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Abstract 

Let G be a spanning subgraph of Ks,s and let H be the complement of G 
relative to Ks,s; that is, Ks,s = GtJ)H is a factorization of Ks,s' The graph 
G is ,,(-critical relative to Ks,s if ,(G) = , and "(( G + e) = , - 1 for all 
e E E(H), where ,(G) denotes the domination number of G. We inves­
tigate ,,(-critical graphs for small values of "(. The 2-critical graphs and 
3-critical graphs are characterized. A characterization of disconnected 
4-critical graphs is presented. We show that the diameter of a connected 
4-critical graph is at most 5 and that this bound is sharp. The diameter 
of a connected ,-critical graph, "( 2:: 4, is shown to be at most 3, - 6. 

1 Introduction 

A set D of vertices of a graph G = (V, E) is a dominating set if every vertex in 
V - D is adjacent to at least one vertex in D. The minimum cardinality among 
all dominating sets of G is called the domination number of G and is denoted 
"(( G). The graph G is said to be ,-domination critical, or just ,,(-critical, if "(( G) = , 
and "(( G + e) = , - 1 for every edge e in the complement G of G. This concept of 
,,(-critical graphs has been studied by, among others, Blitch [1], Sumner [5], Sumner 
and Blitch [4], and Wojcicka [6]. 

If G is a spanning subgraph of F, then the graph F - E(G) is the complement 
of G relative to F with respect to a fixed embedding of G into F. The idea of 
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a relative complement of a graph was suggested by Cockayne [2] and is studied 
in [3]. In this paper, we investigate domination critical graphs with respect to relative 
complements. 

We shall assume that the complete bipartite graph Ks,s has partite sets £ and R 
(representing "left" and "right"), and that G EB H = Ks,s is a factorization of Ks,s' 
(If G and H are graphs on the same vertex set but with disjoint edge sets, then 
G EB H denotes the graph whose edge set is the union of their edge sets.) Notice that 
if there is a unique (proper) 2-coloring of the vertices of G with each color coloring 
s vertices, then the graph H is unique. That is, if G is uniquely embeddable in Ks,s, 
then H is unique. We henceforth consider only spanning subgraphs G of Ks,s such 
that G is uniquely embeddable in Ks,s' 

We say that G is 'Y-critical relative to Ks,s if)'( G) '1 and 'Y{ G + e) = )' - 1 for 
all e E E{H). We denote the relative complement H of G by G. (The rest of this 
paper deals only with relative complements with the exception of K2 , so confusion 
with complements in the ordinary sense is unlikely.) Obviously, )'(G) ~ )'(Ks,s) , so 
if s ~ 2, then 'Y(G) ~ 2. The only I-critical graph is therefore G ~ K2 (vacuously) 
with sLIt is also a simple matter to characterize the 2-critical graphs. If s ~ 2 
and G is a proper subgraph of Ks,s, then )'( G + e) = 1 for all e E E(G) =I- 0, which 
is impossible. Hence for s ~ 2, the only 2-critical graph relative to Ks,s is Ks,s' 

The structure of'Y-critical graphs for )' ~ 3 is more complex. For '1 ~ 3, assume 
that G is a ),-critical graph relative to Ks,s' If u and v are non-adjacent vertices in 
different partite sets of G, then 'Y( G + uv) = )' - 1 and so there exists a set W of 
cardinality), 1 that dominates G + uv. Since W does not dominate G, it must 
be that exactly one of u and v, say v, belongs to Wand that W dominates all of 
G except u. Thus S = W - {v} is a set of cardinality '1 - 2 such that S U {v} 
dominates G u and we write [v, S] -t u. In particular, when we write [v, S] -t u it 
is understood that u is not dominated by S. 

In Section 2 we characterize 3-critical graphs. A characterization of disconnected 
4-critical graphs is presented in Section 3. In Section 4, we show that the diameter of 
a connected 4-critical graph is at most 5 and that this bound is sharp. The diameter 
of a connected ),-critical graph, )' ~ 4, is shown in Section 5 to be at most 3'1 - 6. 

2 3-critical graphs 

The following result characterizes 3-critical graphs. 

