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Abstract 

A directed BIB design DB(k, A; v) is a BIB design B(k, 2A; v) in which the 
blocks are transitively ordered k-tuples and each ordered pair of elements 
occurs in exactly A blocks. A nested directed BIB design NDB(k, A; v) 
of form IT2<n<k-l(njn, An)in is a DB(k, A; v) where each block contains 
E2<n<k-l injn mutually disjoint subblocks, injn subblocks of which are 
partitIoned into in mutually disjoint families of jn subblocks of size nand 
the jn subblocks of size n belong to one distinguished system which forms 
the collection of blocks of a DB(n, An; v). In this paper we will use known 
and new techniques to show the existence of all NDB(k, A; v) of the form 
IT2SnSk-l (n jn , An)in for k = 4 and 5. 
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1. Introduction 

A balanced incomplete block (BIB) design (or BIBD) B(k, A; v) is a pair (V, 8) 
where V is a set of v elements, B is a collection of k-subsets, called blocks, of V such 
that every pair of distinct elements of V occurs in exactly A blocks of B. 

Hung and Mendelsohn [8] first introduced the concept of directed BIB designs. 
These designs have been further studied since then, see, for example, Bennett and 
Mahmoodi [3], Bennett, Wei, Yin and Mahmoodi [5], Colbourn and Rosa [6], Seberry 
and Skillicorn [12], Street and Seberry [13], Street and Wilson [14]. A directed BIB 
design (or DBIBD) with parameters v, k and A, denoted by DB(k, A; v), is a pair 
(V, B) where V is a set of v elements and B is a set of transitively ordered k-tuples, 
called blocks, of V, such that every ordered pair of elements of V appears in exactly 
A blocks of B, where a transitively ordered k-tuple (Xl, ... ,Xk) is defined to be the 
set {(Xi, Xj) : 1 :::; i < j :::; k} consisting of k(k - 1) /2 ordered pairs. If we ignore the 
order in the blocks, a DB(k, A; v) becomes a B(k, 2\ v). In fact, a DB(k, A; v) is a 
B(k, 2A; v) in which the blocks are regarded as transitively ordered k-tuples and in 
which each ordered pair of distinct elements occurs in eactly A blocks. A pair {x, y} 
is said to occur in a block if X is written to the left of y. 

A nested BIB design (or NBIBD) NB(k,A;V) of form II2<n<k-l(njn , An)in is a 
B(k, /\; v) (V, B) where each block contains L2<n<k-1 injn m~t~ally disjoint sub­
blocks, injn subblocks of which are partitioned -into in mutuaily disjoint families 
of jn subblocks of size n, and the jn subblocks of size n belong to one distinguished 
system Bn (f!), 1 :::; £ :::; in, such that (V, Bn (£)) forms a B (n, An; v) for each integer n 
with in ~ 1. 

A nested directed BIB design (or NDBIBD) NDB(k, A; v) of form n2~n~k-1 
(njn

, An)in is a DB(k, A; v) (V, 8) where each block contains L2<n<k-l injn mutually 
disjoint subblocks, injn subblocks of which are partitioned into -in- mutually disjoint 
families of jn subblocks of size n and the jn subblocks of size n belong to one distin­
guished system Bn (£), 1 :::; £ :::; in, such that (V, Bn ( £)) forms a DB (n, An; v) for each 
integer n with in ~ 1. 

An example of an NDBIBD is illustrated. As a set of 10 elements let V = ZgU{ oo} 
and as a collection of 4-subsets of V take 

where the elements underlined "_" and "_" within a block form two subblocks be­
longing to the same system DB(2, 1; 10).- Then (V, B) is an NDB(4, 3; 10) of form 
(22, 1)1. 

The following necessary conditions for the existence of an NDB(k, A; v) of form 
n2~n~k-1 (njn , An)in have been established in [10]: For all integers n with in ~ 1, 
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A = k(k - 1) ( An )" 2A(V 1) == 0 mod (k - 1), 
n n - 1 In 

2AV(V - 1) == 0 mod k(k 1), 2An(v - 1) == 0 mod (n - 1), 
(1.1) 

2AnV(v - 1) == 0 mod n(n - 1). 

Nested directed BIB designs with parameters satisfying (1.1) are said to be ad­
missible. All admissible NDBIBDs with block sizes 3 and 4 are constructed in [10] 
except possibly for an NDB(4, 2; 10) of form (3,1)1 as the following shows. 

Theorem 1.1 [10]. The necessary conditions for the existence of an NDB(k, A; v) 
of any possible form are also sufficient for k = 3 and 4 with one possible exception: 
an NDB( 4,2; 10) of form (3,1)1. 

The purpose of this paper is to show the existence of an NDB( 4,2; 10) of form 
(3,1)1 and all admissible NDBIBDs with k = 5 by using known and new techniques. 

In Sections 2 to 5, some constructions of NDBIBDs will be introduced. In Section 
6, the existence of an NDB(4, 2; 10) of form (3,1)1 will be shown. 

