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Abstract The resistance of Pagerank to a Sybil attack comes from

the fact that the pages created for the attack can only in-
We study the impact of collusion —nepotistic linking— in &erit the reputation they are currently receiving. However,
Web graph in terms of Pagerank. We prove a bound on {R@he case of Pagerank, the minimum is not zero, as even
Pagerank increase that depends both on the reset prob@hthout in-links a page gets a minimum scorefpf
ity of the random walle and on the original Pagerank of The strategy of creating many pages pointing to a single
the colluding set. In particular, due to the power law digage is actually used on the Web, in fact, currently there
tribution of Pagerank, we show that highly-ranked Wedre thousands or millions of Web pages created specifi-
sites do not benefit that much from collusion. cally for the objective of deceiving the ranking function of
search enginess]. “Because the Web environment con-
tains profit seeking ventures, attention getting strategies
evolve in response to search engine algorithms. For this

. . . I reason, any evaluation strategy which counts replicable
This paper studies the effects of different linking tOpOICf_eatures ofi/lveb pages is prone9¥0 manipulatia]] P

gies in the ranking function induced by the Pagerank algo- : :
rithm [13]. The Pagerank algorithm receives as input an To the best of our knowledge, Pagerank by itself is not

adjacency matridLy,y, whereN is the number of Web used as the sole indicator of quality by any of the larger

) search engines, but it is still an important part of the rank-
pages, and renormalizes each row.db sum 1, generat- ; .
. " ! . I U ing function of some of them.
ing a transition matribA. This transition matrix is slightly In this paper-
modified by adding a “random jump”, i.e.: a transition paper.
from each node to each of the other nodes using the uni
form transition matrix — a matri) such that;; = 1/N.

1 Introduction

e We present an analysis for collusion under a more
general case than the one presentedLi, [this is,
we consider the original links that the colluding set
P=(1-¢)A+eU Q) has.
The Pagerank algorithm calculates the probabilifies ) .
of the stationary state of the Markovian process induced® Ve prove that for a single page there is always some-
by matrix P. That is, the eigenvector corresponding to thing to win by colluding with other pages.
the largest eigenvalue (which in the case of this matrix is

i e We prove that the expected returns from collusion are
A1 = 1) of the matrixP:

lower for highly-ranked pages.
PTx=x . . . .
The rest of this paper is organized as followgction2
The Pagerank value of a page is used as an estimai@nhmarizes previous work in this area, afdction3
of the quality of a Web page based on properties of theesents an analysis predicting the increase of Pagerank
Web graph. The rationale for this estimation is that a higly using a collusion strategySection4 validates these
quality page is a page with many in-links coming frorpredictions in a synthetic graph, asaction5 studies a
other high-quality pages. real Web graph. FinallySection6 presents our conclu-
This algorithm is expected to work much better thagions and avenues for future work.
simply counting in-links, as it might be more resistant
to what is called a “Sybil attack™d]. A Sybil attack is
an attempt of altering a recommendation system by creat-
ing multiple identities; in this context, this means creating
multiple pages pointing to a single page.
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2 Previous Work with the objective of increasing the ranking of a single
target page. They prove that the optimal structure for a
Several authors have observed the presence of spam paggm farm is a series of pages pointing to and only to the
on the Web. Fetterlgt al. [7] showed that most of the out-target page, while the target page points to some of all of
liers when observing statistics of Web page collections arem. In this optimal structure, if there are other external,

machine-generated spam pages —these pages may bergigcked” links, they should also point to the target page.
signed both to increase citation counts and to provide mul-

tiple “doorway” pages. Hence, the divergence between . .
the expected and the observed values can be used in same Impact of Collusion in Pagerank
cases to detect spam pages.

Eiron et al. [6] studied a 100-million page sample ané group of nodes can collude to get a higher Pagerank by
found that 11 of the top 20 URLs by Pagerank were porn@anipulating the out-links of the group. We will assume
graphic, and in all cases the specific technique used W@t the group’s objective is to maximize ittal Pagerank
taking the Pagerank from random teleportation in maH?'UG-
pages and concentrate it into a single page by using linksLet N be the total number of nodes in Web gra@hv

Zhanget al[15] study the following collusion strategy:the number of colluding nodes in sub-gra@h— we will
pick a series of nodes with adjacent rankings, remove afisumeM < N. Letx be the total Pagerank of the collud-
their out links and add links from each node to the nodfed nodes, so & x s the total Pagerank of the rest of the
before and after it in the list of nodes sorted by Pageragkaph. All the links in this graph are shownfimgure1.

