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ABSTRACT
Web spamming, the practice of introducing artificial text
and links into web pages to affect the results of searches,
has been recognized as a major problem for search engines.
It is also a serious problem for users because they are not
aware of it and they tend to confuse trusting the search
engine with trusting the results of a search.

In this paper, we first analyze the influence that web spam
has on the evolution of the search engines and we identify the
strong relationship of spamming methods to propagandistic
techniques in society. Our analysis provides a foundation to
understanding why spamming works and offers new insight
on how to address it. In particular, it suggest that one could
use anti-propagandistic techniques in the web to recognize
spam. The second part of the paper demonstrates such a
technique, called backwards propagation of distrust.

In society, recognition of an untrustworthy message (in
the opinion of a particular person or other social entity) is a
reason for questioning the entities that recommend the mes-
sage. Entities that are found to strongly support untrust-
worthy messages become untrustworthy themselves. So, so-
cial distrust is propagated backwards for a number of steps.
Our algorithm simulates this social behavior on the web
graph.

In our algorithm, starting from an untrustworthy (accord-
ing to the end user) site s, we examine its trust neighbor-
hood, that is, the neighborhood of sites that link to s in a
few steps. Evaluating the sites-members of the neighbor-
hood we identify a biconnected component (BCCs) with a
high percentage of untrustworthy sites. BCCs are formed
when there are multiple paths to reach s, thus indicating a
concerted effort to promote s. This is not the case when
starting from a trustworthy site.

Our tool explores thousands of nodes within minutes and
could be deployed at the browser-level, making it possible
to resolve the moral question of who should be making the
decision of weeding out spammers in favor of the end user.

Our approach can lead to browser-level web spam filters
that work in synergy with the powerful search engines to
deliver personalized, trusted web results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.m [Information Storage and
Retrieval]: Miscellaneous
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1. INTRODUCTION
Web spamming is often defined as the practice of manip-

ulating web pages in order to cause search engines to rank
some web pages higher than they would without any manip-
ulation1. Spammers aim at search engines, but target the
end users. Their motive is usually commercial, but can also
be political, or religious.

One of the reasons behind the users’ difficulty to distin-
guish trustworthy from untrustworthy information comes
from the success that both search engines and spammers
have enjoyed in the last decade. Users have come to trust
search engines as a means of finding information, and spam-
mers have successfully managed to get them to transfer that
trust to the results of each search.

From their side, the search engines have put considerable
effort in delivering spam-free query results and have devel-
oped sophisticated ranking strategies. Two such ranking
strategies that have received major attention are the well-
known PageRank [6] and HITS [28] algorithms. Achieving
high PageRank has become a sort of obsession for many
companies’ IT departments, and the raison d’être of spam-
ming companies. Some estimates indicate that at least 8%
of all pages indexed is spam [12] while experts consider web
spamming the single most difficult challenge web searching
is facing today. [23]. Search engines typically see web spam
as an interference to their operations and would like to re-
strict it, but there can be no algorithm that can recognize
spamming sites based solely on graph isomorphism [5].

First, however, we need to understand why spamming
works beyond the technical details, because spamming is
a social problem first, then a technical one. In this paper
we show its extensive relationship to social propaganda, and
evidence of its influence on the evolution of search engines.

1We should mention here that there is not a complete agree-
ment on the definition of web spam among authors, which
leads to some confusion. Moreover, to people unfamiliar
with web spam, the term is mistaken for email spam. A
more descriptive name for it would be “search engine rank-
ing manipulation.”



Our approach can explain the reasons web spamming has
been so successful and suggest new algorithmic ways of deal-
ing with it. Finally, we discuss what we believe should be a
frame for the long-term approach to web spam.

The rest of this paper is organized as follows. The next
section gives an overview of the problem of web spamming
and information reliability for a general audience. Section 3
discussed the relationship between webgraph and the trust
social network while the following section analyzes the evo-
lution of search engines as their response to spam. Section 5
describes the backward propagation of distrust method and
the following section presents some of our experimental re-
sults running this algorithm. Section 7 discusses some re-
lated research and the final section has our conclusions and
some discussion of future directions of this work.

