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Abstract

Segmentation techniques partition a sequence of data points in a series of disjoint
sub-sequences - segments - based on some criteria. Depending on the context and the
nature of data points, segments can be given an approximated representation. The final
result is a summarized representation of the sequence. This intuitive mechanism has been
extensively studied, for example, for the summarization of time series in order to preserve
the shape’ of the sequence while omitting irrelevant details. This survey focuses on the use
of segmentation methods for extracting behavioral information from individual mobility
data, in particular from spatial trajectories. Such information can then be given a compact
representation in the form of summarized trajectories, e.g., semantic trajectories, symbolic
trajectories. Two major streams of research are discussed, spanning computational
geometry and data mining respectively, that are emblematic of the multiplicity of views.
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INTRODUCTION

Data summarization is a major data mining task that can be concisely defined as compress-
ing data into an informative representation [9]. That is, summarization discards irrelevant
details from data while retaining the most important information. Unlike mere data com-
pression, summarization involves the capability of abstracting content from data. Producing
summaries of single or multiple documents is the most popular and intuitive application of
the concept [17]. Other applications include the summarization of multimedia data [14],
graphs [35], and time series [15]. In the light of the challenges posed by big data, data sum-
marization represents an enabling factor for a more effective handling of very large volumes
of complex information.

This article focuses on the summarization of mobility data. Broadly, mobility data re-
gards the movements of objects in a reference space. Objects can represent entities of very
different nature and scale, while the spaces of interest can be of arbitrary size. Moreover
data can be dramatically voluminous, complex and heterogeneous. In the urban domain, for
example, the data on the movement of vehicles possibly combined with additional contextual
data, e.g. time series of environmental data, can help identify patterns of interest and/or
make predictions, for example on relevant social and natural events, e.g. [10].

Very often mobility data take the form of spatial trajectories, namely sequences of coor-
dinated locations reported at consecutive time instants and sampling the object movements
in a time interval [39]. In more rigorous terms, given a reference space S, e.g. the Eu-
clidean plane, a spatial trajectory T' of length n is a sequence of n spatio-temporal points,
ie. T = {(pi,ti) bienm) with p; € S and t; < t;41 € Time. Depending on the application,
consecutive points can be equally spaced in time or not. Figure 1 shows two examples of
spatial trajectories, reported on a planar map as sets of points, describing the movement of

two different objects sampled at different frequencies.

Spatial trajectories summarization

The technological advances in positioning, communication and application services, have

dramatically fostered the collection of massive volumes of spatial trajectories. Spatial tra-



jectories are, however, complex structured data, difficult to handle efficiently. Even concep-
tually simple operations such as range and spatio-temporal join queries are computationally
costly, despite the indexing and query processing techniques employed in modern trajectory
databases, e.g. [11, 20]. As a result, the efficient access and effective utilization of trajectory

data remains an issue.

Figure 1: (a) The movement of a person tracked for a few days at high sampling rate (by
courtesy of John Krumm, [29]). (b) The movement of an animal (roe deer) tracked for over

one year at low and irregular sampling rate [12]

To address such a problem, a possible strategy is to extract relevant time-dependent
information from each individual movement and then use such coarser information in place
of spatial trajectories. This strategy is especially appealing when the knowledge granule
is not the spatio-temporal point itself, but rather the behavior exhibited by the individual
in time. If such information can be extracted and then encoded into a compact form, i.e.,
as a summarized trajectory, then the dataset is much smaller and the access to relevant
information potentially simpler. Along this line, a notion that has become popular in recent
times is that of semantic trajectory [32]. Semantic trajectory has been proposed for the
representation of time-varying behavioral information on single individuals. More recent

proposals include symbolic trajectories [21] and spatio-teztual trajectories [23]. A common

3



feature of all of these models is that they provide a rich representation of the movement that
goes beyond the spatio-temporal characterization. In that sense, such models can be seen
as instances of the general concept of summarized trajectory.

This survey focuses on key techniques for the construction of summarized trajectories,
independently from the data model chosen for their representation. In particular, the focus
is on the key paradigm of trajectory segmentation [38]. The segmentation task partitions
a trajectory into a series of subsequences - the segments - that are somehow homogeneous
with respect to certain properties. The systematic use of segmentation for trajectory data
summarization and representation has been first proposed in [36] as part of a methodological
framework aiming at supporting the semantic trajectory discovery process. In this article
we overview major directions of recent research and highlight the methodological differences
among these directions. While several surveys on collective movement analysis have been
published, e.g. [27], to our knowledge, this is first survey explicitly focusing on the individual

movement.

