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Abstract
In this paper, we obtain Hermite–Hadamard-type inequalities of convex functions by
applying the notion of qb-integral. We prove some new inequalities related with
right-hand sides of qb-Hermite–Hadamard inequalities for differentiable functions
with convex absolute values of second derivatives. The results presented in this paper
are a unification and generalization of the comparable results in the literature on
Hermite–Hadamard inequalities.
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1 Introduction
The Hermite–Hadamard inequality introduced by Hermite and Hadamard (see also [1]
and [2, p. 137]) is one of the most well-known inequalities in the theory of convex func-
tional analysis. It has an interesting geometrical interpretation with several applications.

These inequalities state that if f : I → R is a convex function on an interval I of real
numbers and a, b ∈ I with a < b, then

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1.1)

Both inequalities hold in the reversed manner if f is a concave function. Note that the
Hermite–Hadamard inequalities may be viewed as a refinement of the concept of con-
vexity and follows from Jensen’s inequality. Hermite–Hadamard inequalities for convex
functions have received much attention in the recent years, and, consequently, a remark-
able variety of refinements and generalizations have been obtained.

Many well-known integral inequalities such as the Hölder, Hermite–Hadamard, Os-
trowski, Cauchy–Bunyakovsky–Schwarz, Gruss, Gruss-Chebyshev, and other integral in-
equalities have been studied in the setup of q-calculus using the concept of classical con-
vexity. For more results in this direction, we refer to [3–18].
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The purpose of this paper is to study Hermite–Hadamard-like inequalities for convex
functions by applying the new concept of qb-integral. We also discuss the relation of our
results with comparable results existing in the literature.

The organization of this paper is as follows. In Sect. 2, we give a brief description of
the concepts of q-calculus and some related works in this direction. In Sect. 3, we present
the Hermite-Hadamard-type inequalities for the qb-integrals. We also study the relation
between the results presented herein and comparable results in the literature. Section 4
contains some conclusions and further directions for the future research. We believe that
the study initiated in this paper may inspire new research in this area.

2 Preliminaries of q-calculus and some inequalities
In this section, we first present some known definitions and related inequalities in q-
calculus. Set the following notation (see [19]):

[n]q =
1 – qn

1 – q
= 1 + q + q2 + · · · + qn–1, q ∈ (0, 1).

Jackson [20] defined the q-Jackson integral of a given function f from 0 to b as follows:

∫ b

0
f (x) dqx = (1 – q)b

∞∑
n=0

qnf
(
bqn), where 0 < q < 1, (2.1)

provided that the sum converges absolutely.
Jackson [20] defined the q-Jackson integral of a given function over the interval [a, b] as

follows:
∫ b

a
f (x) dqx =

∫ b

0
f (x) dqx –

∫ a

0
f (x) dqx.

Definition 1 ([21]) Let f : [a, b] →R be a continuous function. Then the qa-derivative of
f at x ∈ [a, b] is identified as

aDqf (x) =
f (x) – f (qx + (1 – q)a)

(1 – q)(x – a)
, x �= a. (2.2)

Since f : [a, b] →R is a continuous function, we can define

aDqf (a) = lim
x→a aDqf (x).

The function f is said to be qa-differentiable on [a, b] if aDqf (x) exists for all x ∈ [a, b]. If
we take a = 0 in (2.2), then we have 0Dqf (x) = Dqf (x), where Dqf (x) is the q-derivative of f
at x ∈ [0, b] (see [19]) given by

Dqf (x) =
f (x) – f (qx)

(1 – q)x
, x �= 0.

Definition 2 ([22]) Let f : [a, b] →R be a continuous function. Then the qb-derivative of
f at x ∈ [a, b] is given by

bDqf (x) =
f (qx + (1 – q)b) – f (x)

(1 – q)(b – x)
, x �= b.



