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Abstract.
Geoparsing, the task of extracting toponyms from texts
and associating them with geographic locations, has wit-
nessed remarkable progress over the past years. How-
ever, despite its intrinsically geospatial nature, existing
evaluations tend to focus on overall performance while
paying little attention to its variation across geographic
space. In this work, we attempt to answer the question
whether geoparsing is solved or biased by conducting a
spatially-explicit evaluation, namely an evaluation of the
regional variability in geoparsing performance. Particu-
larly, we will analyze the spatial autocorrelation underly-
ing this regional variability. By performing hot and cold
spot detection over results of several open-source geop-
arsers, we observe that none of them performs equally well
across geographic space, and some are geographically bi-
ased towards some regions but against others. We also
carry out a comparative experiment showing that state-
of-the-art geoparsers developed with neural networks do
not necessarily outperform the off-the-shelf tools across
geographic space. To understand the implications behind
this observed regional variability, we evaluate geographic
biases involved in geoparsing research centered around
data contribution and usage, algorithm design, and per-
formance evaluations. Particularly, our spatially-explicit
performance evaluation serves as an approach to evalua-
tion bias mitigation in geoparsing. We conclude that previ-
ous performance evaluations published in the literature are
overly optimistic, thus hiding the fact that geoparsing is far
from solved, and geoparsers require debiasing in addition
to further considerations when being applied to (geospa-
tial) downstream tasks.

Keywords. geoparsing, spatially-explicit evaluation, re-
gional variability, geographic bias, evaluation bias mitiga-
tion

1 Introduction

Geoparsing is a key part of geographic information re-
trieval (Jones and Purves, 2008). Two consecutive steps
constitute the pipeline of geoparsing systems (i.e., geop-
arsers), namely toponym recognition and toponym res-
olution. Toponym recognition is often treated as a sub-
task of Named Entity Recognition (NER), or more pre-
cisely speaking, Named Entity Recogntion and Classifi-
cation (NERC) (Nadeau and Sekine, 2007). It refers to
the process of identifying toponyms from texts in vari-
ous forms of literature, such as news and Wikipedia arti-
cles. Each recognized toponym is then fed into a toponym
resolution model that selects the correct place reference
along with its geo-location information from all candi-
dates with the same place name. Toponym resolution is
also referred to as place name disambiguation (Overell and
Rüger, 2008; Ju et al., 2016) in the related literature.

In recent years, neural network architectures have con-
tributed to the improvement in the quality of geoparsers.
Examples in toponym recognition include Wang et al.
(2020) that used an improved version of the bidirectional
Long Short-Term Memory (LSTM) neural network with
a Conditional Random Field (CRF) layer (BiLSTM-CRF)
(Lample et al., 2016), and Hu et al. (2021) that used C-
LSTM (Zhou et al., 2015) combining a Convolutional
Neural Network (CNN) with LSTM. Similarly, Gritta et al.
(2018a) and Kulkarni et al. (2021) applied CNN while Fize
et al. (2021) used LSTM in toponym resolution. As the use
of deep learning techniques has greatly improved geop-
arsing performance, Wang and Hu (2019b) recently asked
whether the geoparsing performance obtained with state-
of-the-art geoparsers is good enough to essentially call the
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problem solved. The authors argued that geoparsing can
be claimed to be solved when it comes to prominent place
names in well-formatted texts because their evaluation
shows that these geoparsers, particularly deep-learning-
based ones, can reach an outstanding level of toponym
recognition performance and also relatively low errors in
toponym resolution on multiple benchmark datasets.

However, there is a loophole in how the performance eval-
uation is carried out. Current evaluations only measure the
overall performance of a geoparser on a corpus, thereby
ignoring the fact that, as a geospatial task geoparsing
also needs to be evaluated from a geospatial perspective.
Put differently, how geoparsers perform across geographic
space is not evaluated, thus making such evaluations sus-
ceptible to biases, e.g., uneven geographic coverage. Re-
cent work has shown spatial heterogeneity in the perfor-
mance of a deep-learning-based toponym resolution model
developed by Fize et al. (2021), which fails to work in
most of the southern and western regions in the US ex-
cept several major cities, and similar poor performance is
also obtained in small regions in the southwest of France
and the north of Japan. Our work tries to expand the scale
of geoparsing performance evaluation to both toponym
recognition and resolution.

