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Abstract

The main result in this paper is that for m = 0 (mod 6) a partial directed
m-cycle system of order n can be embedded in a directed m-cycle system
of order less than (mn)/2 + m?/2 + 2m + 1. For fixed m, this bound is
asymptotic in n to (mn)/2 which is approximately one-half of the best
known bound of mn + (0 or 1).

1 Introduction

Denote by D, the complete directed graph on n vertices. A directed m-cycle of
D, is a collection of m directed edges of the edge set of D, of the form {(z1, z2),
(79,723), (23,%4), -y (Tm—1,Zm), (Tm,Z1)}, Where z,29,..., 2, are m distinct
vertices.
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We will denote this m-cycle by any cyclic shift of (z1, 29, 23,...,%n).

A directed m-cycle system of order n is a pair (5,C), where C is a collection of
directed m-cycles which partition the edge set of the complete directed graph D,
with vertex set S. The obvious necessary conditions for the existence of a directed
m-cycle system of order n are:

(1) n>m, and
(2) n(n—1)/m is an integer.

Whether or not these necessary conditions are also sufficient is an open problem. For
an account of what is known the interested reader is referred to [4].

A partial directed m-cycle system of order n is a pair (X, P), where P is a
collection of edge-disjoint directed m-cycles of the edge set of D, with vertex set
X. The difference between a partial directed m-cycle system and a directed m-cycle
system is that the edge-disjoint m-cycles belonging to a partial directed m-cycle
system do not necessarily include all of the edges of D,.

Given a partial directed m-cycle system (X, P) of order n, we can ask if it is
possible to decompose E(D,)\E(P) (= the complement of the edge set of P in the
edge set of D,,) into edge-disjoint directed m-cycles? That is, can a partial directed
m-cycle system always be completed to a directed m-cycle system? For example, can
the partial directed 3-cycle system (X, P) of order 5, with X = {1,2,3,4,5} and
P =1{(1,2,4),(2,3,5),(1,4,3),(2,5,4)}, be completed to a directed 3-cycle system?
The answer to this question is NO for the simple reason that a completion would
produce a directed 3-cycle system of order 5 contradicting the necessary condition
that the order of a directed 3-cycle system is = 0 or 1 (mod 3). In general, it is easy
to construct partial directed m-cycle systems which cannot be completed for any m.

Given the fact that a partial directed m-cycle system cannot necessarily be com-
pleted, the next question to ask is whether or not a partial directed m-cycle system
can always be embedded in a directed m-cycle system. The partial directed m-cycle
system (X, P) is said to be embedded in the directed m-cycle system (S, C') if and only
if X € Sand P C C. For example the partial directed 3-cycle system (X, P) of order
5 in the above example is embedded in the directed 3-cycle system (S, C) of order 7
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given by S = {1,2,3,4,5,6,7} and C = {(1, 2, 4), (2, 3, 5), (1, 4, 3), (2, 5, 4),
(3,4,6),(4,5,7),(5,6,1),(6,7,2),(7,1,3),(6,2,1),(7,3,2),(3,6,5), (4,7,6),(5,1,7)}.
If it is always possible to embed a partial directed m-cycle system in a directed
m-cycle system, we would like the size of the containing system to be as small as
possible.
The following table summarizes the best results to date on embedding partial
directed m-cycle systems.

m Best Embedding
ODD | (2n+ 1)m, m > 3 [5]
dn+1, m =3 [6]
nm, m > 8 [6]
EVEN [ nm+ 1, m =6 [6]
~2n 4 +/2n, m = 4 [3]

The object of this paper is to reduce the bound for partial directed 6k-cycle systems.
In particular, for m = 0 (mod 6) we will show that a partial directed m-cycle
system of order n can be embedded in a directed m-cycle system of order less than
(mn)/2+m?/2+2m + 1. For fixed m, this is asymptotic in n to (mn)/2, and so far
large n is roughly one-half of the best known bound of nm + (0 or 1).

2 Preliminaries

We collect together here the ingredients necessary for the construction in Section 3.
Denote by D, , the complete directed bipartite graph with parts of size z and y.

