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Abstract

The reliable detection and tracking of weather patterns is a necessary first step
towards characterizing extreme weather events in a warming world. Recent work
[Prabhat et al.(2020)] has shown that weather pattern recognition by deep neural
networks can work remarkably better than feature engineering, such as hand-crafted
heuristics, used traditionally in climate science. As an extension of this work, we
perform Deep Learning - based semantic segmentation of atmospheric rivers and
tropical cyclones on the expert-annotated ClimateNet data set, and track individual
events using a spatio-temporal overlapping approach. Our approach is fast and
scalable to more data modalities and event types, motivating expansion of the
ClimateNet dataset and development of novel deep learning architectures. Further-
more, we show that the spatio-temporal tracking capability enables investigating a
host of important climate science research questions pertaining to the behavior of
extreme weather events in a warming world.

1 Introduction

Climate change is arguably one of the most pressing challenges facing humanity in the 21st
century. Identifying weather patterns that frequently lead to extreme weather events is a cru-
cial first step in understanding how they may vary under different climate change scenarios.
Until recently climate scientists have largely relied on custom heuristics for the identification
of these events [Hodges(1995), Neu et al.(2013), Prabhat et al.(2015), Ullrich and Zarzycki(2017),
Shields et al.(2018), Guan and Waliser(2019)]. However, recent work showed conclusively that
deep learning trained on the expert-annotated ClimateNet data set can work as well and extremely
efficiently [Prabhat et al.(2020)].

Two limitations of the above-mentioned work are: (i) the DL segmentation model used, DeepLabv3+,
is computationally expensive and hard to train; (ii) the method cannot spatio-temporally track individ-
ual unique events. In this paper we address these limitations and make the following key contributions:
(i) we implement and train a light-weight neural network for detecting atmospheric rivers (ARs) and
tropical cyclones (TCs) in simulated climate data; and (ii) we propose a spatio-temporal tracking
algorithm to track individual events and show a host of climate-scientific downstream analyses
that can be performed with this capability. We open-source our code on GitHub1 and provide an
easy-to-use tool to apply our tracking algorithm, enabling simple adoption.

∗equal contribution
1https://github.com/andregraubner/ClimateNet
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2 Methods

2.1 Dataset

The ClimateNet dataset consists of 459 feature-label pairs (xi, yi), where xi is a 16-channel,
(1152, 768) pixel image that is the output of a historical 25-km CAM5.1 climate model output
[Wehner et al.(2014)] and yi is the corresponding pixel-wise labeling (background, atmospheric
river, tropical cyclone). Details about the data set, including the expert-annotated labels, are in
[Prabhat et al.(2020)]. We choose 4 channels that are most relevant to detecting TCs and ARs: TMQ
(Total vertically integrated water vapor), U850 (Zonal wind at 850 mbar), V850 (Meridional wind at
850 mbar) and PSL (pressure at sea level).

2.2 Model

Figure 1: A CGBlock in-
tegrates local features and
surrounding features into a
joint feature. It then re-
fines the representation us-
ing global context.

We use a segmentation architecture based on CGNet [Wu et al.(2019)].
Besides several standard convolutional layers, the core building block
of the network is the CGBlock, which first integrates local as well as
surrounding context by concatenating the output of normal and dilated
convolutions, then refines the representation with global context through
average pooling. In order to capture the topology of the input domain
(connecting opposing sides in a rectangular mapping of the earth) we
perform circular padding. At 494232 parameters, this architecture
is light-weight, allowing for a very low memory footprint and high
training and inference speeds, making it a viable solution for detecting
and tracking extreme weather events on large climate data sets.

2.3 Training

As common in semantic segmentation, our problem suffers from strong
data-imbalance, with the overwhelming majority of pixels belonging
to the background class. Instead of using the commonly used weighted
cross-entropy loss for addressing this issue, we decide to optimize a
loss more directly related to the Jaccard Index (Intersection over Union),
a standard metric for evaluating segmentation results. For one sample,
the Jaccard Loss [Rahman and Wang(2016)] is defined as:

L(P, Y ) = 1−
∑

ijk (pijk · yijk)∑
ijk (pijk + yijk − pijk · yijk) + ε

Here, P is the output of the network given x, softmaxed along the class
axis such that the scores for each class are positive and sum up to 1
per pixel. Y is the one-hot encoded corresponding labeling, such that
yijk is 1 if and only if pixel (i, j) has been labeled as class k for the
corresponding sample. We add a small ε = 1e−7 to the denominator
for numerical stability. We minimize this loss for 15 epochs over our training set using the Adam
optimizer [Kingma and Ba(2014)]. The model reaches 59.3% training IoU and 56.1% test IoU on
the held out test set (13% of the entire data set).

