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Abstract

This thesis covers some algorithmic aspects of online machine learning and optimization. In Chapter 1 we
design algorithms with state-of-the-art regret guarantees for the problem dynamic pricing. In Chapter 2 we
move on to an asynchronous online learning setting in which only some of the agents in the network are
active at each time step. We show that when information is shared among neighbors, knowledge about the
graph structure might have a significantly different impact on learning rates depending on how agents are
activated. In Chapter 3 we investigate the online problem of multivariate non-concave maximization under
weak assumptions on the regularity of the objective function. In Chapter 4 we introduce a new performance
measure and design an efficient algorithm to learn optimal policies in repeated A/B testing.
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Introduction

Online learning is a sub-field of machine learning in which information becomes available sequentially [82].
After every new piece of data has been acquired, the learner is asked to make a prediction based on the
history observed so far. This is in contrast to batch learning techniques in which the entire training data set
can be accessed all at once [84].

The usefulness of online learning algorithms has been long established. Even with today’s technology,
the growing popularity of “big data” makes batch learning often unfeasible. Moreover, an online approach
is necessary to adapt to evolving patterns in the data. This happens whenever new data is generated over
time. For example: sensor data, financial data, user interaction data, and so on. In these cases, traditional
learning protocols where predictors are generated by feeding a fixed-size training set to a learning algorithm,
become inefficient. This happens because every time new training data are available one would have to run
the algorithm again from scratch.

The field of online convex optimization [42] is a prominent example of the online learning paradigm. Its
protocol proceeds in time steps. At each time step, the learner picks a decision, that is modelled by an
element of a convex subset of Rd, then suffers a loss determined by the decision. Losses are real functions
defined on the decision set that can vary over time steps, and are generally assumed to be bounded. After
the player suffers a loss, the loss function is revealed. An algorithm for online convex optimization that
runs for T time steps outputs a sequence of T decisions, with the goal of minimizing the regret. The regret
is defined as the difference between the cumulative loss of the decisions picked by the algorithm and the
cumulative loss of the best decision in hindsight. One of the main reasons why online convex optimization
has become one of the most important online learning framework is because of its broad set of applications,
such as online routing, ad selection from search engines, spam filtering, etc [42].

An important special case of online convex optimization is the problem of learning with expert advice.
In this setting, the decision set is the probability simplex over a finite set of elements typically referred to as
experts. By defining a loss for each expert, we can define the loss of all these distributions x as the expectation
of the loss of a random expert (drawn according to x). Losses of experts are usually assumed to be bounded
in [0, 1]. The reason why this setting is particularly important is that in many real-life applications, ranging
from weather forecast to stock-price prediction, the choice is indeed limited to a finite number of options,
and after following the advice of an expert it is possible to measure how good the advice of the other experts
really was (as in the examples mentioned above).

There are scenarios, however, where this type of feedback might not be available. Consider for example
the problem of placing an ad on a web page picked out a finite set of ads. After choosing one, it is possible
to determine how good the choice turned out to be but it is not possible to know how good a different ad
would have been, had it been chosen instead. This type of setting in which only the loss of the decisions that
are picked are revealed to the learner is called online learning with bandit feedback, and it covers an array
of settings that prediction with expert advice does not. Besides ad placement, a concrete example of this
scenario, and one of the main topics of this dissertation (Chapter 1, a joint work with Nicolò Cesa-Bianchi
and Vianney Perchet [25]), is the so-called dynamic pricing problem. In dynamic pricing (also called posted
price auctions) a buyer with an unlimited amount of identical goods interacts sequentially with a series of
buyers. During each interaction the seller offers to sell the good at a given price, that can (and should!) be
adapted dynamically over time. Each buyer has a privately held valuation of the item on sale, and buys it if
and only if the proposed price is lower than this valuation. The goal of the seller is to minimize the regret,



defined as the difference between the cumulative reward of the best fixed price in hindsight and the total
reward accrued by proposing a sequence of prices. We study the case of a segmented market, i.e., when the
population is partitioned into an unknown number of latent types characterized by their own private values,
and buyers arrive according to i.i.d. draws from an unknown fixed distribution over these types. Incidentally,
this setting also applies to repeated second-price auctions where there is only one relevant buyer. (Auctions
in general —and second-price auctions in particular— are receiving more and more attention due to their
application to real-time bidding, a process that regulates the vast majority of the online advertisement
business.)

A key quantity for dynamic pricing is the so called demand curve, that is the function mapping each price
to the probability of selling the good at that price. Typically, the demand is assumed to be at least continuous
[52]. In a segmented market, however, the function presents an unknown number of discontinuities and sharp
drops after each one of them. While these discontinuities prevent us from leveraging usual learning techniques,
the simple piecewise constant form of the demand curve could in principle be of help in the analysis of the
problem.

Note that on one hand the seller has to figure out the best price among a continuum of options, but on
the other hand it would be desirable to have bounds that scale with the unknown number of different private
values, which are the only potentially optimal prices. Notably, if those values were known in advance, the
problem would reduce to a standard multiarmed bandit problem. Not being so, these potentially optimal
arms have to be located during the learning process. This extra layer of uncertainty is one of the features
that distinguishes this problem from standard bandit settings.

An accurate implementation of a search procedure has to be made to address the issue. The most natural
type of search, a binary search, turns out to be suboptimal. To see why, assume for now that the seller only
has to locate a certain private value w having access to an oracle that returns the expected payoff of each
price. Naively, one might want to minimize the number of evaluations of the payoff function (or equivalently,
of the demand curve) to get ε-close to a maximizer of the function. This would be good enough to ensure an
ε-optimal price because the payoff function is 1-Lipschitz in the worst case. The issue with using a binary
search approach for this task is that it does not take into account the specific structure of the problem.
Specifically, offering a price that is slightly higher than w is significantly worse than offering a price that is
slightly lower. Keeping this in mind, we adapt a technique first appeared in [52] for the special case of one
single hidden type that we call cautious search. The intuition behind cautious searches is that for regret
minimization one should not simply focus on minimizing the number of rounds needed before approaching
w. It is more costly to take less time and sell less goods than to take longer while making numerous sales
along the way. We present an algorithm that combines this cautious search idea over specific subintervals of
price values with a UCB-like procedure that steers the exploration towards the most promising areas.

Another technique that we need is a way to discover all hidden types without knowing their number
beforehand. The idea is the following. At the beginning, the algorithm tries to locate the smallest private
value by determining if there is a significant difference in demands of successive posted prices. As soon as
one is spotted, the initial interval is split into two subintervals, trimming down suboptimal areas. After
that, the UCB-like algorithm overseeing the process determines the current most promising interval, ad the
process moves forward similarly. This way the algorithm finds all the (promising) valuations adaptively while
current best intervals are explored and refined.

The literature on discontinuous demand curves is significantly more limited than that of continuous ones.
There is however a recent result that could be applied to our setting and we can use as a benchmark [30].
It requires the knowledge of the smallest drop γ in the demand (i.e., the smallest probability of a type of
buyers) as well as the number of types K. It gives a regret bound of order at best (K12/γ8)

√
T , where T is

the time horizon. In contrast, our algorithm do not require the knowledge of K and enjoys a regret of order
at worst

(
1/∆ + (log log T )/γ2

)
(K log T ), where ∆ is the gap between the revenue of the optimal type and

that of the second-best. Notably, this can be reduced to (log T )(log log T )/∆ with no prior information on
γ in the special case of two hidden types. We also present an algorithm attaining a regret bound of order√
KT independently of the distribution over types and we show that for distribution-free bounds, this rate is

unimprovable. We conclude the chapter by giving some preliminary results and ideas on the non-stochastic
case.



Some of the technical issues that arose from the study of this dynamic pricing setting are due to the
problem being inherently non-convex. This prevents the use of usual search procedures to locate the optimal
prices. It is worth noting that a recent work studied the connections between some dynamic pricing settings
and online convex optimization [65]. Designing such reductions allows to focus on the study of specific
aspects of the already existing online convex optimization arsenal that might be relevant to other problems.
For example: in a world where distributed systems are ubiquitous, is worth investigating how these online
convex optimization techniques behave in a cooperative framework. For these reasons, in Chapter 2 we
consider the problem of cooperative online convex optimization, also known as cooperative online learning
with full information feedback. (This is a joint work with Nicolò Cesa-Bianchi and Claire Monteleoni [27].)
In this setting, a network of agents is trying to minimize a common long-term objective. At each time step,
a subset of agents is activated and asked to make predictions. Then, the system is charged with the average
loss of the predictions of the active agents and the loss function is revealed to them and their neighbors. The
goal is to minimize the network regret, defined as the difference between the cumulative regret accrued by
the system and the total loss of the best fixed action in hindsight.

This setting is motivated by mobile systems cooperating towards a common goal, in which battery life or
short-range communication constrain the free flow of information. Concretely, this kind of techniques have
been applied to distributed environmental monitoring, where they empirically showed improved performances
compared to non-cooperation versions [62, 63]. However, a theoretical analysis of the phenomenon was
missing.

We investigate if and to what extent knowledge about the network topology helps in speeding up learning
when information is shared. If agents activations are stochastic, we show that communication helps greatly
and no information on the graph structure is needed to perform optimally. In fact, if all agents run the
same vanilla version of Online Mirror Descent, with the same initialization, and updating their local model
whenever they get a chance to do so, the system regret is of order

√
αT , where α is the independence number

of the communication network. We then prove a lower bound showing that this rate cannot be improved
upon, even if agents have complete information about the graph. This is in general significantly better
than

√
NT , where N is the number of agents, which is the regret rate that the system would achieve if

agents behaved independently, only making updates when they were activated. If activations are chosen
adversarially, the situation changes completely. We show that for some graphs there is an oblivious choice of
losses and activations for which any algorithm that ignores the graph structure incurs a linear regret, making
learning impossible. This striking difference depends on the fact that when activations are non-stochastic
the adversary has the power to amplify the spread of bad information and reduce that of good feedback.
In this case agents are better off learning by themselves. However, we show that this lower bound can be
broken if agents do have information about the graph structure at least at their initialization. If the network
is partitioned into cliques and agents ignore all feedback coming from outside of their clique, the regrets
scales with

√
χT , where χ is the clique-covering number of the communication network.

These results focus on the communication part of learning. At their core rest single-agent online convex
optimization algorithms with losses that vary over time. A special case of such single-agent settings is when
losses are independent of time. In other words, when there is one single loss function ` and the goal is to
find an approximate minimizer of ` as quickly as possible. The same problem is sometimes (equivalently)
formulated for maximization of concave reward functions. As we mentioned above, a vast literature is devoted
to these types of problems due to their numerous applications. However, there are many other reasons for
investigating its non-covex/concave conterpart. They are not simply important as a theoretical tool but they
find a vast number of applications on signal processing, bio-informatics, and machine learning (deep learning
in particular), just to name a few [47]. For these reasons, in Chapter 3 we drop all convexity/concavity
assumptions and move on to studying how to determine approximate optimizers of multivariate functions.
(This is a joint work with Clément Bouttier and Sébastien Gerchinovitz.1) We will keep the focus on the
online setting, where the values of the objective function can be only be accessed sequentially, one at a time.
Several issues appear as an immediate consequence of dropping the concavity assumption:

1An earlier version of this work appeared in [13]. The setting has now been extended to functions defined on general bounded
d-dimensional domains, and the deterministic analysis now holds for adversarial perturbations. The regret bounds stated in
the main theorems are tighter, and proofs have been revisited and significantly simplified.



1. existence of maxima is no longer guaranteed (not even locally);

2. even when a global maximum exists, it is not guaranteed to be unique;

3. even when a unique global maximum exists, algorithms can get stuck on local maxima and never
converge to the global optimum;

4. even if they do, the speed of convergence might be significantly slower and harder to quantify;

5. even when they converge quickly to a global optimum, computational costs might severely increase.

All these problems are of great importance both from a mathematical and from a practical point of view.
In this dissertation we will mainly focus on items 3 and 4, i.e., on the design and analysis of algorithms that
converge quickly to global maximizers.

In order to compensate for the lack of regularity that comes with the loss of concavity, the objective is
usually assumed to be globally continuous in some strong sense, typically Lipschitz, and defined on a compact
set. We will not make any of these assumptions. We only assume that the domain of the objective is bounded
and the function satisfies a weak regularity assumption centered at a maximizer that we call lipschitzness
around a maximizer. Formally, a function f : D ⊂ Rd → R is L0-Lipschitz around x? with respect to a
norm ‖ · ‖ if for all x ∈ D,

∣∣f(x) − f(x?)
∣∣ ≤ L0‖x − x?‖. To give some perspective, recall that a Lipshitz

function is globally continuous and differentiable almost everywhere on its interior by Rademacher’s theorem.
In contrast, a function that is Lipschitz around a maximizer can not only be nowhere differentiable on its
domain, but even discontinuous everywhere but at that maximizer (see Assumption 3.1 and subsequent
discussion). To make matters worse, we will assume that the values of the objective cannot be accessed
exactly but are subject to perturbations, either deterministic or stochastic.

We extend an old algorithm from the seventies [73, 86], that we call Piyavskii–Shubert algorithm to our
non-compact, weakly regular, multidimensional setting with perturbations. We measure the performance of
all our algorithms with the simple regret, defined as the difference between the maximum of the objective
and the value of the objective at the point returned by the algorithm. When perturbations are deterministic,
we first analyze a version of the Piyavskii–Shubert algorithm that has a finite budget of evaluations of the
objective function. As soon as this budget is exhausted, it has to halt returning a point. This will serve
as a base result to build the rest of the theory. We then move on to algorithms that stop automatically
guaranteeing an approximate optimal point after stopping, when perturbations are either deterministic or
stochastic. In all cases we bound the number of samples needed to reach any precision ε. These bounds are
expressed in terms of the “size” of a decomposition of the domain in sets of suboptimal points. This agrees
with the intuition that the bigger the size of these sets (i.e., the more suboptimal points there are), the
harder the optimization problem is. As it turns out, the right notion of size is the so-called packing number
(3.3). To give our results even more concreteness, we then bound these packing numbers in terms of the
so called near-optimality dimension (3.6), a commonly accepted parameter to measure the hardness of an
optimization problem. We prove that when the near-optimality dimension is zero, our algorithms converge
to a maximizer exponentially fast in the number of evaluations. Otherwise, they converge as an inverse
power of the near-optimality dimension, confirming and quantifying that the smallest the near-optimality
dimension, the easiest the optimization problem is (see, e.g., Corollary 3.2).

This non-concave optimization problem can be seen as a bandit setting with a multidimensional contin-
uum of arms whose rewards are given by the objective function. Bandits with infinite arms and variants
thereof appear in several fields [22, 89, 90]. As we mentioned above, pricing problems can be seen as instances
of such problems. (The the action space is the set of prices and the feedback is given by the earnings of each
transaction). An example coming from statistics, and the topic of Chapter 4, is the problem of repeated
A/B testing, which in its original formulation dates back to the fifties [91]. (This is a joint work with Nicolò
Cesa-Bianchi, Vianney Perchet, and Yishay Mansour [26].) A new wave of interest has gone to this problem
in recent years due to the rise of online advertising companies. As a concrete example, consider one of such
companies that profits by selling ads online according to some specific technology. Periodically, the research
team of the company will come up with new solutions with the goal of increasing the profit. If meaningful
metrics (time spent on a page, click-through rate, conversion of curiosity to sales) are available, randomized



tests can be carried out to evaluate if the new technology is better than the current one. It is subtle what
companies are looking to maximize in this scenario.

A longstanding and rich literature addresses the optimization of the so called false discovery rate (FDR)
[75, 96]. Roughly speaking, it is the ratio of accepted technologies that are actually bad over the total
number of implemented technologies. Then, an FDR minimization approach translates into accepting new
technologies only when fairly confident that this would result an improvement. At a first glance this might
seem like a sound goal, and fore some applications (e.g., testing medical treatments) this is indeed the case.
However, for a company interested in maximizing profit it might not be. Consider this example. A first
technology is proposed. It is slightly worse than the current one but the difference is negligible. Because
of that, in order to detect that this is the case a large amount of time and resources have to be invested in
testing. This has a negative effect for two reasons. First, testing might have a cost and spending a long time
testing a technology that in the end is not even implemented is not what companies are looking for. Second,
even if testing was free, spending a long time testing such a technology would result in a smaller profit due
to missed opportunities. Assume, for example, that the second proposed technology is greatly superior to
the current (and the first) one. A strategy that makes the first decision quickly and then moves on is also
going to implement the second one quickly, because of the large difference in payoffs. Overall, even assuming
that the company mistakenly implemented the fist technology, it is going to have a large increment in profit
because of the implementation of the second one and the negligible negative effect of the first one. The first
strategy, on the other hand, will stay stationary. This suggests that the right goal is making as many good
decisions as possible in the shortest amount of time.

We formalize this idea by defining a notion of reward per sample, where the reward is the added value of
accepted technologies. We discuss in depth this choice of performance measure and compare it with other
natural alternatives. Two of the biggest technical issues with our choice is that our regret is not additive
and running a policy does not return an unbiased estimates of its performance, where a policy is simply
defined as a (possibly random) number of requested samples and a decision to accept or reject the tested
technology. This prevents the use of standard bandit algorithms without major tweaking. Nevertheless, we
design an algorithm with vanishing regret2 even when applied to a countably infinite family of policies. Two
key ideas are used in the analysis. The structure of the setting can be leveraged at an initial stage in order
to reduce the size of the decision space. Then, a carefully limited use of oversampling can be employed in
order to get a sufficient amount of unbiased estimates of the relevant policies. At a high level, we find the
best finite number of actions hidden in an infinite pool of actions, then refine. A similar intuition will drive
our dynamic pricing algorithms, whose introduction marks the beginning of the first chapter of this thesis.

2Being our regret normalized by the number of samples used, a vanishing regret corresponds to a sublinear regret in the
bandit literature.





Chapter 1

Dynamic Pricing

Motivated by posted price auctions where buyers are grouped in an unknown number of latent types char-
acterized by their private values for the good on sale, in this chapter we investigate revenue maximization
in stochastic dynamic pricing when the distribution of buyers’ private values is supported on an unknown
set of points in [0, 1] of unknown cardinality K. This setting can be viewed as an instance of a stochastic
K-armed bandit problem where the location of the arms (i.e., the K unknown valuations) must be learned
as well.

1. In the distribution-free case, we show that our setting is just as hard as K-armed stochastic bandits:
we prove that no algorithm can achieve a regret significantly better than

√
KT , (where T is the time

horizon) and present an efficient algorithm matching this lower bound up to logarithmic factors.

2. In the distribution-dependent case, we show that for all K > 2 our setting is strictly harder than K-
armed stochastic bandits by proving that it is impossible to obtain regret bounds that grow logarithmi-
cally in time or slower. On the other hand, when a lower bound γ > 0 on the smallest drop in the de-
mand curve is known, we prove an upper bound on the regret of order

(
1/∆+(log log T )/γ2

)(
K log T

)
,

where ∆ is the gap between the revenue of the optimal valuation and that of the second-best valuation.
This is a significant improvement on previously known regret bounds for discontinuous demand curves,
that are at best of order

(
K12/γ8

)√
T .

3. When K = 2 in the distribution-dependent case, the hardness of our setting reduces to that of a
stochastic 2-armed bandit: we prove that an upper bound of order (log T )/∆ (up to log log factors) on
the regret can be achieved with no information on the demand curve.

4. Finally, we show a O(
√
T ) upper bound on the regret for the setting in which the buyers’ decisions are

nonstochastic, and the regret is measured with respect to the best between two fixed valuations one of
which is known to the seller.

1.1 Introduction

In the online posted price auction problem, also known as dynamic pricing, an unlimited supply of identical
goods is sold to a sequence of buyers. To each buyer in the sequence, the seller makes a take-it-or-leave-it
offer for the good at a certain price (which we assume to belong to the unit interval [0, 1]). The good is
purchased if and only if the offered price is lower or equal to the buyer’s private valuation (also assumed
to be in [0, 1]). At the end of the transaction, the seller’s revenue is either zero (if the good is not sold)
or equal to the offered price. The buyer’s valuation is never observed. Indeed, the seller only learns a
single bit for each auction, i.e., whether the good was sold or not at the chosen price. Similarly to previous
works [52, 11, 10], we assume that the price offered to the t-th buyer in the sequence only depends on the
past history of observed sales. In particular, we assume that buyers are indistinguishable, and provide no



information to the seller other than their willingness to buy at the specified price. For this reason, the seller
can post the price for the next buyer publicly, before the buyer shows up.

We evaluate the seller’s performance in terms of regret, measuring the difference between the seller’s
revenue and the revenue achievable by consistently posting the optimal price. The regret in dynamic pricing
was initially investigated by Kleinberg and Leighton [52] under various assumptions on the generation of the
buyers’ valuations. In the stochastic setting, in which valuations are drawn i.i.d. from a fixed and unknown
distribution on [0, 1], they show that no algorithm can achieve a o(

√
T ) regret and provide an algorithm

achieving regret of order C
√
T log T , where T is the number of buyers in the sequence and C only depends

on the distribution of buyers’ valuations. Their upper-bound holds under some assumptions on the demand
curve, which is the function D mapping each price x to the probability D(x) = P(V ≥ x) that the good is
sold. Specifically, the revenue function x 7→ xD(x) is required to have a unique global maximum x? ∈ (0, 1)
and be twice differentiable with a negative second derivative at x?. Without these assumptions, the authors
prove a much higher lower bound of order T 2/3 on the regret. The algorithm achieving the C

√
T log T

regret under the above assumptions on the demand curve is simple: it runs the UCB1 policy for stochastic
bandits [4] on a discretized set of K = (T/ log T )1/4 prices.

In this chapter, we study the stochastic setting of dynamic pricing under completely different assumptions
on the demand curve. Namely, that the distribution of buyers’ valuations is supported on an unknown set of
unknown finite cardinality K. This models any setting in which buyers are grouped in an unknown number
of latent types, characterized by their private values for the good on sale. In particular, this applies to
regret minimization in sellers’ repeated second-price auctions with a single relevant buyer. This scenario
emerges naturally when a seller and a buyer interact repeatedly, and the valuation of the good depends on
contextual information known only to the buyer. For instance, in online advertising each time a user lands on
a publisher’s website, an impression is put on sale to a set of relevant advertisers through an auction (note
that whenever there is a single relevant advertiser for the impression, second-price auctions with reserve
price are equivalent to posted price auctions). Now, typically, the advertiser’s valuation for the impression
depends on which segment the user belongs to, where the finite segmentation is based on private information
not accessible to the publisher.

Note that our model is very different from assuming that the seller is restricted to offer prices from a
known finite set of size K [78], which makes dynamic pricing a special case of K-armed stochastic bandits.
In our model, the seller does not know the K buyers’ valuations, not even their number! So, besides learning
which valuation has the highest revenue, the seller must also learn the location of these values. This interplay
between noisy search and bandit allocation is one of the main themes of our work.

In contrast with previous approaches, which typically assume parametric [16] or locally smooth [52]
demand curves, our model with finitely many valuations is equivalent to assuming that the demand curve
is piecewise constant with a finite number of discontinuities. Recently, den Boer and Keskin [29] designed
an algorithm for piecewise continuous demand curves achieving an upper bound of order C

√
T log T in the

piecewise constant case. However, up to constant factors, their hefty leading constant C is at least as big as
the maximum between K22γ−16c−2 and K12γ−8c−18, where c is the minimum distance between valuations
and both K and the smallest drop γ in the demand curve must be known in advance. Although their setting
extends ours to certain piecewise parametric demand curves, we believe that discontinuities are the real
source of additional hardness of this dynamic pricing model with respect to previously studied settings.

Our first result is a lower bound of order
√
KT on the regret in the distribution-free case (where the

regret is maximized over all possible demand curves), which holds even when the seller knows the number and
position of buyers’ private values in advance. This essentially establishes that our setting is at least as hard
as a K-armed bandit problem. Although we build on the stochastic lower bound of Kleinberg and Leighton
[52], our proof is not a simple adaptation of theirs. Indeed, we show that their proof breaks down when
K is constant and T grows, which is exactly the regime we are interested in. Then, we present an efficient
algorithm achieving a distribution-free upper bound on the regret of order

√
KT log T without any additional

knowledge of the parameters of the problem.1 The detailed version of our bound has a significantly better

1Throughout this chapter we assume that the time horizon T is known by the seller in advance. This assumption can be
easily removed with a “doubling trick” (see, e.g., [23]), a standard technique for extending regret bounds to time sequences of
unknown length.



dependence than den Boer and Keskin [29] on the smallest difference c between two adjacent valuations, and
matches—up to logarithmic factors—the lower bound stated above.

In the distribution-dependent case, when the gap ∆ between the revenue of the optimal valuation and
that of the second-best valuation is constant, we prove the impossibility of obtaining regret bounds of order
significantly better than

√
T even when K = 3, thus showing that this setting is strictly harder than K-armed

stochastic bandits. Motivated by this impossibility result, we investigate distribution-dependent bounds that
rely on additional information about the demand curve. By combining suitable generalizations of UCB1 [4]
and the “cautious search” strategy of Kleinberg and Leighton [52], we obtain an efficient algorithm achieving
a regret of order at most

(
1/∆ + (log log T )/γ2

)(
K log T

)
, where, as before, γ is the smallest drop in the

demand curve. Since (K/∆) log T is the regret of K-armed stochastic bandits, this shows that the price of
identifying each one of the K valuations is at most (log T )(log log T )/γ2, which corresponds (up to log log
factors) to the known upper bounds for noisy binary search [50]. We conclude the study of the distribution-
dependent case by presenting an efficient algorithm with regret of order (1/∆ + log log T ) log T when the
number of valuations is known to be at most two. Surprisingly, this bound is the same (up to log log terms)
as the best possible bound for two-armed stochastic bandits, achievable when not only the number, but also
the locations of the valuations are known in advance. In order to prove this result we introduce a novel
technique for estimating (up to a multiplicative constant) the expectation µ of any [0, 1]-valued random
variable with probability at least 1 − δ, using at most O

(
1
µ ln 1

δ

)
samples, even if the expectation µ is not

known in advance. We believe this technique may be valuable in its own right.

1.2 Further related works

The literature on dynamic pricing and online posted price auctions is vast. We address the reader to the
excellent survey published by den Boer [30], providing a comprehensive picture of the state of the art until
the end of 2014 —see also the tutorial slides by Slivkins and Zeevi [87] for a perspective more focused on
computer science approaches. An important line of work in dynamic pricing considers a nonstochastic setting
in which the sequence of the buyers’ private values is deterministic and unknown, and the seller competes
against the best fixed price. This model was pioneered by Kleinberg and Leighton [52], who proved a O(T 2/3)
upper bound (ignoring logarithmic factors) on the aforementioned notion of regret. Later works [11, 10] show
simultaneous multiplicative and additive bounds on the regret when prices have range [1, h]. These bounds
have the form εG?T + O

(
(h lnh)/ε2

)
ignoring ln lnh factors, where G?T is the total revenue of the optimal

price p?. Recent improvements on these results are due to Bubeck et al. [21], who prove that the additive
term can be made O(p?(lnh)/ε2), where the linear scaling is now with respect to the optimal price rather
than the maximum price h. Other variants consider settings in which the number of copies of the item to sell
is limited [1, 7, 8] or settings in which a returning buyer acts strategically in order to maximize his utility in
future rounds [3, 31]

Finally, although in this work we focus on the seller’s side, regret minimization approaches have been
recently applied also on the buyer’s side, for example in [61, 95].

1.3 Preliminaries and definitions

We assume all valuations Vt belong to a fixed and unknown finite set V = {v1, . . . , vK} ⊂ [0, 1], with
0 = v0 ≤ v1 < · · · < vK ≤ vK+1 = 1. Unless otherwise specified, the sequence V1, V2, . . . is assumed to
be sampled i.i.d. from a fixed and unknown distribution on {v1, . . . , vK}. Let pi = P(V1 = vi) and assume
(without loss of generality) that pi > 0 for all i ∈ {1, . . . ,K}. An instance of the posted price problem is
then fully specified by the pairs (v1, p1), . . . , (vK , pK). We assume auctions are implemented according to
the following online protocol: for each round t ∈ {1, 2, . . . }

1. the seller posts a price Xt ∈ [0, 1]

2. buyer’s valuation Vt, hidden from the seller, is drawn from V according to {p1, . . . , pK}



3. the seller observes I {Vt ≥ Xt} ∈ {0, 1} and computes the revenue rt(Xt) = Xt I {Vt ≥ Xt}

Note that the expected revenue E[rt(x)] = E
[
x I {Vt ≥ x}

]
is equal to xD(x), where

D(x) = P(V1 ≥ x) =
∑

k : vk≥x

pk (1.1)

is the demand curve. Hence the price maximizing the expected revenue E[rt(x)] belongs to the set of
valuations {v1, . . . , vK} and we denote one of the possible optimal valuations by v? = vi? . We define the
suboptimality gap of vj with respect to v? by ∆j = E

[
r1(v?)− r1(vj)

]
. The goal of the seller is to minimize

the regret

RT = max
x∈[0,1]

E

[
T∑
t=1

rt(x)−
T∑
t=1

rt(Xt)

]
= E

[
T∑
t=1

rt(v
?)− rt(Xt)

]
where the expectation is understood with respect to any randomness in the generation of V1, . . . , VT and
X1, . . . , XT . Formally, a deterministic seller is a sequence of functions X1, X2, . . . where each function
Xt = ft(X1, Z1, . . . , Xt−1, Zt−1) is the price posted at time t, the random variable Zs is the binary feedback

I {Vs ≥ Xs} received by the seller in at time s, and ft :
(
[0, 1] × {0, 1}

)t−1 → [0, 1] is an arbitrary function.
A randomized seller is a probability distribution over deterministic sellers.

1.4 Lower bounds

In this section we show some important similarities and differences between dynamic pricing with K valu-
ations and the K-armed bandit problem. First, we state that in the distribution-free case the former is at
least as difficult as the latter. More precisely, if T ≥ K3, no algorithm can have regret better than

√
KT on

dynamic pricing with K valuations. The proof of the following theorem is deferred to Section 1.8.1.

Theorem 1.1. For any number of valuations K ≥ 3 and all time horizons T ≥ K3 there exist K pairs
(v1, p1), . . . , (vK , pK) such that the expected regret of any pricing strategy satisfies RT = Ω

(√
KT

)
.

Next, we show that in the distribution-dependent case, dynamic pricing is strictly harder than multiarmed
bandits. More precisely, even if the suboptimality gap ∆ is constant and K is small, no dynamic pricing
algorithm can have regret better than

√
T , whereas the distribution-dependent regret of multiarmed bandits

is O(log T ).

Theorem 1.2. If for some constant c? > 0 a seller algorithm has regret smaller than c?
√
T on any instance

of the stochastic dynamic pricing problem with at most three valuations, then there exists an instance with
∆ = Θ(1) on which the algorithm suffers regret Ω(

√
T ).

Proof. We consider two instances. The first has ∆ = 1
4 and the second has ∆ = O(1/

√
T ). We prove that

if the algorithm has regret O(
√
T ) on both instances, then it must have regret Ω(

√
T ) on the first instance.

The two instances are defined as follows.

