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Abstract 

The edge-face chromatic number Xe / (G) of a plane graph G is the smallest 
number of colors assigned to the edges and faces of G so that any two 
adjacent or incident elements have different colors. Borodin(1994) proved 
that L1( G) ~ Xe/ (G) :::; L1( G) + 1 for each plane graph G with ~(G) ~ 10 
and the bounds are sharp. The main result of this paper is to give a 
sufficient and necessary condition for Xe/(G) = L1(G) + 1 if L1(G) 2:: 
IGI-2. 

1 INTRODUCTION 

Throughout this paper, all graphs are finite simple plane graphs. Let G be a plane 
graph, whose vertex set, edge set, face set, vertex number, edge number, maximum 
degree and minimum degree of vertices are denoted by V(G), E(G), F(G), p(G), 
q(G), L1(G) and 8(G) respectively. Let G[S] denote the induced subgraph of G 
on S ~ V ( G), and N G ( u) the neighboor set of a vertex u in G. Moreover set 
N~ ( u) = V (G) - (N G ( u) U {u}). A vertex (or face) of degree k is said to be a 
k-vertex (or k-face) of G. An-face f whose boundary, denoted by b(f), contains 
the vertices Ul, U2, "', Un in some order is written as f = UIU2' .• Un. Let Vk(G) 
(k = 0, 1, ... , L1 L1 ( G)) denote the set of k-vertices of G. If C k is a cycle of length 
k in a connected plane graph G, then let Vint(Ck ) and Vext(Ck ) denote the sets of 
vertices in G contained in the interior and exterior of Ck respectively. We say that 
Ck is a k-separating cycle of G if Vint(Ck) =I- 0 and Vext(Ck) =I- 0. In particular, C3 is 
called a separating triangle. A graph G is called an hk-graph if L1( G) = p( G) - k, 
k = 1,2,···. 

A plane graph G is k-edge-face colorable if the elements of E( G) U F( G) can be 
colored with k colors so that any two distinct adjacent or incident elements receive 
different colors. The edge-face chromatic number Xe / (G) is defined as the minimum 
number k for which G is k-edge-face colorable. 
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Clearly, Xej (G) 2:: 6. (G). On the other hand, Melnikov [4] conjectured that 
Xej(G) ::; 6.(G) + 3. Without using the Four-Color Theorem, this conjecture was 
proved for 6. ::; 3 [3, 5) and for 6. = 4 [6]. Borodin [2] showed that Xej(G) ::; 6.(G)+1 
for 6.( G) 2:: 10 and the bound is sharp. Recently, using the Four-Color Theorem and 
Vizing's Theorem, Waller [7] proved the conjecture to be true for all plane graphs. 
Thus the main problem in this area is to determine the precise bounds of Xej (G) for 
3 ::; 6. (G) ::; 9 or to give a complete classification of plane graphs according to their 
edge-face chromatic numbers. In this paper, we present a necessary and sufficient 
condition for Xej(G) = 6.(G) + 1 if 6.(G) 2:: IV(G)I 2 and p(G) ;::::: 7. 

In what follows, a k-edge-face coloring of a plane graph G is abbreviated to a 
k-EF coloring. Let O"(x) denote the color assigned to the element x E E(G) U F(G) 
under a given coloring 0", and for U E V(G), let Ga(u) denote the set of colors which 
are colored on the edges incident with u under 0". For S ~ UE(G) U F(G), we write 
S ---+ a to express that all the elements of S are simultaneously colored with the color 
a. And S[m] denotes that at most m colors can not be used when coloring all the 
elements of S with the same color. In particular, y[m] = S[m] if S = {V}. Other 
terms and notations not defined in this paper can be found in [1] 

2 PRELIMINARY 

Lemma 2.1 IfG is an hk-graph withp(G) 2:: 3k+3 (k;::::: 1), then IVLl(G) I ::; 2. 