Ali et al. Advances in Difference Equations          (2021) 2021:7 Page 3 of 12

Definition 3 Let f : [a, b] → R be a continuous function. Then the second qb-derivative
of f at x ∈ [a, b] is given by

bD2
qf (x) = bDq

( bDqf (x)
)

=
f (q2ta + (1 – tq2)b) – (1 + q)f (qta + (1 – qt)b) + qf (ta + (1 – t)b)

(1 – q)2q(b – a)2t2 .

Definition 4 ([21]) Let f : [a, b] → R be a continuous function. Then the qa-definite in-
tegral on [a, b] is defined by

∫ b

a
f (x) adqx = (1 – q)(b – a)

∞∑
n=0

qnf
(
qnb +

(
1 – qn)a

)

= (b – a)
∫ 1

0
f
(
(1 – t)a + tb

)
dqt.

Alp et al. [3] proved the following qa-Hermite–Hadamard inequalities for convex func-
tions in the setting of quantum calculus.

Theorem 1 If f : [a, b] →R is a convex differentiable function on [a, b] and 0 < q < 1, then
we have

f
(

qa + b
1 + q

)
≤ 1

b – a

∫ b

a
f (x) adqx ≤ qf (a) + f (b)

1 + q
. (2.3)

In [3] and [23] authors established some bounds for the left- and right-hand sides of
inequality (2.3).

On the other hand, Bermudo et al. [22] gave the following definition and obtained the
related Hermite–Hadamard-type inequalities.

Definition 5 ([22]) Let f : [a, b] → R be a continuous function. Then the qb-definite in-
tegral on [a, b] is given by

∫ b

a
f (x) bdqx = (1 – q)(b – a)

∞∑
n=0

qnf
(
qna +

(
1 – qn)b

)

= (b – a)
∫ 1

0
f
(
ta + (1 – t)b

)
dqt.

Theorem 2 ([22]) If f : [a, b] → R is a convex differentiable function on [a, b] and 0 < q < 1,
then we have the following q-Hermite-Hadamard inequalities:

f
(

a + qb
1 + q

)
≤ 1

b – a

∫ b

a
f (x)bdqx ≤ f (a) + qf (b)

1 + q
. (2.4)

From Theorems 1 and 2 we obtain the following inequalities.

Corollary 1 [22] For any convex function f : [a, b] → R and 0 < q < 1, we have

f
(

qa + b
1 + q

)
+ f

(
a + qb
1 + q

)
≤ 1

b – a

{∫ b

a
f (x) adqx +

∫ b

a
f (x) bdqx

}
≤ f (a) + f (b) (2.5)
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and

f
(

a + b
2

)
≤ 1

2(b – a)

{∫ b

a
f (x) adqx +

∫ b

a
f (x) bdqx

}
≤ f (a) + f (b)

2
. (2.6)

Theorem 3 (Hölder’s inequality, [24, p. 604]) Suppose that x > 0, 0 < q < 1, p1 > 1. If 1
p1

+
1
r1

= 1, then

∫ x

0

∣∣f (x)g(x)
∣∣dqx ≤

(∫ x

0

∣∣f (x)
∣∣p1 dqx

) 1
p1

(∫ x

0

∣∣g(x)
∣∣r1 dqx

) 1
r1

.

In this paper, we will also find some bounds for right-hand side of inequality (2.4).

3 New Hermite–Hadamard-type inequalities for quantum integrals
We now give some new Hermite–Hadamard-type inequalities for functions whose second
qb-derivatives in absolute value are convex.

We start with the following useful lemma.

Lemma 1 If f : [a, b] ⊂R→ R is a twice qb-differentiable function on (a, b) such that bD2
qf

is continuous and integrable on [a, b], then we have:

f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

=
q2(b – a)2

1 + q

∫ 1

0
t(1 – qt) bD2

qf
(
ta + (1 – t)b

)
dqt, (3.1)

where 0 < q < 1.