There are six possible forms for an NDB(5, A; v), i.e, (4, A4)1, (3, A3)1(2, A2)1, 
(3, A3)1, (2, A2)2, (2, A2)1, (22, A2)1. However, since the existence of an NDB(5, A; v) of 
form (3, A3)1(2, A2)1 implies the existence of an NDB(5, A; v) of form (3, A3)1 and the 
existence of an NDB(5, A; v) of form (2, A2)2 implies the existence of an NDB(5, A; v) 
of form (2, A2)1, the designs of the remaining four forms will be treated in each of 
Sections 7 to 10, i.e. the existence of NDB(5, A; v) of form (4, A4)1, (3, A3)1(2, A2)1, 
(2, A2)2 and (22, A2)l, 

The main result of this paper will be given in the last section. 

2. Constructions from GDD 

Let V b~ a set of v elements, 0 be a partition of V into subsets, called groups, 
and B be a collection of some subsets of V, called blocks. A group divisible design 
(or GDD) (K, A)-GDD is a triple (V, 0, B) such that 

(i) IBI E K for every B E B ; 

(ii) IG n BI :::; 1 for every G E 0 and every B E B ; and 

(iii) every pair of elements {x, y}, where x and y belong to distinct groups, is 
contained in exactly A blocks of B. 

The type of a GDD (V, 0, B) is the multiset {IGI : G EO}. An exponential 
notation is usually used to describe types: a type gr1 

••• g~ denotes Ui occurrences 
of gill:::; i ::; m. 

In order to prove that the necessary conditions (1.1) for the existence of an 
NDB(k, A; v) of any possible form are also sufficient for k = 3 and 4, Kageyama and 
Miao [10] introduced the concept of nested directed GDDs. 

159 



A directed GDD (or DGDD) (K, A)-DGDD of type T is a (K,2A)-GDD of the 
same type T in which the blocks are transitively ordered k-tuples and each ordered 
pair of elements not contained in the same group occurs in exactly A blocks. 

A nested directed GDD (or NDGDD) (k, A)-NDGDD of type T and of form 
Ih::;nSk_l(njn,An)in, (V,Q,B), is a ({k},A)-DGDD of type T where each block of 
B contains I:2<n<k-l injn mutually disjoint subblocks, injn subblocks of which are 
partitioned into ~ mutually disjoint families of jn subblocks of size n and the jn 
subblocks of size n belong to one distinguished system Bn(f), 1 :::; f :::; in, such 
that (V,Q,Bn(f)) forms an ({n}, An)-DGDD of type T for all integers nand f with 
1 :::; f :::; in. 

Theorem 2.1 [10J. Let (V, Q, B) be a (K, A)-GDD. Further let w : V ---t N U {O} 
be a weight function, where N is the set of all positive integers. For each B E 
B, suppose there exists a (k, X)-NDGDD of type {w(x) : x E B} and of form 
II2::;n::;k_l(njn,An)in, (UXEBS(X), {S(x): x E B}, BB), whereS(x) = {Xl, ... ,Xw(x)} 
for every x E V and BB is the collection of blocks of this NDGDD. Then there exists 
a (k,AA')-NDGDD of type {I:xEaw(x): G E Q} and of form II2<n<k_l(njn,AAn)in, 
(UxEVS(x), {UxEaS(x) : G E Q}, UBEBBB). - -

As an immediate consequence, the following corollary can be obtained. Recall 
that a pairwise balanced design (or PBD) B(K, A; v) can be regarded as a (K, A)­
GDD of type P. A set K of positive integers is said to be PBD-closedifB(K) = K, 
where B(K) = {v: a B(K, l;v) exists}. 

Coronary 2.2 [10]. Let NDB(k,tX,F) = {v: an NDB(k,A;V) of form F exists}. 
Then the NDB(k, A, F) is a PED-closed set. 

We also need the following construction. 

Theorem 2.3 [11]. Let (V, Q, B) be a (k, A)-NDGDD of form F. Further let Go be 
a set of new elements, that is, Go n V = cp, and suppose that for each group G E Q, 
there exists a (k, A)-NDGDD of form F, (G U Go, 1-la U {Go}, Ba ), where 1-la is the 
set of groups without Go and Ba is the collection of blocks of this NDGDD. Then 
there exists a (k, A)-NDGDD of form F, (VUGo, (UaE91-lc) U {Go}, Bu (UaE9Ba)). 

3. A construction from directed frames 

Let (V, Q, B) be a ( { k }, A)-DG D D. If the collection B of blocks can be partitioned 
into partial parallel classes each of which partitions V - G for some G E Q, it is said 
that this DGDD is a directed frame, denoted by (k, A)-directed frame. The type of 
the directed frame is the type of the underlying DGDD. 

Directed frames can be used to construct NDBIBDs. 

Theorem 3.1. The existence of a (k, A)-directed frame of type gU implies the exis­
tence of a (k + 1, k!l )-NDGDD of type gU and of form (k, k;l)l when A is a factor of 
(k 1)/2, or a (k + 1, A + ;~1 )-NDGDD of type gU and of form (k, A)l when (k -1)/2 
is a factor of A. 
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Proof. It is easy to show that for each group of a (k, A)-directed frame of type gU, 
(V, Q, B), there are 2Ag / (k - 1) partial parallel classes associated with it. 