In addition, we aim at looking beyond spatial heterogene-
ity and study spatial autocorrelation (Griffith, 1987; Leg-
endre, 1993; Getis, 2008) underlying regional variability
in geoparsing performance. There are two reasons why we
choose spatial autocorrelation as the focus of our perfor-
mance evaluation. First, spatial autocorrelation is inherent
in data with a spatial structure (Sokal and Oden, 1978;
Koenig, 1999; Getis, 2007), and geoparsing is affected by
such autocorrelation effects in place names that also ex-
hibit distance decay patterns in their collective similarity
(Hu and Janowicz, 2018). Second, we consider that an
analysis of second-order spatial variations in geoparsing
performance will shed light on where a geoparser is bi-
ased towards or against, which we argue is necessary for
a spatially-explicit evaluation on geoparsing performance.
The term spatially-explicit has been frequently used in
ecological studies (Dunning Jr et al., 1995; Irwin and Ge-
oghegan, 2001; DeAngelis and Yurek, 2017), and has been
recently regarded as an vital characteristic that a GeoAI
(Janowicz et al., 2020) should demonstrate by satisfying
at least one of four tests, including the invariance test, rep-
resentation test, formulation test, and outcome test (Good-
child, 2001). Examples of such spatially-explicit machine
learning models include geo-aware image classification
(Yan et al., 2018) and multi-scale spatial representation
learning (Mai et al., 2020). Similarly, we consider an eval-
uation to be spatially-explicit if it fulfills any of the four
tests above.

If we observe strong spatial effects in geoparsing perfor-
mance, this would be an important indicator of geographic
biases in existing systems and their evaluations. Geo-
graphic biases cause disparities in the geographic distribu-
tions between sampled and ground-truth data (Reddy and

Dávalos, 2003; Yang et al., 2013; Syfert et al., 2013), and
they can also lead to quality issues in data contribution to
volunteered geographic information through crowdsourc-
ing (Basiri et al., 2019; Janowicz et al., 2016). Such bi-
ases have inspired an interest in sampling bias mitiga-
tion (Syfert et al., 2013; Beck et al., 2014) and repre-
sentativeness assessment (Zhang and Zhu, 2018). Mean-
while, they have also drawn attention from the machine
learning community as machine learning researchers have
faced with the same lack of geographic diversity in open
datasets, such as ImageNet (Russakovsky et al., 2015) and
Open Images (Krasin et al., 2017), which results in biasing
their image classifiers towards Europe and North America
(Shankar et al., 2017). In addition, geographic biases also
affect spatial data aggregation, which can result in reduced
reliability of multivariate statistical analysis (Fothering-
ham and Wong, 1991) and perturbations in feature em-
beddings that destabilize neural networks used in scenar-
ios such as deep-learning-based traffic predictive model-
ing (Zeng et al., 2020). These potential consequences of
geographic biases motivate us to investigate geographic
bias issues that have not been discussed in geoparsing by
studying the datasets and beyond, i.e., algorithms and per-
formance evaluations. Put differently, we examine whether
the claim that geoparsing is essentially solved is true, or
whether the data, models, and the usage of evaluation met-
rics are simply biased.

Our research contributions are as follows:

• Rather than focusing on overall geoparsing perfor-
mance, we conduct a spatially-explicit evaluation on
how geoparsers perform across geographic space.
We unveil spatial autocorrelation underlying regional
variability in geoparsing performance, and analyze
its comparison between deep-learning-based models
and off-the-shelf tools in terms of toponym recogni-
tion and toponym resolution, respectively.

• We analyze and summarize representation biases, ag-
gregation biases, algorithmic biases, and evaluation
biases in geoparsing, along with recent work that at-
tempts to mitigate them. Particularly, our spatially-
explicit performance evaluation serves as an ap-
proach to evaluation bias mitigation. To the best of
our knowledge, our work is the first to provide such
geographic bias evaluation in the field of geoparsing
(evaluation).

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of related work on spatially-
explicit performance evaluations and different kinds of
geoparsing evaluation studies. Section 3 introduces our
spatially-explicit evaluation of geoparsing performance.
Section 4 describes an exploratory analysis on normalized
frequency distributions of geoparsing performance indi-
cators, and the results about our performance evaluation.
Section 5 discusses geographic biases involved in geop-
arsing research, and how recent work attempts to mitigate
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these issues. Finally, we summarize our work and pro-
pose future directions in Section 6. Details about the re-
producibility of our study can be found in Section 7.

2 Related Work

2.1 Spatially-Explicit Performance Evalua-
tions

There are two potential avenues for a performance eval-
uation to become spatially-explicit. First, a spatially-
explicit performance evaluation might use evaluation met-
rics where spatial information (e.g., distance) is incorpo-
rated. For instance, Xu and Zhang (2013) conducted a
sensitivity analysis on land suitability evaluation (LSE),
in which the Earth Mover’s Distance is applied to iden-
tify spatial variations between the original map and the
simulated LSE map. Second, there is usually a geospa-
tial perspective from which a spatially-explicit perfor-
mance evaluation is carried out. Examples include a “pol-
icyscape analysis” for biodiversity conservation (Barton
et al., 2013), an evaluation framework for integrated car-
bon sequestration and biodiversity conservation (Forsius
et al., 2021), and a land use conflict evaluation approach
(Cui et al., 2021).