They also prove the following upper bound on any collu-
sion strategy; lexorig be the original Pagerank of a page,

and xnew the Pagerank this page obtains after it colludes
is:

P = (1-e)(1-x)p

Xnew<2

Xorig €

N-M nodes
Pagerank = 1-x

They also prove that this bound is nedeif M < N,
as a typical value foe is 0.15, the amplification factor
is roughly 7. They do not take into account the starting
Pagerank of the colluding set. We prove a tighter bound s
that shows that colluding works mostly for pages with low
starting Pagerank.

Meyer [11] proved that if the second eigenvalue of an
irreducible Markov chain is small, then the chain is not

overly sensitive to small variations. Haveliwala and Kam- The total Pagerank entering the colludmg_ noB_éﬁ IS
var [9] proved that the second eigenvalueRis 1— ¢ given by the sum of three terms representing links from

therefore, a large produces a more stable matrix. gy random jumps, links from the non-coliuding nodes and

= . . internal links between colluding nodes. This is the same
al. [12] prove a similar result using a different approac% roach taken by Clausef] o “lump” a set of pages
as long ag is not too small, small variations in the matrix bproac y pras bag
o Into a single node for Pagerank computation.

do not generate large variations of Pagerank.
Agogino and Ghoshl] studied a reinforcement learn-

ing method for automatically finding a linking strategy for

increasing the combined Pagerank of a set of domainsgy; calculatingP),, we first take the sum over all nodes

Their strategy relies on a utility function that ConSiderﬁointing to the colluding set, instead of on all the links:
the impact of every learner in the total Pagerank achieved

by the colluding group.

Clausen ] studied the cost of an attack on Pagerank P, = PRa
considering that creating a new Web site requires a pay- (ab): (&)<, 4€9@)
ment. In the same paper there is an analysis on how to
lum S ’ PRap(a)

p pages together for Pagerank calculation, disregard palE o

ing the internal link structure of each group.

In a recent article, Gyngyi and Garcia-Molina g] Wherep(a) is the fraction of links from noda pointing
study optimal structures for “link spam farms” and combte the colluding se6’, and it can be zero if no link from
nations of them. A spam farm is an arrangement of linkedea points toG'.

Figure 1: Variables used in the analysis.

Pagerank, = Pjump+ Pin 4 Pself



Now, let: cliqgue means — 1, and the ratio between the resulting
Pagerank,ewand the original Pagerank is:

za:aerG/ PR(a) p(a) XneW 1 —S
p = =1 3
Yaacc-c PR@) Xold - p-+ ﬁ )
Za:aeG—G/ PR(a) p(a)

= This ratio is inversely proportional to the Pagerank that
1-x originally entered the colluding nodes. Therefore, if the
So p is a weighted average gi(a) over G — G, in colluding set has a high connectivity at the beginning, the
which the weights are the Pagerank values of the nodg&!ms from colluding will be poor, and viceversa.
in G— G. The important issue is that cannot be con-  FOr instance, if the starting set has very few, or no in-
trolled by the colluding nodes, and will remain constafif'ks from the rest of the graptp = 0, and at the begin-
whatever strategy is used. We can now write the equatfdR9 S = 0 (originally all the out-links went to the rest of
for P, as: the graph), then:
Xnew 1
Ph=(1-¢)(1-X — =7
n = ( ) )P Xoq £
For Psgi we make a similar replacement.dfb) is the
fraction of links from nodé € G’ pointing to the collud-
ing setG/, then let:

If the starting Pagerank is very good, and has all the
links from the non-colluding set we haye= 1, but has
no internal links at the beginning, then:

X
s _ 2bbee PRD)S(b) % —2_¢
Za:aeG’ PR(b)
Y bbee PR(b)s(b) However, this situation is very unlikely, because if the
| X colluding set has all the in-links from the rest of the graph,

_ then it should also have some links from itself. In fact, if
Sosrepresents a weighted averages@) overG’, and we assume that in the original situation, the fraction of

this yields: links going to the colluding nodes was the same for all
nodes in the graph, then= p, and the change in Pagerank
Pself = (1—¢€)xs value is given by the following equation:
Now we can write the equation for the sum of the Page- Xnew 1 4
rank of the colluding nodes as: Xod  P(1—g)+¢€ )

The graph of Pagerank change §o£ 0.15 and varying
values ofpis shown inFigure2. We can see that while the
starting fraction of links received remains roughly below
1% the returns are still maximum.