(I) When A I (k-1)/2, let (k-1)/2 = sA, sEN. Then there are g/s partial paral­
lel classes, say, PC,i, 1 ::; i ::; g/ s, associated with the group G for all G E Q. For each 
block B = (bl , ... , bk) of a partial parallel class PC,i with G = {Xl, ... , Xg} we form s 
new blocks BI = ((bI , ... , bk ), X(i-I)s+l),"" Bs = ((b l , ... , bk ), Xis), Then (V, Q, B') 
with B' = {((bI, ... ,bk),X(i-l)s+j): i = 1, ... ,g/s; j = 1, ... ,s; (bl, ... ,bk) E PC,i; 
G E Q} is a (k + 1, k!l )-NDGDD of type gU and of form (k, k;I )1. 

(II) When (k - 1)/2 I A, let A = {(k 1)/2}t, tEN. Then there are tg 
partial parallel classes, say, QC,i, 1 ::; i ::; tg, associated with the group G = 
{Xl, ... , Xg} E Q. For each block B = (b1 , ... , bk ) of the t partial parallel classes 
QC,(n-I)t+l," . , QC,nb n = 1, ... , g, a new block ((bI, ... , bk ), xn) is formed. Then 
(V,Q,B") with B" = {((b1, ... ,bk),xn ): n = l, ... ,g; (b 1 , ... ,bk) E U}=IQC,(n-l)t+j 

; G E Q} is a (k + 1, A + k
2!'1)-NDGDD of type gU and of form (k, A)l. 0 

A (k, A)-directed frame of type P can be named as an almost resolvable directed 
BIB design (or ARDBIBD) ARDB(k, A; v). In fact, an ARDB(k, A; v) (V, 8) is a 
DB(k, A; v) in which the collection of blocks can be partitioned into partial parallel 
classes each of which partitions V - {x} for some X E V. 

It is easy to show that in the ARDB(k, A; v), A = {(k 1)/2}m for some integer 
mEN. 

Coronary 3.2. Let mEN. Then the existence of an ARDB(k, k;lm; v) implies 
the existence of an NDB(k + 1, k!lm; v) of form (k, k;lm)l. 

Recall that an almost resolvable BIB design (or ARBIBD) ARB(k, A; v) is a BIB 
design B(k, A; v) in which the collection of blocks can be partitioned into partial 
parallel classes each of which partitions V - {x} for some X E V. It follows that the 
existence of an ARB(k, A; v) implies the existence of an ARDB(k, A; v). In fact, by 
assigning to each block of the ARB (k, A; v) two new blocks, one in some arbitrary 
but fixed order which is imposed on the elements of each block and one in the reverse 
order, an ARDB(k, A; v) is obtained. 

Coronary 3.3. Let mEN. Then the existence of an ARB(k, (k - l)m; v) implies 
the existence of an NDB(k + 1, (k + l)m;v) of form (k, (k -l)m)l. 

The existence problem of ARBIBDs has been extensively discussed in [7]. The 
results contained there can then be utilized to construct many such NDBIBDs. 

4. A construction from idempotent MOLS 

A Latin square of order v based on a set V of v elements is a v x v array such 
that each row and each column contains each element of V exactly once. Two Latin 
squares, A = (aij) and B = (bij ) on V, are said to be orthogonal if {( aij, bij ) : 1 ::; i, 
j ::; v} = V x V. Without loss of generality, we may assume V = {I, 2, ... , v}. A 
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Latin square on V is said to be idempotent if the (i, i)-entry is i for all i, 1 :::; i :::; v. 
The t idempotent Latin squares AI, ... , At of order v are called t mutually orthogonal 
idempotent Latin squares if Ai and Aj are orthogonal for all i, j, 1 :::; i < j :::; t, and 
are denoted by t idempotent MOLS(v). 

The existence of t idempotent MOLS( v) has been studied extensively. For exam­
ple, the following result can be found in [1]. 

Theorem 4.1 [1]. For any integer v ~ 5, v :f. 6, 10, there exist 3 idempotent 
MOLS(v). 

This concept can be utilized to construct NDBIBDs as follows. 

Theorem 4.2. The existence of k - 2 idempotent MOLS( v) implies the existence of 
an NDB(k, k(k;I); v) of form Ih::;n::;k-l (njn , jn n(n2-1) )in for any possible integers n, jn 
and in such that I:2::;n::;k-l injnn :::; k. 

Proof. Let V {I, 2, ... , v}. Take k - 2 idempotent MOLS(v) based on V, Al = 

(ag)), ... ,Ak- 2 = (a~7-2)) for 1 :::; i, j :::; v, where 1 :::; a~J) ~ v, 1 :::; C :::; k - 2. Let 

B - {(' . (1) (k-2)) . 1 <. . < . -/.. '} Th (V B)' DB(k k(k-l), ) - Z,), aij , ... ,aij . _ z, J _ v, Z f J. en , IS a '2' V . 

Divide each block of B into I:2<n<k-l injn mutually disjoint subblocks, such that injn 
of them are partitioned into i: mutually disjoint families of jn subblocks of size n, 
the jn subblocks of size n belong to one distinguished system Bn(C), 1 :::; C ~ in, and 
that (V, Bn(C)) forms a DB(n,jnn(n2-1);v) for all integers nand C with 1:::; C:::; in. 
This completes the proof. 0 

5. A construction from the method of differences 

The method of differences is the most commonly used direct construction tech­
nique. Here we describe a construction based on this technique, which is an extension 
of [14]. 