According to a recent review of evaluation metrics used
in geoparsing (Wang and Hu, 2019a), toponym recogni-
tion performance can be evaluated with metrics such as
Precision, Recall, and F-Score. Precision measures the
percentage of correctly-recognized toponyms among all
recognized toponyms, and Recall measures the percent-
age of correctly-recognized toponyms among all anno-
tated toponyms. F-Score is the harmonic mean of Preci-
sion and Recall. No spatial information is involved in the
calculation of these metrics, thus hindering the spatial ex-
plicitness of performance evaluations of toponym recog-
nition. On the other hand, evaluation metrics are mostly
distance-based for toponym resolution. Commonly-used
metrics include Mean Error Distance (MED), Median Er-
ror Distance (MdnED), Accuracy@161, and Area Under
the Curve (AUC). These metrics evaluate toponym reso-
lution performance by comparing the error distance de-
termined by how far a resolved location is from its cor-
responding annotated location. MED, MdnED, and AUC
calculate the mean, median, and overall deviation of error
distances, respectively. Accuracy@161 is used to calcu-
late the percentage of correctly-resolved locations among
all annotated locations. It considers a distance threshold
of 161 kilometers, within which a resolved location is re-
garded as correct. However, when using these metrics to
evaluate toponym resolution, the performance across geo-
graphic space was often not considered.

2.2 Geoparsing Evaluation

Geoparsing evaluation is an important part of geopars-
ing research, which is concerned with concrete metrics,
progress reviews, reproducibility issues, and benchmark
dataset construction in geoparsing.

Gritta et al. (2020) discussed standard metrics used to eval-
uate geoparsing performance, and provided an evaluation
framework. For example, they divided toponym resolution
evaluation metrics into coordinate-based, set-based, and
ranking-based metrics. Also, the authors highlighted that
spatial scopes of geoparsing, i.e., whether a geoparser is
applied to a local or global coverage, should be taken into
considerations in performance evaluations.

Wang and Hu (2019a) moved one step forward by not
only conducting a more comprehensive review of evalu-
ation corpora, state-of-the-art models, and evaluation met-
rics. The authors built an Extensible and Unified Plat-
form for Evaluating Geoparsers (EUPEG)1, which is a
benchmark platform aimed at improving reproducibility
in geoparsing research for comparative experiments. Both
geoparsers and evaluation corpora hosted on this plat-
form are open-source. These geoparsers use different to-
ponym recognition techniques, such as general NER tools
(e.g., Stanford NER2) and in-house NER tools (e.g., LT-
TTT2 (Grover, 2008)). In the meantime, various toponym
resolution models were adopted, such as heuristic rule-
based models (e.g., CLAVIN3), geostatistical models (e.g.,
TopoCluster (DeLozier et al., 2015)), and deep-learning-
based models (e.g., CamCoder (Gritta et al., 2018a)). In
addition, there are multiple categories of evaluation cor-
pora available, including news articles (e.g., TR-News
(Kamalloo and Rafiei, 2018)), Wikipedia articles (e.g.,
WikToR (Gritta et al., 2018b)), social media posts (e.g.,
GeoCorpora (Wallgrün et al., 2018)), and web pages (e.g.,
Hu2014 (Hu et al., 2014)).

Along with eight annotated benchmark datasets and eight
evaluation metrics on top of EUPEG, Wang and Hu
(2019b) carried out a performance evaluation on nine
state-of-the-art geoparsers, including those already hosted
on the platform and others developed by top-ranked teams
in a geoparsing competition called SemEval-2019 Task
12. They discussed the circumstance under which geop-
arsing can be considered as solved, and introduced three
future directions in geoparsing. These directions include
population-free toponym resolution, fine-grained geopars-
ing, and the usage of additional gazetteers in toponym
resolution. In this paper, we will showcase that their
performance evaluation would benefit from being more
spatially-explicit, because such spatially-explicit evalua-
tions will allow us to compare geoparsing performance
among different locations.

1https://geoai.geog.buffalo.edu/EUPEG/
2https://nlp.stanford.edu/software/CRF-NER.html
3https://github.com/Novetta/CLAVIN
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More recently, Laparra and Bethard (2020) combined
Wikipedia4 and OpenStreetMap5 to construct a new kind
of benchmark dataset for geoparsing compositions of
place mentions into geographic regions. The authors also
proposed accompanying evaluation metrics that can be
used to compare predicted geometries with ground-truth
geometries in either a strict or relaxed way. As our inten-
tion is to reproduce studies on geoparsing individual to-
ponyms rather than complex geographic descriptions, we
do not use their evaluation framework in our study.

3 A Spatially-Explicit Geoparsing
Performance Evaluation

3.1 Geoparser Selection

Previous work has studied toponym recognition and res-
olution individually, and therefore, we evaluate each of
them separately. The criterion of our model selection is
that their relevant resources, including evaluation corpora
(and training corpora, if applied), are available online so
that they can be easily reproduced as baseline models for
geoparsing research. For both toponym recognition and
resolution, we use a deep-learning-based model that has
achieved state-of-the-art results and an off-the-shelf tool
to analyze whether the former necessarily outperforms the
latter across geographic space.