Theorem 2.1 (D. Sotteau [8]) Letm = 2k. The complete directed bipartite graph
D,., can be partitioned into directed m-cycles if and only if (i) x > k,y > k, and (ii)
m|2zy. 0

Theorem 2.2 (A. Kotzig [2] and A. Rosa [7]) There exists a directed m-cycle
system of order 2m + 1 for every even m. O

Theorem 2.3 (T. W. Tilson [9]) There exists a directed m-cycle system of order
m for all EVEN m ¢ {4,6} and one of order m + 1 if m € {4,6}. 0

Corollary 2.4 Let m = 0 (mod 6). There exists a directed m-cycle system of every
order
n=1(modm) > 2m+1.

Proof: Writen = km + 1, £k > 2. Let X be a set of size m and set § =
{0} U(X x{1,2,3,...,k}). Further, let ({oo} U (X x {1,2}),C(12)) be a directed
m-cycle system of order 2m+1. There are two cases to consider: m = 6 and m > 12.

(a) m = 6. For each ¢ = 3,4,...,k let ({00} U (X x {i}), C(i)) be a directed
6-cycle system of order 7. Define a collection C' of directed 6-cycles as follows: (i)
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C(12) C C, (ii) C(z) C C, (iii) for each i > 3, partition Dg 2 with parts X x {1} and
X x {1,2} into directed 6-cycles and place these directed 6-cycles in C', and (iv) for
each i # j > 3, partition Dgg with parts X x {i} and X x {j} into directed 6-cycles
and place these directed 6-cycles in C'. Then (S5,C) is a directed 6-cycle system of
order n = 6k + 1.

(b) m > 12. For each ¢ = 3,4,...,k let (X x {i},C(i)) be a directed m-
cycle system of order m. Define a collection C' of directed m-cycles as follows: (i)
C(12), (ii) C(z) C C, (iii) for each 1 > 3, partition Dy zm41 with parts X x {i} and
{00} U (X x {1,2}) into directed m-cycles and place these directed m-cycles in C,
and (iv) for each 7 # j > 3, partition D, ,, with parts X x {¢} and X x {j} into
directed m-cycles and place these m-cycles in C. Then (5,C) is a directed m-cycle
system of order n = 6k + 1. 0

Finally, a packing of D, with directed m-cycles is a triple (S,C, L), where S is
the vertex set of D,, C is a collection of edge-disjoint directed m-cycles, and L in
the collection of edges not belonging to one of the directed m-cyclesin C. L is called
the leave.

Lemma 2.5 Letm =0 (mod 6). There exists a packing of D, with directed m-cycles
with leave consisting of t/2 vertex disjoint double edges for all t =0 (mod m).

Proof: In [1] it is shown that there exists a packing of K, (the complete undirected
graph on ¢ vertices) with m-cycles with leave a 1-factor. Replace each m-cycle with
two directed m-cycles and each edge in the 1-factor with a double edge. o

3 The (km?)/2+2m + 1 Construction

Let m = 6t, Y a set of size km, and (X, C(m)) a directed m-cycle system of order
2m + 1. Let S = (Y x {1,2,3,...,m/2} U X and define a collection C of directed
m-cycles of the edge set of Dy, s = (km?)/2 + 2m + 1, with vertex set S as follows:
(1) ¥or each 2-element subset {a, b} of Y, place the two directed m-cycles
((a,1),(b,1),(a,2),(b,3),(a,4),(b,5),...,(e,m/2 = 1), (d,m/2), (c,m[2),
(/2= 1), (0,5), (b,4),(0,3), (5,2)) and (5,1, (e, 1), (5,2), (a,3), (5,4), ..,
(6,5),...,(c,m/2 = 1),(d,m[2),(c,m/2),(d,m[2 — 1),...,(b,5),(a,4),(b,3),(a,2))
inC,wherec=a,d=">iftisodd and c=b,d = a if ¢ is even.
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(a,1) _ (b,1)

e [« )
eV
Y x {2} [(a,z) «) (b, 2) j
N
Y x {3} [(a,:z) @ (5,3) J
SNCA
eSS ) =
a1 >
(@m/2-1) _, | (b,m/2 - 1)
< > J
S X
Y x {m/2} ((a,m/z) s L) J

(2a) If t is even, let 7 be a partition of {1,2,3,...,m/2}\{1,m/2} into 2-element
subsets {a,b} such that |a — b] # 1. For each 2-element subset {a,b} € m, let
(Y x {a,b},C{a,b}, L{a,b}) be a packing of Daxm with vertex set ¥ x {a,b} and
leave the collection of double edges L{a,b} = {((y,a), (y,0)), ((y,b),(y,a)) |y € Y}
and place the directed m-cycles in C{a,b} and C'(m) in C.