Pageranl, = s% +(1-8)(1-x)p+(1—g)xs
Solving the stationary stateagerank, = x yields:

. A+-9p ,
Xorg = 7 a4 o A /e
(p—s)(1—¢)+1
The only thing the colluding nodes can do is to link
more internally than externally. This means that: ¢,
with § > s, and the ratio between the resulting Pagerank
and the original Pagerank is:

Maximum pagerank change
i

X §—s 2t
new _ 1 T (2)
Xorig p—s+ s 1 w ‘
N o _ 107 102 10! 10°
A trivial observation is that i§ > sthen: Weighted average of fraction of links to colluding nodes
Xnew ) .
a >1 Figure 2: Expected change of Pagerank values under different

starting condition$, usinge = 0.15.
That is, there is always something to win by colluding
with other nodes. In particular, colluding by forming a



Focus on a single page In this section we have dis- 10° — : : -
cussed the issue of increasing tnerage Pagerankf a
set of pages. This is not the same as increasing the Page- 10! F
rank of a single page as in the link spam farm structures
studied in B]. A simple, brute-force strategy of creating
M (unlinked) pages, each with a single link pointing to a
target page yields a Pagerank for the latter of at most:

Frequency

€ M
Xprute—forceM) = N + (1_ E)SN
€+eM —e2M 10 10° 104 10° 10

- * Pagerank value
M : o . .
~oEy M>1lexl) Figure 3: Distribution of Pagerank values in the synthetic
graph.
This is, an individual page can get a increase of Page-
rank larger than in our analysis, but the average amplifi-

cation of all the pages in the colluding set will be as de-, ) o
scribed byEquationd. will become connected after the collusion, modifying the

number of nodes involved in the total Pagerank calcula-
_ _ _ tion. Using the generative model described above, we cre-
4 Experiments with a Synthetic ated a 125,000-nodes graph and then removed all the dis-
connected nodes to obtain a connected graph of roughly

Web Graph 106,000 nodes. We also made preliminary experiments

We obtained a synthetic graph using a generative mo:c%?h a10,000-nodes graph and the results were very sim-

described by Kumaet al. [10]:

Instead of sampling according to the number of nodes,
we sampled according to the amount of Pagerank. We
divided the nodes in the Web graph into 10 segments,
e Each time a node is added,links are added. Foreach segment having/10" of the total Pagerank. Note

adding a link, the source and destination nodes at because of the distribution of Pagerank, shown in

chosen as follows: Figure3, these segments represent sets exponentially de-

e Nodes are added one at a time.

— With probability 3 the source node is chosen a(freas_lng N Siz€. _
random, and with probability X B the source Inside each segment, we picked a grougvbt= 100

node is chosen with probability proportional thodes at random —except in the last segment, as the top
10% of Pagerank was found in only 50 nodes. We labeled

the current out-degree of nodes.
With probability a the destination is ch %hese groups 1.10.
— With probabiiityathe destination Is chosen at -, 4, following, we denote blagerank valueghe ac-
random, and with probability 4 a the destina- o . ; -
. ) " ; tual probabilities given by the Pagerank algorithm, this is,
tion is chosen with a probability proportional IC{ : :
. he resulting values of the vectarWe denote byanking
the current in-degree of nodes. . .
the order in which a page appears when pages are sorted
We usedd = 7, a = 0.2 andp = 0.45, parameters ex-PDY Pagerank values. This number is normalized so 0O is the

