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MANAGEMENT SUMMARY
Intelligence is the great competitive advantage in history. It’s not just whether we have it, but whether we can wield it 

effectively. But over the last decade, intelligence has undergone a profound change.  It’s no longer just confined to our 

heads because the rise of artificial intelligence and machine learning (AI/ML) techniques has now made it possible to 

productionize intelligence to solve previously unsolvable challenges. We can use AI to spot problems early on in pro-

duction lines, predict customer churn, reclaim budgets, streamline support requests, translate languages, highlight key 

passages in legal documents, detect fraud, iterate on new design ideas and much, much more.

Yet this production intelligence has largely remained the province of highly technical teams and big tech companies. 

Often these teams built their own AI/ML infrastructure from scratch because there was nothing on the market to sup-

port their efforts. Yet over the last five years, we have seen a rapid proliferation of new tools and platforms that allow 

enterprises and small to medium businesses to benefit from the intelligence revolution. However, building the right AI/

ML infrastructure that fits specific company needs is still a significant challenge. 

Only 26% of teams we surveyed were very satisfied with their current AI/ML infrastructure. Fifty-five percent were only 

somewhat satisfied, while 17% were somewhat unsatisfied, and 3% were very unsatisfied. In other words, most teams 

see a lot of room for improvement.
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This is because the AI/ML infrastructure landscape is vast, complex and rapidly evolving. It’s difficult to understand the 

capabilities of each platform and to see where they fit into existing systems without a lot of research and time invested. 

AI/ML systems are also complex because there is no one tool that does everything perfectly, so building a modern AI/

ML stack involves many different tools and components. Even worse, marketing teams often obscure the capabilities 

of systems or promise that a platform can do everything equally well, when the reality is usually very different. Finally, 

building a robust infrastructure requires buy-in from many different stakeholders across an organization, everyone from 

data scientists to data engineers to IT infrastructure architects to support teams to network and security engineers.  

Up to this point, much of what has been written on AI/ML focuses on building excitement around AI, describing the state 

of ML adoption, or outlining the state of AI/ML research. While it is nice to read about the incredible possibilities that 

come from utilizing AI/ML in your company, what is truly needed is thorough coverage of the infrastructure available 

and the possible directions your company can take to achieve your business goals. Here we focus on how to sustainably 

build your AI/ML infrastructure to set your company up for success over the long term, as your capabilities, needs and 

demands evolve. 

AI/ML teams are growing and this report aims to give every company the keys to build their AI/ML infrastructure by pro-

viding a comprehensive and clear overview of the AI/ML infrastructure landscape.  

We provide insights on realistic capabilities and tradeoffs for many different platforms, as well as projections about how 

infrastructure requirements may evolve over the next five years according to AI/ML experts.
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The good news is that the majority of companies we surveyed found that the benefits they got from their AI/ML infra-

structure outweighed the costs in two years or less. That means if you invest in the right infrastructure, after surveying 

the field and considering it carefully, you can reap rewards swiftly.

By aligning your business goals with your wisely built AI/ML infrastructure, you can push the boundaries of what is pos-

sible for your company now and in the future.

INTRODUCTION
Over the past five years, we’ve seen a massive surge in the use of artificial intelligence (AI) and machine learning (ML) 

across every industry, as well as a stream of reports that cover the adoption rate of ML in enterprises and reports on 

the state of AI/ML research from prominent academic and research institutes like Stanford. 

This report has a distinctly different focus. Here we deliver a comprehensive overview of the state of AI/ML infrastruc-

ture software, the software that powers the building, deploying, scaling and running of AI/ML models. 

The target audience for this report is any executive or engineering team lead looking to find the right tools to establish 

or expand their in-house AI/ML practice. It will show you how the field has developed, as well as what the key capabil-

ities of various AI infrastructure categories are now and where they are going over the next five years. By the end, you 

https://info.algorithmia.com/tt-state-of-ml-2021
https://info.algorithmia.com/hubfs/2020/Reports/2021-Trends-in-ML/Algorithmia_2021_enterprise_ML_trends.pdf?hsLang=en-us
https://aiindex.stanford.edu/report/
https://aiindex.stanford.edu/report/
https://www.stanford.edu/
https://www.stanford.edu/


6

will have a clear vision of where to invest your budget to accelerate your projects and take them to the next level. 

We describe the various categories according to the AI Infrastructure Alliance’s (AIIA) MLOps blueprint and then discuss 

each category in its own section. If you are unsure what category would make the biggest impact, then you can read 

the report from start to finish to get a better idea of what parts of the stack are essential to building or expanding your 

team’s capabilities. Alternately, if you are already clear on what kinds of tools you need next, then you can skip to the 

section that covers your needs straightaway. However, you may still wish to read the rest of the report as there may be 

capabilities in the space that you aren’t aware of yet and that may prove valuable to your efforts.

The Three Approaches to AI/ML Platforms

There are three primary approaches to building an AI/ML platform.

1.	 Build your own

2.	 Buy an end-to-end solution

3.	 Best of breed

These are roughly the same approaches that organizations need to consider when it comes to building a web applica-

tion platform or an in-house IT system, but there are some wrinkles when it comes to AI/ML that make it different. The 

most notable difference is the maturity of the space. Because enterprise AI/ML is a relatively young field, there is a vast 

array of products and services. In some categories of the space, there are clear market leaders, and in others there is a 

range of potential choices that could make sense depending on your organizational needs. 

This wider range of platforms mirrors earlier technological advances. There were hundreds of car companies in the 

early days of the automobile industry, many of them small shops producing a few cars a year, before the assembly-line 

processes pioneered by Ford took over. In the early days of the web, there were no fewer than fifty different web serv-

ers, but most IT administrators would be hard pressed to think of more than three or four today, with Apache, NGINX, 

IIS and few other servers dominating the marketplace.

Build Your Own

The first companies to adopt AI/ML techniques at scale were largely tech companies like Google, Tesla, OpenAI, Deep-

Mind and Netflix. Because the field was new, they had little choice but to build their own solutions for building, training, 

deploying and running AI/ML models in production. But as those pioneers blazed new territory and AI/ML techniques 

came out of the labs, universities and big-tech companies, enterprise software companies and startups emerged to ful-

fill the demand for enterprises who generally don’t have the in-house expertise or resources to build an entire bespoke 

IT system from scratch and then maintain it and updated it.

The AIIA does not recommend that most companies attempt to build their own AI/ML platform from scratch or that 

they attempt to stitch one together from pure open-source components alone. This approach is incredibly complex and 
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prone to failure. It is useful only for highly advanced teams, with very specific and idiosyncratic use-case requirements 

that are not met by current software platforms. Even if you suspect that your needs are unique, we highly recommend 

you put together a team to study whether that is truly the case or whether you would be better served by a set of tools 

already developed. 

The good news is that, outside of very specialized circumstances, most companies are not building their own architec-

ture from scratch anymore. According to our enterprise survey, only 20% of companies built their entire infrastructure 

in-house, while 45% use a mix of in-house and third-party tools, and 31% use a mix of third-party tools exclusively. 

While early pioneers had no choice but to build their own infrastructure, increasingly we’re seeing companies choose a 

mixture of buying and building or simply buying as more and more robust products make it to market. This is because 

long-term maintenance of custom-built applications requires tremendous engineering resources. In addition, teams 

often discover too late that the platform they expected to do everything proved too brittle and rigid for use cases be-

yond the initial design. In fact, that was the third-biggest challenge teams told us they faced when building their AI/ML 

infrastructure: the platform turned out to be only good for certain applications and not for others. 
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That was the case with the Michelangelo platform at Uber, headed by Mike Del Blaso, who later left Uber to start 

Tecton, a feature store platform. While the platform proved highly useful for UberEats when they built it, Del Blaso later 

noted that the platform proved very effective for the few use cases they built it for, but it was not easily generalizable to 

other use cases. The Uber team moved on to newer platforms, and at the time of this writing, many of the original com-

ponents of Michelangelo have fractured into smaller, more nimble projects on the the Uber open-source Github.

That said, we do expect advanced teams to have some bespoke parts of their platform, including but not limited to glue 

code, custom overarching workflow interfaces across platforms and in-house built programs, libraries and frameworks. 

This trend is expected to persist over the next five years, as software platforms evolve to meet the vast majority of AI/ML 

lifecycle needs, because during that evolution there will always be gaps that need to be filled. 

End-to-End

The second solution is to buy a single, unified end-to-end AI/ML platform to serve all your machine-learning and 

analytics needs. These are platforms that attempt to cover every single aspect of the AI/ML lifecycle. Buying a single 

solution that handles the vast majority of an organization’s needs is a well-known and trusted buying practice in the 

industry, and so it is tempting to take the same approach to buying an AI/ML platform. For instance, many organizations 

standardized by using a single database, such as Oracle, in the mid-2000s or the VMware suite for virtualization in the 

2010s, before the rise of public clouds largely displaced VMware as the dominant force in enterprise data centers.

https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://www.tecton.ai/
https://github.com/uber
https://github.com/uber
https://github.com/uber
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However, the AIIA recommends that organizations resist the siren song of a unified, end-to-end solution for AI/ML 

platforms for several reasons. The first is that we are still largely in the early adopter phase of the AI-infrastructure 

ecosystem. In his 1962 book Diffusion of Innovation,  sociologist Everett Rogers showed us that people and enterprises 

fall into five distinct groups when it comes to taking on new tech. Geoffrey Moore built on these ideas in his business 

bestseller Crossing the Chasm.

(Source: “Technology Adoption Lifecycle” by Craig Chelius, licensed under CC BY 3.0.) 

As is typical of the development in this phase of a technological cycle, there is no single solution that meets every need 

and has surpassed all of its competitors in every aspect of building, training, deploying, securing and managing models 

in production. Instead there are a number of platforms in rapid evolution that will likely expand their capabilities over 

time, as well as consolidate and merge. Highly developed platforms that cover a broad range of needs tend to develop 

and solidify late in the early majority to late majority stage of the technological development lifecycle.

However, this has not stopped many marketing teams from declaring their solution the one solution to rule them all. 

We recommend that organizations cast a wary eye on vendor marketing. We also recommend that when considering 

a purchase, organizations look very carefully at the capabilities outlined in this report and then ask serious questions 

of any vendor that claims to support every aspect of the AI/ML lifecycle. As of the date of this report’s writing, we have 

found no single solution that legitimately covers the vast array of innovation happening in the space currently, which 

includes work on robust ingestion and storage of structured and unstructured data, data versioning and lineage, 

synthetic data generators, feature stores, model registries, highly scalable pipelining and orchestration systems, 

deployment systems, and  highly scalable serving engines, as well as state-of-the-art monitoring, explainability and 

observability.

https://www.amazon.com/Diffusion-Innovations-5th-Everett-Rogers/dp/0743222091/ref=sr_1_1?crid=2LOYDL4H517JT&dchild=1&keywords=diffusion+of+innovations&qid=1609419172&sprefix=diffusion+of+%2Caps%2C252&sr=8-1
https://www.amazon.com/Diffusion-Innovations-5th-Everett-Rogers/dp/0743222091/ref=sr_1_1?crid=2LOYDL4H517JT&dchild=1&keywords=diffusion+of+innovations&qid=1609419172&sprefix=diffusion+of+%2Caps%2C252&sr=8-1
https://www.amazon.com/Crossing-Chasm-3rd-Disruptive-Mainstream/dp/0062292986/ref=sr_1_1?dchild=1&keywords=crossing+the+chasm&qid=1609419121&sr=8-1
https://www.amazon.com/Crossing-Chasm-3rd-Disruptive-Mainstream/dp/0062292986/ref=sr_1_1?dchild=1&keywords=crossing+the+chasm&qid=1609419121&sr=8-1
https://commons.wikimedia.org/wiki/File:Technology-Adoption-Lifecycle.png
https://creativecommons.org/licenses/by/3.0/deed.en
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That said, it is entirely possible to select one or two vendors or platforms as the core of your AI/ML platforms and then 

build around those cores. Many platforms detailed in this report do cover a wide range of capabilities that would serve 

the needs of complex enterprises. It is up to each organization to deeply understand their own needs, now and in the 

future, before buying their next-generation platform. For instance, if your use cases are largely structured and semi-

structured today, with a focus on classic analytics tasks like customer demand, churn prediction and fraud detection, 

then you may standardize something like Spark as your processing engine. However, you may discover later that you’ve 

moved into deep learning and unstructured use cases like video analytics only to discover that Spark is not ideal for 

those workloads. At the same time, you may get a limited number of monitoring capabilities from your core vendor, 

but not get the full range of monitoring, observability and explainability tools offered by a vendor dedicated to those 

capabilities.

Lastly, it’s worth noting that while cloud vendors offer solutions that seem more end-to-end, if we look a little closer, we 

often find that’s not the case. Amazon’s SageMaker is a suite of tools that offers everything from data wrangling to pipe-

lines. However, often those tools are not well integrated, and they exist as standalone tools in the suite, much as if you’d 

bought a series of tools yourself. They’re also highly focused on particular use cases, such as structured data, and don’t 

handle as easily unstructured data use cases like video, images, audio and free-form text. In addition, many of these 

tools are tools that cloud vendors developed themselves instead of adopting a well-known, industry leading platform. 

This is often because a leader hasn’t emerged because we’re still on the early part of the adoption curve. 

That also means that in the long run, as tools become more widespread, cloud vendors are likely to swap out big pieces 

of their suite for alternatives that have gained more traction, which raises the question: why not start with the best of 

breed in the first place? It’s unlikely that in the long run Amazon’s feature store will end up the standard feature store 

versus a dedicated open-source solution like Feast or a commercial platform like Molecula or Tecton, all of which run on 

multiple clouds. Public clouds are best at commoditizing components that have already developed much further along 

the technology adoption curve. Because we are still at an early point on the adoption curve, it’s best to evaluate any 

public cloud AI/ML solution as no different from any other vendor’s solution in terms of capabilities and not expect them 

to have already delivered a comprehensive, unified, end-to-end solution despite what their marketing might promise.

Best of Breed

The AIIA advocates the best-of-breed approach for medium to advanced data science and data engineering teams. 

That means taking a modular approach to building an AI/ML stack. Organizations should look to evaluate and select the 

leaders in different categories or consider the special capabilities of a specific vendor in the category that meets a need 

unique to their use case. 

We recommend that you choose one or two core platforms that meet a wide variety of your needs, including data 

processing, pipelining to versioning and lineage, experiment tracking and deployment. After you’ve selected a core 

platform, you can more easily choose satellite platforms that meet more specific needs, such as synthetic data, feature 

stores, or monitoring, observability and explainability. 

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://github.com/feast-dev/feast
https://www.molecula.com/
https://www.tecton.ai/
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At this point in the evolution of AI/ML systems, the best-of-breed solution will likely demand some integration work on 

your team, so ensure that the platforms you choose have clean, well-documented APIs, as well as simple points of in-

gress and egress into and out of them. If your core platform already has integrations with other platforms you’re looking 

to adopt, that’s especially promising, but be sure to investigate the depths of those integrations. Are the integrations 

loose, well developed or tightly integrated at multiple levels? 

To choose a core platform, carefully evaluate all of your current machine-learning use cases for the current moment, the 

next year and the next five years. Ensure that you completely understand the kinds of problems you’re looking to solve 

now and over your future timeline. Because the state-of-the-art technology in AI/ML and the infrastructure that supports 

it are rapidly advancing, the AIIA believes that it’s difficult to know beyond a shadow of a doubt whether you can support 

all the use cases that will develop beyond five years, and so it is best to focus on a platform that can support the vast 

majority of your workloads over that time horizon. 

However, even though you may not be able to predict every possible use case beyond that timeframe, give yourself 

room to expand into other use cases you might not imagine at the moment. That means choosing a platform with 

maximum flexibility, language agnosticism and the ability to process structured, semi-structured and unstructured data. 

Ensure that your core platforms have the ability to meet all of those potential use cases. 

While your team may be starting with low-hanging fruit use cases like churn prediction and customer-demand forecast-

ing, it’s not enough to select a core tool that only meets those needs, especially if you see the possibility of more ad-

vanced use cases like computer vision, audio transcription, NLP and more. Your core platform should be flexible enough 

to handle a wide variety of use cases. 

When evaluating each platform, don’t simply accept the marketing copy that claims a product can do anything and 

everything. Look to see well-documented use cases and examples that cover each and every aspect of what you hope to 

achieve now and in the future.

A mistake in choosing a core platform is one of the most costly mistakes a team can make. You may find yourself using 

a second or even third platform to accomplish tasks because the original core platform claimed to meet your needs in 

their marketing, but the reality proved very different. Mistakes in choosing the satellite platforms that support your core 

platform are more correctable. It’s easier to swap out a monitoring platform if it doesn’t meet your needs versus swap-

ping out your primary pipeline and orchestration system. 

Of course, while a best-of-breed approach provides the best chance of success in the current AI/ML infrastructure 

landscape, there are several downsides that must be considered. The first is cost. There is a cost associated with buying 

multiple platforms, and that will have to be weighed against the cost of developing, upgrading and supporting an in-

house platform or being forced to add on to an “end-to-end” solution that didn’t end up being end-to-end. The cost will 

also depend on whether you have a rich and varied set of use cases and whether you expect your team and use cases 

to expand over the next five years. The second challenge is support. You will not have “one throat to choke” when it 

comes to support and will need to deal with multiple teams. However, in the modern enterprise, we find that teams are 
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already used to juggling multiple support contracts, and this is generally not considered as big of a barrier as it once was 

a decade ago.

Despite those two caveats, the AIIA still considers the modular, best-of-breed approach to be the most effective way to 

build an AI/ML stack today that will meet a wide variety of needs now and tomorrow, while delivering the most flexibility 

and ROI to your team.

THE BLUEPRINT AND THE LANDSCAPE
The major challenge any organization faces when trying to choose an AI/ML platform or set of platforms to meet their 

needs is how to categorize the capabilities of those platforms. What’s needed are a clear set of categories and capabili-

ties that fit each category. They should match the reality of the features of the platforms that are available now. 

It seems simple, but it has proven challenging because the space is evolving so quickly and it exists on a new branch of 

the software development tree. There are a number of overlaps with traditional software development, but there are 

some striking differences as well. For instance, there is no analogous step to training in hand-coded software develop-

ment. 

A number of teams and organizations have tried to help create those categories, but by and large they’ve made the 

problem worse. Almost inevitably, the categories are poorly thought out, ill-defined and overlapping. Unfortunately, 

marketing largely adds to the confusion by creating an all-too-familiar landscape guide with those poorly chosen catego-

ries and then slotting each vendor’s logo into a neat little box. It creates a slick graphic that is shareable on social media 

but is utterly ineffective at helping people understand the AI/ML software landscape. The biggest problem with this kind 

of graphic is that software often does not fit neatly into a single category. A platform might have labeling capabilities, ex-

periment tracking capabilities, a feature store and more. Putting that platform’s logo in the experiment tracking category 

alone is reductionist at best and outright wrong at worst.

To really help organizations understand AI infrastructure, we’ve come up with clear category abstractions that do not 

have many edge cases or overlap. For instance, computer vision is a sub-type of machine learning, but it doesn’t have 

much to do with the capabilities of AI-infrastructure software. Many different platforms listed here support the building 

and training of computer-vision models along with other kinds of models. “Labeling platforms” is a baseline category 

that describes an entire range of capabilities in AI-infrastructure software.

We’ve taken a two-fold approach to helping companies to clearly understand the capabilities of the platforms in the 

ecosystem. 

First, we’ve distilled the capabilities down to the point where it would be difficult to boil them down any further, and we 

added them to a blueprint that represents an idealized stack. Vendors do not fit neatly into any single box but may have 

capabilities across multiple boxes.
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Even a platform that functions first and foremost as a model serving framework has capabilities in other parts of the 

blueprint. Solidly colored boxes indicate complete support and focus for that set of capabilities, while striped shading 

indicates a partial set of capabilities in that area.



14

Second, we created a new kind of landscape guide, unique to the AIIA, that includes a high-level feature matrix, and we 

include vendor capabilities across each of the categories rather than pigeonholing them as having only one capabili-

ty. We also rate the vendors on whether they offer complete support for a category or partial support. For instance, a 

company might have explainability features but not robust monitoring and observability features, so it would only rate 

as partial support. 

With those abstractions in mind, we break down the software contenders in each of the major categories below. We 

go over the major companies, startups and open-source platforms, as well as the various capabilities to expect in each 

category. We also explore the development of each of these capabilities. Some are highly developed and some less so. 

Lastly, we give you a projection of how these capabilities will develop over the next five years and what gaps need to be 

filled in for missing capabilities.

 
ORCHESTRATION, PIPELINES, COMPUTE ENGINES
Companies and platforms covered in this section include:

Apache Spark, Ray, Kubernetes, Databricks, Argo, Airflow, HPE, ClearML, Pachyderm, Comet ML, Neu.ro, DAGsHub, 

Google Vertex, Amazon SageMaker, Azure Machine Learning, Valohai, Arrikto, Modzy, Kubeflow, Iguazio, Neptune AI, 

Infuse AI, Dbt, Flyte, Domino Data Labs, Dataiku, Prefect, Weights & Biases, H2O, ZenML

Orchestrators are the control engines in the AI/ML development lifecycle. They organize everything from how data is 

ingested, cleaned and transformed, to the training and tuning models, to the deployment of finished models. In short, 

they’re the puppet masters of your AI/ML workflow and one of the contenders for your core platform choice. 

The terms orchestrator and pipelines are often used interchangeably, and though they are similar terms, they have 

subtle differences. Orchestration involves the command and control of the various steps, whereas a pipeline is the se-

ries of steps themselves. It’s worth noting that while pipeline has become the standard term in the industry, it’s a bit of a 

misnomer. The movement of data and models from ingestion to deployment is often a DAG or a decision tree with lots 

of branching steps, and it is also cyclical in that a model is never really done, but rather moves back through the process 

to learn from new training data or to get tuned and updated. 

Nevertheless, we’ve chosen to stick with the standard terminology instead of inventing new terms so as not to create 

confusion. We’ve also chosen to use the words orchestration and pipelines together to indicate both the flow of the 

data, code and models through their journey from beginning to end and back again, as well as the modules that con-

trol that flow. Unlike with traditional coding pipelines, most notably continuous integration/continuous delivery (CI/CD) 

pipelines, which only track code and automated tests, AI/ML pipelines track code, tests, training and the movement and 

transformation of data.

Returning to the blueprint for a moment, you may have noticed that the AIIA divides orchestration pipelines into two 

areas of primary focus:

https://spark.apache.org/
https://www.ray.io/
https://www.ray.io/
https://kubernetes.io/
https://kubernetes.io/
https://databricks.com/
https://databricks.com/
https://argoproj.github.io/
https://argoproj.github.io/
https://airflow.apache.org/
https://airflow.apache.org/
https://www.hpe.com/us/en/greenlake/ml-ops.html
https://www.hpe.com/us/en/greenlake/ml-ops.html
https://clear.ml/
https://clear.ml/
https://www.pachyderm.com/
https://www.pachyderm.com/
https://www.comet.ml/site/
https://www.comet.ml/site/
https://neu.ro/
https://neu.ro/
https://dagshub.com/
https://dagshub.com/
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://valohai.com/
https://valohai.com/
https://www.arrikto.com/
https://www.arrikto.com/
https://www.modzy.com/
https://www.modzy.com/
https://www.kubeflow.org
https://www.kubeflow.org
https://www.iguazio.com/
https://www.iguazio.com/
https://neptune.ai/
https://neptune.ai/
https://www.infuseai.io/
https://www.infuseai.io/
https://www.getdbt.com/
https://www.getdbt.com/
https://flyte.org/
https://flyte.org/
https://www.dominodatalab.com/
https://www.dominodatalab.com/
https://www.dataiku.com/
https://www.prefect.io/
https://www.prefect.io/
https://wandb.ai/
https://wandb.ai/
https://h2o.ai/
https://zenml.io/
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•	 Experimentation Pipelines

•	 Data Engineering Pipelines

Experimentation pipelines are heavily focused on data science workflows. In an experimentation pipeline, a data scien-

tist runs different experiments, trains various versions of models, often in parallel, and packages up models for produc-

tion to a serving engine. The primary focus is experimentation and building models. Notice that they tend to run from 

data cleaning, after data has been ingested and transformed, all the way through training and deployment.

Data engineering pipelines are more focused on the data engineer persona. Data engineers ingest data from various 

data sources, clean it, transform it, check it for errors and prepare it for use by data scientists, who tend to focus on 

data at a higher level of abstraction. Of course, there are data scientists who act as data engineers as well, but in more 

advanced teams we find the roles increasingly specialized. Data pipelines run from ingestion to packaging models up 

for production. At the end, they tend to overlap with experimentation pipelines in deployment, but they tend to do the 

underlying system’s work of deployment, such as packaging the model up with dependencies and scheduling it to a 

container or serving engine.

We’ve discovered that the teams surveyed often faced their biggest challenges with collecting and cleaning data, QAing 

and transforming data, which falls squarely on the shoulders of data engineers.

This is reflected in the composition of teams as well. Most companies surveyed employed more data engineers than 

data scientists.
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It’s also reflected in where teams are spending the most time and money.
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To further illustrate the difference between the two roles, consider the following: A data engineer might be more 

worried about connecting to external data sources via RBAC tokens, ingesting that data from Snowflake or Amazon 

Redshift or an object store like Amazon S3 and transforming the data into a format that is readable by the tools a data 

scientist is using, such as Pytorch or Tensorflow. On the other hand, a data scientist is largely concerned with data at 

a higher level. A data scientist focuses on understanding the features of the data, such as calculating age from date of 

birth or discovering the clusters of pixels that indicate the outlines of a person or a building in an image.

This is roughly equivalent to the old systems administrator and programmer dichotomy in traditional programming, 

though it is not a perfect analogy. Today’s data engineers have the programming skills necessary to automate many 

aspects of their work, and many data scientists are comfortable altering data to make it ready for feature extraction. 

In practice, there is often a lot of overlap between these two styles of pipelines and many platforms do aspects of both 

data engineering and experimentation but it is helpful to consider them separately because in our experience platforms 

tend to lean towards one or the other end of the spectrum and that affects how their interface, API, programming and 

visualizations manifest. 

 

https://www.snowflake.com/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
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The Two Types of Orchestration

There are two major types of orchestration:

•	 Loosely coupled

•	 Tightly coupled

Both have their advantages and disadvantages. The basic difference between them is simple. Loosely coupled orches-

tration engines are not tied to the underlying execution. Airflow is an example of a loosely coupled orchestrator. It does 

not have a dedicated compute and scheduling engine. Because it is loosely coupled, it can execute tasks on a diverse set 

of compute engines, such as Kubernetes or Spark, and it can even execute other distributed application frameworks 

like Ray or Iguazio’s MLRun.

Tightly coupled orchestration systems are tightly bound to their underlying compute engine. Spark is a perfect example, 

as it is both an orchestrator and a distributed big-data processing engine. Pachyderm is another example of an orches-

trator that is tightly coupled with its underlying execution engine.

The biggest advantage of a loosely coupled framework is that it is general purpose and can execute tasks on many 

different engines. It can also execute the tasks of other tightly coupled orchestrators. That makes it useful as an orches-

trator of orchestrators. Loosely coupled frameworks tend to be higher level and more abstracted in terms of the kinds 

of actions they can perform. An example of a loosely coupled framework is Airflow.

The biggest disadvantage of a loosely coupled framework is that because it is more general purpose, it can’t take 

advantage of all the unique underlying execution engine capabilities without plugins. Even with plugins, a loosely 

coupled orchestrator is not a two-way street. Because Spark has the knowledge of the underlying data, it can share data 

between tasks. It also has knowledge of memory allocation and compute resources, and different scheduling options 

that it can’t share with Airflow.

Loosely coupled orchestrators often have no concept of the underlying data and so can’t trigger pipelines based on 

changes in data. On the other hand, tightly coupled systems, such as ClearML, can trigger pipelines based on changes 

to the data, such as when new telematics data flows into a data lake, which in turn triggers a job with only changed data 

instead of the entire dataset. There are exceptions to this rule, such as the loosely coupled orchestrator, Prefect, which 

can pass state and data dependencies to underlying systems, but loosely coupled systems are always at a disadvantage 

to tightly coupled systems when they need to utilize a special feature of the underlying system.