Instance 1

v
(1)
1 = 0 D(1)(0) = 1 r(1)(0) = 0

v
(1)
2 = 1

2 D(1)
(

1
2

)
= 1

2 r(1)
(

1
2

)
= 1

4

Instance 2

v
(2)
1 = 0 D(2)(0) = 1 r(2)(0) = 0

v
(2)
2 = 1−η

2 D(2)
(

1−η
2

)
= 1

2 + η r(2)
(

1−η
2

)
= 1+η−2η2

4

v
(2)
3 = 1

2 D(2)
(

1
2

)
= 1

2 r(2)
(

1
2

)
= 1

4

In Instance 1 the optimal price is v
(1)
2 = 1

2 with revenue 1
4 . In Instance 2 the optimal price is v

(2)
2 = 1−η

2

with revenue 1+η−2η2

4 ≥ 1
4 + η

8 for η ≤ 1
4 . Without loss of generality, we can assume that the seller algorithm

only posts prices in the set
{

0, 1−η
2 , 1

2

}
. Let Nη(t) be the number of times that the price 1−η

2 is posted

and let ν
(i)
t be the law of observed rewards up to time t in Instance i ∈ {1, 2}. Since prices 0 and 1

2 are



uninformative (because demand and revenue do no change across the two instances), it follows from standard

calculations that the KL divergence between ν
(1)
t and ν

(2)
t is upper bounded by the KL between two Bernoulli

of parameter 1
2 and 1

2 + η times the expected number of times v2 is chosen under Instance 1,

KL
(
ν

(1)
t ‖ ν

(2)
t

)
≤ KL

(
1

2

∥∥∥ 1

2
+ η

)
E1

[
Nη(t)

]
≤ 4η2 E1

[
Nη(t)

]
if η ≤ 1

4

where E1 denotes expectation under Instance 1. Let R
(i)
T be the regret under Instance i ∈ {1, 2}. Since

r(1)
(

1−η
2

)
= 1−η

2 D(1)
(

1−η
2

)
= 1−η

4 , we have R
(1)
T ≥ η

4E1

[
Nη(T )

]
. Using the assumption that the seller’s al-

gorithm has a regret smaller than c?
√
T , and adapting an argument of Bubeck et al. [20, Proof of Theorem 5],

we can write
η

4

T

4
exp

(
− 4η2E1

[
Nη(T )

])
≤ max

{
R

(1)
T , R

(2)
T

}
≤ c?
√
T .

Hence, for η = 32c?√
T

, it must hold that E1

[
Nη(t)

]
≥ ln 2

4η2 , which implies that R
(1)
T ≥

ln 2
512c?

√
T .

Theorem 1.2 can be extended to the case when K is known to the seller. This can be done by adding

an extra valuation v
(1)
3 > v

(1)
2 to Instance 1 which has either vanishing probability p3 or vanishing distance

v
(1)
3 − v(1)

2 from v
(1)
2 . (In the latter case the value of v

(1)
3 depends on the algorithms.) In both cases the

seller algorithm is unlikely to detect the presence of this extra valuation, and a slight modified proof of
Theorem 1.2 can be applied.

This lower bound shows that
√
T is best possible in the distribution-dependent case even when K is small

and ∆ is a constant. In Section 1.6 we show how regret bounds can be substantially better than
√
T when

the learner knows the value of the smallest drop in the demand curve.

1.5 Distribution-free bounds

In this section we focus on distribution-free bounds, i.e., bounds that do not depend on the demand curve.
The regret bound we prove exceeds the theoretical lower bound stated in Section 1.4 by a constant term
depending only on the distance between adjacent valuations.

Our Algorithm 1 works in two phases: a search phase and a bandit phase. In the search phase a binary
search for all “relevant” valuations is performed. By the end of this phase, a tight estimate of all such
valuations is determined with high probability. During the bandit phase a stochastic bandit algorithm is
run on the estimated valuations. As it turns out, this simple scheme is enough to ensure an optimal

√
KT

convergence up to an additive constant independent of the distribution of buyer’s valuations. Notably, the
algorithm does not need to know K in advance. We call macrostep a block of consecutive rounds in which
the same price is offered consistently. For each price x we denote by D(x) the fraction of accepted offers of x
during the last macrostep in which x was offered. At the beginning of the search phase, our algorithm receives
as input the time horizon T and a confidence parameter δ. The algorithm then proceeds in macrosteps of
length

⌈
8
√
T/km ln δ−1

⌉
, where km is the total number of valuations discovered so far. The goal of the search

phase is to approximately locate all relevant valuations, that is valuations vi whose associated probability
pi is at least 4

√
K/T .

Initially, all relevant valuations belong to [a1, b1] = [0, 1]. The search proceeds as long as there is at least
an interval i containing relevant valuations with length larger than T−1/2 (line 2). When such an interval
i is selected at line 3, a macrostep of binary search is performed and the midpoint price xm of [ai, bi] is
offered for

⌈
8
√
T/km ln δ−1

⌉
rounds (line 4), thus obtaining an estimate of its demand. If the difference in

demands (line 5) is smaller than (km/T )−1/4/2 no new relevant valuation is detected. Before eliminating
the lower half of the interval (line 7), a test designed to detect and remove fake arms is performed (line 6).
We call fake arm an interval containing no relevant valuations. Fake arms might be inadvertently allocated
when intervals are too wide. In that case, the comparison between two distant points may reveal a large
difference in demands due to the presence of several nonrelevant valuations in between. If that happens,
the fake arm is removed when the interval becomes small enough (line 8). When no significant difference is



Algorithm 1:

Input: T ∈ N, δ ∈ (0, 1).
Initialization: K1 ← {1}, k1 ← 1, a1 ← 0, b1 ← 1, a0 ← 0, D(0)← 0.

1 for m = 1, 2, . . . do // search phase

2 if {j ∈ Km | bj − aj > T−1/2} 6= ∅ then
3 pick im = min{j ∈ Km | bj − aj > T−1/2};
4 offer price xm = (aim + bim)/2 for

⌈
8
√
T/km ln δ−1

⌉
rounds;

5 if D(aim)−D(xm) < (km/T )1/4/2 then // undershooting

6 if D(xm)−D(bim) ≥ (km/T )1/4/2 then // check for fake arms

7 update aim ← xm, Km+1 ← Km and km+1 ← km;
8 else update Km+1 ← Km \ {im} and km+1 ← km;

9 else if D(aim)−D(xm) ≥ (km/T )1/4/2 then // overshooting

10 if sign(ai − xm)
(
D(ai)−D(xm)

)
≥ (km/T )1/4/2 for all i then // new arms

11 set akm+1 ← xm, bkm+1 ← bim , Km+1 ← Km ∪ {km + 1} and km+1 ← km + 1;
12 update bim ← xm, Km+1 ← Km and km+1 ← km;

13 else denote the last macrostep by M and break;

14 run the UCB1 algorithm on the set of prices {aj}j∈KM ; // bandit phase

detected between the demands, all relevant valuations in [ai, bi] remain in [xm, bi] with high probability after
the update. If, on the other hand, a difference between demands is detected (line 9), two things happen.
First, a test is performed to detect possible new relevant valuations (line 10). If a new relevant valuation
is spotted, a new interval [xm, bi] is allocated. Second, the upper half of the interval [ai, bi] is removed. If
[ai, bi] is split into [ai, xm] and [xm, bi], all relevant valuations are split between the two intervals. If [ai, bi]
is simply updated as [ai, xm]—since no significant difference was detected between the demands at xm and
bi—all relevant valuations in [ai, bi] remain in [ai, xm] with high probability.

When all intervals become smaller than T−1/2 (line 13), the search phase ends and all intervals [ai, bi]
are returned. At this point each relevant valuation is contained in one of the intervals with high probability.
Therefore the algorithm has now access to T−1/2-close approximations of all of them, and the bandit phase
begins. In the bandit phase, the algorithm UCB1 [4] is run on the set of left endpoints of the intervals
(line 14).

Theorem 1.3. If Algorithm 1 is run on an unknown number K of pairs (v1, p1), . . . , (vK , pK) with input
parameter δ = T−2, then its regret satisfies

RT = Õ
(√

KT
)

+ V (V + 1) where V = max
i∈{1,...,K}

v4
k

(vi − vi−1)5
.

We actually prove a slightly improved bound, in which the constant V (V + 1) is replaced by the smaller
term K(v4

K/v
4
1)
(
1 + (v4

K/c
4)
)
, where c = mini∈{2,...,K}{vi − vi−1}. To give a frame of reference, previously

known upper bounds for discontinuous demand curves [29] are at best of order
(
K20/c18

)√
T , where v1 is

assumed to be bounded away from zero and K needs to be known in advance.

Proof. We begin by proving that at any time time during the search phase, all intervals [ai, bi] satisfy
D(bi)−D(ai) ≥ T−1/4 with high probability and with the same probability all valuations vj not belonging
to any of these intervals satisfy pj < (K/T )1/4. For any given price x ∈ [0, 1] offered during the search phase,
Hoeffding’s inequality implies

∣∣D(x)−D(x)
∣∣ ≤ (|Km|/T )1/4/4 with probability at least 1− 2δ. Therefore, if

D(x)−D(y) ≥ (|Km|/T )1/4, then D(x)−D(y) ≥ (|Km|/T )1/4/2 with probability at least 1− 2δ. Moreover,
if D(x) = D(y), then D(x)−D(y) < (|Km|/T )1/4/2 with probability at least 1−4δ. Since at each macrostep
the algorithm performs at most K + 1 comparisons between D(x) and D(y) for pairs of points x, y (lines 5,



6, 10), the probability that, for at least one of these comparisons, we have(
D(x)−D(y) < 4

√
km
16T ∧ D(x)−D(y) ≥ 4

√
km
T

)
or

(
D(x)−D(y) ≥ 4

√
km
16T ∧ D(x) = D(y)

)
(1.2)

is at most 4(K + 1)δ. Thus the probability that the event (1.2) occurs for at least one comparison in at
least one macrostep is at most 4(K + 1)Mδ, where M ≤

√
KT . This proves the initial claim. By paying

an additional 4(K + 1)MδT = O
(
K
√
K/T

)
we can therefore assume that event (1.2) never occurs. In this

case at most K binary searches are performed and —ignoring constants and logarithmic factors— the regret

increases by at most
∑K
k=1

√
T/k ≤

√
T
∫K

0
x−1/2dx = 2

√
KT. We prove now that if vK /∈

⋃
j∈KM [aj , bj ]

(which implies pK < 4
√
K/T ), then it is suboptimal. In order for vK to be optimal, it would have to have at

least a revenue higher than v1. Thus

vKpK ≥ v1 =⇒ 4
√
K/T > pK ≥

v1

vK

which can only happen if T < K(vK/v1)4. By paying an additional K(vK/v1)4 term in the regret we
can therefore assume that vK is suboptimal. We show now that all other valuations not belonging to⋃
j∈KM [aj , bj ] are also suboptimal. Take any valuation vj /∈

⋃
i∈KM [ai, bi] (which again, implies pj <

4
√
K/T )

strictly smaller than vK . In order for vj to be optimal, it has to at least be better than v1 and vj + 1. If vj
is better than v1

vj

K∑
k=j

pk ≥ v1 =⇒ pj+1 ≥
v1

vj
− pj −

K∑
k=j+2

pk. (1.3)

If vj is better than vj+1

vj

K∑
k=j

pk ≥ vj+1

K∑
k=j+1

pk =⇒ pj ≥
(
vj+1

vj
− 1

) K∑
k=j+1

pk =

(
vj+1

vj
− 1

)pj+1 +

K∑
k=j+2

pk


and lower bounding pj+1 as in (1.3) gives

pj ≥
(
vj+1

vj
− 1

)(
v1

vj
− pj

)
=⇒ pj ≥

v1

vj+1

vj+1 − vj
vj

≥ v1c

v2
K

where c = mini∈{2,...,K}{vi − vi−1}. Being pj <
4
√
K/T this can only happen if T < Kv8

K/(v1c)
4. Thus

we can assume vj is suboptimal by paying at most an extra Kv8
K/(v1c)

4 term in the regret. This proves
that v? ∈

⋃
j∈KM [aj , bj ]. Being bj − aj < T−1/2, offering aj rather than any x ∈ [aj , bj ] results in an

regret increase of at most
√
T . Finally, running the UCB1 algorithm [4] for standard stochastic bandits adds

another Õ(
√
kmT ) term to the regret, where again km ≤ K.

We now discuss the role that c and v1 play in the dynamic pricing problem. Assume that pi? <
4
√
K/T

but there exist valuations vj > v? with pj ≥ 4
√
K/T , and let vk be the smallest of such valuations. Arguing

as in the proof of Theorem 1.3, one can prove that dk = vk − v? must satisfy

dk ≤
v2
K

v1
K

4

√
K

T
.

This means that in principle the optimum valuation v? could be hiding in any of the intervals [vi−di, vi−c),
where vi are all valuations with probabilities pi ≥ 4

√
K/T . Since these intervals become bigger and bigger as c

approaches zero, this behavior foils the attempt of identifying the finite support of the problem instance. The
smallest valuation v1 is also a natural parameter of the problem for an entirely different reason. Indeed v1 is
not just a valuation, it is the only valuation which is also its own revenue. Assume for example that v1 = 0



Algorithm 2:

Input: Time horizon T ∈ N.
Initialization: set κ0 ← 1, a1 ← 0, b1 ← 1, n1 ← 1, ε1 ← 1/2, D1 ← 1.

1 for t = 1 to T do
2 set κt ← κt−1;
3 compute it ← arg maxi≤κt biDi; // greedy pick

4 if bit − ait ≤ 1/T then post ait ; // if [ait , bit ] becomes tiny, play ait for good

5 else
6 post Xt = ait + nitεit and get feedback XtD(Xt);
7 if D(Xt) = Dit then // increase prices until surpassing the closest vj
8 if Xt + εit < bit then update nit ← nit + 1;
9 else update ait ← Xt, nit ← 1, εit ← ε2

it
; // shrink the interval

10 else
11 if D(Xt) /∈ {D1, . . . , Dκt , 0} then // a new valuation is found

12 set κt ← κt−1 + 1, aκt ← Xt, bκt ← bit , nκt ← 1, εκt ← εit , Dκt ← D(Xt);
13 update ait ← Xt − εit , bit ← Xt, nit ← 1, εit ← ε2

it
; // shrink the interval

(which makes it always suboptimal). Even if this piece of information is known by the seller, and the problem
is reduced to {v2, . . . , vK} ⊂ (0, 1], the reduced problem becomes harder as the “weights” {p2, . . . , pK} do
not sum to 1 anymore. The worst case happens when p1 is close to 1. In this case a considerable amount
of samples is needed just to locate any of the remaining valuations, let alone the optimal one, in an online
fashion, while accruing regret at each round.

1.6 Distribution-dependent bounds

In this section we focus on distribution-dependent bounds, i.e., bounds that are parameterised in terms
of the demand curve. Our algorithm ignores the number of valuations, but is given a lower bound γ on
the smallest probability pmin of a valuation (i.e., the smallest drop in the demand) —note that γ ≤ pmin

implies K ≤ 1/γ, so we also have an upper bound on the number of valuations. The regret bound we prove
exceeds the distribution-dependent regret (K lnT )/∆ of standard stochastic bandits by a term of order
K(lnT )(ln lnT )/γ2. On the other hand, if the number K of valuations (counting only those which are at
least T−1 apart) is exactly known, it is easy to prove an excess regret bound of order K((lnT )/pmin)2 even
when pmin (or a lower bound on it) is unknown: The algorithm performs O(lnT ) binary search steps for
each one of the K valuations, repeating each step O((lnT )/γ2) times and using a value of γ that decreases
geometrically until all K valuations are found. A similar argument gives the same regret bound in the case
when K not known exactly, but γ ≤ pmin and c ≤ mink(pk − pk−1) are both known.

In order to introduce in a clear and concise manner the ideas used to prove our main result, we begin by
considering an easier setting in which the feedback is provided by an oracle returning the value of the demand
curve D(Xt) at the posted price Xt. This is equivalent to assuming that the feedback is the expectation
E
[
rt(Xt) | V1, . . . , Vt−1

]
= XtD(Xt) rather than the random variable rt(Xt). This simplified setting allows

us to focus on the search of the valuations points, abstracting from the problem of estimating the demand
curve. We define a seller algorithm that extends the “cautious search” strategy for a single unknown valuation
([52], see Algorithm 4 in Section 1.8.2) to an unknown number of unknown valuations.

Our algorithm (Algorithm 2) initially looks for a single valuation v1, and then allocates searches for new
valuations incrementally. Whenever a new value of the demand curve is observed, providing evidence for the
existence of a i-th previously unseen valuation, an interval [ai, bi] (which we associate with a bandit arm)
and a step size εi are allocated. The interval [ai, bi] estimates the smallest valuation vi contained in it. By
construction of the algorithm, vi is never removed from [ai, bi] when the interval shrinks. This implies that
the more [ai, bi] shrinks, the closer biD(ai) gets to the true revenue viD(vi).



The algorithm works by performing cautious searches within each interval. At the beginning, all valua-
tions belong to [a1, b1] = [0, 1]. Whenever an interval is selected (line 3), a step of cautious search is performed
(lines 6–13). During a cautious search in [ai, bi] with step size εi, the sequence of values Xt = ai + kεi for
k ∈ {1, 2, . . . } is posted until a change is spotted in the demand or Xt gets within εi of bi. If the latter
happens before a change in the demand is discovered (line 8), the interval shrinks to [Xt, bit ] and the step
size is refined (line 9). Note that the shrunken interval contains all valuations that were in [ai, bi] because
the demand did not change. If a change in the demand is spotted (line 10), then the interval shrinks to
[Xt − εi, Xt] and the step size is reduced (line 13). If the new demand value matches the value of D(bi)
the shrunken interval contains again all valuations that were in [ai, bi]. If the new demand value does not
belong to a known interval (line 11), then a new interval [Xt, bi] is allocated (line 12). This process continues
until the length of the feasible interval [aj , bj ] of the arm j with the highest bjDj is less than 1/T . Then
the seller offers the same price aj for all remaining rounds. As time goes by, the number κ of discovered
valuations grows until possibly reaching the actual number of valuations K. Simultaneously, each estimate
biDi converges to the revenue of the smallest valuation in the interval. After enough rounds, picking the
interval i with the highest biDi becomes equivalent to choosing a 1/T -approximation of an optimal valua-
tion. Without loss of generality, in the analysis of the algorithm, we assume all valuations v1, . . . , vK are
at least 1/T apart. Let is be the index of the arm chosen at time s (line 3). For any k = {1, . . . ,K}, let
Tk ∈

{
t ≤ T | vk ∈ [ait , bit ]

}
. The next lemma states that the steps performed by Algorithm 2 in all the

intervals that ever contained vk are those that a cautious search would have performed if run on the single
evaluation vk.

Lemma 1.1. Suppose Algorithm 2 is run on K valuations v1, . . . , vK . Pick k ∈ {1, . . . ,K} and n ∈
{1, . . . , |Tk|}. Let [0, 1] ≡ I1 ⊇ · · · ⊇ In ≡ [a′n, b

′
n] be the sequence of the first n intervals computed by n steps

of a cautious search for the single valuation vk with initial interval [0, 1]. Then a′n ≤ ait and b′n = bit , where
t is the n-th smallest value in Tk. Moreover, the price Xt offered by Algorithm 2 at time t is equal to the
n-th price offered by the cautious search for the single valuation vk.

Proof. Fix a valuation vk. Let A be Algorithm 2 and C be the cautious search for vk. The proof is by
induction on n. Since A and C both start with interval [0, 1] and price 1/2 the statement holds for n = 1.
Now let t be the (n + 1)-st smallest value in Tk and let s be the largest value in Tk that is smaller than t.
Let In ≡ [a′n, b

′
n] be the n-th interval computed by C. By induction, a′n ≤ ais , b′n = bis , and Xs is offered by

both A and C. The only interesting case to discuss is when the test at line 7 is false. There are two subcases:
if the test at line 11 is false, then it must be Xs > vk. In this case C overshoots and the interval is updated
exactly in the same way by C and A (see line 13). If the test at line 11 is true, then it must be vi < Xs ≤ vk.
This is not an overshoot for C, so In+1 ≡ In. A, however, creates a new interval [a, b] —containing vk—
with a = Xs, b = bis , and unchanged step size εis . The next time t this new interval is selected, the price
Xt offered by A is the same as the price offered by C because the step size did not change.

Theorem 1.4. If Algorithm 2 is run on an unknown number K of pairs (v1, p1), . . . , (vK , pK), then its regret
satisfies RT ≤ K(3 ln lnT + 10).

Proof. Intervals are indexed in their order of creation (so that interval 1 is [0, 1]), and the i-th interval is
identified with bandit arm i. Note that, at any point during the execution of the algorithm, each valuation
belongs to some interval. Any interval is created with at least one valuation in it, and shrinks until it
only contains the smallest valuation vj among those that initially belonged to it. Let κT be the number
of intervals created after T rounds. For i ∈ {1, . . . , κT }, denote by µ(i) the index j ∈ {1, . . . ,K} of the
smallest vj ∈ [ai, bi]. Now fix any k such that k = µ(j) (i.e., vk is the smallest value of the j-th interval)
for some j ∈ {1, . . . , κT }. Note that j = itk for some tk ∈ {1, . . . , T} because k = µ(j) implies that when
interval j is created vk is its smallest valuation. Hence the last selected interval containing vk must be j. Let
Tk = |Tk| and tk = max Tk. Lemma 1.1 implies that at time tk the overall number of cautious steps made
for vk is Tk, Lemma 1.5 implies bj − aj ≤ 2/Tk at time tk. Now note that Dj = D(vk) because k = µ(j).
Since v? belongs to some [ai? , bi? ], and using Di? = D(ai?), at time tk we have v?D(v?) ≤ bi?Di? ≤ bjDj =
bjD(vk) ≤

(
vk + (bj − aj)

)
D(vk). Then the above implies Tk ≤ 2D(vk)/∆k where ∆k = v?D(v?)− vkD(vk).



Algorithm 3:

Input: Time horizon T ∈ N, confidence parameter δ ∈ (0, 1).
Initialization: set κ0 = 1, a1 ← 0, b1 ← 1, n1 ← 1, ε1 ← 1/2, D(a1) = 1.

1 for m = 1 to Mγ do
2 set κm ← κm−1;
3 compute im ← arg maxi≤κm biUi; // greedy pick

4 if bim − aim ≤ 1/T then post aim ; // if [aim , bim ] gets tiny, play aim for good

5 else
6 post Xm = aim + nimεim for

⌈
8 ln(δ−1)/γ2

⌉
rounds and compute D(Xm);

7 if D(aim)−D(Xm) < γ/2 then // up prices until surpassing the closest vj
8 if Xm + εim < bim then update nim ← nim + 1;
9 else update aim ← Xm, nim ← 0, εim ← ε2

im
; // shrink the interval

10 else (denoting a0 = D(0) = 0)
11 if ∀i 6= im, sign(ai −Xm)

(
D(ai)−D(Xm)

)
≥ γ/2 then // new valuation

12 κm ← κm−1 + 1, aκm ← Xm, bκm ← bim , nκm ← 1, εκm ← εim ;
13 update aim ← Xm − εim , bim ← Xm, nim ← 0, εim ← ε2

im
; // shrink interval

Lemma 1.4 and Lemma 1.1 also imply∑
t∈Tk

(
rt(vk)− rt(Xt)

)
≤ 3 ln lnTk + 8 . (1.4)

Noting that {1, . . . , T} ⊆ T1 ∪ . . . ∪ TK , we may write

RT =

T∑
t=1

(
rt
(
v?
)
− rt

(
Xt

))
≤

K∑
k=1

∑
t∈Tk

(
rt
(
v?
)
− rt

(
Xt

))

≤
K∑
k=1

(
Tkv

?D
(
v?
)
−
(
TkvkD(vk)− (3 ln lnTk + 8)

))
=

K∑
k=1

(
Tk∆k + 3 ln lnTk + 8

)
≤

K∑
k=1

(
2D(vk) + 3 ln lnTk + 8

)
≤ K(10 + 3 ln lnT )

concluding the proof.

Next, we extend Algorithm 2 to account for the fact that the actual feedback at time t is the random
variable rt(Xt) rather than its conditional expectation XtD(Xt). The main intuition is very simple: in order
to estimate D(x) we divide time in blocks (called again macrosteps) of equal length, and build an estimate
D(x) by posting the same price x within each block. In order to decide which arm i to use in each macrostep,
we compute an upper confidence bound Ui on the average demand in the i-th interval, and then select the
arm attaining the highest of such bounds.

Our algorithm receives as input the time horizon T , a lower bound γ on pmin = mini pi, and a confidence
parameter δ. Given these parameters, the number of macrosteps is defined as the biggest Mγ ∈ N satisfying
T ≥ Mγd8 ln(δ−1)/γ2e. The fraction of accepted offers of price x during the m-th macrostep (in which x
is offered) is denoted by Dm(x). Our algorithm (Algorithm 3) is very similar to Algorithm 2, so we only
highlight the main differences.

First, note that references to steps t are replaced by references to macrosteps m; in particular, κm is the
number of allocated intervals after m macrosteps. In line 3, the selected arm im is now the one maximizing,
over intervals [ai, bi], the product biUi. The quantity Ui is the upper confidence bound

Ui = D̂m(i) +
1

bi

√
ln(δ−1)

Nm(i)



where Nm(i) is
⌈
8γ−2 ln δ−1

⌉
(if i > 1, which takes into account the macrostep in which interval i was

allocated) plus the total number of times that i was picked in the first m− 1 macrosteps, ignoring the steps

occurring in all macrosteps when line 13 was executed. D̂m(i) is the fraction of accepted offers during these
Nm(i) steps. In line 7, a new valuation is detected when the difference between demands is bigger than
γ/2. Finally, in line 11 a new interval is allocated if the newly discovered demand differs from all previously
detected demands by at least γ/2.

Theorem 1.5. If Algorithm 3 is run on an unknown number K of pairs (v1, p1) . . . , (vK , pK) with input
parameters γ ≤ mink pk and δ = T−2, then its regret satisfies

RT ≤
∑

i : ∆i>0

4 lnT

∆i
+O

(
K lnT

γ2
ln lnT

)
.

Proof. Without loss of generality, assume MγBγ = T where Bγ ≥ 8 ln(δ−1)/γ2 is the length of a macrostep.
Hence, for any given price 0 ≤ x ≤ 1, Hoeffding’s inequality implies

∣∣D(x) −D(x)
∣∣ ≤ γ/4 with probability

at least 1 − 2δ. Therefore, if D(x) − D(y) ≥ γ, then D(x) − D(y) ≥ γ/2 with probability at least 1 − 4δ.
Moreover, if D(x) = D(y), then D(x)−D(y) ≤ γ/2 with probability at least 1−4δ. Since at each macrostep
of the algorithm we perform at most K + 1 comparisons between D(x) and D(y) for pairs of points x, y
(lines 7 and 11), the probability that, for at least one of these comparisons, we have(∣∣Dm(x)−Dm(y)

∣∣ < γ

2
∧ |D(x)−D(y)| ≥ γ

)
or
(
|Dm(x)−Dm(y)| > γ

2
∧ D(x) = D(y)

)
(1.5)

is at most 4(K+1)δ. Let B the event that (1.5) occurs for at least one comparison in at least one macrostep.
Then P(B) ≤ 4(K + 1)Mγδ.

Assume B does not occur. Recall that vµ(i) is the smallest valuation in [ai, bi]. Since pµ(i) ≥ γ by
hypothesis, event Xm > vµ(i) implies that the test in line 7 is false, and therefore line 13 is executed.
Therefore, assuming event (1.5) never occurs, the macrosteps of Algorithm 3 with feedback rt(Xt) are
equivalent to the steps of Algorithm 2 run with feedback XtD(Xt). In particular, Lemma 1.1 applies to the
macrosteps of Algorithm 3.

Let nm(i) be the number of macrosteps (in the first m− 1 macrosteps) where i was picked. Similarly, let
osm(i) be the number of macrosteps (in the first m−1 macrosteps) when i was picked and Xm > vµ(i). Then

we have Nm(i) = Bγ
(
nm(i)−osm(i)

)
. Now note that D̂m(i) is the sample mean of a Bernoulli of parameter

D(vµ(i)) because it is computed over Nm(i) points sampled between ai and vµ(i). Fix a suboptimal valuation

vk and a macrostep m such that µ(im) = k. Let i? be such that v? ∈
[
ai? , bi?

]
. Then,

im 6= i? =⇒ bi?Ui? ≤ bimUim

⇐⇒

(
bi?D̂m(i?) +

√
ln(δ−1)

Nm(i?)

)
≤

(
bimD̂m(im) +

√
ln(δ−1)

Nm(im)

)

=⇒

(
v?D̂m(i?) +

√
ln(δ−1)

Nm(i?)

)
≤

((
vk +

2

nm(im)

)
D̂m(im) +

√
ln(δ−1)

Nm(im)

)

where in the last step we used Lemma 1.5 in Section 1.8.2. Now recall that nm(im) ≥ Nm(im)/Bγ . Hence,

im 6= i? =⇒

(
v?D̂m(i?) +

√
ln(δ−1)

Nm(i?)

)
≤

(
vkD̂m(im) +

2Bγ
Nm(im)

+

√
ln(δ−1)

Nm(im)

)
.

Observe that E
[
D̂m(i?)

]
= D

(
vµ(i?)

)
≥ D(v?) and E

[
D̂m(im)

]
= D(vk). Moreover, the two quantities√(

ln(δ−1)
)/(

Nm(i?)
)

and 2Bγ/Nm(im) +
√(

ln(δ−1)
)/(

Nm(im)
)

play the role of upper confidence bounds

for the estimates v?D̂m(i?) and vkD̂m(im). Therefore, we can apply a modification of the analysis of UCB1



[4, Proof of Theorem 1] to K arms with reward expectations vkD(vk) for k ∈ {1, . . . ,K}, and such that
the upper confidence bound for any suboptimal arm k is inflated by 2Bγ/Nm(im). (In fact Lemma 1.6
in Section 1.8.3 is stronger than what we need, because v? always belongs to some interval [aj? , bj? ] but
not all suboptimal valuations vk are the smallest valuation of the interval [ajk , bjk ] they belong to.) In
particular, recalling that Bγ = 8(ln(δ−1))/γ2 and recalling also our assumption in B, we apply Lemma 1.6
in Section 1.8.3 with α = 16. This gives

Bγ E

I{B} ∑
m : µ(im)=k

I {im 6= i?}

 ≤ 1 +

(
(δT )2 +

64

γ2

)
2K ln(δ−1) +

∑
k : ∆k>0

4 ln(δ−1)

∆k
.

where ∆k = v?D(i?)−vkD(vk) > 0 and B is the complement of B.2 Because Lemma 1.6 bounds the number
of steps in which a suboptimal arm is selected, we multiplied by Bγ the right-hand side of the above, thus
converting macrosteps m in steps t. The fact that we prevent the algorithm from switching arm within
each macrostep is not an issue. Indeed, the proof of the Lemma works irrespective to whether the decision
of pulling a different arm is made at every macrostep as opposed to every step. In particular, the proof
establishes that after each suboptimal arm is selected order of (lnT )/γ2 times, corresponding to a constant
number of macrosteps, the probability of pulling any suboptimal arm ever again becomes tiny, of order T−2.