Outline

The remainder of the article is structured as follows. Section 2 discusses in more detail
the reference context and introduces two main categories of segmentation techniques, called
attribute-driven and pattern-driven, respectively. Representative techniques for the two ca-
tegories are next discussed in Section 3 and Section 4, respectively. In order to put the
presentation into context, both these sections contain some preliminary background infor-
mation on prior work. Open issues and trends are finally discussed in the conclusive Section

D.

SETTING THE CONTEXT

Trajectories handling: database vs. knowledge discovery

We start discussing in more detail the research context and the challenges that such a context

poses. As emphasized earlier, spatial trajectories are complex to handle. As the movement of



an object in space is sampled for long periods and/or at high sampling frequency, the length
of a spatial trajectory dramatically increases. Therefore, for large populations of moving
objects, the amount of data becomes overwhelming.

One way to deal with large amounts of spatial trajectories is to store such data in a
powerful database and use the functionalities of the system to access the data of interest. This
is the database-centric view. The Moving Object data model is the reference paradigm for the
management of databases of spatial trajectories [19]. In essence, a Moving Object database
is a database equipped with a set of data types for the representation of spatial trajectories
and their efficient manipulation through the use of dedicated operations and spatio-temporal
indexes. It remains the fact that efficiency is still an issue while the deployment of this class
of technologies, strictly rooted in the notion of spatial trajectory, is still limited. More
recently, a number of distributed platforms for the management of big spatio-temporal data
have been proposed, e.g. [2].

Opposed to the database-centric view is the knowledge discovery view. This different
perspective finds a motivation in the fact that the availability of large amounts of trajec-
tories, though complicating data processing, offers the opportunity of extracting valuable
information on the time-evolving behavior of the involved objects. In general, the longer the
trajectories (and the number of objects), the richer and more accurate the behavioral infor-
mation that can be extracted from such data, for example on individual mobility patterns.
As an example, consider the case of a geo-social application continuously sampling the loca-
tion of a large number of individuals equipped with GPS enabled devices, e.g. smart-phones
The amount of data that is continuously collected is huge. An approach to summarize such
trajectories is to report only the sequence of places visited by each individual, e.g. working
places, restaurants and so on, along with temporal information on the time spent in each
of these places. As a result, the information relevant for the application, for example a
user profiling application, is preserved while irrelevant details on the position occupied at a
certain time can be omitted or handled separately. A practical application of this concept
of trajectory summarization, in which the spatial trajectory is replaced by a sequence of
places, can be found in Google Maps Timeline, an information service providing registered

users with a map representation of the data collected by Google on their personal movement.



Figure 2 provides a simple visual summary of the data-centric view and knowledge discovery

view.
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Figure 2: (a) Data-centric view: spatial trajectories are stored and accessed through a Mov-
ing Object database; b) Knowledge discovery view: spatial trajectories are first summarized,

next possibly stored in some database or manipulated through some other application.

Segmentation techniques for the summarization of trajectories

A segmentation is a partition of a set of objects in a number of homogeneous parts. In
general, when applied to spatial trajectories, the segmentation task can regard either the set
of full trajectories or the points forming a single trajectory. The latter case is the topic of
this article and thus we limit ourselves to consider this case.

More specifically, the segmentation of a spatial trajectory T' = {(p;,t;)}: is a series of

temporally ordered sub-trajectories, i.e.:

k
Sl <p .. <y Sk with 7' = USz

i=1
where <; denotes the relation of temporal ordering between sub-trajectories. The first point
of every segment is called breakpoint. Segments can be annotated, for example with a label
indicating the characterizing feature of the segment, or be associated with a representative
point. Figure 3 shows an example of segmentation of a spatial trajectory consisting of labeled

segments.
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Figure 3: Segmentation of a spatial trajectory: the breakpoints along the input trajectory
identify the begin/end of segments. Every segment corresponds to some property that holds

for the whole duration of the segment

Abstractly, the segmentation task on a trajectory T can be expressed as a function
f(T,C) ={5S1,.., Sk} where C is the homogeneity criterion and Sy, .., Sy are the k segments
(or breakpoints) in which the trajectory is split. Often, the number &k of segments is not
known in advance. Key notion in segmentation is that of homogeneity criterion. There are

two main interpretations of this concept of homogeneity:

e Homogeneity is defined with respect to selected properties of the movement (movement
attributes) that can be derived from the geometric properties of spatial trajectories.
Movement attributes are, for example, speed, heading, curvature. A segment is homo-
geneous if the conditions specified on such attributes are satisfied by the points of the
segment. We refer to the class of segmentation methods which rely on this notion of

homogeneity as attribute-driven.