Theorem 1 Let Ks,s have partite sets £ and R. For s ~ 2, G is 3-critical relative 
to Ks,s if and only if 

(1) s 2 and G ~ K2 U K2, or 

(2) s ~ 3 and there exists a partition £1 and £2 of £ such that each vertex of R 
has degree s - 1 and is adjacent to every vertex of £2, and each vertex of £1 
has degree at most s .:.... 2, or 
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(3) s ~ 3 and there exists a partition £1 and £2 of £ and Rl and R2 of R such 
that 

• Each vertex of Rl has degree s - 1 and is adjacent to every vertex of £2; 

• Each vertex of R2 has degree at most s - 2 and dominates either L1 or 
£2' Furthermore, if v E R2 dominates £1) then deg v = s - 2; 

• Each vertex of £1 has degree at most s - 2 and is non-adjacent to at least 
one vertex of R 1 . Furthermore, if v E £1 does not dominate R 2 , then 
degv = s - 2; 

• Each vertex of £2 has degree s or s -1, and £2 contains at least one vertex 
of degree s. 

Proof. It is readily seen that the graphs are 3-critical. Assume that G is 3-critical. 
We consider two cases. 

Case 1. G has no vertex of degree s. 
For each vertex v E £, let v denote a vertex in R that is non-adjacent to v in G. 
Since G is 3-critical, 1'( G) = 3 and 1'( G + vv) = 2. Let {x, y} be a dominating set 

G + vv. Since {x, y} is not a dominating set of G, either x E {v, v} or y E {v, v}. 
Without loss of generality, we may assume that y = v. So {v, x} dominates G + vv. 
We show that s = 2. If s ~ 3, then x E R and x dominates £ - {v}. By assumption, 
deg x ::; s - 1 in G; consequently, deg x = s - 1 and x and v are non-adjacent in G. 
Consider now G+vx. Since G is 3-critical, 'Y(G+vx) = 2. Furthermore, since v does 
not dominate R - {x} in G + vx, it follows that {x, w} is a dominating set of G + vx 
for some w E £ - {v}. In particular, w dominates R - {x}. However, x dominates 

- {v}. It follows that w dominates R, which contradicts our assumption that G 
has no vertex of degree s. Hence s = 2. It is then readily seen that G ~ K2 U K2 , 

and so G satifies condition (1) in the statement of the theorem. 
Case 2. G has a vertex of degree s. 
Let b..c (b..n ) denote the maximum degree of a vertex of £ (R, respectively) in 

G. We may assume b..c = s and that u E £ has degree s in G, so u dominates R. 
Since 1'( G) = 3, we know then that s ~ 3 and that b..n ::; s - 1. 

Claim 1 Cln = s - 1. 

Proof. Let wand v be non-adjacent vertices in G with 'W E £ and v E R. The 
3-criticality of G implies that 'Y(G + vw) = 2. Let D be a dominating set of G + vw. 
Either wED or v ED. Furthermore, since s 2 3, one vertex of D belongs to Land 
the other to R. If wED, then there is a vertex x of R that belongs to D (x =I- v). 
Since x dominates £ - {w}, x has degree s - 1 in G. Hence we may assume that 
v ED, for otherwise Cln = s - 1. Let v denote the vertex of D that belongs to L. 
Then v dominates £ - {w, v} and v dominates R - {v} in G. If b..n < s - 1, then 
this shows that for each vertex v E R there exists a vertex v E £ that is adjacent to 
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every vertex of R except for v. This would contradict the fact that !:::"C = 8. Hence 
!:::"n = 8 - 1. 0 

We introduce the following notation. Let R1 = {v E R I deg v = 8 - 1 in G}. By 
Claim 1, R1 =1= 0. Let £'1 be the set of vertices of £, that are not adjacent to some 
vertex ofR!, and let £'2 = £'-£1' Since R1 =1= 0, we know that £'1 =1= 0. Furthermore, 
since u E £ has degree 8, we know that £2 =1= 0. Moreover, every vertex of £2 is 
adjacent to every vertex of R 1. If R1 = R, then the graph G satisfies condition (2) 
in the statement of the theorem. Assume, then, that R1 c R, and let R2 = R - R 1. 