Toponym Recognition Models For toponym recogni-
tion, we choose a pre-trained version of NeuroTPR6 and
the named entity recognition module of spaCy7 (version
2.1) coupled with a large-sized trained English pipeline8.
NeuroTPR is a BiLSTM-conditional random field to-
ponym recognition model that deals with social media
messages (Wang et al., 2020), and spaCy is an open-source
Python library for natural language processing.

Toponym Resolution Models For toponym resolution,
we compare a pre-trained version of CamCoder9, a CNN-
based toponym resolution model that integrates both lexi-
cal and geographic knowledge (Gritta et al., 2018a), with
the rule-based Edinburgh Geoparser10 (Grover et al., 2010)
(version 1.2).

4https://www.wikipedia.org/
5https://www.openstreetmap.org/
6https://github.com/geoai-lab/NeuroTPR
7https://spacy.io
8https://spacy.io/models/en#en_core_web_lg
9https://github.com/milangritta/

Geocoding-with-Map-Vector
10https://www.ltg.ed.ac.uk/software/geoparser/

3.2 Evaluation Corpus Selection

Toponym Recognition Corpus To evaluate toponym
recognition, we select GeoCorpora (Wallgrün et al., 2018),
a social media corpus containing geo-annotated tweets
along with place mentions. This dataset was also used as
one of the two evaluation corpora in Wang et al. (2020)
and is available on Github11. Among all the 2,122 tweets,
only those toponyms that have annotated coordinates are
covered in our evaluation.

Toponym Resolution Corpora For toponym resolu-
tion evaluation, we select LGL (Lieberman et al., 2010),
GeoVirus (Gritta et al., 2018a), and WikToR (Gritta et al.,
2018b), which were also used in the evaluation of Gritta
et al. (2018a) and shared along with CamCoder9. Both
LGL and GeoVirus are news corpora. LGL is also the
most frequently-used geoparsing evaluation dataset, con-
sisting of 588 news articles from 78 local newspapers.
GeoVirus contains 229 news articles from WikiNews, and
they are centered around global disease outbreaks and epi-
demics. WikToR is a Wikipedia dataset containing 5,000
articles within which annotated toponyms are widely dis-
tributed across the world. The reason why we choose the
three corpora here is that we want to analyze how Cam-
Coder performs across geographic space on benchmark
datasets with different levels of ambiguity. According to
Gritta et al. (2018a), WikToR has higher place name am-
biguity than GeoVirus, and GeoVirus has higher ambiguity
than LGL.

Kulkarni et al. (2021) found that WikToR contains wrong
coordinates for some places because the sign of either their
latitude or longitude is flipped, and in all three corpora the
same toponym will have slightly different coordinates be-
cause they were created differently. To correct these incon-
sistencies, we follow their method to unify three corpora
by using the shared data patches12. Annotated toponyms
without location information in the data patches are not
included in our study.

3.3 Evaluation Metrics

In our performance evaluation, we select Recall and the
coordinated-based Median Error Distance (MdnED) as
they are frequently used to evaluate the performance of to-
ponym recognition and toponym resolution, respectively.
We apply them to measuring geoparsing performance at
each annotated location individually, so that we can dis-
close how geoparsers perform across geographic space.

Toponym Recognition Evaluation Metric For to-
ponym recognition, we use Recall to measure the propor-
tion of the number of times an annotated location being

11https://github.com/geovista/GeoCorpora
12https://github.com/google-research-datasets/mlg_evaldata
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correctly identified by a model among the number of times
it is annotated (in a corpus). In Equation 1, Recalli is the
Recall of the ith annotated location in a corpus; tpi is the
number of times it is recognized; and fni is the number of
times it fails to be recognized. The range of Recall is [0,1].
A higher Recalli indicates a better toponym recognition
performance with respect to the ith annotated location. We
adopt exact matching (Gritta et al., 2018b), meaning that
only toponyms that match exactly with their ground-truth
annotations are considered valid.

Recalli =
tpi

tpi + fni

(1)

Toponym Resolution Evaluation Metric For toponym
resolution, MdnED is calculated as the median of error
distances from the location of an annotated toponym to
its resolved location (in a corpus). Compared with the
commonly-used Mean Error Distance (MED) that cal-
culates the mean, MdnED is better at dealing with out-
liers that exist in computed error distances, and therefore,
MdnED can minimize the distortion of evaluation results.
In Equation 2, MdnEDi is the MdnED of the ith anno-
tated location in a corpus; edij is its jth error distance
computed; xi = (xi,yi) is its annotated location; ni is the
number of its resolved locations; xij = (xij ,yij) is its jth

resolved location; and Dist(·, ·) is the error distance be-
tween a pair of geographic coordinates, computed as the
great circle distance in our experiment. A larger MdnED
indicates worse toponym resolution performance with re-
spect to an annotated location. Only the annotated loca-
tions that are recognized by a geoparser and can be found
in the GeoNames gazetteer13 are considered in the compu-
tation of MdnED. A shared version of GeoNames by Gritta
(2018) is used to reproduce CamCoder, while the online
version of GeoNames is directly accessed by Edinburgh
Geoparser during place name disambiguation.

