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a b s t r a c t

Calibration of a SIR (Susceptibles–Infected–Recovered) model with official international data for the
COVID-19 pandemics provides a good example of the difficulties inherent in the solution of inverse
problems. Inverse modeling is set up in a framework of discrete inverse problems, which explicitly
considers the role and the relevance of data. Together with a physical vision of the model, the
present work addresses numerically the issue of parameters calibration in SIR models, it discusses
the uncertainties in the data provided by international authorities, how they influence the reliability
of calibrated model parameters and, ultimately, of model predictions.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Epidemic modeling is usually performed with compartmental
odels, often called SIR (Susceptibles–Infected–Recovered) mod-
ls, which are claimed to go back to the work by Ronald Ross and
ilda P. Hudson more than one century ago [1,2] and, ten years
ater, to the work of Anderson Gray McKendrick and William
gilvy Kermack [3,4]. This class of models shares several charac-
eristics with models of population dynamics and with conceptual
umped models in hydrology. These models simulate the tem-
oral evolution of some compartments of the population, which
s normally subdivided among Susceptibles (i.e., those individuals
ho have not yet been affected by the virus and who could be
ubject to infection), Infected (i.e., those individuals who have
een infected by the virus) and Recovered (i.e., those individuals
ho have recovered, after having been infected). For this reason,
hese models are usually referred to as SIR models. They are based
n phenomenological laws to describe the transfer of individuals
rom one class to another.

These models have found wide application both in life sci-
nces, mostly in epidemiology, and in the field of economic,
olitical and social sciences, e.g., in the context of addressing the
osts of policies designed to block epidemics and the diffusion
f viruses and in the realm of optimal control to assess the
olitical measures which guarantee the best equilibrium between
eduction of the epidemic spread and harmful secondary socio-
conomical impacts [5–7]. Several extremely interesting papers
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have been devoted to the mathematical properties of SIR models,
often by applying the theory of dynamical systems; see [8–17]
among many others. However, previous works on SIR models
have, to the best of the authors’ knowledge, seldom addressed
the calibration of SIR models with real data, i.e., the issue of
a proper fitting of epidemiological data with model outcomes.
Some examples refer to applications to dengue transmission [18],
H5N1 avian influenza [19], HIV epidemic [20] and Severe Acute
Respiratory Syndrome (SARS) [21].

In this paper, we address the problem of calibrating the epi-
demiological parameters of a SIR model describing the evolution
in time of the current COVID-19 pandemic. This is achieved by
solving numerically the underlying inverse problem via the min-
imization of an objective function that measures the discrepancy
between the simulated solutions to the discretized SIR model and
the official data on COVID-19.

Model calibration is a common problem in geophysical and
environmental modeling. The present paper follows the general
framework introduced in [22] to handle discrete inverse problems
for model calibration and analyzes the role of data following the
discussion in [23]. The continuous SIR model considered here is
discretized via a forward-time finite-differences scheme which
is implemented in a specifically designed code, developed using
the Python programming language, to provide at each discrete
time n ∈ Z a vector state of the discretized SIR system, which
is, in turn, matched against real data in order to calibrate the
parameters of the system via a minimization problem (the in-
verse problem). The results presented in this paper consider the
application of the model to a given nation, Italy in this instance,

avoiding any subdivision in provinces, regions or states. The great
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amount of data collected during the COVID-19 pandemic due to
the diffusion of the SARS-CoV-2 virus (also called ‘‘coronavirus’’)
provides an exceptional basis to test calibration of SIR models
via the solution of an inverse problem. It is well known that
inverse problems are ill-posed, due to the lack of uniqueness and
stability of these problems. Non-uniqueness will be addressed
in this paper by the application of different algorithms for the
minimization of the misfit between reference observed quantities
and model predictions. The other relevant topic for ill-posedness
is the lack of stability, i.e., the lack of continuous dependence of
the parameters to be identified on the data, so that small errors
in the data can lead to large discrepancies in the parameters
one is trying to identify via the inverse problem. We do not
provide a full review here on these topics, but we mention [24]
for a general-purpose description, [25,26] for a deep discussion
on the instability issue in the context of the so-called inverse
conductivity problem and [27] for recent results about optical
tomography.

The main objective of this paper is to fix some concepts about
SIR models and their calibration and to discuss the relevance of
data for reliability of model outcomes in the context of inverse
problems and their application to the specific study of the spread
of COVID-19 [23].

The paper is designed to advance the current knowledge about
the functioning, potentialities and limitations of epidemic models.
It also highlights certain similarities among geophysical, envi-
ronmental and epidemic modeling, therefore providing further
insights in epidemic model calibration. On the other hand, this
work does not aim to provide forecasts of the pandemic evolution
at this stage. It is in the authors’ opinion that the quality of
the data that are currently available does not allow to perform
reliable forecast and model outcomes should be used with high
prudence. It will be material of future work to further develop
and refine the SIR model presented in this work and to address
the issue of providing forecasts of the epidemics, when the data
will be better understood.

For instance, the correct number of infected people ‘‘remains
unknown because asymptomatic cases or patients with very mild
symptoms might not be tested and will not be identified’’, as
recognized, e.g., by [28]. In an interview published on March
23rd, 2020, by the Italian newspaper ‘‘La Repubblica’’, Angelo
Borrelli, Head of Dipartimento della Protezione civile (national
civil protection department) stated that a ratio of one certified
case out of every 10 total cases is credible. Furthermore, different
criteria have been adopted by different countries and institutions
to define the various categories of infected, recovered and de-
ceased people by or with COVID-19. This fact has been widely
recognized as a cause of uncertainty in the collected data. Finally,
censorship on COVID-19 pandemics is reported by journalists and
organizations in some of the countries affected by the pandemic.

The paper is organized as follows. Section 2 contains the
description of the SIR model in both the continuous and the
discrete case (Section 2.1) together with a precise formulation
of the inverse problem addressed in this paper in the discrete
setting (Section 2.2). In particular, inverse modeling, i.e., model
calibration, is set up and discussed computationally within the
framework proposed by [22]. The results obtained by applying
our SIR model to the COVID-19 pandemic are shown in Section 3.
Section 4 is devoted to a discussion about the main assumptions
on which the SIR model is based and some possible future devel-
opments. Section 5 summarizes the most relevant results of this

work.
2. Methods and materials

2.1. The continuous and the discrete models

We start by defining the objects involved in the continuous
SIR model considered in this paper.

