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Abstract 

For any given 2-group H there exists an Hadamard 2-group G containing 
a subgroup isomorphic to H. 

§1. Introduction. Let G be a finite group of order 4n containing a central 
involution e*, and T a transversal of G with respect to (e*). If T and Tr, where r 
is any element of G outside (e*), intersect in n elements, then T and G are called 
an Hadamard subset and an Hadamard group (with respect to (e*)) respectively. 
A cyclic group of order 4 is an Hadamard group, and n is even for other Hadamard 
groups. See [3]. In this paper we are interested in Hadamard 2-groups. 

§2. One-stepped 2-groups. Let G be a 2-group of order 2n. Then G is called 
one-stepped if there exist n involutions rl, r2, . .. ,rn of G such that (rl)(r2).' . (ri) 
is a subgroup of order 2i for i = 1, 2, ... ,n. 

Lemma 1. A 2-group G is one-stepped if and only ifG is generated by involutions. 

Proof. It is obvious that if G is one-stepped, then G is generated by involutions. 
Now assume that G is generated by involutions and let H be a maximal one­
stepped subgroup of G. If G = H, then we are done. Otherwise, let M be a 
maximal subgroup of G containing H. If M is generated by involutions, then, 
by using induction on the order, we have that M = H. Since G is generated by 
involutions, there exists an involution r of G outside H. Since G = H(r), this 
contradicts the maximality of H. If M is not generated by involutions, then the 
subgroup of M generated by all the involutions of M equals H. Then clearly H is 
normal in G. Take an involution r of G outside H and consider the subgroup H(r) 
which is one-stepped. This contradicts the maximality of H. 

Lemma 2. A Sylow 2-subgroup S(n) of the symmetric group Sy.m(2n) of degree 
2n has order 22n 

-1 and it is generated by involutions. 

Proof. See [2], p.378. 
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Lemma 3. A 2-group G of order 2n is isomorphic to a subgroup of S(n). 

Proof. Consider a regular permutation representation of G and use Sylow's theo­
rem. See [2], p.29 and p.34. 

By Lemmas 1, 2 and 3 we see that any 2-group can be a subgroup of a one­
stepped 2-group. 

§3. Construction of Hadamard 2-groups. 

Lemma 4. Let a 2-group G of order 8n contain an Hadamard maximal subgroup 
H with respect to a central involution e*. If G contains an element r outside H 
such that r2 e*, then G is also Hadamard. 

Proof. Clearly, e* is central in G. Let E be an Hadamard subset of H and put 
D = Ee* + Er. We show that D is an Hadamard subset of G. Let s be an element 
of H outside (e*). Then rs = rsr-1r and rsr- 1 is an element of H outside (e*). 
So we have that IEe* nEsl + IErsr- 1 nErl = 2n. Now any element of G outside H 
is of the form tr, where t is an element of H. If t = e, where e denotes the identity 
element of G, then Dtr = Dr = Ee* + Ee*r. Since Ee*r and Er are disjoint, we 
have that ID n Drl = IEe* I = 2n. If t = e*, then Dtr = De*r = E + Er. Obviously 
we have that ID n De*rl = IEe*1 = 2n. If t is outside (e*), then rtr = rtr-1e* and 
rtr- l is an element of H outside (e*). So we have that Dtr = Ertr-Ie* + Ete*r 
and that 

ID n Dtrl = IEe* n Ertr-1e*1 + IEr n Ete*rl = n + n = 2n. 

See also [1] and [6]. 

Lemma 5. Let G be an Hadamard 2-group with respect to (e*) such that e* = r2 
for some element r of G and H a one-stepped 2-group. Then their direct product 
is Hadamard with respect to (e*). 

Proof. Let H be of order 2n and rl, r2,.' ., rn n involutions which define H. Then 
we have that (rri)2 = e* for each i = 1,2, ... , n. So using Lemma 4 we may adjoin 
rrl, rr2, ... , rr n successively to G. 

Now by Lemmas 3 and 5 we have the following proposition. 

Proposition 1. Every 2-group is a subgroup of an Hadamard 2-group. 

§4. Remarks about Proposition 1. Let G be a 2-group of order 2n , and 
H a one-stepped 2-group of the least order containing G. Then the index [H : G] 
will be called the I-index of G and be denoted by l(G). Moreover let K be an 
Hadamard 2-group of the least order containing G. Then the index [K : G] will be 
called the h-index of G and be denoted by h(G). Now by Lemma 2 and 3 we have 
that l(G) ::; 22n

- I - n and since a cyclic group of order 4 is Hadamard, by Lemma 5 
we have that h(G) ::; 22n +1 - n

. These bounds for I(G) and h(G) will be too crude. 
However, if G is Abelian, things are easy. 
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Lemma 6. If G is an Abelian but not elementary Abelian 2-group, then we have 
that 1 (G) ::; 2 and hence that h( G) ::; 23 . 