MdnEDi = Median({edij |edij = Dist(xi,xij), ∀j ∈ [1,ni]}) (2)

3.4 Spatial Autocorrelation Detection

To evaluate spatial autocorrelation effects in geoparsing
performance, we apply the Getis-Ord Gi* statistic (Ord
and Getis, 1995; Getis and Ord, 2010) that can help vi-
sually reveal hot spots and cold spots in geoparsing per-
formance. In Equation 3, G∗i is the Getis-Ord Gi* statis-
tic of the ith annotated location (in a corpus); vi and vj
denote the geoparsing performance indicators (i.e., Recall
or MdnED) of the ith and the jth annotated locations, re-
spectively; V̄ is the average geoparsing performance indi-
cator of all annotated toponyms and N is the number of

13https://www.geonames.org/

all annotated locations; wij is the spatial weight between
the ith and the jth locations. We assign 1 to wij if the
jth annotated location is in the neighborhood of the ith

annotated location, and 0 otherwise. The Getis-Ord Gi*
statistic is a z-score. A larger positive (or negative) z-score
indicates a stronger clustering effect of high (or low) val-
ues, which represents hot (or cold) spots. We select the
K-nearest neighbors of an annotated location as its neigh-
borhood when calculating the Getis-Ord Gi* statistics. K
is defined as 8 in the experiment.

G
∗
i =

∑N
j=1wijvj − V̄

∑N
j=1wij√∑N

j=1
v2
j

N − (V̄ )2

√
N

∑N
j=1

w2
ij
−(

∑N
j=1

wij)
2

N−1

(3)

While focusing on how geoparsers perform across space
in general, we are also interested in whether regional
variability in toponym resolution performance exists for
highly ambiguous toponyms as toponym resolution is sen-
sitive to ambiguity determined by the frequency of places
with the same name. Therefore, we calculate the stan-
dard deviations of MdnED produced by CamCoder and
Edinburgh Geoparser, respectively, for highly ambiguous
place names in WikToR since it has the highest ambiguity
among all three evaluation corpora for toponym resolution
in our experiment. The standard deviations are reported in
Section 4.3.

4 Evaluation Results

4.1 The Normalized Frequency Distribu-
tions of Geoparsing Performance Indi-
cators

First, we provide an exploratory analysis showing that
the performance indicator distributions of both toponym
recognition and toponym resolution are highly skewed.
Figure 1(a) and Figure 1(b) describe the normalized fre-
quency distributions of Recall for spaCy and NeuroTPR,
respectively. We can see there is a peak indicating that
more than 50% annotated locations have a Recall ranging
from 0 to 0.1 for both toponym recognition models. Figure
2(a), Figure 2(b), and Figure 2(c) show the normalized fre-
quency distributions of MdnED for Edinburgh Geoparser
with respect to LGL, GeoVirus, and WikToR, respectively,
while Figure 2(d), Figure 2(e), and Figure 2(f) show those
distributions for CamCoder. On the contrary to Recall,
MdnED is expected to be as small as possible, but in
most cases it can reach up to 16,000 kilometers.

4.2 Spatial Autocorrelation in Toponym
Recognition Performance

Figure 3(a) shows that both hot spots and cold spots are
detected in toponym recognition performance of spaCy

AGILE: GIScience Series, 3, 9, 2022 | https://doi.org/10.5194/agile-giss-3-9-2022 5 of 13

https://www.geonames.org/


(a) (b)

Figure 1. The normalized frequency distributions of Recall with respect to all annotated locations in GeoCorpora for spaCy and
NeuroTPR, respectively

(a) (b) (c)

(d) (e) (f)

Figure 2. The normalized frequency distributions of MdnED (km) with respect to all annotated locations in LGL, GeoVirus, and
WikToR for Edinburgh Geoparser and CamCoder, respectively
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on GeoCorpora. For spaCy, most of all the hot spots are
found in the United States, the United Kingdoms, and
Malaysia on a global scale. Cold spots can be seen not
only in several South American countries near the equa-
tor, Middle East countries (e.g., Bahrain and Qatar), South
Asia countries (e.g., India), and so forth, but also in the
United States and the United Kingdoms, where hot spots
have been found as well. Figure 3(b) shows hot spots and
cold spots in toponym recognition performance of Neu-
roTPR on GeoCorpora, where there is a larger proportion
of more cold spots with 95% confidence compared with
Figure 3(a). Again, we can see coexistence of both hot
spots and cold spots in the United States and the United
Kingdoms.

In general, the observed regional variability in toponym
recognition performance shows that toponym recognition
is geographically biased towards some regions and against
others on both global and local scales.