Proof By contradiction. Suppose that IVLl(G)1 ;::::: 3. Then there are Ul, U2, U3 E 

VLl(G) such that da(Ui) = p(G) - k, i = 1,2,3. Thus 

IN~(Ui)1 = p(G) - 1 - dC(Ui) k - 1. 

Then we have 
IN~(Ul)1 + IN~(U2)1 + IN~(U3)1 3k - 3. 

However, by p(G) 2:: 3k + 3, we deduce 

3 

IV(G) - ((U N~(Ui)) U {Ul,U2,U3})1 
i=l 

3 

2:: IV(G)I-I(U N~(Ui)) U {Ul,U2,U3}1 
i=l 

2:: p(G) - (3k - 3) - 3 2:: 3k + 3 - 3k = 3. 

This implies that UI, U2 and U3 are simultaneously adjacent to at least three vertices, 
say VI, V2 and V3, of G. It follows that 

which contradicts the planarity of G.D 
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Corollary 2.2 Let G be an hk-graph of order p. Then 
(1) IVp-I(G)1 ::; 2 if k = 1 and p(G) ~ 6. 
(2) IVp-2( G) I ::; 2 if k = 2 and p( G) ~ 9. 

Lemma 2.3 Let G be an hI-graph with p( G) ~ 3 which contains two L:l-vertices WI 

and W2. Then 
(1) 2:S da(u) :S 4 for each U E V(G) \ {Wt,W2}' 
(2) 3 :S da(J) :S 4 for each f E F(G). 

Proof Obvious. 

For i ~ 1, an hi-graph is said to be an h;-graph if there are a vertex U E V.6.(G) 
and a face f E F (G) such that all the edges incident to U lie on the boundary of f. 
Let x be a vertex of a connected graph G, and let the components of G - x have 
vertex sets VI, V2,"', Vn (n ~ 1). Then the induced subgraphs Gi = G[Vi U {x}], 
i = 1,2"," m, are called the x-components of G. 

Lemma 2.4 Let G be an hI-graph with p(G) ~ 2 and let W be a L:l-vertex of 
G. Then G is an hi-graph iff (1) each w-component of G is either K3 or K 2; and 
(2) G does not contain a separating triangle. 

Lemma 2.5 Let G be an h2-graph with p(G) ~ 5 and a unique L:l-vertex wand let 
N~ (w) = {x}. Then G is an h'2-graph iff (1) G contains no separating cycle through 
x and w, and (2) G - x is an hi -graph. 

It is not difficult to prove the above two lemmas. In fact, an hi -graph is an 
outerplane graph and an h'2-graph is a l-outerplane graph (i.e. after removing at 
most one vertex it becomes an outerplane graph). 

Lemma 2.6 Let G be a h2-graph with p(G) ~ 8 and a unique L:l-vertex w. Let 
N~ (w) = {x} with da (x) ~ 2. Then at least one of the following cases is true for G: 

(1) There is a 1-vertex U adjacent to w. 
(2) There is a 2-verex U on a 3-face uwy. 
(3) There is a 3-vertex U with Na(u) = {w, VI, V2} such that UWVI, UWV2 E F(G). 

Proof Let G be an h2-graph satisfying the conditions of the lemma. Suppose 
that the vertices of Na(w) are put in the order Ul,U2,"',Um , where m = da(w) = 
L:l(G) = p - 2. By wx 1- E(G), we have Na(x) ~ Na(w). Since G has a unique 
L:l-vertex, it follows that Na(x) =1= Na(w) and hence Na(w) \ Na(x) =1= 0. Then 
Na(x) partitions Na(w) \ Na(x) into n non empty maximal subsets 8 1 , 82,···,8n, 
where 1 :S n :S da(w) - da(x). Since 8 1 =1= 0 and 81 ~ Na(w) \ Na(x), we let that 
81 = {Uj+1' Uj+2,"', uj+t}, where t = 1811 ~ 1 and the suffixes are taken modulo 
m. From the maximality of 8i , it follows Uj, Uj+t+l E Na(x). This implies that the 
interior of the 4-cycle XUjWUj+t+lX does not contain the vertices in Na(x) and the 
edges incident to x. If there is no separating triangle inside XUjWUj+t+1X, then (1) 
holds when some Uk E 81 has degree one, (2) holds when some Uk E 81 has degree 
two and (3) occurs when all the vertices of 81 have degree three. Otherwise let 
C = WUj+sUj+lW be a separating triangle inside XUjWUj+t+1X with as few vertices in 
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Vint(C) as possible, where uj+s, Uj+l E {Uj, Uj+I,"', Uj+t+I}, 2 :::; l-s ::; t. Observing 
the internal vertices Uj+s+1, Uj+s+2,' ", Uj+l-I of C, we can similarly get (1), (2) or 
(3). The lemma is proved.D 