Proof. Since G is Abelian, there exists an automorphism T of G which inverts every 
element of G. T has order two. So consider the holomorph H = G(T) of G by T. 
Since (rT)2 = e for any element r of G, H is one-stepped. 

Further, in the case of the h-index we realize that if a central involution is 
prescribed, the situation is much more complicated. 

§5. Two infinite families of non-Hadamard 2-groups. It is known that 
there exist five non-isomorphic 2-groups of order 2n+1 and exponent 2n

, where 
n ~ 3. See [2],p.91 : 1) the Abelian group of type (n, 1),2) the dihedral group, 3) 
the generalized quaternion group, 4) the group G presented by 

G(n) = (r, s I r2n = S2 = e, srs = r 1+2n
-

1
) 

and 5) the group G presented by 

G(n) = (r, s I r2n = s2 = e, srs = r- 1+2n
-

1
). 

The Hadamard property of groups of types 1, 2 and 3 has been investigated in [3], 
[4] and [1]. 

Proposition 2. Groups of type 4 are not Hadamard. 

Proof. Assume that a group G of type 4 is Hadamard and that D is an Hadamard 
subset of G. Let a be a primitive 2n-th root of unity and put m = 2n-l. Then 
we have that rm = e*. Further xm + 1 = 0 is the defining equation for a. Now we 
consider an irreducible representation F of G of degree two defined by 

and 

F(s) = (~ ~). 
Then we have that 

(
0 -a) F(sr) = a 0 

and we may put 

where Ci = 1 or -1 according as ri or rie* belongs to D, di = 1 or -1 according 
as sri or srie* belongs to D, and in each summation i runs from 0 to m 1. Then 
we have that 
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where the matrix operation * is the composition of complex-conjugation and trans­
position. Now it is known that F(D)* F(D) = F(D)F(D)* = 2mI, where I de­
notes the identity matrix of degree two. For this see [5]. Equating (1, I)-entries of 
F(D)* F(D) and F(D)F(D)* we have that 

(2.: Ci a - i )(2.: ciai ) + (I: dia-i)(I: diai ) 

= (I: Ciai )(2.: cia-i) + (I:( -I)idiai)(I:( -1 )idia-i ). 

Thus we obtain that 

(1) 

We multiply out both sides of (1). Then, using the defining equation xm + 1 = 0 
we reduce both sides to polynomials in a of degree at most m - 1. Now equating 
the coefficients of a on either side we obtain that 

(2) says that the vector d = (do, db' .. , dm - 1 ) is orthogonal to its nega-cyclic shift 
(-dm - 1 , do, ... ,dm - 2 ). On the other hand, in order to estimate the inner product 
of a vector with its nega-cyclic shift, we may asume that do = dm - 1 = 1. Then we 
rewrite d as follows: d = (ell -e2, e3, -e4, .. . , eu), where each subvector ei is an 
all-one vector (i = 1, 2, ... , u). Here we notice that u is odd. Now we see that the 
inner product of d with its nega-cyclic shift is equal to m - 2u. Since u is odd and 
m is a multiple of 4, m - 2u is congruent to 2 mod 4. This contradicts (2). 

Proposition 3. Groups of type 5 are not Hadamard. 

Proof. Assume that a group G of type 5 is Hadamard and that D is an Hadamard 
subset of G. a and m are the same as in the proof of Proposition 2. Now we 
consider an irreducible representation F of G of degree two defined by 

F(r) = (~ o ) 
and 

F(S)=(~ ~) 
Then we have that 

(
0 -1) F(sr) = a -~ 

and we may put 
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where Ci, di and the summation are the same as in Proposition 2. Then we have 
that 

(D)* - ( 2: Ci a -
i 2: dia-

i
- ) 

F - 2:( -1)idia i 2:( -1)iciai . 

Now equating (1, I)-entries of F(D)* F(D) and F(D)F(D)* we have that 

(2: Ci a - i )(2: ciai ) + (2: dia- i ) (2: diai ) 

= (2: ciai ) (2: cia-i) + (2:( -1 )idia-i )(2:( -1 )idiai ). 

Thus we obtain that 

(3) 

Comparing (3) with (1) we see that we may proceed in the same way as in the 
proof of Proposition 2. 
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