The disadvantage of tightly coupled systems is that their orchestration often cannot extend to other systems to execute 

tasks, and you must deploy the underlying compute engine to make them work. Their orchestration is siloed to that 

system. 

Which style of orchestration system to use depends on an organization’s needs and scale. Smaller teams may only need 

the capabilities of a specific engine and thus focus all their energy on that engine to meet their needs. Large enterprise 

https://kubernetes.io/
https://kubernetes.io/
https://spark.apache.org/
https://www.ray.io/
https://www.ray.io/
https://www.mlrun.org/
https://www.mlrun.org/
https://www.pachyderm.com/
https://airflow.apache.org/
https://clear.ml/
https://clear.ml/
https://www.prefect.io/
https://www.prefect.io/
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AI/ML teams, with diverse model production needs, are likely to need more than one compute engine for different 

kinds of AI/ML capabilities, and so they may use a combination of loosely coupled frameworks, as well as the underlying 

tightly coupled framework at different stages in the machine-learning pipeline.

Compute Engines

Now that we’ve explored orchestration, let’s turn to the underlying compute engines. The bedrock of any AI/ML 

workload is its compute engine. These are the workhorses of execution in any AI/ML platform. They process data and 

code; schedule resources like memory, disk space, GPU, TPU and CPU; execute steps; and scale and parallelize execution 

of those steps.

We’re going to assume you have a generalized understanding of virtualization, containers and parallelization in general 

and not go deeply into the details of these systems. But they are important to reflect on for a moment because we’ve 

found that the vast majority of current AI/ML platforms rely on one of three compute engines:

•	 Kubernetes

•	 Spark

•	 Ray

There are others, but it is worth focusing on these three as they encapsulate the three key focuses a compute engine 

can have, namely:

•	 General purpose compute engine

•	 Tightly coupled orchestration and compute

•	 Machine-learning application focused compute

There are some platforms that run “bare metal” in theory, but today that mostly means running on virtualized 

containers or serverless instances in the cloud or on virtualized or serverless local instances in a data center. 

Of the three, Kubernetes is the most general purpose compute engine. It evolved from Google’s own internal container 

and orchestration capabilities and the desire to build a clean, universal cloud “operating system.”  You can see its history 

and timeline here. Kubernetes is generic enough that it can encapsulate and run other compute engines on top of it, 

making it the most general purpose of the compute engines. It is language agnostic, allowing teams to run any kind of 

code, including Bash, C/C++,  Python, Rust and Java. It also does not matter if you are building a web-scale distributed 

web application or a machine-learning training pipeline, it can run any kind of workload because it is so general 

purpose.

Apache Spark is the second most well-known compute engine, and it has a long history. Spark has its own battle-tested 

parallel processing engine and does not rely on third-party scaling platforms like Kubernetes, although Spark can be 

deployed on Kubernetes. It’s important to note that Spark was created before the AI/ML deep-learning revolution that 

https://kubernetes.io/
https://spark.apache.org/
https://www.ray.io/
https://kubernetes.io/
https://kubernetes.io/
https://blog.risingstack.com/the-history-of-kubernetes/
https://blog.risingstack.com/the-history-of-kubernetes/
https://blog.risingstack.com/the-history-of-kubernetes/
https://spark.apache.org/
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started with AlexNet. It was primarily designed to deal with processing big data, based on Google’s MapReduce paper 

and as a better version of Hadoop, an early disk-bound version of a MapReduce-type system. Spark’s biggest innovation 

was keeping and processing most of the data in memory, which made it up to one hundred times faster than Hadoop, 

which was heavily disk dependent. It’s a testament to the design of the system that it allows for additional use cases like 

AI/ML, but it is not always a perfect fit.

Spark is most adept at dealing with structured data, such as columnar text data in a database, and semi-structured data, 

like JSON files, though there have been efforts to make it more capable at dealing with unstructured data, like video, 

audio, images and unstructured text like legal documents, specifically through the Delta Lake project, though that is still 

not the primary strength of the platform.

As noted earlier, Spark is both an orchestrator/pipelining system and a compute engine. Its orchestration is built around 

Scala, though it does support other languages through ports and wrappers, such as Python.

Ray is the third compute framework and a relative newcomer to the market. It was designed at UC Berkeley’s RISELab, 

primarily as a tool for reinforcement learning (RL) and as a “replacement for Spark” with a specific ML focus, since many 

kinds of ML jobs do not fit into MapReduce style paradigms. As computer science professor Michael Jordon wrote in an 

article from 2017, in the early days of the project:

You need flexibility. You need to…put together not just things like neural nets but planning 
and search and simulation. This creates all kinds of complex task dependencies. It’s not very 
easy simply to write a MapReduce kind of paradigm. You can write it, but it’s not going to 
execute very effectively when you have very heterogeneous workloads and tasks. It needs 
to be adapted to the performance of the algorithms, as the system is learning, to change its 
flow, its tasks.

The platform has since been adapted to be a more general purpose compute framework for machine learning through 

Dataset, a distributed data loading and compute library, though it is still most often used for reinforcement learning and 

as a serving engine. 

Ray is perhaps the newest and most cutting-edge of the frameworks, but it is simultaneously the least general purpose 

and the most specifically designed for ML workloads. It should be noted that calling Ray a replacement for Spark is 

not exactly correct. Ray does not have its own underlying compute engine, and it is not low-level enough to act as one 

currently. It relies on general purpose compute frameworks like Kubernetes to run. Instead, it is a set of Python libraries 

for building distributed machine-learning applications and serving them. It focuses on some of the key dependencies for 

newer and more cutting-edge AI/ML techniques that do not fit into the do-a-task-and-then-wait paradigm of MapReduce. 

For example, reinforcement learning often has many parallel and less linear tasks that work together in a dependency 

tree, and they all need to finish before the next step can proceed. Lastly, it is exclusively for Python applications.

https://en.wikipedia.org/wiki/AlexNet
https://en.wikipedia.org/wiki/AlexNet
https://research.google/pubs/pub62/
https://research.google/pubs/pub62/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://delta.io/
https://www.ray.io/
https://www.datanami.com/2017/03/28/meet-ray-real-time-machine-learning-replacement-spark/
https://www.datanami.com/2017/03/28/meet-ray-real-time-machine-learning-replacement-spark/
https://www.datanami.com/2017/03/28/meet-ray-real-time-machine-learning-replacement-spark/
https://docs.ray.io/en/master/data/dataset.html
https://docs.ray.io/en/master/data/dataset.html
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Another potential advantage of Ray is you can deploy a single node without needing to deploy Kubernetes. This gives 

developers the chance to write code, test it and then scale it out to  Kubernetes clusters without changing that code 

later, which lowers the barrier to entry. However, according to the documentation, “Ray Serve lacks the ability to 

declaratively configure your ML application via YAML files. In Ray Serve, you configure everything by Python code.”

As noted earlier, we can think of the three kinds of platforms in different ways. Kubernetes is the most low-level. It is 

totally general purpose, and it does not matter if you are building a web application on top of it or a machine-learning 

training pipeline, but because of that, the logic of those applications exists higher up, so it is not enough by itself to 

create a machine-learning orchestrator and pipeline. Spark is the most long-lived and mature of the tightly coupled 

orchestrators, but it was not designed with AI/ML in mind. It has built in scaling and processing capabilities, and at 

its best it can process data that fits cleanly in a database with great flexibility and power. Ray is the newest of the 

frameworks and was designed with AI/ML in mind, and it takes into account the latest techniques in the space, such as 

RL, but it is not an execution engine in its own right and needs something like Kubernetes to run on.

Understanding the capabilities of those engines helps us understand the offerings of many platforms on the market 

because they sit at the base of those platforms and inform their capabilities higher up the stack. Understanding the 

limits and peculiarities of those platforms in particular helps us see through some of the marketing claims of various 

offerings, especially when marketing teams promise capabilities that are not an easy fit within the limitations of each 

style of platform.

Data Engineering Orchestration and Pipelines

Kubeflow is one of the earliest and most well-known orchestration/pipelining systems. It gestated at Google as an open-

source project designed to work on Kubernetes, which is the de facto standard for cloud application hosting and scaling. 

Kubeflow is not a single project but a collection of projects. When referring to Kubeflow here, we are referring only to 

Kubeflow pipelines, which is by far the most popular project in the group, along with notebooks. Kubeflow pipelines 

themselves are largely based on Argo Workflows.

In relation to the AIIA blueprint, Kubeflow most closely fits the data engineering pipeline definition and that is reflected 

in the usage of the project, roughly 73% of which is by ML engineers, another term for data engineers, as of 2021. The 

Kubeflow project predates the concept of MLOps, and it reflects a more DevOps workflow in its design. It does not 

include a concept of a data-driven pipeline, where new datums are able to trigger events and kick off pipelines and 

automation steps. It also lacks pure language agnosticism, with a heavy focus on Python. R support is rudimentary. It 

also lacks commercial support, which means any team running it in production will need to support it completely on 

their own or through the community.

Several commercial products have built their stack to include Kubeflow, most notably Google’s Vertex AI, HPE’s 

Greenlake for MLOps and Arrikto’s MLOps platform. As Kubeflow pipelines are still in active development and often 

tricky to support, the AIIA does not recommend deploying the open-source version in production at this time, unless 

https://docs.ray.io/en/latest/serve/faq.html#how-does-serve-compare-to-seldon-kfserving-cortex
https://docs.ray.io/en/latest/serve/faq.html#how-does-serve-compare-to-seldon-kfserving-cortex
https://kubernetes.io/
https://www.ray.io/
https://www.kubeflow.org/
https://blog.kubeflow.org/kubeflow-continues-to-move-to-production
https://blog.kubeflow.org/kubeflow-continues-to-move-to-production
https://argoproj.github.io/
https://argoproj.github.io/
https://cloud.google.com/vertex-ai/?utm_source=google&utm_medium=cpc&utm_campaign=emea-es-all-en-dr-bkws-all-all-trial-e-gcp-1011340&utm_content=text-ad-none-any-DEV_c-CRE_574561269975-ADGP_Hybrid %7C BKWS - EXA %7C Txt ~  AI %26 ML ~ Vertex AI-KWID_43700066526085738-kwd-1428144711975-userloc_1005424&utm_term=KW_vertex google-NET_g-PLAC_&gclid=Cj0KCQjwr-SSBhC9ARIsANhzu16tYoyq-WGEaSnX_0dJaxaXnwmxUDMSHS5kqVgydkSjSxbeGHpqF0IaAh3uEALw_wcB&gclsrc=aw.ds
https://cloud.google.com/vertex-ai
https://www.hpe.com/us/en/greenlake/ml-ops.html
https://www.hpe.com/us/en/greenlake/ml-ops.html
https://www.arrikto.com/
https://www.arrikto.com/
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you have a strong open-source team with a history of supporting open-source projects for mission-critical applications. 

To date, no company has specifically created a dedicated, supported, standalone commercial version of pipelines. 

Instead, pipelines are wrapped into a larger tooling structure, such as Arrikto’s data snapshotting filesystem, Google’s 

AutoML tools and HPE’s suite of open-source tools for AI/ML in Greenlake. For teams that are not highly sophisticated in 

supporting upstream open-source projects, we recommend choosing a vendor that can support Kubeflow as part of a 

package with rapid bug fixes, a clean upgrade path and regression patching of earlier versions. 

AirFlow is another data-engineering-focused pipelining system and allows users to build DAG objects in Python to define 

their workflow as code. As mentioned earlier, it is loosely coupled. Many companies and organizations use Airflow for CI/

CD-style orchestration of AI/ML pipelines, but it wasn’t purpose built for AI. It is 100% Python focused and doesn’t allow 

any easy way to plug in other languages. Airflow works best with workflows that are mostly static and slowly changing. It 

is not built for large quantities of data from one task to the next, and the project is not recommended for “high-volume, 

data-intensive tasks,” according to the project readme. Furthermore, “a best practice is to delegate to external services 

specializing in that type of work.” Also, “Airflow is not a streaming solution, but it is often used to process real-time data, 

pulling data off streams in batches.”

 

Prefect was developed specifically to address some of Airflow’s limitations. Most notably, it’s a loosely coupled frame-

work that takes the underlying data dependencies into account as well as the task state, whereas Airflow accounts only 

for state. It also adds capabilities like task versioning. It is a Python library that looks to minimize extra dependencies like 

its own scheduler. To run production or parallelizable workflows, it relies on Dask to run distributed. 

Dbt is another data-engineering-focused transformation engine, but it is not a pipelining engine, allowing for a series 

of orchestrated steps. It is exclusively focused on SQL and running those queries directly in data warehouses, so it is 

mostly useful for BI and analytics but is not an ideal choice for AI/ML workloads; it has no support for unstructured 

workloads and should not be considered when looking for general orchestrators, either loosely coupled or tightly 

coupled, but it can be very useful for streamlining working with SQL backends. 

Pachyderm is a tightly coupled data-engineering-focused orchestrator/pipeline that also combines versioning and 

lineage tracking with an immutable data lake that includes data deduplication. It allows users to string together complex 

transformation steps in any language because it is container-based and thus language agnostic. It relies on Kubernetes 

execution to scale, unlike Airflow, which can run with or without Kubernetes. Pachyderm excels at unstructured data 

like video, audio and imagery, and semi-structured data like JSON, but it can handle structured data as well, such as CSV 

files. While there is an advantage to keeping all data in a unified data lake, organizations that are heavily reliant on struc-

tured data will find databases more performant for highly transactional processing. Pachyderm automatically builds 

a DAG, rather than requiring the user to pre-build it, by treating each step in the pipeline as an atomic unit of work by 

using well-defined JSON or YAML definitions to define steps in its pipelines. Those definitions call individual containers 

to execute code to transform, train and track models as they move through the ML lifecycle. However, while Pachyderm 

can do training and deploy models, it is primarily used in complex data preprocessing and data preparation. A team with 

complex training requirements should turn to frameworks like Horovod or Determined AI (now part of HPE). When it 

comes to deployment, a dedicated deployment framework such as Algorithmia (now part of DataRobot), Ubiops, ML-

Run or Seldon is usually used. 

https://airflow.apache.org/
about:blank
https://github.com/apache/airflow
https://www.prefect.io/
https://dask.org/
https://dask.org/
https://www.getdbt.com/
https://www.pachyderm.com/
https://github.com/horovod/horovod
https://github.com/horovod/horovod
https://www.determined.ai/
https://www.determined.ai/
https://algorithmia.com/
https://www.datarobot.com/
https://www.datarobot.com/
https://ubiops.com/
https://ubiops.com/
https://www.mlrun.org/
https://www.mlrun.org/
https://www.mlrun.org/
https://www.anyscale.com/ray-open-source
https://www.seldon.io/
https://www.seldon.io/


23

 

As noted earlier, Apache Spark is both a processing/compute engine and a data engineering pipeline, though the 

tool can also be used for data science experimentation. We’ll focus on its pipelining capabilities here. It’s important to 

differentiate between Spark, an open-source tool with multiple vendors such as Microsoft offering it as a service, and 

Databricks, which is the primary corporate backer of the project and the largest player in Spark deployments. Spark 

also underpins many other platforms as the scaling and processing engine, as in some parts of the DataRobot AI cloud. 

It’s important to understand that the capabilities of these various platforms are highly dependent on what they built on 

top of Spark, namely their various APIs and GUIs as well as their proprietary overlay applications. When you’re evaluat-

ing Spark as a pipelining tool versus a company backing Spark, you are evaluating very different things. In many ways, 

you should see Spark as a choice of compute engine with some core capabilities and limitations and then evaluate the 

vendor platforms built on top of Spark as a separate consideration.

Let’s start with Databricks’s version of Spark. While Databricks’s offerings have morphed into a suite of products that 

supports everything from ML to analytics to visualizations, Spark was primarily designed as a replacement for Hadoop, 

with a focus on data engineers working with big data. While Databricks shifted much of its focus to AI in its marketing, 

the primary use case for Spark was for big data and analytics workloads for most of its history. Because it uses Parquet 

files for storing data, which are columnar database files, it excels at structured and semi-structured workloads. While 

Databricks does say it’s possible to use Spark as a unified storage backend for any kind of data with its lakehouse 

architecture, in practice this is rarely done if an organization is dealing with large audio, video or image files (such 

as high-resolution Satellite images), as storing unstructured data in Parquet files is largely impractical, even with the 

compression capabilities of the format. However, Databricks’s Spark is one of the most popular platforms for structured 

and semi-structured batch workloads, and it has a large community supporting it. In addition, Databricks’s Spark and 

their suite of tools surrounding it makes them one of the most well-supported and well-funded companies in the 

space for high-speed structured data processing and structured AI/ML workloads, such as churn prediction, demand 

forecasting and anomaly detection. 

Scala is the primary language underpinning Spark, and though Databricks supports Python, which has emerged as the 

undisputed lingua franca of ML, the support of key Python libraries requires porting by Databricks which largely act as 

wrappers around Scala. This can create some anomalies in error debugging, and it means that teams may need to wait 

for a specific Python library or specific features of a Python library to be ported, rather than simply getting the latest 

Python library from its source repo and interacting with a system natively. That said, Databricks’s Python libraries are 

one of their most consistently updated and widely supported.

Now let’s turn to DataRobot, one of the few systems that looks to focus on both data engineering pipelines and 

experimentation pipelines. Again, we shouldn’t think of DataRobot as a single product but as a suite of tools. Some of 

these tools use different pipelining backends. The data-engineering-focused tool in the AI cloud is called Data Mesh 

and came out of an acquisition of Paxata. The tool has a strong GUI, and it excels at data prep for ML, though it is not 

a generic data engineering pipeline for any kind of transformation. It uses a set of data connectors to a variety of 

backends, such as Amazon Redshift, Snowflake, MySQL, Oracle and SAP HANA. Since most of the data connectors are for 

databases, DataRobot is largely focused on structured and semi-structured data and most of their excellent visualization 

tools support columnar data, but they can work with unstructured data as well. We’ll discuss the data science aspects of 

https://spark.apache.org/
https://spark.apache.org/
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview
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the DataRobot platform in the next section on experimentation pipelines. While DataRobot existed as a fully integrated 

set of tools and as a tightly coupled pipelining system, the team worked to decouple the tooling over the last few years 

so that outside tools can be incorporated into the workflow more easily.

Amazon’s Data Wrangler is part of the SageMaker toolset. Like DataRobot, SageMaker is not a single unified tool but 

a set of tools. Data Wrangler itself is less a generic pipelining tool and more of a visual way to do data transformations. 

It focuses completely on data cleaning, transformation and prep and on nearly 100% structured data transformations. 

It includes a wide variety of connectors and over 300 pre-baked transforms, such as one-hot encodes, and gives users 

the ability to design their own data wrangling steps as well. It is not a generic data transformer, and it is strictly focused 

on creating as many pre-built data science transforms as possible for structured data. The largest challenge with using 

SageMaker is that it is designed as a totally standalone suite, unlike other tools that strive for easy connectivity to third-

party tools, and thus it is difficult to use it with third-party external tools. However, if a third-party provider has either a 

built-in integration or provides an API, then it is possible to use them with SageMaker.

Azure Machine Learning is the most open-source focused of the big cloud providers. It offers two distinct sets of 

proprietary pipelines and an open-source offering. Its Data Factory pipelines are focused on data ingestion and 

transformation, and they have many pre-built connectors for everything from major databases like Oracle, Snowflake 

and MS SQL server but also for files via FTP and NFS and object stores. Their Data Factory also includes predefined 

transformation steps that can ease the process of ingesting and transforming data. Their open-source alternative to 

Data Factory is Airflow. 

Dataiku has some of the most advanced visual tooling for constructing data pipelines in a GUI, and it is able to act as a 

transformer for many kinds of data, though, again, the primary focus is on structured data. Its GUIs provide excellent 

dashboards and visualizations along with advanced markdown capabilities for columnar data and text. It does provide 

a series of plugins to deal with unstructured data, but they are largely either Tier 2 supported or unsupported, which 

means they are used at an organization’s own risk. Dataiku does provide some examples of unstructured use cases for 

deep learning in its knowledge base, but they are mostly pre-baked solutions such as object detection with a pretrained 

model. Dataiku uses a mixture of pipelines on the backend to accomplish its goals. Under the hood, it can use its own 

pipeline engine, Hadoop/Spark or Kubernetes/Docker, and it can run computation directly in SQL databases such as 

Oracle or Snowflake. The platform provides one of the largest arrays of connectors for external data, from widely 

supported platforms common to most data transformation engines, such as Amazon Redshift, to less common ones like 

those pulling data directly from Twitter.

The last data-engineering-focused pipeline worth a minor mention is Dagger, from the former creators of Docker. It 

includes some novel features, most notably the idea of portable container pipelines. Similar to Pachyderm, it uses 

templating to define steps in the pipeline, which also makes it language agnostic. It uses Google’s CUE configuration 

language framework instead of YAML or JSON. Dagger does not include any kind of data storage or any concept of data-

driven pipelines. Lastly, Dagger was only launched recently, and it should be considered only for early adopters at this 

time. 
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https://doc.dataiku.com/dss/latest/unstructured-data/image/index.html
https://knowledge.dataiku.com/latest/kb/analytics-ml/image-classification-visual-way/object-detection.html
https://knowledge.dataiku.com/latest/kb/analytics-ml/image-classification-visual-way/object-detection.html
https://doc.dataiku.com/dss/latest/connecting/connections.html
https://doc.dataiku.com/dss/latest/connecting/connections.html
https://dagger.io/
https://dagger.io/
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Experimentation Pipelines
 

By far the largest design pattern in AI/ML platforms is experimentation pipelines that focus on data scientists. These 

pipelines are usually DAGs (directed acyclic graphs), which are basically a conceptual representation of a series of steps 

or tasks, representing a mathematical abstraction of a data pipeline. Experimental pipelines tend to hide the actual DAG 

(a creation by the user) and include a well-known interface, such as Jupyter Notebooks, as the primary way to interact 

with the system. They do often allow the creation of steps through Python, the default language for most AI/ML tasks. By 

contrast, data-engineering-focused pipelines often require DAGs to be written directly. 

Almost every AI/ML platform includes some notion of an experimentation pipeline, which tends to blur the lines 

between engineering-focused pipelines and experimentation pipelines. For instance, despite being used mostly by data 

engineers, Kubeflow includes support for Jupyter Notebooks, as does Pachyderm and Arrikto. Nevertheless, we maintain 

the distinction at the AIIA by asking the question, where does the primary user of the platform spend their time? 

If the primary user is creating containers, writing steps to the pipeline in YAML or JSON and creating DAGs, then they’re 

mostly likely data engineers, and we would classify the purpose of the pipeline as data engineering. If most users 

are working in notebooks, running experiments, tuning hyperparameters and building models, then it’s mostly data 

scientists using the platform, and we would classify it as an experimentation pipeline. Just be aware that many of the 

pipelines can function in both arenas, and you will have to make the choice based on the skills and composition of your 

team.

As a side note, while many of the platforms discussed in this report use the phrase end-to-end in their marketing, the 

AIIA recommends that organizations adopt a more comprehensive definition that includes the work of data engineers 

and data scientists as a whole and accept that a collection of tools may be needed to serve both groups well. As such, 

organizations should evaluate the capabilities of any platform along those lines to decide if it truly has end-to-end 

capabilities. 

As such, most experimentation pipelines largely assume that the data is prepped and largely ready to go. They include 

data ingestion capabilities or the ability to point to stored data but generally do not include the ability to do steps 

like imputing missing or corrupted data, transcoding audio from WAV to MP4, resizing all images or changing images 

to a different format, which is the work of data engineers. Again, sometimes they include this ability, but in general, 

advanced concepts of ETL are not part of experimentation-focused platforms. Instead, they focus on helping data 

scientists extract features, testing multiple models against each other, tuning hyperparameters and finalizing a model 

for production. 

Experimentation engines tend to fall into two categories: 

•	 Platforms that include their own orchestration/pipelining engines and/or schedulers

•	 Platforms that aggregate metadata from other pipelining systems and orchestrate and/or visualize those pipelines 

ClearML, DataRobot, Google Vertex, Amazon SageMaker, Azure Machine Learning, Neu.ro, Valohai, Iguazio, Flyte and 

https://clear.ml/
https://www.datarobot.com/
https://cloud.google.com/vertex-ai
https://aws.amazon.com/sagemaker/
https://azure.microsoft.com/en-us/services/machine-learning/
https://neu.ro/
https://neu.ro/
https://valohai.com/
https://www.iguazio.com/
https://flyte.org/
https://flyte.org/
https://zenml.io/
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ZenML fall into the first category, in that they have their own pipelining engines. While Neu.ro includes its own pipelining 

engine, it primarily sees itself as an orchestrator and integrator of third-party tooling, so we place it here. Companies 

that focus on third-party integrations and look to act as a glue layer could constitute a third category, however since 

many platforms focus on integrations with third parties, such as Dataiku, Iguazio and Domino Data Labs, we decided it 

would not add much value.

Weights & Biases, Neptune AI, Comet.ML, Infuse AI’s Piperider, Domino Data Labs, Infuse AI and DAGsHub would 

broadly fall into the third category in that they rely on other pipelining systems, such as Spark, to run. They put their 

emphasis on visualizations and tracking experiments across different tools. 

You can usually recognize the second style of platform by a telltale sign in their marketing that usually reads something 

along the lines of “integration with a single line of code.”  Metadata stores are designed to be easily integrated with 

other platforms, and they look to act as a single source of truth across the disparate metadata of the systems they 

connect with.

Let’s look at the platforms in turn, starting with the loosely and tightly coupled orchestrators. 

 

Loosely Coupled and Tightly Coupled Orchestrators 

ClearML is an open-source suite of tools that cover a broad range of AI/ML tasks. Its orchestration and pipelines serve 

both data engineering and experimentation, with an eye towards making the transition between the two simple and 

easy. The orchestration module introduces scheduling and remote job execution on bare-metal machines, cloud 

infrastructure and Kubernetes clusters. The UI is geared towards building and testing models and getting them into 

production, allowing job scheduling directly from the experimentation UI. It also includes tools like a metadata index 

for data that allows data scientists to search through that data as well as split and sort it. The tools allow for classic data 

science tasks like slicing up training data and testing data on the fly, along with cloning previous experiments. Along the 

way, the platform develops artifacts from code and versions of all models created into a queryable model repository. It 

allows integrations with Tensorboard, Matplotlib and Git. Lastly, it allows for hyperparameter optimization on multiple 

machines, data preprocessing and model deployment, giving data scientists a more end-to-end experience to get 

models into production.

DataRobot’s experimentation capabilities are largely built around Spark, but they also have a number of excellent 

proprietary interfaces that make the data science experience easier, particularly for structured use cases and extensive 

visualizations. In addition, DataRobot has one of the better AutoML capabilities on the market. We do not spend much 

time discussing AutoML in this report because it calls up ideas of AI that can automatically do most of the work of a data 

scientist, when that is not the reality. However, DataRobot’s vision of AutoML is quite focused and clear. It essentially 

involves trying out a lot of known solutions to a specific problem in ML all at once and offering users the ability to see 

which one works best without a lot of manual experimentation. A data science team can then focus on refining or fine 

tuning various methods from there. Like other large platforms in the space, DataRobot wants to create a true end-to-

end experience, and their tools not only deal with experimentation but also with some aspects of data engineering, as 

https://zenml.io/
https://www.dataiku.com/
https://www.dominodatalab.com/
https://wandb.ai/
https://neptune.ai/
https://www.comet.ml/site/
https://www.piperider.io/
https://www.infuseai.io/
https://dagshub.com/
https://dagshub.com/
https://clear.ml/
https://www.datarobot.com/
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well as deployment, serving and monitoring.

Vertex AI is Google’s competitor to SageMaker and the Azure machine-learning cloud platform. Like other big 

platforms, it’s really a suite of loosely connected tools rather than a seamless and unified experience. It’s one of the only 

commercial platforms built on top of Kubeflow pipelines (and Tensorflow Extended), but it also uses a lot of proprietary 

tech under the hood, such as neural architecture search and their own feature store. Unlike some of the other platforms 

it competes with, it doesn’t focus as heavily on a tremendous GUI design, and that’s never been Google’s strongest 

asset anyway. But it does leverage Google’s know how with containers, large scale systems and the command line. It’s 

somewhat more modular than SageMaker, but it is still largely a walled garden, though its API is stronger than some 

more monolithic engines. The system is focused on teams with heavy programming and command-line experience.

