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ABSTRACT

Important problems in speech soft biometrics include the pre-
diction of speaker’s age or gender. Here, the aforementioned
problems are addressed in the context of utterances collected
during a long time period. A unified framework for age and
gender prediction is proposed based on Parallel Factor Anal-
ysis 2 (PARAFAC2). PARAFAC?2 is applied to a collection
of three matrices, namely the speech utterance-feature ma-
trix whose columns are the auditory cortical representations,
the speaker age matrix whose columns are indicator vectors
of suitable dimension, and the speaker gender matrix whose
columns are proper indicator vectors associated to speaker’s
gender. PARAFAC?2 is able to reduce the dimensionality of
the auditory cortical representations by projecting these rep-
resentations onto a semantic space dominated by the age and
the gender concepts, yielding a sketch (i.e., a feature vector
of reduced dimensions). To predict speaker’s age interval
associated to a test utterance, the speech utterance sketch is
pre-multiplied by the left singular vectors of the speaker age
matrix. To predict the gender of the speaker who uttered any
test utterance, the speech utterance sketch is pre-multiplied by
the left singular vectors of the speaker gender matrix. In both
cases, a ranking vector is obtained that is exploited for deci-
sion making. Promising results are demonstrated, when the
aforementioned framework is applied to the Trinity College
Dublin Speaker Ageing Database.

Index Terms— Speaker biometrics, speaker ageing,
PARAFAC2.

1. INTRODUCTION

The acoustic changes of the human voice as a result of age-
ing, known as vocal ageing, have been thoroughly studied
in [1-3]. For example, the respiratory system is affected by
the decreasing rate and strength of muscle contraction. The
primary anatomic changes of larynx are the ossification of
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cartilages and the atrophy of muscle tissue. Furthermore, the
loss of functionality of the tongue and facial muscles affect
the supralaryngeal system [4].

Biometric templates are actually snapshots of biometric
characteristics captured at a particular time instant [5]. In a
verification scenario, the decision is influenced heavily when-
ever a time lapse between the enrolment and the verification
exists [6]. Ageing becomes an important issue in recognition,
as well [7]. Compensating for ageing in face verification has
received significantly more attention than in speaker verifica-
tion. Motivated by the release of publicly available databases
for face verification, such as the FG-NET Ageing database [§]
or the MORPH database [9], similar initiatives undertaken by
the speech research community have led to the release of the
Greybeard - Voice and Ageing Database distributed by the
Linguistic Data Consortium [10], the University of Florida
Vocal Aging Database [11], and the longitudinal Trinity Col-
lege Dublin Speaker Ageing (TCDSA) [12].

An evaluation of speaker verification on the TCDSA
database with a Gaussian Mixture Model - Universal Back-
ground Model (GMM-UBM) system revealed that the veri-
fication scores of genuine speakers decreased progressively
as the time span between training and testing increased,
while the imposter scores were less affected [12]. The ad-
dition of temporal information to the mel frequency cepstral
coefficients (MFCCs) caused an increase in the rate of degra-
dation [4]. However, at time-lapse of 30 years, vocal ageing
caused significant problems in forensic automatic speaker
recognition [13]. Combining ageing information with qual-
ity measures and scores from the GMM-UBM system, a
decision boundary was created in the score-ageing-quality
space [14]. By reducing the variability related to non-ageing,
the accuracy of long-term ageing-dependent decision bound-
ary improved. Eigenageing compensation was proposed to
adapt a speaker model to a test sample based on a vocal age-
ing subspace [15]. The performance of the i-vector system
in terms of both discrimination and calibration was found to
degrade progressively as the absolute age difference between
the training and test samples increased [16].

Here, we are interested in predicting the chronological
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age and the gender from utterance-level acoustic features.
Three novel systems combining short-term cepstral features
and long-term features for speaker age recognition were com-
pared to each other in [17]. A system combining GMMs us-
ing frame-based MFCCs and Support-Vector-Machines using
long-term pitch was found to perform best. A parallel phone
recognizer was found to yield a comparable performance to
human listeners in automatic age and gender classification
using seven classes on a telephony speech task, while loosing
performance on short utterances [18]. By adding prosodic,
pitch, and formant features to the MFCCs, a relative reduc-
tion of the mean absolute error in speaker age estimation was
reported in [19].

