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Topological data analysis is a new approach to analyzing the structure of high dimensional
datasets. Persistent homology, specifically, generalizes hierarchical clustering methods to identify
significant higher dimensional properties. In this project, we analyze mobile network data from
Senegal to determine whether significant topological structure is present. We investigate two inde-
pendent questions: whether the introduction of the Dakar motorway has any significant impact on
the topological structure of the data, and how communities can be constructed using this method.
We consider three independent metrics to compute the persistent homology. In two of these metrics,
we see no topological change in the data given the introduction of the motorway; in the remaining
metric, we see a possible indication of topological change. The behavior of clustering using the
persistent homology calculation is sensitive to the choice of metric, and is similar in one case to the
communities computed using modularity maximization.

INTRODUCTION

Most probability theory relies upon geometrical meth-
ods for analyzing data. For instance, a statistical dis-
tance must be defined so that two statistical objects can
be quantified as being either close or far apart in some
statistical measure. So, probability theory fundamentally
encodes some type of length information. But, what if
you want to concern yourself with a more fundamental
property of the statistical objects: how are they struc-
tured? Topological data analysis, specifically the persis-
tent homology method, accomplishes this. It determines
the global structure of a set of data rather than its metric
properties.

Topological data analysis is a new approach to analyz-
ing the structure of high dimensional datasets. Persistent
homology, specifically, generalizes hierarchical clustering
methods to identify significant higher dimensional prop-
erties, which are out of reach of any other approach. It
has been used to discover interesting and useful proper-
ties of data from systems ranging from natural images [1]
through the visual cortex [2] to RNA folding [3].

We use persistent homology to study and analyze
Senegalese anonymized mobile network data provided by
Sonatel and Orange.

HOMOLOGY

In its broadest form, homology is a mathematical pre-
scription that calculates algebraic properties of objects
called chain complexes. When these chain complexes
consist of objects called simplices, the homology that is
calculated is a topological invariant of the space. It is
thus a way to talk about isomorphisms of groups rather
than homeomorphisms of spaces. This turns out to sim-
plify the question of whether two spaces are fundamen-
tally put together the same way or not. Formally, sim-
plicial homology is defined as follows.

A simplicial k-chain (ck) is a sum of k-simplices (σk):

ck =
∑
i

αiσ
i
k, αi ∈ F (1)

where F is some field. Each k-simplex can be thought
of as a k-dimensional polytope. Thus, a 2-simplex rep-
resents a triangle; a 3-simplex represents a tetrahedron,
etc.

Thus, various k-chains define a free Abelian group
which is denoted as Ck - i.e. ck ∈ Ck. The boundary
operator ∂k : Ck → Ck−1, is a linear homomorphism
defined to act on σk = [v0, v1, . . . , vk]

∂kσk =
∑
i

(−1)i[v0, v1, . . . , v̂i, . . . , vk] ∈ Ck−1

where “v̂i” means this element is removed from the sim-
plex. This definition forces the condition used to com-
pute homology: ∂2 ≡ 0. This definition allows a flow of
information in the various chain groups:

. . .→ Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 → . . .

Various subgroups of this map can be defined. In par-
ticular, the cycle group Zk ≡ ker ∂k and the boundary
group Bk ≡ im ∂k+1. Because ∂2 ≡ 0, this implies
Bk ⊆ Zk ⊆ Ck. This condition is necessary so the ho-
mology group can be defined as the quotient group:

Hk ≡ Zk/Bk = ker ∂k/im ∂k+1

Each homology group, Hk, contains information about
the existence of k-dimensional holes in the space. For
instance, the torus has H0 = Z, H1 = Z2, H2 = Z
and all the remaining homology groups vanish. Refer
to Hatcher’s text [4] for a full treatment of the subject.

PERSISTENT HOMOLOGY

The previous discussion on homology requires the
spaces to be triangulable, that is able to be thought of
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as a sum of k-simplices. For an arbitrary data set, there
is no fundamental procedure to triangulate this space.
Various ways do however exist, each with their own dis-
tinct set of rules, that can be used to construct simplices
from data. For each of these procedures, we choose the
coefficients in equation 1 to be in Z2.

We use the terms point cloud and data set interchange-
ably. Let d(a, b) denoted the distance in a metric space
between points a and b. Let Z denote the point cloud.
We refer to ε as the filtration value, or simply the filtra-
tion. Note that for a large enough filtration, the com-
plex will become one connected component. For a small
enough filtration, there will be as many connected com-
ponents as there are vertices. A vertex set consists of the
base set of points used to construct higher dimensional
simplices. Refer to [5], [6], [7] for overviews of persistent
homology.

