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Abstract 

The strong chromatic index of a graph G is the smallest integer k such 
that the edge set E( G) can be partitioned into k induced subgraphs 
of G which form matchings. In this paper we consider the behavior of 
the strong chromatic index of a sparse random graph K (n, p), where 
p = p(n) = 0(1). 

1. Introduction 

Let G (V, E) be a finite graph. The chromatic index ~ = ')'( G) of a graph G 
is the least number of colors required in order to color each edge of G so that no 
two edges with a common vertex have the same color. In other words, ')'(G) is the 
smallest integer k such that the edge set E( G) can be partitioned into k matchings. 
Vizing's theorem says that for every graph G, 

')'(G) E {~,~ + I} 

where ~ = ~(G) is the maximum vertex degree of G. Futhermore, if')' = ~ + 1 
then G has two adjacent vertices of maximum degree ~. 

A strong matching in a graph G is an induced subgraph of G that forms a 
matching (Le. a set of pairwise disjoint edges of G, no two of them being adjacent 
to the same edge). 

The strong chromatic index ')'* = ')'* (G) is the smallest integer k such that the 
edge set E(G) can be partitioned into k strong matchings. Equivalently, ')'* is the 
smallest k such that the edge set E( G) can be k-colored with the property that 
each color class is a strong matching of the graph G. Such a coloring is called a 
strong edge coloring. 

A Vizing's-type problem is to give an upper bound for ')'* (G) in terms of ~ = 
~(G). A trivial bound is the following 
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As a matter of fact, the color of an edge {v, w} can be affected by the colors of 
at most 2(6. - 1) edges incident to {v, w} and by the colors of at most 2(6. - 1)2 
"second neighbors" of {v, w}. Also, a good strong edge coloring with at most 
26. 2 - 26. + 1 colors can be found by the greedy algorithm. 

(1) 

The open problem in this area is the conjecture (see e.g. [3]) that 

if 6. is even 

if .6. is odd. 

The lower bounds for ,* (G) are provided by the following obvious inequalities 

,*(G) ~ max {deg(v) + deg(w) - I} 
{v,w}EE(G) 

where deg( v) denotes the degree of vertex v, and 

(2) 

where f3 = f3( G) stands for the maximum number of edges in a strong matching of 
G. 

The aim of this paper is to consider the strong edge colorings of a random graph 
model. Let K(n,p) be a random graph on vertex set {I, 2, ... ,n}, where each edge 
appears with the same probability p independently of all other edges. 

It is well-known that for every 0 < p = pen) < 1, the chromatic index of a 
random graph, ,n,p = ,(K(n,p)), satisfies a nice property, namely 

lim P( ,n,p = .6.n p) = 1 
n-+oo ' 

where 6.n ,p = 6.(K(n,p)) is the maximum degree of a random graph K(n,p). 

In this paper we examine behavior of the strong chromatic index 

,~,p = ,*(K(n,p)) 

of a sparse random graph K(n,p), i.e. when p = pen) ---+ 0 as n ---+ 00. 

As usual, we say that almost every graph K (n, p) has a given property P (or 
that K(n,p) has almost surely property P) if 

lim P(K(n,p) has P) = 1. 
n-+oo 

2. Results 

We begin with a simple observation. 
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Proposition 1. Let p = p(n) = o(n-3 /
2

). Then 

lim P(T~p = 1) = 1. D 
n-too ' 

Indeed, for the edge probability p = o(n-3/ 2 ) almost every graph K(n, p) consists 
of independent edges only. 

When p = p(n) is of the order at least n-3/ 2 but p = o(n) then the following 
result holds. 

Theorem 1. Let k ~ 2 be fixed, 0 < e < 00 and 

(3) 

Then 

where 

_til 
P = en k 

lim P(r~ p = t) = e -A {

-A 

n-too' 1 - e 

if t=k-1 

if t = k 

k 

A = ~! (k2 k
-

2 
- k + 1). 