Definition 2.1. We denote by S(t), I(t), R(t) and D(t) the number
f susceptible, infected, recovered and deceased individuals of the
opulation under study at time t , respectively, for t varying in
ome interval I ⊂ R. Here D includes only those individuals who
ied while being infected, whereas the total population, at time
, is given by P(t) = S(t) + I(t) + R(t).

Definition 2.2. We denote by β and δ the birth and death rates,
respectively, under normal conditions, i.e., without considering
deaths caused by the epidemic. We also denote by γ , ρ and φ the
infection, recovery and fatality rates, respectively. The dimension
of these coefficients is [time−1

].

Notice that φ accounts for the deaths related to the pan-
demic, i.e., it represents the increase in the death rate due to the
pandemic. The normal death rate is considered through δ.

Note that β and δ in Definition 2.2 are rarely considered in
epidemic modeling, as the time variation of P due to the normal
evolution of the population is either negligible or smoother than
its variation due to the presence of an epidemic. This is due to
the fact that typical values of β and δ are smaller than the ones
of γ , ρ and φ by one or more orders of magnitude, as shown in
Section 3.2. We keep birth and death rates in the model, in order
to facilitate a thorough discussion of the assumptions behind
this model, which is given in Section 4. We make the following
assumptions.

Assumption 2.1. The coefficients β , δ, γ , ρ and φ are assumed
to be constant.

Assumption 2.2. The number of contacts of each infected person
per unit time does not vary among the infected population and
it is assumed to be constant in time. Moreover the fraction of
such contacts who are susceptible to the infection is given by
S/P , whereas (I + R)/P is the fraction of those persons who
cannot be infected, as it is also assumed that recovered people
are immunized.

The following equations, based on the seminal papers [1–4],
are used to describe the time evolution of S, I , D and R:

dS
dt

= βS − γ
IS
P

− δS, (1)

dI
dt

= βI + γ
IS
P

− ρI − φI − δI, (2)

dD
dt

= φI, (3)

dR
dt

= βR + ρI − δR (4)

together with the initial conditions S(tini) = Pini − 1, I(tini) = 1,
(tini) = 0 and D(tini) = 0, where tini ∈ I ⊂ R is the time at
hich the first individual is infected and Pini is the population at

ini. Notice that from Eqs. (1) to (4) one can easily deduce

dP
= βP − δP − φI (5)
dt
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and if we couple (5) with (2)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dP
dt

= (β − δ)P − φI, in I,

dI
dt

= −αI + γ
IS
P

, in I,

P(tini) = Pini,
I(tini) = 1,

(6)

where

α = φ + ρ − β + δ. (7)

We can approximate (6) to the simple system of autonomous
linear ordinary differential equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dP
dt

= (β − δ)P, in (tini, tini + h),

dI
dt

= (γ − α)I, in (tini, tini + h),

P(tini) = Pini,
I(tini) = 1,

(8)

for some small h > 0. This rough approximation is justified by
hinking that, for h small enough, I(t) ≪ Pini ≃ S(t) and therefore
IS/P ≃ I in (6).

The system⎧⎨⎩
dP
dt

= (β − δ)P, in (tini, tini + h),

P(tini) = Pini,
(9)

describes the population evolution taking into account demo-
graphic aspects only, i.e., in absence of the perturbation caused
by epidemics and by assuming that the birth and death rates are
constant, whereas⎧⎨⎩

dI
dt

= (γ − α)I, in (tini, tini + h),

I(tini) = 1
(10)

escribes the time evolution of the number of infected cases
uring a short time after the beginning of the infection at time
= tini. The solution to (10), I(t) ≃ exp [(γ − α) · (t − tini)]

and, for h small enough, its linear approximation near tini, I(t) ≃

1 + (γ − α) · (t − tini), give a first rough explanation about why,
during the first phases of the epidemics, i.e., for t ≃ tini, the
number of infected individuals, I(t), seems to grow linearly. This
fact motivates the difficulties in the design of an efficient early
warning system. In fact, once I(t) increases to a significant level
to be detected, the exponential growth had already kicked in and
the containment measures can be effective only if quite drastic.

The discrete model is a simple forward-time finite-differences
discretization of Eqs. (1) to (4). For n ∈ Z, we denote the discrete
time steps, at a uniform spacing ∆t , by tn = n∆t . The following
definition is useful for the discrete model.

Definition 2.3. We denote by Sn, In, Rn and Dn the number of
susceptible, infected, recovered and deceased individuals of the pop-
ulation under study at time tn, respectively, for n = nini, . . . , nini+

N (mod)
− 1, where nini is such that tini = nini∆t and N (mod) is the

number of modeled time steps. The total population at time tn is
given by P = S + I + R .
n n n n
Then the resulting algebraic iterative equations are of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 =

[
1 +

(
β − γ

In
Pn

− δ

)
∆t

]
Sn,

In+1 =

[
1 +

(
β + γ

Sn
Pn

− ρ − φ − δ

)
∆t

]
In,

Dn+1 = Dn + φIn∆t,

Rn+1 = [1 + (β − δ)∆t] Rn + ρIn∆t,

(11)

or n = nini, . . . , nini + N (mod)
− 1, with initial conditions

nini = Pini − 1, Inini = 1, Dnini = Rnini = 0 (12)

and the discrete counterpart of (5) is

Pn+1 = [1 + (β − δ)∆t] Pn − φIn∆t. (13)

Here the time spacing ∆t = 1 day, in agreement with the
ampling of the available data set on COVID-19 pandemic (see
ection 2.3). Eqs. (11) are implemented in a specifically designed
ode, developed using the Python programming language.
The choice n ∈ Z allows to simplify the notation adopted

n the formulation of the inverse problem in Section 2.2. It is
mportant to notice that n = 0, i.e., t0 = 0, represents the
irst day for which epidemic data are available and in general
t does not coincide with n = nini, which corresponds to tini,
he day when the first person was infected in a given nation,
ccording to our model. We will call t0 = 0 (n = 0) and tini
n = nini) the monitoring initial time and the modeling initial time,
espectively. Accordingly, we will also call Pini = P(tini) the model
nitial population.

