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Abstract 

We show that a complete tripartite graph with three partite sets of equal 
size m may be decomposed into k-cycles for any k 2: 3 if and only if k 
divides 3m2 and k ::; 3m. 

1 Introduction 

We begin with a few definitions. The complete tripartite graph with three partite 
sets of equal size m will be denoted by K( m, m, m). This is sometimes known as a 
group divisible k-cycle system, or GDkCS, with three groups of size m. A k-circuit 
is a nontrivial closed trail with k edges. A k-cycle is a k-circuit with no vertices 
repeated. A graph G with q edges is said to be decomposable into the graph H if 
it can be written as the union of edge-disjoint copies of H so that every edge in G 
belongs to one and only one copy of H. 

Although much work has gone into the decomposition of complete graphs into k­
cycles (see [4) for a good survey), little attention has been paid to the same problem 
for arbitrary complete n-partite graphs. A significant and useful result is that of 
Sotteau [6J, who discovered necessary and sufficient conditions for the decomposition 
of complete bipartite graphs into k-cycles: 

The complete bipartite graph K(r, s) can be decomposed into cycles of 
length k if and only if k, rand s are even, r ~ k/2, s 2: k/2, and k 
divides rs. 

For example, if k is even, then K(k, k, k) decomposes into k-cycles, since the graph 
K(k, k, k) may be decomposed into three copies of K(k, k). 

The problem becomes more difficult for complete tripartite graphs, one of the 
reasons being that decompositions into odd-length cycles are also permissible. For 
the 3-cycle case it is well known that a decomposition of K (m, m, m) into triangles 
is equivalent to a latin square of order m. Mahmoodian and Mirzakhani [5} obtained 
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various results for 5-cycles. However, even when only two of the three partite sets 
have the same size, the problem of decomposition into 5-cycles remains unsolved. 

Other known results come indirectly from more general theorems. For example, 
I«k, k, k) decomposes into k-cycles for odd k [1]. This in fact holds for any n-partite 
graph where n is odd and all partite sets have size k. Another useful result is that 
I«k, k, k) decomposes into 3k-cycles for any k [3]. This comes from a broader result 
which gives all possible hamiltonian decompositions of complete n-partite graphs. 

In this paper we shall give necessary and sufficient conditions for the decompo­
sition of the complete tripartite graph K( m, m, m) into k-cycles, for any k ~ 3. In 
Section 2 we give some tools for decomposition that are used in Section 3 to prove 
the main result. 

2 A few useful tools for decomposition 

The lexicographic product G1 ® G2 of the graphs G I and Gz is the graph with vertex 
set V( Gt) x V( G2 ) and an edge joining (Ul' U2) to (VI, V2) if and only if either Ul 

is adjacent to VI in GI or UI = VI and U2 and V2 are adjacent in G2 • We are only 
concerned with a particular kind of lexicographic product, G ® This is a more 
formal way of expressing a technique often known as "blowing up" points. 

Observe that K(mi,ml,ml) = K(m,m,m) ® K t. In fact, if K(m,m,m) de-
composes into copies of the graph G and G ® decomposes into k-cycles then 
I«mi, mi, ml) decomposes into k-cycles. 

THEOREM 2.1 If the graph K( m, m, m) decomposes into k-cycles) then the graph 
I«mi, mi, ml) decomposes into k-cycles for any positive integer I. 

Proof 
From the previous observation all we need to show is that Ck ® K t decomposes 

into copies of Ck , where Ck is just a k-cycle. Label the vertices of the original k-cycle 
with the integers {I, 2, ... ,k} and the vertices of K/ with {I, 2, ... ,i}. 

Take any l x llatin square and consider each element in the form (0:, {3, I), where 
0: denotes the row, {3 the column and I the entry, with 1 :::; 0:, {3, I :::; i. From each 
of the [2 elements we can construct a k-cycle. If k is even each cycle is of the form: 

((1,0:), (2, {3), (3,0:), ... , (k - 1,0:), (k, {3)). 

If k is odd, each cycle is of the form: 

((1,0:), (2, {3), (3,0:), ... , (k - 1, {3), (k, ,)). 

Because of the properties of a latin square the decomposition is complete. I 

The following corollary holds because in the previous proof we did not exploit 
the fact that K( m, m, m) is tripartite. 
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COROLLARY 2.2 If the complete n-partite graph I« aI, a2, . .. ,an) decomposes 
into k-cycles, then K(all, a2l, ... , ani) decomposes into k-cycles. 

EXAMPLE 2.3 The graph C5 ® I<3 decomposes into copies of C5. 

(1,1) 

(5,1) (2,1) 

Take the following 3 x 3 latin square: 

1 2 3 
2 3 1 
3 1 2 

For each entry of the latin square we construct a 5-cycle in the graph C5 ® I<3: 

((1,1), (2, 1), (3, 1), (4, 1), (5, 1)), 
((1,1), (2,3), (3, 1), (4,3), (5, 3)), 
((1,2),(2,2),(3,2),(4,2),(5,3)), 
((1,3), (2, 1), (3, 3), (4, 1), (5,3)), 
((1,3), (2,3), (3,3), (4,3), (5,2)). 