Y x {1} ( )
Y x {2} ( ) C(T)
|
Y x {a} S SN SN \
Cla,b} = L{a.b} ¥
Y x {b} S S S SN
Y x {m/2} ( )

(2b) If ¢ is odd let 7 be a partition of {1,2,3,...,m/2}\{1,2,m/2} into 2 element
subsets {a,b} such that |a — b| # 1. For each 2-element subset {a,b} € 7 let
(Y x {a,b},C{a,b}, L{a,b}) be a packing of Dykn with vertex set ¥ x {a,b} and
leave the collection of double edges L{a,b} = {((y,4a), (v,9)), ((y,5),(y,a)) |y € Y}.
Let ((Y x {2})U X, C(2)) be a directed m-cycle system of order km +2m + 1. Place
the directed m-cycles in C{a,b} and C(2) in C.
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Y x {1} ( )

Y x {2} C@) = [ @J
X

( )

Y x {a}
L{a,b}

Y x {b}

Y x {m/2} ( . )

(3) For each |t — j| # 1 such that {¢,7} ¢ 7 in (2a) or (2b), partition the complete
directed bipartite graph with parts ¥ x {1} and ¥ x {;} into directed m-cycles and
place these directed m-cycles in C. (Sotteau’s Theorem 2.1.)

(4) Let (Y, P, L) be a packing of Dy,, with directed m-cycles with leave L con-
sisting of (km)/2 vertex disjoint double edges. For each directed m-cycle
(Y1,Y2: Y35 -, ym) € P, place the TWO directed m-cycles ((y1, 1), (y2,m/2), (ys,1),
(Ya,m/2),. o (Ym-1,1), (ym,m/2))  and ((yl,m/2),(y2,1),(y3,m/2),(y4,1),...,
(Ym-1,m/2), (Ym, 1)) in C.

U1 Y2 Y3 Ya Ym~—1 Ym

N N [ ] e 86 )
Yocdl) R A WA ]

S A A ———
N A WA ——

Y A VAR =S
X
Y x {m/2) & X D)

(5) For each double edge ((a,b),(b,a)) € L place the TWO directed m-cycles

((e,1),(a,2),(a,3),...,(a,m/2),(b,1),(b,2),(b,3),...,(b,m/2)) and ((a, 1), (b,m/2),
(b,m/2 —1),...,(b,2),(b,1),(a,m/2),(a,m/2—1),...,(a,3),(a,2)) in C.
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Y x {1}
Y x {2}

Y x {3}

Y x {m/2}

At this point the edges that have not been used are (i) the collection of dou-
ble edgés D = {((3, 1) (v, m/2) ((y,m/2), (5, 1)) | y € Y}, (ii) the double edges
in L{a,b},{a,b} € 7 in (2a) and (2b), and (iii) the edges between X and Y x
{1,2,3,...,m/2} in (2a) and the edges between X and Y x ({1,2,3,...,m/2}\{2})

in (2b).

(6) Partition Y into 3k subsets Y1, Y3, Y5, ..., Y3, each of size m/3 and let [ =
{wl,xz,...,xm/e;x‘l‘,xg,xg,...,xfn/e} be any m/3 distinct vertices in X. (Since
|X| = 2m + 1 this is possible.) For each Y = {y1,y2,. .-
subset {p,q} = {1,m/2} or {p,q} = {a,b} € 7 place the TWO directed m-cycles

E < L\ /I/> j

—Qu /U

( <}() \\Y Y/ (> )
A0

C (\// \\& )

( <W w> )

yYm/3} and each 2-element

((‘Tlvp)7 (ylap)a (ylv Q)a (:L"I, Q), (y2> q)a (y2,l7), (w27p), (y?np)a (3137 Q); (ZI,';, q)7 EERN
(ym/B—la p)a (ym/3—1a Q)a (‘T;/e’ q)7 (ym/37 Q)» (ym/37 P)) AND ((ym/3>p)> (ym/37 Q)3

(‘T;‘n/ea Q), (ym/B——lv Q)» (ym/3~1>p)7 ceey (‘(E; Q)v (y3: q)a (yB’ p)a (332,P), (yz)p)u (y% Q);

(21,49), (41, 9); (v1, P): (z1,p)) in C.
For the sake of understanding we will draw a diagram for m = 12

Y x {p}

Y x {q}

Y; x {p}

Y; x {q}

Ty T2

(e & o
(o )
&

(o o o o

.
Ep)




Denote by V/(z;), z; € I, the set of verticesin Y x {1,2,3,...,m/2} connected to
z; by an edge in one of the m-cycles constructed in (6). A simple calculation shows
that the size of V/(z;) is (6km)/4 or 6k(m — 2)/4. In either case |V(z;)| > m. This
is important, because it allows us to use Sotteau’s Theorem in the final part of our
construction.