.2. The inverse problem: model calibration

As stated in the introduction, the inverse problem addressed
ere is defined in the discrete setting by making use of the
onceptual framework and the notation of [22]. The numerical
ask in treating the inverse problem consists in solving itera-
ively (11) and matching such solutions with the data collected
ithin a certain time-frame [tmin, tmax). Such (discrete) time-
arying vector-solutions sn are collected in an array s, called the
tate of the system

s =

{
sn = (s(1)n , s(2)n , s(3)n , s(4)n ) ∈ R4

|

s(1)n = Sn, s(2)n = In, s(3)n = Rn, s(4)n = Dn,

n = nini, . . . , nini + N (mod)
− 1

}
,

(14)

here N (mod) and n = nini have been introduced in Definition 2.3.
is the model outcome used to forecast the number of infected,
ecovered and dead individuals. To this end, we also introduce
he model forecast, an array y defined by

y =

{
yn = (y(1)n , y(2)n , y(3)n ) ∈ R3

| y(1)n = In, y(2)n = Rn, y(3)n = Dn,

n = nmin, . . . , nmax − 1
}
,

(15)

or some nmin, nmax, with nini ≤ nmin < nmax ≤ nini + N (mod).
he available data are collected in an array d. In the specific case
onsidered here, the subset of data denoted by d′

⊂ d includes
he cumulative number of the confirmed infected cases, together
ith the number of the recovered and dead persons, released by
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d′
=

{
d′
n = (d′(1)

n , d′(2)
n , d′(3)

n ) ∈ R3
|

d′(1)
n = C (ref)

n , d′(2)
n = R(ref)

n , d′(3)
n = D(ref)

n ,

n = 0, . . . ,N (ref)
− 1

}
,

(16)

where N (ref) is the number of data time steps, i.e., the number
of time steps for which data are available. Notice that C (ref)

n is
the cumulative number of confirmed infected cases, so that the
number of infected cases at a given time n is given by

I (ref)n = C (ref)
n − R(ref)

n − D(ref)
n . (17)

d can include also other data, e.g., demographic data used to
infer the values of some model parameters (β and δ). n = 0
epresents the so-called monitoring initial time introduced in 2.1,
hich corresponds to the first day for which epidemic data d′ are

available; recall that, in general, it does not coincide with the day
n = nini when the first person was infected in a given country.

Model calibration requires that the model forecast be close
to a calibration target, an array t that collects the values which
should be attained by the model forecast, if the model were
physically ‘‘correct’’ and the model parameters were ‘‘optimal’’.
In this specific case t is defined by

t =

{
tn = (t (1)n , t (2)n , t (3)n ) ∈ R3

|

t (1)n = I (ref)n , t (2)n = R(ref)
n , t (3)n = D(ref)

n ,

n = nmin . . . , nmax − 1
}
,

(18)

where I (ref)n is given by (17) and nmin, nmax are such that 0 ≤

nmin < nmax ≤ N (ref). The model parameters are placed in an
array p:

p = (β, δ, ∆t, ρ, φ, γ , nini, Pini) ∈ P ⊂ R+
6
× Z × (N \ {0}), (19)

where R+ = (0, +∞) and we recall that ∆t = 1 day and Pini is
the model initial population introduced in Section 2.1.

If we summarize the algebraic equations in the discrete model
(11) together with the initial conditions (12) with

f(p, s) = 0, (20)

the forward problem can be stated as: given p, find the unique state
s = g(p) that solves (20). In other words, given the parameters
p, the solution to the forward problem will give the state of
the system, s. In order to introduce the corresponding inverse
problem, it is convenient to write p as

p =
(
p(fix), p(cal)) , (21)

where

p(fix)
= (β, δ, ∆t) , p(cal)

= (ρ, φ, γ , nini, Pini) ∈ P (cal). (22)

p(fix) and p(cal) include the model parameters whose values are
fixed before the simulation and the model parameters whose
values are obtained from the solution of the underlying inverse
problem, which is yet to be stated, respectively. P (cal) is the set of
the admissible values for p(cal), possibly defined by fixing lower
and upper bounds for each parameter.

Remark 2.1. Some remarks on p, y and t are in order.

1. The array of fixed parameters is a function of d: p(fix)
=

p(fix)(d);
2. The model forecast y is a function of s, p and d: y =

y (d, s, p);
3. t may depend on d and p(fix), but must be independent of

p(cal): t = t
(
d, p(fix)

)
.

The misfit between model predictions and the target values is
computed by means of the following objective function:

Oy,t
(
p(cal))

=

3∑
i=1

O(i)
y,t

(
p(cal)) (23)

here O(i)
y,t

(
p(cal)

)
is defined by

(i)
y,t

(
p(cal))

=

⎧⎪⎨⎪⎩ 1
nmax − nmin

nmax−1∑
n=nmin

⎡⎣ y(i)n − t (i)n

max
{
ξ, t (i)n

}
⎤⎦2

⎫⎪⎬⎪⎭
1/2

, (24)

or i = 1, 2, 3, where ξ ≥ 1 is a threshold-and-weight parameter
and nmin, nmax are such that

ax {0, nini} ≤ nmin < nmax ≤ min
{
N (mod)

+ nini,N (ref)} . (25)

n other words, Oy,t is the sum of three functions, each of which
onsiders one of the three reference quantities, separately. The
odel calibration is then performed by solving the following

nverse problem:
iven p(fix) and d, given the solution s = g (p) to (20), determine
(d, g (p) , p), t and find p(cal)⋆, such that

p(cal)⋆
= arg min

p(cal)∈P(cal)
Oy,t

(
p(cal)) ,

i.e.

Oy,t
(
p(cal)⋆

)
≤ Oy,t

(
p(cal)

)
, ∀p(cal)

:
(
p(fix), p(cal)

)
∈ P.

(26)

In other words, the objective of model calibration is to find the
parameter values which best fit the reference data in a given time
interval, nmin ≤ n < nmax.