Claim 2 Each v E R2 dominates either £'1 or £2. Furthermore, if v dominates £1, 
then degv = 8 - 2. 

Proof. Let v E R2 and suppose that v does not dominate £'2. Let z be a vertex of 
£'2 that is non-adjacent to v. The 3-criticality of G implies that 'Y(G + vz) = 2. Let 
{x, y} be a dominating set of G + vz. We may assume that x E £', so Y E R. Thus 
in G + vz, y dominates £ - {x} and x dominates R - {y}. Since {x, y} is not a 
dominating set of G, either x = z or y = v. If x = z, then y has degree s -1 in G and 
z is the only vertex of £, that is non-adjacent to y; but then y E R1 and so z E £1, 
which produces a contradiction. Hence y = v and v dominates £, - {x} in G + vz. 
Thus v dominates £, - {x, z} in G. This shows that deg v ~ 8 - 2. However since 
v E R 2 , we know that deg v S s 2; consequently, deg v = 8 - 2 and z and x are the 
only two vertices of £, that are non-adjacent to v. Furthermore, since x dominates 
R - {v} and v E R 2 , we know that x 1- £1; i.e., x E £'2. Thus, v dominates £1 in G 
anddegv=8 2.0 

Claim 3 Each vertex of £'2 has degree 8 or 8 - 1. 

Proof. Let w E £2 and suppose that deg w :::; s - 1. Then there is a vertex v of R2 
that is non-adjacent to w. By Claim 2, v dominates £1 and deg v = 8 - 2. Thus, v 
is non-adjacent to wand to exactly one other vertex z of £'2' Since G is 3-critical, 
'Y( G + vz) = 2. As in the proof of Claim 2, we may show that {v, w} is a dominating 
set of G + vz. In particular, w dominates R - {v}. Thus, deg w = 8 - 1. 0 

Claim 4 Each vertex of £1 has degree at most 8 - 2. Furthermore, if w E £1) then 
w dominates R2 or deg w = 8 - 2. 

Proof. Let w E £1' If w has degree 8-1, then w together with the vertex oCR l that 
is non-adjacent to w form a dominating set of G, which produces a contradiction. 
Thus, deg w :::; 8 - 2. Suppose that w does not dominate R 2 . Let v be a vertex 
of R2 that is non-adjacent to w. By Claim 2, we know that v dominates £2' The 
3-criticality of G implies that ,( G + vw) = 2. Let {x, y} be a dominating set of 
G + vw. We may assume that x E £, so Y E R. Thus in G + VW, y dominates 
£, - {x} and x dominates _ R - {y}. Since {x, y} is not a dominating set of G, either 
x = W or y = v. We show that x = w. If this is not the case, then y = v. Thus v 
dominates £, - {x} and x dominates R - {v} in G + wv. Since v dominates £2, we 
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know that x E [,1 and therefore x is non-adjacent to at least one vertex of R 1. Thus 
x cannot dominate n - {v}, which produces a contradiction. Hence x = wand w 
dominates n - {y} in G + wv. Thus w dominates n - { v, y} in G. This shows that 
deg w 2: s - 2 in G. However, w is non-adjacent to at least one vertex of n 1 and to 
at least one vertex, namely v, of n2 , so deg w ~ s - 2. Consequently, deg w = s - 2 
and w is non-adjacent to exactly one vertex of n1 and one vertex of n2 . 0 

By Claims 2, 3, and 4 the graph G satisfies condition (3) in the statement of the 
theorem. This completes the proof of the theorem. 0 

Suppose G is a graph satisfying condition (2) or (3) in the statement of Theorem l. 
Since [,2 -f: 0, and L2 contains at least one vertex of degree s, the graph G has a 
unique embedding into Ks,s. Hence if G is a graph satisfying condition (1), (2) or 

in Theorem 1, then the graph H is unique. 

We will need the following characterization of 3-critical graphs relative to K 3,3. 

Corollary 1 A graph G is 3-critical graph relative to K 3,3 if and only if G is obtained 
from a star K 1,3 by subdividing two edges or G ~ K 2,3 U K 1 . 

Figure 1: The two 3-critical graphs relative to K 3,3. 