(7) Clearly, the sets V(z;) z; € I, partition Y x {1,2,3,...,m/2} in (2a) and
partition ¥ x ({1,2,3,...,m/2}\{2}) in (2b). We now partition the complete di-
rected bipartite graph with parts V(z;) and X\{2;}, z; € I, into directed m-cycles
and place these directed m-cycles in €. (This is possible since both |V(z;)| and 2m
are > m/2 and m divides twice their product.

It is now straightforward and not difficult to show that (S,C) is a directed m-
cycle system of order (km?)/2+4 2m + 1. (Just count the number of directed m-cycles
and show that each directed edge is in at least one of the directed m-cycles described

in (1), (2), (3), (4), (), (6), or (7).

4 The (km?)/2+ 2m + 1 embedding

Let (Z, P) be a partial directed m-cycle system of order n, where m = 6¢. Let km be
the smallest positive integer such that km > n, Y a set of size km such that Z C Y,
X aset of size 2m + 1, § = (V' x {1,2,3,...,m/2}) U X, and C the collection of
directed m-cycles constructed with the (km?)/2 + 2m + 1 Construction.

For each directed m-cycle p = (z1,23,...,2,) € P let mp be the collection of m
directed m-cycles given by:

(1) ((z1,1), (x2,1), (23, 1), (Tm, 1)) and  ((z1,m/2), (22, m/2), (23, m/[2),. ..,
(zm,m/2)}); and

(2) for each (7,7 + 1), where ¢ € {1,2,...,m/2 — 1} is EVEN, the two directed m-
cycles ((z1,1), (22,7 + 1),(z3,1), (24,7 + 1),..., (Tm-1,1), (T, + 1)) and
((zhi + 1)7 (‘T?: Z), ($37i + 1)7 ('IZ;i)5 ey (xm~17i + 1)’ (1‘m,l))

(3) for each (4,7 + 1), where ¢ € {1,2,...,m/2 — 1} is ODD, the two directed
m-cycles ((m,@ + 1)), (m-1,1),- .., (24,1 + 1), (23,1}, (22,7 + 1), (x1,7)) and
((mwui)a (xm——lvi + l)a ceey (5627 l), (‘7;35 ? + 1)3 (wz,i), (mlu i + 1))
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Y x {1}

ODD Y x {i}
Y x {1+ 1}
Y x {i+2} ®
Yx{m/2} ((ESe>e>e - - - -® )

For each a # b € Y, denote by v(a,b) the cycle of C' containing the edge
((a,1),(b,1)) in part (1) of the (km?)/2 + 2m + 1 Construction. For each p =
(z1,%2, 23, .,2m) € P let vp = {v(zs,zis1) | (21, Tiy1) is an edge of p}.

Then mp and vp are mutually balanced; i.e., they contain ezactly the same edges.
Furthermore, if p; # po, the edge sets of vp, and vp, are disjoint. Now set C* =
(C\{vp|pe€ P})U{mp|p € P}. Then (S,C*)is a directed m-cycle system of order
(km*)/2 +2m +1 which contains (at least) two disjoint copies of the partial directed
m-cycle system (Z, P); namely, the directed m-cycles of type (1) in each collection
mp.

Theorem 4.1 Let m =0 (mod 6). A partial directed m-cycle system of order n can
be embedded in a directed m-cycle system of order (km?)/2 4+ 2m + 1, where k is the
smallest positive integer such that km > n. 0

5 Concluding remarks

If k is the smallest positive integer such that km > n, then (km?)/2 + 2m +1 <
(nm)/2 +m?/2 4+ 2m + 1. For fixed m, this is asymptotic in n to (nm)/2 and so for
large n, as advertised in Section (1), is roughly one-half of the best known bound of
nm+ (0 or 1).
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