The parameter ξ plays a double role. First of all, it is a thresh-
old which keeps positive the denominator of the quantity appear-
ing in (24), even in the particular case when t (i)n = 0. Furthermore,
it controls some characteristics of the objective function. For ξ =

and if t (i)n ≥ 1, O(i)
y,t is nothing but the root-mean-squared

relative difference between target, t (i)n , and modeled values, y(i)n , of
he ith component of tn and yn. When ξ assumes large values, it
cts as a weight which dampens the errors corresponding to low
nd moderate values of t (i)n , namely t (i)n ≪ ξ . As a consequence,
or large values of ξ , relative errors corresponding to large values
f t (i)n will be dominant; from a practical point of view, this
eans that early-time behavior, when I (ref)n , R(ref)

n and D(ref)
n are

mall, is less relevant to the model fitting. In particular, if ξ >

ax
{
t (i)n , nmin ≤ n < nmax

}
, then O(i)

y,t reduces to the standard
oot-mean-squared error. Notice that the latter condition implies
hat the value of ξ could be very large. A sensible upper limit for
, ξmax, could be for instance given by the upper bound of Pini,
hich is identified with the total population of the country for
hich the simulation is performed, as shown in Section 3.2.
It is worth stressing that the explicit use of an interval nmin ≤

< nmax for the definition of t, y and the objective function,
lthough somehow cumbersome, is useful to assess changes in
he physical parameters with time. Some examples of it will be
hown in Section 3.2.

.3. Data and computer implementation for COVID-19

The application of the model introduced in Section 2.1 and of
he model calibration introduced in Section 2.2 can be attempted
hanks to publicly available data on COVID-19 pandemic. The
pplication will be performed at national level, i.e., the considered
opulation will be the whole population of some countries. For
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each country, the array d is populated with data coming from two
basic sources.

Data on COVID-19 pandemic are available from the GitHub
repository managed by the Johns Hopkins University [29]. This
is a collection of publicly available data from multiple sources,
which are processed and delivered by the Johns Hopkins Uni-
versity Center for Systems Science and Engineering (JHU CSSE).
Notice that the data are provided to the public strictly for ed-
ucational and academic research purposes. The data are updated
daily and the files used in this paper have been downloaded from
the GitHub platform on May 2, 2020. The array t has been filled
in by using those files.

Tailored codes have been developed under Python 3.7.6 to
download data from the Github repository, perform the forward
model introduced in Section 2.1 and calibrate the model by solv-
ing the corresponding inverse problem defined in Section 2.2.
The inversion is based on the functions of the optimize module
from SciPy v1.4.1 and profit from multi-core execution through
the standard multiprocessing package. The pseudo-code for
nversion is given in Fig. 1. The optimization algorithms that
ave been tested are based on constrained minimization, so that
ome bounds on p(cal) should be prescribed. Best results have
een obtained by global optimization with the function dif-
erential_evolution [30]. Since this function implements a
tochastic algorithm, the pseudo-code of Fig. 1 shows that several
uns of the algorithms are executed in an easily parallelized loop.

Fig. 2 shows the trend of confirmed cases, recovered and
eceased people for a number of countries that have been con-
idered the most relevant for the analysis of COVID-19 pandemic
ot only by the scientific community, but also by mass media.
hese plots show different trends of the three curves describing
he evolution in time of the confirmed, recovered and dead cases
mong the various countries considered in this study.
Aside from China, for which the starting phase is not reported,

ince the virus diffusion started earlier than the first date for
hich data are available in the data set, the number of confirmed
ases (plots A in Fig. 2) shows a first slow increase, followed by an
xponential increase and possibly a slowdown after few weeks.
t is highly questionable whether this behavior is related to the
umber of tests performed to confirm virus infection.
The most regular trends are clearly the ones describing the

umber of deceased people (plots C in Fig. 2), after about one
eek since the first reported case in each country considered in
his study. Doubts about comprehensiveness of official data on
eaths caused by coronavirus have been raised by several sources
f information and by some commentators. Nevertheless, from a
isual analysis of the data shown in Fig. 2, it seems safe to state
hat the number of deaths represents the time series with the
moothest variation and possibly the less affected by uncertain-
ies in the data. We interpret this as an effect of the variability, in
ime and among countries, of the procedures adopted to assess
he infected. For instance, the number of confirmed infected
epends on the number of conducted tests and on the elapsed
ime from the collection of swabs to the completion of laboratory
nalysis and to the release of information to the public. In other
ords, estimates of infected and recovered are affected by errors
ifferent form the estimates of deceased persons. Moreover, Eqs.
3) and (4) show that D and R depend on some integrals of I with
respect to time, so that the time variations of the numbers of
deceased and recovered persons are expected to be more regular

than the number of infected.
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Fig. 2. Data about COVID-19 pandemic in selected EU (left column) and extra EU + United Kingdom (right column) countries: A – confirmed infections; B – recovered
atients; C – deaths.
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The second data source is the most updated version of the
N Demographic Yearbook [31]. Demographic data have been
xtracted from this volume. The values of population, birth and
eath rates of each country, for which the model has been tested,
re included in d. They are used to fix the values of β and δ and
o provide a first estimate of Pini.

Notice that the daily sampling rate of epidemiologic data
nduces to choose ∆t = 1 day. Moreover, the coefficients β
nd δ are expressed on a daily basis, i.e., they are converted to
he same measurement units as γ , φ and ρ, namely day−1 (see
efinition 2.2).

. Results

.1. Model results

First of all, the behavior of the model is shown with test
ase 1, which includes four model runs for which all the model
arameters, but ρ, are kept fixed. Exploratory tests were run with
iverse parameters sets. However, the selection of the parameter
ets used to obtain the results presented here was inspired by
preliminary calibration test performed on the data available

or Italy. In this sense, these parameters, listed in Table 1, could
e considered quite realistic. The results of the model for a
ne-year-long simulation period are shown in Fig. 3.
The general behavior shows an exponential increase in the

umber of infected persons (notice that the vertical axis is in
ogarithmic scale) followed by an exponential decrease but with
longer characteristic time. The number of deaths obviously
ecreases if ρ increases and in particular, we have four different
ituations for the four runs: (a) for the smallest value of ρ, the
urve of susceptible persons dramatically decreases from some
ays before the peak of infections and reaches very small values
fter few weeks; (b) for a slightly higher value of ρ, the high num-
er of deceased people causes a clear reduction of the population
t the end of the simulation period and the whole population is
ecovered; (c) for the third tested value of ρ, ρ = 0.056 day−1,
he number of susceptible and dead people reaches a stationary
ondition after about 8 months from the start of the epidemic
nd they share approximately the same value; (d) for the highest
ested value of ρ, the number of susceptible people decreases
ith time, but remains high. Notice that, for the latter run, the
eduction of the total population is limited, less than 10%, and
fter one year almost all the living population is recovered. The
verall behavior of run (d) is coherent with the fact that a high
alue of ρ has the effect that a large fraction of infected people
ecovers in short time.