The decomposition is complete. 

((1,1), (2,2), (3, 1), (4, 2), (5,2)), 
((1,2), (2, 1), (3,2), (4,1), (5,2)), 
((1,2), (2,3), (3,2), (4, 3), (5, 1)), 
((1,3), (2,2), (3,3), (4, 2), (5, 1)), 

I 
THEOREM 2.4 If the graph I«m,m,m) decomposes into k-cycles, then the graph 
I«ml, mi, ml) decomposes into kl-cycles for any positive integer i. 

Proof 
Note that we need only show that Ck ® I</ decomposes into lk-cycles. This has 

been done previously by Laskar [2]. We offer an alternative proof which relies on the 
existence of two orthogonal latin squares of order I, so the proof fails when 1 = 2 
or l = 6. However, the construction is necessary for later, and is rather nice, so we 
mention it anyway. 

Since we are assuming l does not equal 2 or 6, there exist at least two orthogonal 
latin squares of order l. Thus there exists an l x llatin square which can be partitioned 
into l disjoint transversals. 

195 



Label the vertices of Ck ® Kz as in Theorem 2.1. For each triple (row, column, 
entry) in the transversal, construct a k-cycle using the method from Theorem 2.1. 
We concatenate these l k-cycles so that the cycle corresponding to row 1 occurs first, 
the cycle corresponding to row 2 occurs second and so forth. We then have one 
lk-cycle, and from the l transversals we can form l cycles of length lk. These cycles 
completely decompose Ck ® K z • I 

Again we have not used the fact that the graph K(m, m, m) is tripartite, so the 
following corollary is true. 

COROLLARY 2.5 If the complete n-partite graph K( aI, a2, . .. , an) can be decom­
posed into k-cycles, then K(all, a2l, ... , anl) can be decomposed into kl-cycles. 

EXAMPLE 2.6 The graph C5 ® f{3 decomposes into copies of C15 . The 3 x 3 latin 
square mentioned previously can be partitioned into 3 transversals: 

For each (row, column, entry) triple we construct a 5-cycle (see Example 2.3). 
For each transversal, we concatenate the three corresponding 5-cycles to obtain a 
15-cycle, ensuring that the 5-cycle obtained from the first row occurs first, the 5-
cycle obtained from the second row second, and so on. This gives us three 15-cycles, 
which decompose C5 ® f{3: 

((1,1), (2, 1), (3, 1), (4, 1), (5,1), (1,2), (2,2), (3,2), (4,2), (5, 3), 
(1,3), (2,3), (3,3), (4,3), (5,2)), 
((1,1), (2,2), (3,1), (4,2), (5,2), (1,2), (2,3), (3,2), (4,3), (5,1), 
(1,3), (2,1), (3,3), (4,1), (5,3)), 
((1,1), (2,3), (3, 1), (4,3), (5, 3), (1,2), (2, 1), (3,2), (4,1), (5,2), 
(1,3), (2,2), (3,3), (4,2), (5, 1)). 

I 

Our final tool for decomposition uses a latin square to extend a circuit decom­
position of a small graph to a cyclic decomposition of a larger graph. Note that 
unlike the previous theorems in this section, the following construction applies only 
to complete tripartite graphs (although it also works if the partite sets have different 
size). 

THEOREM 2.7 If there exists a decomposition of K(m,m,m) into k-circuits such 
that within a circuit any vertex appears at most l times (or, equivalently, any vertex 
has degree at most 2l), then there exists a decomposition of K(ml, ml, ml) into k­
cycles. 
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Proof 
Let Lk be a circuit of length k in the decomposition of K(m, m, m) with each 

vertex appearing at most l times in the circuit. Label the partite sets of K(m, m, m) 
with a, band c. Label the vertices of Lk with {I, 2, ... ,k'}, where k' is the number 
of distinct vertices in Lk , and therefore may be less than k. We then attach one of 
the subscripts a, b or c to each label, indicating which partite set the corresponding 
vertex belongs to. For example we could have 

Label the vertices of Kz with {I, 2, ... ,l} as usual. We need to decompose Lk ® Kl 
into k-cycles. 

Let (Q,o) be a quasigroup of order l, with its elements taken from {1,2, ... ,l}. 
(Q is a quasigroup if and only if its multiplication table is a latin square.) Let 
i,j ·E Q. Then we can construct a k-cycle in Lk ® Kz from the above circuit as 
follows. 

For each vertex of type Xa in the circuit, replace the first occurrence of Xa with 
(xa,i); replace the second occurrence of Xa with (xa,i + 1); and so on. In general, 
replace the mth occurrence of Xa with (xa, i + m 1). 

For each vertex of type Xb in the circuit, replace the mth occurrence of Xb with 
(Xb,j + m - 1). Similarly, replace the mth occurrence of Xc with (xc, i oj + m 1). 
We repeat this process for each i, j E Q to obtain l2 cycles of length k. 

