
Physiological Measurement
     

PAPER • OPEN ACCESS

Model-based spectral causality of cardiovascular
variability interactions during head-down tilt
To cite this article: Alberto Porta et al 2023 Physiol. Meas. 44 054001

 

View the article online for updates and enhancements.

You may also like
Repeatability of popliteal blood flow and
lower limb vascular conductance at rest
and exercise during body tilt using Doppler
ultrasound
R Villar and R L Hughson

-

A Biosensor Electrode with Self-
Assembled Monolayer of Gold
Nanoparticle on a Micro Hemisphere Array
Yuan-Chih Lin, Stephen Liao, Thomas
Huang et al.

-

Chemically Selective Force Mapping of
Electrochemically Generated Two-
Component -Substituted Alkanethiol
Monolayer Gradients by Pulsed-Force-
Mode Atomic Force Microscopy
Karin M. Balss, Glenn A. Fried and Paul
W. Bohn

-

This content was downloaded from IP address 77.83.12.62 on 09/05/2023 at 12:35

https://doi.org/10.1088/1361-6579/acce1f
/article/10.1088/0967-3334/34/3/291
/article/10.1088/0967-3334/34/3/291
/article/10.1088/0967-3334/34/3/291
/article/10.1088/0967-3334/34/3/291
/article/10.1149/2.0361906jes
/article/10.1149/2.0361906jes
/article/10.1149/2.0361906jes
/article/10.1149/1.1499965
/article/10.1149/1.1499965
/article/10.1149/1.1499965
/article/10.1149/1.1499965
/article/10.1149/1.1499965


Physiol.Meas. 44 (2023) 054001 https://doi.org/10.1088/1361-6579/acce1f

PAPER

Model-based spectral causality of cardiovascular variability
interactions during head-down tilt

Alberto Porta1,2,∗ , Beatrice Cairo1, Vlasta Bari1,2, FrancescaGelpi1 , BeatriceDeMaria3 and
RiccardoColombo4

1 Department of Biomedical Sciences forHealth, University ofMilan,Milan, Italy
2 Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan,
Italy

3 IRCCS Istituti Clinici ScientificiMaugeri,Milan, Italy
4 Department of Anesthesiology and Intensive CareUnit, ASST Fatebenefratelli Sacco, ‘Luigi Sacco’Hospital,Milan, Italy
∗ Author towhomany correspondence should be addressed.

E-mail: alberto.porta@unimi.it

Keywords: causal coherence, Geweke spectral causality, vector autoregressivemodel, heart rate variability, arterial blood pressure,
baroreflex, cardiovascular control

Abstract
Objective. Cardiovascular controlmechanisms are commonly studied during baroreceptorunloading
inducedbyhead-up tilt. Conversely, the effect of a baroreceptor loading induced byhead-down tilt
(HDT) is less studied especiallywhen the stimulus is ofmoderate intensity andusingmodel-based
spectral causalitymarkers. Thus, this study computesmodel-based causalitymarkers in the frequency
domain derived via causal squared coherence andGeweke spectral causality approach fromheart period
(HP) and systolic arterial pressure (SAP) variability series.Approach.We recordedHPand SAP
variability series in 12healthymen (age: from41 to 71 yrs,median: 57 yrs)duringHDTat−25°. The
approaches are compared by considering twodifferent bivariatemodel structures, namely the
autoregressive anddynamic adjustmentmodels.Markers are computed in traditional frequency bands
utilized in cardiovascular control analysis, namely the low frequency (LF, from0.04 to 0.15Hz) andhigh
frequency (HF, from0.15 to 0.4Hz)bands.Main results.We found that: (i) the two spectral causality
metrics are deterministically related but spectral causalitymarkers exhibit different discriminative
ability; (ii)HDT reduces the involvement of the baroreflex in regulatingHP-SAPvariability interactions
in the LFband,while leaving unmodified the actionofmechanical feedforwardmechanisms in bothLF
andHFbands; (iii) this conclusion does not dependon themodel structure. Significance.We conclude
thatHDTcanbeutilized to reduce the impact of baroreflex and to study the contributionof regulatory
mechanismsdifferent frombaroreflex to the complexity of cardiovascular control in humans.

1. Introduction

Cardiac baroreflex, namely the physiological reflex inducing a significant association between heart period (HP)
and arterial pressure (AP)withHP changes lagging behindAP variations, is one of themost important
cardiovascular controlmechanisms (Karemaker andWesseling 2008). Characterization of the baroreflex is a
fundamental issue in clinics because its derangement favors the development of disturbances that limit
importantly the quality of life such as recurrent neurally-mediated syncope (Ogoh et al 2004, Faes et al 2013b). In
addition, given that pacing the heart increases AP variations under orthostatic challenge (Taylor and
Eckberg 1996), baroreflex buffers APmodificationswith suitableHP changes, thus contributing to keepAP
under control. The value of parameters describing the cardiac armof the baroreflex is incremented by its link
with the autonomic control, especially vagal circuits (Cooke et al 1999,DeMaria et al 2019, Porta et al 2023).
This link is likely to contribute to the higher predictive value of parameters describing baroreflex functionwhen
added tomore classical clinical variables in risk stratificationmodels (LaRovere et al 1998, Pinna et al 2017).
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Cardiac baroreflex is usually characterized in the frequency domain via parameters such as sensitivity and
latency quantifying, respectively, theHP variation per unitmodification of AP (Smyth et al 1969, Laude et al
2004,Nollo et al 2005) and the time elapsed to observe theHP response to an imposedmodification of AP
(Cevese et al 2001, Porta et al 2011, Faes et al 2013b,Milan-Mattos et al 2018). Recently, these classical
parameters have been complemented by indexes derived frommodel-based spectral causality approaches
estimating the strength of the link in the time direction from systolic AP (SAP) toHP (Porta et al 2002,Nollo et al
2005, Faes et al 2013a, Pernice et al 2022). Spectral causalitymarkers have the desirable property to be computed
in the same frequency bands ofmore classical univariate frequency domain autonomicmarkers (Pomeranz et al
1985, Pagani et al 1997), namely in the low frequency (LF) band (from0.04 to 0.15 Hz) and in the high frequency
(HF) band (from0.15 to 0.4 Hz). However, two factorsmight limit theirmore extensive application: (i) the
possible dependence of the results on the technique utilized to estimate causality; (ii) the possible effect of the
model structure utilized to describe theHP-SAPdynamic interactions on the finalmetric.

