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Abstract

Let G be a spanning subgraph of K, ; and let H be the complement of G

relative to K ; that is, K ; = G@® H is a factorization of K, ,. The graph
G is y-critical relative to K;, if v(G) =+ and 4(G +¢€) =y — 1 for all
e € E(H), where ¥(G) denotes the domination number of G. We inves-
tigate y-critical graphs for small values of . The 2-critical graphs and
3-critical graphs are characterized. A characterization of disconnected
4-critical graphs is presented. We show that the diameter of a connected
4-critical graph is at most 5 and that this bound is sharp. The diameter
of a connected y-critical graph, v > 4, is shown to be at most 3y — 6.

1 Introduction

A set D of vertices of a graph G = (V, E) is a dominating set if every vertex in
V — D is adjacent to at least one vertex in D. The minimum cardinality among
all dominating sets of G is called the domination number of G and is dencted by
7(G). The graph G is said to be y-domination critical, or just y-critical, if v(G) =«
and v(G + ) = v — 1 for every edge e in the complement G of G. This concept of
~-critical graphs has been studied by, among others, Blitch [1], Sumner [5], Sumner
and Blitch [4], and Wojcicka [6].

If G is a spanning subgraph of F, then the graph F — E(G) is the complement
of G relative to F' with respect to a fixed embedding of G into F. The idea of
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a relative complement of a graph was suggested by Cockayne [2] and is studied
in [3]. In this paper, we investigate domination critical graphs with respect to relative
complements.

We shall assume that the complete bipartite graph K , has partite sets £ and R
(representing “left” and “right”), and that G & H = K, , is a factorization of K.
(If G and H are graphs on the same vertex set but with disjoint edge sets, then
G @ H denotes the graph whose edge set is the union of their edge sets.) Notice that
if there is a unique (proper) 2-coloring of the vertices of G with each color coloring
s vertices, then the graph H is unique. That is, if G is uniquely embeddable in K,
then H is unique. We henceforth consider only spanning subgraphs G of K, , such
that G is uniquely embeddable in K .

We say that G is y-critical relative to K, , if v(G) = v and y(G +e€) = y—1 for
all e € E(H). We denote the relative complement H of G by G. (The rest of this
paper deals only with relative complements with the exception of Kj, so confusion
with complements in the ordinary sense is unlikely.) Obviously, 7(G) > v(K,), so
if s > 2, then y(G) > 2. The only 1-critical graph is therefore G 2 K, (vacuously)
with s = 1. It is also a simple matter to characterize the 2-critical graphs. If s > 2
and G is a proper subgraph of K, then v(G +e) =1 for all e € E(G) # 0, which
is impossible. Hence for s > 2, the only 2-critical graph relative to K, is K P

The structure of y-critical graphs for v > 3 is more complex. For v > 3, assume
that G is a y-critical graph relative to K. If v and v are non-adjacent vertices in
different partite sets of G, then v(G + uv) = v — 1 and so there exists a set W of
cardinality v — 1 that dominates G + uv. Since W does not dominate G, it must
be that exactly one of u and v, say v, belongs to W and that W dominates all of
G except u. Thus S = W — {v} is a set of cardinality v — 2 such that S U {v}
dominates G — u and we write [v, S| = u. In particular, when we write [v, S] = u it
is understood that u is not dominated by S.

In Section 2 we characterize 3-critical graphs. A characterization of disconnected
4-critical graphs is presented in Section 3. In Section 4, we show that the diameter of
a connected 4-critical graph is at most 5 and that this bound is sharp. The diameter
of a connected 7-critical graph, v > 4, is shown in Section 5 to be at most 3y — 6.

2 3-critical graphs
The following result characterizes 3-critical graphs.

Theorem 1 Let K, , have partite sets £ and R. For s > 2, G is 3-critical relative
to K s if and only if

(1) s=2and G K,UK,, or

(2) s > 3 and there eists a partition L1 and Ly of L such that each vertez of R
has degree s — 1 and s adjacent to every vertex of Ly, and each vertez of Ly
has degree at most s — 2, or
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(3) s > 3 and there ezists a partition L1 and Ly of L and Ry and Ry of R such
that

o Each vertex of Ry has degree s — 1 and is adjacent to every verter of La;

e Fach verter of Ry has degree at most s — 2 and dominates either £, or
Ly. Furthermore, if v € Ry dominates Ly, then degv = s —2;

e Fach vertez of £, has degree at most s — 2 and is non-adjacent to at least
one vertex of Ry. Furthermore, if v € Ly does not dominate Rq, then
degv=5—2;

o Each vertez of Ly has degree s or s—1, and Ly contains at least one vertez
of degree s.