2. BACKGROUND
The web has changed the way we inform and get informed.

Every organization has a web site and people are increas-
ingly comfortable accessing it for information for any ques-
tion they may have. The exploding size of the web necessi-
tated the development of search engines and web directories.
Most people with online access use a search engine to get in-
formed and make decisions that may have medical, financial,
cultural, political, security or other important implications
[10, 40, 24, 32]. Moreover, 85% of the time, people do not
look past the first ten results returned by the search en-
gine [38]. Given this, it is not surprising that anyone with
a web presence struggles for a place in the top ten posi-
tions of relevant web search results. The importance of the
top-10 placement has given birth to a new industry, which
claims to sell know-how for prominent placement in search
results and includes companies, publications, and even con-
ferences. Some of them are willing to bend the truth in order
to fool the search engines and their customers, by creating
web pages containing web spam [12].

The creators of web spam are often specialized companies
selling their expertise as a service, but can also be the web
masters of the companies and organizations that would be
their customers. Spammers attack search engines through
text and link manipulations [23, 19]:

• Text spam: This includes excessively repeating text
and/or adding irrelevant text on the page that will
cause incorrect calculation of page relevance; adding
misleading meta-keywords or irrelevant “anchor text”
that will cause incorrect application of rank heuristics.

• Link spam: This technique aims to change the per-
ceived structure of the webgraph in order to cause in-
correct calculation of page reputation. Such examples
are the so-called “link-farms”, “mutual admiration so-
cieties”, page “awards”, domain flooding (plethora of
domains that re-direct to a target site), etc.

Both kinds of spam aim to boost the ranking of spammed
web pages. Sometimes cloaking is included as a third spam-
ming technique [23, 20]. Cloaking aims to serve different
pages to search engine robots and to web browsers (users).
These pages could be created statically or dynamically. Static
pages, for example, may employ hidden links and/or hidden
text with colors or small font sizes noticeable by a crawler
but not by a human. Dynamic pages might change content
on the fly depending on the visitor, submit millions of pages

to “add-URL” forms of search engines, etc. We consider
the false links and text themselves to be the spam, while,
strictly speaking, cloaking is not spam, but a tool that helps
spammers hide their attacks.

Since anyone can be an author on the web, these prac-
tices have naturally created a question of information reli-
ability. An audience used to trusting the written word of
newspapers and books is unable, unprepared or unwilling
to think critically about the information obtained from the
web. A recent study [17] found that while college students
regard the web as a primary source of information, many
do not check more than a single source, and have trouble
recognizing trustworthy sources online. In particular, two
out of three students are consistently unable to differentiate
between facts and advertising claims, even “infomercials.”
Very few of them would double-check for validity. At the
same time, they have considerable confidence in their abil-
ities to distinguish trustworthy sites from non-trustworthy
ones, especially when they feel technically competent. We
have no reason to believe that the general public will per-
form any better than well-educated students. In fact, a re-
cent analysis of internet related fraud by a major Wall Street
law firm [10] puts the blame squarely on the investors for
the success of stock fraud cases.

3. THE WEBGRAPH AS A SOCIAL NET
The web is typically represented by a directed graph [8].

The nodes in the webgraph are the pages (or sites) that
reside on servers on the internet. Arcs correspond to hyper-
links that appear on web pages (or sites). Web spammers
are trying to alter the web graph in ways beneficial to them.

The theory of social networks of Trust [41] also uses di-
rected graphs to represent relationships between social enti-
ties. The nodes correspond to social entities (people, institu-
tions, ideas). Arcs correspond to recommendations between
the entities they connect. Propagandists are trying to alter
the trust social net in ways beneficial to them.

This connection is more than just a similarity in descrip-
tions. The web itself is a social creation, and both PageR-
ank and HITS are socially inspired ranking algorithms. [6,
28, 36]. Socially inspired systems are subject to socially in-
spired attacks, however. Not surprisingly then, the theory
of propaganda detection [31] can provide intuition into the
dynamics of the web graph. First developed in the begin-
ning of World War II by the Institute for Propaganda Anal-
ysis [15, 31], the theory of propaganda detection identifies
several techniques that propagandists often employ in order
to manipulate perception. Name calling, glittering gener-
alities, testimonial, bandwagon and transfer are the more
well-known of them.