Applications ofmodel-based spectral causality approach ismainly limited to situations of baroreceptor
unloading evoked by the reduction of the venous return imposed by standing (Porta et al 2002,Nollo et al 2005,
Faes et al 2013a, Pernice et al 2022). Baroreflex activation during posturalmaneuvers reducing venous return to
the heart took the formof an increased strength of the dependence ofHPon SAP in the LF band and by a greater
probability to reject the null hypothesis ofHP-SAPuncoupling (Nollo et al 2005). Scanty informationwas
present in literature when baroreceptors were loaded. To the best of our knowledge data are limited to the
application of time, or information, domain causalitymarkers during baroreceptor loading of limited intensity
utilized to simulate the effect ofmicrogravity condition on the Earth (i.e. head-down at−6°) (Corbier et al 2020,
Shankhwar et al 2022). Thesemethods do not allow the computation ofmarkers of causality in LF andHFbands
and, as such, any parallel with spectral causality data during the opposite challenge, namely baroreceptor
unloading, is prevented.

The aimof the study is to typify cardiac baroreflex during baroreceptor loading ofmoderate intensity via two
model-based spectral causality approaches.We applied causal squared coherence (CK2) (Porta et al 2002) and
Geweke spectral causality (GSC) (Geweke 1982). GSCwas selected because it is a classicalmodel-based spectral
causalitymetric (Geweke 1982), while CK2was chosen for comparison, being linked toGSCbut not fully
equivalent to it (Porta et al 2002). Two differentmodel structures, namely the bivariate autoregressive (BAR) and
the bivariate dynamic adjustment (BDA)models (Baselli et al 1997, Porta et al 2006)were utilized to describe
HP-SAP variability interactions. Baroreceptor loading ofmoderate intensity was obtained via head-down tilt
(HDT) at−25° (Porta et al 2015a). Preliminary results were presented at the 12thmeeting of the European Study
Group onCardiovascularOscillations (Porta et al 2022).

2.Model-based spectral causality

2.1. Linear parametric bivariatemodels
Let us consider two stochastic zeromeanGaussian stationary processes Y1 and Y2 being collections of consecutive
states { }= = ¼Y Y n N, 1, ,n1 1, and { }= = ¼Y Y n N, 1, ,n2 2, up to the timeN. The linear parametric bivariate
model class describes the current stateYi n, of Y ,i with I= 1, 2, as a linear combination of p past states of Yi and p
past states ofY ,j with j= 1, 2 and j≠ i, plus the current stateXi n, of an additive noiseX .i Thus
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where a ,k11, a ,k12, a k21, and a k22, are constant coefficients and t12 and t21 are the latencies of the action of Y2 onto
Y1 and vice versa respectively. The setting t = 012 and t = 021 must be prevented to avoid the creation of a loop
without delay (Baselli et al 1997, Porta et al 2002). Immediate effects between Y1 and Y2 can be described by
setting t = 012 with t ¹ 021 or t = 021 with t ¹ 012 according to physiological considerations about the rapidity
of cross-actions. The linear parametric bivariate class is usually referred to as BAR ifX = Wi n i n, , is the current
state of a zeromeanGaussianwhite noise Wi with variance l ,i

2 while it is usually referred to BDA ifXi n, is the
current state of a zeromeanGaussian autoregressive (AR)processXi with

· ( )åX X= + W
=

-d , 2i n
k

p

i k i n k i n,
1

, , ,

thatmight feature rhythms according to the set of p constant coefficients d .i k, Wehypothesize that W1 and W2 are
uncorrelated each other, thus cross-covariance between W1 and W2 is 0 at any lag including lag zero.
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2.2. Spectralmatrix of the linear parametric bivariatemodels
The application of the z-transform to (1) leads to z-domain representation of the bivariate process

( ) ( ) · ( ) ( ) ( )X= +Y A Yz z z z , 3

with ( ) ( ) ( )=Y z Y z Y z ,1 2
T ( ) ( ) ( )X X X=z z z ,1 2
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22 1 22, are polynomials with constant coefficients in -z 1 andT is the transposition operator.

In the case of the BARmodel ( ) ( ) ( ) ( )X = W = W Wz z z z ,1 2
T while in the case of the BDA structure

( ) ∣[ ( )] ∣ · ( )X = - W-z D z zdiag 1 ,i
1 where ( ) ·= å =

-D z d z ,i k
p

i k
k

1 , with i= 1, 2, and ∣·∣diag is a diagonal 2× 2

matrix having [ ( )]- -D z1 i
1over themain diagonal and 0 out of it.