Proof. It is readily seen that the graphs are 3-critical. Assume that G is 3-critical.
We consider two cases.

Case 1. G has no vertez of degree s.
For each vertex v € L, let © denote a vertex in R that is non-adjacent to v in G.
Since G is 3-critical, (@) = 3 and v(G + vt) = 2. Let {z,y} be a dominating set
of G 4 . Since {r,y} is not a dominating set of G, either z € {v, 7} or y € {v,7}.
Without loss of generality, we may assume that y = v. So {v,2} dominates G + v7.
We show that s = 2. If s > 3, then z € R and z dominates £ — {v}. By assumption,
degz < s — 1 in G; consequently, degz = s — 1 and z and v are non-adjacent in G.
Consider now G +wvz. Since G is 3-critical, v(G+vz) = 2. Furthermore, since v does
not dominate R — {z} in G + vz, it follows that {z,w} is a dominating set of G + vz
for some w € £ — {v}. In particular, w dominates R — {z}. However, z dominates
£ — {v}. It follows that w dominates R, which contradicts our assumption that G
has no vertex of degree s. Hence s = 2. It is then readily seen that G = K, U Ko,
and so G satifies condition (1) in the statement of the theorem.

Case 2. G has a vertez of degree s.

Let Ag (Ag) denote the maximum degree of a vertex of £ (R, respectively) in
(. We may assume Az = s and that u € £ has degree s in G, so u dominates R.
Since 7(G) = 3, we know then that s > 3 and that Ag <s-1.

Claim 1 Ar =s5—1.

Proof. Let w and v be non-adjacent vertices in G with w € £ and v € R. The
3-criticality of G implies that ¥(G +vw) = 2. Let D be a dominating set of G -+ vw.
Either w € D or v € D. Furthermore, since s > 3, one vertex of D belongs to £ and
the other to R. If w € D, then there is a vertex z of R that belongs to D (z # v).
Since r dominates £ — {w}, z has degree s — 1 in G. Hence we may assume that
v € D, for otherwise Ar = s — 1. Let ¥ denote the vertex of D that belongs to L.
Then v dominates £ — {w, %} and o dominates R — {v} in G. If Ag < 5 — 1, then
this shows that for each vertex v € R there exists a vertex ¥ € £ that is adjacent to
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every vertex of R except for v. This would contradict the fact that A, = s. Hence
AR =s-—1.0

We introduce the following notation. Let R, = {v € R |degv = s — 1in G}. By
Claim 1, Ry # 0. Let £; be the set of vertices of £ that are not adjacent to some
vertex of Ry, and let £, = £L—L,. Since Ry # 0, we know that £; = (). Furthermore,
since u € £ has degree s, we know that £ # (. Moreover, every vertex of £y is
adjacent to every vertex of R;. If R; = R, then the graph G satisfies condition (2)
in the statement of the theorem. Assume, then, that R, C R, and let R, = R —R,.

Claim 2 Each v € Ry dominates either Ly or Ly. Furthermore, if v dominates £,
then degv = s — 2.

Proof. Let v € R, and suppose that v does not dominate £5. Let 2z be a vertex of
L, that is non-adjacent to v. The 3-criticality of G implies that (G + vz) = 2. Let
{z,y} be a dominating set of G + vz. We may assume that z € £, so y € R. Thus
in G + vz, y dominates £ — {z} and z dominates R — {y}. Since {z,y} is not a
dominating set of G, either z = z or y = v. If 7 = 2, then y has degree s—1 in G and |
z is the only vertex of £ that is non-adjacent to y; but then y € R, and so z € Ly,
which produces a contradiction. Hence y = v and v dominates £ — {z} in G + v2.
Thus v dominates £ — {z, 2} in G. This shows that degv > s — 2. However since
v € Ry, we know that degv < s — 2; consequently, degv = s — 2 and 7 and z are the
only two vertices of £ that are non-adjacent to v. Furthermore, since z dominates
R — {v} and v € R,, we know that z ¢ £y; i.e.,, z € Ly. Thus, v dominates £, in G
and degv=s-—2. 0

Claim 3 FEach vertex of Ly has degree s or s — 1.