It is important to stress that this test case has the goal of show-
ng how the model can predict different behavior and these re-
ults should not be considered as a forecast of the actual behavior
f any real pandemic.
SIR models are often applied using the ratio of the number of

ndividuals in each category with respect to the total population
s state variables, namely S/P , I/P , R/P . Test case 1 showed that
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Fig. 3. Model results for test case 1.
Table 1
Parameter values for test case 1.
Parameter run (a) run (b) run (c) run (d)

β 2.5 · 10−5 day−1 idem idem idem
δ 3 · 10−5 day−1 idem idem idem
γ 0.14 day−1 idem idem idem
ρ 0.001 day−1 0.005 day−1 0.056 day−1 0.08 day−1

φ 0.01 day−1 idem idem idem
Pini 250 000 idem idem idem

for three sets of model parameters, which differ only for the value
of ρ, the total population has only a limited variation, so that
approximating P to a constant value could appear reasonable.
evertheless, the term used to compute the infection rate is
irectly proportional to both I and S and inversely proportional to

P so that it introduces a non-linearity in the model. Therefore test
case 2 is designed to assess the effect of Pini on model results. To
this goal, Pini values span four orders of magnitude, from 106 to
09, whereas the other parameters are fixed at the values of run
a) of test case 1. The results are shown in Fig. 4 as functions of the
ormalized quantities versus time. The values of each function
t the end of the simulation period are very similar. The main
ifferences are in the evolving phase, for which the response
f a small population appears to be more rapid than that of a
arge population. Roughly speaking, the curves corresponding to
igh populations show a delay with respect to the curve for the
mallest population of about 15 days per an increase in Pini by an
rder of magnitude. This remark, if confirmed by runs with more
eliable parameter sets, could have fundamental consequences in
he design of early warning systems. In fact, the time at which
given threshold of cases over the total population is exceeded

ncreases with the population size.

.2. Model calibration

Model calibration for the COVID-19 pandemic by solution of
he inverse problem is a very challenging problem. This is not
urprising at all. In fact, Fig. 3 shows some typical trends of the
model time series, which are smoother than those observed from
the reference data and drawn in Fig. 2. In other words, the choice
of optimal fitting parameters for a simple SIR model, in order
to properly simulate the observed trend, is very difficult. This is
due both to the sources of uncertainties on the data and to the
assumptions behind SIR models.

In particular, this paper is focused on the results obtained with
data from Italy, but the same qualitative remarks hold also for the
application to data from other countries.

The basic properties of the performed tests are listed in
Table 2. The comparison between reference and fitted time series
for test A, which is to be considered as the ideal one, because
all the data are used and the standard settings are applied, is
shown in Fig. 5. The discrepancy between reference and modeled
values in log scale is greater for the initial phase of the epidemic;
the model does not reproduce the sharp reduction of the rate
of increase of deaths which appears in the reference time series
around mid March.

Notice that for tests B, C and D three subsets of data are used,
corresponding to three non overlapping time intervals, each of
which is 33-days-long. In particular, the first day for which data
are available is January 22, 2020 and the data series used in this
paper ends on May 2, 2020. Therefore, the data set for test B
ends on February 24, 2020, the data set for test C covers the
interval from February 25 to March 29, 2020, and the data set
for test D starts on March 30, 2020. The goal of these three tests
is to examine possible differences in the optimal values of the
parameters and in the behavior of the inversion procedure, for
successive temporal phases of the epidemic. For test E, ξ = 1,
so that each of the functions O(i)

y,t given by (24) is nothing but
the root-mean-squared relative difference between reference and
modeled values of I , R and D for i = 1, 2, 3, respectively. There-
fore, test E has been designed in order to assess the dissimilarities
in the inversion results due to the application of different objec-
tive functions. This is achieved by comparing tests A and E, which
in ultimate essence are founded on absolute versus relative errors
between model predictions and calibration targets, respectively.
Test F is based on a subset of the data, in particular, for this
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Fig. 5. Comparison of reference (dashed lines) and modeled values (continuous
ines) for Italy with the parameters obtained by solution of the inverse problem
or test A (see Table 2). The vertical dotted black lines delimit the time-frame
f the data set used for model calibration, i.e., they correspond to tmin and tmax .

test the number of dead patients only is fitted; the rationale
behind this test is that D(ref) should be less uncertain than the
other data of d′. Finally, test G is an attempt to consider the
hints raised by several authorities and scientists, suggesting that
official numbers could be heavily underestimated. In this test, it
is assumed that the number of infected and recovered persons
be 10 times greater than those reported in official documents;
analogously the number of deaths is assumed to be twice the
official value. Notice that this does not mean that these estimates
are more accurate than the official ones; test G is designed to be a
first attempt of sensitivity analysis, by considering a data set very
different from the reference one, which is used for test A.

Minimization of the objective function Oy,t was performed
with different functions of the SciPy’s module optimize which
Table 2
Inversion tests with data referred to Italy. The standard approach uses the
settings described in Section 2.2 with ξ = 106 and the data described in
Section 2.3. Test G is based on the hypotheses that (i) the numbers of infected
and recovered persons are ten times those reported by official fonts and (ii) the
number of deaths is twice the official one.
Test nmin nmax Notes

A 0 101 Standard
B 0 33 Standard
C 34 67 Standard
D 68 101 Standard
E 0 101 ξ = 1
F 0 101 O(3)

y,t
(
p(cal)

)
G 0 101 Modified data

Table 3
Lower and upper bounds for the parameters to be calibrated by inversion of
data referred to Italy.