The transfer functionmatrix ( )H z links ( )W z to ( )Y z as

( ) ( ) · ( ) ( )= WY Hz z z 5

with ( ) [ ( )]= - -H Az zI 1 in the case of the BARmodel and ( ) [ ( )] · ∣[ ( )] ∣= - -- -H Az z D zI diag 1 i
1 1 in the

case of the BDA structure, where I is 2× 2 identitymatrix. Under the hypothesis of whiteness of W1 and W2 and
their uncorrelation, the spectral densitymatrix ( )S f can be computed as

( ) · ( ) · · ( )∣ ( )· ·L= -
= pS H Hf T z z , 6z

T 1
e f Tj2

whereT is the sampling period andL is the 2× 2 variancematrix ofΩwith ∣ ∣L l= diag i
2 reporting the

variances of the zeromeanGaussianwhite noises over themain diagonal and 0 out of it. In our application
sampling periodT is the averageHP (mHP) assuming that the values of the series are evenly sampled at a rate of
m- .HP

1 Thus,Nyquist frequency fN is · m-0.5 .HP
1

2.3.Model-based parametric squared coherence (K2)
The BAR representation leads to the power spectral density ( )S fii of Yi with i= 1, 2 given by
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and to the cross-power spectral density ( )S f12 given by
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while the BDAmodel leads to the power spectral density ( )S fii of Yi with i= 1, 2 given by
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with ( ) [ ( )] · [ ( )] ( ) · ( )D = - - -z A z A z A z A z1 1 .11 22 12 21 Since over the unit circle · ·= pz e ,f Tj2 polynomials
of real coefficients lead to ( ) ( )D = D -*z z ,1 ( ) ( )= -*A z A z ,ij ij

1 [ ( )] [ ( )]- = - -*A z A z1 1 ,ii ii
1 and

[ ( )] [ ( )]- = - -*D z D z1 1i i
1 where * is the complex conjugation operator, ( ) · ( ) ∣ ( )∣D D = D-z z z ,1 2

( ) · ( ) ∣ ( )∣=-A z A z A z ,ij ij ij
1 2 [ ( )] · [ ( )] ∣ ( )∣- - = --A z A z A z1 1 1ii ii ii

1 2 and [ ( )] · [ ( )]- - =-D z D z1 1i i
1

∣ ( )∣- D z1 ,i
2 where ∣·∣ takes themodulus of the complex number, thus simplifying the computation.

Equations (7), (8), (10) and (11) represent the typical factorization of power spectral density ( )S fii of Yi into
partial power spectral density ( )S fii,1 due to W1 and ( )S fii,2 due to W2 and equations (9) and (12) the typical
factorization of power cross-spectral density ( )S f12 into partial power cross-spectral density ( )S f12,1 due to W1

and ( )S f12,2 due to W2 (Baselli et al 1997, Porta et al 2006).
Since squared coherenceK2 between Y1 and Y2 is defined as

( ) ∣ ( )∣
( ) · ( )

( )=K f
S f

S f S f
, 1312

2 12
2

11 22

equations (7), (8) and (9) allow the computation of ( )K f12
2 based on the BAR representation and (10), (11) and

(12) that of ( )K f12
2 based on the BDAone. Since ( )*S f12 = ( )S f ,21 ( ) ( )=K f K f .21

2
12
2

2.4.Model-based parametric CK2

K2 is turned out to beCK2 by artificially opening the closed loop (Porta et al 2002). Practically, the CK2 from Yj

to Y ,i with i, j= 1, 2 and i≠ j, is computed fromK2 by nullifying the polynomial describing the causal
relationship over the reverse causal direction, namely from Yi to Y ,j as

( ) ( )∣ ( )( )= =CK f K f . 14Y Y ij A z
2 2

0j i ji

Thus, in the case of BAR, CK2 is
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and, in the case of BDA, CK2 is
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A closer look to the (15) and (16) allows one to link them to the partial power spectral density ( )S f ,ii j, with i

≠ j, and to the power spectral density ( )S f .ii Thefinalmarker is computed by sampling ( )CK fY Y
2
j i

in

correspondence of its peakwithin the frequency band of interest (Porta et al 2002).

2.5. GSC and its relationshipwithCK2

TheGSC exploits the observation that the fractional contribution of ( )S fii i, to ( )S fii tends to 0with the
relevance of the impact of the link from Yj to Yi with i≠ j. Thus

( ) ( )
( )

( )= - f
S f

S f
GSC log , 17Y Y

ii i

ii

,
j i

where (·)log is the natural logarithm, was taken as ameasure of the strength of the causal link from Yj to Yi in the
frequency domain (Geweke 1982). ( ) fGSCY Yj i

is integrated over the frequency band of interest (Geweke 1982).
Given that ( )CK fY Y

2
j i

is the ratio of ( )S fii j, to ( )S f ,ii and ( ) ( ) ( )= +S f S f S fii ii i ii j, , with i, j= 1, 2 and i≠ j,

then ( ) [ ( )]= - - f CK fGSC log 1 .Y Y Y Y
2

j i j i
This relationship strictly holds between functions but, in general,

it does not hold betweenmarkers derived from the functions. Therefore, different abilities betweenCK2 and
GSCmarkers in assessing the strength of the causal relationship can be exclusively attributed to the procedure
applied to extract thefinalmarker from the originalmetrics, namely sampling in the case of ( )CK fY Y

2
j i

and
integration over a given range of frequencies in the case of ( ) fGSC .Y Yj i