4.3 Spatial Autocorrelation in Toponym
Resolution Performance

In terms of toponym resolution, however, only cold spots
can be found in the performance of both Edinburgh Geop-
arser and CamCoder on LGL, GeoVirus, and WikToR.
Figure 4(a), Figure 4(c), and Figure 4(e) show that the
geographic distribution of cold spots covers more regions
on a global scale as the place name ambiguity of the cor-
pus increases from LGL, GeoVirus to WikToR. Cold spots
are mostly observed in the United States for LGL, in the
United States, Mexico, the United Kingdoms, Australia,
and Fiji for GeoVirus, and in the United States, Canada,
the Philippines, Australia, and New Zealand for WikToR.
Similar observations can be found for CamCoder’s to-
ponym resolution performance on LGL, GeoVirus, and
WikToR, which are shown in Figure 4(b), Figure 4(d), and
Figure 4(f), respectively.

In addition, CamCoder produces more cold spots (with
higher confidence) and these cold spots are widely dis-
tributed across the world. By comparing the toponym res-
olution performance between Edinburgh Geoparser and
CamCoder, we can see while the overall performance of
CamCoder is higher than Edinburgh Geoparser as reported
in previous research (Gritta et al., 2018a; Wang and Hu,
2019b), there are more regions (e.g., South America and
Africa) where it fails to perform well. Note that the to-
tal of cold spots produced by CamCoder is greater than
that of Edinburgh Geoparser because these two geoparsers
use different toponym recognition models. Put aside this
difference, the wider geographic distribution of cold spots
in toponym resolution performance of CamCoder indi-
cates a stronger geographic bias in this deep-learning-
based model in comparison with the rule-based Edinburgh
Geoparser.

In general, the observed regional variability in toponym
resolution performance shows that toponym resolution is

even worse than toponym recognition because there is no
hot spots found. Put differently, toponym resolution is sim-
ply biased against many regions, both globally and locally.

The Standard Deviations of MdnED for Highly Am-
biguous Toponyms in WikToR Then we examine the
top ten most ambiguous place names in WikToR, and an-
alyze regional variability in their corresponding toponym
resolution performance according to the standard devia-
tion of MdnED. We find that Edinburgh Geoparser fails
to resolve half of the selected toponyms, which is because
of a failure either to identify them during toponym recog-
nition or to retrieve their coordinates from the gazetteer.
For toponyms resolved only by CamCoder, we observe
very large standard deviations of MdnED for Springfield
and Georgetown, which are 2,770.63 and 2,742.79 kilo-
meters, respectively. For toponyms (including Washington
County, Greenville, Kingston, Hamilton, and Newport) re-
solved by both models, Edinburgh Geoparser results in
greater standard deviations of MdnED than CamCoder.
Particularly, this difference is extremely large for Hamil-
ton and Newport, respectively. As all these standard de-
viations (except the one for Newport resolved by Cam-
Coder) are greater than 161 kilometers, which is regarded
as a threshold within which a resolved location can be con-
sidered correct relative to its annotated location (Wang and
Hu, 2019a), both models exhibit very strong regional vari-
ability in toponym resolution performance for place names
with high ambiguity.

Table 1. The standard deviations (SD) of MdnED for highly
ambiguous toponyms in WikToR, respectively

Toponym Model MdnED SD (km)

Washington County Edinburgh Geoparser
CamCoder

807.70
692.18

Clinton Edinburgh Geoparser
CamCoder

/
539.43

Greenville Edinburgh Geoparser
CamCoder

407.52
514.68

Springfield Edinburgh Geoparser
CamCoder

/
2770.63

Georgetown Edinburgh Geoparser
CamCoder

/
2742.79

Kingston Edinburgh Geoparser
CamCoder

680.48
226.45

Franklin County Edinburgh Geoparser
CamCoder

/
414.99

Hamilton Edinburgh Geoparser
CamCoder

4105.57
622.24

Jefferson County Edinburgh Geoparser
CamCoder

/
384.38

Newport Edinburgh Geoparser
CamCoder

5705.19
145.05
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Figure 3. Hot spots and cold spots in toponym recognition performance of spaCy and NeuroTPR, respectively, on GeoCorpora

5 Geographic Biases in Datasets, Al-
gorithms and Performance Evalu-
ations

While we have shown that geoparsing is geographically
biased instead of being solved, we are also interested in
the implications behind the observed autocorrelation ef-
fects in its performance, which is likely to be attributed
to geographic biases in datasets, algorithms, and beyond
that are involved in geoparsing. In this section, we analyze
these biases, and discuss their potential influence on geop-
arsing. While following bias categorization of the machine
learning community (Mehrabi et al., 2021), we also hope
to highlight their geospatial characteristics and to point out
that they have been (un)intentionally introduced in geop-
arsing.

5.1 Representation Bias

The first kind of geographic bias is the representation bias
in training/evaluation corpora. Here we provide quantita-
tive measurements of how representation biases in datasets
commonly used in recent geoparsing research are across
geographic space. Two metrics Spatial Misalignment (SM)
and Spatial Diversity Misalignment (SDM) are used to
measure the difference in place coverage and the differ-
ence in the geographic diversity of place coverage, re-
spectively, between a corpus and the GeoNames Gazetteer.
These metrics are introduced in Quattrone et al. (2015) to
compare the content mapped by power users, i.e., users
that represent only a small portion of the entire Open-
StreetMap community but produce most of the content,
and the content mapped by the crowd. In our experiment,
each country/region is divided into 10km× 10km grids,
and each grid cell is assigned to the number of places
within it (in a corpus or in the gazetteer). The coun-

try/region data used is a 1:10m shapefile from Natural
Earth 5.0.014.