Vietoris-Rips Complex

Given a point cloud, the Vietoris-Rips Complex (Rε)
defines k-simplices as being determined by (k+1)-tuples
of points whose balls of radius ε/2 pairwise intersect [5].
The balls are drawn around each point in the point cloud,
and the radius can be computed with an arbitrary metric.
Specifically, to construct R(Z, ε):

1. The vertex set is Z

2. Edge [a,b] is in R(Z, ε) iff d(a, b) ≤ ε

3. Higher dimensional simplices are in R(Z, ε) if all of
its edges are in R(Z, ε)

One of the motivating reasons for this construction is
that the union of the balls, which we interpret as being
fundamentally representative of whatever topology the
points came from, has a homotopy type that is closely
related to the homotopy type of R(Z, ε) (see [8]).

Lazy Witness Complex

The construction of R(Z, ε) is computationally expen-
sive because the entire point cloud is included as the ver-
tex set. Choosing the vertex set as a subset of Z reduces
the computation necessary to construct the simplex set
over the range of all filtration values. L ⊂ Z is called the
landmark set, and points in it are chosen in one of two
ways by selecting from Z [9]:

• random point selection: select points randomly
from Z, the resulting set being L

• maxmin point selection: first, choose a random
point in Z to serve as the first point in L. Each
additional point in L is inductively chosen from Z
by maximizing d(z, li) ∀ li ∈ L, z ∈ Z

The size of L is variable depending on how large
a vertex set is needed. Specifically, to construct
LW (Z,L, ε, ν):

1. The vertex set is L

2. Edge [a,b] is in LW (Z,L, ε, ν) iff ∃ z ∈ Z such that
max{d(a, z), d(b, z)} ≤ Dν(z) + ε

3. All higher dimensional simplices are in
LW (Z,L, ε, ν) if all of its edges are in
LW (Z,L, ε, ν)

Dν(z) is defined to be the distance from z to its νth
closest neighbor. A feature of the lazy witness complex is
that it behaves like a Delauney triangulation of the space
when ν = 1 ; for ν = 0, the complex behaves similarly to
R(Z, ε) [9].

Core Subsetting

Core subsetting is a procedure that helps uncover
statistically significant topological structure in data.
Since the data in this analysis does not come from a
pure topological structure, but rather from data in a real
world process, a priori we do not expect the entire data
set to have an interesting topological structure. Rather,
we expect subsets of the data to have the interesting
structure. The procedure of core subsetting follows.
First, start with an abritrary n× n metric space A:

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


The second step is to produce the density vector:

∆k =

δ
k
1
...
δkn


Where δkj is defined to be the inverse of the distance

from the jth point in the metric space (i.e. the jth
row of A) to the kth closest neighbor. Hence, k is a
parameter we scan over. A large k can be thought of as
giving a more global estimate of the topology; similarly,
a small k gives a more local estimate. The final step is
to select a percentage (later on referred to as “P”) of
the densest points in ∆k. The points from the metric
space that give these densest points are then chosen to
form a smaller metric space:
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Ã =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

am,1 am,2 · · · am,m

 , 102 ∗ mn ≡ P

Analytical Tools

There are various quantities we examine when deter-
mining the fundamental topological structure of the point
cloud. These quantities are computed with javaPlex - a
software built to construct persistent homology from an
arbitrary point cloud [10]. The quantities we examine
are:

• Barcode Plots: These depict the various genera-
tors of the different LW (Z,L, ε, ν) or R(Z, ε). The
x-axis represents the filtration value; the y-axis rep-
resents, in no physically significant ordering, the
different homology generators. A barcode exists
for each Hn.

• Betti Numbers: Are integers that count how
many generators of a specific dimension exist at
a specific filtration. For example,

|H1(R(Z, ε), ε = 3)| = 2

means the first dimensional homology group for a
Vietoris-Rips complex at a filtration of ε = 3 has
Betti Number equal to 2. In other words, it has 2
one-dimensional holes at this filtration.