PageRank is based on the assumption that the reputation
of an entity (a web page in this case) can be measured as
a function of both the number and reputation of other en-
tities linking to it. A link to a web page is counted as a
“vote of confidence” to this web site, and in turn, the repu-
tation of a page is divided among those it is recommending
2. The implicit assumption is that hyperlink “voting” is tak-
ing place independently, without prior agreement or central

2Since HTML does not provide for “positive” and “nega-
tive” links, all links are taken as positive. This is not always
true, but is considered a reasonable assumption. Recently,
Google introduced the “nofollow” attribute for hyperlinks,
but it is very unlikely that web spammers will use it.



Graph Theory Web Graph Trust Social Network
node web page or site social entity
node weight rank (accord. to SE) reputation (accord. to user)
node weight computation ranking formula based on top recommenders

automatic on demand
arc hyperlink trust opinion
arc meaning vote of confidence recommendation
arc weight degree of confidence degree of entrustment
arc weight computation ranking formula arbitrary, semi-consistent
arc weight range [0 . . . 1] [distrust . . . trust]

Table 1: Graph theoretic correspondence between the Webgraph and the Trust Social Network.

control. Spammers, like social propagandists, form struc-
tures that are able to gather a large number of such “votes
of confidence” by design, thus breaking the assumption of
independence in a hyperlink.

Table 1 has the correspondence between graph theoretic
terms, the web graph according to a search engine, and the
trust social network of a particular user.

4. EVOLUTION OF SEARCH ENGINES
In the early 90’s, when the web numbered just a few mil-

lion servers, the first generation search engines were rank-
ing search results using classic information retrieval tech-
niques: the more rare words two documents share, the more
similar they are considered to be. [37, 22] A search query Q
is simply a short document and the results of a search for Q
are ranked according to their (normalized) similarity to the
query.

The first attack to this “tf.idf ranking,” as it is known,
came from within the search engines. Around 1995, search
engines started selling search keywords to advertisers as a
way of generating revenue: If a search query contained a
“sold” keyword, the results would include targeted adver-
tisement and a higher ranking for the link to the sponsor’s
web site. This is the first time we have a socially inspired
ranking, which follows marketing practices of the real world.

Mixing search results with paid advertisement raised se-
rious ethical questions, but also showed the way to financial
profits to spammers who started their own attacks by creat-
ing pages containing many rare keywords to obtain a higher
ranking score. In terms of propaganda theory, the spammers
employed a variation of the technique of glittering general-
ities to confuse the first generation search engines [31, pg.
47]:

The propagandist associates one or more suggestive words
without evidence to alter the conceived value of a person or
idea.

To avoid spammers search engines would keep secret their
exact ranking algorithm. Secrecy is no defense, however,
since secret rules were figured out by experimentation and
reverse engineering. (e.g., [35, 33]).

Second generation search engines started employing
more sophisticated ranking techniques in an effort to nul-
lify the effects of glittering generalities. One of the more
successful techniques was based on the “link voting princi-
ple”: Each web site s has value equal to its “popularity”,
which is influenced by the set Bs of sites pointing to site s.
Lycos became the champion of this ranking technique and

had its own popularity skyrocket around 1996.[34]. Doing
so, it was also distancing itself from the ethical questions
introduced by combining advertising with ranking.

Unfortunately, this ranking method did not succeed in
stopping spammers either. Spammers started creating clus-
ters of interconnected web sites that had identical or similar
contents with the site they were promoting, which subse-
quently became known as “link farms” (LF). The link voting
principle was socially inspired, so spammers used the well
known propagandistic method of bandwagon to circumvent
it [31, pg. 105]:

With it, the propagandist attempts to convince us that all
members of a group to which we belong are accepting his
program and that we must therefore follow our crowd and
“jump on the band wagon”.

Similarly, the spammer is promoting the impression of a
high degree of popularity by inter-linking many internally
controlled sites that will eventually all share high ranking.

The introduction of PageRank in 1998 was a major devel-
opment for search engines, because it seemed to provide a
more sophisticated anti-spamming solution. Under PageR-
ank, not every link contributes equally to the “reputation”
of a page. Instead, links from highly reputable pages con-
tribute much higher than links from other sites. That way,
the site networks developed by spammers would not influ-
ence much their PageRank, and Google became the search
engine of choice. HITS is another socially-inspired ranking
which has also received a lot of attention. [28]. The HITS al-
gorithm divides the sites related to a query between “hubs”
and “authorities”. Hubs are sites that contain many links
to authorities, while authorities are sites pointed to by the
hubs and they both gain reputation.