H2O is an open-source, in-memory big-data processing engine for machine-learning and analytics workloads that 

competes with Spark. Like many other large platforms profiled in this report, it’s best to think of it as a suite of tools with 

the in-memory pipeline as the core behind it. It’s best suited to structured data workloads, but it does have support for 

images, audio and other unstructured data, and it can read common third-party formats like Parquet files. It supports 

many common ML algorithms, with the developers custom writing them for distributed processing. That means that 

H2O is mostly used for running predefined machine-learning models versus developing your own neural networks. 

H2O’s framework predates Pytorch and other popular frameworks, and it competes with more widely adopted 

frameworks like Pytorch ML, in addition to being a fast pipelining system. It consists of four primary products: H2O, its 

proprietary in-memory pipeline, Deep Water, which integrates it and allows it to leverage Tensorflow, and Sparkling 

Water, which integrates with Apache Spark. Driverless AI is an AutoML tool that competes with DataRobot’s offering and 

allows for automatic feature engineering, model selection and tuning.

Amazon SageMaker is a suite of tools that includes everything from data wrangling to pipelines to a proprietary 

feature store to a labeling system. Its experimentation pipeline runs on the proprietary SageMaker Pipelines and is 

accessed primarily through SageMaker Studio. The suite of tools inside SageMaker expands regularly. Most of the 

visual interfaces are designed almost entirely for structured data workloads, and it is not ideally suited to running 

unstructured workloads. It’s currently one of the most walled gardens of all the platforms and is designed to be an all-in-

one integrated suite. 

Azure Machine Learning splits their experimentation engines into a proprietary pipelining system, Azure Machine 

Learning pipelines, and a CI/CD-style orchestrator called Azure pipelines, which is comparable to Jenkins. Its pipelines 

are modular and allow independent execution running on Docker containers. Its orchestration allows the scripting of 

steps and orchestration of Kubernetes, VMs, Azure Functions, Azure Web Apps and more. The orchestrator uses stages, 

gates and approvals to create a deployment strategy, and it allows orchestration steps from other CI systems, like 

Jenkins.

Iguazio’s orchestration is built around their open-source MLRun python framework, which executes steps on their 

Nuclio serverless platform. The orchestrator is loosely coupled and designed to orchestrate a number of platforms, like 

Spark. It has built-in integrations with Tensorflow, Pytorch and other major machine-learning frameworks. Its interface is 

weighted towards model experimentation, featuring engineering and training, but it’s also excellent at deployment and 

https://cloud.google.com/vertex-ai
https://h2o.ai/
https://github.com/h2oai/h2o-3
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://azure.microsoft.com/en-us/services/machine-learning/
https://www.iguazio.com/platform/
https://www.mlrun.org/
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can serve models as well, and it has built-in integrations with distributed analytics frameworks like Dask.

Neu.ro is a loosely coupled orchestration system that prides itself on being able to easily integrate with other systems 

and to orchestrate them. Because it was designed with ML in mind, it is more granular than a more high-level and 

abstract loosely coupled orchestrator like AirFlow, which was designed for many tasks. Because of the development 

team focus on making it an orchestrator first, it includes many integrations with other tools in the ecosystem like Seldon 

Alibi, Seldon Core, Prometheus and Grafana, DVC and other platforms, with the goal of knitting them together and 

weaving them into a single CI/CD cross platform workflow for ML.

HPE’s Ezmeral platform leverages a number of open-source platforms, like Spark and MLflow, under the hood, along 

with Kubernetes for scaling. It also includes Airflow for loosely coupled orchestrations that can execute against Kubeflow 

pipelines, Spark or other external platforms. Because it leverages open-source platforms so extensively, it is more 

modular than other platforms and it allows for swapping in components more easily. It includes a proprietary interface 

called the App Workbench to help connect these different offerings, as well as an API to schedule jobs more easily.

Similar to HPE Ezmeral, Shakudo built their platform on Kubernetes from a suite of open-source tools such as 

Tensorflow, Spark, MLFlow and Jupyter, while layering a proprietary interface. This is a trend we expect to see continue 

in the space as open-source stacks mature. Integrating disparate open-source offerings is a challenge, and we expect to 

see more companies offer a clean interface to these solutions. 

Valohai’s platform is similar to Pachyderm in that it uses Kubernetes on the backend, YAML/JSON to define steps in 

the pipeline and containers to execute code. That makes it language agnostic and even framework version agnostic. A 

customer may use one version of Anaconda in one step and another in a later step, while using a completely different 

language like Rust in yet another step. The platform’s focus is primarily on deep learning, and its UI makes it lean closer 

to the data science side of the pipeline because it emphasizes experiments and comparing experiments. Because 

it is language and tool agnostic, it can be used for data engineering workloads, but because it has a well-defined 

experimentation interface, we classify it primarily as an experimentation pipeline. 

Flyte is a tightly coupled framework that came out of Lyft and eventually found a home at the Linux Foundation’s LF AI & 

Data group. It was designed as a replacement for Airflow but with a focus on ML experimentation and deployment, and 

because it runs on Kubernetes clusters natively, it is considered more tightly coupled. The system looks to avoid YAML 

configurations for steps, instead focusing on direct code, such as Python code, to orchestrate steps, much like MLRun, 

though it also supports writing orchestration steps in Java and Scala. Because it is container-based, it can execute steps 

agnostically, in a manner similar to Pachyderm or Valohai.

ZenML is a loosely coupled Python-based orchestrator that, like Neurolabs, prides itself on a wide range of integrations 

with everything from Spark to SageMaker to Argo. It was designed as an orchestrator of orchestrators, with the ability to 

stitch together an MLOps stack from a wide variety of proprietary and open-source components.

 

https://neu.ro/mlops
https://www.seldon.io/solutions/open-source-projects/alibi-explain
https://www.seldon.io/solutions/open-source-projects/alibi-explain
https://www.seldon.io/solutions/open-source-projects/core
https://www.hpe.com/us/en/solutions/ezmeral-machine-learning-operations.html
https://community.hpe.com/t5/HPE-Ezmeral-Uncut/HPE-Ezmeral-5-3-puts-the-EZ-into-Analytics-DataOps-and-App/ba-p/7128148#.YnPNNfNBxQI
https://www.shakudo.io
https://valohai.com/
https://flyte.org/
https://zenml.io/
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Metadata Engines, Experiment Trackers and Visualizers 

 

Now that we’ve covered the platforms that include their own orchestration engines, we can focus on the platforms that 

are more metadata focused, for the purpose of acting as systems of record across multiple platforms, and that offer 

visualizations and tracking.

The first, Weights & Biases, is not an orchestrator or pipeline system itself, but rather it integrates with other 

orchestrators to offer experiment tracking and visualizations of experiments. It also offers checkpointing and the ability 

to rerun experiments. Lastly, it monitors CPU and GPU performance.

Comet.ML also emphasizes experimentation and visualization via easy integration with one line of code. It’s designed 

to be simple to integrate into existing pipelines, even home grown ones, and enables teams to track and compare 

those models more easily. It allows for workspaces that let teams consolidate, manage, collaborate and report on their 

machine-learning projects and experiments. Comet.ML provides automatic logging for a number of popular Python 

machine learning frameworks, even if those frameworks don’t support logging natively.

Domino Data Labs acts as a metadata store across platforms, and its Workbench platform acts as an easy interface to 

Spark and Ray compute engines. Its goal is to act as a system of record across platforms and to make interfacing with 

other platforms easier, so it falls into the loosely coupled visual orchestrator category.

Infuse AI’s PipeRider system monitors changes across pipelines and notifies users when they break expectations to 

help avoid repeated failures. Like the other frameworks in this space, it is designed to be easily integrated across other 

platforms, starting with DBT and moving to Snowflake, Tensorflow and Weights & Biases and MLflow. Since it is not 

designed to do the orchestration itself, it can be gradually introduced to a stack.

DAGsHub is the last metadata and visualization platform we’ll profile here. It includes the ability to compare and diff 

files and to create versions of DAGs, and it allows for team collaboration with the commenting, annotating and sharing 

of DAGs. It offers integrations with third-party tools like Jenkins, and it is designed for modularity.

Current Trends and the Next Five Years

Orchestration and compute are some of the most essential components in an AI/ML. They form the bedrock of how 

work gets done on the system, and a misstep in choosing the right framework can prove costly, as orchestrators and 

pipelines connect with all or most other aspects of the system. This is an area in which every company should study the 

available options extensively and take their time to make sure the platforms match their needs and their future needs. 

Many of the companies in this space offer similar capabilities, and companies looking to make a decision on which 

platform to use should consider the following:

https://wandb.ai/site/experiment-tracking
https://www.comet.ml/site/
https://www.dominodatalab.com/
https://www.infuseai.io/
https://www.piperider.io/
https://dagshub.com/
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1.	 The key capabilities of their team

•	 Are they strong programmers or do they need a powerful visual GUI or both?

2.	 The range of capabilities of the platform

3.	 The kinds of AI/ML projects they need to support

•	 Structured, semi-structured, unstructured or all of the above?

4.	 Connector and integration support

5.	 Customer team and support

6.	 The proprietary tooling capabilities

7.	 Their graphical front end 

We recommend that companies carefully consider not just their crrent AI/ML use cases but any future use cases they 

might want to work with in the future. There are a number of capable orchestration and pipelining platforms on the 

market, but not every one will meet every need. If you are not careful, you might find that you’ve selected a powerful 

system for working with structured data and databases but will struggle with deep learning later. It’s likely you may need 

a suite of tools to accomplish all of your goals as an organization. 

It’s important to look beyond marketing. Many platforms promise that they can do everything and handle any kind 

of workload, but be sure to ask companies to demonstrate a range of capabilities and beware of sleight of hand. If 

a company promises they can handle high-resolution satellite imagery as easily as textual data, be sure to examine 

examples and case studies that demonstrate that capability in detail. 

It is also difficult to know what kinds of capabilities you will need for future workloads, and the limits of platforms may 

not make themselves known until your team has used the platform for a time and then pivoted to a new use case, only 

to find out it is challenging to achieve their aims within that platform. It is likely your team may need to use a range of 

tools, including one or more tightly coupled data engineering frameworks, as well as a loosely coupled orchestrator and 

an experimentation engine. 

 

The Next Five Years

In the current generation of platforms, Spark is one of the most dominant. That’s largely because it is the oldest existing 

codebase, and companies that built their capabilities around it have had the most time to mature their interfaces, APIs 

and those capabilities. If you are working with structured workloads, Spark has excellent capabilities and thousands of 

successful use cases.

However, MapReduce has limitations with regard to AI/ML. Newer AI paradigms like RL have cascading sets of task 

dependencies that do not easily fit into a MapReduce structure. Unstructured data, despite efforts like Delta Lake, is 

not an ideal fit on the platform, and that makes it less than ideal for deep learning. Just as Spark was built with data 

processing in mind, newer frameworks, like Ray or the Google Pathways training architecture, are being built from the 

ground up with existing AI/ML workloads and more cutting-edge workloads in mind. 

https://arxiv.org/abs/2203.12533
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As the field of AI/ML advances and new techniques come out of the research labs and become commonplace, we expect 

the limitations of MapReduce to continue to show their age. We expect more frameworks like Ray and Pathways to 

emerge over the next five years and for them to compete to become the default distributed processing and distributed 

AI/ML application framework for the next ten years. We also expect frameworks for AI/ML that are more language 

agonistic; even though most major work starts in Python, other languages can and do add value to the various steps of 

the AI/ML workload. We also expect those platforms to absorb newer AI/ML workloads that rely on that underlying logic. 

That said, we firmly expect Spark to continue to be a powerhouse in structured data applications and to continue to 

excel at a broad range of other types of BI and analytics.

While we do expect competition on the AI/ML framework front, we do not expect any other general purpose compute 

engine to emerge and compete with Kubernetes. Kubernetes itself emerged as the de facto winner against other strong 

contenders like Apache Mesos, Docker Swarm and Rancher. None of them had the broad mindshare and sticking power 

of Kubernetes or its general purpose capabilities and scaling potential, other than Mesos, which is no longer a serious 

competitor in the cloud compute space. Kubernetes services are now available on premises and in every major public 

cloud, and we do not see serious competition to it suddenly emerging. As such, expect Kubernetes to largely act as 

the underlying compute layer, and AI/ML framework layers to run on top of it or a serverless platform like Nuclio or 

Amazon’s Lambda.

We expect competition at both the data engineering pipeline layer and the experimentation pipeline layer to remain 

fierce over the next five years. We will likely see some consolidation among the lightweight integration-style platforms 

like Weights & Biases, and there are a number of excellent visualization platforms already.

Beyond that, we expect some companies to fail or run out of runway due to funding or management or market fit. We 

also see some acquisitions and mergers narrowing the space. That said, we certainly have not seen the last of new 

players to the field, as it is an exciting space and still developing, so new players may offset the losses of older players 

who have failed. 

Finally, it’s likely that several platforms will begin to pull ahead of the competition, gobbling up market share and 

customers, but we do not expect the field to be completely decided in the next five years, with one or two totally 

dominant players sitting at the top of the heap. 

 

 
MODEL DEPLOYMENT AND SERVING
Companies and platforms covered in this section include:

Seldon, DataRobot, Iguazio, Modzy, ClearML, ONNX, OctoML, UbiOps, Dask, Flask, NVIDIA Triton, Superwise, Cortex, 

BentoML, Domino Data Labs, LGN, Ray

 

https://nuclio.io/
https://nuclio.io/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://www.seldon.io/
https://www.datarobot.com/
https://www.datarobot.com/
https://www.iguazio.com/
https://www.iguazio.com/
https://www.modzy.com/
https://www.modzy.com/
https://clear.ml/products/clearml-deploy/
https://clear.ml/products/clearml-deploy/
https://onnx.ai/
https://onnx.ai/
https://octoml.ai/
https://octoml.ai/
https://ubiops.com/
https://ubiops.com/
https://dask.org/
https://dask.org/
https://palletsprojects.com/p/flask/
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://www.superwise.ai/
https://www.superwise.ai/
https://www.cortex.dev/
https://www.cortex.dev/
https://www.bentoml.com/
https://www.bentoml.com/
https://www.dominodatalab.com/
https://www.dominodatalab.com/
https://lgn.ai/
https://www.ray.io/
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Introduction

Over the last few decades, traditional code-based application deployments have evolved to allow for faster and more 

automated rollouts. 

We went from large waterfall deployment methodologies, where companies typically deployed new monolithic code 

once or twice a year, to Agile- and DevOps-style deployments, where applications became more modular and discreet, 

with deployments happening monthly, weekly, multiple times per day and even hundreds of times per day. We went 

from small-scale applications running inside of corporate firewalls to web-scale applications that can serve millions of 

requests per second on distributed infrastructure. 

That evolution in speed came through a virtuous loop of new strategies, new tools, more mature languages, and better 

libraries, as well as more robust serving and scaling frameworks. That loop includes a well-known and highly effective 

strategy of rolling out code, testing it, rolling it back, serving requests and scaling it to meet surging requests, as well as 

the use of software tools to support serving and scaling. 

While AI/ML deployment builds on many of those foundations, AI/ML models also present some very different factors 

that currently make them more challenging to deploy and scale.

In 2020, Algorithmia (now DataRobot), found that only 14% of organizations were able to deploy a model in 0–7 days. 

They reported that 28% of organizations took 8–30 days to deploy a model, 22% took 31–90 days and 13% took 91–365 

days. 

Two years later, in 2022, our survey shows that the numbers have changed. Teams are getting better and faster at 

getting models into production, but many are still struggling. Only 5% were able to get a model into production in a 

day, with 17% taking a week or less and 34% getting models into production in 30 days or less. That said, a significant 

portion, 23%, were still taking 2–3 months to get models deployed, and 20% were still taking 6 months to a year.

 

https://algorithmia.com/
https://www.datarobot.com/
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
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Teams are also deploying and managing a growing number of models in production, with 37% managing between 5–10, 

21% managing 11–25, 7% managing 26–99 and 7% managing a 100 or more. 
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That means it’s time to finally put the often quoted stat that 87% of models never make it into production to rest for 

good. It’s just not true anymore. 

Of course, there is still room for improvement, but MLOps teams are starting to match their DevOps counterparts 

in terms of speed and skill. Google found in their 2021 annual survey, The State of DevOps, which tracks traditional 

application deployment and serving, that the majority of the teams they surveyed were elite or high-performing teams. 

They found that 26% of teams surveyed hit elite status, meaning they were able to deploy applications on demand or 

multiple times per day, versus only 7% in 2018. Furthermore, 40% of teams hit “high” status, meaning they were able to 

deploy once per week or at least once a month. Twenty-two percent of MLOps teams can deploy a model in a week or 

less and 34% can do it in 30 days or less, which means many MLOps teams would qualify for a “high” status. 

But with all that said, teams still say the hardest thing to plan for when building and operationalizing models is the time 

it takes to deploy a model.

When we talk about model deployment and serving we’re really talking about two things: 

1.	 Deployment: The workflow to get a trained model into production

2.	 Serving: The platform that hosts and serves the model to respond to requests 

The workflow involves both the human workflow and/or an automated or partially automated series of steps to package 

up a trained model and get it into production, as well as the software tools to support the workflow. 

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://services.google.com/fh/files/misc/state-of-devops-2021.pdf
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When it comes to serving the model, we’re talking about a platform to receive and respond to requests with predictions 

and inference, as well as the software tools to maintain, manage and monitor those platforms. 

Typically the companies looking to assist teams with this part of the MLOps landscape are looking to help your team 

handle both the deployment workflow and to serve the model at scale. 
 

Deployment Workflows

The workflow consists of all the steps that are involved in taking a trained model and getting it into production. That 

might include creating an instance of the model that can receive requests for inference, packaging up all of the specific 

runtime libraries in either a proprietary format or a container like Docker, defining ports and opening the firewall, 

running manual and automated tests, security checks, pushing the model version to a version tracking databases, 

running regression style tests, spinning up instances of the model to receive requests and more. 

The speed that a model gets through this workflow depends on how much of the pipeline is automated versus manual. 

It should come as no surprise that teams relying on a lot of manual steps are further down the speed-to-production 

curve, taking months or even a year to get a model into production. Teams that have a high degree of existing 

automation in the web applications and in-house applications are often better suited to carry that knowledge over to 

machine learning.

Every company surveyed here offers some set of workflow wizards and automation steps to help speed through the 

process of packaging up, versioning and deploying a model to a serving framework, including Seldon, DataRobot, 

Iguazio, Modzy, ClearML, OctoML, BentoML and UbiOps. The workflow tooling platforms use either their own 

proprietary wizard-like steps, or they combine their tools with external CI/CD tools like Git. They also typically leverage 

open-source package management solutions like Docker, though some support bare-metal deployments, and some, 

like BentoML offer their own unified model packaging format for deployment. Some companies, like LGN, offer a 

deployment workflow specifically geared to AI at the edge, such as on a smartphone, which has special considerations 

such as memory, and speed and size constraints.
 

Serving

After deployment comes serving, where a model serves requests for inference. This is similar to a web application 

in that it needs to receive, queue and respond to requests quickly. AI/ML models typically have higher compute and 

memory requirements versus traditional web applications, although there are exceptions with memory-hungry 

languages like Java.

There are a number of key characteristics of a good model-serving framework: 

•	 Framework agnostic

•	 Scalable

https://www.seldon.io/
https://www.seldon.io/
https://www.datarobot.com/
https://www.datarobot.com/
https://www.iguazio.com/
https://www.iguazio.com/
https://www.modzy.com/
https://www.modzy.com/
https://clear.ml/products/clearml-deploy/
https://clear.ml/products/clearml-deploy/
https://octoml.ai/
https://octoml.ai/
https://www.bentoml.com/
https://www.bentoml.com/
https://ubiops.com/
https://ubiops.com/
https://lgn.ai/products/neuroform
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•	 Replicable

•	 Request queuing, batching and load balancing

•	 High concurrency and low latency

•	 Able to support GPU, TPU or other AI-accelerating hardware 

We’ll highlight how each of these appear in a typical model serving architecture as we describe the architecture below. 

Generally a model server takes a model “endpoint,” which is an instance of the model that is able to process and return 

inference requests. Requests may come from external applications via REST, gRPC or HTTP/HTTPS or from a message 

streaming service such as Kafka or RabbitMQ. Requests are often queued up or batched by a scheduler, which routes 

the requests back to the various instances of the model. The scheduling queue connects to the model agent, which 

in turn runs AI/ML frameworks, such as TensorFlow or Pytorch, or custom-built frameworks that deliver an inference 

response. The response is funneled back via HTTP/HTTPS, REST or RPC.

Sometimes the scheduler is limited to single instances of the model endpoint, in which case a deployment would need a 

software load balancer to route traffic across instances. In other platforms, the scheduler acts like a load balancer itself, 

intelligently routing to backend instances of the model endpoint. 

Companies cited latency as the number one concern in production. This differs dramatically from in academia, where 

teams publishing a paper are looking to maximize their state-of-the-art results and throughput. In academia, teams 

don’t much care if their model doesn’t respond swiftly or uses a lot of memory, but in production, latency really matters.

If the ML model that powers Gmail’s suggested sentence completion doesn’t respond faster than you can think of or 

type that sentence, then the model is largely worthless. 

 

https://kafka.apache.org/
https://kafka.apache.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
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The primary architectures of serving a model are the following: 

•	 Web service

•	 Containers and microservices

•	 Serverless 

The first approach is to wrap the model up as a web service, with something like Flask, which works well for Python-

based models. 

The second approach is to serve it as a container or series of containers, such as in a Kubernetes pod.

The last approach is to serve it as a microservice like OpenWisk or Nuclio or Fission, which is essentially a very thin 

container, and route requests to it via a service mesh like Istio.

Scaling of models is generally done via one of the following: 

•	 A proprietary or open-source clustering mechanism

•	 Containers and microservices controlled by an orchestrator such as Kubernetes

•	 Serverless platforms 

https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://nuclio.io/
https://nuclio.io/
https://fission.io/
https://fission.io/
https://istio.io/
https://istio.io/
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An example of proprietary or open-source clustering mechanisms are Spark clusters, which can pull from the 

MLflow model registry, which is a database of model versions. However, Spark is generally not used for serving, and 

Databricks considers serving via MLflow a public preview and recommends it only for “low throughput and non-critical 

applications.”  It is also currently limited to Conda-based Python applications only, which means it’s not framework 

agnostic. 

Another popular open-source autoscaling and clustering framework came out of the Rise Lab at Berkley and spun off 

into a company that extends and maintains the framework, Anyscale, which offers a managed services cloud-based 

version of Ray. Ray is a compute framework for distributed machine-learning applications, as we discussed earlier, and 

it is not an alternative to containers or microservices. Instead, when it comes to serving, it is similar to something like 

Dask, which offers a framework for building distributed analytics applications in Python. 

 

KServe is one of the more well-known and widely used open source serving frameworks. It creates Custom Resource 

Definitions for ML models on arbitrary frameworks. It was developed jointly with contributions from NVIDIA, Google, 

Bloomberg, IBM, and Seldon as a cloud native model server for Kubernetes.  Recently, it graduated from the Kubeflow 

project as a standalone project. It can be deployed on Kubernetes or serverlessly. For serverless, the system uses 

Knative Serving, which bakes in automatic scale-up and scale-down capabilities. It uses Istio to expose service endpoints 

to the API. It can support canary and blue/green deployments and supports a good range of ML frameworks. It can also 

work with existing serving engines like TorchServe, Tensorflow serving and Triton. It can host PyTorch, TensorFlow, and 

ONNX runtimes through Triton. It can also serve XGBoost and SKLearn through Seldon’s MLServer.

Most clustering mechanisms can also use Kubernetes or Slurm as a compute substrate, in essence acting as an 

orchestrator of orchestrators. Of course, the most well-known open-source clustering and orchestration platform 

is Kubernetes, and we’ve found that most of the frameworks here utilize Kubernetes or support it at some level for 

orchestration and scaling.

We’ve also found that most serving engines are agnostic to the AI/ML framework or support a wide variety of 

frameworks. Typically this accomplished by packaging the AI/ML framework up in a container. Framework agnosticism 

or wide support for frameworks is crucial because there has been a massive proliferation of open-source tools that 

data scientists leverage to train and build models, including, but not limited to, Pytorch, Tensorflow, ScikitLearn, 

Caffee, Theano and XGBoost. There are also pre-trained models available, like HuggingFace’s transformers library, 

which includes foundational models like BERT, CLIP and Perceiver IO, which teams can fine tune for their own tasks. A 

conversion system like ONNX, which creates a common file format to represent machine-learning models, may help, 

but most teams surveyed ended up running their models in their native format to avoid challenges with conversions 

or performance issues. Teams may use a framework to compress or optimize the model before serving it, as with 

OctoML’s compression service based on the open-source TVM project, in order to lower latency, memory and compute 

requirements. 

 

As of the time of our survey, the majority of large-scale, pioneering AI/ML organizations like Google, Uber, Lyft and 

Netflix, as well as the top AI/ML research organizations like OpenAI and DeepMind, use their own custom deployment 

https://docs.databricks.com/applications/mlflow/model-serving.html
https://docs.databricks.com/applications/mlflow/model-serving.html
https://docs.databricks.com/applications/mlflow/model-serving.html
https://rise.cs.berkeley.edu/projects/ray/
https://rise.cs.berkeley.edu/projects/ray/
https://www.anyscale.com/
https://www.anyscale.com/
https://github.com/kserve/kserve
https://www.seldon.io/introducing-mlserver
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://hai.stanford.edu/news/introducing-center-research-foundation-models-crfm
https://hai.stanford.edu/news/introducing-center-research-foundation-models-crfm
https://onnx.ai/
https://onnx.ai/
https://octoml.ai/
https://tvm.apache.org/
https://tvm.apache.org/
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workflows and tools, typically built around a collection of in-house proprietary and/or open tools, like Git, Docker and 

Kubernetes, which they saw as an extension of their existing automated CI/CD process.  

This is typical in any early stage software ecosystem because when the pioneers start to build their applications, there 

are simply not commercial or open frameworks to build on, so they have to roll their own. Over time, as the market 

develops, commercial vendors learn from the successes and failures of the pioneers and create stable software that 

gets adopted by the next set of organizations and enterprises. These organizations aren’t usually research organizations, 

but they have the staff and know-how to implement the research in their own environments and they begin to leverage 

open and proprietary tooling to advance state-of-the-art technology.

The vast majority of enterprises today, outside of the pioneering tech and research organizations, leverage one of three 

kinds of tools: open source, enterprise versions of open source or proprietary serving engines. Open-source tools like 

Seldon Core or Modzy’s Chassis are usually supported via their in-house IT operations on the existing Kubernetes 

platforms they already run for traditional web applications. Organizations often turn to commercial vendors that offer 

enhanced versions of open source tools, such as Seldon Deploy or Anyscale Ray’s managed service or proprietary 

serving frameworks like Algorithmia (now part of DataRobot’s AI Cloud).

Most of the model-serving commercial platforms like Modzy, Seldon or DataRobot’s AI Cloud either support a wide 

variety of frameworks or they are framework agnostic. 

Scaling involves creating multiple instances of a model and routing traffic across the instances to handle large volumes 

or concurrent requests. Scaling on almost every platform surveyed is done via containers running on Kubernetes or on 

a dedicated microservices architecture, which is essentially very thin containers and which still often runs on Kubernetes 

and containers on the backend. Examples of serverless platforms used for model endpoint serving and scaling are 

Nuclio, Amazon’s Lambda and OpenWhisk, which runs on Kubernetes and OpenShift. Examples of microservices are 

Algorithmia’s (now DataRobot) serving platform,  Microsoft Azure’s Kubernetes service and Azure Service Fabric. The 

vast majority of these platforms are managed versions of Kubernetes and containers with extensions to make it easier 

for them to manage the Kubernetes clusters. 

Beyond scaling models, we’ve noticed that many of the platforms support advanced deployment scenarios, such as 

canary and shadow deployments. It’s worth checking the support for advanced deployments with every vendor you’re 

considering for your deployment and serving needs.  Shadow and canary deployments in AI/ML differ from traditional 

applications, and it’s worth digging to discover whether your vendor understands those differences. For example, a 

shadow deployment, where requests are sent to the current production version of a model and the test version of 

the model, may need to persist for a lot longer than a web application because it may take a longer time to establish 

whether the model’s inference is improved or degraded. 