Theorem 5.1. Let S be a 5-subset ofGF(q), and () be a primitive element ofGF(q), 
q > 3. If S can be arranged so that the 10 ordered differences of S contain 5 squares 
and 5 non-squares, then the base blocks S, ()2S, ... , ()q-3S form a DB(5, 5; q). Fur­
thermore, 

(1) if there exists a 4-subset T4 of the arranged S so that the 6 ordered differ­
ences of T4 contain 3 squares and 3 non-squares, then the DB(5, 5; q) gives an 
NDB(5,5;q) of form (4,3)1; 

(2) if there exist two mutually disjoint 2-subsets T2 , T~ of the arranged S so that the 
2 ordered differences of T2 and T~ contain 1 square and 1 non-square, then the 
DB(5, 5; q) gives an NDB(5, 5; q) of form (22,1)1. 

The proof of this theorem is straightforward. 
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6. Construction of NDB(4, A; v) 

As pointed out in Section 1, the necessary conditions (1.1) for the existence 
of an NDB( 4, A; v) of any possible form are also sufficient, except possibly for an 
NDB(4, 2; 10) of form (3,1)1. This possible exception will be removed. 

At first we need an almost resolvable directed BIB design below. 

Lemma 6.1. There exists an ARDB(3, 1; 10). 

Proof. Let V = Z5 X Z2 and B be the development of the following base blocks 
modulo (5, -). 

((1,0), (0,0), (3,0)), ((2,1), (3, 1), (2,0)), ((4,0), (1, 1), (4, 1)), 

((1,0), (4,1), (2,0)), ((2,1), (1,1), (3,0)), ((4,0), (3, 1), (0,1)). 

It is readily checked that (V, 8) is an ARDB(3, 1; 10), where the first three base blocks 
form a partition of V - {(O, I)}, and the last three base blocks form a partition of 
V - {(O, O)}: 0 

Theorem 6.2. There exists an NDB(4, 2; 10) of form (3,1)1. 

Proof. Apply Corollary 3.2 with Lemma 6.1. o 

Thus we can show the entire existence of nested directed BIB designs of block 
size 4 as follows. 

Theorem 6.3. The necessary conditions (1.1) for the existence of an NDB(4, A; v) 
of any possible form are also sufficient. 

Proof. Take Theorems 1.1 and 6.2. o 

7. Construction of NDB(5, A; v) of form (4, A4)1 

It is clear that the necessary conditions (1.1) for the existence of an ND B (5, A; v) 
of form (4, A4) I are v 2: 5, A4 = 3t, A = 5t and t( v-I) == 0 mod 2 for some positive 
integer t. It will be shown that they are also sufficient. 

Theorem 7.1. The existence of an NB(k, A; v) of form F implies the existence of 
an NDB(k,.\; v) of form F. 

Proof. For each block {Xl,"" xd of an NB(k, A; v) ofform F, define two new blocks 
(Xl, ... , Xk) and (Xk, . .. , xd. Then these new directed blocks form the collection of 
blocks of an NDB(k, A; v) of form F. 0 

Corollary 7.2. There exists an NDB(5, 5t; v) of form (4,3t)1 whenever v 2: 5 and 
t(v - 1) == 0 mod 4 for tEN. 
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Proof. Wang and Zhu [15] constructed all of these NB(5, 5t; v) of form (4, 3t)1. 
Apply Theorem 7.1. 0 

Now we use DBIBDs to produce NDBIBDs. 

Theorem 7.3. The existence of a DB(5, t; v) implies the existence of an NDB(5, 5t; v) 
of form (4,3t)1. 

Proof. For each block (a, b, c, d, e) of an DB(5, t; v), define five new blocks: 

where the elements underlined with "_" within a block form a subblock. Then these 
new blocks can form the collection of blocks of an NDB(5, 5t; v) of form (4,3t)1. 0 

Corollary 7.4. There exists an NDB( 5, 5t; v) of form (4, 3t) 1 whenever v 2: 5, 
(v,t) =1= (15,1), t(v -1) == ° mod 2 and tv(v -1) == ° mod 10 for tEN. 

Proof. When v and t satisfy the stated conditions, there exists a DB(5, t; v) (see 
[14]). Then apply Theorem 7.3. 0 

By an argument similar to those for Theorem 7.3 and Corollary 7.4, we have the 
following. 

Theorem 7.5. The existence of a ({5}, t)-DGDD of type T implies the existence of 
a (5, 5t)-NDGDD of type T and of form (4,3t)1. 

Corollary 7.6. There exist (5, 5)-NDGDD of types 25 and 26 , and of form (4,3)1, 

Proof. The ({5}, 1)-DGDD of types 25 and 26 can be found in [14]. o 

Furthermore, we have the following. 

Lemma 7.7. There exists a (5, 5)-NDGDD of type 27 and of form (4,3)1. 