Similarly to the proof of Theorem 1.4, introduce Mk =
{
m ≤ Mγ | vk ∈ [aim , bim ]

}
. As argued above,

we may apply Lemma 1.1 to the macrosteps of Algorithm 3. Hence, bound (1.4) applies with Tk replaced
by Mk. Therefore, with probability at least 1 − 4(K + 1)Mγδ, the regret over the T steps (recall that we
repeatedly post the same price in each step of a macrostep) is bounded by

BγE

 Mγ∑
m=1

(
v?D(v?)−XmD(Xm)

)
≤ BγE

 K∑
k=1

∑
m :µ(im)=k

(
v?D(v?)− vkD(vk)

)
+

K∑
k=1

∑
m∈Mk

(
vkD(vk)−XmD(Xm)

)
≤ Bγ

K∑
k=1

∆kE

I{B} ∑
m :µ(im)=k

I {im 6= i?}

+ TP(B) +Bγ

K∑
k=1

(
3 ln lnTk + 8

)
(using (1.4))

≤ 1 +

(
(δT )2 +

64

γ2

)
2K ln(δ−1) +

∑
k : ∆k>0

4 ln(δ−1)

∆k
+ TP(B) +BγK

(
3 ln lnT + 8

)
. (1.6)

Finally, in order to bound TP(B) ≤ 4(K + 1)TMγδ = (K + 1)(Tγ)2δ/(2 ln δ−1), it is sufficient to set
δ = T−2.

We conclude this section by discussing the case of at most two valuations. We design an algorithm with
regret of order log(T )/∆ + log(T ) log log(T ), which is (up to the log log term) as if the exact values of v1 and
v2 were known in advance! This is achieved by leveraging some properties of the smallest and the biggest
valuation. For example, any offer of a price lower or equal to v1 is deterministically accepted and all offers
above v2 are always rejected. If on the other hand a price x ∈ (v1, v2] is offered, the probability that that
price is accepted is exactly p2, which is enough to reconstruct the entire distribution (p1, p2) on {v1, v2}.
Furthermore, the suboptimality gap ∆ is always equal to |v1 − p2v2|.

Other than the result itself, we believe the techniques used in designing and analyzing the algorithm
could be of interest on their own. Theorem 1.9 in particular gives a way to compute a high-probability
multiplicative estimate of the unknown expectation µ > 0 of any [0, 1]-valued random variable using only
O
(

1
µ

)
samples. We now state the result. All the details about the algorithm and its subroutines, their

pseudocodes, and the remaining theoretical results are presented in Section 1.8.4.

2The factor I
{
B
}

inside the expectation is needed to reduce the problem to an instance of a standard stochastic bandit. It
can be conveniently dropped in the analysis of Lemma 1.6.



Theorem 1.6. If Algorithm 8 (see Section 1.8.4) is run with input parameter δ = T−2 on an unknown
instance (v1, p1) and (v2, p2), then its regret satisfies RT = O

(
log(T )/∆ + (log T )(log log T )

)
, where the first

term is zero when ∆ = |p2v2 − v1| is zero.

1.7 Conclusions

In this work we initiated an investigation of stochastic dynamic pricing in a setting in which the distribution
of buyers’ private values is supported on a finite set of points in [0, 1], where the number and location of these
points is unknown to the seller. We studied the seller’s regret in distribution-free and distribution-dependent
settings, proving upper and lower bounds that show interesting connections to both the dynamic pricing
setting of Kleinberg and Leighton [52] and the standard stochastic K-armed bandit setting. We also proved
some preliminary results for the nonstochastic version of our model when there are two valuations but only
one is unknown (Section 1.8.5).

Our work leaves some interesting questions open. Can we prove a distribution-free upper bound of order√
KT that does not depend on the locations of buyers’ valuations? Can we prove a distribution-dependent

upper bound without any prior knowledge at all for K larger than two? Can we obtain a
√
KT regret bound

in the nonstochastic setting when K ≥ 2 and all valuations are unknown?

1.8 Deferred proofs and additional results

1.8.1 Lower Bound

In this section we prove the lower bounds (Theorems 1.1 and 1.2) stated in Section 1.4. Kleinberg and
Leighton [52] showed that RT = Ω(T 2/3) if T ≤ K3 by building a distribution over a set of ε-spaced valuations
v1, . . . , vK ∈

[
1
2 , 1
]
. A key technical property needed in their proof is that KL

(
1
2v ,

9
10

1
2v + 1

10
1

2(v−ε)
)
≤ cε2

for some constant c independent of ε and for all v ≥ 3/4. We begin by showing that such construction only
works if K is large compared to T .

Lemma 1.2. For all K ≥ 1, for all ε ∈
(
0, 1

2K

]
, and for all k ∈ {1, . . . ,K}, denoting v = 1

2 + kε,

KL

(
1

2v

∥∥∥ 9

10

1

2v
+

1

10

1

2(v − ε)

)
>

ε

800k
.

Proof. Fix any K ≥ 1, ε ∈
(
0, 1

2K

]
, and k ∈ {1, . . . ,K}. Denoting v = 1

2 + kε,

KL

(
1

2v

∥∥∥ 9

10

1

2v
+

1

10

1

2(v − ε)

)

=
1

2v
ln

(
1
2v

9
10

1
2v + 1

10
1

2(v−ε)

)
+

(
1− 1

2v

)
ln

 1− 1
2v

1−
[

9
10

1
2v + 1

10
1

2(v−ε)

]


=
1

2v
ln

(
1

1 + ε
10(v−ε)

)
+

1

2v
(2v − 1) ln

(
2v − 1

2v − 1− ε
10(v−ε)

)

≥ 1

2

[
− ln

(
1 +

ε

5 + 10(k − 1)ε

)
− 2kε ln

(
1− 1

10k + 20k(k − 1)ε

)]
(using v = 1

2 + kε ≤ 1)

=
1

2

+∞∑
n=1

2kε
(

1
10k+20k(k−1)ε

)n
+
(
− ε

5+10(k−1)ε

)n
n

=
ε

8k
(
5 + 10(k − 1)ε

)2 +
ε2

4
(
5 + 10(k − 1)ε

)2 +
1

2

+∞∑
n=3

2kε
(

1
10k+20k(k−1)ε

)n
+
(
− ε

5+10(k−1)ε

)n
n



>
ε

800k
+

ε2

400
+ ε

+∞∑
n=3

1
kn−1

1(
10+20(k−1)ε

)n + (−1)nεn−1

2
1(

5+10(k−1)ε
)n

n

=
ε

800k
+

ε2

400
+ ε

+∞∑
n=3

1(
10+20(k−1)ε

)n ( 1
kn−1 + (−1)n(2ε)n−1

)
n

>
ε

800k
+

ε2

400
+ ε

+∞∑
n=3

1(
10+20(k−1)ε

)n ( 1
kn−1 − (2ε)n−1

)
n

≥ ε

800k
+

ε2

400
. (using k ≤ K and ε ≤ 1

2K )

This concludes the proof.

In order to prove Theorem 1.1, we need the following lemma.

Lemma 1.3. For all p, q ∈ (0, 1)

KL (p ‖ q) ≤ (p− q)2

q(1− q)
.

In particular, for all x ∈ (0, 1) and all α ∈ [0, 1− x),

KL
(
x ‖ x+ α

)
≤ α2

(x+ α)(1− x− α)
. (1.7)

Proof. Fix any p, q ∈ (0, 1). Using ln(x) ≤ x− 1 for all x > 0,

KL(p ‖ q) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
≤ pp− q

q
− (1− p)p− q

1− q

= (p− q)
(
p

q
− 1− p

1− q

)
=

(p− q)2

q(1− q)
.

We now restate and prove Theorem 1.1.

Theorem 1.7. For any number of valuations K ≥ 3 and all time horizons T ≥ K3 there exist K pairs(
v1, p(v1)

)
, . . . ,

(
vK , p(vK)

)
such that the expected regret of any pricing strategy satisfies

RT ≥
1

375

√
KT .

Proof. For notational convenience, fix K ≥ 2 and define the set {v0, . . . , vK} of K + 1 valuations by

vi =
1

2
+

i

2K
, ∀i ∈ {0, . . . ,K} .

Define the distribution p0 on {v0, . . . , vK} of the random variable V0 by

P(V0 ≥ v) =
∑

i : vi≥v

p0(vi) =
1

2v
, ∀v ∈ {v0, . . . , vK} .

With this choice of demand curve, vP(V0 ≥ v) = 1/2, i.e., each valuation v has the same expected revenue.
Furthermore, the distribution v 7→ p0(v) satisfies the following: p0(v0) = 1

K+1 ; p0 decreases monotonically

on {v0, . . . , vK−1}, p0(vK−1) = 1
2K−1 , and p0(vK) = 1/2. Therefore

1

2K
≤ p0(v) ≤ 1

K
, ∀v ∈ {v0, . . . , vK−1} . (1.8)



Now, for each j ∈
{
dK/2e, . . . ,K

}
, define the distribution pj by slightly lowering the probability of vj−1

and upping the probability of vj by the same amount:

pj (vi) =


p0(vi), i ∈ {0, . . . ,K} \ {j − 1, j},
(1− 4Kε)p0(vj−1), i = j − 1,

p0(vj) + 4Kεp0(vj−1), i = j,

(1.9)

where ε ∈
(
0, 1

40

)
is a small constant determined below. Note that if the buyers’ valuations were distributed

as pj , all valuations v 6= vj would have expected revenue 1
2 , but vj whould have expected revenue at least

1
2 + ε because of (1.8) and (1.9). In order to define the distribution of buyers’ valuations V =

(
V1, . . . , VT

)
,

let J be uniformly distributed over
{
dK/2e, . . . ,K

}
(that is, the set of indices i ∈ {1, . . . ,K} such that

vi ≥ 3
4 ). The value of J will give the “good valuation”, that is the valuation with the highest expected

revenue. For all t, the distribution of Vt is determined by

P
(
Vt = vi | J = j

)
= pj(vi), ∀i ∈ {0, . . . ,K},∀j ∈

{
dK/2e, . . . ,K

}
.

Denoting the seller’s randomized strategy by X = (X1, . . . , XT ) and applying Fubini’s theorem, we obtain

RT = max
k∈{0,...,K}

EXEJ,V

[
T∑
t=1

rt(vk)−
T∑
t=1

rt(Xt)

]
.

According to the previous identity, we can (an will!) lower bound the internal expectation assuming that
the seller’s strategy is deterministic. Furthermore, assume that the seller’s pricing strategy only offers
prices in {vdK/2e, . . . , vK} —since it is counterproductive to offer a price outside of it as all other valuations
(v1, . . . , vdK/2e−1 in particular) have smaller expected revenues. Now let Ni be the number of times the seller
offer valuation vi,

Ni =

T∑
t=1

I{Xt = vi} .

By construction, each time the seller picks the “good valuation”, no regret is accrued; all other times at least
ε is lost. Therefore

EJ,V

[
T∑
t=1

rt(vk)−
T∑
t=1

rt(Xt)

]
≥ ε
(
T − EJ,V [NJ ]

)
. (1.10)

Denote by Yt the Bernoulli random variable I{V t ≥ Xt} which is 1 if and only if the t-th buyer accepted
the price offered, Y t = (Y1, . . . , Yt), and Y = Y T . Denote by q0 the distribution of Y if buyer’s valuations
were distributed as p0 and by qi the distribution of Y if buyer’s valuations were distributed as pi. For any
deterministic function f : {0, 1}T → [0,M ],

EV
[
f(Y ) | J = i

]
− E0[f(Y )] =

∑
bT∈{0,1}T

f(bT )
(
qi(b

T )− q0(bT )
)

≤
∑

bT∈{0,1}T

qi(b
T )>q0(bT )

f(bT )
(
qi(b

T )− q0(bT )
)

≤M
∑

bT∈{0,1}T

qi(b
T )>q0(bT )

(
qi(b

T )− q0(bT )
)

≤M
√

1

2
KL(q0 ‖ qi)



where E0 is the expectation with respect to distribution p0 and in the last step we used Pinsker’s inequality.
Let qi(bt | bt−1) = pi (Yt = bt | Y1 = b1, . . . , Yt−1 = bt−1) and let q0(bt | bt−1) be defined similarly. By the
chain rule of the relative entropy

KL(q0 ‖ qi) =

T∑
t=1

q0(bt−1)
∑

bt−1∈{0,1}t−1

KL
(
q0(bt | bt−1) ‖ qi(bt | bt−1)

)
=

T∑
t=1

q0(bt−1)
∑

bt−1 : Xt(bt−1) 6=vi

KL
(
q0(bt | bt−1) ‖ qi(bt | bt−1)

)︸ ︷︷ ︸
=0

+

T∑
t=1

q0(bt−1)
∑

bt−1 : Xt(bt−1)=vi

KL
(
q0(bt | bt−1) ‖ qi(bt | bt−1)

)
where the relative entropy is zero when Xt 6= vi because in that case pi(Yt = 1) = p0(Yt = 1). If on the
other hand, Xt = vi, for all vi ≥ 3

4 ,

KL
(
q0(bt | bt−1) ‖ qi(bt | bt−1)

)
= KL

(
1

2vi

∥∥∥ 1

2vi
+ 4Kεp0(vj−1)

)
≤ 108ε2

where the last inequality follows by (1.8) and KL
(
x ‖ x + α

)
≤ α2(x+ α)−1(1− x− α)−1, with x = 1

2vi
∈[

1
2 ,

2
3

]
and α = 4Kεp0(vj−1) ∈ [2ε, 4ε]. Therefore

KL(q0 ‖ qi) ≤ 108ε2
T∑
t=1

q0(bt−1)
∑

bt−1 : Xt(bt−1)=vi

1 = 108ε2
T∑
t=1

p0(Xt = vi) = 108ε2E0[Ni] ,

where again, E0 is the expectation with respect to distribution p0. This gives

EV [f(Y ) | J = i] ≤ E0[f(Y )] + εM
√

54E0[Ni] .

Then, being for any deterministic online pricing strategy the random variable Ni a deterministic function
of Y , EV [Ni | J = i] ≤ E0[Ni] + εT

√
54E0[Ni]. Thus, using Jensen inequality, EJ,V [Ni] ≤ EJE0[NJ ] +

εT
√

54EJE0[NJ ]. Using again Jensen inequality, Fubini’s Theorem, and inequality (1.10),

EJ,V EX

[
T∑
t=1

rt(vk)−
T∑
t=1

rt(Xt)

]
≥ ε

(
T − EJE0EX [NJ ]− εT

√
54EJE0EX [NJ ]

)
.

Since
∑K
i=dK/2eNi = T , we also have

∑K
i=dK/2e E0EX [Ni] = T . Using the fact that K − dK/2e + 1 ≥

max{3/2,K/2}, this implies

EJE0EX [NJ ] =
1

K − dK/2e+ 1

K∑
i=dK/2e

E0EX [Ni] ≤ min

{
2

3
,

2

K

}
T .

Putting everything together, we get

RT ≥ ε

(
T − 2

3
T − εT

√
108T

K

)
= εT

(
1

3
− ε
√

108T

K

)
,

which picking ε = 1
6
√

108

√
K/T so that ε

√
108T/K = 1/6, gives

RT ≥
1

375

√
KT

as desired.



Algorithm 4: Cautious search

Input: Time horizon T ∈ N.
Initialization: set a← 0, b← 1, n← 1, ε← 1/2.

1 for t ∈ {1, . . . T} do
2 post Xt = a+ nε and get feedback Zt = I {Xt ≤ v};
3 if Zt = 1 then // undershooting

4 if Xt + ε < b then update n← n+ 1;
5 else update a← Xt, n← 1, ε← ε2; // shrink the interval

6 else if Zt = 0 then // overshooting

7 update a← Xt − ε, b← Xt, n← 1, ε← ε2; // shrink the interval

In summation, Even if the technique used by Kleinberg and Leighton [52] fails in our setting, it is still
possible to prove an analogous lower bound by changing some key aspects of their analysis, which in turn is
based on the lower bound analysis of [5]. First, valuations need to be distanced as much as possible —this
is the exact opposite of their construction, where valuations were placed ε-close to each others. Second, the
base distribution is only perturbed by an appropriate small constant. Third, the “good valuation” is drawn
from a sensible proper subset of valuations.

1.8.2 Cautious search

Kleinberg and Leighton [52] were first to introduce a “cautious search” as an optimal algorithm for posted
price with a single unknown evaluation. Similarly, our cautious search (Algorithm 4) proceeds in phases
s ∈ {1, 2, . . .} in which an interval [as, bs] (initialized to [0, 1]) and a step size εs (initialized to 1/2) are
maintained. In a given phase s of the algorithm, prices as + εs, as + 2εs, as + 3εs, . . . are posted until one of
them, say Xs, becomes bigger than the hidden evaluation (overshooting). At this point a new phase begins:
the interval becomes [as+1, bs+1] = [Xs − εs, Xs], and the new step size becomes εs+1 = ε2

s. This process
continues until the length of the interval is less than 1/T . Then the left endpoint of the interval is picked
for all remaining rounds. We now state two lemmas about the behavior of cautious search. The first one is
proven in [52, Theorem 2.1].

Lemma 1.4. The regret of Algorithm 4 satisfies E
[∑T

t=1 rt(v)−
∑T
t=1 rt(Xt)

]
≤ 3 ln ln(T ) + 8. Moreover,

the number of overshootings is upper bounded by log log T .

The second lemma bounds the size of the interval as a function of the number of steps.

Lemma 1.5. For all m, the size of an interval [as, bs] after m steps of Algorithm 4 satisfies

bs − as ≤
2

m
.

Proof. The worst case happens when the sequence (b1 − a1, b2 − a2, . . .) of interval endpoints takes values(
1, 1,

1

2
,

1

2
,

1

4
,

1

4
,

1

4
,

1

4
, . . . ,

1

22n
, . . . ,

1

22n
, . . .

)
(1.11)

where the general term 1/22n is repeated 22n times. It is then sufficient to show that the inequality holds
for all values before a switch. Formally, that for all n ∈ {0, 1, 2, . . .}

1

22n
≤ 2

2 +
∑n
j=0 22j

or, equivalently, 2 +

n∑
j=0

22j ≤ 2 · 22n .



We prove this by induction on n. The case n = 0 is trivial. If the inequality holds for n ∈ {0, 1, . . .}, then

2 +

n+1∑
j=0

22j = 2 +

n∑
j=0

22j + 22n+1

≤ 2 · 22n + 22n+1

= 22n
(

2 + 22n
)
≤ 2 · 22n+1

.

This concludes the proof.

The previous bound is unimprovable. Indeed in scenario (1.11), for all n ∈ {0, 1, . . .}

22n < 2 +

n∑
j=0

22j ≤ 2 · 22n

and the second inequality is actually an equality for n = 0.

1.8.3 UCB with inflated confidence bounds

In this section we prove a regret bound for UCB1 run with an oracle that systematically inflates the upper
confidence bounds for suboptimal arms.

Lemma 1.6. Consider a stochastic bandit problem with K arms, i.i.d. rewards Xt(k) ∈ [0, 1] from each arm
k, and average rewards µ1, . . . , µK . Let ∆k = µ?−µk where µ? = µi? and i? is the index of an optimal arm.
Consider a UCB policy that at round t selects arm It defined by

It = arg max
k∈{1,...,K}

(
X̂t(k) + c

(
Nt(k), k

))
(ties broken arbitrarily), where X̂t is the sample average of the rewards obtained from arm k over the Nt(k)
times when the arm was chosen in rounds 1, . . . , t− 1 (initially, N1(k) = 0 for all arms) and

c(s, k) =


α ln(δ−1)

γ2s
+

√
ln(δ−1)

s
if k is suboptimal,√

ln(δ−1)

s
otherwise,

with α ≥ 0 and c(s, k) = +∞ if s = 0. Then

RT ≤ 1 +

(
2(δT )2 +

8α ln(δ−1)

γ2

)
K +

∑
k : ∆k>0

4 ln(δ−1)

∆k
.

Proof. Pick any suboptimal arm k and t ≥ 2. Note that It = k implies

X̂t(i
?) + c

(
Nt(i

?), i?
)
≤ X̂t(k) + c

(
Nt(k), k

)
which in turn imply(

X̂t(i
?) ≤ µ∗ − c

(
Nt(i

?), i?
))
∨
(
X̂t(k) ≥ µk + c

(
Nt(k), k

))
∨
(
c
(
Nt(k), k

)
> ∆k/2

)
.

Using standard Chernoff bounds, we can write

T∑
t=2

P
(
X̂t(i

?) ≤ µ∗ − c
(
Nt(i

?), i?
))
≤

T∑
t=2

P
(
∃s ∈ {1, . . . , t− 1}, X̂t(i

?) ≤ µ∗ − c(s, i?)
)

≤
T∑
t=2

t−1∑
s=1

exp

(
−2s

ln(δ−1)

s

)
≤ T 2δ2



and

T∑
t=2

P
(
X̂t(k) ≥ µk + c

(
Nt(k), k

))
≤

T∑
t=2

P
(
∃s ∈ {1, . . . , t− 1}, X̂t(k) ≥ µk + c(s, k)

)
≤

T∑
t=2

P

(
∃s ∈ {1, . . . , t− 1}, X̂t(k) ≥ µk +

√
2 ln(δ−1)

s

)

≤
T∑
t=2

t−1∑
s=1

exp

(
−2s

ln(δ−1)

s

)
≤ T 2δ2 .

It remains to control I
{
c
(
Nt(k), k

)
> ∆k/2

}
when It = k. We now show that

T∑
t=2

I
{
c
(
Nt(k), k

)
> ∆k/2

}
≤ 4

(
2α

γ2∆k
+

1

∆2
k

)
ln(δ−1) .

If k is chosen s > 0 times in the first t− 1 steps, then Nt(k) = s. Thus c(s, k) > ∆k/2 implies

α ln(δ−1)

γ2s
+

√
ln(δ−1)

s
>

∆k

2
. (1.12)

We now prove that s must be smaller than

4

(
2α

γ2∆k
+

1

∆2
k

)
ln(δ−1)

for this to happen. If α = 0 this is trivially true. To see that this still true for α > 0, note that with this
assumption (1.12) is equivalent to √

ln(δ−1)

s
>
−1 +

√
1 + 2∆kα/γ2

2α/γ2
.

Set x = 2∆kα/γ
2 > 0 so that the above can be rewritten as√

ln(δ−1)

s
>

∆k

(√
1 + x− 1

)
x

or, squaring both sides,
s

ln δ−1
<

x2

∆2
k

(√
1 + x− 1

)2 .

We now prove that
x2

∆2
k

(√
1 + x− 1

)2 ≤ 4

∆2
k

(x+ 1) .

Indeed, the above is equivalent to
x√

1 + x− 1
≤ 2
√

1 + x

which holds because
x√

1 + x− 1
=

(√
1 + x+ 1

) (√
1 + x− 1

)
√

1 + x− 1
≤ 2
√

1 + x .

Setting δ = T , the regret is therefore bounded as follows

RT ≤ 1 +
∑

k : ∆k>0

∆k

T∑
t=2

P(It = k) ≤ 1 + 2KT 2δ2 +
8αK

γ2
ln(δ−1) +

∑
k : ∆k>0

4 ln(δ−1)

∆k
.

This concludes the proof.



Algorithm 5: Noisy Cautious Search

Input: confidence parameter δ ∈ (0, 1), valuation index i ∈ {1, 2}, lower bound γi ∈ (0, 1).
Initialization: set a← 0, b← 1.

1 for s ∈
{

0, 1, . . . , dlog2 log2 T e
}
do // phases

2 set n← 1, εs ← 2−2s , D ← 1;

3 while (a+ nεs < b) ∧
[
(i = 1 ∧D = 1) ∨ (i = 2 ∧D > 0)

]
do

4 offer price a+ nεs for
⌈
ln(δ)/ln(1− γi)

⌉
rounds; // a macrostep

5 update n← n+ 1 and the sample mean D of D
(
a+ (n− 1)εs

)
;

6 update a← a+ (n− 1)εs, b← a+ nεs;

7 offer a for all remaining rounds;

1.8.4 Two valuations

In this section we present all key results related to subroutines of Algorithm 8 and give a formal proof of
Theorem 1.6.

Noisy Cautious Search

This procedure is a variant of the cautious search described in Section 1.8.2. It identifies the location of a
valuation vi with high probability and low regret whenever a lower bound γi on its probability pi is known in
advance. During the search, each price is posted for

⌈
ln(δ)/ln(1− γi)

⌉
times in a row, where δ is a confidence

parameter. We call such a sequence of consecutive rounds a macrostep. For i = 1, we say that a macrostep
is a failure if at least one price is rejected, it is a success if all prices are accepted, and the algorithm makes
a mistake if the macrostep is a success but the price offered is strictly bigger than v1. For i = 2, we say
that a macrostep is a failure if no price is accepted, it is a success if at least one price is accepted, and the
algorithm makes a mistake if the macrostep is a failure but the price offered is at most v2.

The Noisy Cautious Search for a valuation vi proceeds in phases and begins by offering 1/2 during the
first macrostep. During each phase n ≥ 0, if the last macrostep was a success, the price offered is increased
by 2−2n . As soon as a macrostep is a failure, phase n ends and phase n+1 begins by offering the price of the
last successful macrostep, plus 2−2n+1

. After dlog2 log2 T e phases, the price of the last successful macrostep
is offered for all remaining rounds.

Lemma 1.7. The Noisy Cautious Search for vi with parameters i, δ, γi satisfies the following:
1. the price offered during each macrostep m is 2/m-close to vi with probability at least 1−mδ;
2. the total reward accumulated by the end of macrostep m is at least

(
mviD(vi)− 3(ln lnT )− 8

) ln δ

ln(1− γi)

with probability at least 1−mδ.

Proof. Claim 1 follows by Lemma 1.5 and the fact that the probability of making a mistake during each
macrostep is at most δ by Chernoff inequality for Bernoulli random variables. Similarly, claim 2 follows by
Lemma 1.4 and, again, Chernoff inequality.

Capped Mean Estimation

We begin this section by providing a method to find a high-confidence multiplicative estimate of the expecta-
tion µ of any [0, 1]-valued random variable, using only O

(
ln(1/δ)/µ

)
samples. Most notably, the expectation

µ need not be known in advance. With our novel technique, we improve upon Berthet and Perchet [9, Lemma
13], that proved a similar risult using O

(
ln(1/δ)/µ2

)
samples. This result will be pivotal for our analysis



and we believe it will also be valuable in its own right. For any set X1, . . . , XT of random variables, we
denote by

Xt =
1

t

t∑
s=1

Xs and S2
t =

1

t− 1

t∑
s=1

(
Xs −Xt

)2
the sample mean and the sample variance of the first t random variables. The following result is a straight-
forward consequence of the empirical Bernstein bound and the confidence bound for standard deviation
proven in [59, Theorems 4, 10].

Theorem 1.8. Let X1, . . . , XT be a set of [0, 1]-valued i.i.d. random variables with expectation µ and standard
deviation σ. For all δ ∈ (0, 1) and all t ∈ {2, . . . , T}, the two following conditions hold simultaneously with
probability at least 1− 3δ∣∣Xt − µ

∣∣ ≤ √2St

(
ln(1/δ)

t

)1/2

+
7

3

ln(1/δ)

t− 1
and St ≤ σ +

√
2

(
ln(1/δ)

t− 1

)1/2

.

We can now prove our multiplicative mean estimation theorem.

Theorem 1.9 (Multiplicative mean estimation). Let X1, . . . , XT be a set of [0, 1]-valued i.i.d. random
variables with expectation µ > 0 and standard deviation σ. For all δ ∈ (0, 1) and all α ≥ 0, if T ≥ t0, where

t0 =

⌈
α+ 2

3µ
ln

(
1

δ

)(√
9α2 + 114α+ 192 + 3α+ 19

)⌉
+ 2 = O

(
α2

µ
ln

1

δ

)
and τ = τ(T, δ, α) is the smallest time t ∈ {2, . . . , T} such that

Xt

α+ 1
≥
√

2St

(
ln(1/δ)

t

)1/2

+
7

3

ln(1/δ)

t− 1
(1.13)

then, with probability at least 1− 3(T − 1)δ,
1. τ ≤ t0,
2. for all t ∈ {2, . . . , T} such that (1.13) holds,(

α

α+ 1

)
Xt < µ <

(
α+ 2

α+ 1

)
Xt . (1.14)

Proof. Denote for all t ∈ {2, . . . , T}, ct =
√

2S2
t ln(1/δ)/t+ (7/3) ln(1/δ)/(t− 1). By Theorem 1.8, the good

event
G =

{
∀t ∈ {2, . . . , T}, Xt − ct < µ < Xt + ct and St ≤ σ +

√
2 ln(1/δ)/(t− 1)

}
has probability P(G) ≥ 1− 3(T − 1)δ. For all outcomes in G and all t ∈ {2, . . . , T},

Xt < (α+ 1)ct ⇐⇒ µ− ct < Xt < (α+ 1)ct =⇒ µ < (α+ 2)ct =⇒ t < t0

hence τ ≤ t0. This implies that for all outcomes in G and all t ∈ {1, . . . , T} such that Xt ≥ (α+ 1)ct,(
α

α+ 1

)
Xt = Xt −

Xt

α+ 1
≤ Xt − ct < µ < Xt + ct ≤ Xt +

Xt

α+ 1
=

(
α+ 2

α+ 1

)
Xt.

The following capped version of the previous theorem interrupts the process if during the multiplicative
mean estimation it is learned that µ is smaller than some threshold parameter θ.

Corollary 1.1 (Capped Mean Estimation). For any threshold parameter θ ∈ [0, 1], under the same assump-
tions of Theorem 1.9, define τθ = min{τ, tθ}, where

tθ =

⌈
α+ 2

3θ
ln

(
1

δ

)(√
9α2 + 114α+ 192 + 3α+ 19

)⌉
+ 2 = O

(
α2

θ
ln

1

δ

)
.

With probability at least 1− 3(T − 1)δ,



Algorithm 6: Capped Mean Estimation

Input: x1, x2, . . . ∈ [0, 1], θ ∈ [0, 1], δ ∈ (0, 1), ρ ∈ {0, 1}.
Initialization: set t← 3 and D̂s = (1− ρ)I {Vs ≥ xs}+ ρ(1− I {Vs ≥ xs}) for all s.

1 offer x1 and x2 once each;

2 set D ← 1
2

∑2
s=1 D̂s and S2 ←

∑2
s=1

(
D̂s −D

)2
;

3 while
[
t ≤ d40 ln(1/δ)/θe+ 2

]
∧
[
D <

√
8S2 ln(1/δ)/t+ (14/3) ln(1/δ)/(t− 1)

]
do

4 offer price xt once;

5 update D ←
(
D(t− 1) + D̂t

)
/t, S2 ←

(
S2(t− 2) + (D̂t −D)2

)
/(t− 1), and t← t+ 1;

6 if t > d40 ln(1/δ)/θe+ 2 then return that µ ≤ θ;
7 else return D/2;

1. if τθ = τ , then for all t ∈ {2, . . . , T} such that (1.13) holds, inequalities (1.14) also hold;

2. if τθ = tθ, then µ ≤ θ.