Using an almost identical proof to that of Theorem 1, we may establish the 
following result: 

Theorem 2 Let Ks,s-l have partite sets [, and n where 1£1 = sand Inl = s - l. 
For s 2: 4, G is 3-critical relative to Ks,s-l if and only if 

(1) There exists a partition £1 and £2 of [, such that each vertex of R has degree 
s - 1 and is adjacent to every vertex of £2, and each vertex of £1 has degree 
at most s - 3, or 

(2) There exists a partition £1 and L2 of [, and Rl and n2 of R such that 

liD Each vertex of Rl has degree s - 1 and is adjacent to every vertex of L2; 

liD Each vertex of R2 has degree at most s - 2 and dominates either L1 or 
£2. Furthermore, if v E R2 dominates L1, then deg v = s - 2; 

liD Each vertex of [,1 has degree at most s - 3 and is non-adjacent to at least 
one vertex of n1 . Furthermore, if v E [,1 does not dominate n2 , then 
degv = s - 3; 
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• Each vertex of £2 has degree s - 1 or s - 2, and £2 contains at least one 
vertex of degree s - 1. 

Once again, if G is a graph satisfying condition (1) or (2) in the statement of 
Theorem 2, then, since L2 contains at least one vertex adjacent to every vertex of 
R, the graph G has a unique embedding into Ks,s. Hence if G is a graph satisfying 
condition (1) or (2) in Theorem 2, then the graph H is unique. 

3 Disconnected 4-critical graphs 

If s = 2, then K 2,2 is the only 4-critical graph relative to Ks,s' Hence in what follows 
we take s 2: 3. The following result characterizes disconnected 4-critical graphs. 

Theorem 3 For s 2: 3, G is a disconnected 4-critical graph relative to Ks,s if and 
only if 

• s 2: 4, G has exactly one isolated vertex v and G - v is 3-critical relative to 
Ks,s-l, or 

• G ~ K2 U K s- 1,s-1, or 

• s 2: 4 and G ~ K2 U K s ,s-2, or 

• s 2: 4 and G ~ K 2,2 U K s - 2,s-2. 

Proof. It is readily seen that the graphs are disconnected 4-critical relative to Ks,s. 
Suppose that G is a disconnected 4-critical graph relative to Ks,s' 

Claim 5 If G has exactly one isolated vertex v J then s 2: 4 and G - v is 3-critical 
relative to K s ,s-l. 

Proof. If s = 3, then the partite set of G containing v dominates G, which contra­
dicts the fact that 'Y(G) = 4. Hence, s 2: 4. Furthermore, 4 = 'Y(G) = 'Y(G - v) + 1, 
and so 1'( G - v) = 3. If x and yare non-adjacent vertices of G - v in different partite 
sets, then the 4-criticality of G implies that 3 = 'Y(G + xy) = 'Y((G - v) + xy) + 1, 
so 'Y((G - v) + xy) = 2. Thus G - v is 3-critical relative to K s ,s-l. 0 

In what follows we may assume that G has no isolated vertex or at least two 
isolated vertices, for otherwise the result follows from Claim 5. Let G1 be a com­
ponent of G of maximum size with partite sets £1 ~ £ and Rl ~ R. Further, let 
L2 = L - £1 and R2 = R - R 1 , and let G2 be the subgraph of G induced by £2 U R2· 

Claim 6 ILl I 2: 2 and IR11 2: 2. 
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Proof. If 1£11 = 1 and l'Rll = 1, then Gl ~ K2 and every component of G is either 
or K 2 . However, it is then readily seen that G is not 4-~ritical. Hence 1£11 2: 2 or 

l'Rll ~ 2. We may assume that In11 = rl 2: 2. We show that IL11 ~ 2. If this is not 
the case, then Ll = {w} and G1 ~ K 1,rl' Let u E L2 and let v E 'R1 , and consider 
the graph G + uv. Since G is 4-critical, there exists a set S such that [u, S] ---t v or 
[v, S] ---t u. Since rl ~ 2, we may assume in both cases that w E S, so v is dominated 
by S. Hence we must have [v, S] ---t u. But then S U {u} is a dominating set of G, 
which contradicts the fact that i( G) = 4. Hence, 1£11 ~ 2. 0 

Claim 7 G I is a complete bipartite graph. 