PageRank and HITS marked the development of the third
generation search engines 3. Unfortunately, spammers have
again found ways of circumventing them. In PageRank, a
page enjoys absolute reputation: its reputation is not re-
stricted on some particular issue. Spammers deploy sites
with expertise on irrelevant subjects, and they justifiably
acquire high ranking on their expert sites. Then they band-
wagon their networked sites with the expert sites, creating a
“mutual admiration society” (MAS). This is the well-known
propagandistic technique of testimonials [31, pg. 74]:

Well known people (entertainers, public figures, etc.) offer
their opinion on issues about which they are not experts.

HITS has also shown to be highly spammable by this tech-

3[7] considers the search engines in our 2nd and 3rd gen-
eration to be in the same group. We believe that both the
ranking and attack methods put them in different categories.



nique due to the fact that its effectiveness depends on the
accuracy of the initial neighborhood calculation.

The table below summarizes our findings for the first three
generations of search engines and the correspondence be-
tween web spam and social propaganda.

SE Ranking Spamming Propaganda

1st Gen Doc keyword glittering
Similarity stuffing generalities

2nd Gen + Site + link + bandwagon
popularity farms

3rd Gen + Page + mutual + testimonials
reputation admiration

societies

Web search corporations are reportedly busy developing
the engines of the next generation [7]. The new search en-
gines hope to be able to recognize “the need behind the
query” of the user. Given the success the spammers have
enjoyed so far, one wonders how will they spam the fourth
generation engines. Is it possible to create a ranking that is
not spammable? Put another way, can the web as a social
space be free of propaganda? Seen in this light, it appears
that we are trying to create in cyberspace what societies
have not succeeded in creating in their social space. This
may not be possible. However, we can learn to live in a
web with spam as we live in society with propaganda, given
appropriate education and technology.

5. AN ANTI-PROPAGANDISTIC METHOD
Web Spam seems to be the driving force behind the evo-

lution of search engines in their effort to provide quality
results. So far, the battle with web spam is only waged at
the search engine level, though the end users are the ones af-
fected directly by it. When users query a popular search en-
gine for questions that happen to be the target of unreliable
advertisement (e.g., “Can human growth hormone increase
muscle mass?”) or happen to be controversial in nature (e.g.,
“is ADHD a real disease?”), they find plethora of responses
that can be considered untrustworthy. For example, the first
query provides almost exclusively links to human growth
hormone (hGH) products that, among other benefits, would
significantly increase muscle mass without increased exer-
cise, decrease fat without change in diet or habits, enhance
sexual performance, increase the good cholesterol while de-
creasing the bad, re-grow hair, decrease blood pressure, re-
move wrinkles, and increase memory retention. Similarly, in
the second query one finds an unbalanced view of attention-
deficit, hyperactivity disorder (ADHD) that does not include
the opinion of major institutions such as the American Psy-
chiatric Association or clinicians in major research univer-
sities. To the inexperienced user it may appear that the
search engine promotes untrustworthy, unreliable or unbal-
anced views. What really happens, of course, is that these
queries have been the target of spammers.

Since spammers employ propagandistic techniques, it makes
sense to design anti-propagandistic methods for defending
against them. These methods need to be user-initiated. We
are considering trustworthiness to be a personal decision,
not an absolute quality of a site. One person’s gospel is
another’s political propaganda, and our goal is to design
methods that help individuals make more informed deci-

sions about the quality of the information they find on the
web.

Here is one way that people defend against propaganda in
every day life:

In society, when an untrustworthy recommendation is de-
tected, it gives us a reason to reconsider the trustworthiness
of the recommender. Recommenders who strongly support an
untrustworthy recommendation become untrustworthy them-
selves.

This process is selectively repeated a few times, propagat-
ing the distrust backwards to those who strongly support the
recommendation. The results of this process become part of
our belief system and are used to filter future information.

