Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 marker... more Five cattle Y-specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2-haplotypes were only present in African cattle. Network and correspondence analyses showed that this African-specific subfamily clustered separately from the main Y2-subfamily and the Y1 haplotypes. Within-breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between-breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub-Saharan Africa (belonging to Y2-haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y-chromosome lineages (Y1 and Y2) in taurine cattle. However, Y-specific microsatellites increased analytical resolution and allowed at least two different Y2-haplotypic subfamilies to be distinguished, one of them restricted to the African continent.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Estimation of the purging of detrimental effects through inbreeding and selection is an important... more Estimation of the purging of detrimental effects through inbreeding and selection is an important issue in conservation genetics opening new perspectives for the management of small populations. In 1997 Ballou proposed the ancestral inbreeding coefficient, which is calculated recursively via pedigree inbreeding coefficients, as a tool for evaluating the purging of deleterious alleles in zoo populations. The formula of Ballou assumes independence of inbreeding and ancestral inbreeding coefficients at any stage of the recursion. This study investigates the consequences of this inaccuracy on the estimation of true ancestral inbreeding, i.e. the proportion of alleles within a genome that has undergone inbreeding in the past. As an alternative we propose the estimation of ancestral inbreeding by the method of gene dropping. The methods are compared by stochastic simulation for various models with respect to mode of inheritance (neutral, detrimental and lethal alleles) and different settings for population size and initial allele frequencies. In all scenarios the proportion of alleles within a genome that has undergone inbreeding in the past was overestimated by Ballou’s formula. The overestimation was more pronounced in smaller populations but was not affected by genetic model or initial allele frequency. In contrast, the ancestral inbreeding coefficient calculated by gene dropping provided a robust estimate of ancestral inbreeding in most models and settings. A marginal overestimation was observed only in models with lethal alleles. Therefore, we recommend applying the gene dropping approach to estimate ancestral inbreeding coefficients.
Uploads
Papers by Ino Curik