Proof. Let V = Z2 X Z7, 9 = {Z2 X {i} : i E Z7}, and B be the development of the 
following base blocks modulo (2, 7), where the elements underlined with "_" within 
a block form a subblock: 

((0,0), (0, 1), (0,6), (1,3), (1,4)), 

((0,0), (0,4), (0,3), (1,2), (1, 5)), 

((0,0), (0,5), (0,2), (1,6), (1, 1)), 

((1,0), (0,1), (0,6), (0,3), (0, 4)), 

((1,0), (0,4), (0,3), (0,2), (0,5)), 

((1,0), (0,5), (0,2), (0,6), (0, 1)). 
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Theorem 5.1 can also be used to produce some useful NDBIBDs. 

Lemma 7.8. There exists an NDB(5, 5; q) of form (4,3)1) where q E {7, 19, 23, 27, 
43, 47) 83}. 

Proof. Suitable orderings for Sand T4 in Theorem 5.1 are listed below: 

q = 7, () 3, S = (1,3,2,6,4), T4 = (1,3,2,6); 
q = 19, () = 2, S = (1,2,4,16,8), T4 (2,4,16,8); 
q = 23, () 5, S = (1,5,10,2,4), T4 = (1,5,10,2); 
q = 27, ()3 = () + 2, S = (1, (), ()2, () + 2, ()2 + 2()), T4 = (1, (P, () + 2, ()2 + 2()); 
q = 43, () 3, S = (1,3,27,9,38), T4 (1,3,27,9); 
q = 47, () 5, S = (1,5,25,31,14), T4 (5,25,31,14) ; 
q = 83, () 2, S = (1,2,4,8,16), T4 = (1,2,4,16). 

Then apply Theorem 5.1(1). 0 

A ({ k }, ,\ )-G D D of type gk is called a transversal design, denoted by TD (k, '\; g) . 

Theorem 7.9. Let 0 ::; s, t ::; g. Suppose there exists a TD(7, 1; g). If there exist 
NDB(5,5;u) of form (4,3)1 for u = 2g + 1, 2s + 1, 2t + 1, then there exists an 
NDB(5, 5; v) of form (4,3)1 with v = 109 + 2s + 2t + 1. 

Proof. Delete g s elements and g - t elements from two groups of the TD(7, 1; g) 
respectively. Give weight 2 to each element of the resulting ({5, 6, 7}, 1)-GDD of 
type g5 s1t1 . Since Corollary 7.6 and Lemma 7.7 give (5, 5)-NDGDD of types 25 ,26 

and 27 , and of form (4,3)1, by applying Theorem 2.1 we get a (5, 5)-NDGDD of type 
(2g)5(2s)1(2t)1 and of form (4,3)1. Applying Theorem 2.3 with IGol = 1, the desired 
NDBIBD is obtained. 0 

Corollary 7.10. There exists an NDB(5, 5; v) of form (4,3)\ where v E{99, 107, 
119, 139, 143, 179, 183) 283}. 

Proof. Applying Theorem 7.9 with g = 8, 9, 11, 16 and 23 (see [1] for their 
existence), we have the required result, since 99 = 10 . 8 + 2 . 5 + 2 . 4 + 1, 107 = 
10·8 + 2·8 + 2·5 + 1, 119 = 10·9 + 2·9 + 2·5 + 1,139 10·11 + 2·9 + 2·5 + 1, 
143= 10·11+2·8+2·8+1, 179= 10·16+2·5+2·4+1, 183= 10·16+2·6+2·5+1 
and 283 = 10·23 + 2 . 13 + 2·13 + 1. 0 

Theorem 7.11. Let 0 ::; s ::; g. Suppose there exists a TD(6, 1; g). If there exist 
NDB(5, 5; u) of form (4,3)1 for u = 2g + 1, 2s + 1, then there exists an NDB(5, 5; v) 
of form (4,3)1 with v = 109 + 2s + l. 

Proof. Delete g - s elements from one group of the TD(6, 1; g). Give weight 2 to 
each element of the resulting ({5, 6}, 1)-GDD of type g5 S1. Since Corollary 7.6 gives 
(5, 5)-NDGDD of types 25 and 26 , and of form (4,3)1, by applying Theorem 2.1 we 
get a (5, 5)-NDGDD of type (2g)5(2s)1 and of form (4,3)1. Then apply Theorem 2.3. 

o 
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Corollary 7.12. There exists an NDB(5, 5; v) of form (4,3)1, where v E{59, 87, 
167, 243, 563}. 

Proof. Apply Theorem 7.11 with g = 5, 8, 16, 23 and 55 (see [1]), where 59 = 

10·5 + 2·4 + 1,87 = 10·8 + 2·3 + 1,167 = 10 ·16 + 2·3 + 1,243 = 10·23 + 2·6 + 1 
and 563 = 10·55 + 2·6 + 1. 0 

Lemma 7.13. There exists an NDB(5,5;39) ofform (4,3)1. 

Proof. Bennett et al. [4] showed the existence of a ({ 5, 7}, 1)-DG D D of type 139
. 

For each block (a,b,c,d,e) of size 5, define five new blocks: (f!.,Q,£,fl.,e), (Q,Q,£,d,g,), 
(Q, Q, c, fl., ~), (Q, b, £, fl., ~), (a, Q, £, fl., ~), where the elements underlined with "_" within 
a block form a subblock. For the block of size 7, we fill in with an NDB(5, 5; 7) of 
form (4,3)1. Then the resulting design is an NDB(5,5;39) of form (4,3)1. 0 

Lemma 7.14. There exists an NDB(5, 5; 15) of form (4,3)1. 