Equation 4 describes the calculation of SM, in which the
ith element in the vector−→gc (or−→gd) is the number of places
in the ith grid of a country/region mapped by a corpus (or
a gazetteer).

SM = 1−
−→gc · −→gd

||−→gc|| · ||−→gd||
(4)

Equation 5 describes the calculation of Spatial Diversity
Misalignment (SDM), which is an extension of the Shan-
non’s Diversity Index (Shannon, 1948). The variable gc,i
(or gd,i) is the ith element in −→gc (or −→gd). As many re-
gions of the world are sparsely populated with annotated
locations in LGL and GeoVirus, we only provide mea-
surements for global-scale evaluation corpora used in our
spatially-explicit performance evaluation, i.e., GeoCor-
pora and WikToR. We also provide the measurements for
a training corpus named GeoWiki shared by Gritta (2018).
This is a version of the English Wikipedia dump that con-
tains 1.4M Wikipedia articles, and was used in the train-
ing process of CamCoder without overapping with Wik-
ToR. The English Wikipedia dump has commonly served
as an easily-accessible and frequently-updated large cor-
pus for the training purpose of many other toponym reso-
lution models and toponym recognition models as well.

SDM =
(−

∑
gc,i∈

−→gc gc,i lngc,i)− (−
∑

gd,i∈
−→gd

gd,i lngd,i)

max(−
∑

gc,i∈
−→gc gc,i lngc,i,−

∑
gd,i∈

−→gd
gd,i lngd,i)

(5)

Table 2 and Table 3 show SM and SDM for GeoWiki, Geo-
Corpora, and WikToR, respectively. For all three corpora
the median of SM is greater than or equal to 0.49, meaning
there is a strong misalignment between their place cover-
age and those of GeoNames. This spatial misalignment is

14https://www.naturalearthdata.com/
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Figure 4. Cold spots in toponym resolution performance of Edinburgh Geoparser and CamCoder on LGL, GeoVirus, and WikToR,
respectively
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more prominent for evaluation corpora as both their first
quantiles of SM are greater than 0.8. In addition, SDM for
all three corpora is generally negative. This points out a
strong misaligned geographic diversity in their place cov-
erage, particularly for the social media corpus GeoCorpora
with a SDM median of -1.00.

Table 2. Spatial Misalignment between training/evaluation cor-
pora and the GeoNames gazetteer

Dataset Genre Min 1st Qu. Median 3rd Qu. Max
GeoWiki Wikipedia 0.00 0.31 0.49 0.63 0.87
GeoCorpora Social Media 0.35 0.90 0.96 0.99 1.00
WikToR Wikipedia 0.49 0.87 0.92 0.96 1.00

Table 3. Spatial Diversity Misalignment between train-
ing/evaluation corpora and the GeoNames gazetteer

Dataset Genre Min 1st Qu. Median 3rd Qu. Max
GeoWiki Wikipedia -1.00 -0.30 -0.22 -0.14 0.43
GeoCorpora Social Media -1.00 -1.00 -1.00 -0.86 -0.43
WikToR Wikipedia -1.00 -1.00 -0.83 -0.70 -0.26

However, it is worth noting that there are also representa-
tion biases involved in gazetteer data that have often been
used as references for geoparsers to search for candidate
place information of a toponym. McDonough et al. (2019)
questioned the colonist perspective from which databases
such as GeoNames, the Alexandria Digital Library, and
Wikipedia are built. They also pointed out the lack of tem-
poral metadata for historial toponyms in gazetteers that
have already been found to contain inadequate geographic
knowledge about many parts of the world. This raises con-
cerns that biases might accumulate as digital resources
would replicate the content of their predecessors during
their creation process. Therefore, we consider the study
of historical aspects of representation biases involved in
place name data as an intriguing future direction, which
has now been made possible by tremendous efforts in ap-
plying knowledge graphs to building historical gazetteers
such as Grossner and Mostern (2021).

5.2 Aggregation Bias

The second kind of geographic bias is the aggregation bias
involved in toponym resolution. In many recent studies,
the Earth’s surface is divided into grid cells, and toponym
resolution is approached as a classification task where the
model predicts the most likely cell the current toponym
should fall into based on loss function minimization. How-
ever, different discretization of the space will yield differ-
ent prediction results. In the evaluation of Kulkarni et al.
(2021), this Modifiable Areal Unit Problem (MAUP) in the
prediction of toponym resolution is found to cause a trade-
off between model generalization and prediction quality:

finer granularity results in higher accuracy in denser re-
gions with more toponyms in training data, while coarser
granularity leads to better generalization over data on both
global and local scales.

