The UAV-based point clouds had issues with the flowering
shrub’s geometry (Figure 14). Further, the flowering shrub was the only green element
which showed the best appearance with a laser scanning-derived point cloud data set;
however, the differences in the results were only small.

4.1. Suitability of Point Cloud-Based Information for the Purposes of Monitoring Local
Green Elements

The results show that the point clouds originating from different systems have differ-
ing abilities in conveying information on green elements. When looking at the mean results,
there are clear differences in how well the point clouds were able to convey information. In
some cases, there were quite remarkable differences even within single elements as shown
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4.2. Dzﬂferences of Data Acquzsztzon Methods

The results with point cloud data sets were compared in terms of conveying infor-
mation on geometry and appearance (Figure 17). According to the results, differences are
not only found between UAV photogrammetry and laser scanning-based solutions, but
also between UAV photogrammetry methods, as shown in the results with very small
trees, and between laser scanning methods, as shown in the results with flowering shrubs
and lawns. For geometry, Leica RTC360 generated the best mean results, and for appear-
ance, DJI Phantom 4 Pro+ generated the best mean results. The differences in the latter
are explained by the generally low performance of GeoSLAM ZEB Revo RT in qualities
considering appearance.
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DJI Phantom 4 Pro+ generated more detailed results when compared to Tarot T960.
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appearance parameters, while lower flight altitude seems to generally generate better re-
sults when many of the targets are small-scale elements, like many of the elements in the
green factor. The strengths of laser scanning generated point clouds are related to the
quality of geometry [66]. In previous studies, GeoSLAM ZEB Revo RT has been noted to
have lower quality in RGB-colored point clouds [71], which is seen in the results as weak-
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results when many of the targets are small-scale elements, like many of the elements in
the green factor. The strengths of laser scanning generated point clouds are related to the
quality of geometry [66]. In previous studies, GeoSLAM ZEB Revo RT has been noted
to have lower quality in RGB-colored point clouds [71], which is seen in the results as
weaknesses in terms of appearance. To conclude, accuracy of measuring local and small-
scale UGI can be improved when utilizing terrestrial laser scanners and UAV data from
lower flight altitudes.

4.3. Prospects for the Point Cloud-Based Evaluation of the Local Existing Green Factor

Finally, we applied the test results to estimate the capability of point cloud-based
evaluation in the future for existing green infrastructure through the green factor. The
tentative estimations are presented in Appendix B. According to the results, we argue that
elements with clear geometric form have a good potential to be assessed with the support
of point cloud data [72]. The underground (non-visible) and surface-like elements, such
as pavements, are likely to be applied only together with additional information sources.
However, yards are individually structured natural environments, which might pose
challenges for semi-automated assessments [73]. For future use, it is important to notice
that in some cases, point cloud data sets can offer even more detailed and comprehensive
information on the elements than is now defined in the green factor tool. The green factor
tool that was used as a reference tool in this study defines the quantity of elements mostly
in square meters or pieces. This is logical, as the actual green factor tool is intended to
be used in the planning phase. However, for the assessment of the existing green factor,
the tool could be developed to include the qualities of the existing elements in vertical
strata and in volume [42]. In such case, point cloud-based evaluation of green effectiveness
can enable possibilities for geometrically comprehensive assessment of UGI, including the
vertical dimension.

4.4. Remarks on the Study Design and Future Research

The chosen perspective plays a major role in differences between aerial and terrestrial
data capture. Terrestrial sensors are usually utilized to capture features located on, or
near, the ground surface while UAV footage tends to be used for bird’s eye purposes, such
as for capturing tall elements like large trees [73]. Another aspect bound to the chosen
perspective is distance from the sensor to the subject. Laser scanners are designed to
operate in a certain range window that needs to be accounted for. Generally, in surveys of
built environments, UAVs are applied to capture an overview of the area and terrestrial
methods for the close-range targets. However, both methods can be at least theoretically
used for both close and high range purposes. With terrestrial methods, it is easier to cover
the area under the canopy, but it is also possible to fly the UAV under the canopy [74]. This
is not yet a very typical way to advance UAV-based surveying, and in our study, we chose
distinct methods that advocate the differences in their strengths and demonstrate how
these methods complement each other. To conclude, for monitoring elements of differing
sizes, both terrestrial and aerial perspectives are beneficial.