We set out to test whether a similar process might work
on the web. Our algorithm takes as input the URL of the
server s containing a page that the user determined to be un-
trustworthy. This page could have come to the user through
web search results (like the ones above) or via the sugges-
tion of some trusted associate (e.g., a society that the user
belongs to).

Starting from s we build a breadth-first search (bfs) tree
of the sites that link to s in a few “clicks” (Figure 1). We
do not explore the web neighborhood directly in this step.
Instead, we use the Google API [16] for finding the backlinks.
We call the directed graph that is revealed by the backlinks,
the “trust neighborhood” of s.

The question arises on whether we should distrust all of
the sites in the trust neighborhood of s or not. Is it rea-
sonable to become suspicious of every site pointing to s
in a few steps? They are “voting in confidence” after all.
Such a radical approach is not what we do in everyday life.
Rather, we selectively propagate distrust only to those that
most strongly support an untrustworthy recommendation.
Thus, we decided to take a conservative approach and ex-
amine only those sites that show a more concerted effort in
supporting s. In particular, we focused on the biconnected
component (BCC) that includes s (Figure 2).

A BCC is a graph that cannot be broken into discon-
nected pieces by deleting any single vertex. An important
characteristic of the BCC is there are at least two indepen-
dent paths from any of its vertices to s. Strictly speaking,
the BCC is computed on the undirected graph. But since
the trust neighborhood is generated through the bfs, the
cross edges (in bfs terminology) create cycles in the undi-
rected graph (Figure 1). Each cycle found in the BCC must
have at least one “ring leader”, from which there are two
directed paths to s, one leaving through the discovery edge
and the other through the cross edge. We view the existence
of multiple paths from ring leaders to s as evidence of strong
support of s. The BCC reveals the members of this support
group.

More formally, the algorithm is as follows:

Input: Untrustworthy site s.

S = {s}

Using BFS for depth D do:

Find the set U of sites linking to sites in S

using the Google API (up to B backlinks / site)

Ignore blogs, directories, edu’s

S = S + U

Compute and output the BCC of S that includes s



Figure 1: An example of a breadth-first search tree
in the trust neighborhood of site 1. Note that some
nodes (12, 13, 16 and 29) have multiple paths to
site 1. We call these nodes “ring leaders” that show
a concerted effort to support 1.

Figure 2: The BCC of the trust neighborhood of
site 1 is drawn in a circular fashion for clarity.

To be able to implement the above algorithm at the browser
side, we restrict the following parameters: First, the BFS’s
depth D is set to 3. We are not interested in exploring a
large chunk of the web, just a small neighborhood around
s. Second, we limit the number B of backlink requests from
the Google API to 30 per site. Finally, we introduced in ad-
vance a set of stop sites that are not to be explored further.
A stop site is one that should not be included in the trust
neighborhood either because the trustworthiness of such a
site is irrelevant, or because it cannot be defined. In the
first category we placed URLs of educational institutions
(domains ending in .edu). Academicians are not in the busi-
ness of pointing to commercial sites. When they do, they
do not often convey trust in the site. In the latter we placed
a few well known Directories (URLs ending in yahoo.com,
dmoz.org, etc.) and Blog sites (URLs containing the string
’blog’ or ’forum’). Anyone can put an entry into an unsu-
pervised blog or directory. No effort to create an exhaustive
list of blogs or directories was made.

With these restrictions, our algorithm can be implemented
on an average workstation and produce graphs with up to a
few thousand nodes within minutes. Note that the slowest
step is the query of the backlinks. More recently, a threaded
version of the program can explore several thousand sites in
minutes.

6. EXPERIMENTAL RESULTS
In our experiments, we examined the trust graphs of eight

untrustworthy and two trustworthy sites, collected from the
search results of the first hGH query and of query “Benefits
of Calcium supplements”. In the table 2 below these sites
are labeled as U-1 to U-8 and T-1 to T-2, respectively. See
Figure 3 for an example of one such site (U-1). We run
the experiments between September 17 and November 5,
2004. We should note here that all sites have comparable
PageRank. In fact, all but U-1 and T-1 have PageRank 5.
The remaining two sites have PageRank 6. (Pageranks were
recorded at the time of the experiments.)