Proof From Definition 2 it follows that

bD2
qf

(
ta + (1 – t)b

)
= bDq

( bDq
(
f
(
ta + (1 – t)b

)))

= bDq

(
f (qta + (1 – qt)b) – f (ta + (1 – t)b)

(1 – q)(b – a)t

)

=
1

(1 – q)(b – a)t

[
f (q2ta + (1 – tq2)b) – f (qta + (1 – qt)b)

(1 – q)q(b – a)t

–
f (qta + (1 – qt)b) – f (ta + (1 – t)b)

(1 – q)(b – a)t

]

=
f (q2ta + (1 – tq2)b) – f (qta + (1 – qt)b)

(1 – q)2q(b – a)2t2

–
f (qta + (1 – qt)b) – f (ta + (1 – t)b)

(1 – q)2(b – a)2t2

=
f (q2ta + (1 – tq2)b) – (1 + q)f (qta + (1 – qt)b) + qf (ta + (1 – t)b)

(1 – q)2q(b – a)2t2 . (3.2)
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Also,

∫ 1

0
t(1 – qt) bD2

qf
(
ta + (1 – t)b

)
dqt

=
∫ 1

0

f (q2ta + (1 – tq2)b) – (1 + q)f (qta + (1 – qt)b) + qf (ta + (1 – t)b)
(1 – q)2q(b – a)2t

dqt

–
∫ 1

0
q
[

f (q2ta + (1 – tq2)b) – (1 + q)f (qta + (1 – qt)b) + qf (ta + (1 – t)b)
(1 – q)2q(b – a)2

]
dqt.

(3.3)

By equality (2.1) we obtain that

∫ 1

0

f (q2ta + (1 – tq2)b) – (1 + q)f (qta + (1 – qt)b) + qf (ta + (1 – t)b)
(1 – q)2q(b – a)2t

dqt

= (1 – q)
∞∑

n=0

f (qn+2a + (1 – qn+2)b)
(1 – q)2q(b – a)2 – (1 – q)(1 + q)

∞∑
n=0

f (qn+1a + (1 – qn+1)b)
(1 – q)2q(b – a)2

+ q(1 – q)
∞∑

n=0

f (qna + (1 – qn)b)
(1 – q)2q(b – a)2

=
∞∑

n=0

f (qn+2a + (1 – qn+2)b)
(1 – q)q(b – a)2 –

∞∑
n=0

f (qn+1a + (1 – qn+1)b)
(1 – q)q(b – a)2

– q

[ ∞∑
n=0

f (qn+1a + (1 – qn+1)b)
(1 – q)q(b – a)2 –

∞∑
n=0

f (qna + (1 – qn)b)
(1 – q)q(b – a)2

]

=
f (b) – f (qa + (1 – q)b)

(1 – q)q(b – a)2 – q
[

f (b) – f (a)
(1 – q)q(b – a)2

]
. (3.4)

From (2.1) and Definition 5 it follows that

∫ 1

0
q
[

f (q2ta + (1 – tq2)b) – (1 + q)f (qta + (1 – qt)b) + qf (ta + (1 – t)b)
(1 – q)2q(b – a)2

]
dqt

= q

[
(1 – q)(b – a)

∞∑
n=0

qn+2f (qn+2a + (1 – qn+2)b)
(1 – q)2q3(b – a)3

– (1 – q)(1 + q)(b – a)
∞∑

n=0

qn+1f (qn+1a + (1 – qn+1)b)
(1 – q)2q2(b – a)3

+ q(1 – q)(b – a)
∞∑

n=0

qnf (qna + (1 – qn)b)
(1 – q)2q(b – a)3

]

= q
[

1
(1 – q)2q3(b – a)3

×
(∫ b

a
f (x) bdqx – (1 – q)(b – a)f (a) – (1 – q)(b – a)qf

(
qa + (1 – q)b

))

–
1 + q

(1 – q)2q2(b – a)3

(∫ b

a
f (x) bdqx – (1 – q)(1 + q)(b – a)f (a)

)
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+
1

(1 – q)2(b – a)3

∫ b

a
f (x) bdqx

]