Even though comparing the time consumption of the different methods was not an
objective in our study, it is worth noting that in this study, it took five hours to gather the
terrestrial laser scanning data, while the Tarot T960 survey mission took 12 min. However,
ZEB Revo RT offered relatively fast data capture by covering the test areas in 30 min.
Finally, the manually operated DJI Phantom 4 Pro+ flights took 75 min combined. It should
be noted that the DJI Phantom Pro+ could have been flown higher like the Tarot T960 to
cover the area quicker but with lower resolution. This is an important aspect to consider in
operative surveying; higher resolution data capture generally takes more time but might be
purposeful in some cases. Aerial methods can be scaled easily, and as we have shown, flight
distance had a relatively large impact on the results [75]. On the other hand, in terrestrial
methods, scaling is more limited because of the perspective induced by occlusion [76]. The
final aspect to consider is the amount of detail needed for the given task as the sensor
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should be chosen accordingly. It might not be cost-efficient to gather high-resolution data
if lower resolutions can provide the information needed. Thus, for careful method design
based on the individual characteristics of the targeted yard or similar environment, possible
prior field inquiries are advised.

In our study, we analyzed the green elements manually from the point clouds. In
the future, the possibility to use machine learning to classify the distinct green elements,
even species, is of great interest. The fully automated analysis of point clouds has been
studiedin remote sensing and computer vision research for numerous years [77]. Both
deep learning and machine learning techniques [78] have been tested and deployed in
point cloud data analysis, leading to promising results in urban point cloud classification
via algorithms, such as random forest [79] and presence and background learning [80],
and also via deep-learning architectures, such as SPGraph [81]. Tree attributes, such as
canopy and stem surveying-based quantitative methods, have already been widely studied
for forestry e.g., [35-37,82,83]. For green factor-like evaluations, questions around quality
as well as the variety of objects and species arise. In addition to the green effectiveness
evaluations, there are also other opportunities for the use of point cloud-based information
in the management and planning of local UGI, including private and semi-private entities
such as yards [14-18]. One of the possibilities is to manipulate point cloud-based models
to represent future landscape scenarios’ design and planning [28].

The literature on point cloud-based assessment of urban single green elements, apart
from trees, is still limited [42—44]. Therefore, the criteria for the qualities of the point clouds,
as well as the respective methods, should be further studied in terms of UGI assessment.
In this study we utilized geometry and appearance with a distinction between details and
volume/amount. As we broaden the monitoring of UGI to the detailed vertical strata, also
the criteria and targets of the environmental assessment tools need to be adjusted and
further discussed. Originally, the green factor is a tool intended for evaluating 2D plans,
which does not yet open all the possibilities that the three-dimensional approach offers to
the management of UGI. Consequently, as stated in recent research [42—44], in addition to
technical development, a shift in thinking is required. In the sustainable planning of UGI,
there are still many possibilities that the vertical aspect of local geospatial information has
to offer but have still not yet been utilized up to their full potential. Based on the results of
this study, a point cloud-based green factor calculation is a promising approach that could
be reinforced with machine- and deep-learning techniques in future studies.

5. Conclusions

Detailed evaluation of local UGI is a potential tool in maintaining sustainable urban
environments under the era of consolidating cities. With remote sensing methods, prior
research is oriented on large-scale estimation of UGL Studying the environment to a high
level of detail with photogrammetry and laser scanning is a well-established research
practice, however, apart from trees, it is currently less applied in estimations, such as the
green factor, including single urban green elements. Terrestrial laser scanning, mobile laser
scanning, and UAV photogrammetry were applied for 3D-mapping a yard environment in
high detail. The resulting point clouds were compared in their ability to convey information
of urban green elements, both concerning their geometry and appearance. While there
were differences in how successful the distinct sensor methods were in presenting different
green elements, the green elements were also not equally well-captured in the data. This
was seen especially with the surface-like elements, and with the elements located under the
canopy or on the ground within natural vegetation. Thus, while point clouds appear to be a
potential tool in future estimations of the existing green factor of a single area, the individual
characteristics of the study site may play a great role in how successful the monitoring of
green elements will be in quality. Therefore, we suggest that the implementation of point
cloud-based methods should be designed according to the desired level of detail, to the
division of tall and small-scale elements, and to the number of green elements located
under the canopy. Additionally, further development of the green factor or similar tools
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would be needed to better allow the evaluations of the green effectiveness of the existing
local UGI, as the green factor is now mainly applied as a regulative tool in planning.
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Appendix A

Table A1. Excluded green factor elements.

Element Group Element Description

Stormwater management solutions Rain garden (biofiltration area) with a broad range of layered

Infiltration pit (underground)

Retention or detention basin or swale covered with vegetation
or aggregates (permeable soil)

Retention or detention pit, tank or cistern (underground, notice
units: volume!)