Proof. Suppose that there are non-adjacent vertices u E £1 and v E 'RI . Since G 
is 4-critical, 3 = 1'( G + uv) = 'Y( G l + uv) + i( G2 ). It follows from Claim 6 that 
i(GI + uv) 2: 2. Hence i(G I + uv) = 2 and i(G2 ) = 1. Thus G I is 3-critical, 
and G2 ~ KI or G2 ~ KI,m' However, since G has no isolated vertex or at least 
two isolated vertices, G2 ~ KI,m' Without loss of generality, we may assume that 
1£21 = 1 and In21 = m. Let £2 = {w}. 

If m > 1, then let x E 'R2 , and consider the graph G + ux. Since G is 4-critical, 
there exists a set S such that [u, S] ---t x or [x, S] ---t u. Since m 2: 2, we may assume 
in both cases that w E S, so x is dominated by S. Hence we must have [x, S] ---t u. 
Bu t then S U { u} is a dominating set of G, which contradicts the fact that l' (G) = 4. 
Hence, m = 1 and G2 ~ KI,l. 

Since G2 ~ KI,l, G1 is 3-critical relative to K s- 1,s-1. Hence, by Theorem 1, 
s - 1 2: 3 and G1 has a vertex z of maximum possible degree s - 1. Without loss of 
generality, we may assume z E L1' Let R2 = {x} and consider the graph G + zx. 
Since G is 4-critical, there exists a set T such that [z, T] ---t x or [x, T] ---t z. If 
[z, T] ---t x, then w must belong to T and x is therefore dominated by T, contrary 
to assumption. Hence, [x, T] ---t z. Since z is not dominated by T, no vertex of R1 
belongs to T. It follows that 1£11 = 3 (so s = 4 and G I is a connected 3-critical graph 
relative to K 3,3) and T contains the two vertices of Ll different from z. However, 
by Corollary 1, 'RI contains a vertex of degree exactly 1 which is adjacent only to 
z. Hence T U {x} does not dominate G + zx, which produces a contradiction. We 
deduce, therefore, that G1 is a complete bipartite graph. 0 

Claim 8 Either G2 is a complete bipartite graph and both partite sets have cardinal­
ity at least 2 or G2 ~ K2 • 

Proof. Since G is 4-critical, 4 = i(G) = i(G I ) + i(G2). By Claims 6 and 7, 
i( GI ) = 2, so 'Y( G2 ) = 2 and G2 is 2-critical. By assumption G has no isolated 
vertex or at least two isolated vertices. Thus either G2 ~ K2 or G2 has no isolated 
vertex. If G2 has no isolated vertex, then we show that G2 is a complete bipartite 
graph. If this is not the case, then there are non-adjacent vertices u E L2 and v E R 2 . 

Since G2 is 2-critical, either u or v dominates G2 + uv. If u dominates G2 + UV, then 
L2 = {u} and v is isolated in G2 , while if v dominates G2 + uv, then 'R2 = {v} and 
u is isolated in G2 • Both cases contradict the assumption that G2 has no isolated 
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vertex. We deduce, therefore, that either G2 ~ K2 or G2 is a complete bipartite 
graph. Furthermore, if G2 is a complete bipartite graph, then since ')'( G2 ) = 2, each 
partite set has cardinality at least 2. 0 

If G2 ~ K 2 , then either G ~ K2 U Ks-I,s-I or G ~ K2 U K s,s-2 and s ~ 4. 
If G2 qp K2, then, by Claim 8, G2 is a complete bipartite graph and both partite 
sets have cardinality at least 2. If 1£21 > 2, then the graph obtained by adding 
to G any edge between £2 and RI has domination number 4, contradicting the 4-
criticality of G. Consequently, 1£21 = 2. Similarly, IR21 = 2. Hence if G2 qp K2 , then 
G ~ K 2,2 U K s- 2,s-2 and s ~ 4. This completes the proof of the theorem. 0 

If G is a graph described in the statement of Theorem 3, then it is evident that 
the graph H is unique. 

4 Connected 4-critical graphs 

A characterization of connected 4-critical graphs seems to be difficult to obtain. In 
this section, we show that the diameter of a connected 4-critical graph is at most 5. 

Theorem 4 The diameter of a connected 4-critical graph is at most 5. 

Proof. Let Ks,s have partite sets £ and R. Let G be a connected 4-critical graph 
relative to Ks,s having diameter m where m ~ 6. Let a and b be vertices of G 
with diam G = d( a, b) = m. Let a = Vo, VI, ... ,Vm = b be a shortest a-b path. For 
i = O,l, ... ,m, let Vi = {xld(a,x) = i}. Necessarily Vo = {a} and Vi E Vi for 
i = 1,2, ... , m. Without loss of generality, we may assume that Vi c £ for i odd 
and Vi C R for i even. Since V2 and V5 are non-adjacent vertices in different partite 
sets of G, there exists a set S such that [V2' S] ---T V5 or [V5' S] ---T V2. We consider the 
two possibilities in turn. 

Case 1. [V2' S] ---T V5. 

Since V2 is adjacent to no vertex of Vo U V4 U V 6 , S must contain a vertex x of YO U VI 
and a vertex z of V5 . Thus m = 6. Since S does not contain V5, the vertices V5 and z 
are distinct. Furthermore, z dominate V5 - {V5}, and so V5 consists of only the two 
vertices V5 and z. The vertex z dominates 114 and V'6, while V2 dominates V3. Before 
proceeding further, we prove four claims. 

Proof. Suppose IV6 1 ~. 2. Consider the graph G + VOV3. There exists a set T' such 
that [vo, T'] ---T V3 or [V3' T'] ---T Vo. In order to dominate V5 U V6 , T' must consist of 
two vertices from V4 U V5 U V6 since IV5 1 = 2 and 1V'61 ~ 2. This implies that one of 
Vo or V3 must dominate VI U V 2, which is impossible. 0 

Thus V6 consists only of the vertex V6 which dominates V5 . 
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Proof. Suppose IV2 1 2: 2. Since Vo and V5 are non-adjacent vertices in different 
partite sets of G, there exists a set T such that [vo, T] .-t V5 or [vs, T] -t Vo. If 
[vs, T] -t vo, then in order to dominate z, T must contain a vertex of V4 U V6 U {z}. 
The remaining vertex t of T must therefore dominate VI U V2• Since IV2 1 2: 2, t must 
belong to VI' But then T dominates vo, which is impossible. On the other hand, 
if [vo, T] -t Vs, then in order to dominate V6 U {z} we may assume wi thou t loss of 
generality that z E T. The remaining vertex t of T must therefore dominate 112 U 113. 
Since 11121 2: 2, t must belong to V3. Thus V3 consists only of the vertex t (so t = V3), 
and V3 dominates V2 U V3 U V4. Thus IV6 1 2: 2, for otherwise {vo, V3, V6} dominates 
G. But this contradicts Claim 9. We deduce, therefore, that 11121 = 1. 0 

Proof. If V3 consists only of the vertex V3, then {vo, V3, V6} dominates G, which 
is impossible. Thus IV31 2: 2 and so s = 1£1 2: 5. By Claims 10 and 9, we have 
s = Inl = IV4 1 + 3. Hence we must have IV4 1 2: 2. 0 

Claim 12 IVII 1. 

Proof. Suppose IVIi 2: 2. Consider the graph G + VI V6' There exists a set T such 
that [VI, T] -t V6 or [V6' T] -t VI' If [VI, T] -t V6, then in order to dominate VI - {VI} 

the set T must contain a vertex of Vo U VI U 112 different from VI' But then the 
remaining element of T must dominate V4 U V5 , which is impossible since IV5 1 = 2 
and by Claim 1l, IV4 1 2: 2. On the other hand, if [V6' T] -t VI, then in order to 
dominate Vo the set T must contain a vertex of VI different from VI. But then the 
remaining element ofT must dominate V3 UV4 , which is impossible since by Claim 11, 
1%1 2: 2 and 11141 2: 2. 0 

We can now continue with the proof of Case 1. Consider the graph G + VI V4. 
There exists a set T such that [VI, T] -t V4 or [V4' T] -t VI. If [V4' T] -t VI, then in 
order to dominate vo, T must contain Vo since by Claim 12 the set VI consists only of 
VI- But then T dominates VI, which is impossible. On the other hand, if [Vl, TJ -t V4, 
then since T does not dominate V4, no vertex of V5 belongs to T. Thus in order to 
dominate V6, T must contain V6' In order to dominate V3 and V4 - {V4}, T must 
therefore contain a vertex t of V4 - {V4} since IV3 1 2: 2. Thus, V4 consists of only V4 
and t, and t dominates V3 . But then {VI, t, V5} dominates G, which is impossible. 

Case 2. [vs, S] -t V2. 

In order to dominate vo, S must contain a vertex of Vo U VI, and in order to dominate 
%, S must also contain a vertex of V2 U V3 U V4. Thus m = 6. Before proceeding 
further, we prove seven claims. 

Claim 13 IViI ~ 2. 

Proof. Suppose Vl consists only of the vertex Vl' Then without loss of generality, 
we may assume that VI E S. But then S dominates V2, which is impossible. 0 
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Proof. Suppose IV6 1 2: 2. Consider the graph G + VIV6. There exists a set T such 
that [VI, T] -t V6 or [V6, T] -t VI. If [VI, T] -t V6, then in order to dominate VI - {vd 
the set T must contain a vertex of Vo U (Vi { VI} ) U 1;2. The remaining element of T 
must dominate V4 U Vs U (V6 - V6). This is only possible if IVsI = 1 and V5 belongs to 
T. But then T dominates V6, which is impossible. On the other hand, if [V6, T] -t VI, 
then in order to dominate Vo the set T must contain a vertex of Vi different from VI. 
The remaining element of T must dominate V3 U V4 U (V6 - V6), which is impossible. 0 

Claim 15 IV51 = 1. 

Proof. Suppose I V51 2: 2. Then in order to dominate V3 U (Vs - { V5} ), S must contain 
a vertex of V4. Thus S contains no vertex of V2. Hence in order to dominate Va U VI, 
S must contain Vo since by Claim 13, IVII 2: 2. Thus 1;2 consists only of the vertex 
V2. Consequently, by Claim 14 we have s = Inl = 11141 + 3. By Claim 13, IVII 2: 2 
and by assumption, IV5 1 2: 2. It follows that s = l.el 2: 5. Thus IV4 1 2: 2. Consider 
now the graph G + VIV6. There exists a set T such that [VI, T] -t V6 or [V6' T] -+ VI' 
If [VI, T] -t V6, then in order to dominate Vl - {vd the set T must contain a vertex 
of Va U (VI - {VI}) U 1;2. The remaining element of T must dominate V4 U Vs. This 
however is impossible since 11141 2: 2 and IVsI 2: 2. On the other hand, if [V6' T] -+ Vl, 

then in order to dominate Vo the set T must contain a vertex of Va U (VI - {VI})' 
The remaining element t of T must dominate V3 U V4 • Since 1V41 2: 2, it follows that 
t E V3 and 11;31 = 1. Thus, since 11;21 = 1, V3 dominates V2 U V4. Since T U {V6} 
dominates G + VI V6, V6 must therefore dominate V5. But then {vo, V3,. vd dominates 
G, which is impossible. 0 

Claim 16 IVII = 2 and every vertex of Vi is adjacent to every vertex of 1;2. 

Proof. Consider the graph G + VI V4. There exists a set T such that [VI, T] -+ V4 
or [V4' T] -t VI. If [VI, T] -+ V4, then in order to dominate V6 the set T contains 
V5 or V6 since IVsI = IV6 1 = 1. We may however assume that V5 E T (if V6 E T, 
then we replace V6 by V5). But then V4 is dominated by T, a contradiction. Hence 
[V4' T] -t Vl' In order to dominate V6, we may once again take V5 to be in T. The 
remaining element t of T must therefore dominate Va U (VI - {VI} ) U 1;2. This is only 
possible if t belongs to VI - {vd and if IVII = 2. Furthermore, t dominates V2 . If we 
now consider the graph G + tV4, then a similar argument shows that VI dominates 
V2 .D 

Claim 17 1V31 2: 2. 