3. Experimental protocol and data analysis

3.1. Experimental protocol
The study exploited an historical database built to study the autonomic response to baroreceptor loading in
healthy individuals (Porta et al 2015a). The protocol adhered to the principles of theDeclaration ofHelsinki for
medical research involving human subjects. The human research and ethical review board of the ‘Luigi Sacco’
Hospital,Milan, Italy approved the protocol.Written signed informed consent was obtained fromall subjects.
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We studied 12 healthymen (age: 41–71 yrs;median: 57 yrs). The healthy status of the subjects was confirmed via
the careful assessment of the personal health record and clinical examination. The subjects were free of any
medication andwere invited to avoid strenuous physical exercise and consumption of caffeine or alcoholic
beverages in the 24 h before the experimental session. Sessions comprised simultaneous recordings of
electrocardiogram (ECG) from lead II and noninvasive finger volume-clampedAP (Nexfin, BMEYE,
Amsterdam, TheNetherlands). Signals were sampled at 400 Hz. APwasmeasured noninvasively from the
middlefinger of the dominanthand. The subject’s dominant armwas fixed to the thorax tomaintain the hand at
the heart level. The non-dominant armwas aligned to the trunk. APwas cross-calibrated on an individual basis
with ameasurement taken at the onset of the experimental sessionwith a sphygmomanometer. The
autocalibration procedure of theAP device was switched off after the first automatic calibration at the onset of
the session. The subjects were not allowed to talk during the protocol. Each experimental session comprised
10 min of baseline at rest in supine position (REST) followed by 10 min duringHDTwith a table inclination of
−25°. A period of stabilizationwas allowed after having instrumented the subject and before starting signal
acquisition. The headwasmaintained it in a neutral position by a headrest. During the protocol, the subjects
breathed according to ametronome at 16 breaths·min−1. Thefirst threeminutes of recordings duringHDT
were skipped to avoid transient variations of the physiological variables.

3.2. Extraction of the beat-to-beat variability series
The time interval between two consecutiveR-wave peaks of the ECGwas taken as the nthHP (HPn). The
maximumAPwithinHPnwas identified as the nth SAP (SAPn). Detections ofR-wave apexes from the ECG and
systolic peaks from theAPwere visually checked. Standard procedures to insertmissed identifications, to correct
and reinsert eventualmisdetections and to limit the effect of arrhythmic beats were applied (Porta et al 2015a). A
few isolated ectopic beats were detected, but their numberwas always less than 5%of the total length of the
sequence. As the focus of the studywas the characterization of short-termHP-SAP variability interactions, the
analysis was carried out over sequences of 256 consecutive synchronousHP and SAP values taken in a random
positionwithin REST andHDT sessions. Stationarity ofmean and variance ofHP and SAP series was tested
(Magagnin et al 2011).

3.3. Time and frequency domainmarkers
In the time domainwe computed themean and variance ofHP and SAPdenoted as m ,HP s ,HP

2 mSAP and sSAP
2

and expressed in, respectively,ms,ms2,mmHg andmmHg2. Frequency domain analysis was carried out via
traditional parametric ARmethod. The coefficients of theARmodel and the variance of thewhite noise were
estimated directly from the series by solving the least squares problem via Levinson–Durbin recursion (Baselli
et al 1997). The number of coefficients pwas chosen according to the Akaike’sfigure ofmerit in the range from8
to 14 (Akaike 1974). Power spectral density was computed from the transfer function of theARprocess and from
the variance of thewhite noise according to univariate version of (6) (Baselli et al 1997). The power spectral
density was factorized into a sumof terms, referred to as spectral components, the sumofwhich provides the
entire power spectral density (Baselli et al 1997). Spectral components were labelled as LF, orHF, if their central
frequencies, converted inHz by dividing the normalized frequency expressed in cycles·beat−1 by the m ,HP

dropped into the LF, orHF, band. Ifmultiple spectral components belonged to the same frequency band, their
powers were summed up. TheHPpower in theHFband, expressed inms2 and denoted asHFHP, was taken as a
marker of vagalmodulation directed to the heart (Pomeranz et al 1985) and SAP power in the LF band, expressed
inmmHg2 and denoted as LFSAP, was utilized as amarker of sympatheticmodulation directed to the vessels
(Pagani et al 1997).

3.4.Model-based frequency domain spectral causality indexes
Model-based frequency domain spectral causalitymarkers were computed overHP and SAP series. Both time
directions of interactions, namely along the baroreflex, fromSAP toHP, and along themechanical feedforward
pathway, fromHP to SAP, were considered. Indexes were computed via CK2 and GSC approaches in the LF and
HFbands. Both BAR andBDA classes were exploited to describe theHP-SAP dynamic interactions. Series were
linearly detrended andnormalized to have unit variance before computing causalitymarkers. Traditional least
squares techniquewas applied to identify the coefficients of the BARmodel, while those of the BDAmodel were
estimated via generalized least squaresmethod (Baselli et al 1997).While traditional least squares approach
allows a closed form solution of the identification problem, generalized least squaresmethod is an iterative
methodmonitoring the prediction error variance at each iteration. Iterative procedure continued until the
absolute value of the fractional between-iteration decrease of the prediction error variancewas below 0.001.
Traditional and generalized least squares problemswere solved via theCholesky decompositionmethod. The
model order was optimized via the Akaike information criterion formultivariate processes in the range from5 to
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12 (Akaike 1974). The latency fromSAP toHP and fromHP to SAPwas assigned to 0 and 1 beat respectively
(Porta et al 2002).Markers of CK2 were computed by sampling CK2 in correspondence of its peak in the LF and
HFbands (Porta et al 2002). Themarkers of CK2 were labelled ( )CK LFSAP HP

2 and ( )CK HFSAP HP
2 from SAP to

HP and ( )CK LFHP SAP
2 and ( )CK HFHP SAP

2 fromHP to SAP. Indexes of GSC were calculated by integrating
GSC over LF andHFbands (Geweke 1982, Pernice et al 2022). Themarkers of GSC were labelled

( )GSC LFSAP HP and ( )GSC HFSAP HP from SAP toHP and ( )GSC LFHP SAP and ( )GSC HFHP SAP fromHP
to SAP.