Proof. Let w € £, and suppose that degw < s — 1. Then there is a vertex v of Ry
that is non-adjacent to w. By Claim 2, v dominates £; and degv = s — 2. Thus, v
is non-adjacent to w and to exactly one other vertex z of £,. Since G is 3-critical,
V(G +vz) = 2. As in the proof of Claim 2, we may show that {v,w} is a dominating
set of G + vz. In particular, w dominates R — {v}. Thus, degw = s —1. O

Claim 4 Each vertex of L has degree at most s — 2. Furthermore, if w € Ly, then
w dominates Ry or degw = s — 2.

Proof. Let w € £;. If w has degree s—1, then w together with the vertex of R, that
is non-adjacent to w form a dominating set of G, which produces a contradiction.
Thus, degw < s — 2. Suppose that w does not dominate R,. Let v be a vertex
of R, that is non-adjacent to w. By Claim 2, we know that v dominates £,. The
3-criticality of G implies that (G + vw) = 2. Let {z,y} be a dominating set of
G + vw. We may assume that z € £, so y € R. Thus in G + vw, y dominates
L — {z} and z dominates R — {y}. Smce {z,y} is not a dominating set of G, either
r=wory=uv We show that z = w. If this is not the case, then y = v. Thus v
dominates £ — {z} and z dominates R — {v} in G + wv. Since v dominates L, we
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know that z € £; and therefore z is non-adjacent to at least one vertex of R;. Thus
= cannot dominate R — {v}, which produces a contradiction. Hence z = w and w
dominates R — {y} in G +wv. Thus w dominates R — {v,y} in G. This shows that
degw > s — 2 in G. However, w is non-adjacent to at least one vertex of R, and to
at least one vertex, namely v, of Ry, so degw < s — 2. Consequently, degw = s — 2
and w is non-adjacent to exactly one vertex of R, and one vertex of R,. O

By Claims 2, 3, and 4 the graph G satisfies condition (3) in the statement of the
theorem. This completes the proof of the theorem. O

Suppose G is a graph satisfying condition (2) or (3) in the statement of Theorem 1.
Since £, # 0, and L, contains at least one vertex of degree s, the graph G has a
unique embedding into K. Hence if G is a graph satisfying condition (1), (2) or
(3) in Theorem 1, then the graph H is unique.

We will need the following characterization of 3-critical graphs relative to K3 3.

Corollary 1 A graph G is 3-critical graph relative to K3 3 if and only if G is obtained
from a star K, 3 by subdividing two edges or G = Kp3U K.

Figure 1: The two 3-critical graphs relative to Ksj.

Using an almost identical proof to that of Theorem 1, we may establish the
following result: ‘

Theorem 2 Let K, have partite sets £ and R where |L| = s and [R| = s — 1.
For s > 4, G is 3-critical relative to K, ,—1 if and only if

(1) There ezists a partition Ly and Ly of L such that each vertez of R has degree
s — 1 and is adjacent to every vertez of Lo, and each verter of £y has degree
at most s — 3, or

(2) There ezists a partition L1 and Ly of £ and Ry and Ry of R such that

e Each vertez of Ry has degree s — 1 and is adjacent to every vertez of La;

e Each vertez of Ry has degree at most s — 2 and dominates either Ly or
Lo. Furthermore, if v € Ry dominates Ly, then degv =5 —2;

e Each verter of L1 has degree at most s — 3 and is non-adjacent to at least
one vertez of Ry. Furthermore, if v € Ly does not dominate Ra, then
degv = s — 3;
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e Each vertex of Ly has degree s — 1 or s — 2, and Lo contains at least one
vertex of degree s — 1.

Once again, if G is a graph satisfying condition (1) or (2) in the statement of
Theorem 2, then, since £, contains at least one vertex adjacent to every vertex of
R, the graph G has a unique embedding into K. Hence if G is a graph satisfying
condition (1) or (2) in Theorem 2, then the graph H is unique.

3 Disconnected 4-critical graphs

If s =2, then FQ’Q is the only 4-critical graph relative to K s,s- Hence in what follows
we take s > 3. The following result characterizes disconnected 4-critical graphs.

