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Entropy is a central concept in both classical and quantum information theory, measuring the
uncertainty and the information content in the state of a physical system. This paper reviews
classical information theory and then proceeds to generalizations into quantum information theory.
Both Shannon and Von Neumann entropy are discussed, making the connection to compressibility
of a message stream and the generalization of compressibility in a quantum system. Finally, the
paper considers the application of Von Neumann entropy in entanglement of formation for both
pure and mixed bipartite quantum states.

CLASSICAL INFORMATION THEORY

In statistical mechanics, entropy is the logarithm of
the number of arrangements a system can be configured
and still remain consistent with the thermodyanmic ob-
servables. From this original formulation, entropy has
grown to become an important element in many diverse
fields of study. One of the first examples was in 1948
when Claude Shannon adopted entropy as a measure of
the uncertainty in a random variable, or equivalently, the
expected value of information content within a message.
Classical information theory, as established by Claude
Shannon, sought to resolve two central issues in signal
processing

1. The compression achievable for a message while
preserving the fidelity of the original information

2. The rate at which a message can be communicated
reliabily over a noisy channel

both of these address the issue of the degree of redun-
dancy embedded within a message and, as we will see,
entropy is found to be a rigorous and useful approach in
this context.

Shannon Entropy and Data Compression

As alluded to previously, classical information theory
is framed in terms of the information content and the
transmission of messages. A message may be defined as
a string of letters chosen from an alphabet of k letters
{a1, a2, ..., ak}. Assuming that each letter ax occurs with
probability p(ax) and is independently transmitted, this
may be denoted as an ensemble A = {ax, p(ax)}; the
Shannon entropy of an ensemble is then defined as

H(A) ≡ H (p(ax), ..., p(ak)) ≡ −
∑
x

p(ax)logp(ax). (1)

where log is taken to be base-2 since we are transmitting
messages with binary bits. This formula is important as
it can be used to quantify the resources necessary to store

information. For instance, if we use a block code which
assigns integers to typical sequences, the information in
a string of n letters can be compressed to H(A) bits.

With this framework and definition, we may now con-
sider the maximum compression of a length n message
without loss of information. The number of bits neces-
sary to transmit the message is given by

H(An) = nH(A). (2)

which simply states that one needs (n times the entropy
of the ensemeble A)-bits.

However, a more interesting case may be considered
if we allow a small error δ > 0 in the encoding of the
message. Specifically, we will only encode messages in
set B ⊂ A such that P (B) ≥ 1− δ. The information size
is given by Hδ(A) which is equal to H(A) in the limit
that δ → 0. Shannon’s noiseless coding theorem then
states that

lim
n→∞

1

n
Hδ(A

n) = H(A) (3)

that is, the optimal compression rate is simply the Shan-
non entropy; this is Shannon’s noiseless coding theorem.

As a basic example of this theorem, consider an infor-
mation source which produces messages composed of the
four element alphabet,

A = {a1, a2, a3, a4}. (4)

Clearly, without any compression, two bits of storage
are necessary for each letter transmitted (bit strings 00,
01, 10, 11) as depicted in the left side of Figure 1. How-
ever, suppose now that symbol a1 is produced with prob-
ability 1/2, symbol a2 with probability 1/4 and symbols
a3 and a4 with probability 1/8. We find that by applying
Eq. 1, we can calculate the entropy to be,
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FIG. 1. Tree representation for the encoding of the above
example.
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x
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Therefore, a coding scheme exists in which the mes-
sages may be transmitted with only 7/4 bits per letter
on average if we assume that the message being transmit-
ted is of length n and n� 1. To realize this compression,
we choose to encode a1 as it string 0, a2 as bit string 10,
a3 as bit string 110, and a4 as bit string 111, we find that
the average length of the compressed string is

1

2
∗ 1 +

1

4
∗ 2 +

1

8
∗ 3 +

1

8
∗ 3 =

7

4
(6)

indicating that we have achieved the best possible com-
pression for an encoding. Also, it should be noted that
this encoding will not compress all messages since clearly
an unlucky and improbable message of repeated a4s
would result in a higher average bit content per letter
than both encodings. Also, note that Figure 1 explicitly
demonstrates that our encoding must not have duplicate
prefixes, otherwise, the encoding is not valid. If letters
of the alphabet share a common prefix, message strings
may not be uniquely decodable.

