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Abstract 

Let G = (V, E) a graph. A set D ~ V is a weak dominating set of G 
if for every vertex y E V - D there is a vertex xED with xy E E and 
d( x, G) ::; d(y, G). The weak domination number rw (G) is defined as the 
minimum cardinality of a weak dominating set and was introduced by 
Sampathkumar and Pushpa Latha in [6]. 

In this paper we present sharp upper bounds on rw(G) for general 
graphs involving the maximum and minimum degree and characterize all 
extremal graphs. Furthermore, we give a probabilistic upper bound and 
a lower bound on rw( G). 

1. Introduction 

In this paper we only consider finite, undirected graphs G without multiple edges or 
loops. Let G be such a graph. V (G) and E( G) denote the vertex set and edge set of G. 
The neighbourhood of any vertex x E V(G) in a graph G is denoted by N(x, G). For 
any subset X ~ V(G) we set N(X, G) = UxExN(x, G) and N[X, G) = XUN(X, G). 
The degree d(x, G) of a vertex x E V(G) in the graph G is the cardinality of its 
neighbourhood IN(x, G)I. The minimum (maximum) degree 8(G) (~(G)) of a graph 
G is defined as 8(G) = min{d(x,G)lx E V(G)} (~(G) = max{d(x,G)lx E V(G)}). 

Whenever it is clear to which graph G we refer, we only write N(x) (N(X), N[X], 
d(x) respectively) instead of N(x, G) (N(X, G), N[X, G], d(x, G) respectively). 

For every vertex v E V (G) we define the weak degree dw ( v, G) of v in G as 

dw(v, G) = I{ul u E N(v,G),d(u,G)::; d(v,G)}I, 

i.e. the weak degree of v is the number of neighbours of v which have at most the 
same degree as v. Let W(G) denote the set of all vertices v of G with dw(v, G) = O. 
Clearly, W (G) is an independent set. 

A weak dominating set of a graph G is a set D with the property that for all 
vertices y E V(G) - D there is a vertex x E N(y, G) n D with d(y, G) ~ d(x, G), 
i.e. every vertex not in D is dominated by a vertex in D having at most the same 
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degree. In this situation we say that x is a weak neighbour of y. By this 
definition, it is clear that W (G) ~ D for any weak dominating set D of G. The weak 
domination number 'Yw (G) of a graph G is defined as the minimum cardinality of 
a weak dominating set of G. 

This parameter was introduced by E. Sampathkumar and L. Pushpa Latha in 
[6] and represents one of the numerous versions of the classical domination number 
'Y( G) which have been introduced and studied in the recent years. 

Apart from the immediate bounds 'Y(G) ::; 'Yw(G) ::; n(G) - 6(G) for graphs G 
of order n(G) no upper bound on 'Yw(G) has been published so far. Considering the 
star K1,n-l with 'Yw(K1,n-d = n -1 it is easy to understand the difficulties of finding 
a reasonable upper bound on 'Yw(G). Even for such a simple graph a minimum weak 
dominating set may contain almost all vertices. 

But if the ratio 'Yw(K~,n-Il tends to 1 the maximum degree n - 1 must tend to 
infinity and the minimum degree remains 1. It was this observation which lead to the 
results presented in Section 3. We begin with some preparatory results in Section 2. 
A probabilistic argument leads to the upper bound in Section 4 and in Section 5 we 
give a lower bound on 'Yw(G). Further results on 'Yw(G) can be found in [3} and [4]. 

2. Preliminary Results 

In [6] the authors also introduced a strong domination number rst( G) which 
differs from 'Yw( G) only by the opposite degree demand. 

Upper bounds on this parameter were found by J.H. Hattingh and M.A. Henning 
in [2] and by the current author in [5]. Whereas for the strong domination number 
there are many structural restrictions on the graph (see [2] and [5]) which affect 
this parameter, similar assumptions have no effect on the weak domination number. 
Hence, it makes more sense to treat these two parameters separately. 

Our first lemma corresponds to Lemma 1 in [2J which gave an analogous bound 
on 'Yst(G). It can be proved in total analogy to the mentioned Lemma 1. 

Lemma 1. Let G be a graph on n vertices. Then 'Yw( G) ::; n+I~(G)I. 

If we assume a relation between the cardinalities of W (G) and N (W (G)), then 
we can eliminate I W ( G) I in Lemma 1. 

Lemma 2. Let G be a graph on n vertices, W = W(G) and IN(W)I ~ A~lIWI for 
some ~ ~ 2. 

1. rw(G) ::; ::1' 
2. 'Yw(G) = ::1 holds if and only if G has the following structure. 

(a) IV - N[W]I = IN(W)I = A~lIWI· 

(b) N(V - N[W]) ~ N(W), i.e. V(G) - N[W] is an independent set. 
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(c) Every vertex x E V (G) - N[W] has exactly one weak neighbour in N (W) 
and every vertex u E N (W) is a weak neighbour of exactly one vertex in 
V(G) - N[W]. 