Our Capped Mean Estimation is defined as the Capped Mean Estimation of the demand curve (or one
minus the demand curve if ρ = 1) at a given sequence of prices3 x1, x2, . . ., with threshold θ ∈ [0, 1] (where
1/θ is interpreted as ∞ when θ = 0), confidence parameter δ ∈ (0, 1), reverse parameter ρ (that regulates if
D(x1) or 1−D(x1) is being estimated) and α = 1 (Algorithm 6).

Variant: Joint Capped Mean Estimation

We call (w, θ, δ)-Joint Capped Mean Estimation a variant of Algorithm 6 in which xt = w for all t and
estimations for both ρ = 0 and ρ = 1 are carried on at the same time; i.e., where both D (sample mean for

ρ = 0) and D
′

= 1 −D (sample mean for ρ = 1), as well as their respective sample variances S2 and (S′)2

are maintained; the condition
[
D ≤

√
8S2 ln(1/δ)/t + (14/3) ln(1/δ)/(t − 1)

]
in the while loop is replaced

by (
A ∨A′

)
=

([
D <

√
8S2

t
ln

1

δ
+

14

3(t− 1)
ln

1

δ

]
∨

[
D
′
<

√
8(S′)2

t
ln

1

δ
+

14

3(t− 1)
ln

1

δ

])

and at the end, we return D/2 (resp., D
′
/2) and we say that D(w) (resp., 1−D(w)) is well-estimated if and

only if A (resp., A′) is false; if A (resp., A′) is true we return that D(w) (resp., 1−D(w)) is at most θ.

Variant: Capped Mean Estimation on Noisy Cautious Search

With a slight abuse of notation, we say that a (θ, δ, ρ)-Capped Mean Estimation is run on a (δ, i, γi)-Noisy
Cautious Search if x1, x2, . . . are the prices offered during the first successful macrosteps of a (δ, i, γi)-Noisy
Cautious Search run for Θ

(
1

D(x1)

)
macrosteps (resp., Θ

(
1

1−D(x1)

)
macrosteps); i.e., while the Noisy Cautious

Search proceeds, an increasingly accurate estimate p̂ of D(x1) (resp., 1−D(x1)) is maintained at the same
time using samples from successful macrosteps; as soon as the stopping criterion for the Capped Mean
Estimation is met, the estimation stops while the Noisy Cautious Search proceeds until it reaches d6/p̂e
macrosteps, at which point the whole process ends returning p̂ and the price v̂i offered during the last
succesful Noisy Cautious Search macrostep.

Cautious Mean Estimation

The main idea of this section is that the problem for K = 2 is completely solved by determining v1, v2, and
p2. This suggests that computing an high-confidence estimate p2 once a value w ∈ (v1, v2] is located might
be a good idea. Sadly, it is not. The problem with this approach is that if p2 is very small an arbitrary high

3This algorithm is only used for prices x1, x2, . . . such such that D(xs) = D(xt) for all s, t.



Algorithm 7: Cautious Mean Estimation

Input: price w ∈ [0, 1], confidence parameter δ ∈ (0, 1).
1 run a (w, 2−2, δ)-Joint Capped Mean Estimation, returning p̂1, p̂2;
2 if D(w) and 1−D(w) are both well-estimated then // 1/4 ≤ p1, p2 ≤ 3/4
3 return p̂1, p̂2;
4 else if 1−D(w) is well-estimated then // p1 > 3/4
5 for s ∈ {2, 3, . . .} do
6 offer 2−s for

⌈
ln(δ)/ ln(3/4)

⌉
rounds;

7 if all offers are accepted then break and return that v1 is optimal;
8 else
9 continue the Joint Capped Mean Estimation with new parameters w, 2−(s+1), δ;

10 if p1 and p2 are both well-estimated then break and return p̂1, p̂2;

11 else if D(w) is well-estimated then // p2 > 3/4
12 run (0, δ, 1)-Capped Mean Estimation on

(
δ, 2, 3

4

)
-Noisy Cautious Search, returning p̂1, v̂2;

13 offer v̂2q̂2 − p̂1 for
⌈

ln(1/δ)/p̂1

⌉
rounds, where q̂2 ← 1− p̂1;

14 if at least one offer is rejected then return that v2 is optimal;
15 else return p̂1, p̂2;

regret may be incurred in doing so. On the other hand, the more evidence is gathered that p2 is very small,
the less likely it is that v2 is optimal. For these and other more subtle reasons, a great deal of caution is
needed in order to obtain estimate of p2 that is just good enough to use.

The algorithm we present for dealing with these issues is called Cautious Mean Estimation and it receives
as an input a price w ∈ (v1, v2] (i.e., that can be used to estimate p2), as well as a confidence parameter
δ. The routine begins by determining if p1 and p2 are both bigger than 1/4 by using a Joint Capped Mean
Estimation and invoking Corollary 1.1. If this is true, it simply returns the estimates of p1 and p2 to the
main routine; otherwise it behaves differently depending on which one is true: p2 ≤ 1/4 or p2 ≥ 3/4, which
can be checked invoking again Corollary 1.1. If p2 ≤ 1/4, it proceeds in phases. In each phase s, it checks if
v1 ≥ 2−s by offering 2−s a small number of times, in which case it halts returning that v1 is the optimum.
If it is not, it determines if p1 and p2 are bigger than 2−(k+1) by using one more time Corollary 1.1, in
which case it returns their estimates to the main routine. If they are not, it moves on to phase k + 1. If on
the other hand p2 was bigger than 3/4, it performs a Noisy Cautious Search for v2, while at the same time
collecting samples to estimate p1, returning estimates v̂2 and p̂1. Then it first checks if v1 ≤ v̂2(1− p̂1)− p̂1 by
posting the latter for

⌈
ln(1/δ)/p̂1

⌉
rounds. If the test is positive, it halts returning that v2 is the optimum.

Otherwise it returns p̂1 and p̂2 to the main routine.

Lemma 1.8. For all w ∈ (v1, v2] and all δ ∈ (0, 1), the Cautious Mean Estimation run with parameters w, δ
satisfies the following with probability at least 1− (15T − 13)δ:

1. if the algorithm returns that v1 or v2 is optimal, then it is correct;

2. if the algorithm returns p̂1 and p̂2, then both satisfy pi/3 < p̂i < pi;

3. the regret of the algorithm it at most (13)2 ln(1/δ) + 6.

Proof. By definition of Joint Capped Mean Estimation, line 7 lasts for at most
⌈
160 ln(1/δ)

⌉
+ 2 rounds,

which upper bounds the regret accrued during those time steps. Denote G the good event in which which
items 1 and 2 of Corollary 1.1 hold simultaneously for both the estimate of p1 and p2. To prove the result,
we can (and do!) restrict our analysis to good outcomes, i.e., outcomes belonging in G. Indeed, Corollary 1.1
implies that one and only one of the three conditions at lines 2, 4, and 11 is executed with probability at
least P(G) ≥ 1− 6(T − 1)δ and we will show that the result holds in all three cases.

If the condition at line 2 is true, then the result follows immediately by Corollary 1.1.



Assume now that the condition at line 4 is true and fix k ∈ N such that 2−k ≤ max{v1, p2} ≤ 2−(k−1).
Note that if v1 ≥ p2, the loop at line 5 will break with probability at least 1− δ (by Chernoff inequality) at
line 7 as soon as s = k; this proves point 1 for v1. If on the other hand v1 < p2, the loop will break with
probability at least 1−6(T −1)δ (by Corollary 1.1) at line 10 as soon as s = k−1; this proves point 2. In any
case, then, at most k − 1 cycles of the loop are performed with probability at least 1− (6T − 5)δ. If s ≤ k,
line 6 is performed at most k−1 times and since the cost of sampling is at most v1 (if v1 is optimal) or p2 (if v2

is optimal), than the total regret accrued by executing line 6 is at most (k−1)
⌈

ln(δ)/ ln(3/4)
⌉

max{v1, p2} ≤
(e ln 2)−1

⌈
ln(δ)/ ln(3/4)

⌉
, where we used x log2(1/x) ≤ (e ln 2)−1, for all x > 0. On the other hand, by the

end of phase k the Joint Capped Mean Estimation at lines 7, 9 has offered w for at most
⌈
2k+140 ln(1/δ)

⌉
+2

accruing at most 40 ln(1/δ) + 3 regret. This proves point 3.
Finally, consider the case in which the condition at line 11 is true. The Noisy Cautious Search at

line 12 stops after at most
⌈
40 ln(1/δ)/p1

⌉
+ 2 rounds, returning p̂i ∈ (pi/3, pi), with probability at least

1 − (7T − 6)δ by the fact that it makes a mistake with probability at most δ and Theorem 1.9. This
proves point 2. If v2 is optimal, Lemma 1.7 shows that the regret of the Noisy Cautious Search is at most(
3(ln lnT ) + 8 ln(1/δ)

)
ln(4/3) with probability at least 1 − Tδ. If v1 is optimal, the additional regret is at

most
(
d40 ln(1/δ)/p1e+ 2

)
(v1 − wp2) ≤ 40 ln(1/δ) + 3.

Consider now lines 13-14. Since p1/3 < p̂1 < p1, then p2 < q̂2 < p2 + (2/3)p1. Furthermore, v2 − p1 ≤
v̂2 ≤ v2 with probability at least 1− Tδ by Lemma 1.7. If the test at line 14 is true, then v1 < v2p2 and v2

is optimal with probability at least 1− δ; this proves point 1 for v2. To compute the regret accumulated at
line 13, assume first that v1 is optimal; then necessarily v1 ≥ v̂2q̂2 − p̂1 and the regret of line 13 is at most
(v1 − v̂2q̂2 + p̂1)

⌈
3 ln(1/δ)/p1

⌉
≤ 9 ln(1/δ) + 3. If on the other hand v2 is optimal, then the regret of line 13

is at most (p2v2− v̂2q̂2 + p̂1)
⌈
3 ln(1/δ)/p1

⌉
≤ 6 ln(1/δ) + 2. This proves point 3 and concludes the proof.

2-UCB

This subroutine is a slightly modified version of Algorithm 3. The only differences are that two feasible inter-
vals are initialized at the beginning, each valuation vi gets a personalized number of rounds

⌈
8 ln(δ)/ ln(1−γi)

⌉
at line 6, and the test at line 11 need not be executed as it is known in advance that K = 2.

The following result is a straightforward adaptation of Theorem 1.5. As such, the proof is omitted.

Lemma 1.9. If ∆ = |p2v2 − v1|, γ1 ≤ p1, γ2 ≤ p2, and 2-UCB run with δ = T−2, it incurs a regret

O
(

lnT

∆
+ (lnT )(ln lnT )

(
α1

− ln(1− γ1)
+

α2

− ln(1− γ2)

))
,

where (α1, α2) = (v1 − v1p2, v1) if v1 is optimal, (α1, α2) = (v2p2 − v1p2, p2v2) if v2 is optimal, and the first
term is absent if ∆ = 0.

Proof of Theorem 1.6

We finally have all the instruments to prove Theorem 1.6, that we restate for completeness.

Theorem 1.6. If Algorithm 8 is run on two unknown pairs (v1, p1) and (v2, p2) with input parameter
δ = T−2, then its regret satisfies

RT = O
(

log T

∆
+ (log T )(log log T )

)
,

where the first term is absent if ∆ = |p2v2 − v1| is zero.

Proof. Putting together the proofs of all previous lemmas, the probability of making a mistake in at least
a test of at least a routine is upper bounded by O(Tδ). For this reason, we can (an do) assume that no
mistakes happen. We divide the proof into three different cases.



Algorithm 8:

Input: Confidence parameter δ ∈ (0, 1).
1 run a Binary Search, returning [a1, a2]; // phase 1

2 run a Capped Mean Estimation of the demand at a2 with parameter θ = a1, returning p̃2;
3 if p̃2 > 0 then set w ← a2 ;
4 else
5 offer price a1 until it is rejected; // check if a1 < v1 ≤ v2 < a2

6 set w ← a1;

7 run a Cautious Mean Estimation of the demand at w, returning p̂1 and p̂2; // phase 2

8 if the Cautious Mean Estimation was halted because v1 or v2 is the obvious optimum then
9 run a Cautious Search for the optimal valuation with lower bound 1/2;

10 else run 2-UCB with parameters γ1 = p̂1 and γ2 = p̂2 ; // shrink the interval

Case 1 Assume that during phase 1 all offers of a2 are rejected and all offers of a1 are accepted. Consider
the following four subcases. If a1 ≤ v1 ≤ v2 ≤ a2, the regret is at most O(log T ). Assume now that
v1 ≤ a1 ≤ v2 ≤ a2. If v2 is optimal, then the regret is at most O

(
log(T )/a1

)
= O

(
log(T )/∆

)
. If v1 is

optimal, then the regret is at most O
(
(v1 − a1p2)T + v1 ln(T )/a1

)
= O

(
a1p1T + ln(T )

)
. Note that this case

only happens with probability p
O(T−ln(T )/a1)
2 , which is at least 1/T only if p1 = O

(
log T

T−log(T )/a1

)
. Now, if

a1 = Ω
(

log(T )/T
)

then the regret is at most O(log T ); otherwise it is at most O(log T ) because v1 is small.

If a1 ≤ v1 ≤ a2 ≤ v2, the regret is at most O
(
(max{v1, p2v2} − a1)T + max{v1, p2v2} log(T )/a1

)
. Since all

offers of a2 were rejected, Corollary 1.1 implies that p2 ≤ a1, then p2v2 ≤ a1 ≤ v1, hence v1 is optimal.
The regret is therefore at most O(log T ). Finally, assume that v1 ≤ a1 ≤ a2 ≤ v2. Combining the same
arguments as above, v1 is optimal but p1 is small and the total regret is at most O(log T ).

Case 2 Assume that during phase 1 some offers of a2 are accepted. Corollary 1.1 implies that the first
Capped Mean Estimation lasts at most O

(
log(T )/max{a1, p2}

)
rounds, hence its regrets is at most O(log T ).

Lemma 1.8 implies that the Cautious Mean Estimation has a regret at most O(log T ). If the cautious mean
estimation is halted returning that v1 or v2 is optimal, then Lemma 1.7 implies that the regret is at most
O
(
(log T )(log log T )

)
. Assume now that the cautious mean estimation returns p̂1, p̂2. By construction, if

p2 ≤ 1/4, then necessarily v1 ≤ 2p2, thus ∆ ≤ 2p2. On the other end, if p2 ≥ 3/4, then necessarily
v1 ≥ p2v2 − 2p1 thus ∆ ≤ 2p1 if v2 is optimal. Using Lemma 1.9 and plugging in the above upper bounds
gives the result.

Case 3 Assume that during phase 1 all offers of a2 are rejected and some offers of a1 are rejected. The
proof of this case is the same as the previous one, except that sampling a2 has an extra regret cost. If v1 is
optimal, then the additional regret is at most O

(
v1 log(T )/a1

)
= O(lnT ) because v1 < a1. Finally, assume

that v2 is optimal. If v2 ≤ a2, the additional cost is at most
(

ln(T )/a1

)
p2v2 = O(lnT ). If a2 < v2, then

p2 ≤ a1 by Corollary 1.1 and the additional cost is at most O
(
(p2v2 − p2a2) log(T )/a1

)
= O(log T ).

1.8.5 Nonstochastic dynamic pricing: some initial results

In this section we present some initial results for the nonstochastic setting; namely, when the sequence
V1, V2, . . . is deterministic rather than stochastic. This setting was studied in [52] without the restriction
that each Vt belongs to a common finite set of valuations. We show an upper bound of O(

√
T ) on the regret

in the simple case when Vt ∈ {v1, v2} for all t (with 0 ≤ v1 ≤ v2 ≤ 1) and v2 is known. Note that this is not
significantly improvable, as a matching lower bound of Ω(

√
T ) can be proven in the stochastic setting even

when v1 and v2 are both known. To see that, consider v1 = 1
2 and v2 = 3

4 with D(v2) = 2
3 ± ε for ε < 1

3 , so
that v1 has constant revenue 1

2 , and v2 has expected revenue 1
2 ±

3
4ε. We can now adapt the argument in the

proof of the nonstochastic bandit lower bound of [5] for the two equiprobable scenarios D(v2) = 2
3 + ε and



D(v2) = 2
3 − ε. This allows us to conclude that in the first T rounds any algorithm suffers regret of order

ε T unless v2 is played at least ε−2 times. Choosing ε = T−1/2 gives the desired bound.
The algorithm achieving regret RT = O

(√
T
)

uses the nonstochastic bandit algorithm Exp3 [5] fed with
losses `t(x) = 1− rt(x). Since

T∑
t=1

(
rt(x)− rt(Xt)

)
=

T∑
t=1

(
`t(Xt)− `t(x)

)
always hold, bounding the regret of Exp3 defined with respect to losses is equivalent to bounding the
regret with respect to revenues. However, as only v2 is known, we run Exp3 using two actions: v2 and
an action, called b, that starts at v2 and converges to v1 during the execution of Exp3. In particular, we
decrease b by steps of length T−1/2 whenever b is played and rejected. Clearly, b stops moving as soon as
b ∈

(
v1 − T−1/2, v1

]
, which is good enough to bound Exp3’s future regret. In order to bound the regret

incurred while b > v1 holds, note that as long as b > v1 is true, we have: `t(b) < `t(v1) when Vt = v2, and
`t(b) > `t(v1) when Vt = v1. The problem is that we can not bound deterministically the smallest time t such
that b ≤ v1, as this depends on the buyers’ choices and the algorithm’s random sequence of actions. On the
other hand, we know that `t(b) > `t(v1) and Xt = b can simultaneously occur at most

√
T times, because

b is decreased by T−1/2 when this happens. We can exploit this observation as follows: when Exp3 plays b
and does not sell, then we feed the algorithm a reduced loss of zero. This has the effect of underestimating
the algorithm loss by an amount which is bounded by the number of times the algorithm got a reduced
loss. This effect is only increasing the regret by at most

√
T , since is the largest number of times b can be

decreased while being larger than v1.
More formally, our algorithm runs Exp3 on the two prices bt and v2, where bt is dynamically adjusted

during the execution. Price bt is used to locate v1 and is initially set to v2. Exp3 is run with reduced losses˜̀
t of the form ˜̀

t(bt) = `t(bt)I {Vt ≥ bt} and ˜̀t(v2) = `t(v2), where `t(x) = 1−x I {Vt ≥ x} are the true losses.

Note that, whenever bt > v1, Vt = v1 implies ˜̀t(bt) = 0 = `t(v1), and Vt = v2 implies ˜̀t(b) ≤ `(v1). Since

bt is random (it depends on X1, . . . , Xt−1), ˜̀t(bt) and `t(bt) are also random. Technically, this corresponds
to running Exp3 with a nonoblivious adversary —see, e.g., [23, Remark 4.1]. However, the regret bounds of
Exp3 hold unchanged even for nonoblivious adversaries.

During the execution of Exp3, bt is adjusted according to the following rule: if bt is posted at time t and
Vt < bt, then bt+1 = bt − T−1/2. For all t let Vt ∈ {v1, v2} be the value played by the adversary at time t
and Xt ∈ {bt, v2} be the price posted by the algorithm.

Theorem 1.10. The regret of the above algorithm satisfies RT ≤ 2
√
T +
√

4T ln 2.

Proof. Since b1 ≤ v2 < 1, and because Xt = bt and I {Vt < bt} imply bt+1 = bt − T−1/2, we have that

T∑
t=1

I {Xt = bt} I {Vt < bt} <
√
T .

Therefore, the true total loss of Exp3 deterministically relates to its reduced loss as follows,

T∑
t=1

˜̀
t(Xt) =

T∑
t=1

`t(Xt)−
T∑
t=1

`t(bt)I {Xt = bt} I {Vt < bt} ≥
T∑
t=1

`t(Xt)−
√
T . (1.15)

If bt ≤ v1 for some t, then bt is always accepted. Hence it is never decreased further, which in turn implies
that bt > v1 − T−1/2 holds for all t. So we have that ˜̀t(bt) ≤ `t(v1) + T−1/2. Recalling that ˜̀t(v2) = `t(v2)

and using Exp3 regret bound (see, e.g., [18, Theorem 3.1]) applied to the nonoblivious reduced losses ˜̀t, we
obtain

E

[
T∑
t=1

`t(Xt)

]
−
√
T ≤ E

[
T∑
t=1

˜̀
t(Xt)

]
(using (1.15))

≤ min

{
T∑
t=1

˜̀
t(bt),

T∑
t=1

˜̀
t(v2)

}
+
√

4T ln 2 ≤ min

{
T∑
t=1

(
`t(v1) + T−1/2

)
,

T∑
t=1

`t(v2)

}
+
√

4T ln 2 .



Therefore, we get

E

[
T∑
t=1

`t(Xt)

]
≤ min
v∈{v1,v2}

T∑
t=1

`t(v) + 2
√
T +
√

4T ln 2

concluding the proof.





Chapter 2

Cooperative Online Learning

We study an asynchronous online learning setting with a network of agents. At each time step, some of
the agents are activated, requested to make a prediction, and pay the corresponding loss. The loss function
is then revealed to these agents and also to their neighbors in the network. Our results characterize how
much knowing the network structure affects the regret as a function of the model of agent activations. When
activations are stochastic, the optimal regret (up to constant factors) is shown to be of order

√
αT , where T

is the horizon and α is the independence number of the network. We prove that the upper bound is achieved
even when agents have no information about the network structure. When activations are adversarial the
situation changes dramatically: if agents ignore the network structure, a Ω(T ) lower bound on the regret
can be proven, showing that learning is impossible. However, when agents can choose to ignore some of their
neighbors based on the knowledge of the network structure, we prove a O(

√
χT ) sublinear regret bound,

where χ ≥ α is the clique-covering number of the network.

2.1 Introduction

Distributed asynchronous online learning settings with communication constraints arise naturally in several
applications. For example, large-scale learning systems are often geographically distributed, and in domains
such as finance or online advertising, each agent must serve high volumes of prediction requests. If agents
keep updating their local models in an online fashion, then bandwidth and computational constraints may
preclude a central processor from having access to all the observations from all sessions, and synchronizing
all local models at the same time. An example in a different domain is mobile sensor networks cooperating
towards a common goal, such as environmental monitoring. Sensor readings provide instantaneous, full-
information feedback and energy-saving constraints favor short-range communication over long-range. Online
learning algorithms distributed over spatial locations have already been proposed for problems in the field
of climate informatics [62, 63], and have shown empirical performance advantages compared to their global
(i.e., non-spatially distributed) online learning counterparts.

Motivated by these real-life applications, we introduce and analyze an online learning setting in which
a network of agents solves a common online convex optimization problem by sharing feedback with their
network neighbors. Agents do not have to be synchronized. At each time step, only some of the agents are
requested to make a prediction and pay the corresponding loss: we call these agents “active”. Because the
feedback (i.e., the current loss function) received by the active agents is communicated to their neighbors,
both active agents and their neighbors can use the feedback to update their local models. The lack of global
synchronization implies that agents who are not requested to make a prediction get “free feedback” whenever
someone is active in their neighborhood. Since in online convex optimization the sequence of loss functions
is fully arbitrary, it is not clear whether this free feedback can improve the system’s performance. In this
chapter, we characterize under which conditions and to what extent such improvements are possible.

Our goal is to control the network regret, which we define by summing the average instantaneous regret of
the active agents at each time step. In order to build some intuition on this problem, consider the following



two extreme cases where, for the sake of simplicity, we assume exactly one agent is active at each time step.
If no communication is possible among the agents, then each agent v learns in isolation over the subset Tv
of time steps when they are active. Assuming each agent runs a standard online learning algorithm with
regret bounded by O(

√
T ) —such as Online Mirror Descent (OMD)— the network regret is at most of order∑

v

√
Tv ≤

√
NT , where T =

∑
v Tv and N is the number of agents. Next, consider a fully connected graph,

where agents share their feedback with the rest of the network. Each local instance of OMD now sees the
same loss sequence as the other instances, so the sequence of predictions is the same, no matter which agents
are chosen to be active. The network regret is then bounded by O(

√
T ), as in the single-instance case. Our

goal is to understand the regret when the communication network corresponds to an arbitrary graph G.

We consider two natural activation mechanisms for the agents: stochastic and adversarial. In the stochas-
tic setting, at each time step t each agent v is independently active with probability qv, where qv is a fixed and
unknown number in [0, 1]. Under this assumption, we show that when each agent runs OMD, the network
regret is O(

√
αT ), where α ≤ N is the independence number of the communication graph. Note that this

bound smoothly interpolates the two extreme cases of no communication (α = N) and full communication
(α = 1). From this viewpoint, α can be viewed as the number of “effective instances” that are implicitly
maintained by the system. It is not hard to prove that this upper bound cannot be improved upon: fix a
network G and a maximal independent set in G of size α. Define qv = 1/α if v belongs to the independent
set and 0 otherwise. Then no two nodes that can ever become active are adjacent in G, and we reduced
the problem to that of learning with α non-commmunicating agents over T/α time steps. Since there are
instances of the standard online convex optimization problem on which any agent strategy has regret Ω(

√
T ),

we obtain that the network regret must be at least of order α
√
T/α =

√
αT . Note that this lower bound

also applies to algorithms that have complete preliminary knowledge of the graph structure, and can choose
to ignore or process any feedback coming from their neighbors. In contrast, the OMD instances used to
prove the upper bound are fully oblivious both to the graph structure and to the source of their feedback
(i.e., whether their agent is active as opposed to being the neighbor of an active agent).

In the adversarial activation setting, nodes are activated according to some unknown deterministic sched-
ule. Surprisingly, under the same assumption of obliviousness about the feedback source which we used to
prove the O(

√
αT ) upper bound for stochastic activations, we show that on certain network topologies a

deterministic schedule of activations can force a linear regret on any algorithm, thus making learning impos-
sible. On the other hand, if agents are free to use feedback only from a subset of their neighbors chosen with
knowledge of the graph structure, then the network regret of OMD is O(

√
χT ), where χ is the clique-covering

number of the communication graph. Hence, unlike the stochastic case, where the knowledge of the graph is
not required to achieve optimality, in the adversarial case the ability of choosing the feedback source based
on the graph structure is both a necessary and sufficient condition for sublinear regret.

The extension of the OMD analysis to a multiagent setting with communication (Theorem 2.2), and
the lower bound for the adversarial activation setting (Theorem 2.5) are the main technical novelties of the
chapter.

2.2 Related works

The study of cooperative nonstochastic online learning on networks was pioneered in [6], where they in-
vestigated a bandit setting in which the communication graph is a clique, users are clustered so that the
loss function at time t may differ across clusters, and some users may be non-cooperative. More recently, a
similar line of work was pursued in [24], where they derive graph-dependent regret bounds for nonstochastic
bandits on arbitrary networks when the loss function is the same for all nodes and the feedbacks are broad-
cast to the network with a delay corresponding to the shortest path distance on the graph. Although their
regret bounds —like ours— are expressed in terms of the network independence number, this happens for
reasons that are very different from ours, and by means of a different analysis. In their setting all agents
are simultaneously active at each time step, and sharing the feedback serves the purpose of reducing the
variance of the importance-weighted loss estimates. A node with many neighbors observes the current loss
function evaluated at all the points corresponding to actions played by the neighbors. Hence, in that context



cooperation serves to bring the bandit feedback closer to a full information setting.
In contrast, we study a full information setting in which agents get free and meaningful feedback only

when they are not requested to predict.1 Therefore, in our setting cooperation corresponds to faster learning
(through the free feedback that is provided over time) within the full information model, as opposed to
[24] where cooperation increases feedback within a single time-step. An even more recent work considering
bandit networks is [58]. They study a stochastic bandit model with simultaneous activation and constraints
on the amount of communication between neighbors. Their regret bounds scale with the spectral gap of
the communication network. The work [79] investigates a different partial information model of prediction
with expert advice where each agent is paired with an expert, and agents see only the loss of their own
expert. The communication model includes delays, and the regret bound depends on a quantity related to
the mixing time of a certain random walk on the network. The authors of [97] study a decentralized online
learning setting in which losses are characterized by two components, one adversarial and another stochastic.
They show upper bounds on the regret in terms of a constant representing the magnitude of the adversarial
component and another constant measuring the randomness of the stochastic part.

The idea of varying the amount of feedback available to learning agents has also appeared in single-agent
settings. In the sleeping experts model [35], different subsets of actions are available to the learner at different
time steps. In our multi-agent setting, instead, actions are always available while the agents are occasionally
sleeping. An algorithmic reduction between the two settings seems unlikely to exist because actions and
agents play completely different roles in the learning process. In the learning with feedback graphs model
[2, 57], each selection of an action reveals to the learner the loss of the actions that are adjacent to it in a
given graph. In our model, each time an active agent plays an action, the loss vector is revealed to the agents
that are adjacent to the active learner. There is again a similarity between actions and agents in the two
settings, but to the best of our knowledge there is no algorithmic reduction from multi-agent problems to
single-agent problems. Yet, it should not come as a surprise that some general graph-theoretic tools —like
Lemma 2.2 — are used in the analysis of both single-agent and multi-agent models.

A very active area of research involves distributed extensions of online convex optimization, in which the
global loss function is defined as a sum of local convex functions, each associated with an agent. Agents
are run over the local optimization problem corresponding to their local functions and communicate with
their neighborhood to find a point in the decision set approximating the loss of the best global action.
This problem has been studied in various settings: distributed convex optimization —see, e.g., [32, 80] and
references therein, distributed online convex optimization [45], and a dynamic regret extension of distributed
online convex optimization [81]. Unlike our work, these papers consider distributed extensions of OMD (and
Nesterov dual averaging) based on generalizations of the consensus problems. The resulting performance
bounds scale inversely in the spectral gap of the communication network.

2.3 Preliminaries and definitions

Let G = (V,E) be a communication network, i.e., an undirected graph over a set V of N agents. Without
loss of generality, assume V = {1, . . . , N}. For any agent v ∈ V , we denote by Nv the set of nodes containing
the agent v and the neighborhood

{
w ∈ V | (v, w) ∈ E

}
. The independence number αG is the cardinality

of the biggest independent set of G, i.e., the cardinality of the biggest subset of agents, no two of which are
neighbors.

We study the following cooperative online convex optimization protocol: initially, hidden from the agents,
the environment picks a sequence of subsets S1, S2, . . . ⊆ V of active agents and a sequence of differentiable
convex real loss functions `1, `2, . . . defined on a convex decision set X ⊂ Rd. Then, for each time step
t ∈ {1, 2, . . .},

1. each agent v ∈ St predicts with xt(v) ∈ X ,
2. each agent v ∈

⋃
v∈St Nv receives `t as feedback,

3. the system incurs the loss 1
|St|

∑
v∈St `t

(
xt(v)

)
(defined as 0 when St ≡ ∅).

1Two adjacent agents that are simultaneously active exchange their feedback, but this does not bring any new information
to either agent because we are in a full information setting and the loss function is the same for all nodes.



We assume each agent v runs an instance of the same online algorithm. Each instance learns a local model
generating predictions xt(v). This local model is updated whenever a feedback `t is received. We call paid
feedback the feedback `t received by v when v ∈ St (i.e., the agent is active) and free feedback the feedback
`t received by v when v ∈

(⋃
v∈St Nv

)
\ {St} (i.e., the agent is not active but in the neighborhood of some

active agent). The goal is to minimize the network regret as a function of the unknown number T of time
steps,

RT =

T∑
t=1

1

|St|
∑
v∈St

`t
(
xt(v)

)
− inf

x∈X

T∑
t=1

`t(x) (2.1)

Note that only the losses of active agents contribute to the network regret.