 

https://analyticsindiamag.com/how-uber-implements-ci-cd-of-machine-learning-models/
https://github.com/SeldonIO/seldon-core
https://github.com/SeldonIO/seldon-core
https://www.modzy.com/
https://github.com/modzy/chassis
https://github.com/modzy/chassis
https://www.seldon.io/solutions/deploy
https://www.anyscale.com/ray-open-source
https://www.anyscale.com/ray-open-source
https://algorithmia.com/
https://algorithmia.com/
https://www.datarobot.com/
https://www.modzy.com/platform/modelops-enterprise/
https://www.modzy.com/platform/modelops-enterprise/
https://www.seldon.io/
https://www.seldon.io/
https://www.datarobot.com/platform/
https://www.datarobot.com/platform/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://docs.microsoft.com/en-us/azure/architecture/microservices/
https://docs.microsoft.com/en-us/azure/architecture/microservices/
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Patterns of Deployment

Lastly, while we often refer to model deployment as singular, as if models were monolithic, typical production 

deployments are often a series of multiple models or transformation stages, along with traditional business logic to 

support those models. It’s best to think of deployments as deployments of a cluster of models and business logic that 

forms a complete application.

The team at Anyscale noted at least four different common model deployment patterns that each come with their 

own difficulties. While it’s not an exhaustive list, we’ve found that it largely matches the typical production deployments 

today. Each type of model presents its own problems in production, and it’s worth knowing whether your vendor has a 

detailed understanding of these kinds of deployments.

The first is the pipeline-style deployment. Pipelines go through a series of linked stages. A request passes through 

various algorithms or models like beads on a string. A good example is something like a movie recommendation engine, 

where an inference request passes through various stages like an embeddings lookup, feature interaction, nearest 

neighbors and rankings before returning its result.  

 

Ensemble models are a collection of upstream models that receive the same request and all return an answer to the 

requester.  That could be for a number of reasons. The first is that you may have a newer version of a model running in 

a shadow deployment. That means a newer version of the model is live and receiving traffic, but you want to make sure 

that the model is providing good results, so the older model remains primary and acts as a baseline until the shadow 

model is ready to take over as the primary.

https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns
https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns
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The second is to give aggregate answers, which can decrease inconsistencies across different models or different 

versions of a model. A final request may simply take the average of the answers or select one of the answers to test its 

response with users.

Lastly, dynamic selection may route requests to different models based on the model’s individual specialization. A pet 

owner might indicate they own a dog on a web form, and the service would route to the model that specializes in dogs 

instead of the model that specializes in cats.

The third pattern is business logic. A model is usually surrounded by traditional coded business logic and rarely exists 

independently. That means traditional application code needs to interface with the model. 

The last pattern is reinforcement learning. Reinforcement learning (RL) is unique in that an agent endpoint is making 

decisions and receiving a reward or punishment for its decision-making. This is the most advanced style of deployment, 

and for now it is largely confined to the most advanced research houses and large-scale tech and financial companies as 

it requires real-time data feeds and tremendous scalability. Ray is one of the few platforms built to handle RL.

All of the patterns present challenges for scaling, and the top platforms provide fast interconnects between nodes and 

endpoints, fault tolerance to address non-responsive or downed nodes, and error correction. Each of these styles of 

models has its own challenges for maintenance and uptime, and require excellent traditional IT monitoring and man-

agement. For example, a pipeline model may fail at any stage, and if any stage fails, the entire output fails. An ensemble 

model may be more forgiving if it is simply taking the aggregate of answers from all the models, but if the failure per-

sists, then the results are coming from a reduced set of models and thus suffering from the weakness in the individual 

models that the ensemble was looking to overcome. In the monitoring section of this report, we’ll cover the kinds of 

monitoring typically found in modern AI/ML production deployments to ensure that models stay running smoothly. 

 

Current Trends and the Next Five Years

Deployment and serving are some of the most challenging and yet the most important pieces in the AI/ML puzzle. Too 

often, teams find themselves struggling to productionize machine-learning models after they were developed with a 
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wide variety of open-source, homespun and proprietary tools. Memory issues, the security of the data and models, 

inference latency, dependencies, software versions, scaling and a thousand other factors can hurt performance. Drift 

can make a model useless in a short period of time, and teams need a smooth way to get models into production. 

Monitoring, as we’ll see in a later section, requires different tools and different metrics than a typical web monitoring 

setup, requiring teams to familiarize themselves with additional platforms and concepts.

There is a wide range of deployment assistance in almost every product surveyed. We recommend every team look 

carefully at the deployment process on any platform they are considering and take a close look at how it works with 

a variety of simple and complex model deployments, from single models to pipeline models to ensemble models. 

Ask questions, such as what frameworks are supported? Is the process agnostic? How many methods of rollout are 

supported and how do they work?

When it comes to serving models, we are seeing a split in approaches. The dominant approach is to containerize 

the model and serve it with all its dependencies and code and then replicate the container. This is the most popular 

approach and the most flexible. The reason for this is simple. There are thousands of libraries and dozens of major 

frameworks in multiple languages. Python is the most dominant, but apps that use R, Scala or Java are important 

too, especially in areas like fraud prevention, which has a long history in enterprises that use more than just Python. 

Containers are the most flexible way to deal with that diversity.

The second approach is to build a framework in a chosen language, usually Python. This is the approach Ray and Dask 

have taken, and it’s useful in that it goes where most machine-learning libraries currently exist and leverages that to 

allow people to build scalable, distributed machine-learning apps without altering much or any of their code. 

However, we recommend teams look at serving as being three layered. The first layer is an underlying general purpose 

compute, such as Kubernetes. The second layer is the leveraging of a serving engine like Seldon that uses something 

like Kubernetes but adds in paradigms and functions for machine learning. The third layer is a framework that runs atop 

either a first or second layer solution like Ray, Dask or Flask. 

It’s essential to know where each layer fits into the picture and which ones are dependent on other layers to function. 

Each layer adds a level of complexity to management but may also offer significant advantages like the autoscaling or 

sunsetting of old models or making it simple to package models in a consistent way for running on the web or on an 

edge device. 
 

The Next Five Years
 

In the current generation of deployers, container-style deployments such as Modzy, Seldon or Algorithmia (now 

DataRobot) are the most dominant choice, and we largely expect that trend to continue. It is likely to prove too 

challenging for any one team to have to continually support the massive proliferation of formats individually in the 

long run. It’s simply too complex and too error prone. Containers provide an elegant solution to the problem in that 

the platform does not need to understand every language or framework explicitly, though some frameworks do have 

https://palletsprojects.com/p/flask/
https://www.modzy.com/
https://www.seldon.io/
https://algorithmia.com/
https://www.datarobot.com/
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unique dependencies, so the problem is not totally eliminated. Serverless frameworks like OpenFaas, OpenWisk, 

Fission or Nuclio that sit atop containers also play a role by stripping containers down to their minimum and enabling 

fast and fluid microservice meshes of models.

It’s also possible we will see the rise of a purpose-built container interface format for models, such as what the 

MLCommons team is working on with MLCube, though it is likely that such a format will remain on a general-purpose 

container as well and simply augment it. Think of it as a container within a container or as a series of connectors 

between containers.

We have already seen attempts to build a standard model format with ONNX, and that is a solid addition to the field, but 

we continue to expect most teams to run their models in their native format, as the conversion process can sometimes 

be problematic or introduce additional complexity. The advantage of ONNX is that converting to the format allows you 

to avoid environment dependencies like requiring the Python interpreter and its libraries, as well as various version 

conflicts. ONNX stores both the architecture and the parameters in a single file, and that helps simplify deployments on 

a serving engine. The main challenge with something like ONNX is that the ONNX protocol or the converter script for 

your particular model may not support all of the operations of the source model.

We also expect to see the rise of multiple compression and conversion systems to shrink the size of models. We are 

already seeing that with platforms like OctoML and their Apache TVM compiler and LGN with their Ultra platform that 

does model pruning and compression to make it run smoothly on edge devices. This will become increasingly important 

as we see more and more models deployed to memory constrained edge devices and phones. Many models today 

are trained with absolutely no consideration as to their size and memory footprint because they are expected to run 

in a datacenter or the cloud. But more and more, AI models will advance to running on smartphones and the coming 

generation of augmented reality (AR) glasses, and they will need to fit into a much smaller footprint. It’s simply not 

possible to run many giant, memory-hungry models that work in a datacenter or the cloud on a phone, and we expect 

more compression and conversion frameworks to optimize models.

We do expect frameworks like Dask and Ray, which enable more advanced use cases in machine learning, to gain 

traction, but those frameworks will still need to sit atop a general-purpose serving engine. 

The serving space was one of the first to get funding from venture capital, and it has a large variety of players, behind 

only orchestrators and pipelines in terms of the number of total platforms on the market. We expect more and more 

consolidation in the serving space over the next five years, and in ten we expect the market to have largely consolidated 

down to a small subset of major players, just as we saw the web serving market go from fifty or more platforms to two 

or three dominant ones. 

Finally, we don’t expect there to be much consolidation on the “deployment” side of the equation, as platforms that 

speed up the complex process of packaging up frameworks are more akin to wizards from the early days of computing. 

They help simplify a difficult challenge, and there are a number of ways to do that. It’s likely many platforms will contin-

ue to offer deployment as part of their overall platform to speed the path to production, and we don’t expect there to be 

a standardized way to do that in the near future, if ever. 

https://www.openfaas.com/
https://www.openfaas.com/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://fission.io/
https://fission.io/
https://nuclio.io/
https://nuclio.io/
https://mlcommons.org/
https://mlcommons.org/
https://mlcommons.org/en/mlcube/
https://mlcommons.org/en/mlcube/
https://onnx.ai/
https://onnx.ai/
https://octoml.ai/
https://octoml.ai/why-octoml/apache-tvm/
https://octoml.ai/why-octoml/apache-tvm/
https://lgn.ai/products/ultra
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AI SUPERVISION: MONITORING, OBSERVABILITY AND  
EXPLAINABILITY
Companies and platforms covered in this section include:

Arize, WhyLabs, Fiddler, New Relic, Qualdo, Aporia, Arthur, Evidently, Seldon, Dataiku, Modzy, Mona, Censius, 

Amazon SageMaker, Google Vertex, Azure Machine Learning, DataRobot, Domino Data Labs, Prometheus, Grafana, 

Acceldata, TruEra, Zabbix, Bosch AIShield. 

Introduction

Monitoring and observability have a long history in IT, with companies like Solarwinds, Datadog, Splunk and Dynatrace 

delivering robust cloud offerings for monitoring and managing IT infrastructure. Open-source tools play a big role in 

monitoring as well, most notably Prometheus, Grafana and Zabbix, which monitor everything from Kubernetes clusters 

to databases, networking and web applications, and they can be deployed on premises or as a cloud service.

AI/ML monitoring, security and observability are relatively new entries in the space, and they have their own unique 

requirements and challenges. AI/ML security is the newest entry in the space, and it is a subset of observability and/

or explainability. In particular, they often require a different backend than traditional IT monitoring engines. They also 

require companies to collect different kinds of data. 

According to our survey, the space is tied for third place in a ranking of the areas that teams expect will have the biggest 

impact on their businesses in the coming years. At the AIIA, we think organizations will start to rate it higher as they deal 

with increased regulation and the challenge of managing a fleet of misbehaving models in production. 

https://arize.com/
https://whylabs.ai/
https://www.fiddler.ai/
https://newrelic.com/platform/applied-intelligence
https://www.qualdo.ai/
https://www.aporia.com/
https://arthur.ai/
https://evidentlyai.com/
https://www.seldon.io/
https://www.dataiku.com/
https://www.modzy.com/
https://www.monalabs.io/
https://censius.ai/platform
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://cloud.google.com/vertex-ai/docs/model-monitoring
https://azure.microsoft.com/en-us/services/machine-learning/
https://www.datarobot.com/
https://www.dominodatalab.com/
https://prometheus.io/
https://grafana.com/
https://www.acceldata.io/
https://truera.com
https://www.zabbix.com/
https://www.bosch-softwaretechnologies.com/en/products-and-solutions/products-and-solutions/aishield/
https://prometheus.io/
https://prometheus.io/
https://grafana.com/
https://grafana.com/
https://www.zabbix.com/
https://www.zabbix.com/
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Not only that, but it also comes in tied at third for where teams feel they need to invest the most talent, time and 

money, trailing data-centric and data engineering steps, and deployment and serving.

You should not think of AI/ML monitoring and observability as the same thing as traditional IT monitoring, due to its 

unique characteristics, which we discuss in detail in this section of the report. Until your monitoring provider explicitly 

offers AI/ML monitoring, you can safely assume that their tools are good for monitoring the traditional characteristics 

of an application like uptime, memory, CPU usage and the like but not the specific characteristics of AI/ML models like 

inference and prediction accuracy, drift and data quality. 

In this report, we are coining a new overarching term to encapsulate the capabilities of AI operations and to reduce 

confusion, since monitoring is a general-purpose term in IT that also has a specific meaning in AI/ML. That term is 

AI supervision. Supervision includes monitoring, observability and explainability, and those three terms touch 

everything from the pipelines to the feature databases to the models to the data itself. We explain the key differences 

between the three terms in the next subsection, Overview of Monitoring, Observability and Explainability.

You should also be careful not to confuse a monitoring engine that uses AI on its own backend to augment its own 

traditional monitoring engine, such as Splunk’s Machine Learning Toolkit or Datadog’s machine-learning backend, 

https://www.splunk.com/en_us/software/splunk-enterprise/machine-learning.html
https://www.splunk.com/en_us/software/splunk-enterprise/machine-learning.html
https://www.datadoghq.com/solutions/machine-learning/
https://www.datadoghq.com/solutions/machine-learning/
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with AI/ML model and data monitoring. That’s often called AIOps, and it’s not what we are talking about here. Many 

application providers use ML to help make predictive recommendations to their customers about potential failures of 

IT systems, using techniques like anomaly detection, and to alert systems administrators of potential problems before 

they happen. Anomaly detection signals when data is suddenly outside its normal range, such as when electrical usage 

shoots up or down suddenly after staying steady for weeks or months.

We can also loop in security of data and models here, under the umbrella of AI supervision. Like any IT system, AI 

systems can be vulnerable to cybersecurity threats, and their protection depends on the security measures deployed 

across the system. While current security engineering guidelines and practices should be followed when deploying 

AI, organizations also need to address the rise of new AI security threats like extraction of the model, poisoned 

training data, leakage of training data, the malfunctioning of the system through manipulated inputs and evasion of 

the intended functionality. We’re also facing novel threats using newer attack surfaces like data, training, framework 

libraries and the logic of the model itself. Withstanding these new attacks requires novel system design and defense 

strategies. 

AI/ML also involves a unique type of monitoring called explainability that is not found in traditional IT monitoring 

platforms. This is due to the unique nature of machine-learning models, which are often referred to as black boxes 

because we don’t exactly know why they make the predictions they make, unlike with handcrafted code logic, where we 

can examine the code to see why an application failed or succeeded. Explainability seeks to crack open the black box 

and give auditors insight into why an ML model made a decision. 

Overview of Monitoring, Observability and Explainability

Typically, there are five key stages to monitoring platforms: 

1.	 Gathering of data

2.	 Data preprocessing and data engineering

3.	 Running analytics 

4.	 Displaying the output via text/graphing/visualizations

5.	 Alerting  

A sixth optional stage may include automated remediation, where the system takes automatic steps to try to correct 

a problem, such as with Red Hat’s Insight’s platform, which uses pre-defined Ansible scripts for programmatic 

remediation, Datadog’s webhooks (not to be confused with DataRobot), which allows faults to trigger bespoke code, or 

Bosch AIShield, a defense engine that can take predetermined steps to thwart security incidents.

There are three kinds of supervision of AI/ML models and data: 

1.	 Monitoring

https://www.redhat.com/en/technologies/management/insights
https://www.redhat.com/en/technologies/management/insights
https://www.datadoghq.com/blog/automated-vulnerability-remediation-datadog/
https://www.bosch-softwaretechnologies.com/en/products-and-solutions/products-and-solutions/aishield/
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2.	 Observability

3.	 Explainability 

The terms monitoring and observability are often used interchangeably by marketing teams, which creates confusion. 

While there is a lot of overlap, there are some major differences. Sometimes explainability is used interchangeably as 

well, but it should be considered a completely separate subset in the space, and most companies and platforms refer to 

it as a subset that stands on its own. 

Typically, monitoring tries to answer the questions of what and when. Is a web server up or down? When did it come up 

and when did it go down? Monitoring capabilities track most closely with traditional IT monitoring and include uptime, 

performance and the like. 

Observability  gives teams context on how and why. The model went down because the last deployment created 

instabilities that caused it to crash after ten minutes. It helps answer questions like why is the model’s prediction 

performance degrading?

Explainability is achieved with a suite of algorithms that help humans understand why a model made a decision after 

the fact or what a model is focusing on when it makes decisions.

In general, an easy way to understand the difference is that monitoring tracks failures, outages, uptime and 

performance, while observability helps us to understand the system in both a healthy and unhealthy state, and 

explainability answers questions about specific predictions or inferences or the model’s focus as a whole.

Lastly, there are two areas that AI/ML supervision platforms tend to focus on: 

1.	 Model supervision

2.	 Data quality

When it comes to model supervision, explainability tends to apply almost exclusively to models and their performance 

after training or when they reach production, but both monitoring and observability need to exist for the ML system as a 

whole, not just for the model. A bug introduced into the data pipeline may cause a model to fail, but a team needs to be 

able to track the problem back to where it started in order to fix it, which means looking at the whole pipeline. 

Data quality is a subset of supervision. It focuses on testing and evaluating data as it comes into the system. It looks to 

identify problems such as missing data, out of range violations, type mismatches and more. 

 

Survey of the Field

Since this is a relatively new field, many large platforms are still building out their offerings, leaving it to startups like 

Arize, Fiddler, Aporia, WhyLabs, Modzy, InfuseAI, Qualdo, Arthur, Evidently, DataRobot, Superwise and TruEra to fill in 

the gap. We’re also beginning to see large traditional monitoring platforms move into the space, such as New Relic. 

https://arize.com/
https://arize.com/
https://www.fiddler.ai/
https://www.fiddler.ai/
https://www.aporia.com/
https://www.aporia.com/
https://whylabs.ai/
https://whylabs.ai/
https://www.modzy.com/
https://www.modzy.com/
https://www.infuseai.io/
https://www.qualdo.ai/
https://www.qualdo.ai/
https://arthur.ai/
https://arthur.ai/
https://evidentlyai.com/
https://evidentlyai.com/
https://www.datarobot.com/
https://www.datarobot.com/
https://www.superwise.ai/
https://www.superwise.ai/
https://truera.com
https://newrelic.com/platform/applied-intelligence
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By contrast, the large cloud providers, which offer AI/ML capabilities that are better thought of as a suite of tools rather 

than a single unified platform, have been slow to offer monitoring, observability and explainability. Azure Machine 

Learning and Dataiku have only a few capabilities in this area, such as a preview/beta drift detector in Azure’s case. 

Amazon SageMaker offers data quality checks, drift detection and some bias detection. Dataiku does have a product 

specifically focused on explainability, one of the few large providers to have one at this point. Google cloud offers only 

training-prod skew and drift detection with their Vertex AI platform. 

Companies that address monitoring, observability and explainability fall into a broad range of categories. The first category 

is companies whose primary focus is AI/ML monitoring, observability and explainability, or who have an entire product 

suite dedicated to all three capabilities. These include Arize, Fiddler, TruEra, Aporia, WhyLabs, Superwise, Qualdo, New 

Relic, Mona, Censius, Arthur, Evidently and DataRobot. It is worth noting that DataRobot’s marketing team refers to all AI/

ML monitoring capabilities as explainability, but we will stick to the industry-standard usage of the term here. 

Each of these companies brings a slightly different approach to the way they do monitoring, observability and 

explainability, while also offering similar, standard capabilities like dashboards and visualizations.

For example, Superwise looks to move beyond just dashboards and visualizations and has a strong and flexible policy 

creation framework. Their policy builder lets companies express the kinds of things they want the platform to scan and 

monitor on an ongoing basis. Those policies feed into their incidents system, which automatically groups events that 

violated those policies so that teams can perform better root-cause analysis.

Arize offers a SaaS and on-prem solution that natively supports tabular/structured data types (strings, floats, booleans, 

etc.) and they are one of the first  to support NLP, image and other unstructured data types. Arize has a robust, clean and 

clear dashboarding system and a strong focus on observability and surfacing potential problems. For example, a potential 

problem could involve a credit worthiness model that’s overly focused on a particular feature that might cause compliance 

challenges or miss important creditworthy customers. Arize’s developers focused directly on problems data scientists 

experience regularly, in addition to providing detailed bias and fairness checks, along with scalable post-production 

monitoring and alerting. 

Fiddler provides excellent dashboards and alerting, along with strong role-based access control, which is key for security 

in enterprises. Its API lets you send or receive data from the system, which allows for easy integration into third-party 

tools like notebooks. Its dashboards offer low-code analysis, collaboration and human-readable explainability. It also 

provides unique compliance-level checks like fairness, which can detect whether models violate the Equal Employment 

Opportunity Commission (EEOC) commission’s twelve factors of discrimination.

Aporia delivers self-hosted deployments that can run on Kubernetes and the cloud and that differs from a number of 

the pure SaaS-based solutions profiled here, providing a high-level of security for enterprises that can’t use SaaS-based 

metric systems. It also includes a robust set of integrations for alerting, taking it beyond email alerts to venues such as 

Slack and Jira, which creates a good deal of flexibility for enterprises looking to triage failing models and make sure they 

are aware of problems fast. 

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets?tabs=python
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://www.dataiku.com/product/key-capabilities/explainability/
https://www.dataiku.com/product/key-capabilities/explainability/
https://cloud.google.com/vertex-ai/docs/model-monitoring
https://censius.ai/platform
https://censius.ai/platform
https://www.superwise.ai/
https://arize.com/
https://www.fiddler.ai/
https://docs.fiddler.ai/pages/user-guide/data-science-concepts/fairness/
https://www.aporia.com/
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TruEra provides users with some unique explainability features that are based on six years of research conducted 

at Carnegie Mellon University. Like Fiddler, it can laser in on model bias for protected categories. It also provides a 

separate workflow for high-stakes and regulated models that involve a higher level of risk, such as healthcare models, or 

specific governance challenges. Lastly, it offers easy model comparisons since data scientists train different versions of 

one model.

WhyLabs works across streaming, batch and real-time modes without any data volume limit. WhyLabs also supports 

unstructured data like images, though it also handles structured data like the other platforms profiled here. It has a 

strong focus on privacy, in that the raw data never leaves the customer virtual private cloud, despite it being a SaaS 

solution. WhyLabs does this by operating with lightweight statistical profiles that get encrypted during transfer and at 

rest. Lastly, it offers integrations such as DevOps tools (Pagerduty and Slack) for alerting or triggering upstream model 

training via Webhook and platform-specific integration.

 

The second category consists of tools that offer a subset of capabilities in addition to their primary feature set. For 

example, Domino Data Labs has a suite of products but includes extensive drift monitoring capabilities, and Modzy’s 

platform focuses on a range of end-to-end capabilities like training and deployment but also offers drift detection and 

retraining monitoring. Additionally, Seldon has a primary focus on deployment and serving but offers drift detection and 

metrics about models that stream to Prometheus and Grafana. 

The third category consists of platforms that have a specific focus on explainability as part of their product suite, 

which includes Dataiku, DataRobot and Seldon, with its Alibi framework. We could also include Bosch’s AIShield under 

observability and/or explainability, as the platform aims to highlight security threats and make them understandable to 

teams.

Understanding Monitoring, Observability, Explainability and Data 
Quality Capabilities in AI/ML Systems

We noted that AI/ML supervision requires teams to capture new kinds of data or augment their existing data collection. 

In this section, we outline why that is and what the capabilities are for different kinds of monitoring, observability and 

explainability platforms.

Monitoring and Observability

When it comes to collecting the different kinds of data needed to effectively supervise models and data, AI/ML 

monitoring/observability is often reliant on actuals, otherwise known as ground truth. Ground truth is the real-life, 

correct answer rather than the prediction. In essence, models make predictions or inferences when faced with new 

data. For instance, consider the following question: is this transaction fraud or legitimate? The ground truth is what 

actually happened. The transaction was legitimate and made by the person who actually holds the credit card. The 

difference between ground truth and the prediction indicates a model’s performance over time.

https://truera.com/
https://whylabs.ai/
https://deploy.seldon.io/en/v1.2/contents/getting-started/production-installation/metrics.html
https://deploy.seldon.io/en/v1.2/contents/getting-started/production-installation/metrics.html
https://www.seldon.io/solutions/open-source-projects/alibi-explain
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In some cases, getting the ground truth is relatively simple and quick. If a model is designed to predict whether people 

are likely to click on an ad, then the ground truth is collected as the ad is shown and statistics on clicks are collected in 

sufficient volumes. 

In other cases, the ground truth is delayed, and identifying whether the model is performing well is much more 

challenging. For instance, a model that predicts whether people will default on a loan may not receive data on a default 

for many months or years. In that case, companies may rely on ground truth proxies, which are stats that offer an 

approximation of the truth. In fraud detection, that might be a false positive or false negative statistic, or with loans it 

might be the aggregate amount of loan defaults per month based on different demographics rather than the actual 

individual’s loan default statistics.

Lastly, collecting the ground truth may be impossible or require additional applications to collect the relevant data 

when it comes to something like object detection. Google Photos uses object detection models to identify you, your 

friends and your pets in photos. But it has no way to automatically collect ground truth statistics because only you know 

whether the model identified you correctly in a photo or missed you completely in a photo. That’s why Google Photos 

requires a different application to gather that ground truth. It prompts you in the application to audit its inference 

choices. You may have seen the “help improve Google Photos” prompt in the application, where it asked you whether 

two different images were the same person. That helps gather feedback and establish the ground truth about the 

model’s success. 

Beyond the different kinds of statistics needed for monitoring, observability and explainability, your platform will likely 

need a different backend as well because traditional supervision engines generally only need to keep track of the 

current state of a system and don’t require much history. It’s geared for fast ingestion of current statistics, but historical 

statistics are less important to the system. For instance, if we are monitoring a web application for uptime, we need 

to know whether the system is currently up or down so we can take action. We only care about the history of the web 

service’s uptime in the event that it is bouncing or repeatedly going up and down as that time-series data may help us 

triage the problem. Otherwise, we can safely discard the history after a reasonable time frame.

 

By contrast, monitoring AI/ML systems often requires keeping the entire history of predictions and ground truth 

answers in order to monitor for phenomenon like drift, where a model’s inference performance degrades over time. 

In order to understand drift effectively, we have to continually evaluate the model’s inference over time to see if it is 

degrading with new predictions. Drift refers to when a model is starting to break down because the features of the data 

have changed. A simple example is a model that recommends clothing ideas to shoppers continuing to recommend 

fall clothes in spring and causing new purchases to slow down because the shoppers are receiving less relevant sug-

gestions. Another example of drift might come from black swan events like the COVID-19 pandemic, where demand 

forecast predictions were likely to suddenly fail when lockdowns canceled concerts during their peak season.

There are a number of other types of metrics observability platforms track, such as outlier detection, where rare data 

conditions that throw a model off are kept track of. One of the primary reasons many advanced data science teams 

look to get big data is because they are really looking for outliers, such as with training self-driving cars, where they 
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capture strange deviations from the norm like a completely blocked-off street, a sudden crash or a street sign covered 

in stickers that impede object detection. Or training-prod skew, which is when a model performs badly on real data 

after performing well in training and bias detection. Bias detection is when you try to understand whether your model 

is reinforcing its own biases. This may come into play with something like a loan algorithm, where you decide whether 

someone is creditworthy enough to receive a loan. The problem is that if you reject people, you don’t know whether 

they could have paid back a loan. One approach to solving this problem might be to collect a hold-out set of people you 

rejected to lend to anyway and then monitor that set for whether the model was correct or wrong.

The classic example of bias in data is this illustration from World War II. Engineers created a heat map of bullet holes 

in planes that had taken fire in battle, in order to know where to reinforce the plane with better armor. But statistician 

Ahbrahm Wald noticed that the heat map only included planes that returned and not planes that had crashed, so he 

reasoned that it was better to put armor on all the places not shown on the heat map because those were likely the 

most vulnerable spots on the aircraft, which, when hit, caused it to crash and burn. 