Lemma 2.7 Let G be an hI-graph with p(G) ;::: 2 and let W be a b.-vertex of G. 
Then at least one of the following cases is true for G: 

(1) b(G) = 1. 
(2) There is a 2-vertex U on a 3-face uWY. 
(3) There is a 3-vertex U with Na(u) = {W,VI,V2} such that UWVI,UWV2 E F(G). 

The proof is similar to that of Lemma 2.6. In order to prove the following theorem, 
we introduce two notations. Let G be an hI-graph with a unique b.-vertex w. We 
denote by Ei:t(G) the set of inner edges in G incident to wand let mw(G) = IEi:t(G) I· 
An edge is called an inner edge if it does not lie on the boundary of the unbounded 
face of G. Obviously, Ei:t(G) ~ Ein(G), and G is not an hi-graph iff mw(G) ;::: 1. 

Lemma 2.8 Let G be an hI-graph with p(G) ;::: 7 and W a b.-vertex of G. If G is 
not an hi -graph, then at least one of the following cases is true for G. 

(1) There is a i-vertex U adjacent to W such that HI = G - U is not an hi-graph. 
(2) There is a 2-vertex U on a 3-face uwy such that H2 = G - U is not an hi -graph. 
(3) There is a 3-vertex U with Na(u) = {W,VI,V2} and UWVI,UWV2 E F(G) such 

that H3 is not an hi -graph, where H3 = G - U if VI V2 E E( G) and H3 = G - U + VI V2 
otherwise. 

Proof Let G be an hI-graph with p( G) ;::: 7 and not an hi -graph. By Corollary 
2.2, 1 :::; IV~(G)I :::; 2. We consider two cases below: 

Case 1 IV~(G)I = 2. Suppose that V~(G) = {WI,W2}' Then WIW2 E E(G) 
and UWI,UW2 E E(G) for each U E V(G) \ {WI,W2}' Let VI, V2, "', Vk denote the 
vertices in V (G) \ {WI, W2} which are arranged on one side of the edge WI W2 such 
that the 3-cycle WIW2VjWI is contained in a1l3-cycles WIW2VsWI, j + 1 :::; s ::; k, 
j = 1,2, . ", k - 1, and symmetrically YI, Y2, ... , Ym on the other side of WIW2 such 
that the 3-cycle WI W2YiWI is contained in all 3-cycles WI W2YlWI, i + 1 ::; 1 ::; m, 
i = 1,2"", m - 1. Thus k + m = p(G) - 2 ;::: 5 and k, m;::: O. Assume that k;::: m. 
Hence k ;::: r~(p(G) - 2)1 ;::: 3. Since 2 ::; da(vd ::; 3, we can form H2 = G - VI if 
da(VI) = 2 and H3 = G - VI if da(VI) = 3. Then H j (j = 2,3) is an hI-graph with 
two b.-vertices WI and W2 and V2Wi E E~i(Hj) (i = 1,2). Hence H2 or H3 is not an 
hi-graph. 