2.4 Online Mirror Descent

Algorithm 9: Online Mirror Descent

Input: σt-strongly convex regularizers gt : X → R for t ∈ {1, 2, . . .}.
Initialization: set θ1 = 0 ∈ Rd.

1 for t ∈ {1, 2, . . .} do
2 choose wt = ∇g∗t (θt);

3 observe ∇`t(wt) ∈ Rd;
4 update θt+1 = θt −∇`t(wt);

We now review the standard Online Mirror Descent algorithm (OMD) —see Algorithm 9— and its
analysis. Let f : X → R be a convex function. We say that f∗ : Rd → R is the convex conjugate of f if
f∗(x) = supw∈X

(
x · w − f(w)

)
. We say that f is σ-strongly convex on X with respect to a norm ‖·‖ if

there exists σ ≥ 0 such that, for all u,w ∈ X we have f(u) ≥ f(w) +∇f(w) · (u−w) + σ
2 ‖u−w‖

2
. The

following well-known result can be found in [83, Lemma 2.19 and subsequent paragraph].

Lemma 2.1. Let f : X → R be a strongly convex function on X . Then the convex conjugate f∗ is everywhere
differentiable on Rd.

The following result —see, e.g., [70, bound (6) in Corollary 1 with F set to zero]— shows an upper bound
on the regret of OMD.

Theorem 2.1. Let g : X → R be a differentiable function σ-strongly convex with respect to ‖·‖. Then the

regret of OMD run with gt =
√
t
η g, for η > 0, satisfies

T∑
t=1

`t
(
xt
)
− inf

x∈X

T∑
t=1

`t(x) ≤ D

η

√
T +

η

2σ

T∑
t=1

1√
t
‖∇`t‖2∗

where D = sup g and ‖·‖∗ is the dual norm of ‖·‖. If sup ‖∇`t‖∗ ≤ L, then choosing η =
√

2σD/L gives

RT ≤ L
√

2DT/σ.

A popular instance of OMD is the standard online gradient descent algorithm, corresponding to choosing
X equal to a closed Euclidean ball centered at the origin, and setting g = 1

2 ‖·‖
2

for all t, where ‖·‖ is the
Euclidean norm. Another instance is the Hedge algorithm for prediction with expert advice, corresponding
to choosing X equal to the probability simplex, and setting g(p) =

∑
i pi ln pi.



2.5 Stochastic activations

In this section we analyze the performance of OMD when the sets St of active agents are chosen stochastically.
As discussed in the introduction, in this setting we do not require any ad-hoc interface between each OMD
instance and the rest of the network. In particular, we make the following assumption.

Assumption 2.1 (Oblivious network interface). An online algorithm A is run with an oblivious network
interface if for each agent v it holds that:

1. v runs an instance Av of A,
2. Av uses the same initialization and learning rate as the other instances,
3. Av makes predictions and updates while being oblivious to whether v ∈ St or v ∈

(⋃
v∈St Nv

)
\ {St}.

This assumption implies that each instance is oblivious to both the network topology and the location of
the agent in the network. Moreover, instances make an update whenever they have the opportunity to do
so, (i.e., whenever they or some of their neighbors are active). The purpose of this assumption is to show
that communication might help OMD even without any network-specific tuning. In concrete applications,
one might use ad-hoc OMD variants that rely on the knowledge of the task at hand, and decrease the regret
even further. However, the lower bound proven in Section 1.4 shows that the regret cannot be decreased
significantly even when agents have full knowledge of the graph.

We start by considering a slightly simplified stochastic activation setting, where only a single agent is
activated at each time step (i.e., |St| = 1 for all t). The more general stochastic case is analyzed at the end of
this section. We assume that the active agents v1, v2, . . . are drawn i.i.d. from an unknown fixed distribution
q on V . The main result of this section is an upper bound on the regret of the network when all agents run
the basic OMD (Algorithm 9) with an oblivious network interface. We show that in this case the network
achieves the same regret guarantee as the single-agent OMD (Theorem 2.1) multiplied by the square root of
independence number of the communication network.

Before proving the main result, we state a combinatorial lemma that allows to upper bound the sum of
a ratio of probabilities over the vertices of an undirected graph with the independence number of the graph
[38, 57]. The proof is included for completeness.

Lemma 2.2. Let G = (V,E) be an undirected graph with independence number αG and q any probability
distribution on V such that Qv =

∑
w∈Nv qv > 0 for all v ∈ V . Then∑

v∈V

qv
Qv
≤ αG

Proof. Initialize V1 = V , fix w1 ∈ arg minw∈V1
Qw, and denote V2 = V \ Nw1

. For k ≥ 2 fix wk ∈
arg minw∈Vk Qw and shrink Vk+1 = Vk \ Nwk until Vk+1 = ∅. Being G undirected wk, wehave /∈

⋃k−1
s=1 Nws ,

therefore the number m of times that an action can be picked this way is upper bounded by αG. Denoting
N ′wk = Vk ∩Nwk , this implies

∑
v∈V

qv
Qv

=

m∑
k=1

∑
v∈N ′wk

qv
Qv
≤

m∑
k=1

∑
v∈N ′wk

qv
Qwk

≤
m∑
k=1

∑
v∈Nwk

qv

Qwk
= m ≤ αG

The following holds for any differentiable function g : X → R, σ-strongly convex with respect to some
norm ‖·‖.

Theorem 2.2. Consider a network G = (V,E) of N agents and assume St = {vt} for each t, where vt
is drawn i.i.d. from some fixed and unknown distribution on V . If all agents run OMD with an oblivious

network interface and using gt =
√
t
η g, for η > 0, then the network regret satisfies

E[RT ] ≤
(
D

η
+
ηL2

2σ

)√
αGT



where D ≥ sup g, L ≥ sup ‖∇`t‖∗, and ‖·‖∗ is the dual norm of ‖·‖. In particular, choosing η =
√

2σD/L

gives E[RT ] ≤ L
√

2DαGT/σ.

Proof. Fix x ∈ X , any sequence of realizations v1, . . . , vT , and any v in the support V ′ ⊂ V of the activation
distribution q. Note that the OMD instance run by v, makes an update at time t only when v ∈ Nvt . Hence,
letting rt(v) = `t

(
xt(v)

)
− `t(x) and applying Theorem 2.1,

T∑
t=1

rt(v)I{v ∈ Nvt} ≤
D

η

√
Tv +

ηL2

2σ

T∑
t=1

I{v ∈ Nvt}√∑t
s=1 I{v ∈ Nvs}

≤
(
D

η
+
ηL2

2σ

)√
Tv (2.2)

where Tv =
∑T
t=1 I{v ∈ Nvt}, the addends after the first inequality are intended to be null when the

denominator is zero, and we used
∑Tv
s=1 s

−1/2 ≤ 2
√
Tv. Note that rt(v) is independent of vt, as it only

depends on the subset of vs, s ∈ {1, . . . , t − 1}, such that v ∈ Nvs . Denote by Qv the probability P(v ∈
Nvt) =

∑
w∈Nv q(w) > 0. Let Ft−1 be the σ-algebra generated by {v1, . . . , vt−1}. Since Qv is independent of

t, P
(
v ∈ Nvt | Ft−1

)
= Qv. Therefore, taking expectation with respect to v1, . . . , vT on both sides of (2.2),

using E[Tv] = QvT , and applying Jensen’s inequality, yields

E

[
T∑
t=1

rt(v)Qv

]
≤
(
D

η
+
ηL2

2σ

)√
QvT (2.3)

Now, letting RT (x) =
∑T
t=1 rt(vt), we have that E

[
RT (x)

]
is equal to

E

[∑
v∈V ′

T∑
t=1

rt(v)I{vt = v}

]
= E

[∑
v∈V ′

T∑
t=1

rt(v)E
[
I{vt = v} | Ft−1

]]
=
∑
v∈V ′

qvE

[
T∑
t=1

rt(v)

]
Dividing both sides of (2.3) by Qv > 0, we can write

E
[
RT (x)

]
≤
(
D

η
+
ηL2

2σ

) ∑
v∈V ′

qv

√
T

Qv
≤
(
D

η
+
ηL2

2σ

)√
T
∑
v∈V ′

qv
Qv
≤
(
D

η
+
ηL2

2σ

)√
αT

where in the last two inequalities we applied Jensen’s inequality and Lemma 2.2. Observing that E[RT ] =
supx∈X E

[
RT (x)

]
and recalling that x was chosen arbitrarily in X concludes the proof.

Note that the proof of the previous result gives a tighter upper bound on the network regret in terms of
the independence number α′ ≤ α of the subgraph induced by the support V ′ of q.

Next, we consider the setting in which we allow the activation of more than one agent per time step.
At the beginning of the process, the environment draws an i.i.d. sequence of Bernoulli random variables
X1(v), X2(v), . . . with some unknown fixed parameter qv ∈ [0, 1] for each agent v ∈ V . The active set at
time t is then defined as St = {v ∈ V | Xt(v) = 1}. Note that, unlike the previous setting, now

∑
v∈V qv 6= 1

in general.
We state an upper bound on the regret that the network incurs if all agents run OMD with an oblivious

network interface (for a proof, see Section 2.9). Our upper bound is expressed in terms of a constant
depending on the probabilities of activating each agent and such that Q ≤ 1.6(αG + 1). The result holds for
any differentiable function g : X → R, σ-strongly convex with respect to some norm ‖·‖.

Theorem 2.3. Consider a network G = (V,E) of N agents. Assume that, at each time step t each agent
v is independently activated with probability qv ∈ [0, 1]. If all agents run OMD with an oblivious network

interface and using gt =
√
t
η g, for η > 0, the network regret satisfies

E[RT ] ≤
(
D

η
+
ηL2

2σ

)√
QT

for some Q ≥ 0, D ≥ sup g, and L ≥ sup ‖∇`t‖∗, where ‖·‖∗ is the dual norm of ‖·‖. In particular, choosing

η =
√

2σD/L gives E[RT ] ≤ L
√

2DQT/σ.



In order to compare the previous upper bound to Theorem 2.2, consider the case qv = q for all v ∈ V .
Without loss of generality, assume q > 0 (the regret is zero when q vanishes). Then

Q = Q(q) =
1

N

∑
v∈V

1− (1− q)N

1− (1− q)|Nv|

(for a proof, see Theorem 2.3 in Section 2.9 and proceed as in the proof of Lemma 2.2). A direct computation

of the sign of the first derivative of the addends q 7→ 1−(1−q)N
1−(1−q)|Nv| shows that these functions are decreasing

in q, hence 1 = limq→1− Q(q) ≤ Q ≤ limq→0+ Q(q) =
∑
v∈V

1
|Nv| ≤ αG where the last inequality follows by

Lemma 2.2. Note that the lower bound Q ≥ 1 is attained if the probabilities of picking agents at each time
step are all 1. In this case all agents are activated at each time step, the graph structure over the set of
agents becomes irrelevant and the model reduces to a single-agent problem. The inequality Q(q) ≤ αG is
not a coincidence due to the constant q. Indeed, one can prove that this is always the case, up to a small
constant factor (for a proof., see Lemma 2.3 in Section 2.9).

The previous results shows that paying the average price of multiple activations is never worse (up to a
small constant factor) than drawing a single agent per time step, and it can be significantly better. A similar
argument shows a tighter bound Q ≤ max{3, αG} when the activation probabilities satisfy

∑
v∈V qv = 1,

which allows to recover the upper bound on the network regret proven in Theorem 2.2. This is consistent
with the intuition that —in expectation— picking a single agent at random according to a distribution
q = (q1, . . . , qN ) is the same as picking each v independently with probability qv. Similarly to the case
|St| = 1, the previous result gives a tighter upper bound on the network regret in terms of the independence
number α′ ≤ α of the subgraph induced by the subset V ′ of V containing all agents v with qv > 0. Note that
the setting discussed in this section smoothly interpolates between the single-agent setting (qv = 1 for all
v), cooperative learning with one agent stochastically activated at each time step (

∑
v qv = 1), and beyond

(
∑
v qv < 1), where a non trivial fraction of the total number rounds is skipped.

2.6 Lower bound for stochastic activations

In this section we show that, for any communication network G with stochastic agent activations, the best
possible regret rate is of order Ω

(√
αGT

)
. This holds even when agents are not restricted to use an oblivious

network interface. The idea is that if the distribution from which active agents are drawn is supported on
an independent set of cardinality αG, then the problem reduces to that of an edgeless graph with αG agents.
We sketch the proof for the case when |St| = 1.

Theorem 2.4. There exists a convex decision set in Rd such that, for each communication network G and
for arbitrary (and possibly different) online learning algorithms run by the agents, E[RT ] = Ω

(√
αT
)

for
some sequence (S1, `1), . . . , (ST , `T ), where St = {vt}, vt is drawn i.i.d. from some fixed distribution on V ,
and the expectation is taken with respect to the random draw of the v1, . . . , vT .

Proof sketch. Let X be the probability simplex in Rd. Let G = (V,E) be any communication graph and
α its independence number. We consider linear losses defined on X . Let q be the uniform distribution
over a maximal independent set A = {a1, . . . , aα} ⊂ V . Fix now any cooperative online linear optimization
algorithm for this setting. Since each active agent vt belongs to A for all t ∈ {1, . . . , T} with probability
1, it suffices to analyze the updates of the algorithm for these agents. Indeed, no other agent incurs any
loss at any time-step. Since A is an independent set, each agent ai makes an update at round t if and
only if vt = ai. This happens with probability q(ai) = 1/α, independently of t. Each agent ai is therefore
running an independent single-agent online linear optimization problem for an average of T/α rounds. It is
well-known [42, Theorem 3.2] that any algorithm for online linear optimization on the simplex with losses
bounded in [0, 1] incurs Ω

(√
T/α

)
regret over T/α rounds in the worst case. Consequently, the regret of the

network satisfies RT = Ω
(
α
√
T/α

)
= Ω

(√
αT
)
.

An analogous lower bound can be proven for the case of multiple agent activations per time step. Indeed,
define qv = 1/α for each agent v belonging to some fixed maximal independent set and qv = 0 otherwise.



This again leads to α independent single-agent online linear optimization problems for an average of T/α
rounds each, and an argument similar to the one in the proof of Theorem 2.4 gives the result.

2.7 Nonstochastic activations

In this section we drop the stochasticity assumption on the agents’ activations and focus on the case where
active agents are picked from V by an adversary. The goal is to control the regret (2.1) for any individual
sequence of pairs (`1, S1), (`2, S2), . . . where `t is a convex loss and St ⊆ V , without any stochastic assump-
tions on the mechanism generating these pairs. For the rest of this section, we focus on the special case
where |St| = 1 for all t and denote by vt the active node at time t.

We start by proving that learning with adversarial activations is impossible if we use an oblivious network
interface. We prove this result in the setting of prediction with expert advice with two actions and binary
losses, a special case of online convex optimization. The idea of the lower bound is that if the communication
network is a star graph, the environment is able to make both actions look equally good to all peripheral
agents, even if one of the two actions is actually better than the other. This is done by drawing the good
action at random, then activating an agent depending on the outcome of the draw. For a small fraction of
the times the good action has loss one, the central agent is activated. Since the central agent shares feedback
with all peripheral agents, we can amplify this loss by a factor of N , and thus make the good action look to
all peripheral agents as bad as the bad action.

Theorem 2.5. For each N > 3 there exists a convex decision set in R2 and a graph G with N vertices such
that, whenever N agents are run on G using instances of any online learning algorithm with an oblivious
network interface, then RT = Ω(T ) for some sequence (`1, v1), . . . , (`T , vT ) of convex losses and active agents.

Proof. Fix N > 3 and let X be the probability simplex in R2. Let G = (V,E) be the star graph with
central agent a0, and peripheral agents a1, . . . , aN−1. Because our losses are linear on X , the online convex
optimization problem is equivalent to prediction with expert advice with two experts (or actions), and we
may denote losses using loss vectors `t =

(
`t(1), `t(2)

)
where 1 and 2 index the actions. A good action

J ∈ {1, 2} is drawn uniformly at random. Denote the other one (i.e., the bad one) by JB. To keep notation
tidy, we define loss vectors by `t =

(
`t(J), `t(JB)

)
. Fix any ε ∈

(
0, N−1

2(N−2)

)
. The loss vectors `t are drawn

i.i.d. at random, according to the following joint distribution:

P
(
`t = (0, 1)

)
=

1

2
P
(
`t = (1, 0)

)
=

1

2
− ε+

ε

N − 1
P
(
`t = (0, 0)

)
= ε− ε

N − 1

Recall that only a single agent vt is active at any time. At each time step t, the adversary decides whether
to activate the central agent a0 or a peripheral agent, depending on the realization of `t. If `t(J) = 0, then
a random peripheral agent is activated. Otherwise, we set

P
(
`t = (1, 0), vt = a0

)
=

ε

N − 1
and P

(
`t = (1, 0), vt = ai

)
=

1/2− ε
N − 1

a1, . . . , aN−1

Note that when vt = a0, then all peripheral agents receive feedback `t. Similarly, when a peripheral agent
is active at time t, then a0 receives feedback `t. For b1, b2 ∈ {0, 1}, let E(ai, b1, b2) be the event: agent ai
receives the loss vector `t = (b1, b2) as feedback. The following statements then hold for each peripheral
agent ai,

P
(
E(ai, 0, 1)

)
=

1/2

N − 1
P
(
E(ai, 0, 0)

)
=

ε

N − 1
− ε

(N − 1)2

P
(
E(ai, 1, 0)

)
=

1/2− ε
N − 1

+
ε

N − 1
=

1/2

N − 1

Hence, each instance managed by a peripheral agent observes loss vectors (1, 0) and (0, 1) with the same
probability proportional to 1/2, and loss vector (0, 0) with probability proportional to ε(N−1)/(N−2). Since



the network interface is oblivious, the instance cannot distinguish between paid and free feedback (which
would reveal the good action), and incurs an expected loss of 1/2 each time `t ∈

{
(0, 1), (1, 0)

}
. Using the

fact that a peripheral agent is active when `t ∈
{

(0, 1), (1, 0)
}

with probability 1/2 + 1/2 − ε = 1 − ε, the
system’s expected total loss is at least 1−ε

2 T (we lower bound the loss of the central agent by zero). Since
the expected loss of J is

(
1/2− ε+ ε

N−1

)
T , the expected regret of the system satisfies

E[RT ] ≥
(

1− ε
2
− 1

2
+ ε− ε

N − 1

)
T ≥ T

8

where we picked ε = (N −1)/(N −2) and used (N −3)/(N −2) ≥ 1/2 in the last inequality. Therefore, there
exists some sequence (`1, S1), . . . , (`T , ST ) such that RT ≥ T/8, concluding the proof.

We complement the above negative result by showing that when algorithms are run without the oblivious
network interface, and agents are free to use feedback only from a subset of their neighbors chosen with
knowledge of the graph structure, then the network regret of OMD is O(

√
χGT ). The quantity χG is the

clique-covering number of the communication graph G, which corresponds to the smallest cardinality of a
clique cover of G (a clique cover is a partition of the vertices such that the nodes in every element of the
partition form a clique in the graph). The intuition behind this result is simple: fix a clique cover and let the
agents in the same clique of the cover know each other. Now, if each agent ignores all feedback coming from
agents in other cliques, then the agents in the same clique make exactly the same sequence of prediction and
updates. Therefore, the effective number of OMD instances that are being run is equal to χG.

The following result holds for any differentiable function g : X → R, σ-strongly convex with respect to
some norm ‖·‖.

Theorem 2.6. Consider a network G = (V,E) of N agents, a clique cover {K1, . . . ,KM} where M = χG,
and let K(v) be the unique element of the cover which each v ∈ V belongs to. For any sequence v1, v2, . . . ∈ V
of active agents, assume each agent v ∈ V runs OMD using gt =

√
t
η g (with η > 0) while making updates

only at those time steps t such that vt ∈ K(v). Then the network regret satisfies

E[RT ] ≤
(
D

η
+
ηL2

2σ

)√
χGT

where D ≥ sup g, L ≥ sup ‖∇`t‖∗, and ‖·‖∗ is the dual norm of ‖·‖. In particular, choosing η =
√

2σD/L

gives E[RT ] ≤ L
√

2DχGT/σ.

Proof. Fix any clique Kc and any v ∈ Kc. Let Tc be the time steps such that vt ∈ Kc. Since each agent
v ∈ Kc ignores the feedback coming from other cliques, the nodes in Kc perform exactly the same updates,
and therefore make exactly the same predictions. This means that, for any t ∈ Tc, the predictions in the set{
xt(v) | v ∈ Kc

}
are all equal to the same common value denoted by xt(Kc). Fix any x ∈ X and, for any

t ∈ Tc, let rt(Kc) = `t
(
xt(Kc)

)
− `t(x). By Theorem 2.1 we have that∑

t∈Tc

rt(Kc) ≤
(
D

η
+
ηL2

2σ

)√
Tc .

Therefore, recalling that rt(vt) = `t
(
xt(vt)

)
− `t(x) and using Jensen’s inequality,

T∑
t=1

rt(vt) =

χG∑
c=1

∑
t∈Tc

rt(Kc) ≤
χG∑
c=1

(
D

η
+
ηL2

2σ

)√
Tc ≤

(
D

η
+
ηL2

2σ

)√
χGT

concluding the proof.

Theorems 2.5 and 2.6 show that with adversarial activations the knowledge of the graph is crucial for
learning (e.g., for achieving sublinear regret). Since χG ≥ αG, it is not clear whether the better rate

√
αGT

can be proven in the adversarial activation setting when agents do not use the oblivious network interface.



2.8 Conclusions

We introduced a cooperative learning setting in which agents, sitting on the nodes of a communication net-
work, run instances of an online learning algorithm with the common goal of minimizing their regret. In
order to investigate how the knowledge of the graph topology affects regret in cooperative online learning
under different activation mechanisms, we introduced the notion of oblivious network interface. This pre-
vents agents from doing any network-specific tuning or even accessing their neighborhood structure. When
activations are stochastic, we showed that sharing losses among neighbors is enough to guarantee optimal
regret rates even with the oblivious network interface. Surprisingly, when activations are adversarial the
situation changes completely. There exist problem instances in which any algorithm that runs with the
oblivious network interface suffers linear regret. In this case knowing graph structure is not only necessary
to perform optimally, but even to have sublinear regret.

Other interesting variants of this settings could be studied in the future. For example, at the beginning
of each round, active agents could be allowed to ask the predictions of some of their neighbors, and base their
prediction upon it. In this case, we conjecture that the optimal regret rate would scale with the dominating
number δG of the graph, which is always smaller or equal to the independence number.

2.9 Deferred proofs on stochastic activations: multiple agents

In this section we present all missing results related to the stochastic activation model with multiple activa-
tions per time step. Recall that, at the beginning of the process, the environment draws an i.i.d. sequence of
Bernoulli random variables X1(v), X2(v), . . . with some unknown fixed parameter qv ∈ [0, 1] for each agent
v ∈ V . The active set at time t is then defined as St = {v ∈ V | Xt(v) = 1}. Note that, unlike when only
one agent is active at each time step, now

∑
v∈V qv 6= 1 in general. Before the main result, we give some

definitions and prove a technical combinatorial lemma that is leveraged in the analysis.
Denote by V ′ the set of all agents v ∈ V such that qv > 0. For each v ∈ V ′, let

cv =
∑

S⊂{1,...,N}\{v}

λS,v
1 + |S|

(2.4)

where the convex coefficients λS,v are defined by(
N∏
w=1

qw

) ∏
u∈{1,...,N}\({v}∪S)

(1− qu)


Let also Qv be the probability

P

(
v ∈

⋃
w∈St

Nw

)
= 1−

∏
w∈Nv

(
1− qw

)
> 0 (2.5)

that agent v is updated at time t —note that Qv is independent of t.

Lemma 2.2. Let X(1), . . . , X(m) be independent Bernoulli random variables with strictly positive parame-
ters q1, . . . , qm respectively. Then, for all v ∈ {1, . . . ,m},

E
[

X(v)∑m
w=1X(w)

]
= qvcv

where we define X(v)/
∑m
w=1X(w) = 0 when X(v) = 0.

Proof. Fix any v ∈ {1, . . . ,m}. Let Sv be the set {1, . . . ,m} \ {v} and let Fv be the σ-algebra generated by{
X(w) | w ∈ Sv

}
. Then

E
[

X(v)∑m
w=1X(w)

]
= E

[
E
[

X(v)∑m
w=1X(w)

∣∣∣∣Fv]] = qv E

[
1

1 +
∑
w∈Sv X(w)

]



Denote the last expectation by cv. Since for all x 6= 0,
∫∞

0
e−tx dt = 1

x , Fubini’s theorem yields

cv =

∫ ∞
0

E
[
e−t
(

1+
∑
w∈Sv X(w)

)]
dt

=

∫ ∞
0

e−t
∏
w∈Sv

E
[
e−tXt(w)

]
dt

=

∫ ∞
0

e−t
∏
w∈Sv

(
qwe
−t + 1− qw

)
dt

=

∫ 1

0

∏
w∈Sv

(qwx+ 1− qw) dx

=

∫ 1

0

∑
S⊂Sv

x|S|

(∏
w∈S

qw

) ∏
u∈Sv\S

(1− qu)

 dx

Now set λS,v =
(∏

w∈S qw
)(∏

Sv\S(1− qu)
)

and note that
∑
S⊂Sv λS,v =

∏
w∈Sv (qw + 1− qw) = 1. Substi-

tuting λS,v in the last identity gives

cv =
∑
S⊂Sv

λS,v

∫ 1

0

x|S| dx =
∑
S⊂Sv

λS,v
1 + |S|

We now give an upper bound on the regret that the network incurs if all agents run OMD with an oblivious
network interface. Our upper bound is expressed in terms of a constant depending on the probabilities of
activating each agent and such that Q ≤ 1.6(αG + 1). The result holds for any differentiable function
g : X → R, σ-strongly convex with respect to some norm ‖·‖.
Theorem 2.3. Consider a network G = (V,E) of N agents. Assume that, at each time step t each agent
v is independently activated with probability qv ∈ [0, 1]. If all agents run OMD with an oblivious network

interface and using gt =
√
t
η g, for η > 0, the network regret satisfies

E[RT ] ≤
(
D

η
+
ηL2

2σ

)√
QT

where Q =
∑
v∈V ′(qvcv)/Qv, D ≥ sup g, L ≥ sup ‖∇`t‖∗, and ‖·‖∗ is the dual norm of ‖·‖. In particular,

choosing η =
√

2σD/L gives E[RT ] ≤ L
√

2DQT/σ.

Proof. Fixing an arbitrary x ∈ X , setting rt(v) = `t
(
xt(v)

)
−`t(x), and proceeding as in Theorem 2.2 yields,

for each v ∈ V ′,

E

[
T∑
t=1

rt(v)

]
≤
(
D

η
+
ηL2

2σ

)√
T

Qv
(2.6)

Now we write E[RT ] = sup
x∈X

E
[
RT (x)

]
, where

E
[
RT (x)

]
= E

[
T∑
t=1

1∑
w∈V Xt(w)

∑
v∈V ′

rt(v)Xt(v)

]

=

T∑
t=1

∑
v∈V ′

E
[

Xt(v)∑
w∈V Xt(w)

]
E
[
rt(v)

]
=
∑
v∈V ′

qvcv

T∑
t=1

E
[
rt(v)

]
(2.7)



and the last identity follows by Lemma 2.2. Putting identity (2.7) and inequality (2.6) together gives

E
[
RT (x)

]
≤

(∑
v∈V ′

qvcv

√
1

Qv

)(
D

η
+
ηL2

2σ

)√
T ≤

√∑
v∈V ′

qvcv
Qv

(
D

η
+
ηL2

2σ

)√
T

where in the last inequality we used Jensen inequality and
∑
v∈V ′ qvcv ≤ 1. This concludes the proof.

We now prove that the inequality Q(q) ≤ αG is always true up to a small constant factor.

Lemma 2.3. Let G = (V,E) be an undirected graph. For all v ∈ V , choose numbers qv ∈ (0, 1] and define
cv and Qv as in (2.4) and (2.5) respectively. Then

Q =
∑
v∈V

qvcv
Qv
≤ αG + 1

1− e−1

Proof. Let Pv =
∑
w∈Nv qw, V1 =

{
v ∈ V | Pv ≥ 1

}
, and V0 =

{
v ∈ V | Pv < 1

}
. We begin by splitting the

sum as follows ∑
v∈V

qvcv
Qv

=
∑
v∈V1

qvcv
Qv

+
∑
v∈V0

qvcv
Qv

We upper bound the two terms separately. Since the minimum minv∈V1 Qv is attained when qv = 1/|Nv| for
all v ∈ Nv, we can lower bound, for each v ∈ V1,

Qv ≥ 1−
(

1− 1

|Nv|

)|Nv|
≥ 1− e−1

This together with
∑
v∈V qvcv ≤ 1 yields ∑

v∈V1

qvcv
Qv
≤ 1

1− e−1

To upper bound the sum over V0, we first use the inequality 1−x ≤ e−x that holds for all x ∈ [0, 1]. Setting
x = qw gives

Qv ≥ 1− exp

(
−
∑
w∈Nv

qw

)
= 1− e−Pv

For all v ∈ V0, we can then use the inequality 1 − e−x ≥ (1 − e−1)x, holding for all x ∈ [0, 1]. Setting
x = Pv < 1 we conclude that Qv ≥ (1− e−1)Pv for all v ∈ V0. Finally, using cv ≤ 1 we can write∑

v∈V0

cvqv
Qv
≤ 1

1− e−1

∑
v∈V

qv
Pv
≤ αG

1− e−1

where the last inequality follows by Lemma 2.2. Putting everything together gives the result.



Chapter 3

Online non-Concave Maximization

In this chapter we propose a new analysis of the Piyavskii–Shubert algorithm that holds for non-concave
maximization over non-compact d-dimensional domains. More precisely, we address the problem of finding a
global maximizer of a function f : D → R satisfying a very mild regularity condition, using as few (possibly
noisy) evaluations of f as possible. We first derive new regret bounds for the classical Piyavskii–Shubert
algorithm when evaluations are deterministically perturbed. They match the best known upper bounds in
terms of the so called near-optimality dimension of f . We then use these results to design variants of the
algorithm that, for any given ε, stop automatically returning an ε-optimal point both under deterministic
and stochastic perturbations.

3.1 Introduction

The goal of online optimization is to find an approximate maximizer of a given function f : D ⊂ Rd → R
with as little evaluations of f as possible. In this chapter we assume that the only access to the function
f is through an oracle returning the (possibly) perturbed values of the function at the queried points.
Perturbations can be deterministic or stochastic. No analytical expression of f or any of its derivatives is
available.

At each round k the learner picks a new point xk ∈ D and the value f(xk) is revealed by the oracle, up
to an additive perturbation ξk. After each evaluation, the learner can return a point x?k ∈ D, which may
differ from the last queried point xk.

We measure the accuracy of the approximation provided by the point x?n returned after the n-th evaluation
of the function with the relative error

rn := sup(f)− f(x?n) (3.1)

Following the bandit optimization literature, we call this error simple regret (or regret for short).
We consider two variants of the problem. In the first one, a budget n of evaluations is given to the

learner. The goal is to find an x?n ∈ D such that rn 6 ε, with ε > 0 as small as possible. In the second one,
a level of accuracy ε > 0 is given instead. In this case, the goal is to find an x?n ∈ D such that rn 6 ε, with
n as small as possible.