 

Explainability Explained

Explainability is the final unique piece of the AI/ML supervision puzzle. As noted earlier, explainability is achieved with 

a suite of algorithms that help humans understand why a black box model made a decision. An example from Seldon’s 

open-source Alibi framework is when an object detection system is queried to show which pixels it focused on to 

decide an image is a cat, as in the picture below: 

 

 

Other examples of explainability algorithms might show a human auditor which keywords a model focused on to select 

a resume from a job candidate pool, or which characteristics of an applicant’s profile were most prominent in denying or 

https://docs.seldon.io/projects/seldon-core/en/latest/analytics/explainers.html
https://docs.seldon.io/projects/seldon-core/en/latest/analytics/explainers.html
https://docs.seldon.io/projects/seldon-core/en/latest/analytics/explainers.html
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granting or loan, or which words were highlighted to indicate the sentiment of a support request.

Explainability can be used as a triage tool to fix problems in production models and as a test for models before they 

make it to production. For instance, a model designed to detect fraud may overly focus on people being out of the 

country as a key signal. While that may be a good predictor of fraud it may overly penalize highly mobile users or 

frequent travelers.

We expect explainability platforms to become very important over the next few years and to increase in number 

substantially over the next five to ten years as regulators and governments increase scrutiny of AI and algorithms. 

In particular, we expect algorithm auditing tools to become absolute must-haves for enterprises in heavily regulated 

industries like defense, insurance, drug design and discovery, medicine, finance, banking, telecommunications and 

vehicle safety. 

 

Data Quality

Lastly, no system is complete without data quality checks. These are more closely aligned with traditional monitoring 

platform capabilities. Data quality is a somewhat vague term that can cover a number of major and minor issues with 

data, but for the purposes of this section, we refer to hard failures in data pipelines as data quality issues.

An example of a data quality issue is missing data, which is what it sounds like, data that should have come into 

the system but either didn’t arrive or arrived in a corrupted or broken state. Detecting this broken state is critical to 
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saving teams from headaches later, such as realizing several days of GPU training time in the cloud were burned on an 

incomplete dataset or a dataset with detectable errors.

Data quality issues also include classic errors like out of range violations, like when a datum of 75 comes into a set 

where the range is 0–60, type mismatches, like a name listed, and cardinality shifts, where one data steam comes into 

the system and overwhelms the other streams or where several streams are missing. Examples of cardinality shifts 

might be something like missing inventories of certain products, like umbrellas, in an e-commerce catalog, or an error 

that includes double or triple the amount of reported umbrellas, which drives the model to incorrectly think umbrellas 

are under-ordered or over-ordered. 

Lastly, data quality control might include deeper checks into the data, perhaps to look for overrepresentation or 

underrepresentation of samples. For example, a dataset for fraud might include a large amount of legal transactions 

but a minimal number of actual fraud cases, which makes training for fraud challenging. Another example comes from 

manufacturing, where a team might have many different widgets that come off the production line perfectly and very 

few defect samples.  An overrepresented sample might be a large number of the same kind of defects, while the sample 

is missing examples of more serious defects. Advanced data-quality engines will try to have deep insight into whether 

the data itself has problems and try to surface those to data scientists and data engineers before or during data 

analysis. 

 

Current Trends and the Next Five Years

AI supervision, with its subsets of monitoring, observability, security and explainability is one of the hottest areas in 

AI/ML and an area in which a lot of companies and platforms are vying for attention and getting large valuations and 

investments in venture capital. We suspect that’s because there is a strong historical base of computer science to build 

on in this area, whereas other areas, like generating excellent synthetic data or training and serving a reinforcement 

model, are new and sometimes even still experimental. While the backend engines are different and the types of data 

collection are new for AI/ML, they are still based on a similar foundation to traditional monitoring.

Many of the companies in this space offer similar capabilities, and companies looking to make a decision on which 

platform to use should consider the following: 

1.	 Ease of use and interface

2.	 Range of capabilities

3.	 Ability to support structured and unstructured models and data

4.	 Scaling capabilities and performance of the platform itself

5.	 API maturity

6.	 Customer team and support

7.	 Ability to easily integrate with other platforms 

We recommend that companies closely review the websites of AI/ML monitoring, observability, security and 
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explainability platforms, make a short list, compare features they currently need or anticipate needing in the near future 

and request a demonstration and then a proof of concept to assist their decision-making.

Monitoring platforms are one of the easier parts of the AI/ML stack to integrate, even with on-prem or homespun AI/

ML platforms because they consume data at well-defined end-points from existing components and newly adopted 

components in a fairly standard way. The rise of successful cloud IT monitoring companies over the last decade has 

proven the model and created the template for AI/ML monitoring to succeed.

The Next Five Years

We do expect more companies to enter the market in the next five years, and at the same time we expect the 

consolidation and acquisition of existing players. We also expect that the existing large IT monitoring companies, 

like Dynatrace and Splunk, will move into the ecosystem, either through creating their own capabilities or through 

acquisition.

There are also currently two glaring omissions in the space of AI/ML supervision:

•	 Security

•	 Auditing and compliance 

Security is one of the newest areas of AI supervision. It’s still very much an area of active research. Models and data 

present new vectors of attack that don’t exist in traditional IT systems. For instance, it’s possible for a hostile employee 

to insert poison data into a training set that is imperceptible to a human user, for example, by putting a subtle array of 

dots over an image to trick a model into seeing something different. It’s also possible for external attackers to probe a 

model to understand its logic and then exploit that logic or get the model to dump its logic to the attacker.

While there are a wide range of tools used to detect attacks in traditional IT environments, such as antivirus signatures, 

network attack signatures, honeypots and more, there are practically no AI/ML security tools. Bosch AIShield is one 

of the first platforms to offer protection against a subset of attacks, for example, by detecting whether a model is 

poisoned. However, because this is still an area of active research, we expect the tools to get much more sophisticated 

over the next five to ten years as attackers invent new and novel ways to attack AI/ML systems. We also expect the 

systems to begin to mirror some of the capabilities of traditional IT security, such as automated responses, alerting and 

visualizations, which help companies laser in on precisely where an attack happened and why.

 

While many of these tools can be used to ensure auditing and compliance for regulators and government watchdogs—

and some platforms such as Acceldata, TruEra, Fiddler and DataRobot note the use of their capabilities to help achieve 

compliance—we expect auditing and compliance to become a specific subcategory of the supervision space. That’s 

because we expect regulators to focus on the space in the coming years, and we will likely see a maze of regulations that 

companies need to adhere to and specific styles of reports that they need to generate for auditors. Several platforms, 

such as DataRobot and Bosch AIShield, already offer exportable reports, and we expect companies will rush to offer 

https://www.gartner.com/reviews/market/it-infrastructure-monitoring-tools
https://www.gartner.com/reviews/market/it-infrastructure-monitoring-tools
https://www.bosch-softwaretechnologies.com/en/products-and-solutions/products-and-solutions/aishield/
https://www.acceldata.io/
https://www.acceldata.io/
https://truera.com
https://www.fiddler.ai/use-cases/ai-governance
https://www.fiddler.ai/use-cases/ai-governance
https://www.datarobot.com/wiki/production-model-governance/
https://www.datarobot.com/wiki/production-model-governance/
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exportable reports and to update their existing reports to conform to specific requirements as regulation evolves. 

We also expect that many of these reports will include more human readable components, automatically generated to 

help with compliance needs, which will use ML techniques to help with summarization.

Finally, we expect wide adoption of AI/ML supervision, as few companies can afford to fly blind with data, pipelines, and 

models in production as they become more reliant on AI/ML models for core business functionality. 
 

 

TRAINING
Companies and platforms covered in this section include:

Grid AI, Superb AI, HPE, Google Vertex, Azure Machine Learning, Amazon SageMaker, Apache Spark, BigDL, Horovod, 

TFX, Pytorch Lightning, Dataiku, Lambda Labs, DataRobot, Juicelabs, NVIDIA SuperPOD, Nvidia DGX, Run AI, 

ActiveLoop

Introduction

Training is one of the major bottlenecks in machine learning, alongside labeling. Whereas labeling is slow because it 

requires scaling a distributed human labor team, training is slow because it involves waiting for machines to finish 

complex calculations. It’s also the most systems administration heavy aspect of the AI/ML pipeline. It requires teams 

to have knowledge of networking, distributed systems, storage, specialized processors like GPUs or TPUs and cloud 

management systems like Kubernetes and containers. 

https://www.grid.ai/
https://www.superb-ai.com/
https://www.hpe.com/us/en/greenlake/ml-ops.html
https://cloud.google.com/vertex-ai
https://azure.microsoft.com/en-us/services/machine-learning/
https://aws.amazon.com/sagemaker/
https://spark.apache.org/
https://bigdl.readthedocs.io/en/latest/
https://github.com/horovod/horovod
https://www.tensorflow.org/tfx/guide
https://www.pytorchlightning.ai/
https://www.dataiku.com/
https://lambdalabs.com/service/gpu-cloud
https://www.datarobot.com/
https://www.juicelabs.co/
https://www.juicelabs.co/
https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.run.ai/
https://www.run.ai/
https://www.activeloop.ai/
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Training ranks third on the list of the biggest challenges companies face when building their infrastructure. 

 

When we talk about training, we’re really talking about rapid training or distributed training. In practice, this involves 

spinning up a series of GPUs or TPUs and parallelizing training across those specialized processors. Of course, not 

every data science project needs distributed training. But large transformers, language models, complex financial fraud 

monitoring, translation engines, computer vision, reinforcement learning and complex ensemble models often need a 

large amount of distributed horsepower. Particularly when it comes to deep learning training on laptops or desktops 

or even in a datacenter with limited compute is simply not fast enough. It requires an array of chips and the ability to 

parallelize training across them.

The vast majority of the platforms profiled here in this report include some kind of training capability. Whether they are 

large clouds like SageMaker, Google Vertex or Azure Machine Learning, dedicated big-data and analytics platforms like 

DataRobot, Databricks or H2O, or mid-size startups like Valohai, Pachyderm, ClearML, Superb AI and Iguazio, all of them 

support training on a GPU. It should be noted, though, that many platforms execute a standard training script written 

by the user, while others provide additional capabilities to facilitate the process of single accelerator or multi-accelerator 

(distributed) training. Not all of them include distributed, parallelized training.

When we are talking about distributed training, we generally mean two capabilities:

•	 Distributing training across GPUs with little or no code alteration
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•	 Training multiple models at the same time and comparing their results

Let’s take a look at each in turn and see what they mean for your organization.

Distributed Training and Training Multiple Models

Distributed training is simply about taking a model that needs training and spreading out that training across GPUs to 

speed up the time it takes to complete the training. Platforms like Determined AI (now part of HPE) and open-source 

projects like Horovod that parallelize training across Tensorflow, Keras, Pytorch and MXNet deliver distributed training 

with limited or minimal code alteration, or by including specific scaling code into a team’s workflow. Other platforms 

like TFX, the extended suite of open-source tools built around Tensorflow, include a distributed training engine with 

Trainer. Pytorch, the top competitor to Tensorflow for deep-learning work, includes Distributed Data Parallel (DDP) for 

paralleling work across GPUs on a single machine, while a more experimental distributed RPC framework allows for 

potential parallelizing across multiple machines. Cloud platforms like Azure Machine Learning leverage native Pytorch 

and Tensorflow parallelism to create their cloud-based trainers. Data parallelism is also possible across Spark clusters, 

but it is not ideal for training large language models or massive machine-learning models. BigDL is a library for building 

model parallelism on Spark, and it allows for support of Tensorflow, Pytorch, Keras and more, along with the running 

of compute frameworks like Ray on Spark, and the Orca library helps support that from a notebook. At the AIIA, we 

are also closely watching the emergence of new paradigms for training, such as the novel approach proposed by Juice 

Labs called GPU over IP, which promises better utilization and easier partitioning of GPUs at a distance, though the 

technologies are currently in the experimentation phase. 

The major advantage of a system like Horovod is that it’s more general purpose and supports multiple popular 

frameworks, compared to single-platform distributed trainers like Pytorch DDP. If your organization is only using 

Pytorch, then a single-purpose platform could serve your needs, but at the AIIA we tend to favor more general-purpose 

frameworks that support the flexibility to expand to multiple tools. In addition, if you need to support both TFX and 

Pytorch Distributed, you are supporting two different architectures and two different potential points of failure and 

slowdowns.

There are two main types of distributed training: data parallelism and model parallelism. When we talk about 

distributed training, we are almost always talking about data parallelism as it is the easiest to implement and sufficient 

for most use cases. 

Data parallelism basically means that the data gets divided into partitions with the number of partitions equal to the 

total number of workers in the cluster. The model gets copied to each worker node, and the node operates on a subset 

of the data. Each node computes the errors and predictions independently and then communicates its changes to other 

nodes to update their version of the model before doing the next batch of data. Each node needs the capacity to fit the 

entire model as the model is updating across all nodes rather than being a smaller model that is later combined into a 

single larger model.

https://www.determined.ai/
https://www.determined.ai/
https://www.hpe.com/us/en/home.html
https://www.hpe.com/us/en/home.html
https://github.com/horovod/horovod
https://www.tensorflow.org/tfx/guide
https://www.tensorflow.org/tfx/guide/trainer
https://www.tensorflow.org/tfx/guide/trainer
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/docs/stable/rpc.html
https://pytorch.org/docs/stable/rpc.html
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-distributed-gpu
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-distributed-gpu#pytorch
https://bigdl.readthedocs.io/en/latest/
https://www.ray.io/
https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/orca.html
https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/orca.html
https://www.juicelabs.co/
https://www.juicelabs.co/
https://www.juicelabs.co/
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Model parallelism is done at the algorithm level and is dependent on how much of the algorithm is task independent 

from the other tasks. The model tasks are then split across nodes, and they all train on the same data. In practice, this 

is rarely done except in research or in custom algorithms designed by people with a high degree of distributed system 

skills. However, model parallelism may become necessary when it is difficult or impossible to fit a model into a single 

node. SageMaker supports a distributed model parallelism library for Python that supports Tensorflow and Pytorch 

and can parallelize training on the Amazon cloud. 

Training multiple models is the second major distributed training task. It involves training lots of models that are 

independent at the same time, when a company has a high degree of model usage and deployment. This is basically a 

systems-administration and IT-level problem. There needs to be enough compute available and proper scheduling of 

jobs across clusters, usually with in-house Kubernetes or in the cloud. 

The ability to train multiple models may also be one of the key features of an AutoML platform like DataRobot’s AutoML 

or Dataiku’s platform. This essentially involves trying a number of known successful approaches to a machine-learning 

problem, like the use of a classifier or computer vision, where multiple approaches have achieved state-of-the-art results 

at different times in the evolution of ML.

There are also platforms that focus on data infrastructure for training computer vision models. Activeloop provides an 

optimized format for unstructured data, so users can stream their datasets while training ML models in PyTorch and 

TensorFlow. Activeloop acts as a data lake for unstructured ML, and offers in-browser dataset visualization, querying, 

and version control. On top of those features, Activeloop integrates with experimentation and labeling tools to allow 

rapid iteration on computer vision datasets. 

However, training multiple models may also be part of an experimentation orchestration pipeline. A team may want to 

try different model types to see which works best or to tweak and tune the hyperparameters to see which ones produce 

the best results. For instance, Determined AI’s platform allows a team to execute complex hyperparameter searches 

and visualize the different versions of the models as they trained, after changing hyperparameters across the models, 

to determine which change is producing the best results. Determined AI lets a data scientist spin up hundreds of model 

variations at the same time, rapidly schedule them across GPUs and compare the results with visualizations. It also 

allows them to kill a job that is poorly performing to reclaim GPUs.

Supercomputers versus the Cloud

Beyond approaches to distributed training and reasons for distributed training, there are two major approaches to how 

to actually achieve it in practice: 

•	 The cloud

•	 Supercomputers 

The cloud is usually the first choice for organizations with light to medium distributed training needs. Essentially, the 

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel.html
https://www.datarobot.com/platform/automated-machine-learning/
https://www.datarobot.com/platform/automated-machine-learning/
https://doc.dataiku.com/dss/latest/machine-learning/auto-ml.html
https://doc.dataiku.com/dss/latest/machine-learning/auto-ml.html
http://activeloop.ai/
http://app.activeloop.ai/
http://activeloop.ai/
https://www.determined.ai/blog/hyperparameter-visualizations-determined
https://www.determined.ai/blog/hyperparameter-visualizations-determined
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cloud is a classic lease versus buy equation. Just as you may lease if you only use a car for a set amount of time each day 

and for a set amount of years and buy that car if your usage needs are more constant, you should consider choosing the 

cloud for distributed training if you’re usage patterns are unpredictable, which falls into the leasing side of the equation. 

The major advantage of the cloud is it deals with the complex IT undertaking of managing networking, compute and 

storage and knitting them all together seamlessly, though there are on-prem solutions that do this as well and semi-

private clouds that are essentially an evolution of managed services in IT. Clouds also tend to have the latest versions of 

GPU or special-purpose units like TPUs or FPGAs. 

When it comes to clouds, there are two kinds. General-purpose public clouds like Amazon Web Services, Google Cloud 

and Azure Cloud and machine-learning-specific clouds for distributed training like OVH Cloud or Grid AI. However, there 

are differences between ML-focused clouds that teams need to consider extremely carefully. While Grid AI is based on 

Pytorch Lightning and focuses on Pytorch exclusively, OVH is a public cloud competitor that built a subset of Kubernetes 

clusters for ML as a subset of their offerings. 

The advantage of general-purpose clouds is that most organizations are already using them and familiar with their 

capabilities. In addition, many of the clouds have layered their own set of AI/ML tooling on top of those distributed 

training systems, but they are usually instances of open-source libraries like Pytorch DDP, which makes them less 

general purpose. Of course, if your team is running your own Kubernetes cluster on the cloud, then you can run any 

application you want and take advantage of GPU containers and deploy a framework like Horovod.

Clouds built for machine-learning tasks and training, like Grid AI, offer the advantage of having built-in visualizations 

and intelligent awareness of your workload; however they face stiff competition from general-purpose public clouds, 

and some competitors in this space have already failed. It’s arguable that simply having a training cloud for AI will not 

be a supportable business model in and of itself, so the AIIA’s general recommendation is to stick with the public cloud 

or to run your own instances on the public cloud for distributed training if you need distributed training. However, 

organizations that create their own hardware as a secondary business but also run public or private hosting clouds, 

such as Lambda Labs’ GPU Cloud, are likely to prove more sustainable because their business model is not built solely 

on competing with the commoditization power of the public cloud.

However, there is one major alternative to the public cloud and that is supercomputing platforms like NVIDIA DGX. 

These are essentially boxes with a large number of top-of-the-line GPUs in a single box connected by a proprietary 

fast interconnect. The DGX A100 comes with 8 GPUs and over 5 petaFLOPS of performance, and they are able to be 

chained together in what NVIDIA calls a SuperPOD, which can include 20-140 DGX systems. Recently, similar products 

like the HPE Machine Learning Development System and Lambda Labs GPU clusters have entered the market, offering 

comparable hardware (though still running NVIDIA GPUs), and we expect more hardware stacks to follow. 

Large hardware suppliers like Supermicro often have their own GPU heavy servers; however, they usually lack 

proprietary interconnects or clustering software, leaving it up to a skilled IT team to unite them into an AI/ML training 

cloud. Lambda Labs also builds credible alternatives to NVIDIA DGX machines, but they don’t currently support the 

ability to be stacked together like NVIDIA SuperPODs.

https://www.ovhcloud.com/en/
https://www.ovhcloud.com/en/
https://www.grid.ai/
https://www.grid.ai/
https://kubernetes.io/
https://github.com/horovod/horovod
https://blog.floydhub.com/floydhub-has-shut-down/
https://blog.floydhub.com/floydhub-has-shut-down/
https://lambdalabs.com/service/gpu-cloud
https://lambdalabs.com/service/gpu-cloud
https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://www.hpe.com/us/en/solutions/artificial-intelligence/machine-learning-development-system.html
https://lambdalabs.com/gpu-cluster/echelon
https://www.supermicro.com/en/products/gpu/
https://www.supermicro.com/en/products/gpu/
https://lambdalabs.com/deep-learning/servers/hyperplane-a100
https://lambdalabs.com/deep-learning/servers/hyperplane-a100
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If an organization is training lots of models and continually updating them, then buying supercomputing platforms in a 

box is often more affordable than running models 24/7 in the cloud. This is recommended for advanced organizations 

that have fully embraced cutting-edge machine learning in their organizations. However, it is also possible to use the 

cloud in a hybrid model with on-prem or managed private instances. 

 

Current Trends and the Next Five Years

As noted in the introduction, training can be one of the most significant bottlenecks for machine-learning pipelines 

outside of labeling. However, not all training jobs are created equal. Many organizations are not yet training a large 

number of models or training models consistently enough to justify advanced training capabilities. 

However, as more and more organizations scale to large model factories where hundreds or thousands of data 

scientists need GPUs or tensor ASICs to experiment more frequently or for teams working with more advanced AI/ML 

techniques, having a powerful training environment becomes essential.

The various public clouds offer a wide variety of hardware and skilled IT teams that can build on them by creating their 

own Kubernetes instances and leveraging advanced open-source training frameworks like Horovod, Pytorch Lightning 

or TFX. Teams with less skilled IT departments can turn to public cloud ML frameworks like Azure Machine Learning or 

Google Vertex to train models. The most advanced teams can leverage supercomputing in a box with platforms like 

Lambda Labs or NVIDIA DGX.

The Next Five Years

We do expect more companies to build large data science teams and to start leveraging more advanced AI/ML 

techniques. Both scenarios require a large number of GPUs and purpose-built tensor ASICs to support those efforts. 

A large team may not be using the most advanced techniques, but thousands of data scientists competing for a small 

cluster of GPUs will quickly become a bottleneck in any organization. 

Equally, a team doing advanced work will have longer training times on existing clusters and crowd out other teams. 

If you combine both challenges in a single organization, lots of simultaneous models getting trained at the same time 

and complex models training for a longer time, you have a potential disaster unless careful preparations are not made 

ahead of time. 

Advanced compute is not something that can easily be set up ad-hoc, even on the public cloud, and we recommend that 

teams growing their organization or moving into more advanced use cases plan sooner rather than later to expand their 

ability to train.

We also expect more foundational models to come from large, well-funded AI research organizations like OpenAI and 

DeepMind and for a wider swath of organizations to take advantage of these more well-rounded, general-purpose 

https://www.pytorchlightning.ai/
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models. Stanford coined the term foundational model, and they have formed an organization called the Center for 

Research on Foundational Models (CRFM) to study them, in particular their societal consequences and use cases. 

According to the CRFM, “Foundation models (e.g., BERT, GPT-3, CLIP, Codex) are models trained on broad data at scale 

such that they can be adapted to a wide range of downstream tasks.” 

Foundational models will impact how organizations that heavily leverage AI do their work. It is likely we will begin to see 

a shift to large, well-funded research institutions building foundational models that will flow down to enterprises. Some 

of them will exist only via API with strict controls by the organization, but others will be released as fully trained models 

that enterprises can fine tune with their own datasets. 

Even with the use of foundational models, we expect many organizations will still need training capabilities to fine tune 

these models and to support the training of their own custom models as well. However, over a longer time horizon, we 

may see a decrease in the need for large-scale training factories or the rise of dedicated training factories to support 

most enterprise needs. In the short term, however, most AI/ML is still cutting-edge, and we do not expect the full range 

of solutions AI/ML offers to be encapsulated in foundational models within five years. We do expect those models to 

make a larger impact, though, and to become a part of many organizations’ AI/ML ensemble solutions. 

DATA VERSIONING, LINEAGE AND METADATA
Companies and platforms covered in this section include:

Databricks, Pachyderm, Liquibase, TerminusDB, DoltHub, Weights & Biases, DVC, Valohai, Arrikto, LakeFS, ClearML, 

Iguazio, Comet ML.

Introduction

Data versioning and data lineage describe the ability of data engineers and data scientists to keep track of different 

versions of their models, code and data as they change over time, often at the same time. These abilities are essential to 

create reproducibility in data science pipelines and to address auditor requirements. 

Data versioning and data lineage are another set of terms that often get tossed around interchangeably, but they mean 

completely different things. 

Data versioning means keeping different snapshots of data. 

Data lineage is how we keep track of what is in those snapshots and how the data changes over time. Lineage follows 

the entire journey of data as it changes over time.

https://hai.stanford.edu/news/introducing-center-research-foundation-models-crfm
https://hai.stanford.edu/news/introducing-center-research-foundation-models-crfm
https://hai.stanford.edu/news/introducing-center-research-foundation-models-crfm
https://databricks.com/
https://www.pachyderm.com/
https://www.liquibase.org/
https://www.liquibase.org/
https://terminusdb.com/
https://terminusdb.com/
https://www.dolthub.com/
https://www.dolthub.com/
https://wandb.ai/
https://dvc.org/
https://www.arrikto.com/rok-data-management-platform/
https://lakefs.io/
https://clear.ml/
https://www.iguazio.com/
https://www.iguazio.com/
https://www.comet.ml/site/
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We’ve seen versioning and lineage in traditional software coding with early systems like CVS and Subversion and today 

with Git. However, versioning and lineage of data is relatively new and has different requirements. 

There are a number of approaches to data versioning. The AIIA divides these approaches into two types of versioning:

•	 Versioning of databases

•	 Versioning of files and/or object stores 

Of the two, versioning of files has the longest history and the most development. Versioning of databases is a new 

phenomenon that largely mirrored the rise of machine learning, but it is catching on quickly.

In our survey, we found that data versioning and lineage together are one of the key aspects of the AI/ML infrastructure 

that teams expect to implement in the next six months to a year. They trailed only 1% behind the three aspects tied for 

the lead, which are feature stores, AI supervision and model deployment/serving frameworks.

Many platforms have used the tagline “Git for data,” and it’s a good tagline. But what do we mean by Git for data? We 

know Git is version control for source code, but what does it mean to version data? As it turns out, the metaphor is not 

exactly apples to apples as versioning data has some major differences with versioning source code. 



63

Let’s take a look at each database versioning

Database Versioning

Database versioning is a relatively new entry to the field, but it serves the purpose of versioning and tracking the lineage 

of structured data. 

When it comes to versioning databases, there are a number of approaches. At the time of this writing, none of the major 

database vendors, including Oracle, Snowflake, SQL Server, Redshift and Postgres, offer built-in data versioning, and 

the effect is achieved largely through plugins. 

However, MongoDB can do some kinds of pseudo version control by using the very nature of the object database itself. 

For instance, they have a blog post on creating versions of documents by adding a field that keeps track of the version. 

However, this kind of version control is not true version control and generally assumes you are still mostly querying the 

latest version of the data and that you will not store too many versions. 

When we discuss database version control, it’s important to define the terms as there are several approaches.

One approach is versioning of the schemas. This is not precisely version control at the data level, which would include 

versioning of rows, tables and/or datums at the cellular level. A database schema is basically an abstract design that 

describes the organization of data and the relationships between tables in a database. It is essentially the blueprint or 

architecture of how data will be represented in a database. Schema version control is useful for database migrations but 

not for versioning of the data as it changes or updates.

The most prominent schema versioning system is Liquibase. Liquibase has broad support for most major databases on 

the market, including Snowflake, Oracle, Redshift, MongoDB and Cassandra. It is used primarily as a method to control 

updates to database schemas but not to keep versions of the data in the databases themselves. 

In some cases, schema control can act as a sort of versioning of the data, in that the database can act as version control 

for slowly changing data. The database can mark data as active or inactive and show historical views of the data to users 

after changes, but it is not precisely database version control.

Planetscale is another scheme control system, similar to Liquibase, that has a broad customer base. The Planetscale 

team also wrote the Vitress clustering system, which enables horizontal scaling of MySql databases. In combination with 

their MySql clustering/scaling engine and their schema control system, they offer a SaaS-based service. Unlike Liquibase, 

their schema control does not apply to other databases, just MySql.