Theorem 3 For s > 3, G is a disconnected 4-critical graph relative to K, ; if and
only if

® s > 4, G has ezxactly one isolated vertex v and G — v is 3-critical relative to
Ks,a——l; or

o G XZ UKs—l,s—IJ or
e s>4and G2 K, UK, 59, or

e s>4and GE Ky UK, 9.9

Proof. It is readily seen that the graphs are disconnected 4-critical relative to K.
Suppose that G is a disconnected 4-critical graph relative to K ,.

Claim 5 If G has ezactly one isolated vertez v, then s > 4 and G — v is 3-critical
relative to K, 4 1.

Proof. If s = 3, then the partite set of G containing v dominates G, which contra-
dicts the fact that 7(G) = 4. Hence, s > 4. Furthermore, 4 = v(G) = v(G — v)+1,
and so v(G ~v) = 3. If z and y are non-adjacent vertices of G' — v in different partite
sets, then the 4-criticality of G implies that 3 = (G + zy) = v((G — v) + zy) + 1,
s0 Y((G = v) + zy) = 2. Thus G — v is 3-critical relative to K1 O

In what follows we may assume that G has no isolated vertex or at least two
isolated vertices, for otherwise the result follows from Claim 5. Let G; be a com-
ponent of G of maximum size with partite sets £; C £ and R1 C R. Further, let
Ly=L—L;and Ry = R—R,, and let G be the subgraph of G induced by £,UR,.

Claim 6 |£,| > 2 and |R,| > 2.
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Proof. If |£;| = 1 and |R4| = 1, then G; = K, and every component of G is either
K, or K. However, it is then readily seen that G is not 4-critical. Hence |£;]| > 2 or
|R1| > 2. We may assume that |R;| = r; > 2. We show that |£1] > 2. If this is not
the case, then £; = {w} and G1 = K,,,. Let u € L, and let v € Ry, and consider
the graph G + uv. Since G is 4-critical, there exists a set S such that [u, 5] — v or
[v, S] = u. Since r; > 2, we may assume in both cases that w € S, so v is dominated
by S. Hence we must have [v, S] = u. But then S'U {u} is a dominating set of &,
which contradicts the fact that v(G) = 4. Hence, |£;| > 2. O

Claim 7 G, is a complete bipartite graph.

Proof. Suppose that there are non-adjacent vertices u € £; and v € R;. Since G
is 4-critical, 3 = v(G + wv) = (G + uv) + y(G2). It follows from Claim 6 that
¥(G1 + wv) > 2. Hence v(G, +uv) = 2 and 7(Gy) = 1. Thus G, is 3-critical,
and G & K; or Gy & Ky ,,,. However, since G has no isolated vertex or at least
two isolated vertices, Gy & Kj,,. Without loss of generality, we may assume that
|C2] =1 and |R,| = m. Let Ly = {w}.

If m > 1, then let x € R4, and consider the graph G + uz. Since G is 4-critical,
there exists a set S such that [u,S] — z or [z, S] = u. Since m > 2, we may assume
in both cases that w € S, so z is dominated by S. Hence we must have [z, S] — .
But then SU{u} is a dominating set of G, which contradicts the fact that v(G) = 4.
Hence, m =1 and G5 = Ky ;.

Since Gy = Ky, Gy is 3-critical relative to K,_,-;. Hence, by Theorem 1,
s—1> 3 and G, has a vertex z of maximurmn possible degree s — 1. Without loss of
generality, we may assume z € L£;. Let Ry = {z} and consider the graph G + zz.
Since G is 4-critical, there exists a set T' such that [2,T] — z or [z,T] = 2. If
[2,T] = =z, then w must belong to T and z is therefore dominated by T', contrary
to assumption. Hence, [z,T] — 2. Since z is not dominated by T', no vertex of R,
belongs to T. It follows that |£;| = 3 (so s = 4 and G} is a connected 3-critical graph
relative to K33) and T contains the two vertices of £, different from z. However,
by Corollary 1, R; contains a vertex of degree exactly 1 which is adjacent only to
z. Hence T U {z} does not dominate G + zz, which produces a contradiction. We
deduce, therefore, that G, is a complete bipartite graph. O

Claim 8 Fither G5 is a complete bipartite graph and both partite sets have cardinal-
ity at least 2 or Gy = K.