• Relative Dominance [9]: A few definitions are
necessary:

1. R0 = The filtration value at which a certain
topological structure appears

2. R1 = The filtration value at which a certain
topological structure disappears

3. K0 = The filtration value at which the com-
plex becomes one connected component

Relative Dominance is defined as δR = R1−R0

K0
. By

a topological structure appearing, we mean any
combination of Betti numbers in the various dimen-
sions. So, a large δR corresponds to the topological
structure being physicially significant; a small δR
corresponds to the topological structure potentially
being noise or a statistical fluctuation.

METRICS FOR ANALYSIS

We consider three metric spaces which arise from ini-
tially constructing a complete weighted graph, or equiva-
lently a complete weighted adjacency matrix Wij , whose

vertices correspond to the 1666 cell phone towers (or a
subset thereof). In two of the three cases, this adjacency
graph does not immediately define a metric space, as the
triangle inequality is not satisfied. However, through the
use of an algorithm determining the shortest path be-
tween any two points in a complete weighted graph, a
genuine metric space can be constructed. This proce-
dure was carried out to obtain two of the metrics defined
below, while the third can be defined directly from its
complete weighted graph.

The Floyd-Warshall Algorithm

Our computation of persistent homology requires an
underlying metric space from which simplices and chain
complexes can be defined. Given a complete weighted
adjacency graph on a set of vertices X = {1, 2, 3, ..., n}
with edge weights wij , one can construct a metric space
(X, d) by the following construction, known as the Floyd-
Warshall Algorithm. It is constructed recursively:

Path0(i, j) = wij ,

Pathk(i, j) = min(
∑

edges(lm)∈γ

wlm)

where the minimum is taken over all paths γ in the
adjacency graph from vertex i to vertex j, using only
vertices in the set {1, 2, ..., k} as intermediate vertices.
We then define a metric space (X, d) by:

d(i, i) = 0 ∀ i,
d(i, j) = Pathn(i, j)

One can verify that this satisfies the axioms of a metric
space, since we begin with a complete weighted adjacency
graph. Note: there are other possible constructions in
going from a weighted adjacency graph to a metric space.

Data Aggregation

For each of the metrics we consider, the explicit con-
struction of the metric from the data depends on a choice
of aggregation period from the data provided. Let T de-
note an arbitrary set of time intervals during the year;
for example, T could be the entire month of July, or the
set of time intervals corresponding to hour 5 from every
day of the year. We define below three metrics which
depend explicitly on the choice of aggregation period T .

Inverse Call Duration Metric

The first metric we consider is a metric on the set of
the 1666 cell phone towers, or a subset thereof, which
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is determined solely by the call volumes between tow-
ers. For a given choice of aggregation period T , and
choice of a subset of the towers, let C(T )ij be the total
duration of calls made between tower i and tower j dur-
ing the aggregation period T . Note that our definition
includes contributions from both i to j, and from j to
i, so that C(T )ij = C(T )ji. These quantities were ob-
tained from the call data provided in SET1V. Using these
quantities, we then define a complete weighted adjacency
matrix w(T )ij by:

w(T )ij =

{
C(T )−1ij C(T )ij 6= 0

1 else

Finally, we take the complete weighted ad-
jacency matrix obtained above, and run the
Floyd-Warshall Algorithm on it to obtain the
Inverse Call Duration Metric (ICD Metric) for the
aggregation period T .

Gravity Model Call Metric

Given an aggregation period T and a choice of subset
of the towers, let C(T )ij be as above, and let C(T )i be
the total duration of calls made to or from tower i dur-
ing the aggregation period T. Let dij be the geographical
distance between the towers i and j. This distance matrix
was computed using the (altered, and thus slightly inac-
curate) latitudes and longitudes provided, via the length
of a spherical geodesic. Consider the following model,
which is often described as a gravity model:

log(C(T )ij) = b+ log(
C(T )iC(T )j

daij
)

Here a and b are parameters of the model. Since the
call data will of course not fit the model exactly for any
particular choice of a, b and T, we performed a linear
least squares fit. In doing so, we fit only the subset of
the data aggregated over the period T for which C(T )ij ,
C(T )i, C(T )j , and dij were nonzero. The questions of
how well the data fits the model, and whether a linear
least squares fit is the best methodology to be using, were
both considered, but will not be addressed here.

We then constructed the complete weighted adjacency
graph wij = da0ij , where a0 is the parameter value a aris-
ing from a linear least squares fit. Finally, we ran the
Floyd-Warshall algorithm on this adjacency matrix to
produce a metric, which we will call the Gravity Model
Call metric (GMC metric).