=
1 + q

(b – a)2q2

∫ b

a
f (x) bdqx +

q2 + q – 1
(1 – q)q2(b – a)2 f (a) –

f (qa + (1 – q)b)
(1 – q)q(b – a)2 (3.5)

Using (3.4) and (3.5) in (3.3), we have

∫ 1

0
t(1 – qt) bD2

qf
(
ta + (1 – t)b

)
dqt

=
f (b) – f (qa + (1 – q)b)

(1 – q)q(b – a)2 – q
[

f (b) – f (a)
(1 – q)q(b – a)2

]

–
1 + q

(b – a)2q2

∫ b

a
f (x) bdqx –

q2 + q – 1
(1 – q)q2(b – a)2 f (a) +

f (qa + (1 – q)b)
(1 – q)q(b – a)2

=
f (a) + qf (b)
(b – a)2q2 –

1 + q
(b – a)2q2

∫ b

a
f (x) bdqx. (3.6)

Multiplying both sides of (3.6) by (b–a)2q2

1+q , we obtain the required identity (3.1) and hence
we complete the proof of Lemma 1. �

Remark 1 If we take the limit as q → 1– in Lemma 1, then we have

f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx =

(b – a)2

2

∫ 1

0
t(1 – t)f ′′(ta + (1 – t)b

)
dt,

as given in [25].

Theorem 4 If f : [a, b] ⊂ R → R is a twice qb-differentiable function on (a, b) such that
bD2

qf is continuous and integrable on [a, b], then we have the following inequality, provided
that |bD2

qf | is convex on [a, b]:

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣
≤ q2(b – a)2

(1 + q)(q2 + q + 1)(q3 + q2 + q + 1)
[∣∣bD2

qf (a)
∣∣ + q2∣∣bD2

qf (b)
∣∣],

where 0 < q < 1.

Proof Taking the modulus in Lemma 1 and applying the convexity of |bD2
qf |, we obtain

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣
≤ q2(b – a)2

1 + q

∫ 1

0

(
t(1 – qt)

)∣∣bD2
qf

(
ta + (1 – t)b

)∣∣dqt

≤ q2(b – a)2

1 + q

∫ 1

0

(
t(1 – qt)

)[
t
∣∣bD2

qf (a)
∣∣ + (1 – t)

∣∣bD2
qf (b)

∣∣]dqt
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=
q2(b – a)2

1 + q

[∣∣bD2
qf (a)

∣∣ ∫ 1

0
t
(
t(1 – qt)

)
dqt +

∣∣bD2
qf (b)

∣∣ ∫ 1

0
(1 – t)

(
t(1 – qt)

)
dqt

]

=
q2(b – a)2

1 + q

[ |bD2
qf (a)|

(q2 + q + 1)(q3 + q2 + q + 1)
+

q2|bD2
qf (b)|

(q2 + q + 1)(q3 + q2 + q + 1)

]
,

which completes the proof. �

Remark 2 Under the assumptions of Theorem 4 with the limit as q → 1–, we have the
following trapezoidal inequality:

∣∣∣∣ 1
b – a

∫ b

a
f (x) dx –

f (a) + f (b)
2

∣∣∣∣ ≤ (b – a)2

12

[ |f ′′(a)| + |f ′′(b)|
2

]
,

as given by Sarikaya and Aktan [26, Proposition 2].

Theorem 5 Suppose that f : [a, b] ⊂ R → R is a twice qb-differentiable function on (a, b)
and bD2

qf is continuous and integrable on [a, b]. If |bD2
qf |p1 , p1 > 1, is convex on [a, b], then

we have the following inequality:

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣

≤ q2(b – a)2

(1 + q)2– 1
p1 (1 + q + q2)

(
1

q3 + q2 + q + 1

) 1
p1 (∣∣bD2

qf (a)
∣∣p1 + q2∣∣bD2

qf (b)
∣∣p1) 1

p1 ,

where 0 < q < 1.