Full version control of the schema and the data is a relatively new concept in databases. There are several startups 

dedicated to making full database versioning available. 

https://www.snowflake.com/
https://aws.amazon.com/redshift/
https://www.mongodb.com/
https://www.mongodb.com/blog/post/building-with-patterns-the-document-versioning-pattern
https://www.mongodb.com/blog/post/building-with-patterns-the-document-versioning-pattern
https://www.liquibase.org/
https://www.liquibase.org/
https://planetscale.com/
https://github.com/planetscale/vitess
https://github.com/planetscale/vitess
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The first is TerminusDB. TerminusDB is an in-memory document NOSQL database. NOSQL databases come in three 

main types:

1.	 Key-value

2.	 Wide-column

3.	 Graph

Each type provides flexible schemas and scale well to handle large amounts of data and high loads. Specifically, 

TerminusDB is a graph database. 

TerminusDB offers full schema and data versioning powers that let organizations create data intensive, immutable 

databases. It uses a custom query language called Web Object Query Language (WOQL), and it includes the ability to 

query JSON directly, similarly to MongoDB, which delivers a more document-database-style interface.

A graph database stores nodes and relationships instead of tables or documents. A graph database sees the 

connections between items as being as important as the items themselves. Graph databases address the challenges of 

many-to-many relationships, such as payment networks, social networks or highway and backroad networks. They allow 

developers to focus on the relationships between the data. Graph databases may serve teams well that are working 

primarily with relationships and using graph neural networks in production. 

DoltHub is an SQL database with version and schema control. DoltHub uses the Git command line and associated 

operations on table rows instead of files. Modifications are made with SQL, and when someone finishes changes, they 

make a commit. This enables DoltHub to produce cell-wise diffs and merges. It offers merges and branches on the 

data itself. Finally, it acts as a drop in MySql replacement, but it is not backed by MySql but by the team’s own database 

backend.

The most advanced of the database versioning systems is the Lakehouse architecture from Databricks, which is based 

on the open-source Delta Lake, an Apache project. Data is stored in database-style files called Parquet files, which are 

open-source, column-oriented data storage units. The files have a schema, and Spark supports ACID compliance with 

these files. They are excellent for storing structured and semi-structured data, but they are not ideal for unstructured 

data. They can store unstructured data, but it comes with tradeoffs, such as write speed and requiring large files like 

videos to be broken up into multiple pieces. They also don’t have pointers between changed bits. Instead, Databricks 

stores versions as new Parquet files for simplicity but at a cost to storage space.

Despite some confusion created by its marketing name, the Delta Lake is a data warehouse architecture that excels at 

structured and semi-structured data. Other data warehouses include Snowflake and Amazon Redshift. Like Delta Lake, 

Snowflake relies on Parquet files to store primarily structured and semi-structured data. 

Databricks has a relatively narrow vision of versioning. Versions are made only during experiment tracking, and by 

default they are kept for seven days, after which the older versions of the file are marked as tombstoned and deleted 

after thirty days, unless database administrators change the defaults. This means that data versions are not long lived 

https://terminusdb.com/
https://terminusdb.com/docs/terminushub/reference/server/woql/
https://terminusdb.com/docs/index/terminusx-db/explanations/woql
https://www.dolthub.com/
https://databricks.com/glossary/data-lakehouse
https://databricks.com/glossary/data-lakehouse
https://databricks.com/
https://delta.io/
https://databricks.com/glossary/what-is-parquet
https://databricks.com/glossary/what-is-parquet
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on the Databricks platform and that the company largely sees versioning as limited only to the experimentation phase. 

If the goal of an organization is to keep long term, immutable versions of data, that is not currently possible with the 

DeltaLake architecture, which makes it ineffective for auditing or compliance or long-term reproducibility.

Short-term reproducibility is highly useful for teams doing rapid experimentation. However, when it comes to 

reproducing the exact conditions that created a model many months later, it becomes a problem. For instance, long-

term reproducibility can quickly become a factor, as when a court or regulator declares a model illegal because it 

used sensitive characteristics or data that was not allowed to be combined with other data. In that case, short-lived 

immutability is not effective and the organization would need to turn to backups or to a different system or attempt to 

recreate the model conditions from scratch after deleting the offending data.

 
File and Object Store Data Versioning

File and object store versioning has a much more established pedigree and a basis in past computer science solutions 

like copy-on-write file systems. 

At its most basic, we can do versioning by making copies of the data each time there’s a new version we need to keep 

track of in our machine-learning pipelines.

In the example below, we have two files in a directory, cat.jpg and dog.jpg, and we call this version 1 or V1. The images 

are all 512x512 at 300DPI resolution.

images

|-- cat.jpg (1MB)     # 512x512, 300 DPI - Added in `V0`

|-- dog.jpg (2MB)    # 512x512, 300 DPI - Added in `V0`

We add a third file to the data set: bird.jpg (1MB)

images

|-- cat.jpg (1MB) # 512x512, 300 DPI - Added in `V0`

|-- dog.jpg (2MB) # 512x512, 300 DPI - Added in `V0`

|-- bird.jpg (1MB) # 512x512, 300 DPI - Added in `V1`

This creates a new version of the dataset, V2.

Now we alter the first file, cat.jpg, to make it smaller and reduce the resolution to 256x256 at 72 DPI. That gives us a 

third snapshot of our data, V3.

images

|-- cat.jpg (1MB) # 512x512, 300 DPI - Changed in `V3`

https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Copy-on-write
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|-- dog.jpg (2MB) # 512x512, 300 DPI - Added in `V0`

|-- bird.jpg (1MB) # 512x512, 300 DPI - Added in `V1`

An intelligent data versioning system only stores changed data and uses pointers to refer to early versions, so it doesn’t 

have to keep a complete copy of the directory for versions 1, 2 and 3. In other words, we don’t have three directories 

with cat.jpg, dog.jpg and bird.jpg. 

V1’s directory contains the files cat.jpg and dog.jpg. V2 contains only the new file bird.jpg. V3 contains only the new 

256x256, 72 DPI version of cat.jpg. The system then uses pointers to create the illusion that each dataset contains all 

three files.

Most often these files are stored in an object store or a file system overlaying an object store, such as MinIO, Amazon 

S3, Google Cloud Storage or Azure Blob Storage. 

Object stores can store semi-structured or unstructured data. In particular, object stores excel at handling unstructured 

data like audio, video, images and unstructured text like Wikipedia articles and tweets, as well as semi-structured 

data like JSON files. It can also handle things like CSVs, which are not structured data but which can be converted into 

structured data. With decades of research behind large transactional and relational databases, structured data is still 

most often stored in transactional databases like Postgess, Oracle and Mysql.

While many early data science applications focused exclusively on structured data because it was better understood and 

easier to deal with, we’re seeing an increasing number of teams make use of all kinds of unstructured data in their latest 

applications.

https://min.io/
https://min.io/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://cloud.google.com/storage
https://cloud.google.com/storage
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
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There are advantages and disadvantages to each style of storage, and there are natural tradeoffs with each format. An 

object store will store a CSV file, which does not have the defined schema of structured data, but which can be imported 

into a structured data store or treated as structured. However, it won’t have the same retrieval and write speed as a 

traditional database optimized for transactions, and it won’t be able to enforce schemas or ACID (atomicity, consistency, 

isolation, durability) style writes to those rows and columns. For structured data workloads, a database still reigns 

supreme, and it also works well for semi-structured data, but truly unstructured files like a large video face significant 

overhead on reads and writes to databases or database-style files like Parquet files.

A number of companies have implemented data versioning as described above, including  ClearML, Comet.ML, Weights 

& Biases, Databricks and Valohai.

For instance, ClearML, with its clearml-data system, allows for connections to various object stores, such as S3 or 

Google Cloud Storage, and has a series of commands to change, import, delete and update data to help prepare a 

dataset. However, it also includes a “finalize” dataset command that writes an immutable copy and allows no further 

changes in order to maintain long-term lineage, a sharp contrast to something like the Lakehouse short-lived lineage.

This type of version control is simple, clean and elegant, and it works well for smaller to mid-size projects with 

manageable data sizes, but it can prove troublesome for larger datasets, especially if the individual file sizes are large. If 

a team is working with 300 MB satellite images or 1 GB videos and making a full copy each time, there is a small change 

to each of the files that can grow storage costs fast.

Dealing with larger data sets and controlling space requires more advanced feature sets, such as deduplication. 

Deduplicated file systems are similar to copy-on-write (COW) file systems like Sun’s venerable ZFS file system and 

Linux’s Btrfs. Only changed data is copied when snapshots or shadow copies of the data are made. That results in 

significant performance storage space saving gains. 

Let’s take our original example and include bigger files to demonstrate.

videos

|-- cat.mp4 (200MB)     # Added in `V0`

|-- dog.mp4 (400MB)    # Added in `V0`

We make a simple change to one scene in the cat.mp4 video, altering just a few seconds of the 10 minute video. A 

simple copy based data versioning system will make an entire copy of the 200MB video for the new version.

videos

|-- cat.mp4 (201MB)     # Changed in `V1`

However, a COW-style, deduplicated file system will copy only the changed bits and use pointers to refer to the original 

parts of the file.

https://clear.ml/
https://clear.ml/
https://www.comet.ml/site/
https://www.comet.ml/site/
https://wandb.ai/site
https://wandb.ai/site
https://wandb.ai/site
https://www.iguazio.com/
https://databricks.com/p/ebook/the-data-lakehouse-platform-for-dummies?utm_medium=paid+search&utm_source=google&utm_campaign=14925738952&utm_adgroup=133613219972&utm_content=ebook&utm_offer=the-data-lakehouse-platform-for-dummies&utm_ad=587461411913&utm_term=databricks&gclid=Cj0KCQjwuMuRBhCJARIsAHXdnqPdXgt1IGmihK3xZjNbx_CJVOi4QsyCQld9E9SJfnDEE65FX6pTGO0aAuaMEALw_wcB
https://help.valohai.com/hc/en-us/articles/4420892259473-What-are-data-stores-
https://clear.ml/docs/latest/docs/clearml_data/clearml_data_cli/
https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/Btrfs
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videos

|-- cat.mp4 (1MB)     # COW style, deduplicated file system - Changed in `V1`

Note the size differences between the two. In the deduplicated system, only 1 Mb is stored in the changed dataset, 

whereas in the directory copy system, the entire file is copied to the new directory.

AI/ML platforms that include COW-style, deduplicated versions of files include Arrikto, Pachyderm and LakeFS. Iguazio 

partners with PureStorage and other partners to deliver deduplication features. 

One more feature is common in advanced AI/ML data versioning, and that is immutability. Immutability means that 

older versions of datasets cannot be changed or altered in any way. Immutability is essential to compliance and large-

scale data versioning because without it a team can’t ensure that the dataset has not changed out from under them.

Without immutability, it’s possible for a metadata store or lineage tracking system to refer to a state of the data that no 

longer exists, which destroys reproducibility in AI/ML workflows.

Imagine that you have a directory in an object store with 20,000 jpgs at 1024x768 at 300 DPI. Your team runs a number 

of different experiments on that data. Now an administrator mistakenly overwrites the original jpgs in that directory 

with 256x256 versions at 72 DPI. The resulting compression results in a loss of fidelity that drives down an object 

detection model’s accuracy. Since the original data was not immutable, your team can’t go back to the original version of 

the dataset to recreate the higher accuracy model and must restore the data from a backup, if a backup exists. 

Some versioning systems, such as DVC, don’t enforce immutability by default, leaving it up to users to ensure their 

datasets are not changed in any way. AI/ML platforms that include enforced immutability are Arrikto, ClearML and 

Pachyderm, and on the database side, TerminusDB, DoltHub, Iguazio and Databricks.

Finally, it’s worth noting again that platforms differ in how long they keep versions of data. Delta Lake has a retention 

threshold of seven days by default, after which older versions of datasets are tombstoned and set to be deleted by the 

vacuum operation. Other systems like ClearML, Arrikto and Pachyderm keep immutable snapshots indefinitely unless a 

project is completely deleted.

The difference is largely a design decision and also includes factors like complexity and storage size. In the case of Delta 

Lake, data snapshots are considered a temporary side effect of experimentation on AI/ML and analytics pipelines. This 

is likely because it’s assumed that a team will settle on a final dataset after completing experiments. There is no reason 

that these files could not be kept longer other than storage considerations or massive growth in relationships between 

all the versions.

Other platforms, like Arrikto and Pachyderm, assume that different versions of datasets are long lived and that a team 

may wish to go back to an earlier branch of the data at a later time for multiple reasons, such as compliance or to 

recreate a different version of an experiment that was performing better than a production version, in order to compare 

the differences.

https://www.arrikto.com/rok-data-management-platform/
https://www.arrikto.com/rok-data-management-platform/
https://www.pachyderm.com/
https://www.pachyderm.com/
https://lakefs.io/
https://lakefs.io/
https://www.iguazio.com/
https://www.iguazio.com/partners/pure-storage/
https://www.iguazio.com/partners/pure-storage/
https://dvc.org/
https://dvc.org/
https://www.arrikto.com/rok-data-management-platform/
https://www.arrikto.com/rok-data-management-platform/
https://clear.ml/
https://clear.ml/
https://www.pachyderm.com/
https://www.pachyderm.com/
https://terminusdb.com/
https://terminusdb.com/
https://www.dolthub.com/
https://www.iguazio.com/
https://www.iguazio.com/
https://databricks.com/p/ebook/the-data-lakehouse-platform-for-dummies?utm_medium=paid+search&utm_source=google&utm_campaign=14925738952&utm_adgroup=133613219972&utm_content=ebook&utm_offer=the-data-lakehouse-platform-for-dummies&utm_ad=587461411913&utm_term=databricks&gclid=Cj0KCQjwuMuRBhCJARIsAHXdnqPdXgt1IGmihK3xZjNbx_CJVOi4QsyCQld9E9SJfnDEE65FX6pTGO0aAuaMEALw_wcB
https://databricks.com/p/ebook/the-data-lakehouse-platform-for-dummies?utm_medium=paid+search&utm_source=google&utm_campaign=14925738952&utm_adgroup=133613219972&utm_content=ebook&utm_offer=the-data-lakehouse-platform-for-dummies&utm_ad=587461411913&utm_term=databricks&gclid=Cj0KCQjwuMuRBhCJARIsAHXdnqPdXgt1IGmihK3xZjNbx_CJVOi4QsyCQld9E9SJfnDEE65FX6pTGO0aAuaMEALw_wcB
https://databricks.com/blog/2020/09/29/diving-into-delta-lake-dml-internals-update-delete-merge.html
https://databricks.com/blog/2020/09/29/diving-into-delta-lake-dml-internals-update-delete-merge.html
https://databricks.com/blog/2020/09/29/diving-into-delta-lake-dml-internals-update-delete-merge.html
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Data Lineage

If it’s data versioning that keeps different snapshots of the data, it’s data lineage that tracks those changes over time. 

You can think of data lineage as the entire journey of a dataset from beginning to end. How did it start? How was it 

transformed over time? Where is it now?

As snapshots are created, lineage systems keep track of when and where those changes were made, as well as meta 

information about what those changes include, so that users can perform diffs between a current version and a 

previous version.

When snapshots are infrequent and manual, such as when systems administrators are snapshotting a file system on a 

virtual machine, there is not much need for lineage. Simply naming the file appropriately is effective. But with automatic 

snapshotting and frequent snapshotting, it becomes impossible to understand what is in those snapshots without 

lineage. Snapshots proliferate rapidly and understanding what is in those snapshots quickly becomes a major challenge. 

It is also about understanding the relationships as the data, code, model and experiments are changing at the same 

time. All of that information is kept in a good lineage tracking system.

Sometimes a data lineage system is referred to as a metadata store. This is essentially another name for a database 

that keeps track of relationships and versions in a complex ML pipeline of ingestion, experimentation, training and 

deployment. There are two kinds of metadata/lineage stores:

1.	 Wide metadata stores: Stores that keep track of metadata from multiple systems.

1.	 Narrow metadata stores: Stores that keep track of metadata only on their own platform.

There are advantages and disadvantages to each.

The primary advantage of a wide metadata store is that it can aggregate lineage and metadata across lots of platforms. 

Since teams are likely to have more than one orchestration engine or endpoint, having a system that understands 

experiment runs across those systems is very useful. 

The primary disadvantage of wide metadata stores is the primary advantage of narrow metadata stores. Wide metadata 

stores don’t understand the underlying compute and capabilities of a platform as well as a narrow system, and wide 

stores often can’t enforce rules on those systems or enforce immutability of data or models. Instead, wide metadata 

stores rely on the underlying systems to enforce rules or immutability. If that immutability is broken, the metadata store 

may refer to a state that no longer exists, like a pointer to a missing object.

InfuseAI, Neptune AI and Domino Data Labs are examples of wide metadata stores. You can usually spot them in the 

marketplace because they specifically call themselves metadata stores or refer to themselves as a “single source of 

truth.”

https://www.infuseai.io/
https://neptune.ai/
https://neptune.ai/
https://www.dominodatalab.com/
https://www.dominodatalab.com/
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InfuseAI’s PipeRider platform gets around some of the challenges of immutability with ArtiVC, which can create 

snapshots for external object stores, with support for Google Cloud Storage, Amazon S3 and Google Cloud Storage. 

Metadata stores can leverage external capabilities of supported platforms, but they face the challenge of uneven 

capabilities across those platforms, whereas narrow metadata stores like ClearML, Pachyderm and others can take into 

account the underlying capabilities of the engine.

The vast majority of the systems mentioned here have their own tracking system for data lineage. Oftentimes the 

lineage tracking system is modeled on Git. Git is the dominant code tracking system in AI/ML and in traditional 

programming today, and its design philosophy and scale have outflanked older code versioning systems like CVS and 

Subversion. It’s even spawned movements like GitOps to automated DevOps-style control of infrastructure. In AI/ML, Git 

is used for spawning pipelines and tracking algorithm/model code. It’s also likely to remain the dominant platform for 

the coding aspects of AI/ML. 

The question arises, why not just use Git, since it’s already tremendously successful as a global, distributed code tracking 

system? It may seem natural to extend Git to deal with storage. But Git suffers from a number of design patterns that 

don’t easily port to data even while those design patterns are perfect for code.

For instance, Git’s approach to versioning is maintaining replicated copies of all files across every developer’s 

workstation or laptop and then synchronizing changes over the internet and dealing with conflicts as needed. While this 

works tremendously well for code, which is usually small sets of files, it simply doesn’t scale for large files and datasets 

which can easily choke bandwidth and local storage requirements. Data has gravity and weight. An MLOps team simply 

can’t have terabytes of data copying to every workstation, so by and large AI/ML data version control systems centralize 

data by default. 

DVC is one of the few platforms to use Git rather than take inspiration from Git, and as such it synchronizes datasets 

to local machines across the internet. Because DVC uses a familiar tool that developers already understand, it makes 

DVC a good choice for small data science teams and prototypes and non-data intensive workloads, but for datasets of 

significant size, beyond 20 GB, synchronizing data across the net quickly becomes untenable from a bandwidth and local 

storage requirement perspective. DVC does allow for the management of external datasets, but it’s considered a beta 

feature and is not recommended by the team.

For most other platforms, the definitive choice is to centralize the data, either in a proprietary file system overlaying 

an object store, such as with LakeFS, Arrikto or Pachyderm, or by pointing directly to external object stores like S3, 

such as with ClearML, Iguazio, InfuseAI’s ArtiV, Databricks, Dataiku, H2O, Valohai, Pachyderm and Arrikto. Proprietary 

file systems hold the advantage in terms of deduplication and direct control of a unified snapshotting method across 

clouds, but platforms that point directly to object stores hold the advantage that data doesn’t need to be imported or 

converted to the proprietary file system, thus allowing data to remain where it lives.

The primary choice facing a company when choosing a lineage system is whether they need a narrow or wide lineage 

system. The simple solution is that for systems that rely on only a single core orchestration and pipelining engine, they 

will likely not need an external lineage system. However, if they are integrating multiple external engines, then they may 

https://www.piperider.io/
https://github.com/InfuseAI/ArtiVC
https://github.com/InfuseAI/ArtiVC
https://www.iguazio.com/
https://about.gitlab.com/topics/gitops/
https://about.gitlab.com/topics/gitops/
https://dvc.org/doc/user-guide/managing-external-data
https://dvc.org/doc/user-guide/managing-external-data
https://discuss.dvc.org/t/best-practice-for-handling-large-data/721
https://discuss.dvc.org/t/best-practice-for-handling-large-data/721
https://lakefs.io/
https://www.arrikto.com/
https://www.pachyderm.com/
https://clear.ml/
https://www.iguazio.com/
https://www.infuseai.io/
https://github.com/InfuseAI/ArtiV
https://github.com/InfuseAI/ArtiV
https://databricks.com/
https://www.dataiku.com/
https://h2o.ai/
https://valohai.com/


71

end up having both types of lineage systems in their arsenal—the lineage trackers on the various platforms themselves 

and a wide lineage tracker for all of the systems.

Current Trends and the Next Five Years

While versioning and lineage is becoming more common with the rise of AI/ML, it’s still a relatively new concept when 

it comes to data. Web applications and enterprise back offices have rarely needed snapshotting except for short-lived 

rollback and backup. But as data scientists continually adjust, clean, augment and change datasets, more consistent 

versioning and lineage becomes essential. Versioning and lineage are often challenges that teams discover late in their 

data science journey. Other challenges like serving and supervision appear sooner on their radar. 

But once a team discovers they can’t easily recreate an old model that’s starting to fail in production or they have to 

replace a model due to an audit or because they found some edge cases that seriously affect the model, then the 

challenges of versioning and lineage become dramatically apparent. At that point, retroactively adding versioning and 

lineage is impossible. The damage is done. The AIIA encourages teams to make data versioning and lineage an earlier 

consideration in their platform journey.

When evaluating versioning, lineage and metadata, we suggest teams closely consider: 

•	 Whether they need a narrow or wide metadata store or both

•	 Whether storage size is a consideration

         •       If so consider an engine that supports deduplication

•	 Whether a system supports immutability

         •       Without immutability a system can easily get into a place where it points to a state that is no longer true

•	 Whether it is possible to centralize all data or whether it must remain where it currently lives

         •       If data must remain where it is currently, consider a platform with strong connectors to external data

•	 Take a look at the tradeoffs for centralizing data and leaving it where it is currently

•	 Look closely at long term lineage and snapshots versus short lived lineage and snapshots

•	 Consider that audit requirements are likely to increase in the coming decade

The Next Five Years

The holy grail of data for AI/ML is a unified storage engine for structured, semi-structured and unstructured data. 

The platform doesn’t fully exist yet because of tradeoffs in storing each kind of data. As such, we’re likely to see a 

continuation of multiple backends for some time with structured data continuing to live in SQL and backends, and semi-

structured and unstructured data living in object stores or NOSQL databases. 

However, over the next decade, we may see the emergence of a truly unified file storage backend for AI/ML, perhaps 

one that stores structured data in an SQL or NOSQL distributed database and unstructured data in an immutable, COW-

style file system with pointers in that database that track its metadata and version.
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We are also likely to see wide metadata stores that have better understanding of the underlying capabilities of external 

engines, but we don’t expect those wide metadata engines to match the full capabilities of narrow metadata stores. It 

is likely that companies will continue to rely on both. Perhaps we will also see the rise of a unified standard for how to 

store and share lineage information that makes it easier for systems to publish and share data in a clear and consistent 

fashion across systems.

As noted earlier, perhaps the biggest change we expect in the next five years is a large increase in regulatory pressure 

from lawmakers targeting algorithms and how they are used. Algorithms, even though they are nothing more than 

an automated set of steps to solve a problem, have become larger than life in the popular imagination and popular 

concerns always draw lawmakers. We expect legislation to run the gamut from well thought out to poorly thought out 

and vague. But both kinds of legislation will increase auditing requirements and make data versioning and lineage move 

from being a nice-to-have to absolutely essential. 

Versioning and lineage will serve two purposes as legislation increases. The first is that reports exported from systems 

will help craft reports that prove or disprove something to auditors. Second, it will allow data science teams to go back 

and recreate a model with or without data, logic or other models they can no longer interact with to meet regulatory 

compliance. 

All of that adds up to the simple fact that data science teams should start thinking of versioning and lineage now rather 

than later to get themselves ahead of the curve.

LABELING
Companies and platforms covered in this section include:

Superb AI, Kili, Toloka, SuperAnnotate, Scale AI, Snorkel, Mindy Support, Amazon Mechanical Turk, SuperAnnotate, 

LabelStudio, Heartex

Introduction

Data labeling is the process of adding tags and metadata to raw data like video, images, text, and audio. The annotated 

data codifies the kinds of knowledge and features we want AI/ML models to learn. 

Data labeling is essential for all supervised learning, where an entire dataset is fully labeled, and a key ingredient of 

semi-supervised learning, which combines a smaller set of labeled data with algorithms designed to automate the 

labeling of the rest of the dataset programmatically. It’s also particularly important to computer vision, one of the most 

advanced and developed areas of machine learning.

https://www.superb-ai.com/
https://kili-technology.com/
https://kili-technology.com/
https://www.superannotate.com/
https://toloka.ai/
https://www.superannotate.com/
https://www.superannotate.com/
https://scale.com/
https://snorkel.ai/
https://snorkel.ai/
https://mindy-support.com/
https://www.mturk.com/
https://www.superannotate.com/
https://www.superannotate.com/
https://labelstud.io/
https://labelstud.io/
https://heartex.com/
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Beyond that, it’s also one of the hottest areas of research in AI and one of the most well-funded sectors. In 2021 and 

2022, we’ve seen label-focused platforms like Scale AI and Snorkel AI raise significant late-stage funding rounds and 

win some large contracts. The large contracts and customer wins indicate that many enterprises are working to label 

significant private stores of data that they’ve been unable to exploit prior to the rise of machine learning or have been 

unable to label due to the cost and complexity of the effort.

Labeling ranks as the fourth biggest challenge teams face when building their AI/ML infrastructure.

Data labeling is also one of the largest bottlenecks in AI/ML. That’s because, historically, the only way to get good labels 

was through brute force or crowdsourcing because of the sheer number of labels needed to train effective models. 

Recent advances have helped augment manual data labeling by using machine learning itself to speed up the process 

with techniques like semi-supervised learning, which we discuss in more detail in the next section.

In addition to software in this area of AI/ML, many companies like Toloka, Kili, SuperAnnotate, and Scale provide a 

human labor force to create annotations along with domain experts to assist with how to label those datasets and 

consulting teams to apply machine learning and traditional programming methods to help programmatically speed up 

labeling. Some companies provide both human labeling teams and software, like Scale AI, whereas other companies, 

like Mindy Support, provide just a specialized labor force that can work with a variety of products. 

https://scale.com/
https://scale.com/
https://fortune.com/2021/08/09/snorkel-ai-funding-data-labeling-startup/
https://fortune.com/2021/08/09/snorkel-ai-funding-data-labeling-startup/
https://www.fedscoop.com/scale-ai-awarded-250m-ai-contract-by-department-of-defense/
https://www.fedscoop.com/scale-ai-awarded-250m-ai-contract-by-department-of-defense/
https://toloka.ai/
https://kili-technology.com/product/annotation-workforce
https://kili-technology.com/product/annotation-workforce
https://www.superannotate.com/
https://www.superannotate.com/
https://mindy-support.com/
https://mindy-support.com/
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While many early efforts at data labeling relied on crowdsourcing or Amazon Mechanical Turk–style labor forces, the 

AIIA recommends that data science and data engineering teams work with trained data labelers as well as skilled teams, 

rather than ad-hoc, gig-economy teams, where the quality is often lower and labeling is decidedly less consistent. 

Alternatively, if your team has a truly massive project that requires some level of crowdsourcing, choose an organization 

that has software dedicated to crowdsourcing for AI labeling, like Toloka, rather than choosing a generic gig-data-

platform approach, which will almost inevitably produce inferior results. Labeling tasks may also require significant 

domain expertise to be effective, such as with health-related data or legal data.

That said, there are examples where crowdsourcing is necessary either because of sheer scale or because of the 

embedded knowledge of the crowd, such as when Google Photos prompts you for help to label your own pictures. 

Nobody else in the world is better at recognizing you in a photo than you, so it makes perfect sense to tap your special 

expertise.

Understanding the Basic and Advanced Capabilities  
of Labeling Platforms

At their most basic, labeling platforms create a manual workflow that ingests data and allows a team of local or 

distributed human data labelers to label various kinds of data, such as text or images. With image data, labelers might 

put bounding boxes around specific objects and make notes as to what is in those bounding boxes. 