Case 2IV~(G)1 = 1. Let V~(G) = {w}. Since G is not an hi-graph, mw(G) ;::: 1. 
There are two subcases: 

2.1 mw(G) ;::: 2. By Lemma 2.7, we consider three possibilities: 
(i) There is a I-vertex U such that uw E E(G). We form Hl = G - u. 
(ii) There is a 2-vertex U on a 3-face uwy. We form H2 = G - u. 
(iii) There is a 3-vertex U with Na (u) = {w, VI, V2} such that UWVI, UWV2 E F(G). 

In this case, we put H3 = G-u ifvIV2 E E(G) and H3 = G-U+VIV2 ifvIV2 rJ. E(G). 
Obviously Hi (i = 1,2,3) is an hI-graph with P(Hi) ;::: 6 and W E V~(HJ By 

Corollary 2.2, 1 ::; IV~(Hi)1 ::; 2. First suppose that IV~(Hi)1 = 1. Note that 
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Ei:t(Hi) ~ Ei:t(G) and mw(Hi) 2: mw(G) - 1 2: 1. It follows that Hi is not an 
hi-graph. Next let IVt1 (Hi ) I = 2. Referring to the proof of Case 1, we deduce that 
for each x E Vt1 (Hi ), Ein(Hi) =I- 0. Thus Hi is not an hi-graph. 

2.2 mw(G) = 1. Let e* = wx E Ei:t(G) and let Gl , G2,"', Gk be the w­
components of G. We claim that k 2: 2. In fact, if k = 1, then w is not a cut 
vertex of G and so G is 2-connected. Thus at most two edges incident to ware 
not inner edges of G. It follows that mw(G) 2: da(w) - 3 = p(G) - 1 - 3 2: 3, a 
contradiction. Note that each Gi is an hI-graph with w as a .6.-vertex. In particular, 
when IV(Gi)1 2: 3, Gi is 2-connected. If there is some G j such that IV(Gj)1 2: 5, 
then by Ef:t(G j ) ~ Ei:t(G), it follows that mw(G) 2: mw(Gj ) 2: IV(Gj)l- 3 2: 2, also 
a contradiction. Thus IV(Gi)1 ::; 4 for all i. In addition, there exists at most one 
w-component of G having four vertices. In fact, if there are two such w-components, 
say Gi and Gj , then mw(G) 2: mw(Gi) +mw(Gj ) 2: 1+ 1 = 2, a contradiction. Hence 
we may suppose that 2:::; IV(G1)1 ::; 4, 2::; IV(Gi)l:::; 3, i 2,3, .. ·,k. Now the 
discussion can be divided into two cases. 

2.2.1 IV(Gl)1 = 4. Since Gl is a 2-connected hI-graph with w as a .6.-vertex, 
mw(Gl ) 2: IV(Gl)1 - 3 2: 1. On the other hand, mw(GI) :::; mw(G) is obvious. 
Therefore mw(GI) = mw(G) = 1. This implies that e* E Ei:t(GI) and so x E V(G I). 
We claim that V(G I ) can not be contained in any separating cycle of G. Suppose 
that the assertion is false, then for every u E V (G d \ {w}, uw E Ei:t (G). So 
mw( G) 2: IV( Gd \ {w}1 2: 3, a contradiction. Now, by k 2: 2, we may choose a 
w-component of G, say Gt (2 :::; t ::; k), which is not contained any separating cycle 
of G. Applying Lemma 2.7 for Gt , we can form either HI or H2 with e* E E(Hi), 
i = 1 or 2. Thus Hi is not an hi -graph, the lemma is shown in this case. 