Dot Product Call Metric

Given an aggregation period T one can construct for
each tower, with label i, the vector:

vi =


C(T )i1......
C(T )i1666


Then define the Dot Product Call Metric (DPC met-

ric) r to be the metric

rij = arccos (
vi • vj
‖vi‖‖vj‖

)

It is easy to check that the angle between two vectors in
a Euclidean space does indeed define a metric space.

Illustrative Example

Visualization and verification of these techniques is
easily done by considering the geometrical, and in this
case geographical, structure of the most persistent gen-
erators of the first homology group H1. One can consider
the most trivial example of what such persistent genera-
tors might mean by using the metric space arising from
the physical geographical distance between any two cell
towers. The persistent generators of the first homology
group arising from a Vietoris-Rips complex correspond
in general to long-lived cycles in the set of towers for
which certain constituents are not directly connected over
a long range of the filtration parameter. In the case of us-
ing the geographical metric arising from a Vietoris-Rips
complex on the set of towers, the persistent generators
correspond to the largest geographical voids of cell phone
towers.

To demonstrate the technique, we first inspect Figure
1 which maps the approximate tower locations within
Senegal.

FIG. 1: The approximate location of all 1666 towers mapped
onto Senegal where each tower is represented by a light-blue
pin.

Visually, it is clear that a large void in the towers exists
in the northeastern region of Senegal as a result of the
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Ferlo Nord Wildlife Reserve. In order to more clearly see
this void or cycle, we can consider subsets of these tow-
ers. In particular by choosing 550 towers via the sequen-
tial maxmin approach and then selecting the 475 densest
points, we arrive at the following barcodes in Figure 2.

FIG. 2: Rips barcodes for the simplicial complexes created
via the geographical distance metric. Note that the most
persistent H1 generator spans a very long filtration window
of [3 × 104, 14.8 × 104] before it closes. Other generators are
short-lived, corresponding to noise in the determination of the
topology.

Now note that one generator of the first homology
group H1 persists over the entire range of filtration val-
ues. If we then map the towers and overlay the gener-
ator of this persistent H1 homology group, we find the
following result in Figure 3. Additionally, the relative
dominance of this generator is 2.72, indicating that this
generator existed for a considerable duration after the en-
tire point cloud was a single connected component. The
substantial relative dominance indicates the significance
of this feature and this helps guide intuition for the future
search of true underlying structure.

FIG. 3: The approximate location of the 475 towers selected
via sequential maxmin and then subsetting based on k = 1
density are mapped with light blue pins and the most persis-
tent H1 homology group generator is mapped in dark blue.

This example, though trivial, demonstrates a success-
ful application of topological data analysis as we have
identified the large void in towers resulting from Sene-
gal’s extensive Wildlife Reserve. As we move to more
useful metric spaces, the ability for simple visualization
is lost, but the principles of the analysis remain the same.

RESULTS

We aim to use the formalism of persistent homology
applied to the three particular metrics on the set of tow-
ers described above to address the thematic development
issues outlined by the D4D Development team. Our hope
is that this novel method of telecom data analysis will al-
low certain objectives to be accomplished in a relatively
easy way which will provide new insight into the struc-
ture of the data.

Dakar Motorway: Preliminary Results

The first issue we intend to address is the facilitation
of useful development of transportation and infrastruc-
ture systems in Senegal. The analytical framework we
work with seems well suited to addressing the problem
of identifying regions which would benefit the most from
the development of new local transport methods, as well
as identifying the effects of installment of new local trans-
port methods which have already occurred. In particular,
we considered the opening of the Pakine to Diamniadio
section of the Dakar Motorway in 2013, with the goal of
identifying signatures and impact of the new section of
road via local changes in the persistent homology in the
regions most directly affected.

For the three metrics described above, we considered
the persistent homology of the Vietoris-Rips complex
arising from the aggregation periods T1 and T2 corre-
sponding to the entire months of July and August in
2013, respectively. Additionally, we limited the points in
our metric space to be among the cell phone towers with
labels between 1 and 500, which correspond to the west-
ern region of Senegal potentially impacted by the Dakar
Motorway opening. These choices of aggregation periods
and subset were made with the goal in mind of identi-
fying a substantial change in the generators of the first
homology between these months, indicating a signature
of the construction of the section of the Dakar motor-
way between Pikine and Diamniadio, which opened on
August 1st of 2013.