A novel framework for age and gender prediction is pro-
posed that is based on Parallel Factor Analysis 2 (PARAFAC?2)
[20]. In the training phase, the starting point is to form an
irregular third-order tensor (or more precisely hypermatrix)
having three slices. The first slice is the speech utterance
feature matrix, whose columns are the features extracted
from speech utterances. Contrary to the majority of related
methods, which resort to MFCCs, the auditory cortical repre-
sentations are computed from each utterance. These features
are based on spectrotemporal modulations [21] and their
derivation is motivated by the human auditory system. The
second slice is the speaker age matrix whose columns are in-
dicator vectors of suitable dimension associated to speaker’s
age. The third slice is the speaker gender matrix, whose
columns are indicator vectors of proper dimension associated
to speaker’s gender. The choice regarding the dimensions of
the age and gender indicator vectors will be discussed later
on. PARAFAC?2 is applied to the aforementioned irregular
third-order tensor so that the semantic similarities between
the age and gender annotations of the utterances drive the
extraction of meaningful feature vectors of reduced dimen-
sions referred to as sketches hereafter. The reasoning behind
this approach is that PARAFAC2 represents the feature vector
and the associated age and gender vectors as linear combina-
tions of basis vectors with coefficients taken from the same
vector space. The left singular vectors of the speech utter-
ance feature matrix span a lower dimensional semantic space
dominated by the age and gender information. Any auditory
cortical representation vector extracted from a test utterance
is projected onto this semantic space first in order to obtain
a test sketch. To predict speaker’s age interval associated to
a test utterance, the test sketch is pre-multiplied by the left
singular vectors of the speaker age matrix. To predict the
gender of the speaker who uttered any test recording, the test
sketch is pre-multiplied by the left singular vectors of the
speaker gender matrix. In both cases, a ranking vector is de-
rived that is exploited for decision making. Promising results
are demonstrated when the aforementioned framework is ap-
plied to the TCDSA Database, using a 2-fold cross validation
protocol.

The paper is organized as follows. Section 2 begins with

basic notation. The proposed joint age and gender prediction
framework, which is based on PARAFAC?2, is detailed next.
Experimental results are demonstrated in Section 3, and con-
clusions are drawn in Section 4.

2. JOINT AGE ESTIMATION AND GENDER
PREDICTION

2.1. Notation

Tensors are considered as the multidimensional equivalent of
matrices (i.e., second-order tensors) and vectors (i.e., first-
order tensors) [22]. Throughout the paper, tensors are denoted
by boldface Euler script calligraphic letters (e.g. X), matrices
are denoted by uppercase boldface letters (e.g., U), vectors
are denoted by lowercase boldface letters (e.g., u), and scalars
are denoted by lowercase letters (e.g., u). ||| denotes the
Frobenius matrix norm, while Bt denotes the Moore-Penrose
pseudoinverse of B. Let Z and R denote the set of integer and
real numbers, respectively. A third-order real-valued tensor X
is defined over the tensor space R’ */2%s 'where I,, € Z and
n = 1,2, 3. Each element of X is addressed by 3 indices, i.e.,
Ti,iqi5. Hereafter, the operations on tensors are expressed in
matricized form [22].

2.2. Proposed method

PARAFAC is a multi-way generalization of the singular value
decomposition (SVD) [23]. PARAFAC2 [20] is a variant of
PARAFAC, which relaxes some of PARAFAC constraints.
That is, while PARAFAC applies the same factors across a set
of matrices, PARAFAC?2 applies the same factor along one
mode. The aforementioned relaxation allows the other factor
matrices to vary, enabling the application of PARAFAC2 to
a collection of matrices having the same number of columns,
but different number of rows [22]. Such a collection forms
the slices of an irregular third-order tensor. Another impor-
tant characteristic of PARAFAC?2 is its ability to overcome
the weakness of conventional supervised subspace learning
algorithms to handle multi-labelled data. Due to these char-
acteristics, PARAFAC2 has emerged as an appealing method
for multi-label classification. It has been applied successfully
to feature extraction and multi-label classification of docu-
ments [24] and music tagging [25]. Here, our goal is to ex-
ploit the good decomposition properties of the PARAFAC2 to
jointly predict speaker’s age and gender.