perimentally determined by Panduranggiral. [14] that @St page and 1 is the top page by Pagerank value.
produce graphs simultaneously fitting the distributions of The original Pagerank values of the pages inside each
in-degree, out-degree and Pagerank to the values obseB/@dp, as well as the group averages, are showfign
in real Web graphs. The parameters for the power-lawlfe 4-
the center part of the distributions are -2.1 for in-degreeAs the distribution of the Pagerank values is very
and Pagerank, and -2.7 for out-degree. skewed, the distribution of the rankings inside each of
It is very important to remove the disconnected nod#sese groups appears as showRimure4. Note that most
from the resulting graph, as they affect the Pagerank nofthe pages in group 1 have the same Pagerank value, so
malization factor. This is specially critical for groups ofheir ranking is distributed uniformly in the 0.0-0.5 inter-
pages with very low starting ranking, as they will cewal, meaning that the bottom 50% of the pages have in
tainly include the disconnected nodes, and those nodeatsil just 10% of the Pagerank.
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Figure 4: Pagerank values and rankings, in both the original ¢
and the modified graphs, using a clique inside each group.

4.1 Collusion via a complete sub-graph

agerank / original Pagerank

The first strategy we tested was to create a clique (a cor§1-3
plete sub-graph) inside each group. Unlike the experi-,
ments by 5], we did not remove any outgoing links, as

that is very easy to detect and can be penalized by search

engines. The rationale is that if within a group the number ! 2 3 4 o 7 $ o 10

of internal links outnumbers the number of external links ’

then that group will preserve its Pagerank. Figure 6: Pagerank change under varying amounts of internal
Figure4 compares the Pagerank values before and afigiks.

the collusion.

Figure 5 plots the variation in both Pagerank values o _ ) )
and ranking after collusion. Clearly the boungtds too N most cases, adding just 50% of the links yields high

coarse for medium to highly ranked pages, in those cad&8Urns, andin the case of the group with the lower starting
the starting incoming links should be considered, as f@gerank, even 30% of the links results in an increase of
Equation4. Pagerank by a factor of 5.

Note that a factor of 3 in the Pagerank ranking is a very
large increase for a page. As showrfigure5, all of the
pages from group one get a new ranking in the top 10%
by colluding. Moreover, all of the pages inside each group
get roughly the same ranking.



4.3 Other collusion strategies

We also tested collusion strategies involviogM) inter-

5 Experiments with a Real Web

Graph

nal links instead 0O(M?) as is the case with cliques. Thé/Ve started with a collection of 16 million pages from

picted inFigure?.

Star Ring

1% &%
A,

Figure 7: Studied linking topologies.

In the case of the star, to avoid a positive bias in the 107 B
choice of the center of the star, we picked a new node 5
originally without in-links as the center of the star. The
comparison between the results under these two topolo-
gies is shown inFigure 8. There is a slight advantage
of forming a star instead of a ring for the lowly-ranked 10
sites, but for the other groups both strategies yield simi-
lar returns, and those are much lower than in the case of

cliques.

2.0 . : . : :
Star (Pagerank value) —&—

Ring (Pagerank value) ----&---
Star (Ranking) -~ @
’ Ring (Ranking) &

New value / original value

are interested in complete Web sites instead of individual
pages, so we first converted multiple links between pages
in different Web sites, into a single link between two Web
sites. Two sites;, s, are linked iff there is at least one
page on site; pointing to a page is,.

We obtained a graph with 31486 Spanish sites and
3,037,913 directed links between them.

We calculated the Pagerank (or HostradR falues of
each Web site, and the corresponding ranking induced by
this value. Note that this is not the same as the sum of the
page-wise Pagerank for each page in the Web site, because
there may be multiple links between two Web siték [
The distribution of values for the Hostrank is shown in
Figure9.

Frequency
)

10 109 10 107 107
Pagerank value

Figure 9: Distribution of Hostrank values in the Spanish Web
sites graph. There are a number of Web sites already colluding.

Comparing this with the distribution of Pagerank in the
synthetic graph, shown iRigure3, we can see that while
both exhibit a Zipf's law with roughly the same parameter,
in the real Web there is a significant number of outliers.
Manual inspection of these outliers showed that most of
them are Web sites that can be considered as spam, for in-
stance, we found several groups of dozens of Web sites
with names such agttp://cityname.company.es/,
in which cityname is the name of a Spanish city and
company IS a tour operator or hotel company.