3.5. Assessing the significance of frequency domain spectral causality indexes
Surrogate data test was applied to reject the null hypothesis of uncoupling betweenHP and SAP that results from
anunsignificant causal link between the two series. One hundred surrogate series couples were generated from
each originalHP and SAPpair in any experimental condition. The surrogate series preserved the amplitude
distribution and power spectral density of the original series, while phaseswere substitutedwith uniformly
distributed randomnumbers ranging from0 to 2π.We exploited an iteratively refined procedure to generate
surrogate pairs (Schreiber and Schmitz 1996). The proceduremaintained exactly the original amplitude
distribution of the series, while the power spectrumwas the best approximation of the initial power spectrum
given 100 iterates. The uncoupling between theHP and SAP surrogates was assured using two independent
randomphase sequences (Palus 1997). The length of the series (i.e. 256) allowed us to speed up the construction
of surrogates via fast Fourier transform. CK2 and GSC markers were computed over the 100 surrogate pairs by
imposing themodel order optimized over the original pairs. The 95th percentile of their distributionwas
computed. The null hypothesis of uncouplingwas rejected if themarker computed over the original series was
above the 95th percentile of the distribution of the frequency domain causality indexes derived from surrogates.
The percentage of subjects featuring a rejection of the null hypothesis of uncouplingwasmonitored in each
frequency band.

3.6. Statistical analysis
Normality was tested via the Shapiro–Wilk test. The influence ofHDTover time and frequency domain
parameters was checked via paired t test, orWilcoxon signed rank test when appropriate. Two-way repeated
measures analysis of variance (one factor repetition,Holm–Sidak test formultiple comparisons)was applied to
model-based spectral causalitymarkers to assess the effect ofHDTwithin the samemodel class (i.e. BARor BDA
models) and the difference betweenmodel classes within the same experimental condition (i.e. RESTorHDT).
Data are expressed asmean± standard deviation. The impact of themodel structure andHDTwas assessed via
χ2 test (McNemar’s test) applied to the proportion of subjects featuring the rejection of the null hypothesis of
uncoupling. The level of significance of the test was lowered according to the number of comparisons (i.e. 4) to
account for themultiple comparison issue. The same test was applied to check the impact ofHDT regardless of
themodel structure after pooling together results obtained from the application of BAR andBDA. In this specific
case the level of significancewas not lowered because there is only one comparison. Statistical analysis was
performedwith a commercial statistical software (Sigmaplot v.14.0, Systat Software, San Jose, CA,USA). The
level of statistical significance of all the tests was set to 0.05.

4. Results

Time domainmarkers were not affected byHDTwith m ,HP s ,HP
2 mSAP and sSAP

2 equal to 934± 103 ms, 1096±
756ms2, 127± 21 mmHg and 23± 11mmHg2 at REST and to 951± 114 ms, 1012± 574ms2, 131± 22 mmHg
and 20± 15mmHg2 duringHDT.DuringHDT frequency domain analysis indicated thatHFHP increased (i.e.
154± 135ms2 versus 219± 148ms2), while LFSAP decreased (i.e. 8± 8mmHg2 versus 4± 3mmHg2).

The grouped vertical bar graphs offigure 1 show the percentage of rejections of the null hypothesis of
uncoupling fromSAP toHP (figures 1(a), (c)) and fromHP to SAP (figures 1(b), (d)) derived from the surrogate
data test applied to CK2 markers in the LF (figures 1(a), (b)) andHF (figures 1(c), (d)) bands. The percentages are
computed according to the description of theHP-SAPdynamic interactions given by BAR (black bars) andBDA
(white bars)models and reported as a function of the experimental condition (i.e. REST andHDT). Regardless
of the frequency band (i.e. LF orHF) and direction of the interactions (i.e. from SAP toHPor vice versa) the
percentage of rejections of the null hypothesis of uncoupling did not varywith themodel structure and
experimental condition.

The simple vertical bar graphs offigure 2 show the percentage of rejections of the null hypothesis of
uncoupling fromSAP toHP (figures 2(a), (c)) and fromHP to SAP (figures 2(b), (d)) derived from the surrogate
data test applied to CK2 markers in the LF (figures 2(a), (b)) andHF (figures 2(c), (d)) bands. Percentages are
computed after pooling together the results of surrogate data test regardless of themodel structure (i.e. BARor
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BDA) and shown as a function of the experimental condition (i.e. REST andHDT). The percentage of
rejections of the null hypothesis of uncoupling significantly decreased during HDT in direction from SAP to
HP in the LF band (figure 2(a)), thus indicating a decreased strength of the dependence of HP on SAP in the
LF band. Conversely, HDT did not affect the percentage of rejections of the null hypothesis of uncoupling in
the HF band (figure 2(c)) and in time direction fromHP to SAP regardless of the frequency band
(figures 2(b), (d)).

Figure 3 has the same structure as figure 1, but it shows the percentage of rejections of the null hypothesis of
uncoupling derived from the surrogate data test applied to GSC markers. As in figure 1 the percentage of
rejections of the null hypothesis of uncoupling remained constant with themodel structure and experimental
condition and this result held regardless of the frequency band and direction of the interactions.