Proof. The design is given below: V = Z 15, B = { (0, 1, 2, .3., .4) , (Q, 1, .3., .ii, B.), 
(0,.3.,1,13, 11), (O,Q, 13, 10,.ii), (Q,12,9,Q,.ii), (Q,12, Q,5), (Q, 13,11,1,6) mod 15}. 

o 

Now we can state the following. 

Theorem 7.15. Let v ~ 5 be odd. Then all NDB(5, 5t; v) of form (4,3t)1 exist for 
any positive integers t. 

Proof. First we consider the case where t = 1. Bennett et al. [2] showed that 
B( {5, 7, 9}) ~ (2N + 1) E, where E = {11, 13, 15, 17, 19~ 23, 27,.29, 31, 33, 39, 
43, 51, 59, 71, 75, 83, 87, 93, 95, 99, 107, Ill, 113, 115, 119, 131, 135, 139, 143, 
167, 173, 179, 183, 191, 195, 243, 283, 411, 563}. Since there exist NDB(5, 5; v) of 
form (4,3)1 for v = 5,7,9 (see Corollary 7.2 and Lemma 7.8), by applying Corollary 
2.2, we need only to construct NDB(5, 5; v) of form (4,3)1 for vEE. Corollary 7.2 
settles the cases for v = 13, 17, 29, 33, 93, 113, 173. Corollary 7.4 covers the cases 
for v = 11, 31, 51, 71, 75, 95, 111, 115, 131, 135, 191, 195, 411. Lemma 7.8 covers 
the cases for v = 19, 23, 27, 43, 83. The remaining 15 cases are settled by Corollaries 
7.10 and 7.12, and Lemmas 7.13 and 7.14. Thus all NDB(5, 5; v) of form (4,3)1 are 
constructed for v odd ~ 5. 

Next take each block of an NDB(5, 5; v) of form (4,3)1 t times. Then it follows 
that an NDB(5,5t;v) of form (4,3t)1 is obtained whenever v is odd ~ 5. This 
completes the proof. 0 

On the other hand, when v is even, the following can be obtained. 

Theorem 7.16. Let v ~ 5 be even. Then all NDB(5, lOs; v) of form (4,6s)1 exist 
for any positive integers s. 
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Proof. Theorem 4.1 with Theorem 4.2 can cover all the cases except for v = 6 and 
10, which can be removed by Corollary 7.4. 0 

As a summary, we have the following main result of this section. 

Theorem 7.17. The necessary conditions (1.1) for the existence of an NDB(5, A; v) 
of form (4, A4) 1 are also sufficient. 

Proof. The sufficiency follows from Theorems 7.15 and 7.16. o 

In this case, the necessary conditions (1.1) become v 2': 5, A = 10A2 and A3 = 3A2. 

Lemma 8.1. There exist an NDB(5, 10; 6) and an NDB(5, 10; 10), both of form 
(3,3)1(2,1)1, 

Proof. An NDB(5, 10; 6) of form (3,3)1(2,1)1 is given below: 

V = Z5 U {oo}, 

B = { (Q, 1, 2, g, ~), (00,3.,2,1, Q), (1,2,1, Q, 00), 
(1,2,00,g,1), (00,~,g,2,Q), (1,g,1,Q,00) mod 5}, 

where the elements underlined with "_" and "_" within a block form a subblock of size 
3 and of size 2 respectively. An NDB(5, 10; 10) of form (3,3)1(2,1)1 is constructed 
below: 

v = GF(9) U {oo}, 

B={ (1,2,00,2(}+1,(}+2), 

(1, 2, 00, 2() + 1, () + 2), 

(Q,~, 1, () + 2, 2() + 1), 
(Q,2,1,(}+2,2()+ 1) 

(1,~, 00, () + 2), 
(1,~, 00, 2() + 1, () + 2), 
(Q, 2, 1, () + 2, 2() + 1), 
mod 9 }, 

(1, 2, 00, 2() + 1, () + 2), 
(Q, ~, 1, () + 2, 2() + 1), 
(Q,2,1, () + 2, 2() + 1), 

where () is a primitive element of GF(9) satisfying (}2 = 2() + 1. 

Theorem 8.2. There exists an NDB(5, 10; v) of form (3,3)1(2,1)1 for v 2': 5. 

o 

Proof. Theorem 4.1 with Theorem 4.2 covers all the cases except for v = 6 and 10, 
which are constructed in Lemma 8.1. 0 

Hence we have the following. 

Theorem 8.3. The necessary conditions (1.1) for the existence of an NDB(5, A; v) 
of form (3, A3)1(2, A2)1 are also sufficient. 

Proof. Repeat each block (and thus each subblock) of an NDB(5, 10; v) of form 
(3,3)1 (2,1)1 A2 times. 0 

167 



9. Construction of NDB(5, A; v) of form (2, A2)2 

Here the necessary conditions (1.1) are that v 2:: 5 and A = 10A2. 