QUANTUM INFORMATION THEORY

In classical information theory, we have considered a
message of n letters, where n � 1 and each letter is
drawn independently from an ensemble A = {ax, p(ax)}.
The information content of the ensemble is equal to the
Shannon information, H(A), in the limit that n→∞

To generalize this formulation to the quantum regime,
the message may still be regarded as composed of n let-
ters, but now the letters are drawn from an ensemble of

quantum states, X = {px, ρx} where ρx is the quantum
state and px is the a priori probability of selecting that
quantum state. This quantum state may be completely
characterized via the density matrix

ρ =
∑
x

pxρx (7)

The Von Neumann entropy of a quantum state ρ is
then defined as

S(ρ) ≡ −Tr (ρlogρ) (8)

where log is taken to be base d, d being the dimension of
the Hilbert space containing ρ.

Von Neumann entropy enters quantum information
theory in three important ways. First, it is a measure
of the quantum information content of letters in the en-
semble, specifically, how many quibits are needed to en-
code the message without loss of information. Second,
it is also a measure of the classical information content
per letter, where we find the maximum amount of infor-
mation in bits that can be recovered from the message.
And finally, as we will see later, Von Neumann entropy
is used to quantify the entanglement of pure and mixed
bipartite quantum states [1].

Now, returning to Eq. 8, if λxs are the eigenvalues
that diagonalize ρ, then we may rewrite it as,

S(ρ) = −
∑
x

λxlogλx. (9)

One now observes that in this orthonormal basis, the Von
Neumann entropy is equivalent to the Shannon entropy,
Eq. 1,

S(ρ) = H(A) (10)

for the ensemble A = {a, λa}. This indicates that if a
quantum system is a pure separable system, it reduces
to the classical system. For a separable quantum system,
the Von Neumann entropy is another quantification of the
incompressibility of the information content, analagous
to the Shannon entropy of a classical system.

Connection to Thermodynamics

Entropy in statistical thermodynamics and in informa-
tion theory are not disjoint concepts. For instance, if we
take an open quantum system (in contact with its en-
vironment), we may use the mathematical properties of
subadditivity and entropic invariance under unitary evo-
lution for Von Neumann entropy to imply the second law
of thermodynamics.
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To see this, subadditivity may be succinctly expressed
as,

S(ρAB) ≤ S(ρA) + S(ρB) (11)

where ρA is the partial trace over B (ρA ≡ TrB(ρAB))
and ρB is defined similarly. If we consider the system (A)
and the environment (E) to be initially uncorrelated, we
can decompose the density matrix as the tensor product
ρAB = ρA⊗ρB which by Eq. 11 implies that the entropy
is simply the sum of the two states A and B

S(ρAB) = S(ρA) + S(ρB). (12)

If we now allow the system to evolve under a unitary
operator U which acts on the full system, the density
matrix becomes

ρ′AE = UρAEU
−1 (13)

but we know that the entropy of a system is invariant
under unitary evolution S(ρ) = S(UρU−1) so therefore,

S(ρ′AE) = S(ρAE). (14)

Finally, by invoking Eq. 11 again on the state ρ′AE and
using Eq. 12 we find that

S(ρ′A) + S(ρ′B) ≥ S(ρAE) (15a)

S(ρ′A) + S(ρ′B) ≥ S(ρA) + S(ρB) (15b)

so therefore, the basic mathematical properties of Von
Neumann entropy implies that the entropy of the uni-
verse, that is, the sum of A and E, may not decrease,
analagous to the second law of thermodynamics.

Quantum Data Compression

Now, as in the classical case, Von Neumann entropy
provides us a tool to address the issue of redundancy
within a message. However, now in the quantum regime,
we instead are seeking to compress the message into a
smaller Hilbert space, H, without compromising the fi-
delity of the message.

As before, consider a message of length n with each
letter drawn from an ensemble of pure states {px, |ψx〉},
where each |ψx〉 is not necessarily orthonormal. We may
characterize each letter via the density matrix

ρ =
∑
x

px |ψx〉 〈ψx| (16)

and the entire message of length n can then be charac-
terized as the n-tensor product

ρn = ρ⊗ · · · ⊗ ρ (17)

Now, the best optimal compression of this quantum
message to a Hilbert space H as n→∞ is given by

log(dimH) = S(ρn) = nS(ρ) (18)

where dim is the dimension of the Hilbert space. This
implies that Von Neumann entropy is equal to the num-
ber of quibits of quantum information carried for each
letter of the message Note that compression is always
possible provided that the density matrix is not a max-
imially mixed state, ρ = 1

21, since we cannot compress
random quibits, directly analagous to the classical incom-
pressibility of random bits.