A PARAFAC?2 model is trained on an irregular third-order
tensor X having three slices (i.e., matrices). Let XM e
Rf“ be the training speech utterance feature matrix, where
F denotes the number of features and [ is the number of train-
ing speech utterances. To capture the speaker’s age, indicator
vectors of dimension L are employed, where L is the number
of levels employed to quantize the speaker age range. The
speaker age matrix is denoted as X(?) ¢ Ri” . Its [i element



X l(iz) is 1 if the ith speaker falls into the domain of the /th
quantization level and O otherwise. For example, let us con-
sider L = 10 age intervals. The age intervals are carefully
chosen in order to have an adequate (ideally, the same) num-
ber of observations in each interval and to cover the age range
of all speakers of the dataset. Since we have only few utter-
ances of speakers aged less than 28 years old or more than
84 years old, the first age interval represents speakers aged
less than 28 and the last interval speakers aged more than 84.
The 2nd to 9th age intervals have a range of 7 years. Then,
a speaker aged 28 at the time of the recording is assigned to
the 2nd age interval that corresponds to the age range [28-
35), while an 83 years old speaker is assigned to the 9th age
interval of range [77,84). Had the age intervals been less than
10, the orthogonality constraint imposed by PARAFAC2 (de-
scribed in the next paragraph) would not be satisfied, while
had the age intervals been more than 10, each age interval
would contain very few observations, since the dataset is rela-
tively small. Let us denote the third matrix as X®) e Ri‘_/[ <t s
where M denotes the number of speakers. Its m: element
X S’Z) is 1 if the 7th speech recording is uttered by the mth
speaker. The speakers are grouped according to gender as
follows. The first M, rows of matrix X (®) are assigned to fe-
male speakers, while the remaining M, rows are assigned to
male speakers. Clearly, M; + My = M.

Since X has three slices, the PARAFAC?2 seeks a decom-
position of the form:

XM =u™WHsS™ WT n=1,23 (1

where U™ e RI»*F n = 1,2, 3 is an orthogonal matrix for
each slice, H € RF*F g a square matrix, S(M) e RFXF jg a
diagonal matrix of weights for the nth slice of X, and W €
R*k is a coefficient matrix. Clearly, I, = F, I = L, and
I3 = M. Parameter k denotes the number of latent variables
to be extracted from each utterance. To achieve uniqueness,
the square matrix (U H)” (U™ H) is kept constant over
n [20]. The decomposition (1) can be obtained by solving the
optimization problem:

3
argmin X - UM HS® WL (2
UM, H,8M, W}

The optimization problem (2) can be effectively solved with
the algorithm described in [24]. Having solved the optimiza-
tion problem (2), one computes the matrix B £ UM HSM) ¢
Ri ¥k B spans a feature space of reduced dimensions F,
where the semantic relations between the feature vectors and
their associations with speaker’s age and gender are retained.
Indeed, the semantic relations between the age vectors as
well as the gender vectors are propagated to the feature space
through the common matrix of right singular vectors W.

As long as the reduced dimensions feature space spanned
by B is created, a test sketch is derived by pre-multiplying
the feature vector extracted from an utterance x € Rf *1 with

Bf, ie., x = Bf x € RF*!, To predict the age interval of
the speaker uttered the test utterance, one has to compute the
vectora € RZ*! by

a=U?HS® x. 3)

The predicted age interval is associated with the largest value
in a. To predict the gender of the speaker who uttered the test
utterance, one should compute the vector g € Ri‘_/[ *1 given
by

g=U® HSO x. @)

If the largest value in g is located in the first M, elements
of the vector, the speaker’s gender is predicted to be female.
Otherwise, a male speaker is predicted.

3. EXPERIMENTAL EVALUATION

3.1. Dataset

The longitudinal Trinity College Dublin Speaker Ageing
(TCDSA) [12, 13] has been used in the experiments. The
database contains recordings spanning a year range per
speaker varying between 30 and 60 years at irregular inter-
vals of between 1 to 10 years. The total number of speakers
is 26, including 15 males and 11 females. The data were
obtained from a variety of sources, such as television docu-
mentary series, YouTube, national broadcasters of U.K. and
Ireland. Many different accents are included and there is a
different number of recordings per speaker, varying from 4 to
47 recordings per speaker, compiling a total number of 280
recordings.