Proof Taking the modulus in Lemma 1 and applying the well-known power mean inequal-
ity, we have

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣
≤ q2(b – a)2

1 + q

∫ 1

0

(
t(1 – qt)

)∣∣bD2
qf

(
ta + (1 – t)b

)∣∣dqt

≤ q2(b – a)2

1 + q

(∫ 1

0

(
t(1 – qt)

)
dqt

)1– 1
p1

×
(∫ 1

0

(
t(1 – qt)

)∣∣bD2
qf

(
ta + (1 – t)b

)∣∣p1 dqt
) 1

p1
.

By the convexity of |bD2
qf |p1 we have

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣

≤ q2(b – a)2

1 + q

(∫ 1

0

(
t(1 – qt)

)
dqt

)1– 1
p1

×
(∫ 1

0

(
t(1 – qt)

)[
t
∣∣bD2

qf (a)
∣∣p1 + (1 – t)

∣∣bD2
qf (b)

∣∣p1]dqt
) 1

p1
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=
q2(b – a)2

1 + q

(∫ 1

0

(
t(1 – qt)

)
dqt

)1– 1
p1

×
(∣∣bD2

qf (a)
∣∣p1

∫ 1

0
t
(
t(1 – qt)

)
dqt +

∣∣bD2
qf (b)

∣∣p1
∫ 1

0
(1 – t)

(
t(1 – qt)

)
dqt

) 1
p1

=
q2(b – a)2

1 + q

(
1

(1 + q)(1 + q + q2)

)1– 1
p1

×
( |bD2

qf (a)|p1

(q2 + q + 1)(q3 + q2 + q + 1)
+

q2|bD2
qf (b)|p1

(q2 + q + 1)(q3 + q2 + q + 1)

) 1
p1

,

which completes the proof. �

Remark 3 If we take the limit as q → 1– in Theorem 5, then we have

∣∣∣∣ f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx

∣∣∣∣ ≤ (b – a)2

12.2
1

p1

(∣∣f ′′(a)
∣∣p1 +

∣∣f ′′(b)
∣∣p1) 1

p1 .

Theorem 6 Suppose that f : [a, b] ⊂ R → R is a twice qb-differentiable function on (a, b)
and bD2

qf is continuous and integrable on [a, b]. If |bD2
qf |p1 is convex on [a, b] for some p1 > 1

and 1
r1

+ 1
p1

= 1, then we have

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣

≤ q2(b – a)2

1 + q
(u1)

1
r1

( |bD2
qf (a)|p1 + q|bD2

qf (b)|p1

q + 1

) 1
p1

, (3.7)

where u1 = (1 – q)
∑∞

n=0(qn)r1+1(1 – qn+1)r1 and 0 < q < 1.

Proof Taking the modulus in Lemma 1 and applying well-known Hölder’s inequality, we
obtain

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣
≤ q2(b – a)2

1 + q

∫ 1

0

(
t(1 – qt)

)∣∣bD2
qf

(
ta + (1 – t)b

)∣∣dqt

≤ q2(b – a)2

1 + q

(∫ 1

0

(
t(1 – qt)

)r1 dqt
) 1

r1
(∫ 1

0

∣∣bD2
qf

(
ta + (1 – t)b

)∣∣p1 dqt
) 1

p1
.

Since |bD2
qf |p1 is convex, we have

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣

≤ q2(b – a)2

1 + q

(∫ 1

0

(
t(1 – qt)

)r1 dqt
) 1

r1
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×
(∣∣bD2

qf (a)
∣∣p1

∫ 1

0
t dqt +

∣∣bD2
qf (b)

∣∣p1
∫ 1

0
(1 – t) dqt

) 1
p1

=
q2(b – a)2

1 + q
(u1)

1
r1

( |bD2
qf (a)|p1 + q|bD2

qf (b)|p1

q + 1

) 1
p1

.