Proof. Since G is 4-critical, 4 = y(G) = v(G:1) + ¥(G,). By Claims 6 and 7,
v(Gy) = 2, so 7(Gy) = 2 and G, is 2-critical. By assumption G has no isolated
vertex or at least two isolated vertices. Thus either Gy = K, or G, has no isolated
vertex. If G, has no isolated vertex, then we show that G is a complete bipartite
graph. If this is not the case, then there are non-adjacent vertices u € £y and v € R,.
Since G, is 2-critical, either u or v dominates G5 +uv. If © dominates G, + uv, then
L, = {u} and v is isolated in Gy, while if v dominates G5 + uv, then Ry = {v} and
u is isolated in G5. Both cases contradict the assumption that G5 has no isolated
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vertex. We deduce, therefore, that either Gy & K, or Gy is a complete bipartite
graph. Furthermore, if G is a complete bipartite graph, then since v(G;) = 2, each
partite set has cardinality at least 2. O

If Gy = K,, then either G 2 KUK, 1,100 G 2 KUK, 5 and s > 4.
If Gy % K, then, by Claim 8, G, is a complete bipartite graph and both partite
sets have cardinality at least 2. If |£,] > 2, then the graph obtained by adding
to G' any edge between L, and R; has domination number 4, contradicting the 4-
criticality of G. Consequently, |£,| = 2. Similarly, |R,| = 2. Hence if G; % K, then
G= Ky, UK, 5, 5 and s > 4. This completes the proof of the theorem. O

If G is a graph described in the statement of Theorem 3, then it is evident that
the graph H is unique.

4 Connected 4-critical graphs

A characterization of connected 4-critical graphs seems to be difficult to obtain. In
this section, we show that the diameter of a connected 4-critical graph is at most 5.

Theorem 4 The diameter of a connected 4-critical graph is at most 5.

Proof. Let K, have partite sets £ and R. Let G be a connected 4-critical graph
relative to K, having diameter m where m > 6. Let a and b be vertices of G
with diam G = d(a,b) = m. Let a = vg,vy,..., v, = b be a shortest a-b path. For
i=0,1,...,m, let V; = {z|d(a,z) = i}. Necessarily V; = {a} and v; € V; for
i =1,2,...,m. Without loss of generality, we may assume that V; C £ for i odd
and V; C R for ¢ even. Since v, and vs are non-adjacent vertices in different partite
sets of G, there exists a set S such that [v5, S] — vs or [vs, S] — v;. We consider the
two possibilities in turn.

Case 1. [v3,5] — vs.
Since v, is adjacent to no vertex of VUV, UV;, S must contain a vertex z of VoUV;
and a vertex z of V5. Thus m = 6. Since S does not contain vs, the vertices vs and z
are distinct. Furthermore, z dominate Vs — {vs}, and so Vs consists of only the two
vertices vs and z. The vertex z dominates V; and Vg, while v, dominates V;. Before
proceeding further, we prove four claims.

Claim 9 |Vg| = 1.

Proof. Suppose |V5| > 2. Consider the graph G + vovs. There exists a set 7" such
that [vg, 7] — w3 or [v3, T"] — vg. In order to dominate Vs U Vg, T" must consist of
two vertices from V; U V5 U Vj since |Vs| = 2 and {V;| > 2. This implies that one of
vp or vs must dominate V; U V5, which is impossible. O

Thus V4 consists only of the vertex vg which dominates V5.

Claim 10 |V3| = 1.
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Proof. Suppose |V3| > 2. Since vo and vs are non-adjacent vertices in different
partite sets of G, there exists a set T' such that [vo,T] — vs or [vs, T] — wo. If
[vs, T] = o, then in order to dominate z, 7' must contain a vertex of V4 U Vg U {z}.
The remaining vertex ¢ of T must therefore dominate Vi UV;. Since [V3| > 2, ¢ must
belong to Vi. But then T dominates v, which is impossible. On the other hand,
if [vg, T] — vs, then in order to dominate V5 U {2} we may assume without loss of
generality that z € T. The remaining vertex ¢ of 7" must therefore dominate V5 U V3.
Since |V3] > 2, t must belong to V3. Thus V3 consists only of the vertex ¢ (so t = v3),
and v dominates V3 U V3 U Vy. Thus [Vs| > 2, for otherwise {vo,vs,v6} dominates
G. But this contradicts Claim 9. We deduce, therefore, that [V = 1. O

Claim 11 |V3| > 2 and |V4| > 2.

Proof. If V3 consists only of the vertex vz, then {vo,vs,vs} dominates G, which
is impossible. Thus |V3| > 2 and so s = |£]| > 5. By Claims 10 and 9, we have
5= |R| = |V4| + 3. Hence we must have |V4| > 2. O

Claim 12 [V;] = 1.