e Homogeneity is defined with respect to the activity performed by the object in the
corresponding time interval. We can think of activities as behavioral patterns that can
be extracted from spatial trajectories using knowledge discovery techniques. Example
activities are residing in a region or migrating from one residence to another residence.
A segment is thus homogeneous if it can be associated with a certain activity. We refer

to the corresponding class of segmentation techniques as pattern-driven.

The taxonomy in Figure 4 reports the general classification of the segmentation tech-

niques. In the following, we will explore attribute-driven and pattern-driven segmentation
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Figure 4: General taxonomy for segmentation techniques

ATTRIBUTE-DRIVEN SEGMENTATION

This class of techniques has its roots mainly in computational geometry [18, 3], though also
inspired by work on time series. To highlight similarities and differences with prior work, we

first provide some background on time series segmentation.

Time series segmentation

A time series is an arbitrary long sequence of correlated numeric values ry,..,r, with r; € R
typically collected from measurements made at uniformly spaced time instants [15], e.g.
the series of temperature measurement over a period of time. A time series of length n is
commonly modeled as a point in a n-dimensional space [25]. Therefore an operation such
as the Euclidean distance between two time series of equal length T = ry,..,r, and T =
1, .., 7. can be expressed as the distance between two n-dimensional points. Unfortunately,
distance-based operations, such as similarity-based search, performed over a large number
of long sequences, can be extremely inefficient. Moreover the notion itself of distance in a
high-dimensional space is problematic because of the curse of dimensionality [4]. Therefore
segmentation is often recognized as a key approach to dimensionality reduction [25]. The
segmentation task splits a time series in a number of sub-sequences and replaces each sub-
sequence with an approximated representation based on a segment model [26]. For example,

a segment can be represented by a single numeric value, e.g. a median data point in the



sub-sequence or by a polynomial or higher order curve.

The segmentation algorithm determines the breakpoints along the sequence based on the
input parameters, typically the number of segments to be searched for. The problem of
finding the breakpoints in the sequence is commonly framed as an optimization problem,
specifically, given a time series of length n compute k& << n segments so as to minimize the
error based on some error function. The error function can be for example the Euclidean

distance from the approximating curve or point [34].

Spatial trajectories vs. time series. In the data mining literature, spatial trajectories
are often equated to multivariate time series, namely the X-coordinate and Y-coordinate
of the spatial trajectory form the components of the multivariate series [28]. However,
the two notions of time series and spatial trajectories are slightly different especially with
respect to the role of time and segmentation. In particular, the key feature of time series
is the sequential structure of correlated data, while the time attribute is simply a property
inducing a total order over a discrete set of values. Moreover, the goal of the segmentation
task is to reduce the length of the time series to a predefined number of data points. By
contrast, in spatial trajectories, the temporal information is the basis for the distinction
between discrete and continuous movement. Whenever the movement is continuous, the
missing points between two consecutive samples can be estimated by interpolation and a
number of additional properties can be computed with a certain accuracy, such as trajectory
curvature, speed and velocity. That is, a spatial trajectory can be seen as a sequence of data
points with associated a number of time-varying scalar and vector functions. Such properties

are those utilized by the techniques for attribute-based segmentation, discussed next.

Attribute-driven segmentation of spatial trajectories

The problem can be informally formulated as the problem of partitioning a spatial trajectory
in a minimum number of segments in such a way that the movement inside each segment
is nearly uniform with respect to some condition on movement attributes (called segmen-
tation criteria, hereinafter). The number of segments is commonly unspecified, while the

segmentation criteria can be grouped in three classes: monotone, non-monotone and appli-



cation specific. These criteria are described in what follows. The extended taxonomy for

segmentation techniques is shown in Figure 5.
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Figure 5: Taxonomy refinement: attribute-driven segmentation

We term ’application specific’ those segmentation criteria that are defined on ad-hoc
basis. For example, in [37], the problem is to split a spatial trajectory in a minimum number
of segments approximating a linear movement at a constant speed.