2.4 Spatio-temporal event tracking

Many important scientific questions about extreme weather events require an architecture that can
track events during time, such as counting number of events per year or season, identifying genesis
and termination locations, calculating lifetimes, speed, distance traveled, etc. Since our network does
not perform spatio-temporal segmentation and only makes its predictions per-sample (timestep), we
apply a post-processing scheme to the network predictions to enable the tracking of individual events
over time. For each of the event classes (AR or TC) we first identify connected components in the
labelling output per sample. We then iterate through the samples in chronological order and check if
a connected component overlaps with a connected component of the previous timestep. If it does, we
assign it the ID of the connected component from the previous timestep, otherwise we assign it a new
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Figure 2: Global frequency map of ARs

unique ID. Additionally, in order reduce noise we omit connected components that are smaller than
250 pixels and events that only appear briefly (less than 12 hours).

3 Results and Discussion

We provide a highlight of our detection and tracking method using one year of CAM5 output at
https://youtu.be/_tNuDPsr1Uc. All following analysis is based on five years of output. Due to space
constraints, we limit our discussion to results pertaining to ARs. A similar discussion for TCs is
reserved for future work.

3.1 Atmospheric rivers

For ARs, although there exist over a dozen detection and tracking heuristics which are extensively
compared in [Shields et al.(2018)], we compare our results with a state-of-the-art detection and
tracking heuristic - Guan and Waliser’s tARget v3 (GW hereinafter) [Guan and Waliser(2019)]. This
heuristic uses a location and season specific IVT threshold (85th percentile). A notable feature of this
heuristic is that compared to other existing heuristics, it produces higher frequencies of ARs over
land and polar regions due to its use of a relative threshold [Rutz et al.(2019)].

3.1.1 Global frequency of events

The global frequency of atmospheric rivers using our method are shown in Fig. 2. The structure of
the frequencies shown matches GW [Guan and Waliser(2015)] with high values over the expected
regions of AR activity (e.g. over the Pacific and Atlantic storm track). However, the frequencies
tend to be approximately x3 larger in our approach. While this discrepancy seems quite large, in
[Shields et al.(2018)], it was found that human labelers largely exceeded the frequency of AR events
compared to a range of heuristics. Qualitatively, the ARs detected with our method also tend to be of
larger sizes compared to GW, which inflates the frequencies. Further, our method produces very low
frequencies over land and in higher latitudes. As GW uses relative thresholds, the IVT values can
be quite low in higher latitudes but the heuristic would still identify ARs. The DL method, which is
trained on human labels, relies on labelers to use absolute values of fields such as IVT and IWV.

3.1.2 Genesis frequency of events

The genesis frequency is shown in Fig. 3(a). Areas of higher genesis activity match GW
[Guan and Waliser(2019)] but there are some significant differences in location and extent. The
frequencies also tend to be lower than GW. To note, their frequency plots for genesis and termination
use any ARs events that exist for 6 hours or longer (two or more timesteps since any less would make
genesis and termination ambiguous), while the frequencies plotted here are events that exist 12 or
more hours. The lower genesis frequencies in our method again could also be a result of the high
land and polar bias in GW. For example, our method produces a region of high AR genesis activity
near the east coast of the U.S. GW also produce high frequencies here but also extends over much of
CONUS; while our method produces zero frequencies over the western portion of the U.S.
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Figure 3: AR genesis (left, max frequency in events per month = 0.73) and AR termination (right,
max frequency in events per month = 1.1).

3.1.3 Termination frequency of events

The termination frequency is shown in Fig. 3(b). There are significant differences in termination
between our method and GW. GW show the highest termination frequencies around 60◦s in either
hemisphere. With our method, ARs tend to terminate in the midlatitudes. Again, due to the location
and season specific thresholds used by GW, their method will identify ARs in the polar regions at far
higher frequencies vs human labelers.

3.2 Lifecycle Characteristics

Figure 4: Histograms of AR lifecycle characteristics (left to right: lifetime duration, speed, and
distance for columns).

We next examine basic lifecycle characteristics of ARs tracked with our method. The lifecycle
duration, speed, and travel distance are shown in Fig. 4. AR lifetime duration peaks at 12 hours
(the minimum duration requirement in post-processing) and generally decreases as is expected with
ARs ([Guan and Waliser(2019)],[Zhou and Kim(2019)]). The distribution of AR speeds matches
well with GW with most ARs having speeds between 20-60 km/hr with a peak at 25-35 km/hr. Travel
distance distribution also generally match GW with a few differences. For our tracking, AR travel
distance peaks at 500-1000km while the GW tracking has distance peak at 0-500km. Their tracking
also monotonically decreases whereas our shows slight variation.

4 Conclusions and Future Work

The light-weight neural network and spatio-temporal event tracking scheme proposed in this paper
address the main limitations of state-of-the-art Deep Learning models trained on the curated expert-
labeled climate data – ClimateNet. The new and improved methods proposed here enable ultrafast
spatio-temporal segmentation and tracking on large climate data sets. Further, we show many useful
downstream scientific analyses now possible using the event tracking scheme.

Opportunities for future work include: (i) applications to reanalyses products or observational data
using transfer learning; (ii) extensions to other event types as the approach is inherently event-type
agnostic; (iii) probabilistic segmentation and uncertainty quantification; (iv) end-to-end learning
based approaches to the tracking of events that do not require post-processing the spatial segmentation
output; and (v) rapidly exploring hypotheses related to dynamical mechanisms of extreme events,
including interactions between different types of events.
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