2.2.2 IV(GI)I ::; 3. Now each w-component of G is either K3 or K 2 • Thus 1 ::; 
de(u) :::; 2 for each u E V(G) \ {w}. If de (x) = 2, let y E Ne(x) \ {w}. Then both wy 
and wx must simultaneously be inner edges of G, thus mw(G) 2: 2, a contradiction. 
Hence we must have de(x) = 1. It follows that there is s E {I, 2",', k} such that 
Gs = G[{e*}]. Since e* E Ei:t(G) , Gs must be contained in some 3-cycle C of G. 
Clearly, C = G jo (1 ::; jo :::; k). We claim that G jo can not be contained in other 
w-components of G, since otherwise we can similarly deduce that mw(G) 2: 3. By 
p(G) 2: 7, we may select a w-component Gt (t =I- s, jo) which is not contained in 
any separating cycle of G. Then the problem can be reduced to 2.2.1. The proof is 
completed. 0 

Lemma 2.9 Let G be an h2-graph with p(G) 2: 8 that is not an h'2-graph. If G 
contains a unique .6. -vertex w and N~ (w) = {x} with de (x) 2: 2, then at least one of 
the following cases is true for G: 

(1) There is a 1-vertex u adjacent to w such that HI = G - u is not an h~-graph. 
(2) There is a 2-vertex u on a 3-face uwy such that H2 G -u is not an h'2-graph. 
(3) There is a 3-vertex u with Ne(u) = {w, VI, V2} and UWVl, UWV2 E F(G) such 

that H 3 is not an h'2 -graph, where H 3 = G - u if VI V2 E E (G) and H 3 = G - u + VI V2 
otherwise. 

By Lemmas 2.5 and 2.6, and using a method similar to that of the proof of Lemma 
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2.8, we can establish this lemma. 

Lemma 2.10 Let G be an h2-graph with p( G) 2: 9 and two adjacent ~-vertices WI 
and W2. Then at least one of the following cases holds for G: 

(1) There is a 2-vertex U E NG(wd n NG(W2) such that UWIW2 E F(G). 
(2) There is. a 3-cycle YWIW2 such that its interior (or exterior) contains only a 

vertex u and three edges uy, UWI and UW2 and dG(y) ::; 6. 
(3) There are three vertices UI, U2, U3 E NG(WI) n NG(W2) such that dG(ud ::; 5, 

dG (U2) ::; 4, dG (U3) ::; 5 and the interior (or exterior) of the 4-cycle UI WI U3W2UI 
contains only U2 and the edges incident to U2. 

Proof By the definition of h2-graph, we suppose that N~(Wi) = {Xi}, i = 1,2. 
Consider the graph H = G - Xl - X2' If Xl =f. X2, then p( H) = p( G) - 2 and 
~(H) = ~(G) -1 = peG) - 2 -1 = p(H) -1. If Xl = X2, then p(H) = peG) -1 and 
~(H) = ~(G) = peG) - 2 = p(H) - 1. This means that H always is an hI-graph 
with p(H) 2: 7. Obviously WI and W2 are two ~-vertices of H. Let VI, V2, "', Vk 
denote the vertices in V (H) \ {WI, W2} located on one side of the edge WI W2 such 
that the 3-cycle WIW2VjWI is contained in all 3-cycles WIW2VsWl, j + 1 ::; s ::; k, 
j = 1,2"", k -1, and YI, Y2, "', Ym on the other side of WIW2 such that the 3-cycle 
WI W2YiWI is contained in all 3-cycles WI W2Y1Wl, i + 1 ::; l ::; m, i = 1,2, ... ,m - 1. 
Thus k + m + 1 = ~(H) = p(H) - 1 2: 6 and k, m 2: O. By virtue of Lemma 
2.3, 2 ::; dH(u) ~ 4 for each U E V(H) \ {WI, W2}. Thus da(u) ::; dH(u) + 2 ::; 6, 
and da(u) = 6 iff dH(u) = 4 and UXI, UX2 E E(G). Furthermore, each face f of H 
has degree either 3 or 4 and b(J) contains at most two vertices in V(H) \ {WI, W2}' 
Noting that in G Xi (i = 1,2) must lie inside some face fi of H, we deduce that 
dG(Xi) ~ 3, 1V'6(G) I ::; 2, and uv E E(G) and {!I, h} = {UVWI' UVW2} if there do 
exist two 6-vertices U and V in G. 