Furthermore, the duration of the recordings varies from 25
seconds to 35 minutes. In our experiments, a total duration of
30 seconds is kept from every recording. If the recording’s
duration is longer than 40 seconds, we discard the first 10
seconds and keep the following 30 seconds of the recording.
If the recording’s duration is shorter than 40 seconds, we keep
the first 30 seconds of the recording or less if the recording
lasts less than 30 seconds.

3.2. Auditory cortical representations

These feature descriptors are inspired by the way sound is
perceived and processed by the human auditory system [21].
The human auditory system can be modeled by a two stage
process. The first stage models the cochlea, and converts the
audio signal to an auditory representation (spectrogram). Due
to the fact that the basilar membrane across the cochlea ex-
hibits a tonotopical organization, the basilar membrane can
be modeled by a bank of bandpass filters. To this end, the
constant () transform (CQT) is employed [26]. The CQT is
a technique, which transforms a signal from time to the fre-
quency domain, such that the center frequencies of the bins
are geometrically spaced and the () factors (i.e., the ratios



of the center frequencies to the bandwidths) are equal. This
means that a better frequency resolution is observed for the
low frequencies, while the time resolution is better for high
frequencies, which resembles the frequency resolution of the
auditory system.

In the second stage, the audio signal reaches the primary
auditory cortex, where it is processed, perceived and inter-
preted. In this stage, the spectral and temporal modulation
content of the auditory spectrogram is estimated. The cells in
the primary auditory cortex are organized according to their
response selectivity in different spectral and temporal stim-
uli [27]. To model this functionality, multi-resolution two-
dimensional (2D) wavelet analysis is applied on the auditory
spectrogram that was extracted in the first stage. The wavelet
analysis is implemented using 2D Gaussian filters, ranging
from narrow to broad spectral scales and from slow to fast
temporal rates. The aforementioned analysis results in a four-
dimensional (4D) representation of time, frequency, rate and
scale, referred to as auditory cortical representation [21].

For the extraction of the auditory cortical representations,
a number of parameters needs to be determined. Follow-
ing [28], 128 filters were employed, which cover 8 octaves
between 44.9 Hz and 11 kHz. Also, the elements of the CQT
matrix were raised to the power of 0.1 in order to compress
the magnitude of the CQT. Regarding the wavelet analysis
of the second stage, a bank of 2D Gaussian filters was em-
ployed with scales € {0.25,0.5,1,2,4,8} (Cycles/Octave)
and rates € {£2, +4, 48, £16, £32} (Hz). The resulting 4D
representation was averaged on time and a 3D cortical rep-
resentation (frequency, rate, and scale) was obtained. Subse-
quently, by re-arranging the elements of the 3D representation
into a single vector, each utterance was described by a vector
X € Ri“ for F' = 7680 (i.e., 128 frequency channels x 10
rates X 6 scales).

3.3. Evaluation protocol and metrics

As mentioned before, the proposed method returns two rank-
ing vectors for each test utterance. The first ranking vector is
for predicting the speaker’s age interval and the second one
for predicting the speaker’s gender. The latter prediction is a
binary classification problem, while the former one is a multi-
class classification process, where each age interval is consid-
ered as one class. Since we considered 10 age intervals, the
number of classes is 10.

In order to assess the performance of the proposed frame-
work in joint age and gender prediction, we conducted ex-
periments on the TCDSA dataset. During the experimental
evaluation, we applied 2-fold cross validation to the dataset
consisting of 280 recordings. The number of folds was im-
posed by the small size of the dataset and the large number of
age classes. In order to achieve a balanced training and test
set in each fold, the recordings were assigned to train and test
set by applying stratified sampling. Our goal was to include

the same proportion of utterances in each age interval of the
train and test set. To this end, we examined each age interval
separately and the recordings in each interval were randomly
partitioned into two halves. Half of the recordings in each age
interval were used to build the train set, while the remaining
ones built the test set. In the second fold, the roles of training
and test set were reversed. The results disclosed in this pa-
per refer to the mean of the evaluation metrics across the two
folds.