Figure 4 has the same structure as figure 2, but it shows the percentage of rejections of the null hypothesis of
uncoupling as derived from the surrogate data test applied to GSC markers. The percentage of rejections of the
null hypothesis of uncoupling did not varywithHDT and this result held regardless of the frequency band and
direction of the interactions.

Markers of the strength of the causal link in LF andHFbands are reported in table 1. The indexes were
computed in the direction fromSAP toHP and vice versa at REST and duringHDT according to the BAR and
BDAmodels. Datawere averaged over all the subjects regardless of the outcome of the surrogate test. The effect
ofHDTwas significant solely over ( )CK LF :SAP HP

2 indeed, regardless of themodel structure ( )CK LFSAP HP
2

decreased duringHDT.GSCmarkers were not affected either by the experimental challenge ormodel structure.
Figure 5 shows the scatter plots in the plane ( )GSC, CK .2 Each open circle corresponds to a pair ( )GSC, CK2

in an assigned individual. Data are pooled together regardless of the experimental condition (i.e. REST orHDT)
and type ofmodel (i.e. BARor BDA). The scatter plots are relevant tomarkers fromSAP toHP (figures 5(a), (c))

Figure 1.The grouped vertical bar graphs show the percentage of rejections of the null hypothesis of uncoupling from SAP toHP (a),
(c) and fromHP to SAP (b), (d) computed in the LF (a), (b) andHF (c), (d) bands. The percentages are calculated using CK .2 Results
are derived according to the description of theHP-SAP dynamic interactions given byBAR (black bars) andBDA (white bars)models
as a function of the experimental condition (i.e. REST andHDT).
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and fromHP to SAP (figures 5(b), (d)) computed in the LF (figures 5(a), (b)) andHF (figures 5(c), (d)) bands. The
scatter plots highlight the association between GSC and CK2 indexes resulting from the deterministic
relationship between GSC and CK2 function suggested by section 2.5. The variability of the circles in the scatter
plots is the sole consequence on how the finalmarker was computed from the originalmetric.

5.Discussion

Themajorfindings of the study can be summarized as follows: (i) bivariatemodel-based CK2 and GSC metrics
were deterministically related but spectral causalitymarkers exhibited different discriminative ability (i.e.
statistical power); (ii)HDT reduced the involvement of the baroreflex in regulatingHP-SAP variability
interactions in the LF band, while leaving unmodified the action ofmechanical feedforwardmechanisms in both
LF andHFbands; (iii) this conclusion did not depend on themodel structure.

5.1. Impact of themodel class and relationship between CK2 and GSC markers
Themost originalmethodological part of the study is the comparison between linear bivariate parametricmodel
classes utilized to assess spectral causalitymarkers, namely BAR andBDA (Baselli et al 1997, Porta et al 2006).
The BAR class is themostwidely utilized class of linear bivariate parametricmodels not only to compute
causalitymarkers in the frequency domain (Akaike 1968, Baccala et al 1998, Baccala and Sameshima 2001,
Kaminski et al 2001, Porta et al 2002, Nollo et al 2005, Chen et al 2006, Chicharro 2011, Faes et al 2013a, Barnett
and Seth 2014, Porta and Faes 2016, Pernice et al 2022) but also to calculate causality indexes in time and

Figure 2.The simple vertical bar graphs show the percentage of rejections of the null hypothesis of uncoupling fromSAP toHP (a), (c)
and fromHP to SAP (b), (d) computed in the LF (a), (b) andHF (c), (d) bands. The percentages are calculated using CK2 after pooling
together the results of the surrogate test regardless of themodel structure (i.e. BARor BDA). Results are shown as a function of the
experimental condition (i.e. REST andHDT). The symbol * indicates a significant between-condition changewith p< 0.05.
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information domains (Barnett et al 2009, Eichler 2013, Porta et al 2013b, Porta et al 2015b, Corbier et al 2020,
Shankhwar et al 2022). Conversely, the BDA class is less frequently exploited (Baselli et al 1997, Porta et al 2006)
as a likely consequence of itsmore involved identification procedure requiring generalized least squares
approach. This identificationmethod is based on the solution of two ordinary least squares problems in
sequence and iteratively. The original data are filtered using the coefficients of the ARnoise under an initial guess
and the coefficients of the BARnetwork are estimated from the filtered series. The parameters of the BAR
network are utilized to generate the residuals that are fittedwith anARmodel. The coefficients of the ARnoise
are updated tofilter the original data at the next iteration. The procedure continues until the prediction error
variance ceases to decrease with the iteration number. The BDAmodel was found useful to describeHP and SAP
oscillations that are not generated by the interaction between the variability series, but they are the effect of the
activity of external oscillators impinging the BARnetwork (Baselli et al 1994, Baselli et al 1997, Porta et al 2006).
Since the results obtained fromBAR andBDAmodels are similar, we conclude that baroreflex andmechanical
feedforward pathway can explainHP and SAP variability both at REST and duringHDTwithout the need to
describe external, colored, inputs. This conclusionmight not hold under pharmacological challenge or in
pathological subjects (Porta et al 2000).

In addition, the present study provides the explicit expression of CK2 and GSC and their relationship as well
as the comparison of indexes derived from CK2 and GSC.The deterministic relationship between CK2 and

GSC, highlighted in section 2.5, does not hold in general betweenmarkers derived from thesemetrics.
Therefore, we attribute the different statistical power between causalitymarkers, with CK2 markers slightly
more powerful in detecting the effect ofHDTvia a surrogate data test, solely to the procedure utilized tofinally
compute spectral causality indexes from the frequency domainmetric.