Proof. Suppose |Vi| > 2. Consider the graph G + v vs. There exists a set T such
that [v,T] — ve or [vs, T] = 1. If [v1, T] — vs, then in order to dominate V; — {v1}
the set 7' must contain a vertex of Vy U V; UV, different from v;. But then the
remaining element of 7' must dominate V4 U Vs, which is impossible since |Vs| = 2
and by Claim 11, |V4| > 2. On the other hand, if [vs,T] = v1, then in order to
dominate vy the set 7 must contain a vertex of V; different from v;. But then the
remaining element of 7' must dominate V3UV}, which is impossible since by Claim 11,
|V3| > 2 and |V4| > 2. O

We can now continue with the proof of Case 1. Consider the graph G + vivs.
There exists a set T such that [v;, T} — vq or [vs,T] = vy. If [vg,T] = vy, then in
order to dominate vo, T must contain vy since by Claim 12 the set V; consists only of
vy. But then T dominates v{, which is impossible. On the other hand, if [v, T} — v,
then since T' does not dominate v4, no vertex of Vi belongs to T. Thus in order to
dominate vg, T must contain vg. In order to dominate V3 and V4 — {vs}, T must
therefore contain a vertex t of V4 — {vs} since |V3| > 2. Thus, V4 consists of only v,
and t, and t dominates V3. But then {v;,t,vs} dominates G, which is impossible.

Case 2. [vs, 5] = v2.

In order to dominate vy, S must contain a vertex of V;UV), and in order to dominate
Vi, S must also contain a vertex of V3 U V3 U V. Thus m = 6. Before proceeding
further, we prove seven claims.

Claim 13 V4| > 2.

Proof. Suppose V; consists only of the vertex v;. Then without loss of generality,
we may assume that v; € S. But then S dominates vy, which is impossible. O

Claim 14 |Vg| = 1.
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Proof. Suppose |Vs| > 2. Consider the graph G + v;v6. There exists a set T such
that [vy, T] — vs or [vg, T] — vy. If [u, T] = v, then in order to dominate V; — {v1}
the set T' must contain a vertex of VoU (V4 — {v;}) UV;. The remaining element of 7'
must dominate V4 U V5 U (Vs — vg). This is only possible if | V| = 1 and vs belongs to
T'. But then T dominates vg, which is impossible. On the other hand, if [vs, T} — vy,
then in order to dominate vy the set 7" must contain a vertex of V4 different from v;.
The remaining element of T' must dominate V3UV;U (Vs — vs), which is impossible. O

Claim 15 |Vi| = 1.

Proof. Suppose |Vs| > 2. Then in order to dominate V3U(Vs—{vs}), S must contain
a vertex of V4. Thus S contains no vertex of V;. Hence in order to dominate Vy UV},
S must contain vy since by Claim 13, |V4| > 2. Thus V5 consists only of the vertex
vz. Consequently, by Claim 14 we have s = |R| = |V4| + 3. By Claim 13, |[V;]| > 2
and by assumption, [Vs| > 2. It follows that s = |£| > 5. Thus |V4| > 2. Consider
now the graph G + vive. There exists a set T such that [vy, T] = vg or [vs, T] = v,.
If [v1, T} — v, then in order to dominate V; — {v;} the set T must contain a vertex
of o U (V1 — {v1}) U V2. The remaining element of 7 must dominate V4 U Vs. This
however is impossible since |V4| > 2 and |V;| > 2. On the other hand, if [vs, T] — vy,
then in order to dominate vo the set T' must contain a vertex of Vu U (Vi — {v,}).
The remaining element ¢ of 7' must dominate V3 U Vj. Since |V4| > 2, it follows that
t € V3 and |V3] = 1. Thus, since [Va| = 1, vs dominates V3 U V4. Since T U {ve}
dominates G + v;vg, vg must therefore dominate V5. But then {vo, v3,ve} dominates
G, which is impossible. O

Claim 16 |Vi| = 2 and every vertez of V; is adjacent to every vertez of Vs.