We now show these cycles do indeed constitute a decomposition of Lk ® K/ into 
k-cycles. Firstly, observe that since each vertex appears at most l times within L k , 

from the above construction no vertex will be repeated within a cycle. 
Now take an arbitrary edge ((xa, i), (Yb,j)) from Lk ® The edge (xa, Yb) must 

exist within Lk. Assume this is the i'th appearance of Xa and the j'th appearance of 
Yb. Then if we choose i i' + 1 and j j' + 1 from Q, the k-cycle constructed will 
include the edge ((xa, i), (Yb,j)). Similarly we may show that every edge of the form 
((Yb, i), (zc,j)) and ((zc, i), (xa,j)) exists for 1 :::; i,j :::; t. I 

3 Decomposition of K(m, m, m) into k-cycles 

THEOREM 3.1 The graph K(m, m, m) can be decomposed into k-cycles if and 
only if k divides 3m2 and k :::; 3m. 

Proof 
The number of edges in K(m, m, m) is 3m2 so k must divide 3m2 for a decom­

position to occur. If k > 3m a vertex must be repeated within each k-cycle which is 
impossible, so k ::; 3m. 

Case I: 3 divides k. 
Write k = 3s2 t, where t is square-free. From the necessary conditions, 3s2t13m2

, 

so stlm, and we can write m = stm'. Also, 3s2t :::; 3stm', so we have m' 2:: s. Now 
consider K(s, s, s). The degree of each vertex is even, so there exists an Eulerian 
circuit of length 3s2

, with each vertex appearing exactly s times. So by Theorem 2.7, 
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the graph K(sm/,sm',sm') can be decomposed into cycles of length 3s2. Applying 
Theorem 2.4, we have that K(sm't, sm't, sm't) decomposes into 3s2t-cycles. 

Case II: 3 does not divide k. 
Let k = s2t, where t is square free. From the necessary conditions, st divides m, 

so write m = stm'. Also s2t ::; 3stm', so s ::; 3m' and in fact m' 2: r s/31. 
First consider when s = 1. Note that K(t, t, t) decomposes into t-cycles either 

using Sotteau's result if t is even or from [I} (as mentioned in Section 1). Then, 
applying Theorem 2.1, K(m't, m't, m't) decomposes into t-cycles. Next consider two 
subcases: 

Case IIa: s == 1 (mod 3) and s > 1. Let s 3s' + 1, so that r s/31 = s' + 1. 
The graph K(l, 1, 1) is a triangle, so it certainly decomposes into one 3-cycle. We 
next apply Theorem 2.4 to show that K( s, s, s) decomposes into 3s-cycles. We use 
transversals in this construction (since s does not equal 2 or 6) so that each 3s-cycle 
consists of three matchings, one between each pair of partite sets. 

Take any four 3s-cycles from the decomposition of K( s, s, s) to obtain twelve 
matchings. We label the partite sets a, band c. 

a b a b a b a b 

[m. [m. [m. [m. e. .• . * •• 

.. " .. .. 

be be be be 

[m. [m. [m. [m. .. .. .. .. 
.. .. .. .. 

cae a cae a 

[m. [m. [m. [m. .. .. .. " 

.. .. .. " 

Each pair of matchings between the same two partite sets forms either a 2s-cycle 
or a number of even-length cycles, the edges of which add up to 2s. These pairs are 
labelled as shown. 
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~ a b 
@] 

b c 
[] 

c a 

[!J 
a b 

lR1 
b c 

~ c a 

Now, take any s' - 1 of the remaining 38-cycles together with the sets of cycles 
A and B to make a circuit of length (8' 1 )38 + 2(28) = 82

• The remaining two 
circuits of length S2 are formed in a similar fashion, using C and D, then E and F 
respectively. Each vertex will appear at most 8' + 1 times, so we can apply Theorem 
2.7 to obtain a decomposition of K(8m', sm', sm') into 82-cycles. Then from Theorem 
2.4, we have a decomposition of K( 8m/t, sm't, sm/t) into s2t-cycles, as required. 

Case lIb: s == 2 (mod 3). 
We let s = 3s' + 2, so that r s /31 = s' + 1. This time we take only two 3s-cycles 

from the decomposition of K( s, s, s), and form sets of even cycles between each pair 
of partite sets, the edges of which add up to 2s, as before. Note that this is not 
possible if s = 2, since no pair of 2 x 2 orthogonal latin squares exist, but in this case 
we vse Sotteau's result to show that K(2, 2, 2) decomposes into three 4-cycles [6]. 

For 8 =J. 2, simply form three circuits of length 82 by taking s' cycles of length 38 
and one set of even cycles with 2s edges, noting that 8'38 + 28 = s2. Each circuit 
is made from 8 cycles of length 38 and a set of disjoint cycles, so each vertex occurs 
at most 8' + 1 times within a circuit, and we can apply Theorems 2.7 and 2.4 in the 
same way as before. 

This completes the proof. I 
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