γ ρ φ tini Pini
Minimum 10−4 day−1 10−5 day−1 10−6 day−1

−60 2 · 105

Maximum 1day−1 0.1 day−1 0.1 day−1 20 108

implements several methods to find a minimum, also by tak-
ing into account possible bounds on p(cal), which limit the ad-
issible values of each parameter and are used to build the
(cal) set. The reader is referred to the on-line SciPy’s documen-
ation for details; here, it suffices to recall that tested meth-
ds include Nelder–Mead simplex algorithm [32] and conjugate-
radient based methods [33]. The bounds have been assigned on
he basis of preliminary gross estimates from available data and
hey are listed in Table 3. These are used to construct P (cal) for
this work. Notice that the upper bound for Pini is 108, hence here
ξmax = 108, i.e., ξ ∈ [1, 108

].
Several runs have been conducted with a routine for local min-

imization and the best results were obtained with the L-BFGS-B
method, which is a variation of the Broyden–Fletcher–Goldfarb–
Shannon (BFGS) algorithm [33] to reduce memory requirements
and to handle simple constraints. The results of these runs are not
presented here, for two basic motivations. That method is part of
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Table 4
Results of model calibration by inversion of data referred to Italy for γ , ρ and
φ. For the details about the performed tests see Table 2.
Test γ (in day−1) ρ (in day−1) φ (in day−1)

A 0.1381 ± 0.0002 (1.761 ± 0.002) × 10−2 (8.24 ± 0.02) × 10−3

B 0.26 ± 0.05 (3.27 ± 0.6) × 10−3 (6 ± 1) × 10−3

C 0.185 ± 0.004 (1.88 ± 0.01) × 10−2 (1.52 ± 0.01) × 10−2

D 0.12229 ± 0.00001 (1.694 ± 0.001) × 10−2 (7.929 ± 0.005) × 10−3

E 0.17 ± 0.04 (1.3 ± 0.2) × 10−2 (1.2 ± 0.3) × 10−2

F 0.1384 ± 0.0002 (1.556 ± 0.002) × 10−2 (1.450 ± 0.004) × 10−3

G 0.28 ± 0.01 (2.3 ± 0.2) × 10−2 (1.2 ± 0.9) × 10−2

Table 5
Results of model calibration by inversion of data referred to Italy for tini and
Pini . For the details about the performed tests see Table 2.
Test tini Pini
A (−42.8 ± 0.2) day (2.111 ± 0.003) × 105

B (7.6 ± 3) day (5.44 ± 0.86) × 107

C (−18.5 ± 2) day (3.2 ± 1.2) × 105

D −59 day (2.1940 ± 0.0084) × 105

E (9.3 ± 2.8) day (3.5 ± 1.1) × 107

F (−56.4 ± 0.2) day (2.042 ± 0.002) × 106

G (−10.1 ± 5.8) day (1.0 ± 0.6) × 107

a wide family of algorithms which move towards the minimum
by means of gradient-based searches. However, it is not possible
to compute analytically derivatives of Oy,t with respect to tini and
Pini, which are integer, and not real, variables. Therefore, that fam-
ily of methods cannot be applied in a rigorous way. Although the
results of the performed runs, possibly fixing the value of tini, are
not shown and discussed in detail here, it is nevertheless useful
to mention them, because they confirm the existence of multiple
local minima for Oy,t. As a consequence, these preliminary tests
alled for the application of a global minimization algorithm.
Global minimization by application of differential_

evolution [30], even with the default settings, yielded good
results, which are listed in Tables 4 and 5. The mean value of
each parameter and the corresponding standard deviation have
been estimated after 10 runs of this stochastic algorithm, for
which the random initializing seed introduces variations among
the returned results. When looking at Table 5, it is important to
recall again that tini and Pini are integer numbers, but in the table
he averages and the relative standard errors are computed after
0 runs and this explains the float numbers notation.
Besides the optimal values of p(cal) listed in Tables 4 and 5, it

is important and useful to consider also some properties of the
inversion procedure for each test; they are listed in Table 6.

Table 4 shows that, apart from few tests, the optimal values
of γ , ρ and φ are relatively similar, sharing the same order of
magnitude and the relationship γ > ρ > φ among different
tests. These inequalities are violated by the results of test B and
possibly of test E, for which the values of ρ and φ are very close,
if the standard error is considered; test B refers to the very initial
days of the epidemic, whereas test E refers to the use of relative
errors in the computation of the objective function. Notice that
using relative errors gives some more weight to the small values
of the elements of t, which are those recorded at the beginning of
the epidemic. Therefore, these results are quite consistent. Notice
also that tests B and E are the only tests for which tini > 0. In
these tests, like in test G, the calibrated parameters display the
highest coefficient of variation (the ratio between the standard
deviation and the average); in other words, these are the tests
for which the optimal values show more uncertainty.

A first rough qualitative analysis of the pandemic peak in
the continuous model, together with the values of γ , φ and ρ

listed in Table 4 would also suggest that at the pandemic peak a
large fraction of the population would have already been infected,
and possibly recovered. In fact, in the continuous model, when I
reaches its maximum value we have
dI
dt

= 0 ⇒ β + γ
S
P

− δ − φ − ρ = 0, (27)

nd, after simple algebraic manipulations,

+ R =
γ − α

γ
P, (28)

where α is defined in (7). The calibration results listed in Table 4
show that α is about one order of magnitude smaller than γ .
In particular for the calibration tests performed in this study
(Table 4) (γ − α) · γ −1 assumes a relatively high value, close to
0.8.

Two facts should be mentioned about the results of test A
shown in Table 5: first, tini < 0, i.e., it seems that the infection
started before the official appearance of the first confirmed case;
second, Pini is close to the lower bound chosen in Table 3, so
that the model predicts that the population which has been in-
volved in the infection could be relatively small. These qualitative
remarks are confirmed by most of the other tests. Notice, in
particular, that even if one considers tests B and E, which give
the highest average value of Pini among different runs, the runs
which yield the least values of Oy,t give a value of Pini close to
2 · 105, as for test A. Recall that tests B and E share the property
of emphasizing the role of early stage data.

Table 6 shows that tests A, D and G are those for which the
results of different runs are more consistent with each other. This
is important, because it shows that the identification of p(cal)⋆

ith the proposed approach appears to be robust for these tests.
n the other hand, for the remaining tests, it is important to
arefully check the outcomes of each single run. In fact, the initial
eed could introduce some bias which cannot be overcome by
he differential_evolution routine with its default settings
nd the final result could yield a local minimum, instead of the
lobal one. This is illustrated by the comparison in Fig. 6, which
hows the results of test F for the optimal parameters and those
veraged among the 10 runs and listed in Tables 4 and 5. This test
as designed to fit the data on the deceased people, as shown

n Fig. 6(a); the fit seems extremely good, in fact, the two green
urves overlap almost perfectly for a large time interval. On the
ther hand, from Fig. 6(b) it is evident that some of the inversion
uns yielded parameters which do not permit to properly and
atisfactorily reproduce the data.
From Table 6, it is also apparent that the objective function

s computed a great number of times for each single run of the
ests. This number strongly varies among the tests. Recall that
ach computation of Oy,t requires a run of the model, so that the
omputational costs could become important. The tests discussed
n this paper run on a PC with an Intel core i7 9th Gen
rocessor; the execution time of a single run varied from 34 s
or test B to 722 s for test F.