Now suppose that (1) and (2) of the lemma are both false, we prove that (3) must 
hold. Let m ::; k. We distinguish three cases. 

Case 1 m = O. Then k = ~(H) - 1 2: 5. Since both (1) and (2) do not hold, 
it follows that one of Xl or X2 lies inside the 3-cycle WI W2V2WI and the other inside 
some face in H with Vk as a boundary vertex. Taking Ul = V2, U2 = V3 and U3 = V4, 
we obtain (3). 

Case 2 m = 1. In this case, k = ~(H) - 2 2: 4. With the same reason, one of Xl 

or X2 must lie inside the 3-cycle WI W2V2WI and the other inside a face in H with YI 
as a boundary vertex. Again taking UI = V2, U2 = V3 and U3 = V4, we deduce (3). 

Case 3 k 2: m 2: 2. Similarly, one of Xl or X2 must lie inside the 3-cycle 
WI W2V2WI and the other inside the 3-cycle WI W2Y2WI. Thus three consecutive ver­
tices in {V2' V3,"', Vk, Ym, Ym-l,"', Y2} satisfy the requirement of (3). The lemma 
is proved.O 
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3 MAIN RESULTS 

Lemma 3.1 If G is either an hi -graph with p( G) ~ 5 or an h~-graph with p( G) ~ 6, 
then Xe,(G) = ~(G) + l. 
Theorem 3.2 If G is an hI-graph with p( G) ~ 6, then ~(G) ~ Xe, (G) ~ ~(G) + 1; 
and Xe, (G) ~(G) + 1 iff G is an hi -graph. 

Proof We use induction on p(G). By enumeration, we can prove the theorem 
holds for p( G) = 6. Assume that it is true for all hI-graphs with fewer than p 
vertices, and let G be an hI-graph of order p (~ 8). If G is an hi-graph, it follows 
from Lemma 3.1 that Xe,(G) = ~(G) + 1. If G is not an hi-graph, we shall prove 
Xe,(G) = ~(G). Let w denote a ~-vertex of G and then consider three cases by 
Lemma 2.8. 

Case 1 There is a I-vertex U adjacent to w such that H = G - U is not an hi­
graph. Then ~(H) = Ll(G) - 1, and H is a hI-graph with p 1 vertices. By the 
induction assumption, Xe , (H) = ~(H). Thus we first give a (~(G) - 1)-EF coloring 
,.\ of H with a color set C. Then we assign a new color f3 t. C to the edge uw in G. 
A ~(G)-EF coloring a of G is constructed. 

Case 2 There is a 2-vertex U on a 3-face uwy such that H = G - U is not 
an hi-graph. A similar discussion yields a (~(G) - 1)-EF coloring A of H with a 
color set C. Based on ,.\, we color the edge uw in G with a new color f3 t. C. If 
de (y) ~ Ll( G) - 2, then the edge uy can be properly colored because it has at most 
Ll(G) -1 color restrictions. Otherwise, since ~(G) = p(G) -1 ~ 7, there must exist 
a vertex v E NH(y) \ {w} such that "\(vy) differs from A (10) , where fa is the face 
of H with yw as a boundary edge, which is subdivided into the union of uyw and 
a face in G. In this case, we recolor the edge vy with f3 and color uy with A(VY). 
Afterward we put uwy[5]. 

Case 3 There is a 3-vertex u with Ne(u) = {w, VI, V2} and UWVb UWV2 E F(G) 
such that H is not an hi-graph, where H = G-u if VIV2 E E(G) and H = G-U+VIV2 
otherwise. It follows from Corollary 2.2 that min{de (vI),de (V2)} ::; ~(G) - 1, say 
de(vt} ~ Ll(G) 1. Similarly, H has a (Ll(G) -1)-EF coloring"\ with a color set C. 
We form a ~(G)-EF coloring (J' of G by considering two subcases: 

3.1 VIV2 E E(G). Based on ,.\, we color both uw and VIV2 with a new color f3 t. C 
and then put: UV2[~ - 1], UVI[~ - 1], uwvd4], uwv2[5], UVIV2[6]. 