When it comes to text, a labeler may highlight specific kinds of words, such as proper names or medical terms, or they 

may provide higher-level abstract information about the content of those words, such as the sentiment of the text or 

how one aspect of a legal contract relates to other clauses.

https://www.mturk.com/
https://www.mturk.com/


75

Open-source versions of these tools, such as Label Studio from the HeartEx team, are designed for small-scale data 

labeling or labeling by a group that doesn’t require complex permissions or security. As is typical in open-source and 

enterprise application splits, the enterprise version of these platforms offers integration with existing role-based access 

control (RBAC) systems and permissions-based access to different projects or repositories, as well as visualizations, 

reporting and other enhancements.

All of the platforms surveyed here offer these basic labeling capabilities, including Superb AI, Kili, Toloka, 

SuperAnnotate, Scale, Snorkel and Heartex.

As we noted earlier, manual labeling is time consuming and expensive, even when partially automated. However, it 

is inescapable in many instances, and there are scenarios where it is one of the only ways to effectively work with a 

dataset. In cases where images contain lots of data with inconsistencies and domain-specific caveats and take a high 

degree of specialized knowledge to understand, manual labeling by trained human professionals is the best approach. 

For example, a computer vision model that looks to spot tumors in cancer patients should ideally be hand-labeled by 

trained radiologists.

Many teams want to keep their models entirely in-house, either for trade-secret reasons or because it allows them to 

leverage the advanced expertise of their own teams, who know the data inside and out. Tech giants like Tesla or Google 

will often use their own in-house teams because they are often working on advanced research projects, where talent 

and domain expertise is scarce.

Teams that have the highest demand for security will often opt for on-prem deployment or deployment to a cloud they 

control and will usually choose a platform that offers on-prem or local cloud deployment, such as Heartex or Snorkel. 

https://labelstud.io/
https://labelstud.io/
https://www.superb-ai.com/
https://www.superb-ai.com/
https://kili-technology.com/
https://kili-technology.com/
https://www.superannotate.com/
https://toloka.ai/
https://www.superannotate.com/
https://www.superannotate.com/
https://scale.com/
https://scale.com/
https://snorkel.ai/
https://snorkel.ai/
https://heartex.com/
https://heartex.com/
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These teams will also use an on-prem version when data gravity is a significant obstacle. Data gravity is the “weight” 

that a large dataset has when systems administrators or data engineers try to move it back and forth between different 

platforms or across the internet.

There are advantages to keeping data in-house, such as increased security and reducing the possibility of leaks. One 

advantage of doing this is that it keeps the labeling task with domain experts, and it also lets them adapt to rapidly 

changing datasets that would be difficult to export because of data gravity. Examples include things like self-driving cars, 

where new data from the field is constantly coming in that may offer additional edge cases for the ML models. But it’s 

also true with social media platforms, where new edge cases are coming in all the time, such as with the cat-and-mouse 

game played by people trying to get around advanced ML content filters with new and novel adversarial attacks. 

The downside is that in-house resources are incredibly difficult to scale and using them takes up valuable resources that 

are best used doing more dynamic work. Labeling hundreds of thousands or millions of images is resource  and people 

intensive, and most companies eventually turn to outside teams to support the task, or they completely outsource 

it (such as with a dedicated company like Mindy Support or with a company that has a large in-house team like 

SuperAnnotate). In addition, there are many tasks that don’t face significant data gravity and where security is not a top 

concern, and that allows teams to use SaaS-based platforms like Snorkel, SuperAnnotate, Scale and Superb AI.

Beyond manual labeling workflows, more advanced platforms allow for checkpoints, where managers can check the 

labelers’ work and adjust instructions to make the labels more consistent. People may interpret instructions very 

differently, which creates varying consistency in the quality of the labels, so the workflow must allow for checkpoints 

and the ability to incorporate client feedback into the process early and often.

They may also offer features like project management to track overall project progress, annotation statistics to see 

which labelers are generating the most accurate labels, reports to track team performance, and charts and dashboards 

to help visualize the performance. 

Finally, the most advanced platforms look to help speed up the process by programmatically automating or heavily 

augmenting the process of generating labels. Each platform looks to differentiate itself in the market by offering the 

most ways to speed up various manual labeling tasks or complete labeling tasks entirely programmatically. Almost all 

of these advances involve machine learning itself, baked into the platform backend. This is an example of “turtles all the 

way down,” with ML being used to speed up the ability to create more advanced ML models. As such, the more novel ML 

solutions a labeling platform can invent to solve advanced use cases, the more useful a platform becomes. 

Because of this, the labeling space is less crowded than other aspects of the field because it requires significant invest-

ment in R&D and smart, creative, highly skilled engineers. 

 

 

https://mindy-support.com/
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Advanced Capabilities

Advanced capabilities fall into two broad categories: 

•	 Capabilities that use traditional programming

•	 Capabilities that leverage machine learning itself to speed up the process 

The first category leverages traditional, hand-coded logic to help solve problems associated with the error-prone task of 

hand labeling a large dataset. 

An example is SuperbAI’s system checks for consistency in computer-vision labeling tasks, such as checking that 

bounding boxes are the same across different labelers. The system then allows a manager to reject or approve certain 

labels or send them back to be redone.

(Source: Used with permission from Superb AI)

Machine-learning approaches generally fall into the category of semi-supervised-learning approaches, where a small 

subset of data is leveraged to train a model, rather than a completely labeled dataset. In this approach, semi-supervised 

learning is turned back on the labeling process itself. Human labelers label a portion of the dataset, and the label 

platform’s model learns from that labeled portion and then attempts to automate labeling the rest of the dataset. 

https://www.superb-ai.com/
https://www.superb-ai.com/
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Kili provides a fairly unique approach to semi-supervised learning with their models learning in the background as 

a team does labeling. It then begins to make predictions as the human labeler is working, which then prompts the 

worker with suggestions to help them speed up. 

Snorkel has a specific tool for named entity recognition (NER), which is a way for companies to tell the system 

how to recognize specific terms like medical terms, companies names, proper names, in-house jargon for tasks like 

risk classification or marketing, and legal terms. Since no public datasets exist with this information, it’s up to an 

organization to supply the information and then use semi-supervised learning to annotate documents.

While this approach can be very effective, it still requires human-in-the-loop review and spot checking, as well as error 

correcting, especially for edge cases the model simply misses. There are many publicly available labeled datasets 

for sentiment analysis because human emotions are generic across text, whereas domain-specific knowledge like a 

company’s personal business relationships simply won’t be available. Weak supervision models will vary dramatically in 

accuracy and coverage. They often suffer from severe imbalance problems, where the model learns one feature very 

well and finds all of those instances but misses another feature entirely or spots that feature only sporadically. In other 

words, these techniques can prove to be more trouble than they are worth if they create a very noisy set of labels with 

lots of edge cases that require as much human intervention as hand labeling the data from scratch in the first place, but 

in general most teams will benefit from semi-supervised approaches.

Other approaches apply transfer learning. For example, Scale, Snorkel and Superb AI all provide a range of pre-trained 

models that can be tweaked to learn from user-uploaded datasets. A model previously trained on recognizing certain 

kinds of objects can help automate the creation of bounding boxes. This is similar to the magic eraser tool found in 

Google Photos, which automatically highlights people in the background of a picture and attempts to remove them to 

make the picture more picture-perfect. 

Companies often use their own and open-source pre-trained models in an ensemble to speed up labeling tasks. The 

effectiveness of these solutions varies based on the dataset used. Common use cases like object recognition of people, 

roads, buildings and the like are likely to see a significant speedup, whereas use cases where datasets are harder to 

come by or unique, such as detailed medical imaging or small manufacturing datasets, will get less uplift from transfer 

learning, although datasets with similar low-level features may see interesting results as well.

The most advanced use cases are not pre-built but involve custom machine-learning consulting. Many of the larger 

firms, like Snorkel and Scale, have highly skilled data science teams that can work with highly technical clients to custom-

build models for their use case, as well as custom heuristics and logic. 

For example, Snorkel consulted with Google to help them build a rapid labeler for a classifier that replaced six months’ 

worth of hand-labeled data in thirty minutes, but the work involved Google’s programmers, Snorkel’s data science 

team, domain experts inside Google and more to make the project work. The challenge of this kind of work is that it 

often takes a large effort to solve a single use case (classifiers) that can be transferred to other classifier use cases but 

perhaps not to other labeling needs. 

https://cloud.kili-technology.com/docs/automation/online-learning/
https://cloud.kili-technology.com/docs/automation/online-learning/
https://snorkel.ai/solutions/named-entity-recognition/
https://snorkel.ai/solutions/named-entity-recognition/
https://arxiv.org/pdf/1812.00417.pdf
https://arxiv.org/pdf/1812.00417.pdf
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To make it work, they had to develop an entirely novel approach that applied “a synthetic rebalancing and augmentation 

technique [that could] handle a high class imbalance that is very common in practice. Such an imbalance makes hand-

labeling training data prohibitively expensive and causes problems for existing weak supervision approaches.” Their novel 

ensembling technique delivered a higher level of precision and proved valuable for Google. However, the primary challenge 

of this kind of approach is that not every company will have the resources or skills to work with an advanced team and, unless 

they are working with a lot of models of a specific type, that work may not transfer to their other labeling needs.

That said, companies that do have a need for lots of models and a lot of datasets that need more rapid labeling will 

continue to benefit from advanced consulting in this space.

Current Trends and the Next Five Years

Labeling remains one of the most consistent bottlenecks in data science. Of course, not all projects require labeling. 

All data have labels, but sometimes those labels are simple and auto-generated, such as with log data that indicates 

whether a customer clicked or didn’t click, or bought or didn’t buy. But many of the most advanced use cases like legal 

and medical document analysis, computer vision in many domains, self-driving cars, robotics, disease analysis and 

detection, drug discovery and more, require well-labeled datasets to work.

The basics of labeling software are relatively simple. It requires a workflow engine for labelers, a strong GUI, RBAC, 

manager overview and human-in-the-loop capabilities. But beyond that, the largest differentiators in this space come 

from machine learning itself, either from advanced machine-learning approaches built into the product or from 

consulting teams building custom novel approaches to a particular customer’s problem.

While small data science projects can easily use in-house labeling, we encourage teams working with significant datasets 

to work with external teams to speed up the process of labeling. It’s better not to burden employees who have the most 

domain knowledge with massive, repetitive tasks that are best left to outside teams. 

When evaluating labeling platforms, we suggest teams consider the following suggestions and questions: 

•	 Look closely at the workflow and UI.

•	 Do your datasets have unique or common features that may benefit from semi-supervised or transfer learning?

•	 Will you have the budget to build a custom labeled solution for your team?

•	 Will the resulting model you’re building have a significant effect on sales, cost reduction or the bottom line?

       •     If so, then spending on consulting may justify the cost.

•	 Look to leverage your domain experts but limit their repetitive tasks.

•	 Consider your data gravity and how big your datasets are when working with SaaS versus on-prem solutions.

The Next Five Years

While this domain of machine learning has seen significant investment and advances in machine-learning techniques 
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applied to the process of labeling itself already, we expect to see continued innovation here over the next five years and 

beyond. 

More than anything, this space will benefit from multi-modal and more generalized AI approaches. Too often the 

solutions to a single client’s use case are highly specific to their data, and the custom solutions don’t generalize much 

beyond that customer’s data. To truly see a breakthrough in labeling, we will need more generalizable techniques. We 

expect that portions of these custom solutions will start to show consistent patterns across many of the cases, which 

will, in turn, result in more general solutions for a wider subset of customer domains.

In the short and medium term, we expect labeling to continue to be one of the most bottlenecked parts of the data 

science pipeline. As more and more deep learning gets commoditized and becomes accessible outside of big research 

teams and small, innovative AI-driven companies, making its way into enterprises big and small, we expect more 

teams to need data labeling. As such, we expect the larger players to continue to gain mind and market share, but 

we also expect a surge of smaller players to catch on and grow quickly, especially if they are able to develop novel ML 

techniques that are highly accurate for labeling tasks. Those new ML techniques don’t even need to be generalized 

across all domains. A breakthrough in the rapid labeling of medical data or manufacturing data could drive a smaller 

labeling platform to prominence and have it competing with the larger and more well-funded platforms fast. 

Because of that, we simultaneously expect to see newer players in the ecosystem in the coming years and acquisitions 

of promising startups that capture a segment of a specific market.

FEATURE STORES
Companies and platforms covered in this section include:

Tecton, Feast, Molecula, ClearML, Iguazio, Amazon SageMaker, Google Vertex, Snowflake, Amazon Redshift, Kafka

A features store is a data storage system for features of machine-learning models. Think of it as a central place for storing 

raw, curated, documented features that can be used across different models and data science teams. Essentially, it is 

feature management. 

As a quick refresher, a feature is an input signal to a predictive model. The simplest example of a feature is a calculation of 

a person’s age from the raw data of date of birth and the current date and time.

More advanced signals help us make more advanced predictions. For instance, if we’re building a model that predicts when 

a pizza will be delivered, we need to pull from a number of different data points and do calculations on those data points. 

Raw data might include all the delivery times of every driver, and a feature might be the average time of delivery across 

those delivery times. Another example comes to us from credit card models looking to predict fraud. Useful features might 

be the size of a transaction and whether that transaction is happening in a different location than typical transactions. 

https://medium.com/@dan.jeffries/the-coming-age-of-generalized-ai-510a3ddfe844
https://danieljeffries.substack.com/p/the-coming-age-of-generalized-ai-510a3ddfe844
https://www.tecton.ai/
https://github.com/feast-dev/feast
https://www.molecula.com/
https://clear.ml/
https://www.iguazio.com/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai
https://www.snowflake.com/
https://aws.amazon.com/redshift/
https://kafka.apache.org/
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Feature stores have generated a lot of interest over the last few years, seeming to appear in nearly every MLOps 

diagram almost overnight. Indeed, we discovered that feature stores are tied as the number one component of AI/Ml 

infrastructure that teams expect to implement in the next six months to a year.

However, we found a large degree of confusion around why teams would actually need one and when they would need 

it. The short answer is that large data science teams working with lots of models that have similar characteristics 

are the right consumer of feature stores. Lastly, their use cases shoul  primarily use structured data or textual/

numerical data. 

Feature stores are almost exclusively structured data solutions. It is possible to store unstructured features in a data 

store, and platforms like Iguazio’s custom feature store allow for storage of unstructured features, however most 

feature stores do not support unstructured workloads (although, through exercises like data labeling, unstructured 

data can be converted into structured data that might be contained within a feature store). The reason is simple. 

Feature stores are built as a way for data scientists to browse or call features. As such, a data scientist is making a value 

judgment on the usefulness of those features and whether to include them in their own model by inspecting them with 

their own eyes and critical judgment. It’s easy for a human to understand “average time of delivery” because it’s written 

in plain language, but a string of numbers representing vectors in a computer vision model does not make sense and is 

not easily consumable. 

https://www.iguazio.com/feature-store/
https://www.iguazio.com/feature-store/


82

There are four major components of most feature stores:

•	 Two databases

•	 A feature catalog

•	 Transformations

•	 Serving and supervision 

The data warehouse is the foundation of the first database, and it includes large amounts of offline features for 

performing offline model scoring and creating training datasets. Typically the backend is a traditional data warehouse 

like Snowflake.

The second database is a database that offers online features at low latency. The key here is low latency, and feature 

stores like Feast, an open-source platform largely supported by Tecton, Feathr, an open source feature store created by 

LinkedIn, and Molecula’s low latency featurebase platform offer sub-second latency. Low latency delivers the freshest 

version of features to models as fast as possible, in essence acting like a caching layer for features.

The next major component of a feature store is a feature catalog. It also allows for historical calls to older versions of 

features. This allows data scientists to visually browse features or call them programmatically via API. Data scientists 

register their features in a feature registry at the training stage. Those registrations include: 

•	 A feature definition

•	 Metadata 

A feature definition specifies the data transformation that will take place. That might be as complex as triggering a 

training pipeline via an orchestrator to refresh the feature, or it might be a simple as an SQL or NOSQL query. The 

metadata is data about the feature, such as who created it, the version number and whether it is a stable production 

feature or experimental. Metadata may also include documentation about the feature.

We’ve already touched on the third major component: transformations. A feature is not present in the raw data. It needs 

to be calculated through a pipeline or via a query and/or a set of data transformation steps.

There are two kinds of transformations: 

•	 Batch

•	 Streaming 

Batch transformations might happen right inside another data warehouse, like Snowflake or Amazon Redshift, via a 

query. Or the transformation may take place in an orchestrator or pipelining engine like Apache Spark,  Databricks’s 

Spark SaaS or another pipelining engine. Feast, Feathr, Tecton and Molecula all support Databricks and Snowflake 

as data warehouse backends. Feathr also supports a range of additional backends, most notably object stores like 

https://github.com/feast-dev/feast
https://github.com/linkedin/feathr
https://github.com/linkedin/feathr
https://www.molecula.com/
https://www.molecula.com/
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Azure Blob Store and AWS S3, which makes it potentially possible to support additional pipeline systems like Valohai, 

Pachyderm, ClearML, Kubeflow and other orchestrators that ingest and egress to object stores.

The platforms also support the ability to do streaming transformations. These are transformations usually done on a 

platform like Kafka. This allows for transformations that need more up-to-the-minute data like the average number of 

users on a website or the number of orders for hairdryers in the last half hour. Molecula, Feathr, Feast and Tecton all 

support Kafka as a backend for streaming transformations.

Serving and supervision are the last components of a feature store. This is how feature stores serve features, which is 

usually via an API from the low-latency database. Advanced commercial feature stores also take into account replication, 

clustering and high availability. Finally, feature stores must be included in traditional IT monitoring platforms to ensure 

that they are not down or suffering from a sudden surge in latency.

Current Trends and the Next Five Years
We’ve seen a number of commercial feature stores come to market over the last few years. They are facing growing 

pressure from open-source solutions, and they’re also facing competition from orchestrators with their own proprietary 

built-in feature stores, such as ClearML, Iguazio, Databricks, Amazon SageMaker and Google Vertex.

Closed platforms with tight integration, like Amazon SageMaker, have feature stores that integrate only with their 

pipeline, and the features saved on the platform end up siloed and inaccessible to other platforms, whereas a 

commercial platform or open-source platform allows access to features via API, which allows them to be consumed by 

outside platforms. If your primary orchestrator is a single platform, then a built-in feature store may serve your needs, 

but take caution that it doesn’t trap those features in that platform alone. Look for a feature store that allows access via 

API to outside platforms.

Commercial feature stores are good for large teams that need guaranteed response times and dedicated support. SaaS 

offerings may help manage complexity. However, they may not support all the desired backends that an organization 

needs. Open-source solutions are good for smaller teams, teams that have excellent IT skills and teams that need to 

support a wide variety of backends or extend the platform to add their own backend.

 
The Next Five Years

AI/ML has very different requirements in academia and production. While academic AI research focuses on maximizing 

benchmark scores, regardless of size, production AI is about manageability and latency. In academic research, data is 

usually held fixed, but in production it’s constantly updating and growing, and models need retraining to stay fresh. As 

we’ve seen, production-grade AI/ML has very different requirements. You need massive amounts of data that must be 

preprocessed in a variety of ways (cleaned, transformed, feature engineered, etc.), and all of this must happen within 

milliseconds for a prediction to be accurate. 

https://valohai.com/
https://www.pachyderm.com/
https://clear.ml/
https://www.kubeflow.org
https://kafka.apache.org/
https://kafka.apache.org/
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In the next five years, it’s likely that the ecosystem will start to converge on one or two open-source platforms with a vast 

amount of backend support and increased openness. We expect to see those open-source platforms begin to displace 

some of the proprietary, built-in platforms. It’s likely that orchestrators will just swap built-in versions for well-regarded 

and well-maintained open-source solutions.

We expect most large tech organizations to stop building their own feature stores as they will mostly just be reinventing 

the wheel. Instead, they will likely purchase a feature store, deploy an open-source one or consume a commodity 

feature store in their orchestrator of choice.

We also expect to see public clouds offering commercial support to those leading projects or individual companies 

springing up to offer support for and configuration of those platforms, just as MongoDB supports scaled versions of its 

open-source offering to help organizations manage complexity.

As mentioned above, feature stores typically include an offline as well as an online store, which can cause discrepancies 

between the data used in training versus the data used in production. In the future, we predict there might be an 

opportunity to unify offline and online stores into one low-latency feature storage solution that enables training and 

productionizing of models on the same feature sets from the same feature storage layer. We’re starting to see this 

with the creation of feature-specific binarized databases that are able to meet the challenges of enabling low-latency 

querying directly on raw data without the need for pre-aggregation or preprocessing. Essentially, there is a potential 

opportunity for a highly efficient compute layer, built around features, to emerge between data storage and the 

application layer, removing barriers that currently exist when it comes to productionizing models in near real-time.

We also may see the rise of feature stores that support unstructured data, which would be connected to the rise of an 

external framework to automatically consume them, rather than having a data scientist as an intermediary interpreting 

the features they want to consume. For example, we can foresee the possibility that features of a powerful object 

detection model could be consumed by a smaller model that is fine tuned to a particular task, in essence creating a 

computer vision micro-model chain. The capacity for a low-latency database to store these kinds of features is fairly 

trivial and possible now. The real development would be a programmatic way to consume them and that perhaps might 

develop into an ML library category of its very own.

Lastly, at this point, it is challenging to predict whether feature stores will become a commodity of the AI/ML lifecycle 

over the next five years, with most platforms including them by default, or if a dedicated feature store will remain a 

scalable business model on its own. Largely that will depend on whether those commercial feature stores can aggregate 

transformations from many different backends, manage complexity that organizations would rather avoid and offer low 

latency that’s simply much more high performance than open-source or built-in alternatives. 

 

https://www.mongodb.com/
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SYNTHETIC DATA
Companies and platforms covered in this section include:

Gretel, YData, Mostly AI, Statice, Hazy, Synthesized, Diveplane, Mirry.ai, Replica Analytics, Sogeti, Syntho, Tonic, 

Anyverse, Bifrost, CVEDIA, Cognata, Coohom Cloud, Deep Vision Data, Neurolabs, Parallel domain, Rendered AI, 

Scale, Simerse, Synthesis AI, Synthetic Data Vault, Twinify, EdgeCase, Unity engine, Syntegra, MDClone, Facteus, 

Pasteur iSi Simulation Science 

Synthetic data is artificial data that isn’t gathered from the real world. 

It’s one of the most cutting-edge domains in the AI/ML ecosystem. It’s also one of the newest entries to the AI/ML 

landscape, and most of the platforms here were created in the last two years, with no company older than five years. 

But many companies we surveyed expect synthetic data to make a big impact on their model building in the next five 

years, trailing only multi-modal models, a.k.a. models that are able to do many things well.
 

https://gretel.ai/
https://ydata.ai/
https://ydata.ai/
https://mostly.ai/
https://mostly.ai/
https://www.statice.ai/
https://www.statice.ai/
https://hazy.com/
https://www.synthesized.io/
https://diveplane.com/
https://www.mirry.ai/
https://www.replica-analytics.com
https://www.sogeti.com/services/artificial-intelligence/artificial-data-amplifier/
https://www.syntho.ai/
https://www.tonic.ai/
https://anyverse.ai/solutions/
https://www.bifrost.ai/
https://www.cvedia.com/
https://www.cognata.com/
https://coohomcloud.com/#/product/eus
https://synthetictrainingdata.com/
https://www.neurolabs.ai/synthetic-data
https://paralleldomain.com/
https://www.rendered.ai/
https://scale.com/synthetic
https://www.simerse.com/
https://synthesis.ai/
https://github.com/sdv-dev/SDV
https://github.com/DPBayes/twinify
https://www.edgecase.ai/
https://unity.com/products/computer-vision
https://www.syntegra.io/
https://www.mdclone.com/
https://www.facteus.com/
https://simulation.science/research/
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Just as labeling platforms often uses the power of machine learning itself to speed up the tedious task of labeling, syn-

thetic data platforms use machine learning to bypass the gathering of data. 

Synthetic data falls into three main categories: 

•	 Fully synthetic:  This means the data doesn’t include any data gathered from the real world. It was generated 

entirely procedurally. 

•	 Partially synthetic:  Partially synthetic data replaces part of the data with generated data. For example, it may 

replace sensitive characteristics like names, social security numbers, addresses and the like. 

•	 Hybrid synthetic: Hybrid synthetic data comes from both real and synthetic data. This is usually for data 

augmentation, often of a smaller dataset that needs more examples to be useful for training a model. It works by 

learning the distribution of the data and generating more elements of the data to produce a synthetic and real-

world data combination.

Synthetic data generation methods come in three main categories: 

•	 Dummy/mock data: This type of synthetic data is commonly used for testing environments. Its primary 

characteristic is that it’s generated in a random manner or based on certain rules. A good example of a way to 

generate this type of data is Faker.

•	 Statistics & Population inference: Population synthesis generates records of individuals/events that behave closer 

to reality than dummy or mock data, but this kind of synthetic data is still driven by rules and wider population 

inference. The goal of this kind of approach is to generate individual records with associated attributes that closely 

resemble a population that leverages real aggregated information. It’s based on microsimulation models that follow 

human-derived rules. We see this type of data leveraged for pandemic studies and the development of biotech and 

pharmaceuticals,  but it can also be used for risk simulation in areas such as financial services. 

A good example of this is agent-based modeling. 

•	 Data-driven or ML/DL based: With synthetic data generated through a data-driven approach, any behavior/rule 

inferred was learned from the patterns in an existing dataset. It is essentially a look-a-like data set that closely 

mirrors the properties of the real one, not only in terms of its statistics but also in what concerns the multivariate 

relations, either linear or nonlinear.

After building the synthetic dataset by leveraging the methods detailed above, we can end up with fully or partially 

synthetic data. 

 

Hybrid Synthetic: Hybrid synthetic data comes from both real and synthetic data. This is usually used for data 

augmentation, often of a smaller data set that needs more examples to be useful for training a model. It works by 

learning the distribution of the data and generating more elements of the data to produce a combination of synthetic 

and real-world data. Each of these approaches helps to solve a number of real-world challenges, most notably:

•	 The difficulty of gathering real world data

•	 The challenge of finding enough edge cases

•	 Data augmentation

https://github.com/joke2k/faker
https://www.refinitiv.com/en/resources/special-report/synthetic-market-data-generation-at-scale-using-agent-based-modeling
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•	 Privacy and security  

The first challenge is that it might be hard to collect or acquire the data a company needs to build an accurate model. 

It’s not just the labeling of data that’s time consuming. The very act of gathering data can be incredibly time consuming. 

Whether that’s sending people out to take lots of pictures or to film video or simply waiting for data to come in from 

sensors in the field, it takes a lot of people hours. Companies might not have the resources to purchase a commercial 

dataset or to go out and create that dataset themselves. The advantage of synthetic data is that it can be generated 

rapidly and it can even be auto-labeled as it is generated, bypassing the two slowest parts of the AI/ML lifecycle.

The second potential problem is that it might also be challenging to acquire data because of the rarity of events. If we 

have a dataset of manufactured widgets from our factory, we may have a tremendous number of pictures of perfectly 

good widgets but not enough examples of broken widgets or widgets with manufacturing defects. Gathering those 

images would involve breaking lots of widgets and photographing them or waiting for more examples of broken widgets 

to come in. 

Rarity is shorthand for edge cases. One of the reasons big-tech companies like Google or Tesla collect massive datasets 

is because they hold the potential of capturing the largest number of edge cases. For instance, the Waymo team 

building self-driving cars noted that they were “99% of the way to self-driving cars but the last 1% is the hardest.” They 

were referring to rarely occurring events that humans are good at dealing with based on previously learned skills, but 

that machine-learning models need to understand through study because they lack adaptability when presented with 

the radically unfamiliar. 

The third challenge is that it might simply be faster to generate a hybrid synthetic and real-world dataset. For example, 

when it comes to training drones, you may have a number of videos or images in sun and rain, but you need more 

examples of fog and snow. You can do that by generating the alternative conditions that augment the dataset rather 

than waiting to capture more rare conditions like fog. You can also take existing images of fog and increase the density 

of the fog to mimic more extreme conditions.

Lastly, synthetic data can minimize privacy concerns. Collecting and using sensitive data raises serious privacy concerns, 

and regulators have put increasing scrutiny on the practice with regulations such as the GDPR (the European Union’s 

General Data Protection act) and the CCPA (California Consumer Privacy Act) restricting how organizations collect and 

use personal information. Fines can be imposed on companies that violate these restrictions. 