Due to numerous practical applications, this black-box global optimization problem has received consid-
erable attention over the past decades. Many different algorithms have been proposed in several communities
such as concave optimization [69, 14, 17], non-concave optimization [41, 49, 46], stochastic optimization or
approximation [88, 82], Bayesian optimization [15], and bandit optimization over metric spaces [67].

In this article, we focus on the case where f attains its maximum at some x? ∈ D and it is Lipschitz
around x? (Assumption 3.1). Unlike global Lipschitzness, this assumption do not imply continuity anywhere
but at the maximizer x? (Figure 3.1). We consider two different settings. In the deterministic setting the
values of f are observed up to deterministic (and possibly adaptive) adversarial perturbations (Section 3.3).
In the stochastic setting the queried values are observed up to a subgaussian noise (Section 3.4). We



extend a classical algorithm designed by Piyavskii [73] and Shubert [86] for the deterministic setting with
no perturbations. We call it the Piyavskii–Shubert algorithm in the sequel. The principle is simple: at each
round k, the query point xk is chosen as a maximizer of a proxy function f̂k : D → R that provably satisfies
f̂k(x?) > f(x?). After observing the perturbed value of f(xk), the learner updates the proxy function f̂k+1

and uses it to choose the next point xk+1.
Several papers studied the Piyavskii–Shubert algorithm in the eighties and nineties (see, e.g., [60, 64] or

the survey by Hansen et al. [41]). Despite this literature, little was known about the rate of convergence of
the simple regret rn as a function of the number n of evaluations of the function.

Most papers establish a convergence guarantee (with no rate) under a global Lipschitz assumption on
the function f . A notable exception is in dimension d = 1, where a sharp bound on the sample complexity
was derived by Hansen et al. [40] for a variant of the Piyavskii–Shubert algorithm stopped as a function of a
target precision ε > 0. More precisely, they proved that the number of iterations required by the algorithm to

reach precision ε is at most proportional to
∫ 1

0

(
f(x?)−f(x)+ε

)−1
dx, for some tight multiplicative constant.

In this chapter these authors rely heavily on the one-dimensional setting to study the proxy functions f̂k
in an explicit manner. In the same paper, they claim that “Extending the results of [their] paper to the
multivariate appears to be difficult”.

3.1.1 Main contributions

In this chapter we provide a theoretical analysis of the simple regret rn of the Piyavskii–Shubert algorithm
in arbitrary dimension d > 1, using recent concepts from the bandit optimization literature. Our only
assumptions are that f is Lipschitz around a maximizer x? (see Section 3.2 for a rigorous definition) and its
domain D is bounded.

Deterministic setting. For the deterministic setting, we prove the first non-trivial1 upper bound on the
simple regret rn of the Piyavskii–Shubert algorithm in arbitrary dimension d > 1. This bound involves a
quantity d? ∈ [0, d] usually called the near-optimality dimension of f (see Section 3.5.1 for a definition)
and when the values of f can be observed without perturbations is roughly of the form

rn .

{
n−1/d? if d? > 0

exp
(
−Ω(n)

)
if d? = 0

(3.2)

This regret bound matches, up to logarithmic factors, the best bound known so far2 in this deterministic
setting. Examples of other algorithms that attain this bound include the branch-and-bound algorithm
of [72], the DOO algorithm of [66], and the LIPO algorithm by [56] (see Section 3.1.2 below for further
details).

To prove (3.2), we upper bound the sample complexity of the algorithm. Our sample complexity bounds
holds even if the values of f are perturbed, provided that the absolute value of the perturbations is
bounded by a known constant α > 0. More precisely, we derive the following equivalent upper bound:
if α = O(ε), the number n of iterations needed to reach precision ε is at most of n = O

(
(1/ε)d

?)
for

d? > 0 or n = O
(
log(1/ε)

)
for d? = 0.

This is satisfactory if an overall budget n is imposed, but it might be impractical if a target precision
ε is required instead. In this case, the knowledge of d? is necessary to stop the algorithm at the right
time, i.e., to compute the upper bound n = O

(
(1/ε)d

?)
or n = O

(
log(1/ε)

)
on the number of iterations

needed to reach precision ε.

1A crude regret bound of the form rn = O
(
n−1/d

)
, where d is the ambient dimension, can be obtained from [64, Theorem 4.2]

when f is globally Lipschitz. The authors show that the Piyavskii–Shubert algorithm is minimax optimal among all algorithms,
and therefore superior to a uniform grid search ensuring a simple regret of order n−1/d.

2We are not aware of lower bounds for all possible values of d? ∈ [0, d] except for d? = d [69, Theorem 1.1.2] or for d? = d/2
[44, Theorem 9]. However we conjecture that the best sample complexity upper bounds known so far are minimax optimal (up
to logarithmic factors).



To address this issue, we study a version of the Piyavskii–Shubert algorithm that takes ε as input
and stops automatically after a simple condition is satisfied (Algorithm 11), as in the one-dimensional
study by [40]. We prove that this algorithm is adaptive to the near-optimality dimension d?: it stops
after n = O

(
(1/ε)d

?)
or n = O

(
log(1/ε)

)
iterations (if d? > 0 or d? = 0 respectively) without any

prior knowledge on d?, and guarantees rn 6 ε.

Stochastic setting. For the stochastic setting, we design a natural extension of the Piyavskii–Shubert
algorithm based on mini-batch sampling, a technique in which each value of f is queried a small number
of times in a row in order to compute a reasonable estimate of its mean. We study the number n of
evaluations of f needed by the algorithm to reach precision ε with probability at least 1− δ. Note that
the number of evaluations of f is now larger than the number of iterations of the algorithm because of
the mini-batch sampling. We derive sample complexity bounds of the form n = Õ

(
(1/ε)d

?+2 log(1/δ)
)
,

where the Õ notation hides logarithmic factors in 1/ε. These bounds correspond to regret upper
bounds roughly of the form

rn . n−1/(d?+2)

which are known to be worst-case optimal as a consequence of the minimax lower bound of Bubeck
et al. [19, Theorem 13] (this lower bound is stated for the cumulative regret, but it can be adapted for
the simple regret).

Examples of other algorithms with a similar regret bound in the stochastic setting include, e.g., the
zooming algorithm by [53], the HOO algorithm by [19] and the StoOO algorithm by [67] (some of
these papers derived upper bounds on the cumulative regret, which in turn imply upper bounds on the
simple regret).

3.1.2 Earlier works: some further comments

Over the last decade the Lipschitz global optimization problem has received a lot of attention in the bandit
optimization community. We list below some of the algorithms that were inspired from the Piyavskii–Shubert
algorithm but were analyzed using more recent techniques. We borrowed several concepts from this literature
(as, e.g., the near-optimality dimension d?) to get back to the original Piyavskii algorithm.

DOO A simple algorithm in the deterministic setting is the algorithm DOO (Deterministic Optimistic Op-

timization) [66]. It is very similar to the Piyavskii–Shubert algorithm, except that the proxy functions f̂t are
piecewise-constant instead of piecewise-conic, with pieces that correspond to cells of a predefined hierarchical
partition of D. These piecewise-constant proxy functions are slightly weaker in terms of approximation of f ,
but offer a huge advantage in terms of computational complexity. Indeed, using a max-heap structure to
sequentially compute a maximizer of f̂k, the DOO algorithm can be implemented in O(n log n) total run-

ning time after n iterations. In contrast, it is conjectured that an exact computation of arg max f̂k for the
Piyavskii–Shubert algorithm might require a running time exponential in the dimension d (see [64] or [60]
for a partial analysis of the associated exact optimization problem).

Despite this conjectured computational issue in high dimensions d, the Piyavskii–Shubert algorithm is an
important algorithm that is both very natural and optimal in the way the proxy functions f̂k approximate f
(see [41, Theorem 4]). We believe that the tighter piecewise-conic proxy functions that it uses (in contrast to
the looser piecewise-constant proxy functions of DOO) could reduce the sample complexity by a multiplicative
constant larger than 1. When the near-optimality dimension vanishes, this would lead to a regret bound
rn . exp(−Ω(n)) with this constant inside the exponential. We leave this challenging question for future
works.

SOO The previous algorithm has been extended [66, Simultaneous Optimistic Optimization (SOO)] by not
requiring the knowledge of the semi-metric `(x, y) defining the regularity of f while still achieveing almost
the same theoretical performance as DOO when d? 6= 0. At first, it might seem to be a huge advantage over
algorithms like the Piyavskii–Shubert algorithm that strongly rely on the knowledge of this metric. However,
as noticed in [39], the SOO algorithm is only partially adaptive. Indeed the success of approaches based on



hierarchical partitioning relies on a central assumption: the partitioning must be well-shaped with respect
to the regularity of f . This implies that ` should be known at least approximately. In this sense, then, the
hierarchical partitioning already contains such regularity information.

POO Grill et al. [39] used this observation to build a truly adaptive algorithm (POO). Noting that earlier
papers only use the semi-metric ` to relate the function f and the hierarchical partitioning P at hand,
they replace two assumptions (one relating f to `, and another relating ` to P) with a single assumption
connecting f and P. They then show that for any function satisfying a local smoothness assumption with
respect to P, the POO algorithm solves the optimization problem almost as quickly as if the smoothness
of f was known in advance. In this chapter we decide to make full use of the metric information. The
Piyavskii–Shubert algorithm requires the knowledge of the semi-metric (a norm, in our case). As shown
in [41], this enables the use of a sharp proxy function to drive the optimization process. They provide a
set of numerical experiment in dimension one suggesting a clear improvement of the empirical performance
induced by of such a modification of the procedure with respect to DOO-like algorithms. Our goals are both
to search for a theoretical foundation of this claim and to determine extensions of this approach that hold
in the stochastic setting.

Moreover, we provide two natural extensions of our algorithms (Algorithms 11 and 12) that do not
require a prior knowledge of the near-optimality dimension d? in order to guarantee an ε-optimal solution
(the number n of evaluations after which these algorithms stop is chosen automatically as a function of the
observations). We conjecture that such extensions could also be provided for algorithms of the OO family.

3.1.3 Outline of the chapter

This chapter is organized as follows. We state our main assumptions on f and prove a few useful lemmas
in Section 3.2. In Section 3.3 we revisit the Piyavskii–Shubert algorithm in the deterministic setting with
perturbations by proving state-of-the-art regret bounds in terms of the intrinsic dimension d? of f , for
an arbitrary dimension d > 1. We study two types of algorithms: the natural extension of the original
Piyavskii–Shubert algorithm, whose optimal stopping would require the knowledge of d?, and an adaptive
variant that stops automatically guaranteeing precision ε when a halting criterion is met. In Section 3.4,
we design an extension of the Piyavskii–Shubert algorithm for the stochastic setting and derive minimax
optimal high-probability bounds on the simple regret. Finally, in Section 3.5.4 we discuss the connections
with a regret bound of Hansen et al. [40] in dimension d = 1.

3.2 Assumption, definitions, and notation

In this section we introduce a regularity assumption, all notation, and all definitions that will be used
throughout the chapter.

3.2.1 Assumption on f

In all the sequel, D is any nonempty bounded (not necessarily compact) subset of Rd, f : D → R is any
function, and ‖ · ‖ is any norm on Rd. We make the following assumption, which is sometimes referred to as
“local smoothness” [67].

Assumption 3.1 (Lipschitzness around a maximum). We assume that f attains its maximum f? at some
x? ∈ D and that there exists a constant L0 > 0 such that, for all x ∈ D,

f(x) > f? − L0‖x? − x‖ .

Moreover, we assume that only D, ‖ · ‖, and an upper bound L1 on L0 are known to the learner.

Note that we do not even require this assumption to be true for all maximizers. To the best of our
knowledge, all previous work on the Piyavskii–Shubert algorithm and variants thereof assume f to satisfy
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Figure 3.1: On the left, a typical example of a function Lipschitz around a maximum x?: it has multiple
maxima, points with vertical tangents, and discontinuities. On the right, a pathological example of function
discontinuous everywhere but at a maximum x?, but still Lipschitz around x?. Our analysis holds even in
this extreme case.

some global continuity condition (e.g., Lipschitzness, Hölderness, uniform continuity) [92, 73, 40, 74, 54, 33,
85, 68]. However, recent contributions from the bandit optimization literature [67] have shown that the
behavior of this type of algorithms is usually driven by the regularity of f around its maxima. Our analysis
will show that this is also the case for the Piyavskii–Shubert algorithm.

Lipschitzness around a maximum is a significantly weaker assumption than global Lipschitzness. The
only constraint that it poses to the function f is for its graph to lie between the cone

{
(x, y) ∈ Rd+1 :

y = f(x?) − L0‖x? − x‖
}

and the hyperplane
{

(x, y) ∈ Rd+1 : y = f(x?)
}

. Most of the good properties
that globally Lipschitz functions enjoy are not guaranteed under this assumption. For example, f could be
non-differentiable or even discontinuous everywhere on D \ {x?} (Figure 3.1).

Furthermore, our analysis will prove that the boundedness of D is not only necessary for the Piyavskii–
Shubert algorithm to be well-defined, but it is also sufficient to guarantee its convergence to an optimum.
This shows in particular that the common requirement that D is compact [73, 40, 74, 54, 33, 85, 68] can be
weakened by dropping the closure assumption.

3.2.2 Useful notation and definitions

We denote the set of integers by Z, the set of nonnegative integers {0, 1, 2, . . .} by N, and the set of positive
natural numbers {1, 2, . . .} by N∗. For all x ∈ R, we write dxe for the value min{k ∈ Z : k ≥ x} of the ceiling
function at x. For all δ > 0, we denote by B‖·‖(δ) the ball of radius δ in

(
Rd, ‖ · ‖

)
centered at the origin:

B‖·‖(δ) :=
{
x ∈ Rd : ‖x‖ 6 δ

}
.

We now recall the definitions of packing and covering numbers. The former is of utmost importance to our
analysis. For any bounded set A ⊂ Rd and any real number r > 0:

• the r-packing number of A is the largest number of r-separated points contained in A, that is,

N (A, r) := sup

{
k ∈ N∗ : ∃x1, . . . , xk ∈ A,min

i 6=j
‖xi − xj‖ > r

}
, (3.3)

with the convention that N (∅, r) := 0;

• the r-covering number of A is the smallest cardinality of an r-covering of A, that is,

M(A, r) := min
{
N ∈ N∗ : ∃x1, . . . , xN ∈ Rd,∀x ∈ A,∃i ∈ {1, . . . , N}, ‖x− xi‖ 6 r

}
,

with the convention that M(∅, r) := 0.

In Section 3.5.1 we recall a few known inequalities about packing and covering numbers that will prove useful
throughout the whole chapter.



x? x?

x?

Figure 3.2: On the left, a linear function (d? = 0). In the center, a quadratic function (d? = d/2). On
the right, a function that linear outside of a neighborhood of x? (d? = 0 for large r), but quadratic inside
(d? = d/2 for small r).

3.2.3 Sets of near-optimal points, with examples

In this section we will introduce a few important definitions and properties that will play a crucial role in
our analysis. For all ε > 0, we define the set of ε-optimal points of f : D → R by

Xε :=
{
x ∈ D : f(x) > f(x?)− ε

}
.

We also denote its complement (i.e., the set of ε-suboptimal points) by X cε and, for all 0 6 a < b, we define
the (a, b]-layer

X(a,b] := X ca ∩ Xb =
{
x ∈ D : a < f(x?)− f(x) 6 b

}
. (3.4)

Whenever the explicit dependence on ε or (a, b] can be omitted, we will simply refer to these sets as sets of
near-optimal points, sets of suboptimal points, or layers. In particular, we will say that an (a, b]-layer is a
suboptimal layer if a > 0.

Since f is L0-Lipschitz around x?, every point in D is ε0-optimal with ε0 defined by

ε0 := L0 sup
x,y∈D

‖x− y‖ . (3.5)

In other words, Xε0 = D. For this reason, without loss of generality we will only consider values of ε smaller
than ε0.

As we will see in Sections 3.3 and 3.4, the size of the sets of near-optimal points and that of layers will be
key quantities in our sample complexity bounds. As it turns out, the “correct” notion of size for this problem
is the packing number (3.3). In particular, we will derive explicit and immediate corollaries whenever, for
some C?, d? > 0, we have:3

∀r ∈ (0, ε0), N
(
Xr,

r

2L0

)
6 C?

(ε0

r

)d?
. (3.6)

The idea behind Inequality (3.6) is that ε-optimal points are hard to find if the corresponding set X cε of
ε-suboptimal points is large. Since for any increasing sequence ε := r0 < r1 < r2 < . . . , the set of ε-
suboptimal points X cε can be decomposed into a union of suboptimal layers X(r0,r1],X(r1,r2],X(r2,r3], . . ., and
each of these layers X(rs−1,rs] is included in Xrs (by definition of layer (3.4)), by controlling the size of each
of these Xrs we can control the size of X cε . Therefore, by controlling how large the sets Xr can be at all
scales r, the parameters C? and d? quantify the difficulty of the optimization problem. (See the discussion
in Section 3.5.2 about the related notions of near-optimality dimension [19] and zooming dimension [53].)
As noted in Lemma 3.7 (Section 3.5.2), Inequality (3.6) is always true with C? = 9d and d? = d. However,
depending on f , significantly smaller values of the constants C? and d? may be picked. We provide three
examples below. The last one of them indicates that a “worst-case” single value of d? may be insufficient to
give an appropriate description of the hardness of the optimization problem.

3Property (3.6) could be rewritten equivalently as ∀r ∈ (0, ε0), N (Xr, r) 6 C?
(
1
r

)d?
. Our choice of normalizing r by 2L0

(resp., by ε0) makes C? more “intrinsic” (typically independent of L0), as can be seen from the examples below.



Example 3.1 (Linear Regime). Consider any norm ‖ · ‖ and the function f(x) = 1 − L0‖x − a‖ on any
bounded domain D ⊂ Rd, with a ∈ D (Figure 3.2, left). Then f is L0-Lipschitz and, for all r ∈ (0, ε0), we
have Xr =

{
x ∈ D : ‖x− a‖ 6 r/L0

}
, which gives

N
(
Xr,

r

2L0

)
6 N

(
B‖·‖(r/L0),

r

2L0

)
6M

(
B‖·‖(r/L0),

r

4L0

)
(by (3.17))

6

(
1 +

2(r/L0)

r/(4L0)

)d
(by (3.18))

= 9d ,

which does not depend on r. Thus Inequality (3.6) holds with C? = 9d and d? = 0.

Example 3.2 (Quadratic Regime). Fix any β > 0. Consider the Euclidean norm ‖ · ‖2 on Rd and the
function f(x) = 1− β‖x− a‖22 on any bounded domain D ⊂ Rd, with a ∈ D (Figure 3.2, center). Then, for
all r ∈ (0, ε0), Xr =

{
x ∈ D : ‖x− a‖2 6

√
r/β

}
. Letting α = supx∈D ‖x− a‖2 and L0 = 2αβ, note that f

is L0-Lipschitz with respect to ‖ · ‖2. Then, for all r ∈ (0, ε0),

N
(
Xr,

r

2L0

)
6 N

(
B‖·‖2

(√
r/β

)
,
r

4αβ

)
6M

(
B‖·‖2

(√
r/β

)
,
r

8αβ

)
(by (3.17))

6

(
1 +

2
√
r/β

r/(8αβ)

)d
=

(
1 + 16α

√
β

r

)d
(by (3.18))

6
(

1 + 8
√

2
)d (ε0

r

)d/2
. (since ε0 = 2αβ supx,y∈D ‖x− y‖2)

Thus Inequality (3.6) holds with C? =
(
1 + 8

√
2
)d

and d? = d/2.

The next example shows that a unique value of d? is sometimes insufficient to describe the shape of a
function around a maximizer. Notably, our regret bounds in the next sections will not depend on a single
(worst-case) value of d?, but on a suitable combination of such values at different scales r. This allows to
give tighter bounds on the regret in cases like the following one.

Example 3.3 (Mixed Regime). Consider the euclidean norm ‖ · ‖2 on Rd and the function f : [−1, 1]d → R
defined by

f(x) =

{
1/4− ‖x‖22 if ‖x‖2 6 1/2

1/2− ‖x‖2 if ‖x‖2 > 1/2

(Figure 3.2, right). A direct verification shows that f is 1-Lipschitz and attains its maximum at x? = 0, with
f(x?) = 1/4. In this case, ε0 = supx,y ‖x− y‖2 = 2

√
d. Proceeding as in the previous two examples, we get,

for all r ∈
[
1/4, 2

√
d
)
,

N
(
Xr,

r

2L0

)
6 2 · 17d ,

but for all r ∈ (0, 1/4),

N
(
Xr,

r

2L0

)
6

(
1 + 4

√
2√

d

)d (ε0

r

)d/2
.

Therefore, Inequality (3.6) holds with d? = 0 for large values of r (linear regime) or with d? = d/2 for small
values of r (quadratic regime). Many different examples can be designed this way.



3.3 Deterministic perturbations

In this section we provide a new regret analysis of the Piyavskii–Shubert algorithm [73, 86] for the deter-
ministic setting, i.e., when values of f are observed up to deterministic perturbations with absolute value
bounded by a known constant. These perturbations can be chosen arbitrarily and even adaptively to the
learner’s algorithm. In Section 3.4 we will study the stochastic setting, in which values of f are observed up
to a subgaussian noise.

We consider two variants of the problem in the deterministic setting. When an overall budget n on the
number of evaluations of f is fixed in advance, we present and analyze Algorithm 10 (Section 3.3.1), which
makes n queries to f before returning a near-optimal point. When an accuracy level ε is imposed instead, we
introduce and study Algorithm 11 (Section 3.3.2), which stops automatically and guarantees an ε-optimal
solution after stopping. In the first case, we upper bound the number n of iterations required to reach any
given precision ε > 0 (Theorem 3.1 and Corollary 3.1). This leads to an upper bound on the regret as a
function of the number n of queries to f (Corollary 3.2). In the second case, we upper bound the number
n′ of evaluations of f after which the algorithm automatically stops (Theorem 3.2 and Corollary 3.3). The
second case is more powerful, since n′ is of the same order of magnitude as n but the knowledge of n is not
required to guarantee an ε-optimal solution.

3.3.1 Budget on queries

In this section we derive a new bound for the simple regret of the Piyavskii–Shubert algorithm as a function
of the number n of queries to f (Corollary 3.2). Formally, the algorithm applies to the following online
optimization protocol.

A function f : D ⊂ Rd → R that attains its maximum at some point x? ∈ D is fixed in advance. Only
the domain D of the function, an upper bound α > 0 on the absolute value of the perturbations (see below),
and the total number of queries n ∈ N? are known to the learner in advance.

For each k = 1, . . . , n:

1. the learner chooses a point xk ∈ D,

2. the environment picks a deterministic perturbation

ξk ∈ [−α, α] , (3.7)

depending on f and all points xs chosen by the learner up to and including the current one xk,

3. the value f(xk) + ξk is revealed to the learner.

The learner then outputs a prediction x?n with the goal of minimizing the simple regret

rn := f(x?)− f(x?n) . (3.8)

In this section we extend the simpler original version of the Piyavskii–Shubert algorithm designed for a fixed
query budget n to our non-compact d-dimensional setting with perturbations. The behavior of the algorithm
is illustrated in Figure 3.3. The Piyavskii–Shubert algorithm (Algorithm 10) works by maintaining a proxy

f̂k of the objective function f that (up to perturbations) upper bounds f at least at the maximizer x?. After
each new evaluation, the graph of the proxy gets closer and closer to that of the objective. The points that
are queried by the algorithm are those where the f̂k is biggest. The intuition is that if f̂k is sufficiently close
to f , then the point with the highest value among all proxy functions should also be near-optimal for f .

Note that in Algorithm 10, we pick xk+1 as an α-optimal point of f̂k. The algorithm could be defined

slightly more generally by picking xk+1 as an η-optimal point of f̂k, where η is an additional parameter
independent of the bound α on |ξk|. Our choice to lighten the notation is due to the fact that if α > 0, in
order to have a meaningful result, η should eventually be set to O(α) anyway. Moreover, with our choice,



Algorithm 10: Piyavskii–Shubert algorithm (with known query budget n)

Input: Lipschitz constant L1, number of iterations n, perturbation scale α > 0, initial guess x1 ∈ D.
1 for k = 1, . . . , n do
2 observe yk = f(xk) + ξk;

3 update f̂k(x) = mini∈{1,...,k}
{
yi + L1‖xi − x‖+ α

}
;

4 pick xk+1 ∈ D such that f̂k(xk+1) > supx∈D f̂k(x)− α;

5 compute i?n = arg maxi∈{1,...,n} yi;

6 return x?n := xi?n ;

x1 x2x3 x4

Figure 3.3: First three iterations of the Piyavskii–Shubert algorithm in dimension d = 1. In blue the
function f . In black the proxy function f̂3.

the case α = 0 still includes the classic setting in which D is compact and values are observed with no
perturbations.

The main results of this section are Theorem 3.1 and its Corollaries 3.1 and 3.2. We will address the
version with an automatic stopping criterion in Section 3.3.2.

We now upper bound the minimum number of iterations (i.e., the sample complexity) needed for the
simple regret rn = f(x?)−f(x?n) to fall below some threshold ε. The following theorem is proved in Section 6.

Theorem 3.1. Assume that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also ε0 be
defined by Equation (3.5), ε ∈ (0, ε0), n ∈ N?, α ∈ [0, ε/24), x1 ∈ D, and assume that the Piyavskii–Shubert
algorithm (Algorithm 10) is run with inputs L1, n, α, x1. Defining

ñ :=

dlog2
ε0
ε e−1∑

s=0

N
(
X(ε02−s−1,ε02−s],

ε02−s−1 − 3α

L1

)
+ 1 , (3.9)

if n > ñ, then the simple regret (3.1) of the Piyavskii–Shubert algorithm satisfies rn 6 ε+ 2α.

Note that the previous bound, expressed in terms of the packing numbers of increasingly better and
better layers, is tight. If the objective function is constant all these packing numbers vanish and we are
left with ñ = 1, which is indeed the minimum number of evaluations needed to return an ε-maximizer
(because all points are maximizers). This result is therefore stronger than usual bounds expressed in terms
of the near-optimality dimension. Nevertheless, bounds in terms of the near-optimality dimensions are more
readable. Therefore we now upper bound the previous result as a function of the constants C?, d? introduced
in (3.6). For the sake of simplicity we use a single d?, but note that the adaptive form of (3.9) allows to
capture general cases like the one presented in Example 3.3, where different precision scales are characterized
by different d?. The following corollary is proved in Section 3.5.3 and can be naturally extended to the case
of different d? by substituting the correct d? when property 3.6 is invoked at the second-to-last inequality in
the proof of Corollary 3.1.

Corollary 3.1. Assume that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also ε0 be
defined by Equation (3.5), ε ∈ (0, ε0), n ∈ N?, α ∈ [0, ε/25], x1 ∈ D, and assume that the Piyavskii–Shubert



algorithm (Algorithm 10) is run with inputs L1, n, α, x1. Fix any C? > 0 and d? ∈ [0, d] satisfying (3.6).
Defining

n := 1 + C?
(

1 + 5.5
L1

L0
IL1 6=L0∨α6=0

)d
×


log2

(ε0

ε

)
+ log2(1.08) if d? = 0

(1.08)d
?
(ε0

ε

)d?
− 1

2d? − 1
if d? > 0

(3.10)

if n > n, then the simple regret (3.1) of the Piyavskii–Shubert algorithm satisfies rn 6 ε.

The analysis in Section 3.5.3 shows that the multiplicative term
(
1 + (5.5)εL1

L0
IL1 6=L0∨α6=0

)d
appears

applying Lemma 3.6 (Section 3.5.1) because of the imperfect information on L0 and the perturbations in the
evaluations of f . If L0 = L1 and α = 0 the term disappears. This suggests a quite striking discontinuity in
the hardness of the problem with respect to the information available to the learner. A very accurate, but
not exact, estimate of L0 or evaluation of f still increases the sample complexity by a term exponential in
the dimension of the ambient space.

We conclude the section by upper bounding the regret of the Piyavskii–Shubert algorithm when the
values of the function are observed exactly. This is obtained directly by letting α = 0 and solving Equation
(3.10) for ε.

Corollary 3.2. Assume that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also ε0

be defined by Equation (3.5), ε ∈ (0, ε0), n ∈ N?, α = 0, x1 ∈ D, and assume that the Piyavskii–Shubert
algorithm (Algorithm 10) is run with inputs L1, n, 0, x1. Fix any C? > 0 and d? ∈ [0, d] satisfying (3.6).
Then the simple regret (3.1) of the Piyavskii–Shubert algorithm satisfies

rn 6

{
exp
(
−Ω(n)

)
if d? = 0

O
(
n−1/d?

)
if d? > 0

Proof of Theorem 3.1

In this section we present a formal proof of Theorem 3.1. We begin by proving an important property of the
proxy function f̂k. When f is globally Lipschitz, α = 0, and D is compact, the lower bound f̂k(x) > f(x) is
well known and true not only for x = x? but for all k > 1 and all x ∈ D.

Lemma 3.1. Assume that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also n ∈
N?, α > 0, x1 ∈ D, and assume that the Piyavskii–Shubert algorithm (Algorithm 10) is run with inputs

L1, n, α, x1. Then, for all k > 1, the proxy function f̂k(x) = min16i6k
{
f(xi) + L1‖xi − x‖ + (ξi + α)

}
is

L1-Lipschitz and satisfies, for all j ∈ {k, . . . , n},

f̂k(x?) > f(x?) and f̂j(xk) 6 f(xk) + 2α .

Proof. Fix any k > 1 and j > k. The fact that f̂k is L1-Lipschitz is straightforward. Moreover,

f̂k(x?) = min
i∈{1,...,k}

{
f(xi) + L1‖xi − x?‖+ (ξi + α)

}
. (3.11)

Since f is L0-locally Lipschitz around x? and L1 > L0, we get for all i ∈ {1, . . . , k}

f(xi) > f(x?)− L0‖xi − x?‖ > f(x?)− L1‖xi − x?‖ .

Plugging f(xi) + L1‖xi − x?‖ > f(x?) and ξi > −α in Equation (3.11) gives f̂k(x?) > f(x?). Furthermore,

the definition of f̂j(xk) and ξk 6 α imply, since j > k

f̂j(xk) = min
i∈{1,...,j}

{
f(xi) + L1‖xi − xk‖+ (ξi + α)

}
6 f(xk) + L1‖xk − xk‖+ (ξk + α) 6 f(xk) + 2α

which concludes the proof.



Before proving the main result, we first state a useful lemma which shows that if the Piyavskii–Shubert
algorithm observes f at a ∆-suboptimal point xi, then the next query points xj are all distant from xi by
at least Ω(∆). In other words, the Piyavskii–Shubert algorithm does not explore too much in suboptimal
regions.

Lemma 3.2. Suppose that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also
n ∈ N?, α > 0, x1 ∈ D, and assume that the Piyavskii–Shubert algorithm (Algorithm 10) is run with inputs
L1, n, α, x1. Fix any ∆ > 0 and assume that there exists i ∈ {1, . . . , n − 1} such that the point xi queried
by the Piyavskii–Shubert algorithm during the i-th iteration satisfies xi ∈ X c∆. Then, for all j > i, the j-the
queried point satisfies

‖xj − xi‖ >
∆− 3α

L1
.