. Discussion on the SIR model

Some basic assumptions, on which the mathematical model
eveloped in this work is founded, deserve to be recalled and
iscussed.
The model relies on the assumption that the population under

onsideration is homogeneous. In other words, no distinction
s made in terms of gender, age, economic wealth, health and
ellness, working conditions, life style, home state, genetic back-
round and so on. In particular, the γ parameter is assumed to be
ndependent of factors like working/living conditions that could
e responsible for social distancing and the duration of contacts
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Table 6
Properties of inversion of data referred to Italy; the values are based on 10 runs of the minimization algorithm for each test. For
the details about the performed tests see Table 2.
Test Minimum of Oy,t Number of iterations

of the algorithm
Maximum number of
evaluations of Oy,t for
a single run

A (7.462 ± 0.001) × 10−3 125 ± 4 11,316
B (2.102 ± 0.03) × 10−5 31 ± 2 3,312
C (2.60 ± 1.8) × 10−3 190 ± 14 19,338
D (8.3164 ± 0.0008) × 10−3 140 ± 4 11,802
E 2.35 ± 0.09 41 ± 12 8,859
F (4.9 ± 3.9) × 10−4 320 ± 27 31,566
G (5.2032 ± 0.0013) × 10−2 83 ± 3 7,788
Fig. 6. Comparison of reference (dashed lines) and modeled values (continuous lines) for Italy with the parameters obtained by solution of the inverse problem
for test F (see Table 2): (a) optimal parameters corresponding to the global minimum; (b) parameters averaged among the 10 inversion runs (Tables 4 and 5). The
vertical dotted black lines delimit the time-frame of the data set used for model calibration, i.e., they correspond to tmin and tmax .
e
a
t
t
t
p
p

s
t
d

c
s
a
p
n
a

c
u
k
f
a
t
s

γ

c
c
O
i
c
f

f infected – and therefore infectious – individuals within the
orking/living environments.
The recovery and fatality parameters, ρ and φ, respectively,

re assumed to be constant too. This is not based on the homo-
eneity assumption mentioned above only. In fact, this implies
hat recovery and fatality are modeled as instantaneous pro-
esses, i.e., independent of the time passed since each infection
ccurs; moreover, no relation is considered between death or
ealing of infected people and the strength of the symptoms of
hese individuals or to the facility where they are being treated
home, non-intensive care hospital units, Intensive Care Units —
CUs). The latter condition could be modeled by subdividing the
lass of infected people among sub-classes, e.g., asymptomatic,
ith light symptoms, admitted to hospital non-intensive care
nits, admitted to ICUs [34,35].
One could handle the approximation of constant parameters
and φ, by replacing them with functions (φ̃, ρ̃) of elapsed time

since infection. Such functions should enter in a deconvolution
product involving the number of persons who have been infected
at a given time and are still infected, i.e., are not yet recovered or
passed away. With this approach, φI and ρI in (2) to (4) could be
eplaced by∫ τmax

0
φ̃(τ )Ĩ(t − τ ) dτ and

∫ τmax

0
ρ̃(τ )Ĩ(t − τ ) dτ , where

Ĩ(t−τ ) = γ
I(t−τ )S(t−τ )

P(t−τ )
exp

{
−

∫ τ

0

[
ρ̃(τ ′) + φ̃(τ ′)

]
dτ ′

−δτ

}
,

(29)

here δ is the death rate introduced in Definition 2.2.
An attempt to account for time-varying parameters, depending

n varying conditions, can be found in [36].
The assumption of homogeneity could be relaxed by consid-

ring distributed models, similar to those applied to the study of
ransport phenomena, e.g., for diffusion of contaminants in the
 S
nvironment. Those models can account for ‘‘diffusive’’ spread
nd for ‘‘advective’’ transport. However, the required parametriza-
ion is often much finer than the one for lumped models, so that
he number of parameters to be calibrated strongly increases, and
herefore in absence of good quality data it could be difficult to
erform a reliable calibration and validation of the model for a
ractical application.
It is also assumed that the population under study is a closed

ystem, thus disregarding variations induced by short-time,
ourist or business travels, by intermediate-time mobility of stu-
ents and workers, and by long-time effects of migrant fluxes.
The model is also independent of climatic and environmental

onditions, i.e., the processes considered by the model are as-
umed to be independent of the variability of weather conditions
nd environmental quality at any temporal and space scale. In
articular, this means that neither sharp and rapid variations
or annual or seasonal cycles are considered as possible factors
ffecting the modeled processes.
Epidemic models rarely consider birth and death rates, be-

ause the corresponding terms in the underlying equations are
sually negligible. In this work, however, these terms have been
ept, as they play a significant role in our discussion. In particular,
ollowing the assumption of population homogeneity mentioned
bove, it is assumed that infected pregnant women give birth
o infected babies and that this occurs at the same rate as for
usceptible women.
With regard to infection rate, which is described by the term

IS/P in (1) and (2), some remarks are in order. This term is
omputed by assuming that each infected individual has a given,
onstant number of contacts with other persons per unit time.
ur model assumes that the number of persons who cannot be
nfected is I + R, so that the fraction of contacted persons who
annot be infected is given by (I + R)/P; on the other hand, the
raction of contacted individuals who can be infected is given by

/P . This is equivalent to assuming that recovered people become
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immune to the virus. Notice that timing, magnitude and longevity
of immunity against SARS-CoV-2 are still open questions for the
scientific community (see, e.g., [37–39]). Moreover, recovered
people are assumed to be not infectious, which is the case if the
response of their immune system is fast enough so that, once they
come in contact with the virus again, the virus is destroyed by the
immune system before it can be spread to susceptible persons.

Other promising classes of models are stochastic models [40],
either under a Monte Carlo framework or by using assimilation
techniques, e.g., the Ensemble Kalman Filter (EnKF, see, e.g., [41]).
In principle, Monte Carlo models might be adapted in a relatively
easy way to account for several phenomena and also to consider
the role of aspects like gender, age, health and wellness on the
probability of infection, recovery and decease. On the other hand,
EnKF could provide a firm theoretical framework to improve
model predictions by means of uncertain data. Other models in
the Bayesian framework [42] could be very helpful to handle
discrepancies between model predictions and reference values.
Unfortunately, in this case the systematic and random errors
could be so high as to make it very difficult to handle them even
in a stochastic framework.