Figure 3.The grouped vertical bar graphs show the percentage of rejections of the null hypothesis of uncoupling from SAP toHP (a),
(c) and fromHP to SAP (b), (d) computed in the LF (a), (b) andHF (c), (d) bands. The percentages are calculated using GSC.Results
are derived according to the description of theHP-SAP dynamic interactions given byBAR (black bars) andBDA (white bars)models
as a function of the experimental condition (i.e. REST andHDT).
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5.2. Baroreceptor loading reduces the probability of rejecting the null hypothesis ofHP-SAPuncoupling
along baroreflex
Baroreceptor loading is known to increase vagal modulation, inhibit sympathetic control and increase
baroreflex sensitivity (Nagaya et al 1995,Weise et al 1995, Kardos et al 1997, Tanaka et al 1999,

Figure 4.The simple vertical bar graphs show the percentage of rejections of the null hypothesis of uncoupling fromSAP toHP (a), (c)
and fromHP to SAP (b), (d) computed in the LF (a), (b) andHF (c), (d) bands. The percentages are calculated using GSC after pooling
together the results of the surrogate test regardless of themodel structure (i.e. BARor BDA). Results are shown as a function of the
experimental condition (i.e. REST andHDT).

Table 1. Spectral causalitymarkers from SAP toHP and vice versa in LF andHF bands assessed via BAR andBDAmodels.

Spectral causalitymarker
BAR BDA

REST HDT REST HDT

( )CK LFSAP HP
2 0.39± 0.15 0.29± 0.18* 0.44± 0.16 0.30± 0.16*

( )CK LFHP SAP
2 0.46± 0.18 0.53± 0.22 0.48± 0.15 0.57± 0.20

( )CK HFSAP HP
2 0.50± 0.18 0.36± 0.20 0.51± 0.17 0.40± 0.20

( )CK HFHP SAP
2 0.30± 0.15 0.31± 0.11 0.31± 0.18 0.36± 0.16

( )GSC LFSAP HP 0.063± 0.042 0.046± 0.043 0.067± 0.055 0.044± 0.034

( )GSC LFHP SAP 0.086± 0.047 0.115± 0.073 0.084± 0.054 0.116± 0.069

( )GSC HFSAP HP 0.140± 0.079 0.119± 0.115 0.135± 0.073 0.123± 0.123

( )GSC HFHP SAP 0.068± 0.040 0.076± 0.038 0.067± 0.044 0.082± 0.041

CK2= causal squared coherence; GSC=Geweke spectral causality; HP= heart period; SAP= systolic arterial pressure; LF= low frequency;

HF= high frequency; BAR= bivariate autoregressivemodel; BDA= bivariate dynamic adjustmentmodel; REST= at rest in supine

position;HDT=head-down tilt at−25°. The symbol * indicates a significant difference versus RESTwith p< 0.05within the samemodel

class (i.e. BARor BDA).
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Cooke et al 2003, Porta et al 2015a). Themajor experimental finding of this study is the reduction of the
likelihood of rejecting the null hypothesis of HP-SAP uncoupling along the baroreflex duringHDT. This
result is the consequence of the decrease of the strength of the dependence of HP on SAP (table 1), that
makesmore difficult to reject the null hypothesis of HP-SAP uncoupling. Remarkably, this result was found
in the LF band, namely along time scales typical of the baroreflex control including the resonance frequency
of the AP control (De Boer et al 1985, Baselli et al 1994, Cevese et al 2001, Karemaker andWesseling 2008).
The decrease of the strength of baroreflex control is the likely consequence of the decline of the amplitude of
SAP oscillations in the LF band (Weise et al 1995, Cooke et al 2003, Porta et al 2015a). The decreased
strength of the causal relationship from SAP toHP in the LF bandmight account for the increased
complexity of the HP variability detected in Porta et al (2015a). Indeed, SAP variability exhibits a lower
complexity compared toHP variability (Porta et al 2012b) and a less strong dependence of HP on SAPmight
lead to increase the HP complexity because HP changes are less importantly driven by regular SAP
oscillations andmore sensitive to respiratory activity governingHP regardless of SAP (Eckberg 2003).
The decrease strength of the causal relationship from SAP toHPwas evident using both BAR and BDA
models but it becamemore robust when data were pooled together regardless of themodel structure,
thus improving the statistical power of the analysis. This conclusion held regardless of themetric
utilized to assess the strength of the causal link but CK2 was slightlymore powerful in separating REST
andHDT. Conversely, the reduction of the involvement of baroreflex control was not detected in the HF
band, thus suggesting that fast oscillations of HP during HDT are less importantly mediated by baroreflex
andmore related to the activity of respiratory centers able tomodulate sinus node responsiveness
regardless of baroreflex (Eckberg 2003). Thus, the observed increase of respiratory sinus arrhythmia
observed duringHDT (Kardos et al 1997, Porta et al 2015a) could not be completely attributed to
baroreflex.