Biofiltration basin or swale

Capturing stormwater from impermeable surfaces for use in
Bonus elements irrigation or directing it in a controlled manner to permeable
vegetated areas

Directing stormwater from impermeable surfaces to
constructed water features, such as ponds and streams, with
flowing water

Preserved vegetation and soil Preserved natural meadow or natural ground vegetation

Preserved natural bare rock area (at least partially bare rock
surface, not many trees)

Planted /new vegetation Meadow or dry meadow

Cultivation plots

Green wall, vertical area

Pavements Impermeable surface

Stormwater management solutions Intensive green roof/roof garden, depth of substrate 20-100 cm

Semi-intensive green roof, depth of substrate 15-30 cm

Extensive green roof, depth of substrate 6-8 cm

Pond, wetland or water meadow with natural vegetation
(permanent water surface at least part of the year; at other
times the ground remains moist)

Bonus elements Fruit trees or berry bushes suitable for cultivation (10 m? each)

Boxes for urban farming/cultivation

Permeable surface designated for play or sports (e.g., sand- or
gravel-covered playgrounds, sports turf)

Communal rooftop gardens or balconies with at least 10% of
the total area covered by vegetation
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Appendix B

Table A2. Tentative estimation based on the study results; possibility to utilize point clouds in green factor-based assessment

of existing vegetation.

Element Group (in the Original
Green Factor)

Element Description (in the Original
Green Factor)

Unit (in the Original Green Factor)

Potential to Utilize Point Clouds as

Part of the Existing Green Factor

Assessment (Tentative Estimation)

Preserved large (fully grown > 10 m)

Preserved vegetation and soil tree in good condition, at least 3 m pcs Yes
(25 m? each)
Preserved small (fully grown < 10 m)
tree in good condition, at least 3 m pcs Yes
(15 m? each)
Preserved tree in good condition
o pcs Yes
(1.5-3 m) or a large shrub (3 m* each)
Preserved natural meadow or natural 2 Yes
ground vegetation m
Preserved natural bare rock area (at
least partially bare rock surface, not m?2 Yes
many trees)
. Large tree species, fully grown > 10 m
Planted /new vegetation cs Yes
/ 8 (25 m? each) P
Small tree species, fully grown < 10 m
- cs Yes
(15 m? each) P
Large shrubs (3 m? each) pcs Yes
Other shrubs m? Yes
Perennials m? Yes
Meadow or dry meadow m? No, or only as supportive source
Cultivation plots m? Needs verification
Lawn m? Yes
Perennial vines (2 m? each) jole) Yes
Green wall, vertical area m? Yes
Pavements Semipermeable pavements (e.g., grass m? No, or only as supportive source
stones, stone ash)
Permeable pavements (e.g., gravel m? No, or only as supportive source
and sand surfaces)
Impermeable surface m? No, or only as supportive source
Stormwater management solutions Rain garden (biofiltration area) “.nth a m? No, or only as supportive source
broad range of layered vegetation
Intensive green roof /roof garden, 5 e
depth of substrate 20-100 cm m Needs verification
Semi-intensive green roof, depth of m? Needs verification
substrate 15-30 cm
Extensive green roof, depth of m2 Needs verification
substrate 6-8 cm
Infiltration basin or swale covered
with vegetation or aggregates (no 2 .
permanent pool of water, m No, or only as supportive source
permeable soil)
Infiltration pit (underground) m? No, or only as supportive source
Pond, wetland or water meadow with
natural vegetation (permanent water 2 Need ificati
surface at least part of the year; at m eeds verinication
other times the ground remains moist)
Retention or detention basin or swale
covered with vegetation or aggregates m? No, or only as supportive source
(permeable soil)
Retention or detention pit, tank or
cistern (underground, notice m? No, or only as supportive source
units: volume!)
Biofiltration basin or swale m? No, or only as supportive source
Capturing stormwater from
Bonus elements, max score 1 per impermeable surfaces for use in m? No, or only as supportive source

category

irrigation or directing it in a controlled
manner to permeable vegetated areas
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Table A2. Cont.

Potential to Utilize Point Clouds as
Unit (in the Original Green Factor) Part of the Existing Green Factor
Assessment (Tentative Estimation)

Element Group (in the Original Element Description (in the Original
Green Factor) Green Factor)

Directing stormwater from
impermeable surfaces to constructed 5
water features, such as ponds and
streams, with flowing water

No, or only as supportive source

Shading large tree (25 m? each) on the
south or southwest side of the pcs Yes
building (especially deciduous trees)

Shading small tree (15 m? each) on the
south or southwest side of the pcs Yes
building (especially deciduous trees)

Fruit trees or berry bushes suitable for

.. cs No, or only as supportive source
cultivation (10 m? each) p Y PP

A selection of native species—at least

5 species/100 m? m Needs verification

Tree species native to Helsinki and
flowering trees and shrubs—at least m? Needs verification
3 species/100 m?

Butterfly meadows or plants with ) e
. . . m Needs verification
pleasant scent or impressive blooming
Boxes for urban farming/cultivation m? Needs verification

Permeable surface designated for play
or sports (e.g., sand- or gravel-covered m? No, or only as supportive source
playgrounds, sports turf)

Communal rooftop gardens or
balconies with at least 10% of the total m? Yes
area covered by vegetation

Structures supporting natural and/or
animal living conditions such as
preserved dead wood /stumps or pes
birdboxes (5 m? each)

Needs verification
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