Lemma 9.1. There exist an NDB(5, 10; 6) and an NDB(5, 10; 10), both of form 
(2,1)2. 

Proof. An NDB(5, 10; 6) of form (2,1)2 is obtained below: 

v = Z6, 
B = {(Q, 1, 2, 3., 4), (Q, 1, 2, g, 4), (1, 3.,~, 1,0), (1, g, 2, 1,0), (5,1, g, Q, 1) mod 6}, 

where the elements underlined with "_" and "" within a block form a subblock 
respectively. An NDB(5, 10; 10) of form (2,1)2 is given below: 

v = GF(9) U {oo}, 

B {(1, 2, 00, 28 + 1,8 + 2), 
(1,~, 00, 28 + 1,8 + 2), 
(Q, 2, 1, 28 + 1), 
(Q, 2,1,8+2,28+ 1) 

(1,2, 00, 28 + 1,8 + 2), (1,2, 00, 28 + 1, 8 + 2), 
(Q,~, 1, 28 + 1), 
(Q,~, 1, 8 + 2,28 + 1), 

where 8 is a primitive element of GF(9) satisfying (j2 = 28 + 1. 

Theorem 9.2. There exists an NDB(5, 10; v) of form (2,1)2 for v 2:: 5. 

D 

Proof. Theorem 4.1 with Theorem 4.2 covers all the cases except for v = 6 and 10, 
which are constructed in Lemma 9.1. D 

Therefore we have the following. 

Theorem 9.3. The necessary conditions (1.1) for the existence of an NDB(5, A; v) 
of form (2, ..\2)2 are also sufficient. 

Proof. Repeat each block (and thus each subblock) of an NDB(5, 10; v) of form 
(2,1)2 A2 times. D 

10. Construction of NDB(5, A; v) of form (2\ A2)1 

Now the necessary conditions (1.1) are that v 2:: 5, A = 5A2 and A2(V - 1) == 
o mod 2. We first consider the case A2 == 0 mod 2. 

Theorem 10.1. The existence of an NDB(5, lOt; v) of form (2, t)2 implies the exis­
tence of an NDB(5, lOt; v) of form (22, 2t)1 for any tEN. 

Proof. Combine the two sub-systems of an NDB(5, lOt; v) of form (2, t)2 into one. 
D 
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Corollary 10.2. There exists an NDB(5, 5A2; v) of form (22, A2)1 whenever v ~ 5 
and A2 == 0 mod 2. 

Proof. Apply Theorem 10.1 with Theorem 9.2. Then repeat each block (and thus 
each subblock) A2/2 times. 0 

Next we consider the case A2 == 1 mod 2. Then the necessary conditions further 
become that v be odd ~ 5 and A = 5A2' 

Theorem 10.3. There exists an NDB(5, 5A2; v) of form (22, A2)1 whenever v ~ 5 
and A2(V 1) == 0 mod 4 for A2 EN. 

Proof. Apply Theorem 7.1, where all the NB(5, 5A2; v) of form (22, A2)1 have been 
constructed in [9]. 0 

Theorem 10.4. The existence of a ({5}, A2)-DGDD of type T implies the existence 
of a (5,5A2)-NDGDD of type T and of form (22, A2)1. 

Proof. For each block (a, b, c, d, e) of a ({5}, A2)-DGDD of type T, define five new 
blocks: 

(~,Q,~,d,~), (~,g,~,g,e), (~,g,c,d,~), (~,b,~,g,~), (a,Q,~,g,~), 

which can produce a (5,5A2)-NDGDD of type T and of form (22, A2)1, where the 
elements underlined with "_" and "=" within a block form a subblock respectively, 
both of them belonging to the same system. 0 

Since a DB(5, Ai v) can be regarded as a ({5}, A)-DGDD of type IV, we have the 
following. 

Theorem 10.5. There exists an NDB(5, 5A2; v) of form (22, A2)1 whenever v ~ 5, 
(v, A2) i- (15,1), A2(V 1) == 0 mod 2 and A2V(V - 1) == 0 mod 10 for A2 EN .. 

Proof. The DB(5, A2; v) can be found in [14J. Then apply Theorem 10.4. 0 

Lemma 10.6. There exist (5, 5)-NDGDD of types 25,26 and 27 , and ofform (22, 1)1. 

Proof. The first two designs can be obtained by applying Theorem 10.4, where the 
corresponding ({5}, l)-DGDD of types 25 and 26 are constructed in [14J. The third 
design is given below: 

V=Z2XZ7, Q={Z2 x {i}: iEZ7}, 

((0,0), (0,1), (0,6), (1,3), (1,4)), 

((0,0), (0,4), (0,3), (1, 2), (1,5)), 

((0,0), (0,5), (0,2), (1,6), (1, 1)), 
B= 

((1,0), (0,1), (0,6), (0,3), (0,4)), 

((1,0), (0,4), (0,3), (0,2), (0,5)), 

((1,0), (0,5), (0,2), (0,6), (0, 1)) mod (2,7) o 
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Lemma 10.7. There exists an NDB(5, 5; q) of form (22,1)1, where q E {7, 19, 23, 
27, 43, 47, 83}. 

