Pasture management approaches can determine the productivity, sustainability, and ecological bala... more Pasture management approaches can determine the productivity, sustainability, and ecological balance of livestock production. Sensing techniques potentially provide methods to assess the performance of different grazing practices that are more labor and time efficient than traditional methods (e.g., soil and crop sampling). This study utilized high-resolution satellite and unmanned aerial system (UAS) imagery to evaluate vegetation characteristics of a pasture field location with two grazing densities (low and high, applied in the years 2015–2019) and four fertility treatments (control, manure, mineral, and compost tea, applied annually in the years 2015–2019). The pasture productivity was assessed through satellite imagery annually from the years 2017 to 2019. The relation and variation within and between the years were evaluated using vegetation indices extracted from satellite and UAS imagery. The data from the two sensing systems (satellite and UAS) demonstrated that grazing den...
Normalization of anisotropic solar reflectance is an essential factor that needs to be considered... more Normalization of anisotropic solar reflectance is an essential factor that needs to be considered for field-based phenotyping applications to ensure reliability, consistency, and interpretability of time-series multispectral data acquired using an unmanned aerial vehicle (UAV). Different models have been developed to characterize the bidirectional reflectance distribution function. However, the substantial variation in crop breeding trials, in terms of vegetation structure configuration, creates challenges to such modeling approaches. This study evaluated the variation in standard vegetation indices and its relationship with ground-reference data (measured crop traits such as seed/grain yield) in multiple crop breeding trials as a function of solar zenith angles (SZA). UAV-based multispectral images were acquired and utilized to extract vegetation indices at SZA across two different latitudes. The pea and chickpea breeding materials were evaluated in a high latitude (46°36′39.92″ N)...
HighlightsTree canopy architecture traits are associated with its productivity and management.Und... more HighlightsTree canopy architecture traits are associated with its productivity and management.Understanding these traits is important for both precision agriculture and phenomics applications.Remote sensing platforms (satellite, UAV, etc.) and multiple approaches (SfM, LiDAR) have been used to assess these traits.3D reconstruction of tree canopies allows the measurement of tree height, crown area, and canopy volume.. Tree canopy architecture is associated with light use efficiency and thus productivity. Given the modern training systems in orchard tree fruit systems, modification of tree architecture is becoming important for easier management of crops (e.g., pruning, thinning, chemical application, harvesting, etc.) while maintaining fruit quality and quantity. Similarly, in forest environments, architecture can influence the competitiveness and balance between tree species in the ecosystem. This article reviews the literature related to sensing approaches used for assessing archit...
Forage and field peas provide essential nutrients for livestock diets, and high-quality field pea... more Forage and field peas provide essential nutrients for livestock diets, and high-quality field peas can influence livestock health and reduce greenhouse gas emissions. Above-ground biomass (AGBM) is one of the vital traits and the primary component of yield in forage pea breeding programs. However, a standard method of AGBM measurement is a destructive and labor-intensive process. This study utilized an unmanned aerial vehicle (UAV) equipped with a true-color RGB and a five-band multispectral camera to estimate the AGBM of winter pea in three breeding trials (two seed yields and one cover crop). Three processing techniques—vegetation index (VI), digital surface model (DSM), and 3D reconstruction model from point clouds—were used to extract the digital traits (height and volume) associated with AGBM. The digital traits were compared with the ground reference data (measured plant height and harvested AGBM). The results showed that the canopy volume estimated from the 3D model (alpha sh...
Sensor applications for plant phenotyping can advance and strengthen crop breeding programs. One ... more Sensor applications for plant phenotyping can advance and strengthen crop breeding programs. One of the powerful sensing options is the automated sensor system, which can be customized and applied for plant science research. The system can provide high spatial and temporal resolution data to delineate crop interaction with weather changes in a diverse environment. Such a system can be integrated with the internet to enable the internet of things (IoT)-based sensor system development for real-time crop monitoring and management. In this study, the Raspberry Pi-based sensor (imaging) system was fabricated and integrated with a microclimate sensor to evaluate crop growth in a spring wheat breeding trial for automated phenotyping applications. Such an in-field sensor system will increase the reproducibility of measurements and improve the selection efficiency by investigating dynamic crop responses as well as identifying key growth stages (e.g., heading), assisting in the development of...
Abstract Soft rot and Pythium leak are postharvest storage diseases of potato tubers that can cau... more Abstract Soft rot and Pythium leak are postharvest storage diseases of potato tubers that can cause substantial crop losses in the US. This study focused on detecting volatile organic compounds (VOCs) associated with rot inoculated tubers during storage (up to 21 days) using headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with mass spectrometry (MS) and flame ionization detector (FID) analysis. Russet Burbank and Ranger Russet tubers were inoculated with the rot pathogens. Static sampling with 50 min trapping time followed by GC–MS and GC–FID analysis identified 23 and 30 common VOCs from the pathogen inoculated tubers. Overall, n,n–dimethylmethylamine, acetone, 1–undecene, and styrene, occurred frequently and repeatability in inoculated samples based on GC-MS analysis, with latter two found using GC–FID analysis as well. Identification of such biomarkers can be useful in developing high-throughput VOC sensing systems for early disease detection in potato storage facilities.