In addition to the prediction process, different patterns
can also be learned by toponym resolution models when
choosing different granularity during the training process.
Coupled with joint minimization of losses at each level,
the multi-level neural network architecture proposed by
Kulkarni et al. (2021) can be one of the many possible
solutions to dealing with the MAUP in the training of to-
ponym resolution models.

5.3 Algorithmic Bias

Besides datasets, there is a common algorithmic bias
intentionally introduced in toponym resolution. For in-
stance, toponym resolution tends to prefer places with
the largest population during place name disambigua-
tion. While applying this simple population heuristic re-
duces computational complexity, and even brings about
better performance than building more complex archi-
tecture in some circumstances, its limitations are evi-
dent. First, population information needs to be retrieved
from gazetteers, and therefore, toponym resolution is
made gazetteer-constrained. Second, population informa-
tion serves as a geographic bias that hinders the fairness
towards places with a smaller population in toponym res-
olution. Gazetteer-free toponym resolution has been stud-
ied as one of the many possible solutions recently and has
shown promising results. Examples include topic model-
ing for place name disambiguation (Ju et al., 2016), mod-
eling geographic profiles of words (DeLozier et al., 2015),
spatial language representation learning at multiple levels
(Kulkarni et al., 2021), and toponym co-occurrence repre-
sentation learning (Fize et al., 2021). It is worth noting that
gazetteer-free toponym resolution models can even output
toponyms that are not inventoried in the gazetteer in the
first place.

5.4 Evaluation Bias

Lastly, there is an evaluation bias (Suresh and Guttag,
2019) caused by how geoparsing performance was mea-
sured in previous research. How a geoparser performs
across geographic space has not been taken into account,
since the evaluation metrics are merely used to provide the
overall performance instead of the performance at each an-
notated location (in a corpus). Our spatially-explicit per-
formance evaluation has addressed this issue. However,
the spatial (diversity) misalignment analysis in Section
5.1 raises another concern that geoparsing performance
evaluation is more than geographically biased for lack of
a geospatial perspective, because the evaluation bias in
geoparsing can be exacerbated by the representation bias
in these benchmark evaluation datasets.
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6 Conclusions and Future Work

In this work, we presented a spatially-explicit evaluation
of geoparsing performance across geographic space. We
utilized Recall and MdnED to measure toponym recog-
nition and resolution performance, respectively, and com-
pared how deep-learning-based models that were claimed
to achieve state-of-the-art results and their off-the-self
counterparts perform across geographic space. By visu-
alizing the normalized frequency distributions of the two
geoparsing performance indicators, we discovered that
all normalized frequency distributions are highly skewed.
Then, we analyzed the spatial autocorrelation underlying
regional variability in geoparsing performance by calcu-
lating the Getis-Ord Gi* statistic of Recall and MdnED
at all annotated locations. We detected hot spots and cold
spots in geoparsing performance, which reveals that geop-
arsing is geographically biased towards some regions and
against others. Particularly, in toponym resolution that is
sensitive to place name ambiguity, only cold spots were
observed, and there was a stronger bias in the deep-
learning-based CamCoder compared with the rule-based
Edinburgh Geoparser. There was also strong regional vari-
ability in toponym resolution performance for highly am-
biguous toponyms, as revealed by the standard deviations
of MdnED for annotated locations with the same name.

To probe the reason for the observed regional variabil-
ity, we further evaluated geographic biases involved in
geoparsing studies, ranging from spatial (diversity) mis-
alignment of place coverage between (training and evalu-
ation) corpora and the GeoNames gazetteer, the MAUP in
toponym resolution, the preferences towards places with
the largest population in place name disambiguation, to
a biased perspective and usage of biased data in perfor-
mance evaluation. While we have discussed how recent
work, such as spatial representation learning and spatially-
explicit geoparsing performance evaluations, can help re-
move some of the geographic biases embedded in geopars-
ing, there is still a long way to go towards directions such
as developing geoparsers that can succeed in perform-
ing accurately in place name disambiguation across geo-
graphic space. We hope to highlight aforementioned biases
for future geoparsing research, and we call for debiasing
work on geoparsing. We also recommend further consider-
ations about how much bias a task is able to bear when ap-
plying geoparsing in (geospatial) downstream tasks. Such
considerations need to be taken into account in terms of
dataset construction, algorithm design, and performance
evaluations in geoparsing. Summing up, we rejected the
claim that geoparsing is solved, and argued that it only
appears so due to evaluation biases. Meanwhile, other ge-
ographic biases in geoparsing also need immediate atten-
tion.

7 Data and Software Availability

The toponym recognition and toponym resolution models
we used are all publicly available as described in Section
3.1. The evaluation corpora and data patches used in our
study are described in Section 3.2. The gazetteers used in
our study are mentioned in Section 3.3. Section 5 contains
information on how to access the training corpus and the
country/region shapefile. The documentation about how to
reproduce our study is available on GitHub15.
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