5. Conclusions

The problem of calibrating the epidemiological parameters
of a SIR model describing the evolution in time of the current
COVID-19 pandemic is addressed in this work. The calibration is
performed by solving numerically the underlying inverse problem
via the minimization of an objective function measuring the
discrepancy between the simulated solutions to the discretized
SIR model and the official data on COVID-19. The iterative op-
timization process, depending upon the choice of a threshold-
and-weight parameter ξ , allows also for the calibration of the
initial time tini accounting for the day when the first infected case
occurred, and of the initial population Pini involved at the start of
the epidemic.

Several tests were performed in order to study the impact of
the data, the time frames over which the data were collected and
the performance of different objective functions, depending on
the choice of ξ , on the calibration of the parameters (see Table 2).
Test A can be considered as the reference one, as it is performed
by making use of the official data over the full time frame of 101
days considered here and with a weight ξ = 106. The results
obtained in this test are quite consistent with the ones obtained
in tests D and F, performed with full official data over the last
33 days of the full time frame considered here and with official
data regarding deaths only but over the full time frame of 101
days, respectively. The only slight inconsistency is shown in the
optimal value of the initial population Pini for test F, which turned
out to be of an order of magnitude larger than the values for Pini
btained in tests A and D.
The choice of the weight ξ ∈ [1, 108

], leading to different
bjective functions, is responsible for the calibration of the var-
ous parameters during various time stages of the epidemic. For

= 1 (test E) the objective function is akin to the root-mean-
quared relative error, and therefore the corresponding results
re very similar to test B, where the data from the early time of
he monitoring interval are considered, i.e., when the numbers
f infected, recovered and deceased people are still quite small.
ssigning a higher value of ξ (e.g., ξ = 106 like in tests from

A to D and in test G) yields an objective function akin to the
root-mean-squared absolute misfit between target and predicted
signals. The differences between these two extreme types of
objective functions are evidenced by the different results they
produce, but also by the difficulties involved to obtain the global
minimum via their minimization. More specifically, for tests B
and E, each run of the optimization algorithm requires a relatively
small number of iterations for the convergence to a minimum,
therefore a relatively small number of evaluations of the objective
function is needed. On the other hand, the values of the local
minima obtained in these cases are often quite far from the
optimal calibrated parameters. A more in-depth analysis of this
will be part of future work.

The results of tests B, C and D (see Tables 4 and 5), where
the calibration is performed by data collected in successive time
intervals [0, 33], [34, 67] and [68, 101] respectively, show that
the optimal values of γ and tini decrease from test B to test D.
In other words, the model fits the data in the early stage of the
epidemic [0, 33] by relying on the fact that the epidemic started
around a week after the official time zero, i.e., when the official
first infected case was reported and that at that time the infection
was strong, i.e., the infection coefficient γ was large. On the other
hand, the calibration of γ and tini during the time intervals when
the epidemic has widely developed, i.e., from day 34 onwards,
shows an infection strength that is relatively low compared to the
one in the initial stage and that the epidemic outbreak started
earlier than the time when the official first case was identified.
Table 5 shows in fact a negative tini for both tests C and D. This fact
could be explained by the difficulty in recognizing the appearance
of the first infected cases in the epidemic. In other words, the
number of infected people could be underestimated in the early
stage of epidemic evolution and this might strongly affect the
solution of the inverse problem.

Overall, our results show some of the classical, well known
difficulties of non-linear least-squares inversion, in particular the
dependence of the solution on the starting values, related to the
existence of multiple local minima, and the flatness of the objec-
tive function around the local minima. To overcome such diffi-
culties we applied the ‘‘differential evolution’’ algorithm [30] and
the results obtained were very good. Other relevant algorithms
for global optimization that could be tested as part of future work
are genetic algorithms [35,43], particle swarm optimization [44],
simulated annealing [45].

One of the limitations to the current SIR model is given by the
assumptions of homogeneity and steadiness, i.e., the assumption
that the epidemiological parameters to be calibrated, γ , ρ and
φ, are constant (Assumption 2.1). It is the authors’ intention to
further develop and refine the model considered here as part
of future work. This could include for example a division of the
class of infected individuals in subclasses that might take care of
the gravity of the infection together with the facility where the
infected individual is being treated (home, hospital, ICUs, etc.).

Another limitation is given by the uncertainty in the available
data. Test G was performed with data ten times greater than
the official ones with the intent of starting a sensitivity anal-
ysis. The results obtained in test G show that the calibration
of the parameters via these data, in particular the values for
γ and ρ are not very consistent with tests A, D and F men-
tioned above. These results emphasize the ill-posed nature of
the underlying inverse problem, by providing evidence about
the great care that has to be given to the quality of pandemic
data, when used to calibrate or validate epidemic models. In
fact, poor quality data might yield unrealistic parameter values
and, therefore, unreliable model predictions. This fact, together
with the limitations in the models, should always be carefully
considered especially when these models are used as engines of
decision support systems.

Even though it would be improvident to draw quantitative
conclusions because of the limitations mentioned above, the pre-
liminary results of our model calibration qualitatively confirm
that the infection started earlier than the official appearance
of the first episodes of infection. This is a result of paramount
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importance also from a practical point of view, as it is a lesson to
be considered in the design of early warning systems for future
epidemics and for epidemiological risk analysis.

The results of model inversion also suggest that the calibrated
model could be reliable for a portion of the entire population.
Somehow, the model itself, through its calibration, seems to
suggest the width of the population for which its approximations
could be valid. In particular, this is shown by the results obtained
for a high value of ξ (ξ = 106) via the calibration of the parameter
Pini included in p(cal). Including Pini among the parameters to be
alibrated provides in principle a, possibly very rough, estimate
f the width of the initial population involved at the start of the
pidemic. This observation seems to go in tandem with the well-
nown fact that in the countries most affected by COVID-19, the
pidemic spread of the virus had mostly concentrated in specific
reas: the province of Hubei, and above all the city of Wuhan,
n China; the Lombardy region, and above all the provinces of
ergamo, Brescia, Lodi and Milan, in Italy; the city of New York
n the first phase of epidemic spread in the United States; Île-de-
rance in France; Madrid and Catalunya in Spain; London in the
K.
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