Proof. Assume that xi ∈ X c∆ for some i > 1 and let j > i. Then

f̂j−1(xj) > f̂j−1(x?)− α (xj was selected at iteration j)

> f(x?)− α (by Lemma 3.1)

> f(xi) + ∆− α (xi ∈ X c∆)

> f̂j−1(xi) + ∆− 3α (by Lemma 3.1)

Since f̂j−1 is L1-Lipschitz (Lemma 3.1), we have L1‖xj − xi‖ > |f̂j−1(xj)− f̂j−1(xi)| > ∆− 3α.

We can now prove Theorem 3.1, the main result of Section 3.3.1. To this end, we use a peeling technique
in which the input space D is partitioned in terms of the output values of f .

Proof of Theorem 3.1. Let mε :=
⌈
log2(ε0ε

−1)
⌉
> 1. We use a peeling technique and partition the set X cε

of ε-suboptimal points into multiple layers (recall Equation (3.4)). Note that

(ε02−mε ,+∞) = (ε02−mε , ε02−mε+1] ∪ · · · ∪ (ε0/2, ε0] ∪ (ε0,+∞) .

Moreover Xε02−mε ⊂ Xε and by definition of ε0 (Equation (3.5)), X cε0 = ∅. Thus we have

X cε ⊂ X cε02−mε ⊂

(
mε⋃
s=1

As

)

with As := X(ε02−s,ε02−s+1] for all 1 6 s 6 mε. We remark that {As}16s6mε is a collection of disjoint subsets
of D. Therefore, for any 1 6 k 6 n, if xk ∈ X cε , there exists a unique s ∈ {1, . . . ,mε} such that xk ∈ As.
For any s ∈ {1, . . . ,mε}, by Lemma 3.2, the maximum number of rounds k at which xk can be chosen in

As = X cε02−s ∩ Xε02−s+1 is upper bounded by N
(
As,

ε02−s−3α
L1

)
. Then

∣∣∣{k ∈ {1, . . . , n} : xk ∈ X cε
}∣∣∣ 6 mε∑

s=1

∣∣∣{k ∈ {1, . . . , n} : xk ∈ As
}∣∣∣ 6 mε∑

s=1

N
(
As,

ε02−s − 3α

L1

)
.

Therefore, if

n >
mε∑
s=1

N
(
As,

ε02−s − 3α

L1

)
+ 1

then there exists k ∈ {1, . . . , n} such that xk ∈ Xε, which implies (by definition of x?n) that

f(x?n) > f(xk) + ξk − ξi?n > f(x?)− 2α− ε .



3.3.2 Automatic stopping

We now study a version of the Piyavskii–Shubert algorithm that stops automatically outputting a near-
optimal solution (Algorithm 11) after stopping. We derive an upper bound on the number n of queries to
f needed to automatically stop (Theorem 3.2 and Corollary 3.3). Formally, the algorithm applies to the
following online optimization protocol.

A function f : D ⊂ Rd → R that attains its maximum at some point x? ∈ D is fixed in advance. Only
the domain D of the function, an upper bound α > 0 on the absolute value of the perturbations (see below),
and a prescribed accuracy ε > 0 are known to the learner in advance.

For each k = 1, 2, . . .:

1. the learner chooses a point xk ∈ D,

2. the environment picks a deterministic perturbation

ξk ∈ [−α, α] , (3.12)

depending on f and all points xs chosen by the learner up to and including the current one xk,

3. the value f(xk) + ξk is revealed to the learner.

At the end of each iteration n the learner can decide to interrupt the process and output a prediction x?n
with the goal of returning an ε-optimal point. In other words, the regret rn := f(x?)− f(x?n) at time n has
to satisfy

rn 6 ε . (3.13)

The ε-Piyavskii–Shubert algorithm (Algorithm 11, below) applies to our non-compact d-dimensional setting

with perturbations. It behaves similarly to Algorithm 10. A proxy f̂k of the objective function f that (up to
perturbations) upper bounds f at least at the maximizer x? is maintained and updated during each iteration.
After each new evaluation, the graph of the proxy gets closer and closer to that of the objective. The points
that are queried by the algorithm are those where the f̂k is biggest. The intuition is that if f̂k is sufficiently
close to f , then the point with the highest value among all proxy functions should also be near-optimal for
f . The stopping rule at the beginning of the loop triggers as soon as the maximum of the observed values
gets close to the maximum of all proxy function. At a high level, when these two numbers get close, it means
that the proxy function became sufficiently good of an approximation of the objective.

Algorithm 11: ε-Piyavskii–Shubert algorithm (with known accuracy ε)

Input: Lipschitz constant L1, accuracy ε > 0, perturbation scale α > 0, initial guess x1 ∈ D
Initialization: k ← 0 and f̂?0 − f?0 ← ε+ 2α+ 1

1 while f̂?k − f?k > ε+ 2α do
2 update k ← k + 1;
3 observe yk ← f(xk) + ξk;

4 update f̂k(x)← mini∈{1,...,k}
{
yi + L1‖xi − x‖+ α

}
for all x ∈ D;

5 pick xk+1 ∈ D such that f̂k(xk+1) > supx∈D f̂k(x)− α;

6 update f̂?k ← f̂k(xk+1) and f?k ← maxi∈{1,...,k} yi;

7 return x?k ← xi?k ;

Note that (similarly to Algorithm 10) in Algorithm 11, we pick xk+1 to be an α-optimal point of f̂k.

The algorithm could be defined slightly more generally by picking xk+1 as an η-optimal point of f̂k, where
η is an additional parameter independent of the bound α on |ξk|. Our choice to lighten the notation is due
to the fact that if α > 0, in order to have a meaningful result, η should eventually be set to O(α) anyway.



Moreover, with our choice, the case α = 0 still includes the classic setting in which D is compact and values
are observed with no perturbations.

The ε-Piyavskii–Shubert algorithm (Algorithm 11) is an adaptive version of the Piyavskii–Shubert al-
gorithm (Algorithm 10). The main result of this section (Theorem 3.2) shows that the former stops after
roughly the same number of iterations as the latter, but it does not rely on any prior knowledge of ñ (de-
fined in Equation (3.9)) nor its upper bound n (defined in Equation (3.10)), which depends on the possibly
unknown constants d? and C?. Nevertheless, it still returns an ε-optimal point after stopping.

The ε-Piyavskii–Shubert algorithm was extensively studied in dimension d = 1 when α = 0. For example,
Hansen et al. [40] derived a tight upper bound on the number of evaluations of f needed before stopping,
in terms of an integral involving the increments f(x?) − f(x). In Section 3.5.4 we discuss how to derive a
regret bound similar to that of Corollary 3.3 from their upper bound. Our result could thus be interpreted
as a generalization of this result to an arbitrary dimension d > 1.

We now state the main result of this section, which we prove in Section 7.

Theorem 3.2. Assume that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also ε0

be defined by Equation (3.5), ε ∈ (0, ε0), α ∈ [0, ε/24), x1 ∈ D, and assume that the ε-Piyavskii–Shubert
algorithm (Algorithm 11) is run with inputs L1, ε, α, x1. Then, the ε-Piyavskii–Shubert algorithm stops after
n 6 ñ′ iterations, where ñ′ is defined by

ñ′ := N
(
Xε/2,

ε− α
L1

)
+

dlog2
ε0
ε e∑

s=0

N
(
X(ε02−s−1,ε02−s],

ε02−s−1 − 3α

L1

)
+ 1 (3.14)

and its simple regret (3.1) satisfies rn 6 ε+ 2α.

Note that the definition of ñ′ (Equation (3.14)) is remarkably similar to that of ñ (Equation (3.9)).
The price of adapting is quantified by the two terms in the difference ñ′ − ñ. The first of the two terms,
N
(
Xε/2, ε−αL1

)
, is particularly important, as it reveals a subtle but crucial difference between the Piyavskii–

Shubert algorithm (Algorithm 10) and the ε-Piyavskii–Shubert algorithm (Algorithm 11). Consider a con-
stant function f . Since all suboptimal layers are empty in this case (because all points in D are optimal),
Equation (3.9) reflects the fact that as little as ñ = 1 evaluation is needed in order for the Piyavskii–
Shubert algorithm (Algorithm 10) to guarantee a near-optimal solution, as the first prediction is necessarily
already optimal. However, with the same constant objective, the number of evaluations ñ′ needed for the

ε-Piyavskii–Shubert algorithm (Algorithm 11) to stop is of order N
(
Xε/2, ε−αL1

)
&
(

1
ε

)d
, which is as big as

it gets! This huge gap is unavoidable and due to the fact that Algorithm 11 is asked to complete a task
that is significantly harder than that of Algorithm 10. The Piyavskii–Shubert algorithm simply runs for
a prescribed amount of iterations, where it happens to make good predictions if the objective is flat. In
contrast, the ε-Piyavskii–Shubert algorithm has to be sure that when it stops, it outputs a good prediction.
If the function is very flat, a full grid search has to be performed in order to make sure that the proxy
function at his highest value is close enough to the value of the objective.

As we did in the previous section, we now express the previous result in terms of the constants C?, d?

introduced in (3.6). The following corollary is proved in Section 3.5.3.

Corollary 3.3. Assume that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also ε0

be defined by Equation (3.5), ε ∈ (0, ε0), α ∈ [0, ε/25], x1 ∈ D, and assume that the ε-Piyavskii–Shubert
algorithm (Algorithm 11) is run with inputs L1, ε, α, x1. Fix any C? > 0 and d? ∈ [0, d] satisfying (3.6).
Then, the ε-Piyavskii–Shubert algorithm stops after n 6 n′ iterations, where n′ is defined by

n′ := 1 + C?
(

1 + 15.5
L1

L0
IL1 6=L0∨α 6=0

)d
×


log2

(ε0

ε

)
+ log2(1.08) + 3 if d? = 0

(
2d
?

+ 2d
?+1 − 2

)
(1.08)d

?
(ε0

ε

)d?
− 1

2d? − 1
if d? > 0

and its simple regret (3.1) satisfies rn 6 ε.



Proof of Theorem 3.2

In this section we present a formal proof of Theorem 3.2. Before proving the main result, we first state a
useful lemma analogous to Lemma 3.2. It shows that if the ε-Piyavskii–Shubert algorithm observes f at a
suboptimal point xi, then the next query points xj are all distant from xi and in any case it never queries
points that are too close to each other. In other words, the ε-Piyavskii–Shubert algorithm does not explore
too much in suboptimal regions and it does not waste evaluations on neighboring points.

Lemma 3.3. Assume that f is L0-Lipschitz around x? (Assumption 3.1) and let L1 > L0. Let also ε ∈
(0, ε0), α > 0, x1 ∈ D, and assume that the ε-Piyavskii–Shubert algorithm (Algorithm 11) is run with
inputs L1, ε, α, x1. Assume that the ε-Piyavskii–Shubert algorithm runs for at least j > 1 iterations and let
1 6 i < j. Then

‖xi − xj‖ >
ε− α
L1

.

Moreover, if there exists 0 6 k 6 mε :=
⌈
log2

ε0
ε

⌉
such that xi ∈ X(ε02−k−1,ε02−k], then

‖xi − xj‖ >
ε02−k−1 − 3α

L1
.

Proof of Lemma 3.3. Note that

f̂j−1(xj) = f̂?j−1 (by definition of f̂?j−1)

> f?j−1 + ε+ 2α (the algorithm ran for at least j iterations)

> f(xi) + ε+ α (by definition of f? and ξi > −α)

> f̂j−1(xi) + ε− α . (by Lemma 3.1)

Since f̂j−1 is L1-Lipschitz (Lemma 3.1), we have L1‖xi − xj‖ >
∣∣f̂j−1(xj)− f̂j−1(xi)

∣∣ > ε− α, which gives
the first inequality. For the second inequality, we proceed as in the proof of in Lemma 3.2. Let ∆ = ε02−k−1

and note that xi ∈ X c∆. Then

f̂j−1(xj) > f̂j−1(x?)− α (by definition of xj)

> f(x?)− α (by Lemma 3.1)

> f(xi) + ∆− α (xi ∈ X c∆)

> f̂j−1(xi) + ∆− 3α . (by Lemma 3.1)

Since f̂j−1 is again L1-Lipschitz (Lemma 3.1), we have L1‖xj −xi‖ > |f̂j−1(xj)− f̂j−1(xi)| > ∆− 3α, which
concludes the proof.

We can now prove Theorem 3.2, the main result of the deterministic setting. The proof proceeds similarly
to that of Theorem 3.1: we rely on a peeling technique in which the input space D is partitioned in terms
of the output values of f .

Proof of Theorem 3.2. Fix any ε ∈ (0, ε0) and α ∈ [0, ε/24). Let T ⊂ N∗ be the set of indices of all iterations
performed by the ε-Piyavskii–Shubert algorithm (Algorithm 11) before stopping, mε :=

⌈
log2

ε0
ε

⌉
> 1, and

for all k ∈ {0, . . . ,mε},

Tk :=
{
t ∈ T : xt ∈ X(ε02−k−1,ε02−k]

}
,

Tmε+1 :=
{
t ∈ T : xt ∈ Xε/2

}
.



Lemma 3.3 implies, for all k ∈ {0, . . . ,mε},

|Tk| 6 N
(
X(ε02−k−1,ε02−k],

ε02−k−1 − 3α

L1

)
,

|Tmε+1| 6 N
(
Xε/2,

ε− α
L1

)
.

Since X(ε0,+∞) = ∅ (by definition of ε0 in Equation (3.5)) and [0, ε0] = [0, ε/2] ∪ (ε02−mε−1, ε02−mε ] ∪
· · · ∪ (ε02−1, ε0], we have D = Xε/2 ∪

(⋃mε
s=0 X(ε02−1−s,ε02−s]

)
. Hence, for all iterations i ∈ T there exists

k ∈ {0, . . . ,mε + 1} such that i ∈ Tk, which in turn gives

|T | 6
mε+1∑
k=0

|Tk| 6 N
(
Xε/2,

ε− α
L1

)
+

mε∑
k=0

N
(
X(ε02−k−1,ε02−k],

ε02−k−1 − 3α

L1

)
.

3.4 Stochastic perturbations

In this section we show how to apply the results proven in Section 3.3 to an algorithm designed for the
stochastic setting (Algorithm 12). More precisely, we assume that the values of f are observed up to
subgaussian noise. We then use a mini-batch sampling technique to produce tight estimates of the value of
f at each iteration of the algorithm.

Assumption 3.2. Let ξ := (ξk,i)k,i∈N∗ be a sequence of independent random variables. We assume that
there exists σ0 > 0 such that all random variables in the sequence are σ0-subgaussian, i.e., for all i, k ∈ N∗
the random variable ξk,i is centered and for all λ ∈ R,

E
(
eλξk,i

)
6 eλ

2σ2
0/2 .

We say that ξ is a σ0-subgaussian noise sequence. Moreover, we assume that an upper bound σ1 on σ0 is
known to the learner.

We study directly the version of the problem in which an accuracy level ε is given and the algorithm
stops automatically guaranteeing an ε-optimal solution. Formally, the algorithm applies to the following
online optimization protocol.

A function f : D ⊂ Rd → R that attains its maximum at some point x? ∈ D and a σ0-subgaussian noise
sequence ξ (Assumption 3.2) are fixed in advance. Only the domain D of the function, an upper bound σ1

on σ0, and a prescribed accuracy ε > 0 are known to the learner in advance.
For each k = 1, 2, . . .:

1. the learner queries a point xk ∈ D for a finite amount of times,

2. for each query i of xk, the value f(xk) + ξk,i is revealed to the learner.

At the end of each iteration n the learner can decide to interrupt the process and output a prediction x?n
with the goal of returning an ε-optimal point. In other words, the regret rn := f(x?)− f(x?n) at time n has
to satisfy

rn 6 ε . (3.15)

The stochastic ε-Piyavskii–Shubert algorithm (Algorithm 12) applies to our non-compact d-dimensional

setting with stochastic perturbations. It behaves similarly to Algorithm 11. We maintain a proxy f̂k of the
objective function f that (up to perturbations) upper bounds f at least at the maximizer x?. The proxy is
updated during each iteration by querying the same value multiple times in order to build an estimate of the



real value of the function at that point. After each update, the graph of the proxy gets closer and closer to
that of the objective. The points that are queried by the algorithm are those where the f̂k is biggest. The
intuition is that if f̂k is sufficiently close to f , then the point with the highest value among all proxy functions
should also be near-optimal for f . The stopping rule at the beginning of the loop triggers as soon as the
maximum of the observed values gets close to the maximum of all proxy function. At a high level, when
these two numbers get close, it means that the proxy function became sufficiently good of an approximation
of the objective.

Algorithm 12: Stochastic ε-Piyavskii–Shubert algorithm

Input: Lipschitz constant L1, subgaussian constant σ1 > 0, accuracy ε > 0, confidence
1− δ ∈ (0, 1), initial guess x1 ∈ D.

Initialization: ε′ ←, (25/27)ε, α← ε/27, k ← 0 and f̂?0 − f?0 ← ε′ + 2α+ 1

1 while f̂?k − f?k > ε′ + 2α do

2 update k ← k + 1 and mk =
⌈

2σ2
1

α2 ln
(

2k(k+1)
δ

)⌉
;

3 observe f(xk) + ξk,1, . . . , f(xk) + ξk,mk and compute yk ← f(xk) + ξk, where ξk = 1
mk

∑mk
i=1 ξk,i;

4 update f̂k(x)← mini∈{1,...,k}
{
yi + L1‖xi − x‖+ α

}
for all x ∈ D;

5 pick i?k ∈ arg maxi∈{1,...,k} yi and xk+1 ∈ D such that f̂k(xk+1) > supx∈D f̂k(x)− α;

6 update f?k ← f
(
xi?k
)

+ ξi?k = maxi∈{1,...,k} yi and f̂?k ← f̂k(xk+1) > sup f̂k − α;

7 return x?k ← xi?k

Before proving the main result of the section, we state a well-known concentration lemma for the empirical
average of subgaussian random variables (see, e.g., [12, Section 2.3]).

Lemma 3.4. Let ξ be a σ0-subgaussian noise sequence (Assumption 3.2). Then, for all k,m ∈ N and all
α > 0,

P

(∣∣∣∣∣ 1

m

m∑
i=1

ξk,i

∣∣∣∣∣ > α

)
6 2e−mα

2/(2σ2
0) 6 2e−mα

2/(2σ2
1) . (3.16)

Similarly to the previous section, we upper bound the number of evaluations of f after which the stochastic
ε-Piyavskii–Shubert algorithm (Algorithm 12) automatically stops outputting an ε-optimal point. The proof
of the following theorem is a composition of the analysis of Theorem 3.2 (Section 7) and a carefully designed
use of concentration inequalities.

Theorem 3.3. Assume that f is L0-Lipschitz around x? (Assumption 3.1), the noise ξ is σ0-subgaussian
(Assumption 3.2), and let L1 > L0 and σ1 > σ0. Let also ε0 be defined by Equation (3.5), ε ∈ (0, ε0),
δ ∈ (0, 1), x1 ∈ D, and assume that the stochastic ε-Piyavskii–Shubert algorithm (Algorithm 12) is run with
inputs L1, σ1, ε, 1− δ, x1. Then, with probability at least 1− δ, the stochastic ε-Piyavskii–Shubert algorithm
stops after performing N 6 Ñ ′ evaluations of f , where

Ñ ′ := 2916
σ2

1

ε2

(
ñ′ + 1

)
ln

(
4
(
ñ′ + 1

)
δ

)
,

ñ′ := N
(
X 25

54 ε
,

24

27

ε

L1

)
+

dlog2( 27
25
ε0
ε )e∑

k=0

N
(
X(ε02−k−1,ε02−k],

ε02−k−1 − ε/9
L1

)
,

and its simple regret (3.1) satisfies rN 6 ε.

Note again the presence of the first term in the definition of ñ′. As highlighted before (see discussion
after Theorem 3.2), this additional term is due to the price of automatic stopping and cannot be avoided.



Proof. Let ε′ = (25/27)ε and α = ε/27 as in the initialization of the stochastic ε-Piyavskii–Shubert algorithm
(Algorithm 12). Consider the “bad” event E :=

{
∃k ∈ N∗ : |ξk| > α

}
. By applying a union bound, Inequality

(3.16), and the definition of mk =
⌈
(2σ2

1/α
2) ln

(
2k(k + 1)/δ

)⌉
, we get

P(E) 6
∑
k∈N∗

δ

k(k + 1)
= δ .

For each outcome belonging to the complement of E, during each iteration k the value f(xk) is observed up
to a perturbation ξk with |ξk| 6 α. With probability at least 1 − δ we can therefore apply Theorem 3.2 to
upper bound the number of iterations before stopping by ñ′, which in turn gives that the total number of
evaluations of f before stopping is at most

ñ′∑
i=1

mi 6
ñ′∑
i=1

(
4σ2

1

α2
ln(i) +

2σ2
1

α2
ln

(
4

δ

)
+ 1

)
6

4σ2
1

α2

(
ñ′ + 1

)
ln

(
4
(
ñ′ + 1

)
δ

)

where in the last inequalities we used 2k(k + 1) 6 4k2 and

n∑
k=1

ln(k) 6
∫ n+1

1

ln(x) dx = (n+ 1) ln(n+ 1)− n .

Combining the proofs of Corollary 3.1 and Theorem 3.3 gives immediately the following upper bound
on the number of evaluations of f after which the stochastic ε-Piyavskii–Shubert algorithm (Algorithm 12)
automatically stops.

Corollary 3.4. Assume that f is L0-Lipschitz around x? (Assumption 3.1), the noise ξ is σ0-subgaussian
(Assumption 3.2), and let L1 > L0 and σ1 > σ0. Let also ε0 be defined by Equation (3.5), ε ∈ (0, ε0),
δ ∈ (0, 1), x1 ∈ D, and assume that the stochastic ε-Piyavskii–Shubert algorithm (Algorithm 12) is run with
inputs L1, σ1, ε, 1 − δ, x1. Fix any C? > 0 and d? ∈ [0, d] satisfying (3.6). Then, with probability at least

1− δ, the stochastic ε-Piyavskii–Shubert algorithm stops after performing N 6 N
′

evaluations of f , where

N
′

:= 2916
σ2

1

ε2

(
n′ + 1

)
ln

(
4
(
n′ + 1

)
δ

)
,

n′ := 1 + C?
(

1 + 8.5
L1

L0

)d
×


log2

(ε0

ε

)
+ log2(1.08) + 3 if d? = 0

(
2d
?

+ 2d
?+1 − 2

)
(1.08)d

?
(ε0

ε

)d?
− 1

2d? − 1
if d? > 0

and its simple regret (3.1) satisfies rN 6 ε.

3.5 Deferred proofs and additional results

3.5.1 Useful inequalities about packing and covering numbers

Covering numbers and packing numbers (see Section 3.2.2) are closely related. In particular, the following
well-known inequalities hold—see, e.g., [93, Lemma 5.5 and Example 5.8, with permuted notation ofM and
N ].4

4The definition of r-covering number of a subset A of Rd implied by [93, Definition 5.1] is slightly stronger than the one
used in this chapter, because elements x1, . . . , xN of r-covers belong to A rather than just Rd. Even if we do not need it for
our analysis, Inequality (3.18) holds also in this stronger sense.



Lemma 3.5. For any nonempty bounded set A ⊂ Rd and any real number r > 0,

N (A, 2r) 6M(A, r) 6 N (A, r) . (3.17)

Furthermore, for all δ > 0 and all r > 0,

M
(
B‖·‖(δ), r

)
6

(
1 + 2

δ

r
Ir<δ

)d
. (3.18)

We now state a known lemma about packing numbers at different scales. This result will be useful to
control how an overestimation L1 of the Lipschitz constant L0 impacts the regret of our algorithms.

Lemma 3.6. For any nonempty bounded set A ⊂ Rd and any real numbers r1, r2 > 0,

N (A, r1) 6

(
1 + 4

r2

r1
Ir2>r1

)d
×N (A, r2) .

Proof. We can assume without loss of generality that 0 < r1 < r2. Then,

N (A, r1) 6M(A, r1/2) (by (3.17))

6M(A, r2)×M
(
B‖·‖(r2), r1/2

)
(see below)

6 N (A, r2)×M
(
B‖·‖(r2), r1/2

)
(by (3.17))

6 N (A, r2)×
(

1 +
4r2

r1

)d
. (by (3.18))

The second inequality is obtained by building the r1/2-covering of A in two steps. First, we cover A with
balls of radius r2. Second, we cover each ball of the first cover with balls of radius r1/2.

3.5.2 Simple bound on the near-optimality dimension

The next well-known lemma shows that Inequality (3.6) is always true with C? = 9d and d? = d (though
significantly smaller values of C? and d? may exist, see Section 3.2.3). We recall that throughout the chapter
D ⊂ Rd is bounded.

Lemma 3.7. Assume that f : D → R is L0-Lipschitz around a maximizer x? (Assumption 3.1) and set
ε0 = L0 supx,y∈D ‖x− y‖. Then, for all ε ∈ (0, ε0],

N
(
Xε,

ε

2L0

)
6 9d

(ε0

ε

)d
.

Proof. Let ε ∈ (0, ε0]. Fix any a ∈ D and set B = B‖·‖
(
supy∈D ‖y − a‖

)
. Then Xε ⊂ D ⊂ a+ B, which in

turn yields

N
(
Xε,

ε

2L0

)
6 N

(
a+B,

ε

2L0

)
6M

(
B,

ε

4L0

)
6

(
1 +

8 supy∈D ‖y − a‖L0

ε

)d
6 9d

(ε0

ε

)d
,

where the second inequality follows by translation invariance and by (3.17), the third by (3.18), and the last
one by definition of ε0.

When the minimum

d?(L0) := min

{
d′ ∈ R+ : ∃C > 0,∀ε ∈ (0, ε0],N

(
Xε,

ε

2L0

)
6 C

(ε0

ε

)d′}



exists, the quantity d?(L0) is called the near-optimality dimension of f [19]. The zooming dimension is
defined similarly by packing the layers X(ε/2,ε] instead of the sets Xε (see [53]). When d?(L0) is well defined,
Inequality (3.6) is satisfied with d? = d?(L0) and the constant C? equal to

C?(L0) := min

{
C > 0 : ∀ε ∈ (0, ε0],N

(
Xε,

ε

2L0

)
6 C

(ε0

ε

)d?(L0)
}
.

Note however that a small d?(L0) does not necessarily imply that the sets Xε are small, since the constant
C?(L0) can be arbitrarily large. Consider, for example, a small ρ > 0 and the function x 7→ max

{
ρ− ‖x−

x0‖, 0
}

. Its near-optimality dimension is 0 but picking d? = 0 gives a constant C? of the order of (1/ρ)d.

Besides, in Example 3.3, we can check that d?(L0) = d/2, so that the near-optimality dimension corre-
sponds here to the worst-case value of d? among the linear and quadratic regimes. Our bounds in Sections 3.3
and 3.4 do not depend on this worst-case value but instead combine all best values of d? at all scales ε.

3.5.3 Proofs of Corollaries 3.1 and 3.3

In this section we prove Corollaries 3.1 and 3.3 stated in Section 3.3. We begin by Corollary 3.1, which gives
a sample complexity bound for the Piyavskii–Shubert algorithm in terms of the near-optimality dimension
of f .

Proof of Corollary 3.1. Fix any C? > 0 and d? ∈ [0, d] satisfying (3.6). Let also ε ∈ (0, ε0) and α ∈ [0, ε/25].
Then

ñ =

dlog2
ε0
ε e∑

s=1

N
(
X(ε02−s,ε02−s+1],

ε02−s − 3α

L1

)
+ 1 (by (3.9))

6

dlog2
ε0
ε e∑

s=1

N
(
Xε02−s+1 ,

ε02−s − 3α

L1

)
+ 1

6

dlog2
ε0
ε e∑

s=1

(
1 + 4
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ε
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The result then follows by letting ε← 25
27ε, α←

1
27ε, and applying Theorem 3.1.

We now show the analogous proof for automatic stopping, which concludes this section.



Proof of Corollary 3.3. Fix any C? > 0 and d? ∈ [0, d] satisfying (3.6), ε ∈ (0, ε0), and α ∈ [0, ε/24). Then
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(by Theorem 3.2)
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(ε0
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− 1
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(ε0
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(by (3.10))

which concludes the proof.

3.5.4 Connections with a known regret bound in dimension one

Hansen et al. [40] provided an extensive study of the ε-Piyavskii–Shubert algorithm without perturbations
(Algorithm 11 with α = 0) for Lipshitz functions defined on a compact interval. Theorems 4 and 5 in [40]
imply the following upper bound on the number nPy of iterations performed by the ε-Piyavskii–Shubert
algorithm before stopping.

Theorem 3.4 (Hansen et al. [40]). Assume that D = [0, 1], f is globally L0-Lipschitz on [0, 1], and let
L1 > L0. Let also ε > 0, α = 0, x1 ∈ D, and assume that the ε-Piyavskii–Shubert algorithm (Algorithm 11)
is run with inputs L1, ε, 0, x1. Then, the ε-Piyavskii–Shubert algorithm stops after at most nPy iterations,
where

nPy := 1 +
2L0

ln (1 + L0/L1)

∫ 1

0

dx

f? − f(x) + ε
. (3.19)

Using (3.6), we can further upper bound nPy in terms of the pair (d?, C?).

Corollary 3.5. Assume that D = [0, 1], f is globally L0-Lipschitz on [0, 1], and let L1 > L0. Let also
ε > 0, α = 0, x1 ∈ D, and assume that the ε-Piyavskii–Shubert algorithm (Algorithm 11) is run with inputs
L1, ε, 0, x1. Fix any C? > 0 and d? ∈ [0, d] satisfying (3.6). Then, the ε-Piyavskii–Shubert algorithm stops
after at most nPy iterations, where

nPy := 1 +
2v1C

?

ln(1 + L0/L1)
×


v1C
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+ 1

)(ε0

ε

)d?
if d? > 0

Proof. This proof relies on a peeling technique similar to that of Theorem 3.1 and 3.2. Fix any C? > 0 and
d? ∈ [0, d] satisfying (3.6), and without loss of generality let ε ∈ (0, ε0). Defining again mε :=

⌈
log2(ε0ε

−1)
⌉
>

1, we have [0, ε0] = [0, ε] ∪ (ε02−mε , ε02−mε+1] ∪ (ε02−mε+1, ε02−mε+2] ∪ (ε0/2, ε0] which in turn yields∫ 1
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Let v1 be the volume
∫
R I‖x‖61 dx of the real unit ball with respect to ‖ · ‖. For any a nonempty subset A

of [0, 1], radius α > 0, and collection B of ‖ · ‖-balls of radius α covering A, we have∫
A

dx 6
∑
B∈B

∫
B

dx 6 αv1 · |B| .

Plugging this in the previous inequality gives∫ 1
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where M(A, δ) denotes the minimum number of δ-balls required to cover A. Recalling (3.17) and noting
X(ε02−i,ε02−i+1] 6 Xε02−i+1 , we obtain
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which gives the result.