Thus

u1 =
∫ 1

0

(
t(1 – qt)

)r1 dqt = (1 – q)
∞∑

n=0

(
qn)r1+1(1 – qn+1)r1 ,

which completes the proof. �

Remark 4 If we take the limit as q → 1– in Theorem 6, then we have

u1 =
∫ 1

0

(
t(1 – t)

)r1 dt = B(r1 + 1, r1 + 1),

where B(x, y) is the Euler beta function. Moreover, inequality (3.7) reduces to

∣∣∣∣ f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx

∣∣∣∣

≤ (b – a)2

2
(
B(r1 + 1, r1 + 1)

) 1
r1

( |f ′′(a)|p1 + |f ′′(b)|p1

2

) 1
p1

.

We obtain another Hermite–Hadamard-type inequality for powers in terms of the sec-
ond quantum derivatives.

Theorem 7 With assumptions of Theorem 6, we have the inequality

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣

≤ q2(b – a)2

1 + q

(
1

[r1 + 1]q

) 1
r1 (

u2
∣∣bD2

qf (a)
∣∣p1 + u3

∣∣bD2
qf (b)

∣∣p1) 1
p1 , (3.8)

where

u2 = (1 – q)
∞∑

n=0

q2n(1 – qn+1)p1 and u3 = (1 – q)
∞∑

n=0

qn(1 – qn)(1 – qn+1)p1 .

Proof Taking the modulus of the right-hand side of the equality in Lemma 1 and applying
well-known Hölder’s inequality, we obtain

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣
≤ q2(b – a)2

1 + q

∫ 1

0

(
t(1 – qt)

)∣∣bD2
qf

(
ta + (1 – t)b

)∣∣dqt

≤ q2(b – a)2

1 + q

(∫ 1

0
tr1 dqt

) 1
r1

(∫ 1

0
(1 – qt)p1

∣∣bD2
qf

(
ta + (1 – t)b

)∣∣p1 dqt
) 1

p1
.
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Since |bD2
qf |p1 is convex, we have

∣∣∣∣ f (a) + qf (b)
1 + q

–
1

b – a

∫ b

a
f (x) bdqx

∣∣∣∣

≤ q2(b – a)2

1 + q

(∫ 1

0
tr1 dqt

) 1
r1

×
(∣∣bD2

qf (a)
∣∣p1

∫ 1

0
(1 – qt)p1 t dqt +

∣∣bD2
qf (b)

∣∣p1
∫ 1

0
(1 – qt)p1 (1 – t) dqt

) 1
p1

=
q2(b – a)2

1 + q

(
1

[r1 + 1]q

) 1
r1 (

u2
∣∣bD2

qf (a)
∣∣p1 + u3

∣∣bD2
qf (b)

∣∣p1) 1
p1 .

We can easily see that

u2 =
∫ 1

0
(1 – qt)p1 t dqt = (1 – q)

∞∑
n=0

q2n(1 – qn+1)p1

and

u3 =
∫ 1

0
(1 – qt)p1 (1 – t) dqt = (1 – q)

∞∑
n=0

qn(1 – qn)(1 – qn+1)p1 .

This completes the proof. �

Remark 5 If we take the limit as q → 1– in Theorem 7, then we have

u2 =
∫ 1

0
(1 – t)p1 t dqt =

1
(p1 + 1)(p1 + 2)

and

u3 =
∫ 1

0
(1 – t)p1 (1 – t) dt =

1
p1 + 2

.

Moreover, inequality (3.8) reduces to

∣∣∣∣ f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx

∣∣∣∣

≤ (b – a)2

2

(
1

r1 + 1

) 1
r1

(
1

(p1 + 1)(p1 + 2)

) 1
p1 (

(p1 + 2)
∣∣f ′′(a)

∣∣p1 +
∣∣f ′′(b)

∣∣p1) 1
p1 .

4 Conclusions
In this paper, we obtained Hermite–Hadamard-type inequalities for convex functions by
applying the newly defined qb-integral. The results proved in this paper are a potential
generalization of the existing comparable results in the literature. As future directions, we
can find similar inequalities through different types of convexities.
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