Proof. Apply Theorem 5.1(2) with the suitable orderings for Sand T2 , T~ as follows. 

q = 7, 
q 19, 
q 23, 
q = 27, 
q = 43, 
q = 47, 
q = 83, 

B 3, 
B 2, 
B = 5, 
B3 B + 2, 
B = 3, 
B 5, 
B = 2, 

s = (1,3,2,6,4), 
S = (1,2,4,16,8), 
S = (1,5,10,2,4), 
S= (1,B,B 2 ,B+2,B2 +2B), 
S = (1,3,27,9,38)' 
S = (1,5,25,31,14), 
S = (1,2,4,8,16), 

T2 (1,3), 
T2 = (2,4), 
T2 = (1,5), 
T2 (1, B), 
T2 (1,3), 
T2 (1,5), 
T2 (1,4), 

T~ = (6,4); 
T~ = (16,8); 
T~ = (10,2); 
T~ = (B + 2,B2 + 2B); 
T~ = (27,9); 
T~ = (31,14); 
T~ = (2,8). 

o 

Since Lemma 10.6 gives (5, 5)-NDGDD of type 25 , 26 and 27 , and of form (22,1)1, 
we have the following by arguments similar to those for Theorems 7.9 and 7.11, and 
Corollaries 7.10 and 7.12. 

Theorem 10.8. Let 0 ::;; s, t ::;; g. Suppose there exists a TD(7, 1; g). If there exist 
NDB(5, 5; u) of form (22,1)1 for u = 2g + 1, 2s + 1, 2t + 1, then there exists an 
NDB(5, 5; v) of form (22,1)1 with v = 109 + 28 + 2t + 1. 

Theorem 10.9. Let 0 ::;; 8 ::;; g. Suppose there exists a TD(6, 1; g). If there exist 
NDB(5, 5; u) of form (22,1)1 for u = 2g + 1,28 + 1, then there exists an NDB(5, 5; v) 
of form (22,1)1 with v = 109 + 2s + 1. 

Corollary 10.10. There exists an NDB(5, 5; v) of form (22,1)1, where v E {59, 87, 
99, 107, 119, 139, 143, 167, 179, 183, 243, 283, 563}. 

Lemma 10.11. There exists an NDB(5, 5; 39) of form (22,1)1. 

Proof. For each block (a, b, c, d, e) of a ({5, 7}, 1 )-DGDD of type 139 (see [4] for the 
existence), define five new blocks: (,q, 12, ~, d, .!2.), (,q, 12, ~, Q, e), (.(l, 12, c, Q, .!2.), (~b b, ~, Q, .!2.), 
(a,12,~,Q,.!2.), and for the block of size 7 ~fthis DGDD,-fill in with an NDB(5,5;7) of 
form (22,1)1. 0 

Lemma 10.12. There exists an NDB(5, 5; 15) of form (22,1)1. 

Proof. The design is given below: V = Z15, B = {(14,11,4,1,Q), (8.,2., 13, 7,Q), 
(1,4, Q), (1, 13,2, §, Q), (Q, 1,~, 2,8.), (9, 1,~, g, Q), (12, 10,~,-~, Q) mod 15}. -0 

Then we have the following by an argument similar to that for Theorem 7.15. 

Theorem 10.13. Let v ~ 5 be odd. Then all NDB(5, 5'\2; v) of form (22, '\2)1 exist 
for '\2 ~ 1. 
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Proof. By Theorem 10.3, Lemma 10.7 and Corollary 2.2, it suffices to show the 
existence of NDB(5, 5; v) of form (22,1)1 for VEE, where E is the same set as in 
the proof of Theorem 7.15. Theorem 10.3 settles the cases for v = 13, 17, 29, 33, 
93, 113, 173. Theorem 10.5 covers the cases for v = 11, 31, 51, 71, 75, 95, 111, 115, 
131, 135, 191, 195, 411. Lemma 10.7 covers the cases for v = 19, 23, 27, 43, 83. 
The remaining 15 cases are settled by Corollary 10.10, and Lemmas 10.11 and 10.12. 
Thus all ND B (5, 5; v) of form (22, 1) 1 are constructed for v 2: 5. Then by taking each 
block and subblock of an NDB(5, 5; v) of form (22,1)1 A2 times, an NDB(5, 5A2; v) 
of form (22, A2) 1 is obtained whenever v is odd 2: 5. 0 

Combining conditions (1.1), Corollary 10.2 and Theorem 10.13, we can establish 
the following. 

Theorem 10.14. The necessary and sufficient conditions for the existence of an 
NDB(5, A; v) of form (22, A2)1 are that v 2: 5, A = 5A2 and A2(V - 1) == 0 mod 2. 

11. Main Result 

Theorem 11.1. The necessary conditions (1.1) for the existence of an NDB(k, A; v) 
of any possible form are also sufficient for k = 3, 4 and 5. 

Proof. The existence of an NDB(5, A; v) of form (3, A3)1(2, A2)1 can imply the ex­
istence of an NDB(5, A; v) of form (3, A3)1, and the existence of an NDB(5, A; v) of 
form (2, A2)2 can imply the existence of an NDB(5, A; v) of form (2, A2)1. Hence, 
combining the results as in Sections 6 to 10 and as in [10], the proof is completed. 0 
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