Proof. Suppose IV3 1 = 1. Then, since IVII = 2 (by Claim 16) and IV5 1 = 1 (by 
Claim 15), s = 1£1 = 4. It follows that IV21 = IV41 = 1 (for otherwise s = Inl > 
4). But then ,(G) = 3 (for example, {VO,V2,V5} dominates G). This produces a 
contradiction. Hence IV3 1 2: 2. 0 

124 



Proof. Suppose IV4 1 2: 2. Consider now the graph G+VIV6. There exists a set T such 
that [VI, T] -t V6 or [V6, T] -t VI. If [VI, T] -t V6, then in order to dominate VI - { VI} 

the set T must contain a vertex of Va U (V'i - {VI}) U V2 . The remaining element of T 
must dominate V4 U 115. Since IV4 1 2: 2, T must therefore contain the vertex V5' But 
then T dominates V6, which is impossible. On the other hand, if [V6, T] -t VI, then 
in order to dominate va the set T must contain a vertex of VI different from VI. The 
remaining element of T must dominate V3 U V4 . This, however, is impossible since 

assumption, IV4 1 2: 2 and by Claim 17, IV3 1 2: 2. 0 

Claim 19 IV2 1 2: 2. 

Proof. By Claims 14 and 18, we have s = Inl = IV2 1 + 3. By Claims 13, 15, and 17, 
we have s = 1£1 2: 5. Thus 1"\/21 2: 2. 0 

We can now continue with the proof of Case 2. In order to dominate va, S must 
contain a vertex of Vo U VI. If S contains a vertex of VI, then, by Claim 16, V2 is 
dominated by S, a contradiction. Hence S must contain the vertex Vo. Thus S must 
contain a vertex s that dominates V3 U (V2 - {vd)· Since IV3 1 2: 2, it follows that 
s E V2 - {V2} and IV2 1 = 2. In particular, s dominates V3 . But then {VI, s, V5} 

dominates G, which is impossible. This completes the proof of Case 2 and therefore 
of the theorem. 0 

That the bound given in Theorem 4 is sharp, may be seen by considering the 
connected 4-critical graph relative to K 5,5 with diameter 5 shown in Figure 2. 

Figure 2: A connected 4-critical graph relative to K 5 ,5 with diameter 5. 

,-critical graphs 

We conclude with a bound on the diameter of any connected ,),-critical graph having 
')' 2: 4. 

Theorem 5 The diameter of a connected ,),-critical graph, ')' 2: 4, is at most 3')' - 6. 

Proof. Theorem 4 shows that the diameter of a 4-critical graph is at most 5 < 
3')' - 6. Hence we assume G is a connected ,),-critical graph relative to Ks,s having 
')' 2: 5 and diameter m where m 2: 3')' - 6 2: 9. Let a and b be vertices of G with 
diam G = d(a, b) = m. Let a = Vo, VI, ... , Vm = b be a shortest a-b path. Without 
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loss of generality, let Vi E I:- for i odd and Vi E n for i even. Since V2 and V5 are 
non-adjacent vertices in different partite sets of G, there exists a set S of cardinality 
"( - 2 such that [V2' S] -t V5 or [V5' S] -t V2. We consider the two possibilities. 

Case 1. [V2' S] -t V5. 

Then S must contain at least one vertex x to dominate Vo, and at least one additional 
vertex y to dominate V4' Now the set {x, y, V2} does not dominate any of the vertices 
V7, VB, ... , Vm on the a-b path. Hence, these m - 6 vertices must be dominated by the 
remaining "( - 4 vertices in S - {x, y}. Since no vertex in S can dominate more than 
three consecutive vertices of the a-b path, we have m - 6 ~ 3("( - 4); or, equivalently, 
m::; 3"( - 6. 

Case 2. [V5' S] -t V2. 

Then S must contain at least one vertex x to dominate Vo, and at least one additional 
vertex y to dominate V3' Now the set {x, y, V5} does not dominate any of the vertices 
V7, VB, ... , Vm on the a-b path. As in Case 1, the remaining "( - 4 vertices in S - { x, y} 
must dominate the m - 6 vertices V7, VB, ... , Vm on the a-b path, so m ~ 3"( - 6. 0 
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