Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

The authors study the problem of recovering a scalar memory kernel in an abstract retarded functional evolution equation of parabolic type (governed by the generator of an analytic semigroup). Results concerning existence, uniqueness, continuous dependence upon the data, and regularity are provided. Concrete examples of parabolic PDEs with delay arising in the mathematical modeling of heat flow are given.

Recovering memory kernels in retarded functional differential equations / G. Di Blasio, A. Lorenzi. - In: DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS. - ISSN 1201-3390. - 12:6(2005), pp. 837-856.

Recovering memory kernels in retarded functional differential equations

A. Lorenzi
Ultimo
2005

Abstract

The authors study the problem of recovering a scalar memory kernel in an abstract retarded functional evolution equation of parabolic type (governed by the generator of an analytic semigroup). Results concerning existence, uniqueness, continuous dependence upon the data, and regularity are provided. Concrete examples of parabolic PDEs with delay arising in the mathematical modeling of heat flow are given.
Functional delay differential equations; Integrodifferential equations; Inverse problems; Parabolic equations; Partial differential equations with delay
Settore MAT/05 - Analisi Matematica
2005
http://online.watsci.org/abstract_pdf/2005v12/v12n6a/v12n6a-pdf/11.pdf
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/7639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact