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Abstract

A directed BIB design DB(k, A; v) is a BIB design B(k, 2X; v) in which the
blocks are transitively ordered k-tuples and each ordered pair of elements
occurs in exactly A blocks. A nested directed BIB design NDB(k, \;v)
of form Iycncr—1(n’, Ay)™ is a DB(k, A;v) where each block contains
Ya<n<k—1 injn mutually disjoint subblocks, i,j, subblocks of which are
partitioned into i,, mutually disjoint families of j, subblocks of size n and
the 7, subblocks of size n belong to one distinguished system which forms
the collection of blocks of a DB(n, A,;v). In this paper we will use known
and new techniques to show the existence of all NDB(k, A; v) of the form
Mocngk—1(n?", Ap)™ for k =4 and 5.
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1. Introduction

A balanced incomplete block (BIB) design (or BIBD) B(k, \;v) is a pair (V, B)
where V is a set of v elements, B is a collection of k-subsets, called blocks, of V such
that every pair of distinct elements of V occurs in exactly A blocks of B.

Hung and Mendelsohn [8] first introduced the concept of directed BIB designs.
These designs have been further studied since then, see, for example, Bennett and
Mahmoodi [3], Bennett, Wei, Yin and Mahmoodi [5], Colbourn and Rosa [6], Seberry
and Skillicorn [12], Street and Seberry [13], Street and Wilson [14]). A directed BIB
design (or DBIBD) with parameters v, k and A, denoted by DB(k, \;v), is a pair
(V, B) where V is a set of v elements and B is a set of transitively ordered k-tuples,
called blocks, of V, such that every ordered pair of elements of V appears in exactly
A blocks of B, where a transitively ordered k-tuple (z1,...,z}) is defined to be the
set {(z;,;) : 1 < i< j <k} consisting of k(k — 1)/2 ordered pairs. If we ignore the
order in the blocks, a DB(k, \;v) becomes a B(k, 2);v). In fact, a DB(k, \;v) is a
B(k,2X;v) in which the blocks are regarded as transitively ordered k-tuples and in
which each ordered pair of distinct elements occurs in eactly A blocks. A pair {z,y}
is said to occur in a block if x is written to the left of y.

A nested BIB design (or NBIBD) NB(k, A;v) of form Ilpcpck—1(n/», \,)™ is a
B(k, A\;v) (V,B) where each block contains Yo<n<k—1tnJn mutually dlSJomt sub-
blocks, injn subblocks of which are partitioned into 4, mutually disjoint families
of jn subblocks of size n, and the j, subblocks of size n belong to one distinguished
system By(€), 1 < £ < iy, such that (V, B,(£)) forms a B(n, )\n, v) for each integer n
with i, > 1.

A nested directed BIB design (or NDBIBD) NDB(k, \;v) of form Mo<p<k-1
(nf~, Ap)™ is a DB(k, A;v) (V, B) where each block contains 22<n<k-1 injn mutually
disjoint subblocks, i,j, subblocks of which are partitioned into 4, mutually disjoint
families of j, subblocks of size  and the j, subblocks of size n belong to one distin-
guished system By (¢), 1 < £ < iy, such that (V, B,(¢)) forms a DB(n, \,; v) for each
integer n with 7, > 1.

An example of an NDBIBD is illustrated. As a set of 10 elements let V = ZyU{oo}
and as a collection of 4-subsets of V take

B = {(Q:;)§7§)7 (Q7éai7§)7 (Q7§7§7

1o

), (0,0, 4,

Ib&
Jjon

), (0,7,4,00) mod 9},
where the elements underlined “” and “” within a block form two subblocks be-
longing to the same system DB(2,1;10). Then (V,B) is an NDB(4, 3;10) of form
2>, )n

The following necessary conditions for the existence of an NDB(k, ; v) of form
Mo<n<k—1(n?", \y)" have been established in [10]: For all integers n with 4, > 1,
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22v(v —1) =0 mod k(k - 1), 2\ (v—-1)=0mod (n-1), (1.1)
2Mv(v — 1) = 0 mod n(n — 1).

A= k(k - 2A(v — 1) = 0 mod (k — 1),

Nested directed BIB designs with parameters satisfying (1.1) are said to be ad-
missible. All admissible NDBIBDs with block sizes 3 and 4 are constructed in [10]
except possibly for an NDB(4, 2; 10) of form (3,1)! as the following shows.

Theorem 1.1 [10]. The necessary conditions for the existence of an NDB(k, A;v)
of any possible form are also sufficient for k = 3 and 4 with one possible exception:
an NDB(4, 2;10) of form (3,1)'.

The purpose of this paper is to show the existence of an NDB(4, 2; 10) of form
(3,1)! and all admissible NDBIBDs with k = 5 by using known and new techniques.

In Sections 2 to 5, some constructions of NDBIBDs will be introduced. In Section
6, the existence of an NDB(4, 2; 10) of form (3,1)! will be shown.

There are six possible forms for an NDB(5, A;v), i.e. (4, M), (3, A3)1(2, A2)?,
(3,03)%, (2, A2)?%, (2, X2)1, (22, \2)'. However, since the existence of an NDB(5, A; v) of
form (3, A3)!(2, \2)* implies the existence of an NDB(5, A;v) of form (3, A3)! and the
existence of an NDB(5, \; v) of form (2, A3)? implies the existence of an NDB(5, A; v)
of form (2, Ag)*, the designs of the remaining four forms will be treated in each of
Sections 7 to 10, i.e. the existence of NDB(5, \;v) of form (4, M)}, (3, A3)1(2, A2)},
(2, Az)z and (22, /\2)1.

The main result of this paper will be given in the last section.

2. Constructions from GDD

Let V bg a set of v elements, G be a partition of V into subsets, called groups,
and B be a collection of some subsets of V, called blocks. A group divisible design
(or GDD) (K, X)-GDD is a triple (V, G, B) such that

(i) |B| € K for every B € B;
(i) [GN B| < 1for every G € G and every B € B ; and

(iii) every pair of elements {z,y}, where z and y belong to distinct groups, is
contained in exactly A blocks of B.

The type of a GDD (V,G, B) is the multiset {|G| : G € G}. An exponential
notation is usually used to describe types: a type g;* - - - g% denotes u; occurrences
of g, 1 <i<m.

In order to prove that the necessary conditions (1.1) for the existence of an
NDB(k, A; v) of any possible form are also sufficient for £ = 3 and 4, Kageyama and
Miao [10] introduced the concept of nested directed GDDs.
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A directed GDD (or DGDD) (K, A)-DGDD of type T is a (K, 2))-GDD of the
same type T in which the blocks are transitively ordered k-tuples and each ordered
pair of elements not contained in the same group occurs in exactly A blocks.

A nested directed GDD (or NDGDD) (k,A)-NDGDD of type T and of form
Ma<n<k-1(n?™, An)™, (V,G,B), is a ({k},A)-DGDD of type T where each block of
B contains Y ocp<k-1injn mutually disjoint subblocks, 4,4, subblocks of which are
partitioned into 4, mutually disjoint families of 5, subblocks of size n and the In
subblocks of size n belong to one distinguished system B,(¢), 1 < £ < i,, such
that (V, G, B,,(£)) forms an ({n}, A,)-DGDD of type T for all integers n and £ with
1 <4<,

Theorem 2.1 [10]. Let (V,G,B) be a (K, \)-GDD. Further let w: V — N U {0}
be a weight function, where N is the set of all positive integers. For each B €
B, suppose there exists a (k,XN')-NDGDD of type {w(z) : z € B} and of form
Mocnck-1 (W™, Aa)™, (UzenS(x), {S(z) : © € B}, Bp), where S(z) = {21, ., Zuy(z)}
for every x € V and Bg is the collection of blocks of this NDGDD. Then there exists
a (k, AX')-NDGDD of type {3 seq w(z) : G € G} and of form Macncp—1(ni™, AN, ),
(Uxevs(m)’ {UxEGs(m) G e g}: UBEBBB)'

As an immediate consequence, the following corollary can be obtained. Recall
that a pairwise balanced design (or PBD) B(K, A;v) can be regarded as a (K, \)-
GDD of type 1°. A set K of positive integers is said to be PBD-closed if B(K) = K,
where B(K) = {v: a B(K, 1;v) exists}.

Corollary 2.2 [10]. Let NDB(k, A\, F) = {v : an NDB(k, \;v) of form F exists}.
Then the NDB(k, A, F') is a PBD-closed set.

We also need the following construction.

Theorem 2.3 [11]. Let (V,G,B) be a (k,\)-NDGDD of form F. Further let Gy be
a set of new elements, that is, GoN'V = ¢, and suppose that for each group G € G,
there ezists a (k, \)-NDGDD of form F, (GU Gy, Hg U{Gq}, Bg), where Hg is the
set of groups without Go and Bg 1is the collection of blocks of this NDGDD. Then
there ezists a (k, \)-NDGDD of form F, (VUGo, (UgegHa) U{Go}, BU(UgegBg)).

3. A construction from directed frames

Let (V,G, B) be a ({k}, A)-DGDD. If the collection B of blocks can be partitioned
into partial parallel classes each of which partitions V — G for some G € G, it is said
that this DGDD is a directed frame, denoted by (k, A)-directed frame. The type of
the directed frame is the type of the underlying DGDD.

Directed frames can be used to construct NDBIBDs.

Theorem 3.1. The existence of a (k, \)-directed frame of type g* implies the exis-
tence of a (k+1, bﬂ;—l)-NDGDD of type g* and of form (k, %)1 when A is a factor of

(k=1)/2, or a (k+1, A—%—%)-NDGDD of type g* and of form (k,\)* when (k—1)/2
s a factor of \.
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Proof. It is easy to show that for each group of a (k, A)-directed frame of type g*,
(V,G, B), there are 2Ag/(k — 1) partial parallel classes associated with it.

(I) When ) | (k—1)/2,1et (k—1)/2 = s\, s € N. Then there are g/s partial paral-
lel classes, say, P, 1 < < g/s, associated with the group G for all & € G. For each
block B = (by, ..., bx) of a partial parallel class Pg; with G = {z1,...,z,} we form s
new blocks Bl = ((bl, ey bk), $(i—l)3+l)7 ey BS = ((bh ey bk), .’Eis). Then (V, Q, B,)
with B = {((b1, ..., b), Ti—1)s45) 0 =1,...,9/s;5=1,...,8; (b1,...,b) € Pay;
G € G}isa (k+1,52)-NDGDD of type g* and of form (k, ’—“;-1)1

(I1) When (k — 1)/2 | A, let A = {(k —1)/2}t, t € N. Then there are tg
partial parallel classes, say, Qgi, 1 < @ < tg, associated with the group G =
{z1,...,24} € G. For each block B = (by,...,by) of the t partial parallel classes
Q6 in-1)t+15-- > Qamt, # = 1,..., g, a new block ((by,...,bx), ) is formed. Then
(V,G,B") with B" = {((b1,...,bx),zn) :n=1,...,9; (b1,...,b) € U§:1QG,(n—1)t+j
;Geglisa(k+1,A+ %)-NDGDD of type g* and of form (k, \)!. |

A (k, M)-directed frame of type 1” can be named as an almost resolvable directed
BIB design (or ARDBIBD) ARDB(k, A;v). In fact, an ARDB(k, X;v) (V,B) is a
DB(k, A\;v) in which the collection of blocks can be partitioned into partial parallel
classes each of which partitions V — {z} for some T €V

It is easy to show that in the ARDB(k, A;v), A = {(k — 1)/2}m for some integer
meN.

Corollary 3.2. Let m € N. Then the ezistence of an ARDB(k, 55tm;v) implies

the eistence of an NDB(k + 1, &2m; v) of form (k, 55tm)*.

Recall that an almost resolvable BIB design (or ARBIBD) ARB(k, A;v) is a BIB
design B(k, A;v) in which the collection of blocks can be partitioned into partial
parallel classes each of which partitions V — {z} for some z € V. It follows that the
existence of an ARB(k, A; v) implies the existence of an ARDB(k, A;v). In fact, by
assigning to each block of the ARB(k, A\;v) two new blocks, one in some arbitrary

but fixed order which is imposed on the elements of each block and one in the reverse
order, an ARDB(k, A; v) is obtained.

Corollary 3.3. Let m € N. Then the ezistence of an ARB(k, (k — 1)m;v) implies
the ezistence of an NDB(k + 1, (k + 1)m;v) of form (k, (k — 1)m)*.

The existence problem of ARBIBDs has been extensively discussed in [7]. The
results contained there can then be utilized to construct many such NDBIBDs.

4. A construction from idempotent MOLS

A Latin square of order v based on a set V of v elements is a v X v array such
that each row and each column contains each element of V exactly once. Two Latin
squares, A = (a;;) and B = (b;;) on V, are said to be orthogonal if {(ai;,b;;) : 1 <,
j < v} =V x V. Without loss of generality, we may assume V = {1,2,...,v}. A
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Latin square on V is said to be idempotent if the (i,4)-entry is ¢ for all4, 1 <7 < w.
The ¢ idempotent Latin squares Ay, . .., A; of order v are called ¢ mutually orthogonal
idempotent Latin squares if A; and A; are orthogonal for all 4, j, 1 <4 < j <, and
are denoted by t idempotent MOLS(v).

The existence of ¢ idempotent MOLS(v) has been studied extensively. For exam-
ple, the following result can be found in [1].

Theorem 4.1 [1]. For any integer v > 5, v # 6, 10, there exist 3 idempotent
MOLS(v).

This concept can be utilized to construct NDBIBDs as follows.

Theorem 4.2. The existence of k — 2 idempotent MOLS(v) implies the existence of
an NDB(k, ﬂ%‘—ﬁ; v) of form Hgsngk_l(nj",jnﬂ%—l—l)i" for any possible integers n, j,
and 'Ln such that 22511516—1 annn S k.

Proof. Let V = {1,2,...,v}. Take k — 2 idempotent MOLS(v) based on V, 4; =
@), ..., Apz = (@l ™) for 1 < i, j < v, where 1 < af <v,1<£< k-2 Let
B={(i,j,a}},...,ay™) 1 1 <4, j <v,i# 35} Then (V,B) is a DB(k, =Ly,
Divide each block of B into Y g«p<k—1 injn mutually disjoint subblocks, such that i,j,
of them are partitioned into 4, mutually disjoint families of j, subblocks of size n,
the j, subblocks of size n belong to one distinguished system B,(¢), 1 < £ < 1,,, and
that (V, B, (£)) forms a DB(n,jnm{—ll; v) for all integers n and £ with 1 < £ < 1,,.
This completes the proof. ]

5. A construction from the method of differences

The method of differences is the most commonly used direct construction tech-
nique. Here we describe a construction based on this technique, which is an extension
of [14].

Theorem 5.1. Let S be a 5-subset of GF(q), and 6 be a primitive element of GF(q),
g > 3. If S can be arranged so that the 10 ordered differences of S contain 5 squares
and 5 non-squares, then the base blocks S,6%S,...,0973S form a DB(5,5;q). Fur-
thermore,

(1) if there exists a 4-subset Ty of the arranged S so that the 6 ordered differ-
ences of Ty contain 3 squares and 3 non-squares, then the DB(5,5; q) gives an
'NDB(5,5;q) of form (4,3)%;

(2) if there exist two mutually disjoint 2-subsets Ty, Ty of the arranged S so that the
2 ordered differences of Ty and T} contain 1 square and 1 non-square, then the
DB(5,5;q) gives an NDB(5,5; q) of form (22,1)%.

The proof of this theorem is straightforward.
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6. Construction of NDB(4, A; v)

As pointed out in Section 1, the necessary conditions (1.1) for the existence
of an NDB(4, X;v) of any possible form are also sufficient, except possibly for an
NDB(4, 2; 10) of form (3,1)*. This possible exception will be removed.

At first we need an almost resolvable directed BIB design below.

Lemma 6.1. There exists an ARDB(3, 1;10).

Proof. Let V = Zs x Z5 and B be the development of the following base blocks
modulo (5, -). '

((170)’(07 0)’(37 0))’ ((27 ]‘))(3’ 1)’ (2’0))’ ((4’0)7 (171)’(4’1))?
((1’0)’(41 1)7(270))’ ((27 1)7 (1’1)7(370))7 ((4?0)7(371)7(07 1))

It is readily checked that (V, B) is an ARDB(3, 1; 10), where the first three base blocks
form a partition of V — {(0,1)}, and the last three base blocks form a partition of
v -{(0,0)}: O

Theorem 6.2. There exists an NDB(4, 2; 10) of form (3,1)'.

Proof. Apply Corollary 3.2 with Lemma 6.1. )

Thus we can show the entire existence of nested directed BIB designs of block
size 4 as follows.

Theorem 6.3. The necessary conditions (1.1) for the ezistence of an NDB(4, X; v)
of any possible form are also sufficient.

Proof. Take Theorems 1.1 and 6.2. 0

7. Construction of NDB(5, X;v) of form (4, \,)*

It is clear that the necessary conditions (1.1) for the existence of an NDB(5, A; v)
of form (4, \)* are v > 5, Ay = 3t, A = 5t and ¢(v — 1) = 0 mod 2 for some positive
integer ¢. It will be shown that they are also sufficient.

Theorem 7.1. The exzistence of an NB(k, \;v) of form F implies the ezistence of
an NDB(k, A;v) of form F.

Proof. For each block {zy,...,zx} of an NB(k, A; v) of form F, define two new blocks
(z1,...,7%) and (g, ...,z1). Then these new directed blocks form the collection of

blocks of an NDB(k, A; v) of form F'. O

Corollary 7.2. There erists an NDB(5, 5t;v) of form (4,3t)! whenever v > 5 and
tlv—1)=0mod 4 fort € N.
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Proof. Wang and Zhu [15] constructed all of these NB(5,5¢;v) of form (4, 3t)*.
Apply Theorem 7.1. 0

Now we use DBIBDs to produce NDBIBDs.

Theorem 7.3. The ezistence of a DB(5, t;v) implies the ezistence of an NDB(5, 5t; v)
of form (4, 3t)'.

Proof. For each block {a,b,c,d,e) of an DB(5,¢; v), define five new blocks:
(a,b,c,d.e), (a,b,cde), (abcde), (abecde) (abede),

where the elements underlined with “” within a block form a subblock. Then these
new blocks can form the collection of blocks of an NDB(5, 5¢; v) of form (4, 3¢)*. O

Corollary 7.4. There ezists an NDB(5,5t;v) of form (4,3t)' whenever v > 5,
(v,t) # (15,1), t(v — 1) = 0 mod 2 and tv(v — 1) = 0 mod 10 fort € N.

Proof. When v and ¢ satisfy the stated conditions, there exists a DB(5,¢;v) (see
[14]). Then apply Theorem 7.3. O

By an argument similar to those for Theorem 7.3 and Corollary 7.4, we have the
following.

Theorem 7.5. The ezistence of a ({5},t)-DGDD of type T' implies the existence of
a (5,5t)-NDGDD of type T and of form (4, 3t)".

Corollary 7.6. There ezist (5,5)-NDGDD of types 2° and 26, and of form (4,3)'.

Proof. The ({5},1)-DGDD of types 2° and 2¢ can be found in [14]. O
Furthermore, we have the following.

Lemma 7.7. There ezists a (5,5)-NDGDD of type 27 and of form (4, 3)".

Proof. Let V = Zy, x Z7, G = {Zy x {i} : 1 € Z}, and B be the development of the

following base blocks modulo (2,7), where the elements underlined with “” within
a block form a subblock:

((0,0),(6,1),(0,6),(1,3), (1, 4)),
((0,0),(0,4),(0,3), (1,2), (1,5)),
((0,0),(0,5),(0,2), (1,6), (1, 1)),
((1,0),(0,1),(0,6), (0,3), (0,4)),
((1,0),(0,4), (0,3), (0,2), (0, 5)),
((1,0),(0,5), (0,2), (0,6), (0,1))




Theorem 5.1 can also be used to produce some useful NDBIBDs.

Lemma 7.8. There exists an NDB(5, 5;q) of form (4,3)', where g € {7, 19, 23, 27,
43, 47, 83}.

Proof. Suitable orderings for S and 7y in Theorem 5.1 are listed below:

q=7, 6=3 S =(1,3,2,6,4), =(1,3,2,6);
g=19, =2, S =(1,2,4,16,8), = (2,4, 16, 8);
q=23, =5, S = (1,5,10,2,4), = (1,5,10,2);
q=27, #¥=60+2, S= (1,0,020+2 6% + 26), (1,929+2 62 + 26);
g=43, 0=3, S =(1,3,27,9,38), 4 = (1,3,27,9);
q=47, =75, S =(1,5,25,31,14), 4 = (5, 25,31, 14);
g=83, =2, S =(1,2,4,8,16), T, = (1,2, 4, 16).
Then apply Theorem 5.1(1). |

A ({k}, \)-GDD of type g* is called a transversal design, denoted by TD(k, ; g).

Theorem 7.9. Let 0 < s, t < g. Suppose there exists a TD(7,1;g). If there exist
NDB(5,5;u) of form (4,3)* for u = 2g + 1, 2s + 1, 2t + 1, then there exists an
NDB(5,5;v) of form (4,3)' with v = 10g + 25 + 2t + 1.

Proof. Delete g — s elements and g — ¢ elements from two groups of the TD(7,1; g)
respectively. Give weight 2 to each element of the resulting ({5, 6,7}, 1)-GDD of
type g°s't!. Since Corollary 7.6 and Lemma 7.7 give (5,5)-NDGDD of types 25, 26
and 27, and of form (4, 3)!, by applying Theorem 2.1 we get a (5,5)-NDGDD of type
(29)%(2s)*(2t)" and of form (4,3)'. Applying Theorem 2.3 with |G| = 1, the desired
NDBIBD is obtained. 0

Corollary 7.10. There exists an NDB(5, 5;v) of form (4,3)!, where v €{99, 107,
119, 139, 143, 179, 183, 283}.

Proof. Applying Theorem 7.9 with ¢ = 8, 9, 11, 16 and 23 (see [1] for their
existence), we have the required result, since 99 = 10-8+2-5+2-4 + 1, 107 =
10-84+2-842-5+1,119=10-94+2-942-5+1,139=10-11+2-94+2-5+1,
143 =10-114+2-8+2-8+1,179=10-164+2-5+2-44+1,183 = 10-16+2-64+2-5+1
and 283 =10-23+2-13+2-13 + 1. a

Theorem 7.11. Let 0 < s < g. Suppose there exists a TD(6,1;g). If there erist
NDB(5, 5;u) of form (4,3) for u = 29+ 1, 2s+ 1, then there exists an NDB(5, 5; v)
of form (4,3)! with v = 10g + 25 + 1.

Proof. Delete g — s elements from one group of the TD(6,1;¢g). Give weight 2 to
each element of the resulting ({5,6},1)-GDD of type g°s'. Since Corollary 7.6 gives
(5,5)-NDGDD of types 2° and 2%, and of form (4, 3)!, by applying Theorem 2.1 we
get a (5,5)-NDGDD of type (2¢)°(2s)! and of form (4, 3)*. Then apply Theorem 2.3.

O
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Corollary 7.12. There ezxists an NDB(5,5;v) of form (4,3)!, where v €{59, 87,
167, 243, 563}.

Proof. Apply Theorem 7.11 with g = 5, 8, 16, 23 and 55 (see [1]), where 59 =
10-54+2-4+1,87=10-8+2-34+1,167=10-16+2-34+1,243 =10-23+2-6+1
and 563 = 10-55+2-6+ 1. O

Lemma 7.13. There exists an NDB(5,5;39) of form (4,3)".

Proof. Bennett et al. [4] showed the existence of a ({5,7},1)-DGDD of type 1%.
For each block (a, b, ¢, d, ) of size 5, define five new blocks: (a,b,¢, d,e), (a,b,¢,d,e),
(a,b,¢,d,¢e), (a,b,¢,d, €), (a,b,¢,d, e), where the elements underlined with “” within
a block form a subblock. For the block of size 7, we fill in with an NDB(5, 5;7) of
form (4,3)'. Then the resulting design is an NDB(5, 5; 39) of form (4, 3). O

Lemma 7.14. There exists an NDB(5,5; 15) of form (4, 3)*.

Proof. The design is given below: V = Zi5, B = {(0,1,2,3,4), (0,1,3,5,8),
(0)37271—37 .1_1)7 (07§7E7LQ75.)1 (Q,Q; 9,,6;5_), (Q,lz_,ll_,@, 5), (Q 13,11 Z, 6) mod 15}

) ==) ==
]

Now we can state the following.

Theorem 7.15. Let v > 5 be odd. Then all NDB(5,5t;v) of form (4, 3t)* exist for
any positive integers t.

Proof. First we consider the case where t = 1. Bennett et al. [2] showed that
B({5,7,9}) 2 (2N +1) — E, where E = {11, 13, 15, 17, 19, 23, 27, 29, 31, 33, 39,
43, 51, 59, 71, 75, 83, 87, 93, 95, 99, 107, 111, 113, 115, 119, 131, 135, 139, 143,
167, 173, 179, 183, 191, 195, 243, 283, 411, 563}. Since there exist NDB(5, 5;v) of
form (4,3)* for v = 5,7,9 (see Corollary 7.2 and Lemma 7.8), by applying Corollary
2.2, we need only to construct NDB(5, 5;v) of form (4, 3)! for v € E. Corollary 7.2
settles the cases for v = 13, 17, 29, 33, 93, 113, 173. Corollary 7.4 covers the cases
for v = 11, 31, 51, 71, 75, 95, 111, 115, 131, 135, 191, 195, 411. Lemma 7.8 covers
the cases for v = 19, 23, 27, 43, 83. The remaining 15 cases are settled by Corollaries
7.10 and 7.12, and Lemmas 7.13 and 7.14. Thus all NDB(5, 5; v) of form (4, 3)! are
constructed for v odd > 5.

Next take each block of an NDB(5, 5;v) of form (4, 3)! ¢ times. Then it follows
that an NDB(5,5¢;v) of form (4,3t)! is obtained whenever v is odd > 5. This
completes the proof. O

On the other hand, when v is even, the following can be obtained.

Theorem 7.16. Let v > 5 be even. Then all NDB(5, 10s;v) of form (4,6s)! ezist
for any positive integers s.
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Proof. Theorem 4.1 with Theorem 4.2 can cover all the cases except for v = 6 and
10, which can be removed by Corollary 7.4. 0O

As a summary, we have the following main result of this section.

Theorem 7.17. The necessary conditions (1.1) for the existence of an NDB(5, A; v)
of form (4, M) are also sufficient.

Proof. The sufficiency follows from Theorems 7.15 and 7.16. O

8. Construction of NDB(5, A; v) of form (3, A;)*(2, A.)*
In this case, the necessary conditions (1.1) become v > 5, A = 10A; and A3 = 3XA,.

Lemma 8.1. There ezist an NDB(5,10;6) and an NDB(5, 10; 10), both of form
(3,3)'(2, ). '

Proof. An NDB(5, 10;6) of form (3, 3)}(2,1)! is given below:

V= Z5 U {OO},
B = { (Q: .1_$.2.7 é)é)) (%7 53_: .27_1_) Q)) (.Zl) _2.9.1_.; Q)g)7

(;727@a§34)7 (9974_)37270)7 (4;;:;:6799) m0d5}a

where the elements underlined with “” and “_" within a block form a subblock of size
3 and of size 2 respectively. An NDB(5,10;10) of form (3,3)(2,1)! is constructed
below:

V = GF(9) U {0},

B={(1,2,020+1,0+2), (1,200,20+160+2), (1,2,00,20+1,0+2),
(1,2,0,20+1,0+2), (1,200,20+1,0+2), (0,21,0+2,20+1),
0,2,1,0+2,204+1), (0,2,1,6+2,20+1), (0,2,1,0+2,20+1),
(0,21,0+2,20+1) mod9},

where 0 is a primitive element of GF(9) satisfying 6 = 26 + 1. ]

Theorem 8.2. There ezists an NDB(5,10;v) of form (3,3)'(2,1)! forv > 5.

Proof. Theorem 4.1 with Theorem 4.2 covers all the cases except for v = 6 and 10,
which are constructed in Lemma 8.1. O

Hence we have the following.

Theorem 8.3. The necessary conditions (1.1) for the ezistence of an NDB(5, \;v)
of form (3, A3)1(2, X2)! are also sufficient.

Proof. Repeat each block (and thus each subblock) of an NDB(5,10;v) of form
(3,3)1(2, 1) A; times. m|
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9. Construction of NDB(5, A; v) of form (2, X,)?
Here the necessary conditions (1.1) are that v > 5 and A = 10X,.

Lemma 9.1. There exist an NDB(5,10;6) and an NDB(5,10;10), both of form
(2,1)2.

Proof. An NDB(5, 10;6) of form (2,1)? is obtained below:

V“‘Zﬁ,
B={(01234), 01

=]
-
o
Qo

:a4)7 (45.3_»___2:);1_"0)7 (4);-)—27;70)7 (571 3,0 é) mod 6})

EXROIR )

where the elements underlined with “.” and “” within a block form a subblock
respectively. An NDB(5, 10;10) of form (2,1)? is given below:

V = GF(9) U {c0},

B=1{(1,2002041,0+2), (L200,20+1,0+2), (1,2,00,20+1,6+2),
(1,2,00,20+1,0+2), (1,2,00,20+1,0+2), (0,2,1,0+2,20+1),
0,2,1,0+2,20+1), (0,2,1,0+2,20+1), (0,2,1,6+2,20+1),
(0,2,1,0+2,20+1) mod9}

where 6 is a primitive element of GF(9) satisfying 62 = 26 + 1. O

Theorem 9.2. There exists an NDB(5,10;v) of form (2,1)? for v > 5.

Proof. Theorem 4.1 with Theorem 4.2 covers all the cases except for v = 6 and 10,
which are constructed in Lemma 9.1. a

Therefore we have the following.

Theorem 9.3. The necessary conditions (1.1) for the ezistence of an NDB(5, A; v)
of form (2, A2)? are also sufficient.

Proof. Repeat each block (and thus each subblock) of an NDB(5,10;v) of form
(2,1)% Xy times. o
10. Construction of NDB(5, A; v) of form (22, A,)*

Now the necessary conditions (1.1) are that v > 5, A = 5A; and A(v — 1) =
0 mod 2. We first consider the case Ay = 0 mod 2.

Theorem 10.1. The ezistence of an NDB(5,10¢;v) of form (2,)? implies the exis-
tence of an NDB(5,10t;v) of form (22,2t)! for anyt € N.

Proof. Combine the two sub-systems of an NDB(5, 10¢; v) of form (2,¢)? into one.
]
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Corollary 10.2. There ezists an NDB(5, 5)g;v) of form (2%, A2)! whenever v > 5
and Ay = 0 mod 2.

Proof. Apply Theorem 10.1 with Theorem 9.2. Then repeat each block (and thus
each subblock) A2/2 times. O

Next we consider the case Ao = 1 mod 2. Then the necessary conditions further
become that v be odd > 5 and A = 5.

Theorem 10.3. There ezists an NDB(5,5)y;v) of form (22, X2)! whenever v > 5
and Xp(v — 1) =0mod 4 for Ay e N.

Proof. Apply Theorem 7.1, where all the NB(5, 5),;v) of form (22, ;)" have been
constructed in [9]. ]

Theorem 10.4. The ezistence of a ({5}, A2)-DGDD of type T implies the existence
of a (5,5X)-NDGDD of type T and of form (22, \y)".

Proof. For each block (a,b,¢c,d,e) of a ({5}, X2)-DGDD of type T, define five new

blocks:
(g«_, _b_7 g: dvg)) (Q, Q} G, g—, 6), (Q; Q: C,d, 2)5 (G, b ¢, d 6)7 (a7ba G, Q, 2),

3=y =

which can produce a (5,5X;)-NDGDD of type T and of form (2% X3)!, where the
elements underlined with “” and “ within a block form a subblock respectively,
both of them belonging to the same system. O

Since a DB(5, \; v) can be regarded as a ({5}, A)-DGDD of type 1°, we have the
following.

Theorem 10.5. There exists an NDB(5, 5g;v) of form (22, X)* whenever v > 5,
(v, Xa) # (15,1), Ma(v — 1) = 0 mod 2 and Apv(v — 1) = 0 mod 10 for A, € N~

Proof. The DB(5, Ay;v) can be found in {14]. Then apply Theorem 10.4. o
Lemma 10.6. There ezist (5,5)-NDGDD of types 2°, 25 and 27, and of form (2%, 1)*.

Proof. The first two designs can be obtained by applying Theorem 10.4, where the
corresponding ({5}, 1)-DGDD of types 2° and 2° are constructed in [14]. The third
design is given below:

V= Zy X Zy, G ={Zyx {i}:1 € Zy},
((0,0), (0,1),(0,6), (1,3), (1,4)), )
((0,0,(0,4),(0,3), (1,2), (1,5)),

(0,0),(0,5), (0,2),(1,6), (1, 1)),

5= (00, (0,1, (0,6). (0,3), (0,4)),
((1,0),0,1), 0,3), (0,2), 0,5)),
L ((170)7(075)7( ) )7(:_7:__1__2) mod (2?7) ]
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Lemma 10.7. There exists an NDB(5,5;q) of form (22,1)!, where ¢ € {7, 19, 23,
27, 43, 47, 83}.

Proof. Apply Theorem 5.1(2) with the suitable orderings for S and T3, T} as follows.

q=1 0=3, S =(1,3,2,6,4), Ty = (1,3), T4 = (6,4);

g=19, =2, 5 =(1,2,4,16,8), Ty = (2,4), T4 = (16,8);

q=23, 6=5, S =(1,5,10,2,4), Ty = (1,5), T4 = (10,2);

q=27, ¥ =0+2, S=(1,6,02,0+2,0>+20), To=(1,0), T5=(0+2,6%+20);
g=43, 0=3, S =(1,3,27,9,38), Ty =(1,3), T4 =(27,9);

q=47, 6 =5, S =(1,5,25,31,14), Ty =(1,5), Th=(31,14);
¢=83, 6=2 S =(1,2,4,8,16), T, = (1,4

), T3 =(2,8).

Since Lemma 10.6 gives (5,5)-NDGDD of type 2%, 26 and 27, and of form (22, 1)},
we have the following by arguments similar to those for Theorems 7.9 and 7.11, and
Corollaries 7.10 and 7.12.

Theorem 10.8. Let 0 < s, t < g. Suppose there exists a TD(7,1;g). If there exist
NDB(5,5;u) of form (22,1)* for u = 29+ 1, 2s + 1, 2t + 1, then there exists an
NDB(5, 5;v) of form (2%,1)* wzth v=10g + 25 + 2t + 1.

Theorem 10.9. Let 0 < s < g. Suppose there exists a TD(6,1;g). If there exist
NDB(5, 5; u) of form (22,1)! foru = 2g+1, 2s+1, then there exists an NDB(5, 5; v)
of form (2%, 1) with v = 10g + 2s + 1.

Corollary 10.10. There ezists an NDB(5,5;v) of form (22,1)!, where v € {59, 87,
99, 107, 119, 139, 143, 167, 179, 183, 243, 283, 563}.

Lemma 10.11. There exists an NDB(5,5;39) of form (22, 1),
Proof. For each block (a,b, ¢, d,e) of a ({5,7},1)-DGDD of type 13 (see [4] for the
existence), define five new blocks: (a,b,¢,d,¢), (a,b,¢,d,e), (¢, b, ¢,d, e), (a,b, ¢, d, e),
(a,b,¢,d, €), and for the block of size 7 of this DGDD, fill in with an NDB(5, 5;7) of
form (2%,1)% O
Lemma 10.12. There ezists an NDB(5,5;15) of form (2%,1).

Proof. The design is given below: V = Zy5, B = {(14,11,4,1,0), (8,2,13,7,0),
(1,4,11,14,0), (7,13,2,8,0), (0,1,4,2,8), (9,1,4,6,0), (12,10,9,3,6) mod 15}. O

Then we have the following by an argument similar to that for Theorem 7.15.

Theorem 10.13. Let v > 5 be odd. Then all NDB(5,5)z;v) of form (22, \)! exist
for A > 1.
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Proof. By Theorem 10.3, Lemma 10.7 and Corollary 2.2, it suffices to show the
existence of NDB(5, 5;v) of form (22,1)! for v € E, where E is the same set as in
the proof of Theorem 7.15. Theorem 10.3 settles the cases for v = 13, 17, 29, 33,
93, 113, 173. Theorem 10.5 covers the cases for v = 11, 31, 51, 71, 75, 95, 111, 115,
131, 135, 191, 195, 411. Lemma 10.7 covers the cases for v = 19, 23, 27, 43, 83.
The remaining 15 cases are settled by Corollary 10.10, and Lemmas 10.11 and 10.12.
Thus all NDB(5, 5; v) of form (22,1)! are constructed for v > 5. Then by taking each
block and subblock of an NDB(5, 5;v) of form (22,1)} A, times, an NDB(5, 5)2; v)
of form (2%, Ay)* is obtained whenever v is odd > 5. o

Combining conditions (1.1), Corollary 10.2 and Theorem 10.13, we can establish
the following.

Theorem 10.14. The necessary and sufficient conditions for the existence of an
NDB(5, \;v) of form (2%, X2)! are that v > 5, X = 5Xy and Aa(v — 1) =0 mod 2.

11. Main Result

Theorem 11.1. The necessary conditions (1.1) for the existence of an NDB(k, A; v)
of any possible form are also sufficient for k = 3, 4 and 5.

Proof. The existence of an NDB(5, \;v) of form (3, 3)'(2, A2)" can imply the ex-
istence of an NDB(5, \;v) of form (3, A3)!, and the existence of an NDB(5, A; v) of
form (2, A2)? can imply the existence of an NDB(5, A;v) of form (2, A2)'. Hence,
combining the results as in Sections 6 to 10 and as in [10], the proof is completed. O

Acknowledgements

Miao was supported by a Post-Doctoral Fellowship from the Centre Interuni-
versitaire en Calcul Mathématique Algébrique. Miao would also like to express his
gratitude to Professor Clement Lam for his kind support. A portion of this work was
carried out while Miao was a visiting scholar at the Faculty of School Education of
Hiroshima University. The kind hospitality was gratefully acknowledged. Kageyama
was supported by Grant-in-Aid for International Scientific Research (Joint Research)
09044088 and by Grant-in-Aid for Scientific Research (C) 09640272. The authors are
thankful to the referee for his suggestions to improve the readability of the paper.

References

[1] R.J. R. Abel, A. E. Brouwer, C. J. Colbourn and J. H. Dinitz, Mutually orthog-
onal Latin squares (MOLS), In: C. J. Colbourn and J. H. Dinitz eds., The CRC
Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996, 111-142.

171




[2] F. E. Bennett, C. J. Colbourn and R. C. Mullin, Quintessential pairwise balanced
designs, J. Statist. Plann. Inference, to appear.

[3] F. E. Bennett and A. Mahmoodi, Directed designs, In: C. J. Colbourn and J. H.
Dinitz, eds., The CRC Handbook of Combinatorial Designs, CRC Press, Boca
Raton, 1996, 317-321.

[4] F. E. Bennett, N. Shalaby and J. Yin, Ezistence of directed GDDs with block
size five, preprint.

[5] F. E. Bennett, R. Wei, J. Yin and A. Mahmoodi, Ezistence of DBIBDs with
block size siz, Utilitas Math. 43 (1993), 205-217.

[6] C. J. Colbourn and A. Rosa, Directed and Mendelsohn triple systems, In: J. H.
Dinitz and D. R. Stinson, eds., Contemporary Design Theorey: A Collection of
Surveys, Wiley, New York, 1992, 97-136.

[7] S. Furino, Y. Miao and J. Yin, Frames and Resolvable Designs: Uses, Construc-
tions, and Existence, CRC Press, Boca Raton, 1996.

[8] S.H.Y. Hung and N. S. Mendelsohn, Directed triple systems, J. Combin. Theory,
Ser. A 14 (1973), 310-318.

[9] S. Kageyama and Y. Miao, Nested designs with block size five and subblock size
two, J. Statist. Plann. Inference 64 (1997) 125-139.

[10] S. Kageyama and Y. Miao, Nested directed BIB designs with block size three or
four, J. Indian Soc. Agricult. Statist. 49 (1996-1997) 99-110.

[11] Y. Miao, Construction of Block Designs with Resolvablity or Nested Structure,
D. Sc. Thesis, Hiroshima University, Japan, 1997.

[12] J. Seberry and D. Skillicorn, All directed BIBDs with k = 3 exist, J. Combin.
Theory, Ser. A 29 (1980), 244-248.

[13] D. J. Street and J. Seberry, All DBIBDs with block size four exist, Utilitas Math.
18 (1980), 27-34.

[14] D. J. Street and W. H. Wilson, On directed balanced incomplete block designs
with block size five, Utilitas Math. 18 (1980) 161-174.

[15] J. Wang and L. Zhu, Doubly nested triple systems and nested B[4,3)\;v], J.
Combin. Math. Combin. Comput. 9 (1991) 129-140.

(Received 25/8/97)

172