However, as we saw in the geographical metric exam-
ple, using the entire point cloud can often obscure the
underlying topology within a higher dimensional space.
In order to determine the underlying topology and reduce
noise, we may instead choose a representative subset of
the points. For instance, towers for which there is no
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activity on either period T1 or T2 will be excluded since
the core subset procedure will choose the densest towers;
towers with no activity will necessarily be low-density
within our choice of metrics.

To proceed, we again consider the DPC, ICD and GMC
metrics. However, now we choose a smaller subset of the
original 500 tower set near Dakar. To do so, we first
choose 250 of the 500 towers via the sequential maxmin
method and then further reduce this by choosing the top
100 densest towers (i.e. P = 40) as defined by a core
subset with varying k. The goal is to reduce the noise
sufficiently that any hidden structure and any changes in
this structure from period T1 to T2 will become evident.

After choosing these subsets, the T1 and T2 barcodes
of the 0th and 1st dimensional homology for the DPC,
ICD and GMC metrics are displayed in Figure 4, 5 and
6.

FIG. 4: Rips Barcodes for the simplicial complexes created
from reduced point cloud and the DPC metric for the aggre-
gation periods T1 and T2 respectively

For each of the barcode plots shown, we considered
the relative dominance of the three most persistent gen-
erators of the one dimensional homology H1. These

FIG. 5: Rips Barcodes for the simplicial complexes created
from reduced point cloud and the ICD metric for the aggre-
gation periods T1 and T2 respectively

relative dominance measures are listed in Table no 1-
dimensional homological structure is evident nor is a sig-
nificant change between period T1 and T2 apparent in
the H1 generators. To summarize these barcode plots,
we can consider the relative dominance of the top three
H1 generators. We summarize the most persistent gen-
erators for the three metrics in Table I. For all of the
metrics we detect no long generators, nor do we detect a
significant change in the length of the three most persis-
tent H1 generators for this choice of parameters.

Note that the relative dominance varies widely over
the three metrics. While there is no precise lower bound
on the relative dominance necessary to deem that a gen-
erator is indicative of a genuinely persistent topological
structure, it is apparent that the ICD metric and the
Dot Product Call metric give rise to simplicial complexes
whose most persistent generators are more highly domi-
nant than those of the GMC metric.

In addition to the fact that the GMC metric has a low
relative dominance for its most persistent generators as
noted in Table I, each of the three metrics yields bar-
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FIG. 6: Rips Barcodes for the simplicial complexes created
from reduced point cloud and the GMC metric for the aggre-
gation periods T1 and T2 respectively

ICD T1 ICD T2 DPC T1 DPC T2 GMC T1 GMC T2

0.323 0.420 0.162 0.166 0.166 0.166

0.280 0.377 0.148 0.153 0.132 0.132

0.273 0.338 0.147 0.152 0.108 0.107

TABLE I: The relative dominance of the three most persistent
generators of H1 for the ICD, DPC, and GMC metrics over
the aggregation periods T1 and T2. Note all relative domi-
nance values for this particular subset and parameter choice
are less 0.5, indicating no significant topological structure.

codes which look similar in structure for the aggregation
periods of July and August (see the following section for
a quantitative analysis of this conclusion). In the case
of the GMC metric, this similarity can be attributed to
the fact that the least squares parameter a0, which is the
only dynamic aspect of that model across different data
aggregation periods, varied only slightly between the two
months. Thus in the context of that metric, the actual
underlying topology, and not just its barcode, underwent

very little change between July and August. This sug-
gests that for the particular choice of subset and aggre-
gation periods made here, the GMC metric is not a sensi-
tive probe for changes in structure of the data. While our
initial hope was that there might be some qualitatively
obvious change in the structure of the 1st dimensional
homology between July and August appearing readily in
at least one of the barcodes, their appearance indicates
that detection of any significant change will necessitate
sensitive analysis.

In order to further analyze whether the topological
structure of the data encoded in these metrics underwent
a significant change between July and August of 2013,
we consider geographical realizations of the most persis-
tent 1-dimensional generators in each barcode. This has
the double benefit of providing more information than is
present in the barcode plots, which will aid in the poten-
tial recognition of a topology change, as well as giving
insight into what such a change indicates in terms of the
specific affects on local call activity near Dakar. In Fig-
ures 7, 8, 9 representative cycles of the the three gener-
ators with the highest relative dominance, or “the most
persistent” generators, are overlayed for the two aggre-
gation periods on a map with the locations of the actual
cell tower locations.