Chapter 4

Repeated A/B testing

In this chapter we study a setting in which a learner faces a sequence of A/B tests and has to make as many
good decisions as possible within a given amount of time. Each A/B test n is associated with an unknown
(and potentially negative) reward µn ∈ [−1, 1], drawn i.i.d. from an unknown and fixed distribution. For
each A/B test n, the learner sequentially draws i.i.d. samples of a {−1, 1}-valued random variable with
mean µn until a halting criterion is met. The learner then decides to either accept the reward µn or to
reject it and get zero instead. We measure the learner’s performance as the sum of the expected rewards
of the accepted µn divided by the total expected number of used time steps (which is different from the
expected ratio between the total reward and the total number of used time steps). We design an algorithm
and prove a data-dependent regret bound against any set of policies based on an arbitrary halting criterion
and decision rule. Though our algorithm borrows ideas from multiarmed bandits, the two settings are
significantly different and not directly comparable. In fact, the value of µn is never observed directly in our
setting—unlike rewards in stochastic bandits. Moreover, the particular structure of our problem allows our
regret bounds to be independent of the number of policies.

4.1 Introduction and related work

The problem of performing repeated randomized trials for comparing statistical hypotheses dates back to the
fifties [91]. With the advent of internet companies, decision making algorithms that adhere to this paradigm
witnessed a new wave of interest, and several variants of this setting have been introduced in recent years
[34, 37, 43, 48, 55]. As a concrete application, consider an online advertising company that keeps on testing
out new technologies in order to maximize its profit. Before deploying each new technology, the company
wants to figure out if its benefits outweigh its costs. As long as a reasonable performance metric is available
(e.g., time spent on a page, click-through rates, conversion of curiosity to sales), the company can perform
a randomized test and make a statistically sound decision. In real life applications, however, companies are
likely not interested in being absolutely sure to pick the best technology, but they want to spend as little
time as possible to make these decisions because of budget constraints. Indeed, testing technologies can
be expensive and might slow down the regular work flow. Therefore, discarding technologies with a small
positive margin could be significantly better than investing a large amount of resources to prove that they
are marginally better than the current one. The use of such data-driven sequential decisions processes is
known as A/B testing [51].

These types of settings are reminiscent of multiarmed bandits [2, 18, 77], where the set of arms is the
set of all decision rules (or policies) used by the decision maker to determine the outcome of an A/B test.
However, the two problems are significantly different. In each round of a stochastic bandit problem, the
learner picks an arm and gets to see an unbiased estimate of the expected reward of that arm. The total
reward accumulated by the learner is an additive function of time, the regret is simply the difference between
the total reward of the best fixed arm and the total reward of the algorithm (whose partial sums the learner



gets to see after each time step), and regret bounds typically scale with the number of arms [4].

In repeated A/B testing, the learner faces a sequence of A/B tests indexed by a positive integer n. The
outcome of the n-th A/B test is measured by a real number µn that can be either positive or negative,
depending on whether the tested population B generates higher rewards than the control population A.
Hence, |µn| represents the difference in performance between the two populations. Neither the absolute
value nor the sign of µn can be directly observed by the learner. However, the learner can draw samples to
estimate µn, and use this estimate to make a decision about whether to accept B or not. Given µn, samples
are assumed to be i.i.d. with expectation µn. Thus drawing more samples improves the estimate of µn, but
also makes the test run longer. This is not an issue if only one A/B test is performed. However, when a
sequence of such tests is performed, one wants to maximize the number of successfully implemented new
technologies in a given time window.

A typical way an A/B test is performed is the following. An increasing number of i.i.d. samples
Xn,1, Xn,2, . . . are gathered, and the learner uses their running average to update a confidence interval
around their common expectation µn. As soon as this confidence interval does not contain zero, the sign of
µn becomes known with high probability (if zero falls below the confidence interval, then µn > 0, and vice
versa). When this happens, B is accepted if and only if µn is positive. The major drawback of this approach
is that µn might be arbitrarily close to zero. In this case, the number of samples needed to determine the
sign of µn, which is of order 1/µ2

n, becomes arbitrarily large. The company then spends a large amount
of time on an A/B-test whose return is negligible. In hindsight, it would have been better to discard this
A/B test, and hope that the next one was better, i.e., that µn+1 was positive and bounded away from zero.
Because of that, A/B tests are usually given a termination horizon: if after k many samples no decision can
be taken, then discard this technology and move on to the next one. Denote this “early stopping” rule to
compute the number of samples by τk and the subsequent decision by D. A policy with termination horizon
k is then a pair (τk,D). Given a set of such of policies, the goal is to learn efficiently, at the smallest cost,
the optimal termination horizon k?. This number is learnable if the sequence {µn}n has some stationarity
property. For this reason we assume that µ1, µ2, . . . are i.i.d. random variables.

A crucial point in sequential A/B testing is picking a metric to evaluate each learning algorithm. As
mentioned before, we aim at keeping a steady flow of improvements. For this reason, the performance of
the learner is measured using the ratio between the expected reward of all accepted µn divided by the total
expected number of samples drawn throughout the process. This choice ensures that the optimal policy
(τk? ,D) maximizes the ratio of expectations E[µ1 · D]/E[τk], where τk is the number of samples drawn by
policy (τk,D) and D is the decision of either accepting or rejecting µ1 after drawing at most k samples
(as described above). The main objective of the learner is to minimize the notion of regret defined as the
difference between the maximum of the ratio E[µ1 · D]/E[τk] (over a possibly infinite set of policies) and the
learner’s performance defined above. As we discuss in depth in Section 4.3, this choice is also well-suited to
model sequential A/B testing when the learners can perform as many A/B tests as they want, as long as
the total number of samples does not exceed a budget T . That is, when the constraint is on the number of
samples rather than on the number of A/B tests.

Another possible metric that is used to optimize sequential A/B-tests is the false discovery rate (FDR)
—see [75, 96] and references therein. Roughly speaking, the FDR in our setting would be the ratio of
implemented µn that are negative over the total number of implemented µn. This quantity is usually
controlled by looking at the p-values of tests and accepting (resp., rejecting) a test if its p-value is below (resp.,
above) some dynamically adapted threshold. This is an interesting and fruitful theory, but unfortunately
disregards the relative “performance” of tests, i.e., the values of µn. For instance, assume that the samples
Xn,i belong to {−1, 1}, and µn can only take two values: +ε with probability 0.9 and −ε with probability
0.1, for some ε > 0. Then a company could implement all A/B tests immediately after the first sample. This
would provide a ratio of the values of accepted tests over the number of samples of 0.8ε. To control the FDR,
one would have to sample each policy approximately 1/ε2 times, yielding a ratio of order of ε3. Another
simple strategy that would outperform the FDR approach is simply accepting µn after the first sample if
and only if the sample is positive. A direct computation shows that, in this case, the ratio of the values of
accepted tests over the number of samples has order 0.4ε. Our approach departs from online FDR [28, 76]
by taking the relative value of A/B tests into account. It is acceptable to accept a few slightly negative A/B



tests as long as they are compensated by accepting many positive ones. The optimal ratio of FDR should
actually be data-dependent and, as a consequence, unknown to the learner beforehand.

It turns out that running a decision making policy during an A/B test generates a collection of samples
that —in general— cannot be put together in an unbiased estimate of the policy reward. Correcting this
bias is a non-trivial challenge arising from our setting, and a major difference with multiarmed bandits.
Moreover, the performance measure that we use is not additive in the number of A/B tests (nor in the
number of samples). Therefore, algorithms have to be analyzed differently, and bandit-like techniques —
where the regret is controlled during each time step and then summed over rounds— cannot be directly
applied. On the positive side, the structure of our setting can be leveraged to derive regret bounds that are
independent of the number of policies, another significant difference with standard multiarmed bandits. This
problem can be thought of as a multiarmed bandit setting with non-additive regret in which the (biased)
per-round feedback is computed by solving a best-arm identification problem [36] over two arms. We believe
these technical difficulties are a necessary price to pay in order to define a realistic setting, applicable to
real-life scenarios. Indeed, an important contribution of this chapter is the definition of a novel setting with
a suitable performance measure.

In section4.4, we present an algorithm whose analysis can be applied to a broad class of policies. The
algorithm is divided in three consecutive phases, each performing a specific task. During the first phase,
policies requesting a progressively increasing amount of samples are tested, until one of them is found to
have a strictly positive reward with high probability. Leveraging the definition of our performance measure,
an estimate of the reward of this policy can be used to bound from above the expected number of samples
drawn by the optimal policy (or policies, if there are more than one). With this we can determine a finite set
of potentially optimal policies whose cardinality is independent of the total number of policies (indeed, the
initial set of policies can even be infinite). This is a peculiar feature of our problem that, to the best of our
knowledge, has not appeared elsewhere. During phases 2 and 3, the algorithm proceeds in an explore-then-
exploit fashion. In phase 2 (exploration), it performs enough A/B tests, drawing enough samples for each
one of them, in order to accurately estimate the expected reward per expected sample size of all potentially
optimal policies. During phase 3 (exploitation) the algorithm consistently runs the policy with the highest
of such estimates. For this algorithm we prove a high-probability data-dependent regret bound of order
Õ(N−1/3), independent of the number of policies, where N is the total number of A/B tests.

4.2 Problem definition and notation

We say that a function τ : {−1, 1}N → N is a horizon if τ(x) only depends on the first τ(x) variables in
x = (x1, x2, . . .). In the introduction, we mentioned a few possible horizons: collect at most T samples,
and stop before if 0 is outside some confidence intervals. A function D : N× {−1, 1}N → {0, 1} is a decision
(rule) if D(k,x) only depends on k and the first k variables in x. In the introduction, the decision rule was
to implement an A/B test (D = 1) if 0 was below the aforementioned confidence interval. We call the pair
π = (τ,D) a policy.
Fix a (finite or countable) set of policies Π (known to the learner), and a distribution µ on [−1, 1] (unknown
to the learner). We study the following online protocol: for each A/B test n = 1, 2, . . .

1. an unobserved sample µn, called mutation, is drawn i.i.d. according to µ,
2. the learner runs a policy (τn,Dn), i.e., the learner makes a decision Dn after drawing {−1, 1}-valued

samples Xn,1, . . . , Xn,τn such that E[Xn,i | µn] = µn, where τn = τn(Xn), Dn = Dn
(
τn(Xn),Xn

)
,

and Xn = (Xn,1, Xn,2, . . .) are drawn i.i.d. given µn, and independently of past A/B tests.
The goal of the learner is to minimize the regret RN after N A/B tests, defined as

RN = sup
(τ,D)∈Π

(
E[µ1 · D]

E[τ ]

)
−
∑N
n=1 E[µn · Dn]∑N
m=1 E[τm]

(4.1)

where τ = τ(X1), D = D
(
τ(X1),X1

)
, expectations are taken with respect to the random draw of µn and

Xn.



For each policy belonging to Π, we allow the learner to reject any mutation regardless of the outcome
of the sampling, and to draw arbitrarily more samples of mutations (provided these additional samples are
not taken into account in the decision). Formally, for all policies

(
τ,D(τ)

)
∈ Π and all k ∈ N, the learner

has access to the policies (τ, 0) and
(
τ + k,D(τ)

)
. Note that invoking the power to reject a mutation µn

after τn(Xn) samples increases the cost of sampling in Equation (4.1) by E
[
τn(Xn)

]
while not increasing

the reward in the numerator; indeed E
[
µn · Dn

(
τn(Xn),Xn

)]
= E[µn · 0] = 0 for all

(
τn,Dn(τn)

)
= (τ, 0),

with
(
τ,D(τ)

)
∈ Π for some decision D. Similarly, using a policy

(
τ + k,D(τ)

)
rather than

(
τ,D(τ)

)
∈ Π

has no effect on the numerator but increases the cost in the denominator by k.

4.3 Choice of performance measure

In this section we discuss our choice of performance measure. More precisely, we compare several different
benchmarks and discuss how things differ if the learner has a budget of samples rather than A/B tests.
We see that all choices but one are essentially equivalent and the last one —perhaps the most natural— is
surprisingly poorly suited to model our problem.

At a high level, a learner constrained by a budget would like to maximize its reward per “time step”.
This can be done in several different ways. If the constraint is on the number N of A/B tests, then the
learner might want to maximize the objective g1(N) defined by

g1(N) = E
[ N∑
n=1

µn · D
(
τ(Xn),Xn

)
/

N∑
m=1

τ(Xm)
]
.

This is equivalent to our choice of maximizing E[µ1 · D]/E[τ ], indeed, multiplying both the numerator and
the denominator by 1/N and applying Hoeffding’s inequality gives g1(N) = Θ

(
E[µ1 ·D]/E[τ ]

)
. Furthermore,

by the law of large numbers and Lebesgue’s dominated convergence theorem, g1(N)→ E[µ1 · D]/E[τ ] when
N →∞.

Assume now that the constraint is on the number of samples. We say that the learner has a budget of
samples T if as soon as the total number of samples reaches T during A/B test N (which is now a random
variable), they have to interrupt the run of the current policy, reject the current mutation µN , and end
the process. Formally, the random variable N that counts the total number of A/B tests performed by
repeatedly running policy (τ,D) is defined by

N = min

{
m ∈ N |

m∑
n=1

τ(Xn) > T

}
.

In this case, the learner might want to maximize the objective

g2(T ) = E

[∑N−1
n=1 µn · D

(
τ(Xn),Xn

)
T

]
=

E
[∑N−1

n=1 µn · D
(
τ(Xn),Xn

)]
T

,

where the sum stops at N−1 because the the last A/B test is interrupted and no reward is gained. Note first
that for all deterministic functions f and all n ∈ N, the random variable f(Xn) is independent of I{n 6 N};
indeed I{N > n} = I

{∑n−1
i=1 τ(Xi) < T

}
depends on τ(X1), . . . , τ(Xn−1) only. Hence

E
[
µn · D

(
τ(Xn),Xn

)
· I{N > n}

]
= E

[
µn · D

(
τ(Xn),Xn

)]
· P(N > n) ,

E
[
τ(Xn) · I{N > n}

]
= E

[
τ(Xn)

]
· P(N > n) .

Moreover, assume without loss of generality that E
[
τ(X1)

]
< ∞ and note that during each A/B test at



least one sample is drawn, hence N 6 T and

∞∑
n=1

E
[∣∣µn · D(τ(Xn),Xn

)∣∣ · I{N > n}
]
6

T∑
n=1

E
[∣∣µn · D(τ(Xn),Xn

)∣∣] 6 T <∞ ,

∞∑
n=1

E
[
τ(Xn) · I{N > n}

]
6

T∑
n=1

E
[
τ(Xn) · I{N > n}

]
6 T <∞ .

We can therefore apply Wald’s identity[94] to deduce

E

[
N∑
n=1

µn · D
(
τ(Xn),Xn

)]
= E[N ]E[µ1 · D] and E

[
N∑
n=1

τ(Xn)

]
= E[N ]E[τ ]

which, using

E

[
N∑
n=1

τ(Xn)

]
− E

[
τ(XN )

]
6 E[T ] = T = E[T ] 6 E

[
N∑
n=1

τ(Xn)

]
and −1 6 µN · D

(
τ(XN ),XN

)
6 1, yields

E[N ]E[µ1 · D]− 1

E[N ]E[τ ]
6 g2(T ) 6

E[N ]E[µ1 · D] + 1

E[N ]E[τ ]− E
[
τ(XN )

]
i.e., g2(T ) = Θ

(
E[µ1 · D]/E[τ ]

)
and noting that E[N ]→∞ if T →∞, we have that g2(T )→ E[µ1 · D]/E[τ ]

when T →∞.
This proves that having a budget of A/B tests, samples, or using any the three natural objectives

introduced so far is essentially the same. For this reason, and to make the presentation clearer we chose to
put a constraint on the number of A/B tests and maximize the ratio of expectations.

Before proceeding to design and analyze an algorithm to minimize the regret Equation (4.1), we discuss
a very natural definition of objective which should be avoided because, albeit easier to maximize, it is not
well-suited to model our problem. Consider as objective the average payoff of accepted mutations per amount
of time used to make the decision, i.e.,

g3 = E
[
µ1 · D
τ

]
.

We now give some intuition on the differences between the ratio of expectations and the expectation of the
ratio g3 and we discuss why the former might be better than the latter.

Fix c ∈ (0, 1), nlN ∈ N, and assume that µ1 is uniformly distributed over {−c, 0, c}. Consider the policy
(τ,D) satisfying (

τ(X1),D
(
τ(X1),X1

))
=


(n, 1), if µ1 = c,

(n, 0), if µ1 = −c,
(N, 0), if µ1 = 0,

i.e., the learner understands quickly (τ = n samples) that µ1 = ±c, accepting it or rejecting it accordingly,
but takes a long time (τ = N � n samples) to figure out that the mutation is nonpositive when µ1 = 0. In
this instance, our definition of ratio of expectations and the expectation of the ratio give

g3 = E
[
µ1 · D
τ

]
= Θ

( c
n

)
� Θ

( c
N

)
=

E[µ1 · D]

E[τ ]
.

This is due to the fact that the expectation of the ratio “ignores” outcomes with null (or very small) rewards,
even if a large number of samples is needed to learn them. On the other hand, the ratio of expectations
weighs the number of samples and it is highly influenced by it, a property we are interested in capturing
with our model.



4.4 Explore then exploit

As described in the introduction, horizons in A/B testing are usually defined by a capped early-stopping rule
(e.g., drawing samples until 0 leaves a confidence interval around the empirical average, but quitting with
a rejection after a certain number of samples has been drawn). In this section we design an algorithm that
achieves vanishing regret (with high probability) for an infinite family of policies depending on an arbitrary
decision and any monotone sequence of capped horizons, not necessarily defined as truncated versions of a
base early-stopping rule. Our algorithm falls in the category of the explore then exploit algorithms[71]. There
are two separate phases of the algorithm dedicated to the estimation of the performance of all promising
policies (exploration) and the consistent run of the policy with the best estimated performance (exploitation).

Fix any decision D and any sequence of horizons τ1, τ2, . . . such that τk 6 k for all k and τk 6 τh if
k 6 h. Consider the set of policies (parameterized by D, τ1, τ2, . . .)

Π = {πk}k∈N =
{(
τk,D

)}
k∈N

. (4.2)

We say that k is the maximum horizon of policy
(
τk,D

)
. We denote the (expected) reward of policy

(
τk,D

)
by

rk = E
[
µ1 · D

(
τk(X1),X1

)]
and its (expected) horizon by

sk = E
[
τk(X1)

]
.

We say that k? is an optimal (maximum) horizon if it satisfies

k? ∈ arg max
k∈N

(rk/sk) .

Namely, if it is the maximum horizon of an optimal policy
(
τk

?

,D
)
. Note that τk(x) 6 τh(x) for all k 6 h

and x ∈ {−1, 1}N implies
sk = E

[
τk(X1)

]
6 E

[
τh(X1)

]
= sh . (4.3)

If k > 1, h > 0, and policy (k + h, 0) is run during A/B test n, we denote the empirical average of the first
k and the last h samples of µn by

X
n

k =
1

k

k∑
i=1

Xn,i and Y
n

h =
1

h

k+h∑
i=k+1

Xn,i

respectively, where Y
n

0 is defined as 0. If policy (k + h, 0) is run for n2 consecutive A/B tests n1 + 1, n1 +
2, . . . , n1 + n2, for all ε > 0 we define the upper confidence bound r̂+

k,h(ε) of rk and the lower confidence

bounds r̂−k,h(ε) of rk and ŝ−k,h(ε) of sk by

r̂±k,h(n1, n2, ε) =
1

n2

n1+n2∑
n=n1+1

Y
n

h · D
(
τk(Xn),Xn

)
± ε and ŝ−k (n1, n2, ε) =

1

n2

n1+n2∑
n=n1+1

τk(Xn)− ε .

If policy
(
τk, 0

)
is run for m0 consecutive A/B tests n0 + 1, n0 + 2, . . . , n0 + m0, we denote the empirical

average of its horizon by

sk(n0,m0) =
1

m0

n0+m0∑
i=n0+1

τk(Xi) .

For all ε, δ ∈ (0, 1) and all j ∈ N, let

mj(ε, δ) =

⌈
ln
(
3j(j + 1)/δ

)
(2ε2)

⌉
and Mj =

j∑
i=1

mi .



Algorithm 13:

Input: decision D, horizons τ1, τ2, . . ., budget of mutations N ∈ N, confidence 1− δ ∈ (0, 1),
accuracy ε ∈ (0, 1), exploration length N2 ∈ N, number of extra samples h1, h2 ∈ N.

Initialization: let mj ← mj(ε, δ) for all j ∈ N.
1 for j = 1, 2, . . . do // Phase 1: Upper bounding optimal horizons

2 run policy
(
2j + h1, 0

)
for mj A/B tests and compute r̂−2j ← r̂−2j ,h1

(Mj−1,mj , ε) if r̂−2j > 0 then

3 l
4 et j0 ← j and k0 ← 2j0 for l = j0 + 1, j0 + 2, . . . do

5 run policy
(
τ (2l), 0

)
for ml A/B tests and compute s2l ← s2l(Ml−1,ml) if s2l > ε+ k0/r̂

−
k0

then

6 let j1 ← l, k2 ← 2j1 , N1 ←
∑j1
j=1mj , and break

7 break

8 for A/B test n = N1 + 1 to N1 +N2 do // Phase 2: Exploration

9 run policy (k2 + h2, 0)
10 for A/B test n = N1 +N2 + 1 to N do // Phase 3: Exploitation
11 run policy πk′ , where k′ ∈ arg maxk∈{1,...,k2}

(
r̂+
k /ŝ

−
k

)
and

r̂+
k ← r̂+

k,h2

(
N1, N2, ln(6k2δ

−1)/(2N2)
)
, ŝ−k ← ŝ−k,h2

(
N1, N2, ln(6k2δ

−1)/(2N2)
)

Algorithm 13 is divided into three phases. During phase 1 (lines 1–7), N1 mutations (all rejected by the
algorithm) are used to determine a horizon k2 that upper bounds all optimal horizons k? (there could be
multiple optimal horizons) with high probability. This is possible because of the structure of our problem.
Indeed, each optimal policy πk? satisfies rk/sk 6 rk?/sk? 6 1/sk? which implies that for all policies πk
with rk > 0, the expected number of samples drawn by πk? satisfies sk? 6 sk/rk. With this in mind, we
first upper bound with high probability the expected number of samples sk? drawn by optimal policies πk?

using an estimate of some sk/rk with rk > 0 (lines 1–2). Then we proceed to finding the smallest (up to a
factor of 2) k2 such that sk2 > sk? with high probability (lines 2–7). This is an upper bound on all optimal
horizons τk

?

. During phase 2 (lines 8–9), the algorithm draws k2 +h2 samples from each one of the next N2

mutations (again, all rejected). These are used to compute accurate estimates of all rewards of potentially
optimal policies, i.e., all policies with maximum horizon at most k2. During phase 3 (10–11), the algorithm
runs on the remaining N − N1 − N2 mutations the policy

(
τk
′
,D
)

that it estimated to be optimal by the
end of phase 2.

Theorem 4.1. Let Π be defined by Equation (4.2). If Algorithm 13 is run with decision D, horizons
τ1, τ2, . . ., budget of mutations N ∈ N, confidence 1 − δ ∈ (0, 1), accuracy ε ∈ (0, 1), exploration length
N2 ∈ N, number of extra samples h1, h2 ∈ N, and 8 ln(6k2δ

−1) < N2 < N − N1, then, with probability at
least 1− δ, its regret satisfies

RN = O

N2 + 1/ε2

N −N2
+

√
ln(k2/δ)

N2

 .

In particular, picking h1 = h2 = 1, ε = Θ(N−1/3), and N2 = Θ
(
N2/3

)
gives RN = Õ

(
N−1/3

)
with

probability at least 1− δ. Note that in general one cannot pick a constant value of ε (such as, say, ε = 1/2).
Indeed k2 depend on ε and the theorem holds only if phase 1 is terminated successfully initializing k2 at line 5.
This is stated (with a slight abuse of notation) in the condition 8 ln(6k2δ

−1) < N − N1, which implicitly
states that the number N1 of A/B tests performed during phase 1 has to be strictly smaller than the total
budget of A/B tests N . Picking a large ε might result in the tests at lines 2 or 5 to never be true, so that
the algorithm neither leaves phase 1, nor initializes k2. However, if ε is set to Θ(N−1/3) and N � 1, a direct
verification shows that this can only happen if all optimal policies πk? satisfy rk?/sk? = O(N−1/3), which



in turn ensures that the regret is still of order N−1/3. The same argument applies to the other constants
that appear inside the the big O notation (see proof below for the explicit form of the bound). Note that
this bound is independent of the number of policies (which would be infinite). It scales instead with the
data-dependent constant k2, i.e., the upper bound on all optimal horizons, which has a clear interpretation
as a measure of hardness of the instance. The more µn is concentrated around 0, the hardest the problem
of determining if µn > 0 becomes and the more samples are needed in order to prove it.

Proof. Note that N1, N2, and N −N1 −N2 > 1 are the numbers of A/B tests performed during phases 1,
2, and 3 respectively. The total number of samples drawn during phase 1 is

j0∑
j=1

(2j + h1)mj +

j1∑
l=j0+1

2jmj = h1Mj0 +

j1∑
j=1

2jmj

6 h1Mj0 +

j1∑
j=1

2jmj1 = h1Mj0 + 2

(
1− 2j1

1− 2

)
mj1 = h1Mj0 + (2k1 − 2)mj1 .

Since all mutations are rejected, the sum of the rewards accumulated during phase 1 is zero. The total
number of samples drawn during phase 2 is equal to (k2 + h2)N2. Since all mutations are rejected, the
sum of the rewards accumulated during phase 2 is again zero. The total expected number of samples drawn
during phase 3 is upper bounded by (N−N2)sk′ . We now proceed to lower bound the total amount of reward
(N−N1−N2)rk′ accumulated during phase 3. We begin by showing that k? 6 k2 for all optimal horizons k?

with high probability. Note that r̂−2j + ε (line 2) is an empirical average of i.i.d. unbiased estimators of r2j .
Indeed, by the independence of D(k,x) of the variables (xk+1, xk+2, . . .) and the conditional independence
of the samples, for all A/B tests n performed at line 2,

E
[
Y
n

h1
· D
(
τ (2j)(Xn),Xn

)
| µn

]
= E

[
Y
n

h1
| µn

]
E
[
D
(
τ (2j)(Xn),Xn

)
| µn

]
= µn · E

[
D
(
τ (2j)(Xn),Xn

)
| µn

]
= E

[
µn · D

(
τ (2j)(Xn),Xn

)
| µn

]
.

Taking expectations to both sides proves the claim. Then, recalling that Mj =
∑j
i=1mi and denoting by Σj

the σ-algebra generated by µMj−1+1, . . . , µMj
, Hoeffding’s inequality implies

P
(
r̂−2j ,h1

(Mj−1,mj , ε) > r2j | Σj
)

= P
((
r̂−2j ,h1

(Mj−1,mj , ε) + ε
)
− r2j > ε | Σj

)
6

δ

3j(j + 1)

for all j 6 j0. By the law of total expectation, the same holds without the conditioning. Similarly, for all
l > j0, P(s2j − s2l > ε) 6 δ/

(
3l(l + 1)

)
. Hence, the event{

r̂−2j 6 r2j
}
∧
{
s2j 6 s2j + ε

}
∀j 6 j0,∀l > j0 (4.4)

occurs with probability at least

1−
j0∑
j=1

δ

3j(j + 1)
−

j1∑
l=j0+1

δ

3l(l + 1)
> 1− δ

3

∑
j∈N

1

j(j + 1)
= 1− δ

3
.

Note now, that for all horizons k and all optimal horizons k?,

rk
k

6
rk
sk

6
rk?

sk?
6

1

sk?
.

Hence, all optimal horizons k? satisfy sk? 6 k/rk for all horizons k such that rk > 0. By Equation (4.3),
Equation (4.4) and line 5, with probability at least 1 − δ/3, for all k > k2, sk > sk2 > sk2 − ε > k0/r̂

−
k0

>



k0/rk0 , where rk0 > r̂−k0 > 0 by Equation (4.3) and line Equation (2). Therefore, all optimal horizons k?

satisfy k? 6 k2 with probability at least 1− δ/3.
Now we show that the policy

(
k′,D(k′)

)
determined by the end of phase 2 is a close approximation of all

optimal policies
(
k?,D(k?)

)
with high probability. Proceeding as above yields, with probability at least 1−

2δ/3, for all k ∈ {1, . . . , k2}, rk 6 r̂+
k 6 rk+2

√
ln(6k2δ−1)/(2N2) and sk > ŝ−k > sk−2

√
ln(6k2δ−1)/(2N2).

Then, using (a + b)/(c − b) 6 a/b + 2b/(c − b) for all a, b, c > 0 with c > b and a/b 6 1, we have with
probability at least 1− δ, for all optimal horizons k?,

rk?

sk?
6
r̂+
k?

ŝ−k?
6
r̂+
k′

ŝ−k′
6
rk′ + 2

√
ln(6k2δ−1)/(2N2)

sk′ − 2
√

ln(6k2δ−1)/(2N2)
6
rk′

sk′
+

4
√

ln(6k2δ−1)/(2N2)

sk′ − 2
√

ln(6k2δ−1)/(2N2)
.

That is, for all optimal horizons k?, the policy πk′ played during the exploitation phase satisfies, with
probability at least 1− δ,

rk′ > sk′

(
rk?

k?
−

4
√

ln(6k2δ−1)/(2N2)

sk′ − 2
√

ln(6k2δ−1)/(2N2)

)
> sk′

rk?
k?
−

√
32 ln(6k2δ−1)

N2


where we used N2 > 8 ln(6k2δ

−1) in the last inequality. Putting everything together and using a
a+b (x− y) >

x− y − b
b+c for all a, b, y > 0 and all x 6 1 gives, with probability at least 1− δ, for all optimal horizons k?,

RT 6
h1Mj0 + (2k1 − 2)mj1 + (k2 + h2)N2

h1Mj0 + (2k1 − 2)mj1 + (k2 + h2)N2 + (N −N2)sk′
+

√
32 ln(6k2/δ)

N2
.

4.5 Conclusions and future work

In this chapter we introduced a sequential A/B testing problem in which the goal of the learner is to
simultaneously maximize the reward accumulated by accepting mutations and minimize the number of
samples necessary to do so. While we managed to design a general algorithm with vanishing regret, some
interesting questions remain open.

The explore-then-exploit approach could be replaced with a more adaptive online protocol. This might
lead to a faster convergence rate (e.g.,

√
N). The issue that emerges from directly applying UCB [4] strategies

to this problem is that those algorithms typically rely on building upper confidence bounds around empirical
averages of unbiased estimates of the reward. As we discussed earlier, the estimates we get by running a
policy without oversampling are biased. It is not clear whether such biased estimates could be used, as
their non-vanishing bias depends in a non-trivial way on the form of the policy. One could however get
unbiased estimates by drawing as little as one extra sample for each A/B test. This would ensure fast
convergence, but to a slightly suboptimal policy. In fact, this algorithm would have a competitive ratio of
sk?/(sk? + 1) > 1, unlike a proper regret bound. Other approaches, such as explore then exploit with a more
adaptive exploration, might yield better regret guarantees. These lines of research will be explored in future
works.
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