More ambitious is the goal of defining a more general model grounded on rigorously
defined concepts and providing theoretical guarantees. The first attempt in this direction is
centered on the notion of monotone criterion [6]. A criterion is defined as a constraint on a
movement attribute that has to be satisfied by all of the points in the segment. For example,
a criterion can require the difference Agjccq between the maximum and minimum speed value
in the segment to be lower than 50km/h. A criterion is monotone if for any sub-trajectory
7, it holds that if 7 satisfies the criterion, then any sub-trajectory 7/ C 7 also satisfies the
criterion. For example the criterion Agpeeq < 50k/h is monotone while Agpeeq > 50k/h is
not. Multiple criteria can be combined to form a set of criteria. It is shown that given a
set of monotone criteria the optimal segmentation satisfying such criteria can be computed
efficiently, in nearly nearly linear time with respect to the trajectory length.

We mention an interesting experience of application/evaluation of such a segmentation
framework that also highlights important limitations of the approach [7]. The case study
regards the movement of a group of birds monitored during their Spring migration from

Netherlands to Siberia. The ultimate goal of the application is to discriminate the birds
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activities, called states, such as flying and resting using a proper set of segmentation criteria.
For example, the status of flight is informally defined as ’little variation in heading, speed
at least 20 km/h for at least 5 hours’. Unfortunately, the constraint on the minimum time
duration (e.g., at least 5 hours) is not monotone. Moreover, real data often contain outliers
that cause incorrect breakpoints. That is, there exist segmentation criteria of practical
interest that cannot be expressed using the proposed framework.

The third and more recent class of segmentation criteria tries to overcome the above
issues by extending the theoretical framework to encompass non-monotone criteria. [3].
It is shown that computing the minimum number of segments satisfying non-monotone
criteria is computationally hard under the assumption of continuous movement. Under
certain circumstances, however, and only for certain non-monotone criteria, it is shown that
the optimal segmentation can be computed efficiently in polynomial-time. In particular two
criteria are found for which the problem is tractable. One such criterion requires that the
difference between the maximum and minimum value of an attribute inside the segment does
not exceed a given value, while allowing a certain percentage of outliers. The second criteria
requires that on each segment the standard deviation of the attribute is below a certain
threshold [3]. Interestingly, both these criteria are related to noise handling. However,
a complete characterization of the non-monotone criteria for which efficient segmentation

methods can be found is still open.

PATTERN-DRIVEN SEGMENTATION TECHNIQUES

This second class of techniques is based on machine learning methods. This is a broad cate-
gory, with a strong application flavor. For example, the segmentation techniques commonly
employed for transportation mode detection often involve the use of supervised learning
methods [38]. To limit the scope of the survey to a manageable size, we restrict the focus on
segmentation methods relying on unsupervised methods (clustering). Commonly, segmen-
tation methods based on clustering are employed for the detection of specific behaviors (or
patterns). Such patterns can be either defined with respect to specific domains, e.g. human

mobility, or be generic, such as the stop-and-move pattern. In particular, a stop-and-move
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pattern is an abstraction of the mobility behavior of an object that repeatedly stays for
some time in a small region (i.e. a stop) before moving to some other regions. Objects
exhibiting such a behavior include for example animals tracked while foraging or migrating,
and the eyes gaze exploring a visual scene. Before proceeding, we provide some background

information on clustering techniques for the aspects relevant for the discussion.

Background on clustering of temporally annotated data

The clustering task subdivides a set of objects in groups of similar objects based on some
criteria of similarity. A broad range of clustering techniques have been proposed, based
on diverse paradigms such as partitional, hierarchical, density-based, grid-based clustering
[22]. Classically, all of these methods apply to unordered sets. Two popular techniques
are conceptually relevant for the trajectory segmentation problem, K-means and DBSCAN.
K-means is representative of the class of partitional clustering techniques. Accordingly,
the clustering problem is to find a partition of k clusters, with k input parameter, that
optimizes a properly defined clustering quality function. In contrast, DBSCAN generates
clusters based on density criteria. The number of clusters is unknown, while the two input
parameters € and NN specify the density requirements, i.e. €, the radius of a neighborhood,
and N the minimum number of data points in a e-neighborhood, respectively [16]. Unlike
K-means, DBSCAN is robust with respect to noise, therefore the presence of unstructured

points does not have a disruptive impact on the partitioning of the set as in K-means.