3.2 VIV2 t. E(G). Let fa denote the face of G with UVI and UV2 as two boundary 
edges. If de(VI) ~ ~(G) 2, based on A, we can color both the edge uw and the face 
fa with a new color f3 t. C. Then we put: uV2[Ll- 1], uvd~ 1], uwvd5], uwv2[6]. 
If de(Vl) = Ll(G) -1, by Ll(G) ~ 7, we can find a vertex y E Ne(vr) \ {u,w} such 
that A(YVl) =I A(lO), A(VIV2). Now we put: {uw, yVI, fa} -+ f3 t. c, UV2 -+ A(VIV2), 
UVI -+ "\(YVI), uwvd4], uwv2[5].D 

Corollary 3.3 If G is a 2-connected hI-graph with p(G) ~ 6, then Xe,(G) = ~(G). 

Corollary 3.4 If G is an hI -graph with p( G) ~ 6 and contains two ~-vertices, then 
Xe,(G) = ~(G). 
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Theorem 3.5 If G is an h2-graph with p(G) ~ 7 and contains two adjacent ~­
vertices, then Xe / (G) = ~ (G). 

Proof Obviously we need only prove the bound Xe/(G) ~ ~(G). We proceed by 
induction on p(G). For p(G) = 7,8, the theorem follows from enumeration. Assume 
that it is true for each h2-graph with fewer than p vertices and two adjacent ~­
vertices. Let G be a graph satisfying the conditions of the theorem and IV(G)I = 
p ~ 9. Thus ~(G) = p - 2 ~ 7. By Lemma 2.10, we have three possibilities. 

Case 1 There is a 2-vertex U E Na(WI) nNa (W2) such that UWIW2 E F(G). Form 
the graph H G - u. Let f denote the face of G with U as a boundary vertex and 
f =1= UWI W2 and let fo denote the face of H which is subdivided into the union of f 
and UWI W2 in G. Since H is an h2-graph with two adjacent ~-vertices WI and W2 and 
~(H) = ~(G) - 1, by the induction assumption, H has a (~(G) - l)-EF coloring ,x 
with a color set C. By ~(G) 1 ~ 6, there must exist a vertex x E N H (wd \ {u, W2} 
such that ,x(xwd =1= ,x(fo). Based on ,\, we construct a ~(G)-EF coloring (J of G as 
follows: {UW2' xwd -+ {3 ~ C, UWI -+ ,x(xwd, f -+ ,x(fo), UWl w2[5]. 

Case 2 There is a 3-cycle yWI W2 such that its interior (or exterior) contains only 
a vertex U and three edges uy, UWI and UW2 and da(y) :s; 6. Let H = G - U and 
form a (~(G) - l)-EF coloring ,x of H with a color set C. Based on ,x, we further 
put: {YWI, UW2} -+ {3 ~ C, UWI -+ ,x(YWI), uy[6], uywd4], uyw2[5], UWIW2[6]. 

Case 3 There are three vertices UI, U2, U3 E N a(wdnNa (W2) such that da(ud :::; 5, 
da (u2) :::; 4, da(u3) :s; 5 and the interior (or exterior) of the 4-cycle UIWIU3W2Ul 
contains only U2 and the edges incident to U2. Again let H = G - U and, by the 
induction assumption, H has a (~(G) - l)-EF coloring A with a color set C. Based 
on ,x, we can form a ~(G)-EF coloring (J of G as follows: first color U2W2 and WIU3 
with a new color {3 ~ C and then color U2WI with ,x(WIU3). Further there exist some 
subcases. 

If UIU2, U2U3 E E(G), we put: UIU2[6], U2U3[6], UIU2Wr[4], UIU2W2[5], U2U3W2[5], 
U2U3Wd6]. 