Precision, recall, and F; measure were employed as met-
rics to assess the predictions by the proposed method. We
will briefly mention their definitions for age prediction. The
definitions can be easily adapted for gender prediction. For
each age class [ among the L. = 10 classes, the precision is
the proportion of the test utterances predicted to belong to this
age class by the proposed method that are correctly predicted
to belong there. The recall is the proportion of the test utter-
ances actually belonging to this age class that are correctly
predicted to belong there. The F); measure is the averaged
harmonic mean of precision and recall. Since age prediction
is a multi-class classification problem, these metrics are cal-
culated for each age class and micro-averaging is performed
to yield a collective figure of merit.

3.4. Results

We applied PARAFAC2 with a number £ = 10 of latent di-
mensions to the TCDSA dataset. The value of k£ was chosen
so that the orthogonality constraint of PARAFAC2 is satis-
fied. In Figure 1, the mean values of evaluation metrics for
k = 10 are presented for the PARAFAC2 and the Random
model comparatively. As used in [29], the Random model
gives a sense of the lowest expected value for each metric on
a given dataset.

Let us describe the Random model for the gender predic-
tion. Apparently, a similar procedure is applied for age pre-
diction. The Random model samples the gender class (with-
out replacement) from a multinomial distribution parameter-
ized by the gender prior distribution, P(7),7 = 1, 2 estimated
using the observed gender in the training set [29]. Therefore,
the gender selection according to the Random model relies on
the gender appearance frequency, such that the most common
gender is more likely to be chosen for a test utterance.

From the results depicted in Figure 1, we observe that
the proposed method outperforms the random model in both
tasks. Also, we notice that the evaluation metrics for gender
prediction admit higher absolute values than those for age in-
terval prediction. The better gender prediction results are not
surprising, since predicting speaker’s age from speech utter-
ances is more difficult than predicting speaker’s gender, even
when the prediction is made by humans. To this end, we also
investigate the predictions made by PARAFAC2 with some
tolerance. More specifically, since our age intervals have a
range of 7 years, if we consider as correct the age predictions



PARAFAC?2 age prediction results

05
[ Precision Random [ Recall Random [ F, measure Random
045 - | [N Precision I Recall
isi B, measure

04

0.35
0.3078
0.2662
0.2028
0.0746

PARAFAC2 gender prediction results

0.9
0.8180 0.8140
08 [

0.7 [

05

0.4

03[

02

[ F, measure Random

F, measure

[0 Recall Random
I Recall
—

I Precision Random
I Precision

01

(b)

Fig. 1. PARAFAC?2 prediction metrics for k¥ = 10 latent dimensions on the TDCSA dataset used in [12, 13] against the same
metrics for the Random model [29]: (a) Micro-averaged precision, micro-averaged recall, and micro-averaged I} measure
in 2-fold cross validation for age interval prediction; (b) Mean precision, mean recall, and mean F; measure in 2-fold cross

validation for gender prediction.

that differ only by one age class from the true age class, the
predicted age intervals can be considered as correct with a tol-
erance of 7 years on average. For example, if a test utterance
is predicted to belong to the 3nd age interval, while it truly be-
longs to the 2nd or the 4th age interval, then we can consider
the prediction as approximately correct with a tolerance of 7
years on average. In Figure 2, the mean precision, the mean
recall, and the mean F} measure for age prediction are plotted
for k = 10 with and without tolerance in the predictions. The
means are also derived from a 2-fold cross validation experi-
ment.

PARAFAC2 age prediction results
with and without proximity of 7 years

I Focall 7, measure
[EE Recall Approx I ¥, measure Approx
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Fig. 2. PARAFAC2 model age prediction metrics for &k =
10 on the TDCSA dataset used in [12, 13] with and without
tolerance in age interval prediction.

4. CONCLUSIONS

An appealing automatic system for the prediction of speak-
ers age and gender has been proposed. PARAFAC2 has been
employed for semantically oriented feature extraction, age in-
terval and gender prediction. The ranking scores returned by
PARAFAC?2 for age interval and gender prediction are used

for multi-class and binary classification, respectively. The ex-
perimental results are promising and indicate the strength of
PARAFAC?2 to capture hidden relationships among the speech
recordings.

The smallest values admitted by the figures of merit for
age interval prediction than for gender prediction (Figure 1)
challenge us to investigate alternative methods to build the
speaker age matrix in the future. The critical aspect is to
maintain the orthogonality of U,
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