Proof. It is well-known that if np -+ 0 as n -+ 00, then K (n, p) is almost surely 
a forest. Moreover, for the edge probability p given by (3), every isolated tree in 
K(n,p) has almost surely at most k + 1 vertices. Also (see [3]) if a graph G is a 
tree then 

(4) ,*(G) = max {deg(v) + deg(w) - I} := ¢(G), 
{v,w}EE(G) 

(compare with (1)). 
What are the structures of trees on k + 1 vertices that give maximum value 

in (4)? There are only two such structures: a star, i.e. a tree with exactly one 
non-pendant vertex and a tree with exactly two non-pendant vertices (see Fig. 1, 
where i can take any integer value from 1 to k - 2). 

k - 1 - i 

Fig. 1 
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Indeed, let v be adjacent with l vertices different from wand w with s vertices 
different from v. Then l, s ~ 0 and l + s ::; k - 1. Now 

¢( G) = max (I + s + 1) = k 
{v,w}EE(G) 

and all extremal graphs are easily characterized. 

Let the random variables Xl and X 2 count the number of configurations in 
K(n,p) which are isomorphic to a star on k + 1 vertices and to a tree on k + 1 
vertices with two non-pendant vertices, respectively. Then 

(5) P(~~,p = k) = P(XI + X 2 2: 1). 

For a fixed k 2: 2, we have 

Moreover, if k ~ 3 then 

A standard method (see e.g. [1]) shows that both random variables Xl and X2 
have asymptotically Poisson distribution with parameter Al and A2, respectively. 
Therefore, by (5), 

P(~~,p = k) = 1- P(XI = 0,X2 = 0) rv 1- e-\ 

where 
c

k 
k 2 

A = Al + A2 = k! (k2 - - k + 1). 

On the other hand, if Xl = 0 and X 2 = 0 (which, for p = p(n) given by (3), 
holds with probability tending to e-A as n -+ (0) then using Chebyshev's inequality 
one can show that almost every graph K (n, p) contains a star on k vertices and a 
structure of a tree that gives the maximum in (4) is such a star. Obviously, one 
needs k - 1 colors in order to color its edges. Consequently, 

lim Ph~ = k - 1) = e-\ 
n--+oo ,p 
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and the proof is completed. 0 

Theorem 1 shows that for the edge probability p given by (3), the strong chro­
matic index of a random graph K(n,p) behaves similarly as its maximum vertex 
degree, since (see e.g. [5]): 

lim P(tln p = t) = e -8 
{ 

-8 

n-+oo' 1 - e 

where () = ~. 

if t = k - 1 

if t = k 

Now let np -t c as n -t 00, where 0 < c < 00. In such a case the structure of 
K(n,p) changes dramatically when c passes 1 (see e.g. [1]). However during this 
period of the evolution, the number of cycles contained in K (n, p) is fixed, i.e. does 
not depend on n. This ensures that the strong chromatic index is still of the order 
of magnitude O(tln,p). As a matter of fact the following results hold. 

Theorem 2. Let p = ~. 

(i) If 0 < c < 1, then for arbitrary small E > 0 

Oi) If 1 ~ c < 00, then there is a constant C such that 

p (')'~,p ~ C· tln,p) = 1 - 0(1). 

Before we prove this theorem, let us comment on a case when 0 < c < 1. It is 
known that during this period of the evolution the random graph K (n, p) is almost 
surely planar (see e.g. [1]). A simple consequence of Vizing's theorem and the four 
color theorem shows (see e.g. [3]), that if G is a planar graph, then 

')'*(G) ~ 4tl(G) + 4. 

The first part of Theorem 2 claims, that in a case of a random graph, this upper 
bound can be, asymptotically, improved by a small factor. 