FIG. 7: Representatives of the three most persistent genera-
tors of H1 for the DPC metric for aggregation periods T1 and
T2, overlayed on a map with the approximate tower locations.

For the GMC and DPC metrics, these representative
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FIG. 8: Representatives of the three most persistent genera-
tors of H1 for the ICD metric for aggregation periods T1 and
T2, overlayed on a map with the actual tower locations.

cycles remain virtually unchanged between July and Au-
gust. This further validates the claim that the GMC and
DPC metric and the underlying simplicial complex to
which it gives rise remain unchanged between July and
August, and provides more evidence than the barcode
alone. For the ICD metric in Figure 8, we do see the
largest change in the most persistent generators between
periods T1 and T2, however, due to the relative shortness
of both generators, we still do not attribute this to a
genuine topological change. The ICD metric appears to
be a higher variance distance metric than the other two
we have chosen and we explore this further in the next
section. However, given the shortness of all the gener-
ators, we do not conclude that a definitive change has
been detected. Thus even considering the geographical
representatives of the generators of the first homology
group, it appears that none of our metrics were able to
capture a significant topology change due to the intro-
duction of a section of the Dakar Motorway. We hy-
pothesize from these results that there is no detectable
change in the topological structure of the call duration
data with respect to the models here considered. This
null result suggests that either the introduction of the
Motorway had no real affect on call traffic, and social
activity coupled to this traffic, or if there was an effect
that its detection would require a different measure of
call activity and distance between towers.

FIG. 9: Representatives of the three most persistent gener-
ators of H1 for the GMC metric for aggregation periods T1

and T2, overlayed on a map with the actual tower locations.

Dakar Motorway: Statistical Analysis of Preliminary
Results

To make this hypothesis about a lack of detectable
1-dimensional homology more rigorous, we consider re-
peated runs where a different subset of towers is ran-
domly chosen each time. For each repeated run, we
record the top three relative dominances and consider
the distributions between periods T1 and T2. By repeat-
edly choosing different subsets of towers and by addition-
ally scanning over k core subset parameters, we reduce
the likelihood that we are missing underlying topological
structure.

In order to do this, we again select 250 of the original
500 tower set, but instead of using sequential maxmin,
we now randomly select the towers for each run. This
ensures that each run is sufficiently different in order to
get an independent sampling of the tower set. Then with
these 250 towers randomly selected, we choose the 100
densest towers (i.e. P = 40) as defined by core subset
choices for k ∈ {1, 26, 51}.

As one specific example of this procedure, the results
of 250 randomized runs with the ICD metric for k = 1
core subset is shown in Figure 10.

To compare the frequency distributions of the relative
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FIG. 10: Histograms of the three longest H1 generators re-
sulting from 250 runs of the ICD metric for k = 1 over the
aggregation periods T1 and T2 respectively

FIG. 11: CDFs of the three longest H1 generators resulting
from 250 runs of the ICD metric for k = 1 over the aggregation
periods T1 and T2. T1 is colored blue; T2 is colored green.

dominance for a given metric, we use the Kolmogorov-
Smirnov test (“KS” test). The KS test takes as an input

a cumulative distribution function (“CDF”) and outputs
a number which is used to check whether two samples
come from the same distribution.

We perform a KS test between each CDF over the ag-
gregation of July and August for a given metric and gen-
erator length for H1. In Tables II, III, IV we give the
probability that each pair of distributions were randomly
sampled from the same distribution. So a sufficiently low
probability is necessary to reject the null hypothesis.

Metric

Generators

k = 1 1st 2nd 3rd

ICD 0 0 0

DPC 52 33 19

GMC 45 67 3.0

TABLE II: k = 1 P-values for KS test comparing the the
aggregation periods T1 and T2. We compare the 1st, 2nd, and
3rd most persistent generators for each of the three metrics.
P-values given in percentages.

Metric

Generators

k = 26 1st 2nd 3rd

ICD 0 8.0 33

DPC 0.28 10 45

GMC 38 27 5.0

TABLE III: k = 26 P-values for KS test comparing the the
aggregation periods T1 and T2. We compare the 1st, 2nd, and
3rd most persistent generators for each of the three metrics.
P-values given in percentages.