Figure 5.The scatter plots in the plane ( )GSC, CK2 show the association between GSC and CK .2 Each open circle corresponds to a
pair ( )GSC, CK2 in an assigned individual. Data are pooled together regardless of the experimental condition (i.e. REST orHDT) and
type ofmodel (i.e. BAR andBDA). The scatter plots are relevant tomarkers fromSAP toHP (a), (c) and fromHP to SAP (b), (d)
computed in the LF (a), (b) andHF (c), (d) bands.
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5.3. Baroreceptor loading left unvaried the strength of the link along themechanical feedforward pathway
At difference from the strength of the dependence ofHP on SAP, the one along the reverse causal direction (i.e.
fromHP to SAP)was not affected by baroreceptor loading. This conclusion is corroborated by table 1 aswell.
This result is particularly robust because it did not depend on themodel structure,metrics exploited to assess
spectral causality and time scales. The link fromHP to SAP is the result of two opposite tendencies on SAP at the
next cardiac beat resulting from the diastolic runoff (Baselli et al 1994): (1) a positive effect of the Starling law that
tends to increase SAP; (2) a negative influence of theWindkessel effect that tends to decrease SAP.Usually, the
strength of the link fromHP to SAP is significant in healthy conditions (Porta et al 2011, Porta et al 2013b) and it
was found to decrease in situations of bradycardia, limitedHP variability, profound vasodilation, and depressed
ventricular contractility such as during general anesthesia with propofol (Porta et al 2013a). Therefore, it is not
surprising tofind out that theHDTdid not alter the strength of the dependence of SAP onHP.

5.4. Baroreceptor loading and its impact on the analysis of cardiovascular controlmechanisms
Baroreceptor unloading obtained by reducing the venous return to the heart via head-up tilt induces a vagal
withdrawal, sympathetic activation, and reduced baroreflex sensitivity (Montano et al 1994, Cooke et al 1999,
Furlan et al 2000,Marchi et al 2016,DeMaria et al 2019). The increased involvement of the baroreflex control
took the formof an increased strength of the causal link fromSAP toHP in the LF band, while no changes were
observed in theHF band (Nollo et al 2005). Conversely, the present study suggests that the baroreceptor loading
induced byHDTproduce the opposite effect by decreasing the strength of the causal relationship fromSAP to
HP. Therefore, we conclude thatHDT reduces the relevance of the baroreflex control.

Baroreflex is one of themost important regulatory reflexes in bipedalmammals and contributes importantly
to the LF oscillations observed inHP and SAP variability (Karemaker andWesseling 2008, Baselli et al 1994).
However, additional controlmechanisms contribute importantly to cardiovascular regulations in the LF band
(Cohen andTaylor 2002). Among these controlmechanisms there are sympathetic rhythm generators of central
origin driving slow dynamics of AP andHP (Preiss and Polosa 1974, Ang andMarina 2020) and
cardiopulmonary low-pressure reflexes activated by slowmodifications of intrathoracic pressure and
respiratory activity (Taha et al 1995,Hainsworth 2014). The activity of thesemechanisms is usually hidden by the
dominant action of baroreflex and its resonance properties (Karemaker andWesseling 2008, Baselli et al 1994),
thusmaking difficult their identification and quantification of their contribution to the overall cardiovascular
control. The possibility of depowering the role of baroreflex viaHDTmight favor the study of these
mechanisms, the understanding of their role, the evaluation of their relevance and the identification of strategies
to potentiate them. This possibilitymight be particularly of interest to elucidate physiological control
mechanisms activated by slow periodical breathing. Given the clinical relevance of LF oscillations in protecting
tissue in presence of reduced perfusion and in favoring clearance of interstitial fluid (Anderson and
Rickards 2022), the possibility of studying additionalmechanisms of LF generation in a condition of depowered
activity of one of themost importantmechanisms responsible for the genesis of the LF rhythm, namely
baroreflex, seems to be particularly relevant. To this purpose directional tools in the frequency domainmight
play a fundamental role.

5.5. Limitations of the study and future developments
The present study tested the physiological hypothesis that amaneuver loading the baroreceptors limits the
contribution of the baroreflex to theHP-SAP closed loop regulation in a gender-homogeneous population. The
rationale of enrolling a population comprising solelymales is to limit the variability of baroreflex control
markers that are known to depend on gender (Laitinen et al 2004,Milan-Mattos et al 2018) and this dependence
underlies thewell-knowndifferences in the response of females to orthostatic challenge (Waters et al 2002,
Grenon et al 2006 Barantke et al 2008, Catai et al 2014). As a likely consequence of the reduced variability of the
spectral causalitymarkers, wewere able to confirm the physiological hypothesis of the study in a small group of
subjects. However, conclusions hold only formales. Future studies should checkwhether suppositions could be
extended even to females andwhether conclusions could depend on hormone levels by considering groups
before and aftermenopause.

One possible experimental advancement is gradingHDT to verify whether incremental baroreceptor
loading could induce a progressive decrement of the baroreflex activation in the LF band and to optimize the
inclination of the tilt table to achieve themost relevant effect. Additionalmethodological improvements could
be to test spectral causality approaches grounded on differentmetrics (Baccala et al 1998, Baccala and
Sameshima 2001, Chicharro 2011, Faes et al 2013a) and to introduce possible confounding factors, such as
respiration, thatmight produce spurious effects on directionality because a quote ofHP variability is attributed
to the baroreflexwhether the confounding input is not included in the analysis (Porta et al 2012a).
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6. Conclusion

The study applied frequency domainmodel-based spectral causalitymarkers computed via CK2 andGSC in
connectionwith a surrogate data test to study cardiovascular control during baroreceptor loading induced by
HDTofmoderate intensity.We proved thatHDT reduces the involvement of baroreflex, and this conclusion
holds regardless of the approach andmodel structure. Findings suggest that the use ofHDT to limit the impact of
baroreflex and improve the likelihood of observing additional physiological controlmechanisms, such as central
commands directly acting on the sinus node ormodulating AP, that contribute to the complexity of
cardiovascular regulation in humans.
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