Proof. Consider the graph G + v;vs. There exists a set T such that [v1,T] — vy
or [vg,T] = vy. If [1,T] — vy, then in order to dominate vg the set T contains
vs or vg since |V5| = |Vs| = 1. We may however assume that vs € T (if v € T,
then we replace vg by vs). But then vy is dominated by T, a contradiction. Hence
[v4,T] = v;. In order to dominate vs, we may once again take vs to be in 7. The
remaining element ¢ of 7' must therefore dominate Vo U (V; — {v1}) U V,. This is only
possible if ¢ belongs to V4 — {v} and if [V;| = 2. Furthermore, ¢ dominates V;. If we
now consider the graph G + tvy, then a similar argument shows that v; dominates
V,. O

Claim 17 [V4| > 2.

Proof. Suppose [V3] = 1. Then, since [V4| = 2 (by Claim 16) and |Vs| = 1 (by
Claim 15), s = |£]| = 4. It follows that |V3| = |Vi| = 1 (for otherwise s = |R| >
4). But then 4(G) = 3 (for example, {vy,vo,v5} dominates G). This produces a
contradiction. Hence |V3] > 2. O

Claim 18 |V,| = 1.
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Proof. Suppose |V4| > 2. Consider now the graph G+v,vs. There exists a set 7" such
that [vi, T] = ve or [vs, T] = 1. If [v1, T] — v, then in order to dominate V3 — {v}
the set T must contain a vertex of Vo U (V; — {v1}) UV,. The remaining element of T'
must dominate V3 U Vs. Since |V > 2, T must therefore contain the vertex vs. But
then 7' dominates v, which is impossible. On the other hand, if [vs, T] — vy, then
in order to dominate vy the set T must contain a vertex of V; different from v;. The
remaining element of T' must dominate V3 U V4. This, however, is impossible since
by assumption, |Vy| > 2 and by Claim 17, [V3| > 2. O

Claim 19 |V5] > 2.

Proof. By Claims 14 and 18, we have s = |R| = |V,|+ 3. By Claims 13, 15, and 17,
we have s = |£| > 5. Thus |V, > 2.0

We can now continue with the proof of Case 2. In order to dominate vy, S must
contain a vertex of Vg U V4. If S contains a vertex of V), then, by Claim 16, v, is
dominated by S, a contradiction. Hence S must contain the vertex vy. Thus S must
contain a vertex s that dominates V3 U (Vo — {vp}). Since |V3| > 2, it follows that
s € Vo — {vy} and [V,| = 2. In particular, s dominates V3. But then {v;,s,vs}
dominates G, which is impossible. This completes the proof of Case 2 and therefore
of the theorem. O

That the bound given in Theorem 4 is sharp, may be seen by considering the
connected 4-critical graph relative to K5 with diameter 5 shown in Figure 2.

Figure 2: A connected 4-critical graph relative to K5 with diameter 5.

5 Connected vy-critical graphs

We conclude with a bound on the diameter of any connected vy-critical graph having
v2>4

Theorem 5 The diameter of a connected «y-critical graph, v > 4, is at most 3y — 6.

Proof. Theorem 4 shows that the diameter of a 4-critical graph is at most 5 <
3y — 6. Hence we assume G is a connected ~y-critical graph relative to K, having
v > 5 and diameter m where m > 3y — 6 > 9. Let a and b be vertices of G with
diam G = d(a,b) = m. Let a = vp,vy,...,vm = b be a shortest a-b path. Without
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loss of generality, let v; € L for i odd and v; € R for i even. Since v, and vy are
non-adjacent vertices in different partite sets of G, there exists a set S of cardinality
v — 2 such that [vg, S] = vs or [vs, S] = v;. We consider the two possibilities.
Case 1. vy, S] — vs.
Then S must contain at least one vertex z to dominate vy, and at least one additional
vertex y to dominate vs. Now the set {z,y, vz} does not dominate any of the vertices
U7, Vg, . . . , Uy ON the a-b path. Hence, these m — 6 vertices must be dominated by the
remaining « — 4 vertices in S — {z,y}. Since no vertex in S can dominate more than
three consecutive vertices of the a-b path, we have m —6 < 3(y — 4); or, equivalently,
m < 3y — 6.
Case 2. [u5, S] — v,.
Then S must contain at least one vertex z to dominate vy, and at least one additional
vertex y to dominate v3. Now the set {z,y, vs} does not dominate any of the vertices
U7,Vg, - - -, Um ON the a-b path. Asin Case 1, the remaining v —4 vertices in S — {z, y}
must dominate the m — 6 vertices v, vs, ..., U, on the a-b path, som < 3y —6.0
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