Metric

Generators

k = 51 1st 2nd 3rd

ICD 0 0 1.3

DPC 74 67 0.72

GMC 38 96 52

TABLE IV: k = 51 P-values for KS test comparing the the
aggregation periods T1 and T2. We compare the 1st, 2nd, and
3rd most persistent generators for each of the three metrics.
P-values given in percentages.

Communities via 0th Homology and Comparison
with Modularity

Using Vietoris-Rips to construct simplices, which is
equivalent to single-linkage clustering, we may identify
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connected components at any desired filtration value.
With our three metrics, we compare the clustering re-
sults to that of another approach based on modularity.
Modularity Q is a quality index for decompositions of a
network into communities, which measures the fraction
of edges that fall within the given communities minus
the expected fraction if those edges were distributed at
random, and has a value between -1 and 1. For a par-
ticular weighted graph G = (V,E), with edge weights
Aij , the modularity of a decomposition into communi-
ties V = ∪iCi, Ci ∩ Cj = ∅ ∀i 6= j, may be defined
as

Q(C) =
∑
i,j

(
Aij
A
− kikj

A2

)
δ(ci, cj) (2)

where A =
∑
i,j Aij , ki =

∑
j Aij , and ci is the commu-

nity label of vertex i. The optimal community decom-
position for a given weighted graph is defined to be that
which maximizes the modularity Q.

In practice, for any reasonably sized network, it is not
computationally practical to compute an exactly opti-
mal decomposition into communities. We therefore make
use of the hierarchical algorithm, and accompanying soft-
ware, introduced by Blondel et. al. [11]. We find that it
is very effective in finding near optimal community de-
compositions for mobile phone networks of this sort [12].

Employing this algorithm, we compute communities
for two weighted mobile phone networks, one weighted by
the total volume of voice communication between each
pair of towers in July, and the other weighted by the
total voice volume in August. The results are depicted in
Figures 12 and 13. We note in particular that, as above,
the Dakar motorway does not have any appreciable effect
on the modularity communities.

To compare these with communities identified as gen-
erators of H0, we show in Figures 14 and 15 a cluster-
ing resulting from the ICD and DPC metrics. We note
that the zeroth homology generators arising from the ICD
metric are not terribly dissimilar from the communities
detected by the modularity optimizing algorithm. This
suggests that the ICD metric may be capturing similar
information as the edge weights which go into the mod-
ularity optimization, and that therefore the higher di-
mensional homology generators arising from that metric
may be exploring richer structures present in the graph
weighted by call volume, than is available from the mod-
ularity analysis alone.

CONCLUSIONS

We chose both to construct a reduced metric space
from core subsetting, and to analyze the towers most
likely to be affected by the introduction of the Dakar
motorway. By comparing the barcode plots and the rel-
ative dominances for the Rips complex for the months

FIG. 12: Map of the ten communities within Senegal (above)
and within Dakar (below) detected via modularity, using total
voice communication volume in July. Communities with only
a single tower are ignored.

of July and August, we determine no statistically sig-
nificant changes in the homology from month to month,
given these choices. We also detect no significant topo-
logical change in the Lazy Witness complex construction
given these same choices.

In both the Vietoris-Rips and Lazy Witness construc-
tions, we scan over various parameters: the choice in
metric space (either ICD, GMC, or DPC); the percent-
age of points that are used in the core subset (“P”); the
density neighbourhood parameter (“k”); and the choice
in the determination of the Landmark Set L (either ran-
dom or maxim).

Thus, the null result suggests that either the introduc-
tion of the Motorway had no real affect on call traffic, and
social activity coupled to this traffic, or if there was an
effect then its detection would require a different measure
of call activity and distance between towers.

In a future analysis, large scale averaging relative dom-
inance over multiple trials will improve any claim to the
statistical relevance of a topological feature. In the cur-
rent analysis, we do no large scale averaging, and instead
average over just a few trials.

With regard to modularity-based community detec-
tion, we find that, for the ICD metric, the H0 genera-
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FIG. 13: Map of the ten communities within Senegal (above)
and within Dakar (below) detected via modularity, using total
voice communication volume in August. Communities with
only a single tower are ignored.

FIG. 14: Map of the nine largest detected communities within
Senegal and within Dakar via the most persistent H0 groups
found with the ICD metric.

tors provide a qualitatively similar decomposition. Given
that constructing simplices via Vietoris-Rips and build-
ing the clusters is mathematically equivalent to single-
linkage clustering, a rudimentary approach, it is promis-
ing that the results can mimic that of the modularity
communities.
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