We modified this graph with the strategies we have dis-

Figure 8: Pagerank under other linking topologies; both the, << 50 far and computed the new Pagerank values after

star and ring topologies yield much lower returns than formi

a clique.

"dach strategy. The objective of these strategies is to in-
crease the ranking of a small set of 242 site8&@o of the
total number of sites). The target sites for this experiments
were obtained from the directory of an agency certifying



the quality of Spanish Web sites, and are expected to béinally, we explored the possibility of adding less than

sites that adhere to certain standards of coding, cont&t% of the links of a complete subgraph.Higurell, a

etc. varying amount between 5% and 50% of the links in the
The average ranking of the Web sites in the selecte@mplete subgraph are added randomly.

group is 075. Note that this only takes into account the

Pagerank value, while the quality of a site may come from 1.000

very different factors. o
1 H 1 t 3 3 H B . .
0995 + p ot o4 i
Table 1: Linking strategies. . |
=N .
£
Strategy Average ranking £ 09907
0 a4
Disconnect group 0.75
Normal 0.77 0.985 | i
Central site 0.82
Ring, alphabetical 0.93 0950 :  Average ranking ——
Ring, inverted 0.93 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%
S.tar 0.96 Percent of links of a complete subgraph
Clique 0.99

Figure 11: Relative rankings when adding a fraction of the
links of a complete subgraph.
Table 1 lists the linking strategies used. We started
by disconnecting all the links between the participating ) )
nodes, that yields a minimum of ranking without collu- e observe that even adding 5% of the links of a com-
sion at all. After that, we returned to the normal situatioR!ete€ subgraph, i.e.: each of the Web sites in the group
Then we added a central site that lists all the particip4fks to 5% of the other sites (in this case, roughly 10 Web
ing sites, then a ring of all the sites in alphabetical ord&ites each one), then the average positiodds) is higher
and then an inverted ring. Finally, we also added a stAan all the strategies based on other topologies. After

and a clique Figure 10 lists the resulting rankings undedding about 20% of the links of the complete subgraph,
different strategies. the gains increase linearly with the number of links.

1 l 1 ! I T 6 Conclusions and Future Work

09 | b 1

08 r 3 | | ! 1 While any group of nodes can increase their Pagerank by
L 07y ' : oL forming a tightly-connected sub-graph of the Web, the in-
2 0.6 1 i : : crease they obtain by doing so is inversely related to their
£ 050 0 starting Pagerank. This means that the Pagerank algo-
g 04p b 1 rithm is particulary vulnerable to Sybil attacks from the

03¢ } i : : 1 nodes with low Pagerank. As the distribution of Pagerank

021 P 1 - | is very skewed, even a modest increase in Pagerank value

0'(1) | ] ' ‘ ‘ ‘ | may imply a large increase in the ranking of a page.

N ) R.‘ S Collusion strategies have never been studied in a more
orma’ ing tar . . . . .
Disconnected Central Inv.Ring  Clique microscopic scale. For instance, we noted slight differ-
ences when creating a ring of pages in two different or-
derings. There is an optimum ordering for forming a ring,
Figure 10: Relative rankings under different strategies. EacBnd we are interested in studying different strategies under
dot represents a site. a limited “budget” in terms of links.
As future work, we would like to study other forms of
ranking calculation such as a two-level ranking scheme
Clearly, creating a complete subgraph is the best stridiat ranks entire Web sites and then Web pages.

egy, as all of the sites in the group get very high positions.While this article is mainly descriptive, we are also in-
We noted that the star strategy gets a similar averagddrested in developing ways of detecting deceptive linking
the ring strategy, but much lower variability. practices to improve reputation algorithms. There is not

Strategy



a trivial answer to this problem. Finding regular struc{9] HAVELIWALA , T., AND KAMVAR, S. The second
tures [/] may not be enough as spammers can random-
ize their link spam farms. Measuring the ratio between

the total Pagerank of a group of pages and the Pagerank

they receive externalylfp] may detect groups of page

that are strongly linked among them for legitimate rea-
sons. An open question is if the current linking practices

used amongst “good sites” should be used —and accepted—

or not.
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