To determine the trustworthiness of each site we had an
evaluator look at a sample of the sites of the BCC. Due
to the significant manual labor involved, only 20% of the
total 1,396 BCC sites were sampled and evaluated. To select
the sample sites, we employed stratified sampling with skip
interval 5. The stratum used was similarity of the site to
the starting site.

Each site in the sample was classified as either Trustwor-
thy, Untrustworthy, or Non-determined. The last category
includes a variety of sites for which the evaluator could not
clearly classify due to the language used in the site, the sub-
ject matter, or the fact that a Blog or Directory can not
fall simply into one of the U/T categories. (Not every blog
contains the string “blog” in their URL.)

The experiments show that the trustworthiness of the
starting site was a very good predictor for the trustworthi-
ness of the BCC sites. In fact, there were very few trustwor-
thy sites in the trust graph of sites U-1 to U-8. As one might
expect, a trustworthy site is unlikely to deliberately link to
an untrustworthy site, or even to a site that “associates” it-
self with an untrustworthy one. In other words, the “vote of
confidence” analogy holds true for sites that are responsibly
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Figure 3: The trust graph of starting site U-1. The
circularly drawn nodes in the middle form its largest
biconnected component. This experiment found a
trust graph of 1307 sites, 228 of which were con-
nected with 465 edges into a BCC. Only 2% trust-
worthy sites were found in the BCC, while 74% of
them were untrustworthy. The remaining sites were
mostly directories (13%) or other non-determined
sites.
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Figure 4: Histogram of the results in table 2.

choosing their links. On the other hand, the analogy is not
as strong when starting from a trustworthy site, since un-
trustworthy sites are free to link to whomever they choose.
After all, there is some value in portraying a site in good
company. Users may be tempted to conclude that, if a site
points to “good” sites, it must be “good” itself – another
well-known propagandistic technique. Yet, spammers are
unlikely to link to too many sites outside their spamming
network in order to avoid “leaking” PageRank [5].

Research in the past has focused on the identification of
web communities through the use of bipartite cores [29] or
maximum flow in dense subgraphs [14]. These ideas do not
apply to our construction. For one, we are not trying to
identify a community of the starting site, but a sample of
its trust neighborhood. In fact, we never look at the links
coming out of s (or any other site) directly. One of the
benefits of our method is that we do not need to explore the
web graph explicitly, which would be impossible for a client
computer.

7. RELATED WORK
Web spamming has received a lot of attention lately [1, 3,

4, 5, 12, 13, 20, 22, 23, 25, 29, 32, 33, 35]. The first papers
to raise the issue were [33, 23]. The spammers’ success was
noted in [4, 10, 12, 13, 17, 24]. Web search was explained in
[2]. The related topic of cognitive hacking was introduced
in [11].

Characteristics of spamming sites based on diversion from
power laws are presented in [12]. Current tricks employed
by spammers are detailed in [19]. An analysis of the popular
PageRank method employed by many search engines today
and ways to maximize it in a spamming network is described
in [5]. TrustRank, a modification to the PageRank to take
into account the evaluations of a few seed pages by human
editors, employees of a search engine, is presented in [20].
Techniques for identifying automatically link farms of spam
pages will be presented in [42].

A comprehensive treatment on social networks is presented
in [41]. The connection between the Web and social net-
works was explicitly noted in [30, 36] and implicitly used



S |VG| |EG| |VBCC | |EBCC | Trust. Untr.
U-1 1307 1544 228 465 2% 74%
U-2 1380 1716 266 593 4% 78%
U-3 875 985 97 189 0% 80%
U-4 457 509 63 115 0% 69%
U-5 716 807 105 189 0% 64%
U-6 312 850 228 763 9% 60%
U-7 81 191 32 143 0% 100%
U-8 1547 1849 200 430 5% 70%
T-1 1429 1566 164 273 56% 3%
T-2 241 247 13 17 77% 15%

Table 2: Sizes of the explored graphs and their BCC’s for eight untrustworthy (U-1 to U-8) and two trust-
worthy (T-1 and T-2) starting sites. Column |VG| contains the number of vertices that our algorithm found
in the trust neighborhood of starting site s (starting from site s and exploring in breadth-first search the
backlinks of s. Column |EG| has the number of edges in the trust neighborhood. Columns |VBCC | and |EBCC |
contains the numbers of edges of the largest biconnected component within G. The last two columns contain
the estimated percentages of trustworthy and untrustworthy sites found in the BCCs. 20% of each BCC were
evaluated using stratified sampling with stratum a site’s similarity to the starting site.

in [6, 28]. In fact, Kleinberg’s work explores many of these
connections (e.g., [27]). Identification of web communities
was explored in [29, 14]. Propagation methods for trust and
distrust are discussed in [18]. Work on topic-sensitive and
personalized web search is presented in [21, 26]. The effect
that search engines have on page popularity was discussed
in [9].