If Ul U2 ~ E( G) and U2U3 E E( G) (for the converse case, we can give a similar 
proof), we put: U2U3[5], UIWIU2W2 -+ ,x(WIU3W2UI), U2U3Wr[5], U2U3W2[6]. 

If UIU2, U2U3 ~ E(G), we put: UIWIU2W2 -+ ,x(WIU3W2Ur) , WIU3W2U2[6]. Now we 
have proved the theorem.O 

Let C = XIX2' .. Xp-2Xl be a cycle of length p - 2(~ 3). Add a new vertex U to 
the interior of C and another v to the exterior respectively, and then join both U and 
v to each Xi (i 1,2"" ,p - 2). Denote the resulting graph by Wp. 

It is easily seen that Wp is an h2-graph with two nonadjacent ~-vertices. Moreover 
every h2-graph G containing two nonadjacent ~-vertices can be induced from Wp by 
removing some edges in E(C), where p = IV(G)I. 

Theorem 3.6 If G is an h2-graph with p( G) ~ 7 and contains two nonadjacent 
~-vertices, then Xe/(G) = ~(G). 

Proof Given p = IV(G)I ~ 7, we first form a (p - 2)-EF coloring ,x of Wp • Let 
0,1, ... ,p - 3 denote p - 2 colors and suppose that the following suffixes are taken 
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modulo p-2. For i = 1,2"" ,p-2, we put: VXi ---t i-I, UXi ---t i-2, XiXi+1 -+ i+1, 
UXiXi+l ---t i, VXiXi+1 -+ i + 2. 

It is easily checked that A is a (p - 2)-EF coloring of Wp with the property that 
for each i = 1,2"", P - 2, the color ..\( VXiXi+l) differs from each of ..\( UXiXi+1) , 
"\(UXi-lXi), "\(UXi+lXi+2), ..\(UXi) and ..\(UXi+l)' 

Next, according to the above discussion, we have G ~ Wp with L\(G) = p(G)-2 = 
p - 2. Thus, based on ..\, a L\(G)-EF coloring a of G is formed as follows: for each 
edge e = XiXi+l E E(Wp ) \ E(G), we put a(vxiUXi+I) = ..\(VXiXi+l)' The other 
edges and faces of G are colored with the same colors as in..\. So we prove that 
Xej(G) ::; L\(G). But Xej(G) 2:: L\(G) is trivial. Therefore Xej(G) = L\(G). This 
completes the proof.O 

Theorem 3.7 If G is an h2-graph with p( G) 2:: 7, then L\( G) ::; Xej (G) ::; L\( G) + 1, 
and Xej(G) = L\(G) + 1 iff G is an h;-graph. 

Proof By induction on p( G). If p( G) = 7,8, the theorem follows by enumeration. 
Suppose that it is valid for p - 1 and let G be an h2-graph with IV (G) I = p 2:: 9. 
If G is an hi-graph, it follows from Lemma 3.1 that Xej (G) = L\ (G) + 1. Now 
suppose that G is not a h;-graph, we show that Xej(G) = L\(G). By Corollary 
2.2, G contains at most two L\-vertices. However, when G contains two adjacent 
or nonadjacent L\-vertices, the assertion has been verified in Theorems 3.5 or 3.6. 
Thus we need only consider the case in which G contains a unique L\-vertex w. 
Let N~(w) = {x}, then dG(x) ::; L\(G) - 1. If dG(x) ::; 1, we define the graph 
H = G - x. Clearly L\(H) = L\(G) = p(G) - 2 = p(H) -1 2:: 7, so H is an hl-graph. 
Since G is not an h;-graph, H is not a hi-graph. By Theorem 3.2, we prove easily 
Xej(G) = Xej(H) = L\(H) = L\(G). So we may assume that dG(x) 2:: 2. In this case, 
by means of Lemma 2.9 and applying a similar discussion as in Theorem 3.2, we can 
complete the proof of theorem. 0 

Corollary 3.8 If G is a 2-connected h2-graph with p(G) 2:: 7, then Xej(G) = L\(G). 
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