The state of legislation and how it applies to real-world data and synthetic data is still evolving and will continue to 

evolve in the coming years. Legal teams are already looking at it and helping regulators come to terms with synthetic 

data. For instance, Telles, a law firm based in Portugal, analyzed the GDPR and notes that: 

https://www.bloomberg.com/news/articles/2021-08-17/waymo-s-self-driving-cars-are-99-of-the-way-there-the-last-1-is-the-hardest
https://www.bloomberg.com/news/articles/2021-08-17/waymo-s-self-driving-cars-are-99-of-the-way-there-the-last-1-is-the-hardest
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Recital 26 of the GDPR states that the regulation does not apply to “information which 
does not relate to an identified or identifiable natural person or to personal data rendered 
anonymous in such a manner that the data subject is not or no longer identifiable.” Data 
synthesis would then benefit from the same reasoning as the case for not needing to 
comply with further obligations for anonymization under GDPR. However, depending on the 
synthesis process applied, the need to ensure initial data creation and testing must comply 
with applicable laws. Notably, the process of anonymization is itself a data processing 
activity that needs to comply with data protection laws. 

In other words, it depends on how the original data was used, the method of generating that data and more. We expect 

every team working with sensitive data to need a strong legal team to understand all the regulations and how they apply 

to them and their model development. 

Even when organizations attempt to anonymize real data, it can prove to be incredibly difficult. A research team 

studying attempts to remove sensitive characteristics from resumes found it was nearly impossible. Even when 

removing so much of the resume as to make it unusable for HR teams, machine-learning models were still able to 

predict gender and other characteristics 70% of the time. That’s because even if sensitive or identifying characteristics 

are removed or obscured, other variables can act as proxies to that information. 

Synthetic data can help with privacy in two main ways. If the data is fully synthetic, then it was never based on a real-

world person or event. A partially synthetic dataset can avoid data leaks such as a model spitting out an API key in a 

code generator. It can also create a dataset where something like names and social security numbers are replaced so 

that if the data leaks in a breach, it’s not real data that can be used by identity thieves. There are some caveats to that, 

in that the original dataset must be deleted or kept air-gapped or in a more highly secure area, or else the original data 

might leak. 

Synthetic data generation leverages state-of-the-art concepts in machine learning, and researchers are always looking 

at the latest techniques coming out of research labs to see if they can be applied to synthetic data, but currently the 

techniques most often used are: 

•	 Bayesian networks

•	 GANs (generative adversarial networks)

•	 VAEs (variable auto encoders)

•	 Flow based models

•	 Diffusion models 

Bayesian networks use Bayesian inference, one of the most battle-tested statistical reasoning methods, to create a 

probabilistic graphical model. Bayesian networks look to model causation by finding dependency conditions and then 

representing that conditional dependence in a directed graph. 

https://www.unite.ai/job-applicant-resumes-are-effectively-impossible-to-de-gender-ai-researchers-find/
https://www.unite.ai/job-applicant-resumes-are-effectively-impossible-to-de-gender-ai-researchers-find/
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Generative adversarial networks were designed by researcher Ian Goodfellow and his colleagues in June 2014. With a 

GAN, two neural networks, a generator and a discriminator, contest each other in a game where the generator attempts 

to fool the discriminator until it gets good enough to consistently fool the discriminator. For instance, the discriminator 

might generate photorealistic faces until the discriminator can no longer tell the difference between the generated faces 

and the real pictures of people.

As you might have guessed, GANs have been used to generate realistic faces, fill in missing sections of a photo or text, 

unblur photos, upsample astronomical photos and generate realistic speech that’s never been spoken. 

However, although GANs can produce remarkable results, they can prove very challenging when it comes to training a 

stable model. But by its very nature, the training process is inherently unstable because it involves the dynamic training 

of two competing models at the same time.

An autoencoder is a type of neural network that learns how to efficiently encode unlabeled data via unsupervised 

learning. It validates the encoding by repeatedly attempting to regenerate the input from the encoding. It works by 

learning a representation of the data, typically by dimensionality reduction and learning to ignore noise. Variable auto 

encoders have the ability to generate variations on that data rather than just reconstruct the original data. That means if 

they learn a representation of a face, they can generate different faces rather than just the original.

Variable auto encoders are used in image and audio generation and in interpolating sentences to fill in missing words.

Flow-based models use a probability distribution that leverages normalizing flows that transform a simple distribution 

into a complex one. They’ve been applied to a wide variety of modeling, such as audio generation, molecular graph 

generation, point cloud modeling, and video and image generation.

Diffusion models, inspired by non-equilibrium thermodynamics, work by slowly corrupting the training data by 

progressively adding noise. Then the network learns to reverse the corruption by gradually denoising the data. The 

advantage of diffusion models is that they can be effective at learning and generating high-dimensional data, such as 

financial data or genomic data.

The DALLE-2 platform and Google’s answer, Imagen, both take advantage of diffusion models and have helped advance 

this area.

 
A Survey of Platforms

Synthetic data providers tend to focus on one of two broad categories: 

•	 Structured data

•	 Unstructured data 

https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://www.statology.org/high-dimensional-data/
https://www.statology.org/high-dimensional-data/
https://openai.com/dall-e-2/
https://imagen.research.google/
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Just as there are differences between storing, processing and working with structured and unstructured data 

in pipelines, there are differences between how effective it is to generate synthetic data that’s structured and 

unstructured.

At first glance, you might think structured data is further along, just as it is in the rest of the space. But currently, the use 

of synthetic data is the most developed in the image generation space. The reason for this is that it’s easier for people to 

validate an image, they do so simply by looking at it. We have built-in instincts for whether something “looks right,” but 

validating lots of structured textual data is much more challenging. 

But if a sixty-character API string is off by a digit or includes a character that is invalid, could you recognize it at a glance 

or even with heuristics like a RegEx? Textual data takes more time to inspect and validate. Other unstructured data 

applications outside of image generation is still a work in progress, such as realistic document creation. 

That said, largely the same ML techniques discussed earlier (e.g., GANs and VAEs) are used in both structured and 

unstructured data, with the difference being that structured data can also benefit from traditional hand-coded logic and 

heuristics.

We find that platforms tend to focus on either structured or unstructured data generation because of the challenges of 

creating both equally well in a broad range of domains and/or validating that the data generated is useful for training 

real-world models consistently in a specific domain.

We also find that many platforms are further subdivided by: 

•	 Industry focus

•	 Category of synthetic data (e.g., partially synthetic data or fully synthetic data)

•	 Both of the above 

We have found that many platforms have been designed to focus on specific industries, because many industries, such 

as healthcare or financial services, have their own unique challenges, and developing a platform that can simultaneously 

develop synthetic CAT scans as well as generating examples of financial fraud is still challenging. 

For example, Facteus focuses on the financial industry, and its synthetic generation tool is specifically designed to 

generate partially synthetic datasets with fake personally identifying information using its mimic engine. YData focuses 

on structured (tabular and time series) synthetic data for financial firms, telecom, retail and more. One of their key 

focuses is on data quality activities, of the kind discussed earlier, such as finding over and underrepresented data 

that can destroy a model’s chance of generalizing well into the real world. MDClone focuses exclusively on healthcare 

data and offering privacy and security that allows data scientists to explore original datasets and synthetic look-a-like 

datasets. Syntegra also focuses on healthcare and life sciences and includes on-prem deployment via container to 

eliminate the need to upload datasets that might be too sensitive. Companies like Pasteur iSi take a different approach, 

looking to simulate various environments with digital twins, such as a digital twin of the Earth.

https://www.facteus.com/
https://www.facteus.com/
https://www.facteus.com/mimic
https://www.facteus.com/mimic
https://ydata.ai
https://www.mdclone.com/
https://www.mdclone.com/
https://www.syntegra.io/
https://www.syntegra.io/
https://simulation.science/research/
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The AIIA has noticed that fully synthetic generators, like the Unity engine for generating synthetic video and images 

from no gathered input data, are largely confined to the field of unstructured data, and skilled operators or consultants 

are required to create these datasets, just as skilled animators are required for animation. The vast majority of the 

companies surveyed by the AIIA on structured data offer platforms with the ability to generate synthetic data by first 

learning the features and distributions of existing datasets, which means most of the structured platforms do not solve 

the problem of generating new edge cases or novel use cases as seamlessly as the unstructured data platforms.

We’ve also noticed that the vast majority of use cases of the platforms in the survey do not include incredibly 

challenging capabilities like generating synthetic cancer data, where there would be large repercussions for failure, and 

instead focus on tabular look-a-likes of patient data for insurance policy creation rather than for drug discovery. That 

makes sense because it’s easier to create a mirror dataset by modeling collected data than to generate novel, accurate, 

realistic variations from complex datasets like lung cancer or skin cancer datasets. However, a few companies, such 

as EdgeCase, are looking to tackle some of those more difficult scenarios, involving radiology data and other medical 

imaging data, and agricultural disease detection.

We have also noticed that the vast majority of the companies in this space are SaaS services because of the need for 

those companies to hire top-notch researchers and data scientists. 

There are some open-source projects of varying quality, such as Twinify, which generates a privacy-preserving synthetic 

twin when given a dataset with sensitive characteristics. Ydata-synthetic and Gretel Synthetics generate tabular data. 

Synthea generates fake patient data. The Synthetic Data Vault project, which started out of MIT’s Data to AI Lab, 

maintains a list of projects and tutorials and packages up some of those projects into a single project for easier access.

It’s important to note that many of the open-source projects are still new and have not achieved the kind of third-party 

contributors that larger scale open-source projects have in recent years. We expect that to change as the synthetic-data 

market develops. We also expect more companies to craft open-source tools that get added into their larger portfolio 

of capabilities. However, at this point in the ecosystem’s evolution, it’s difficult to rely on pure open-source solutions, 

whereas companies can and do rely heavily on open-source solutions for other parts of the AI/ML stack, such as with 

Pytorch or Tensorflow. 

Additional structured-data-focused solutions include: 

•	 Gretel: Generates synthetic tabular data, performs privacy preserving transformations on sensitive data and offers 

NLP options for detecting PII in data.

•	 Diveplane: Their Gemini solution generates synthetic twins of data.

•	 Hazy: A financial synthetic-data generator that can be installed on site as a Docker container or used as an SaaS, 

with the data generated by analyzing existing datasets and producing a privacy-preserving alternative version of the 

data.

•	 Mirry.ai: Has a cloud platform that integrates with major databases like Snowflake, Oracle and Redshift and can be 

used for privacy preservation to correct data imbalances.

•	 Mostly AI: Their Mostly Generate platform creates look-alike tabular data for the financial, telecom and insurance 

https://unity.com/products/computer-vision
https://unity.com/products/computer-vision
https://www.edgecase.ai/
https://github.com/DPBayes/twinify
https://github.com/DPBayes/twinify
https://github.com/ydataai/ydata-synthetic
https://github.com/ydataai/ydata-synthetic
https://github.com/gretelai/gretel-synthetics
https://github.com/gretelai/gretel-synthetics
https://github.com/synthetichealth/synthea
https://github.com/synthetichealth/synthea
https://github.com/sdv-dev/SDV
https://github.com/sdv-dev/SDV
https://gretel.ai/
https://diveplane.com/
https://hazy.com/
https://www.mirry.ai/
https://mostly.ai/
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industries.

•	 Replica Analytics: Their Replica Synthesis platform generates synthetic look-a-like data. It includes an API, and 

development libraries in R and Python that integrate data synthesis into existing pipelines.

•	 Sogeti: A CapGemini consulting division that offers the Artificial Data Amplifier (ADA), an in-house solution that 

generates realistic data based on existing datasets.

•	 Statice: A platform that focuses on privacy preservation by generating fully synthetic twins.  They also have an SDK 

for integration into existing pipelines. It includes support for the financial, healthcare and insurance industries.

•	 Synthesized: Synthesized is a development framework for creating synthetic data via API with a backend that 

supports integration with major relational databases, ETL and CLI tools, including some pre-generated public 

datasets.

•	 Syntho: Another SaaS that generates tabular data from an uploaded dataset that’s able to handle time series data, 

geolocation data and sensitive characteristics.

•	 Tonic: A synthetic data platform that models existing datasets to produce a complete dataset or a subset of the 

data. Offers as a SaaS service and as a Docker container for on-prem deployment, which can cut privacy concerns 

when uploading data to a third party. 

Unstructured data platforms are similar to game engines or film rendering engines, and, in fact, they enjoy a great 

deal of overlap with many of the technologies coming out of video games and film. They employ many of the same 

techniques as we see in those industries, like ray tracing, which can accurately recreate reflections of light by tracing 

light as it bounces around a scene. The reason unstructured data generation is further along is decidedly because 

photorealistic engines have been the goal of those two industries for decades, and they’ve largely achieved that goal.  

•	 Anyverse: Creates synthetic data for self-driving cars, city planning and architectural planning and analysis.

•	 Bifrost: Creates perfectly realistic 3D worlds via API and auto generates the labels. Has the ability to generate rare 

events such as boats crashing into each other for predicting dangerous situations with computer vision.

•	 CVEDIA: Builds a platform that can simulate not just visual data but also sensor data, like LiDAR, radar, infrared, 

thermal and ultrasonic data.

•	 Cognata: Delivers digital twins or entirely synthetic worlds for AV testing and validation and can generate not just 

cities and roads but off-road data and agricultural plots for AV farm equipment, as well as realistic sensor models 

for uncommon sensors, such as radar, LiDAR and thermal cameras.

•	 Coohom Cloud: Offers a platform for generating synthetic indoor agents and robots.

•	 Deep Vision Data: Creates synthetic data for everything from manufacturing products to indoor and outdoor 

environments. One of the few companies that focuses on CAD systems and model defects or variations.

•	 Neurolabs: Focuses on synthetic data solutions for retail stores, such as generating realistic products and stocked 

shelves.

•	 Parallel domain: Platform for creating autonomous vehicle training, as well as sensor data for radar and LiDAR, with 

some large, high-tech customers.

•	 Pasteur iSi (Simulation Science): With state-of-art efficiency and fidelity, Pasteur builds in-silico playgrounds for 

human experts and AI agents to experiment with, simulating counterfactuals and understanding downstream 

effects before deployment. 

•	 Rendered AI: Uses industry-standard models and techniques to create an unlimited variety of synthetic imagery for 

https://www.replica-analytics.com
https://www.sogeti.com/services/artificial-intelligence/artificial-data-amplifier/
https://www.statice.ai/
https://www.synthesized.io/
https://www.syntho.ai/
https://www.tonic.ai/
https://anyverse.ai/solutions/
https://www.bifrost.ai/
https://www.cvedia.com/
https://www.cognata.com/
https://coohomcloud.com/#/product/eus
https://synthetictrainingdata.com/
https://www.neurolabs.ai/synthetic-data
https://paralleldomain.com/
https://simulation.science/research/
https://rendered.ai/
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AI training optimization.

•	 Scale: Scale AI, profiled in the labeling section of the report, also includes a beta tool called Scale Synthetic, for 

generating synthetic 2D and 3D data.

•	 Simerse: Focuses on manufacturing and construction data generation for inspectors of critical infrastructure and 

farm robots.

•	 Synthesis AI: Generates realistic humans for a variety of use cases like distracted driver monitoring or identity 

recognition. Users create JSON to outline desired data distributions and characteristics to submit jobs to their 

synthetic data cloud services job, while auto generating labels.

 
Current Trends and the Next Five Years
 

Synthetic data is poised to be a major accelerator of AI/ML in the coming decade, but it’s currently in its infancy. Gather-

ing data and labeling it are two of the biggest bottlenecks in creating effective models. Synthetic data has the potential 

to overcome both of them in one swoop.

That said, synthetic data is still a new entry into the AI/ML lifecycle, and it’s still evolving. Most of the companies in the 

space started in the last two to four years. They are leveraging some of the most advanced research in ML to create 

artificial data. That’s both a blessing and a curse because for artificial data generation to really advance, machine 

learning itself has to advance. Still, we’ve had enough evolution to create the possibility of artificial data and even at this 

early stage, it can make a difference in what organizations are trying to achieve now.

The most well-developed platforms in synthetic data come to us with a legacy from film, television and video games, 

which have enjoyed relentless advancement over the past thirty years to the point of ever-more photorealistic 

environments and people generation. Rendering engines and the tools to help developers design 2D and 3D worlds 

have reached an incredibly high level of photorealism, and it made sense to repurpose those platforms for synthetic 

data generation as a natural extension of their use cases. These tools enable skilled practitioners to address novel 

edge cases like creating images of manufacturing defects or demonstrating rare cases of boat collisions or rare driving 

conditions for autonomous vehicles.

Structured data solutions are still catching up to computer-vision use cases. The vast majority of the platforms surveyed 

offered robust abilities to create look-a-like datasets that protect privacy, which solves important challenges, like 

protecting customer health or financial data, but it doesn’t yet solve some of the more pressing edge cases. Some of 

the techniques can create variance in structured data, but those variances won’t showcase new or novel cases of fraud 

because the human creativity that goes into cheating the system is still beyond the capabilities of current AI techniques.

We advise anyone looking to use synthetic data to clearly understand what problem they are trying to solve and to 

research the abilities and limitations of synthetic data for their use case. For instance, if you are a financial institution 

looking to protect your customer data before training machine-learning models, you have some robust choices to pick 

from in the space. But if you’re looking to invent novel fraud cases that have never existed, you will not find much to 

help you there as of yet.

https://scale.com/synthetic
https://scale.com/
https://www.simerse.com/
https://synthesis.ai/
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To make a decision, outline your use cases clearly and then make a short list of teams that might meet those needs by 

looking carefully and critically at their offerings and the team that supports the platform.

The Next Five Years

We expect synthetic data to advance along with the general advancement of machine learning. With each new algorithm 

and technique to come out of the big AI research labs, we see synthetic data companies applying those advances in 

new and novel ways. In particular, structured data generation will continue to make strides because there are so many 

companies focused on it at the moment. We also expect to see an uptick of synthetic data generation to help address 

data quality issues by working hand in hand with supervision systems that can detect over- and underrepresentation 

and other more subtle data quality issues.

Structured data presents some interesting challenges in that it is harder to verify at the intuitive level the way you can 

verify visual imagery, so we expect the monitoring and QA of synthetic data to become an important part of structured 

data creation. We will start to see more automated ways of validating the generated data as part of the CI/CD pipeline, 

in the same way we see large suites of integrated and automated tests when we deploy code in DevOps pipelines.

While we’ve seen major advances in computer vision applications, we haven’t seen as many advances in audio 

generation. It’s probable that we’ll see audio generators that are effective for synthetic data creation. We’ll likely see 

different voices and languages automatically created for translations.  We might also see the ability to add background 

noise or to automatically combine sounds together, which programmatically creates augmented datasets for audio.

That said, we don’t necessarily need new use cases and capabilities for synthetic data to become a staple of the AI/ML 

workflow. We expect many organizations to adopt look-a-like datasets for privacy preservation over the next few years 

as regulators continue to create roadblocks to using personal information. This will be especially true in healthcare, drug 

discovery, finance and even in advertising. Creating a barrier between original datasets is likely to become standard 

practice in heavily regulated industries.

We expect to see a rise in both open-source offerings, which have lagged in this area of the ecosystem. Finally, we 

expect on-prem solutions to increase in the coming years. Since so much data is sensitive, uploading it to a third party 

presents challenges to teams looking to prevent privacy leaks, and on-premises solutions can fix that challenge. Lastly, 

on-premises solutions overcome the challenge of data gravity. Moving large datasets around via upload is time consum-

ing and costly, and we expect to see more solutions that go right to where the data lives.   

AI INFRASTRUCTURE ECOSYSTEM CONCLUSIONS  
AND WRAP UP
 

There’s tremendous innovation happening in the AI/ML infrastructure space, but with so many platforms in the ecosys-

tem, it’s challenging for any one team to get their heads around all of it. This report was designed to bring clarity to this 
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fascinating and rapidly developing space. Hopefully it gave you a solid foundation so you can now carefully examine the 

entire space to find the tools you need to grow your AI/ML teams and deliver more models into production faster.

As you saw, not all parts of the ecosystem are equally developed. Some parts are seeing rapid growth, like labeling 

accelerated by machine learning, while other parts are still developing and have more room to grow, like synthetic data. 

In some areas, like orchestration and pipelines, there is tremendous competition, while in other areas, like training, 

there are a few strong choices. Areas like AI supervision with monitoring, observability and explainability are seeing 

quick improvements and adoption.

The growth of any AI/ML team is a journey, and at each stage you need different tools. At any early stage, with only 

a few top-notch data scientists, your tooling needs are much simpler. But as your team grows, you need newer and 

better tools to deal with that growth. Traditional enterprise IT considerations, like role-based access control and 

security, suddenly become important, as does ongoing monitoring and maintenance. Larger teams may suddenly find 

themselves in need of a feature store as they put more and more models in production. Others discover they need 

data versioning and lineage. Some discover data versioning and lineage too late, after regulation or a public mistake 

highlights the need for it. In the early days, distributed training isn’t much of a consideration, but as teams grow and 

compete for in-house resource scheduling across GPUs, it becomes essential. At each stage, new must-have tools rise to 

the surface rapidly.

As we’ve seen, the adoption of AI/ML is still in its early phase. Many big-tech companies built their own tools from 

scratch because there was nothing on the market to support their needs, but that approach is largely out of reach for 

other enterprises that don’t have an army of developers. It’s also unsustainable, as technical debt and maintenance of 

those tools quickly becomes a nightmare, even as commercial tools start to bypass internally built systems with their 

capabilities. We expect more and more tech companies to replace parts of their home-rolled stack with commercial or 

open-source alternatives in the next five years. We expect that most enterprises in the early majority stage will not craft 

their own tools and instead focus on writing smaller tools that close the gap between modular pieces of the stack.

In these early days, structured-data use cases are the most prevalent, and tools built on platforms like Spark are 

the most dominant. But we expect many of the most promising and bottom-line expanding use cases will come 

from unstructured data, deep learning, reinforcement learning and new techniques over the next decade. The next 

generation of tools that can harness the power of unstructured data and advanced use cases are still emerging, and 

there is no clear winner. Enterprises are just beginning to dip their toes into more advanced applications, but we expect 

that to expand quickly over the next five years as computer vision, NLP and other advanced applications become more 

well-known and accessible to teams that don’t have dedicated researchers. 

We also expect AI to get more generalized over the next five years, with single models capable of working with different 

modalities, such as images, video and text. Lastly, we expect to see models that move beyond the narrow and become 

capable of multiple tasks. We’re already seeing the growth of multi-modal models like Google’s LaMDA (Language Model 

for Dialogue Applications), along with OpenAI’s DALLE 2 and CLIP.

To be very clear, we are not talking about AGI (artificial general intelligence). We are using the term generalized in a 

https://blog.google/technology/ai/lamda/
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much more narrow sense, which we call GI or generalized intelligence. That is, AI that can move beyond a single, narrow 

task and do well across a single problem domain or a few domains. Research at multiple AI research labs and robotics 

institutes is testing multiple promising, practical approaches that can do multiple tasks like cleaning a house, opening 

and closing windows and folding clothes. We expect that research to accelerate and to ripple into pure software AI/ML 

applications that can do well across a broad domain.

We also expect that many smaller teams, with AI at the core of their business model, will continue to get funding. AI-

driven businesses are businesses with AI at the very center of their business model, with capabilities that can only come 

from AI, such as photorealistic fashion model generators that provide virtual avatars to fashion houses to augment their 

online stores. That’s just one example of thousands of AI-driven businesses that will emerge over the next five to ten 

years. These AI-driven businesses will grow and scale over the next decade to become some of the most important tech 

companies in the world as they outpace competitors who don’t have AI expertise and can’t compete without it. Other 

enterprises will adopt more and more advanced use cases to compete as these new tech titans emerge.

Those AI-driven businesses are already here. In our survey, 21% of companies count AI as central to their business mod-

el, and that number will only grow in the years to come. 

 

AI will affect every single industry on earth, from telecommunications to finance to healthcare to defense to construc-

tion and manufacturing to agriculture to the automotive industry. There is not a single industry anywhere that won’t 

benefit from more intelligence. But without the right infrastructure tools, organizations can’t build those world changing 

applications. The AI/ML infrastructure stacks of today and tomorrow will form the foundation that allows the intelli-

gence revolution to happen. Once those tools mature, the entire industry will move into the early majority stage, and 

https://danieljeffries.substack.com/p/the-coming-age-of-generalized-ai-510a3ddfe844?s=w
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we’ll begin to see more and more applications that we simply can’t live without and that we couldn’t possibly create with 

traditional programming.

At the early majority stage, we expect to see consolidation among the players in the ecosystem. Some will fail. Some 

will merge. Some will get outflanked by competitors. But the companies that emerge from this early stage will form the 

canonical stack of AI/ML that enterprises everywhere rely on. 

AI/ML infrastructure is the foundation on which to build the applications of tomorrow. 
 

 
GLOSSARY 
 

Terms in artificial intelligence are often used interchangeably, which creates tremendous confusion in the space. People 

use machine learning (ML) and artificial intelligence (AI) to mean the same thing, when in reality machine learning is 

a subset of artificial intelligence. Algorithms and models get swapped just as often, but algorithms create models, so 

they’re not the same. We provide definitions for how we use these terms in this report below.

•	 Artificial Intelligence = Artificial Intelligence (AI) is a broad, overarching term for any software program that mimics 

the problem-solving and decision-making capabilities of the human mind. 

•	 Machine Learning = Machine learning (ML) is a class of methods for automatically creating models from data. At its 

heart, ML is advanced pattern recognition. 

•	 Algorithm = Algorithms are the engines of machine learning. They are procedures that run on data to create a 

machine learning model. It is the algorithm that learns from the data and outputs a model that can make inferences 

or predictions. 

•	 Model = A model is a program that was trained to recognize patterns and make predictions. 

•	 Inference = When a model makes predictions, we call those inferences. 

•	 Datum = A single unit of a set of data, such as one cell in a set of rows and columns. 

•	 Supervised Learning = Supervised learning uses labeled datasets to teach an algorithm what kind of features we 

want it to learn. We typically see supervised learning in the context of classification, when we want to map input to 

output labels, or regression, when we want to map input to a continuous output. Common algorithms in supervised 

learning include logistic regression, support vector machines, naive Bayes, neural networks, deep learning and 

random forests. 

•	 Semi-Supervised Learning = Semi-supervised learning looks to use a small set of labeled training data together 
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with a larger amount of unlabeled training data. The need for semi-supervised approaches comes from real-world 

situations in which labeling data is incredibly time consuming or impossible and/or very expensive and/or involves 

a constant stream of data. If we were trying to detect hate speech on a social media network, there’s simply no way 

to hand annotate each message that comes in because there are too many messages to go through individually. 

Instead, we can use semi-supervised approaches where we hand label a subset of messages and leverage those to 

help us understand the rest of the messages as they come in. 

•	 Unsupervised Learning = Unsupervised learning is a type of algorithm that learns patterns from unlabeled data. 

Through mimicry, the software builds a compact internal representation of its world and then generates predictions 

from it. Some of the most common algorithms used in unsupervised learning include clustering, anomaly detection, 

and various approaches for learning latent variable models. 

•	 Reinforcement Learning = Reinforcement learning (RL) trains a software agent, through game-like environments, 

to achieve a goal in an uncertain and complex situation. The agent goes through a series of trial and answer solu-

tions, and the system rewards or punishes the agent’s approach to achieving its goal. The agent looks to maximize 

its total reward. 

•	 Structured Data = Structured data is data that fits into a column and row structure, such as a relational database. It 

adheres to a pre-build schema. Examples include names, dates, credit card numbers and time series data.  

•	 Unstructured Data = Unstructured data has no fixed data schema. Examples of unstructured data are videos, 

audio files, images and unstructured text like tweets, legal documents, novels and reports. 

•	 Semi-Structured Data = Semi-structured data is a kind of data that has some regularity to it but can often include 

unstructured text elements, such as JSON or YAML.
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Website

ai-infrastructure.org

LinkedIn

linkedIn.com/company/ai-infrastructure-alliance

Twitter

twitter.com/AiInfra

http://ai-infrastructure.org
http://linkedIn.com/company/ai-infrastructure-alliance
https://twitter.com/AiInfra
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