Proof of Theorem 2. Let T be a tree with maximum vertex degree tl(T). It is 
not hard to see, that adding to the edge set of T a new edge (of course a cycle 
is formed) may increase the strong chromatic index of a new graph G, by tl(T). 
Therefore 

(6) ')'* (G) ~ ¢( G) + tl(T) 

where ¢( G) is defined by (4). A little more effort shows that if one adds to a tree 
T some 1 new edges, in such a way that a longest cycle of a new graph G has k 
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vertices, then the strong chromatic index can be increased by 1 + (k - 2)(~(T) -1). 
To see this consider a tree T which has k non-pendant vertices, each of degree 
.6. = ~(T). By (4) one needs 2~ - 1 colors in a strong edge coloring of such a 
tree. Now add e;l) missing edges between those k non-pendant vertices. Each 
new edge receives a new color and each of (k - 2) (~ - 1) already colored edges 
must turn into a different color. Finally add 1 - (k;l) edges in such a way that 
each must be colored by a new color (it is easy to see that this is always possible). 
Thus 

(7) ,*(G) ::; ¢(G) + 1 + (k - 2)(.6.(T) - 1). 

Now we show that it is unlikely for K(n,p) where p = ~, 0 < c < 00, to contain 
a pair of adjacent vertices, both of large degrees. Let X = X(r, s) be the number 
of ordered pairs of adj acent vertices (v, w) such that 

r ::; deg(v) ::; deg(w) ::; deg(v) + s - 1. 

Let ~ = ~n,p. It is known (see e.g. [1, p.72]) that for almost every graph K(n, c/n) 

(8) 
logn 

~ = 1 I (1 + 0(1)). 
og ogn 

We will show that for r = C1~ and s = C2~' where C1 > ~ and C2 = 1 - C1 are 
constants, 

(9) lim Exp(X(r, s)) = O. 
n-+oo 

We have, with q = 1 - p, 

Exp(X) ~ n2p I: (n ~ 2)pkqn-2-k kI=' (n ~ 2)piqn-2-i 
k=r-1 t=k 

.6.-1 2k 

<n·c·s L (C;) 
k=r-l 

In the above estimation the second inequality is implied, among other things, by 
the inequality 

k kk 
e > kf 

(which follows, for example, from Stirling's formula). Therefore, by (8), 

log Exp(X) ::; (1 - 2cd log n 
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and, since Cl > ~, we obtain (9). This implies that for all adjacent pairs of vertices 
(v,w) 

P(deg(v) < Cl.6.) = 1 - 0(1). 

Consequently, for arbitrarily small but fixed € > 0, 

(10) 

Now if 0 < C < 1 then almost every graph K(n,p), p = ;, consists of components 
with at most one cycle. Consequently by (6) and (10) we obtain the first part of 
theorem. 

The second part follows similarly by (7) and (10), since for 1 ::; C < 00, a random 
graph K(n, c/n) contains almost surely a fixed number of cycles (see [1, p.79)). 0 

Presented results show that as long as p = pen) ::; ;, where 0 < C < 00, 

the strong chromatic index of a random graph K(n,p) is at most of the order of 
magnitude 0(.6.), where .6. = .6.n ,p' 

Our next result shows that if p = p( n) 2: ~, where c( n) is a function tending 
to infinity as n -+ 00, the strong chromatic index of K(n,p) is of the order of 
magnitude greater than the maximum vertex degree .6. = .6.n ,p' 

Theorem 3. Let p 2: ; = 0(1), where c = c(n) -+ 00 as n -+ 00. Then 

(11) 'Y~,p ~ 0 Co~~) . 
Proof. Let an,p denote the size of the largest independent set in K (n, p). Then 
(see [4]), for np = c(n) = o(n), almost surely 

2n 
an,p ::; c(n) logc(n)(l + 0(1)). 

Clearly, f3n,p, the maximum number of edges in a strong matching satisfies 

Thus, by (2), ,* > G(l) c(n)2 
n,p - logc(n) 

where G(l) is a positive constant. On the other hand, in the case when np = 
c(n) = o(n) almost every graph K(n,p) is such that (see e.g. [5]) 

.6.n ,p = O( c( n)) 

and we arrive at (11). 0 
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