Pasture management approaches can determine the productivity, sustainability, and ecological bala... more Pasture management approaches can determine the productivity, sustainability, and ecological balance of livestock production. Sensing techniques potentially provide methods to assess the performance of different grazing practices that are more labor and time efficient than traditional methods (e.g., soil and crop sampling). This study utilized high-resolution satellite and unmanned aerial system (UAS) imagery to evaluate vegetation characteristics of a pasture field location with two grazing densities (low and high, applied in the years 2015–2019) and four fertility treatments (control, manure, mineral, and compost tea, applied annually in the years 2015–2019). The pasture productivity was assessed through satellite imagery annually from the years 2017 to 2019. The relation and variation within and between the years were evaluated using vegetation indices extracted from satellite and UAS imagery. The data from the two sensing systems (satellite and UAS) demonstrated that grazing den...
Normalization of anisotropic solar reflectance is an essential factor that needs to be considered... more Normalization of anisotropic solar reflectance is an essential factor that needs to be considered for field-based phenotyping applications to ensure reliability, consistency, and interpretability of time-series multispectral data acquired using an unmanned aerial vehicle (UAV). Different models have been developed to characterize the bidirectional reflectance distribution function. However, the substantial variation in crop breeding trials, in terms of vegetation structure configuration, creates challenges to such modeling approaches. This study evaluated the variation in standard vegetation indices and its relationship with ground-reference data (measured crop traits such as seed/grain yield) in multiple crop breeding trials as a function of solar zenith angles (SZA). UAV-based multispectral images were acquired and utilized to extract vegetation indices at SZA across two different latitudes. The pea and chickpea breeding materials were evaluated in a high latitude (46°36′39.92″ N)...
HighlightsTree canopy architecture traits are associated with its productivity and management.Und... more HighlightsTree canopy architecture traits are associated with its productivity and management.Understanding these traits is important for both precision agriculture and phenomics applications.Remote sensing platforms (satellite, UAV, etc.) and multiple approaches (SfM, LiDAR) have been used to assess these traits.3D reconstruction of tree canopies allows the measurement of tree height, crown area, and canopy volume.. Tree canopy architecture is associated with light use efficiency and thus productivity. Given the modern training systems in orchard tree fruit systems, modification of tree architecture is becoming important for easier management of crops (e.g., pruning, thinning, chemical application, harvesting, etc.) while maintaining fruit quality and quantity. Similarly, in forest environments, architecture can influence the competitiveness and balance between tree species in the ecosystem. This article reviews the literature related to sensing approaches used for assessing archit...
Forage and field peas provide essential nutrients for livestock diets, and high-quality field pea... more Forage and field peas provide essential nutrients for livestock diets, and high-quality field peas can influence livestock health and reduce greenhouse gas emissions. Above-ground biomass (AGBM) is one of the vital traits and the primary component of yield in forage pea breeding programs. However, a standard method of AGBM measurement is a destructive and labor-intensive process. This study utilized an unmanned aerial vehicle (UAV) equipped with a true-color RGB and a five-band multispectral camera to estimate the AGBM of winter pea in three breeding trials (two seed yields and one cover crop). Three processing techniques—vegetation index (VI), digital surface model (DSM), and 3D reconstruction model from point clouds—were used to extract the digital traits (height and volume) associated with AGBM. The digital traits were compared with the ground reference data (measured plant height and harvested AGBM). The results showed that the canopy volume estimated from the 3D model (alpha sh...
Sensor applications for plant phenotyping can advance and strengthen crop breeding programs. One ... more Sensor applications for plant phenotyping can advance and strengthen crop breeding programs. One of the powerful sensing options is the automated sensor system, which can be customized and applied for plant science research. The system can provide high spatial and temporal resolution data to delineate crop interaction with weather changes in a diverse environment. Such a system can be integrated with the internet to enable the internet of things (IoT)-based sensor system development for real-time crop monitoring and management. In this study, the Raspberry Pi-based sensor (imaging) system was fabricated and integrated with a microclimate sensor to evaluate crop growth in a spring wheat breeding trial for automated phenotyping applications. Such an in-field sensor system will increase the reproducibility of measurements and improve the selection efficiency by investigating dynamic crop responses as well as identifying key growth stages (e.g., heading), assisting in the development of...
Abstract Soft rot and Pythium leak are postharvest storage diseases of potato tubers that can cau... more Abstract Soft rot and Pythium leak are postharvest storage diseases of potato tubers that can cause substantial crop losses in the US. This study focused on detecting volatile organic compounds (VOCs) associated with rot inoculated tubers during storage (up to 21 days) using headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with mass spectrometry (MS) and flame ionization detector (FID) analysis. Russet Burbank and Ranger Russet tubers were inoculated with the rot pathogens. Static sampling with 50 min trapping time followed by GC–MS and GC–FID analysis identified 23 and 30 common VOCs from the pathogen inoculated tubers. Overall, n,n–dimethylmethylamine, acetone, 1–undecene, and styrene, occurred frequently and repeatability in inoculated samples based on GC-MS analysis, with latter two found using GC–FID analysis as well. Identification of such biomarkers can be useful in developing high-throughput VOC sensing systems for early disease detection in potato storage facilities.
Uploads
Papers by Worasit Sangjan