ENTANGLEMENT MEASURES

Entanglement is a feature of quantum states to exhibit
correlations that cannot be accounted for classically. En-
tanglement theory is underpinned by the paradigm of
Local Operations and Classical Communication (LOCC)
formulated by Bennett et al [2]. Under this approach, a
quantum state exists between different parties who can
perform arbitrary local unitary operations and may com-
municate with each other over a classical channel. A state
is separable if it can be created via only local operations
and classical communication, otherwise, the state is con-
sidered entangled.

Mathematically, a pure bipartite state ψAB is defined
to be entangled if the following tensor decomposition is
not possible

|ψAB〉 = |ψA〉 ⊗ |ψA〉 (19)

and similarly, a mixed bipartite state ρAB is defined to
be entangled if the density matrix may not be written as

ρAB = ρA ⊗ ρB (20)

Since entangled states cannot be generated locally, it
may be considered as a resource of the system. This
resource is important in different tasks such as quan-
tum computation, quantum communication and quan-
tum cryptography. [3]

Many important bipartite entanglement measurements
exist (Schmidt number, k-concurrences, I-concurrence,
Negativity, Convex roof extended negativity (CREN),
etc.), however, in this paper, we shall consider an
entropy-based entanglement measure, entanglement of
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formation [3]. We will first consider a pure quantum
state and then we will consider the more complicated
example of a mixed quantum state.

Entanglement of Formation of Pure States

For any bipartite system in a pure state, Bennet et
al [2] demonstrated that it is reasonable to define the
entanglement of the system as the von Neumann entropy
of either of its two parts. Given a density matrix ρAB of
a pair of quantum systems A and B, consider all possible
pure-state decompositions according to Eq. 7.

For each pure state, the entanglement, E, may then be
defined as the entropy of either quantum subsystem, A
or B

E(ψ) = −TrρAlogρA = −TrρB logρB . (21)

This definition, utilizing the Von Neumann entropy, indi-
cates the information content of the reduced state. Note
that this entanglement measure, E, ranges from 0 for a
separable pure state to logN for a maximally entangled
state.

Entanglement of Formation of Mixed States

To extend this definition to mixed states, the entan-
glement of formation is defined as the minimum of the
average entanglement of each possible pure state of the
decomposition,

E(ρ) = min
∑
i

piE(ψi) (22)

The probability weighted sum of each individual entan-
glement, E(ψi) is not unique since an infinite number of
decompositions exist, therefore, we take the minimum.
We choose the minimum (as opposed to another prop-
erty) since a state which has any decomposition as a sum
of separable pure states should have 0 entanglement and
therefore the density matrix should be found to have 0
entanglement.

For a pair of quibits, Eq. 22 can be written as an ex-
plicit function of ρ. To rewrite this equation as such, one
must first introduce the spin flip transformation. For a
pure state of a single quibit, the spin flip transformation,
denoted by a tilde, is defined as

∣∣∣ψ̃〉 = σy |ψ∗〉 (23)

where |ψ∗〉 is the complex conjugate of |ψ〉 in a fixed basis
such as {|↑〉 , |↓〉} and σy in the same basis is the standard

Pauli matrix. For n quibits, the spin flip operation may
be applied to each individual quibit and for a density
matrix, each σy is applied to both the right and left sides.
For instance,

ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy) (24)

where the complex conjugate is in a fixed basis
{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}

With this definition, Hill and Wootters [4] demon-
strated that Eq. 22 can written as,

E(ψ) = E(C(ψ)) (25)

where the concurrence C is defined as

C(ψ) ≡ |
〈
ψ|ψ̃

〉
| (26)

and E is defined as

E(C) ≡ −1 +
√

1− C2

2
log

1 +
√

1− C2

2

− 1−
√

1− C2

2
log

1−
√

1− C2

2
(27)

This form of entanglement can be motivated by the fact
that it allows us to transfer our analysis to the determi-
nation of the concurrence. We observe that E monoton-
ically increases from 0 → 1 as the concurrence increases
over that same range, therefore, concurrence may also
be regarded as a valid measure of entanglement. This
proves useful as we may extend the definition to that of
arbitrary bipartite mixed states.

With the spin flip and the function E(C), we can now
write the entanglement of formation of a mixed state ρ
as

E(ρ) = E(C(ρ)) (28)

where

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (29)

where the λis are the eigenvalues, in decreasing order,
of the Hermitian matrix R ≡

√√
ρρ̃
√
ρ and each λi

is a non-negative real number. Eq. 28 was proved by
Wootters [5] to hold for arbitrary states of a two quibit
system. For brevity, the proof will be omitted, but the
usefulness of entropy in entanglement measures is well-
demonstrated.
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