Time-aware clustering. An important class of techniques addresses the problem of clus-
tering temporally annotated data points. Two major categories of such techniques regard
the clustering of spatio-temporal events, and the clustering of stream data, respectively. In
particular: (i) Spatio-temporal events are uncorrelated spatio-temporal points, e.g. seismic
events. The goal of the clustering task is to group together the events that are close in space
and time. This problem is commonly approached introducing some notion of spatio-temporal
distance. For example, ST-DBSCAN, a temporal extension of DBSCAN, introduces two met-
rics, one for space and one for time [5]. Accordingly, the key notion of e-neighborhood for a

point p is slightly modified, i.e. the e-neighborhood contains N points whose temporal dis-
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tance from p does not exceed a threshold value. (i) Data streams are unbounded sequences
of data of arbitrary type. The clustering task groups the data points as they arrive, under
the memory constraints imposed by the data streaming context. In this case, the temporal
information can be utilized, for example, to limit the amount of data to cluster, e.g. the
clusters in the last year, last month, last week, as in [1]. A different strategy is to use the
temporal information to award recent and evolving clusters against oldest and stable clusters.
For example, in DensStream [8] every point is given a weight that decreases exponentially
with time via a fading function f(t) = 27, where A > 0 is a system defined parameter. As
the cumulative weight of a dense group of points exceeds a threshold value then such a group
becomes a cluster. Next, if no new point is added, the weight will decay gradually until the
group of points becomes noise and eventually the memory space is released for new clusters.

A common feature of all of these techniques is that the resulting clusters are not tempo-
rally separated. Therefore such methods are conceptually unsuitable for the segmentation

of spatial trajectories.

Clustering techniques for pattern-driven segmentation

We now focus on clustering techniques that return temporally disjoint clusters. We refer
to this form of segmentation as clustering-based. Another term often used is sequential
clustering [30]. We distinguish three major classes of techniques: heuristic-driven, density-
based, partitional. Accordingly, the general taxonomy introduced earlier can be refined as
shown in Figure 6. An orthogonal and important distinction to bear in mind during the
analysis of these categories is between the techniques that are sensitive to noise and those

that are not. This distinction will be discussed at the end of this Section.
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Figure 6: Taxonomy refinement: pattern-driven segmentation

Heuristic-driven segmentation. This class encompasses methods relying on simple heuris-
tics. An early approach, which can be taken as representative of the class, is proposed in [24]
for the analysis of human mobility. The application goal is to detect the places of interest
visited by an individual, where a place of interest is a region where the individual stays for
a minimum time. The idea is to compare every new point that arrives with the centroid
of the current cluster. If far away from the centroid, the point is considered to belong to a
different cluster. Finally, the clusters which represent places of interest are filtered out based
on the duration threshold. Along this line, another popular technique has been proposed by
Yu Zheng et al. [40]. A major problem with this class of approaches is the lack of a more

general framework providing guarantees.

Based on partitional clustering. These approaches are inspired by K-means. For
example, Warped K-means is an algorithm that, like K-means, allocates data points based
on the analysis of the effects on a quality function, caused by moving a sample from its
current cluster to a potentially better one [30]. Because of the ordering constraint, the first
half of points in cluster j are only allowed to move to cluster j — 1, and, respectively, the
last half of data points are only allowed to move to cluster j+ 1. A point will be reallocated
if and only if the operation is beneficial for the quality of clustering. This process is iterated
until no transfers are performed. A more recent approach, taking inspiration from Warp
K-means, employs the notion of density in place of the quality function, without requiring

in input the parameter k [33]. In practice, a breakpoint is created as the density of the data
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Figure 7. CB-SMoT clustering: the output is a sequence of temporally ordered stops. Every

stop is associated with a time interval [31]

points in proximity of the current cluster representative is less than a threshold value. As

relying on K-means, these techniques are sensitive to noise.

Based on density-based clustering. This class of approaches relies on DBSCAN. One
of the earliest and probably most representative approaches is CB-SMoT (Clustering-Based
Stops and Moves of Trajectories). This is a technique proposed for the extraction of stops
from spatial trajectories. Stops are defined as segments of minimum length and minimum
duration, along which the speed is thus limited [31]. An example from the original article
and illustrating a sequence of stops is shown in Figure 7. CB-SMoT inherits key concepts
from DBSCAN, yet such concepts are formulated in slightly different terms. In particular
the notion of e-neighborhood (neighborhood of radius €) is defined along the linear represen-
tation of the trajectory, Moreover the constraint on the minimum number of points for a e-
neighborhood to be dense is reformulated as temporal constraint on the minimum duration
of the sub-trajectory. Whenever the condition on the minimum speed for a minimum time
is no longer satisfied, the cluster-segment is broken. This happens irrespective of the fact
that the variation can be only temporary and thus could represent noise. That is, unlike

DBSCAN, this technique is not robust against noise.