8. CONCLUSIONS
In this paper we have argued that web spam is to cyber-

world what propaganda is to society. As far as we know, this
is the first time this relationship is noted. As evidence of the
importance of this analogy, we have shown that the evolu-
tion of search engines can be simply understood as the search
engines’ response defending against spam.4 New search en-
gines are not invented every few years, as it is sometimes
reported; they are developed when researchers have a good
answer to spam.

Further, our findings suggests that anti-spamming tech-
niques can now be developed by mimicking anti-propagandistic
methods. In particular, we have presented automatic ways
of recognizing trust graphs on the web based on the bicon-
nected component around some starting site. Experimental
results from a number of such instances show our algorithm’s
ability of recognizing parts of a spamming network.

With such results, the question arises as to what one
should do once one recognizes a spamming network. This is
a question that has not attracted much attention in the past.
The default approach is that a search engine would delete
such networks from its indices [12] or might downgrade them
by some prespecified amount [20].

Both of these approaches, however, require a universal
agreement of what constitutes spam. Such an agreement
cannot exist; one person’s spam may be another person’s
treasure. Should the search engines determine what is trust-
worthy and what is not? Willing or not, they are the de facto
arbiters of what information users see [39]. As in a popular
cartoon, a kid responds to the old man who has been look-

4We do not imply here that web spam is the sole force behind
the evolution of the search engines, but that it is a dominant
one.

ing all his life for the meaning of life: “If it is not on Google
or eBay, it does not exist.”

We believe that it is the users’ right and responsibility
to decide what is acceptable for them. Their browser, their
window to cyberworld, should enhance their ability to make
this decision. User education is fundamental: People should
know how search engines work and why, and how infor-
mation appears on the web. But they should also have
a browser that can help them determine the validity and
trustworthiness of information.

The tool we described in an earlier section is a first step
in this direction. Ultimately, it would be used along with
a set of trust certificates that contains the portable trust
preferences of the user, a set of preferences that the user
can accumulate over time. Organizations that the user joins
and trusts may also add to this set. A combination of search
engines capable of providing indexed content and structure
[21], including identified neighborhoods, with a browser ca-
pable of filtering those neighborhoods through the user’s
trust preferences, would provide a new level of reliability to
the user’s information gathering. Sharing ranking decisions
with the end user will make it much harder for spammers to
tune to a single metric.

8.1 Future Work
In our experiments we also devised a simple method to

evaluate the similarity of the contents of each site to the
starting site s. After the trust neighborhood was explored,
we fetched and concatenated a few pages from each site (ran-
domly choosing from the links that appeared in the domain
URL) into a document. Then, we tried to determine the
similarity of each such document to the document of the
starting site. Similarity was determined using the tf.idf
ranking on the universe of the sites explored. We are aware
that having a limited universe of documents does not give
the best similarity results, but we wanted to get a feeling of
whether our method could further be used to distinguish be-
tween “link farms” and “mutual admiration societies”. The
initial results were encouraging (see Fig. 5), showing a higher
percentage of untrustworthy sites among those most similar
to s. Nevertheless, more work is needed in this area.



Figure 5: The list of sites similar to the starting
site U-1 (at the end of the list). The hilited sites
are those that participate in the BCC. The number
in front of the URL corresponds to its calculated
similarity to the starting site.

Several possible extensions can be considered in this work.
Generating graphs with more backlinks per site, comparing
the evolution of trust neighborhoods over time, examining
the density of the BCCs, and finding a more reliable way
to compute similarity are some of them. We also expect
that the results would be strengthened if one considers the
triconnected (or higher) components of the trust neighbor-
hood.
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