Noise handling. As we have seen, noise sensitivity is an issue common to all of those
techniques. To deal with this problem, a common strategy is to introduce some additional
constraints, for example on the maximum number of noise points that can be tolerated before
a breakpoint is added, as in e.g. [24]. Such a parameter is, however, hard to set, especially
whenever the sampling intervals are irregular and the clustering is to be applied to a large

number of trajectories. As a result, these techniques are highly time consuming and little
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Figure 8: (a) Spatial trajectory; (b) SeqScan clustering: clusters, excursion points, transition

points

effective in practice.

A first attempt to deal in more systematic way with the problem of noise in clustering-
based segmentation is represented by SeqScan [12]. SeqScan is a clustering technique for the
segmentation of sequences, fully compliant with the DBSCAN model. SeqScan distinguishes
two classes of outliers: the points indicating a temporary absence from the cluster (ezcursion
point) and the points representing a definitive departure from the cluster towards another
cluster (transition point). The measure of presence is an estimate of the time spent inside
the cluster excluding the periods of absence. The segmentation algorithm determines the
sequence of clusters along with the classified outliers. For validation purposes, the approach
has been experimentally used for the analysis of the migratory behavior of a group of animals
[13]. Figure 8 shows the components of a segmentation, i.e. the clusters, the excursion points,

and the transition points, for an example trajectory.

RESEARCH ISSUES AND CONCLUDING REMARKS

Two aspects deserve further discussion: (a) perspectives of the two research directions on
segmentation techniques, and (b) the relationship between segmentation and representation

of summarized trajectories. These aspects are discussed next.

(a) We have seen two major categories of approaches addressing the problem of segment-
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ing spatial trajectories. While the potential applications for these techniques are similar,
the methodologies underneath are substantially different. Both directions present pros and
cons. Attribute-driven methodologies are built on solid theoretical frameworks. Yet, the
characterization and generalization of the segmentation criteria, the handling of outliers and
the scalability of the segmentation algorithms still represent important challenges. Proba-
bly less robust and general from a theoretical perspective but more flexible, with respect
to the application needs, are the pattern-driven methodologies. In particular, cluster-based
segmentation techniques are especially useful for the detection of stop-and-move patterns,
a specific class of patterns that finds an application in a variety of domains. An open is-
sue is the definition of validation methodologies specifically targeting this form of clustering
over sequences. For example, an aspect that deserves some attention is whether the quality
indexes commonly used for the evaluation of classical clustering can be straightforwardly
applied on sequential clustering. The definition of theoretically robust frameworks possibly

accounting for supplementary patterns is another major challenge.

(b) The second important aspect to consider concerns the representation of the segments
resulting from the trajectory partitioning. Earlier in the paper, we have mentioned the
notion of semantic trajectory, that is, a trajectory encompassing some form of knowledge
on the individual movement. The notion of semantic trajectory has been given a more ex-
plicit characterization as sequence of episodes where an episode is substantially a segment
annotated with application-dependent information [32]. A semantic trajectory is defined as
the result of a process that starts from the acquisition of a raw sequence of spatio-temporal
points, and goes through data cleaning, spatial trajectory segmentation and finally segment
annotation. In this sense, segmentation techniques are instrumental to the generation of
semantic trajectories. It remains the fact that the notion of semantic trajectory is exclu-
sively defined at conceptual level, therefore is not given a workable specification. Recent
work attempts to fill this gap. In particular, the model of symbolic trajectories [21] provides
a way for representing segmented trajectories in a database. In such a model a segment is
a pair (Timelnterval, Label) where Label is a text unit describing the individual behavior in

the time interval. Symbolic trajectories are represented in a database as values of a properly
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defined data type and queried using a pattern-based query language.

In summary, an emerging trend is to manage summarized trajectories through a database.

We recall that we have started contrasting the database and the knowledge discovery view,

as two orthogonal strategies for the effective management of large volumes of trajectory

data. In the light of these last considerations, it appears that these two views are, in reality,

converging towards the definition of a unifying framework enabling the efficient access to

content-rich trajectory datasets and as an alternative to parallel and distributed spatio-

temporal databases.
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