Proof Claim 1.: Since V(G) - N(W) is a weak dominating set, we obtain 'Yw(G) :::; 
n - IN(W)I ::; n - .6.~lIWI which implies to IWI :::; (~ - l)(n - 'Yw(G)). Together 
with Lemma 1 this yields 

which is equivalent to 
~n 

'Yw (G) :::; ~ + 1 . 

Claim 2.: If 'Yw (G) = ~:l' then the proof of the first claim and Lemma 1 imply 
'Yw(G) = %n - .6.;-l'Yw(G) and IWI = (~ - l)(n - 'Yw(G)). This last equality is 
equivalent to 'Yw(G) = n .6.~lIWI, which implies IN(W)I = .6.~lIWI. Now 

(G) = n + IWI = ~ 
'Yw 2 ~ + 1 

implies n = ~~i IWI = (1 + .6.~l)IWI and 'Yw(G) = .6.~lIWI = (1 + .6.~l)IWI· We 
obtain for the vertex set X := V(G) N[W] that IXI = n - IN(W)I - IWI 
(1 + .6.=-1 - .6.~1 - l)IWI = .6.~lIWI· Hence, we get part (a). 

By the definition, every vertex in X has at least one weak neighbour. 
If two vertices xl, X2 E X are joined by an edge in G (we may assume d(Xl) :::; 

d(X2)), then the set WUX - {X2} would be a weak dominating set of G of cardinality 
.6.~lIWI- 1 which is a contradiction to the equations above. Hence, N(X) ~ N(W) 
which implies part (b). 

If two vertices Xl, X2 E X have a common weak neighbour U E N(W), then the 
set W U X U {u} - {Xl, X2} would be a weak dominating set of G of cardinality 
.6.~lIWI- 1 which is once again a contradiction. 

Hence, every vertex in N(W) is a weak neighbour of at most one vertex in X. 
Together with IXI = IN(W)I this implies part (c). 

If we assume that G satisfies (a), (b) and (c), then 'Yw (G) = ::1 is immediate. III 

3. Sharp upper bounds on lW ( G) 

Our first upper bound on the weak domination number of a graph G will depend on 
the maximum degree ~ (G) of G. 

Theorem 1. Let G be a connected graph on n 2:: 2 vertices and of maximum degree 
~ = ~(G). Then 

(G) ~n 
'Yw ::; ~ + l' 

where equality holds if and only if G is a star (G = K 1,.6.). 
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Proof If D. = 1 or W = W(G) = 0, the theorem is trivial. Thus, we assume D. ~ 2 
and W =f. 0. We consider two cases. 

Case 1.: d(w) = 1 for all vertices W E W. 
Let G1 be the subgraph of G containing the vertices in Wand N(W) and ali edges 

of G joining a vertex in W to a vertex in N(W). Then all connected components 
of G1 are stars. If GI = KI,n-l, then G = G I and the theorem holds. Thus, we 
assume G I =f. KI,n-l. Since G is connected, we obtain that D.(Gt} :s; D. - 1 and all 
components of G1 are stars KI,1 with 1 :s; D. - 1. This yields IN(W)I ~ ~~lIWI. 
Together with Claim 1 of Lemma 2 this yields the desired inequality. 

Now suppose IW(G) = i':l' Then G satisfies the properties (a),(b) and (c) given 
in Claim 2 of Lemma 2. 

Property (a) implies that all components of G1 are stars Kl,~-l' Since G is 
connected, all vertices u E N(W) have at least one neighbour in V(G) - W. Thus, 
d( u) = D. for all u E N (W) and all these vertices have exactly one such neighbour. 

Properties (b) and (c) imply now that all vertices u E N(W) have exactly one 
neighbour in V(G) - N[W] which implies the contradiction d(x) = 1 for all vertices 
x E V(G) - N[W]. 

Hence, for GI =f. K1,n-1 we cannot have equality in the given bound. 
Case 2.: Not all vertices in W have degree one. 
Let G2 be the graph which arises from G by replacing each vertex w E W by 

d(w) vertices WI, ... , Wd(w) all having degree one in G2 so that N(w) = ut~~) N(Wi). 
We have n(G2 } - n = k ~ 1, D.(G2 ) = D. and G2 satisfies the condition of Case 1. 

For every weak dominating set D2 of G2 and every w E W we have Wi E D2 
for every i = 1, ... , d(w). The set D = D2 U W - UwEW{Wl, ... , Wd(w)} is a weak 
dominating set of G with IDI = ID21 - k. Hence, we obtain I'w(G) :s; I'w(G2 ) - k ::; 
.c!l (n + k) - k < i';I' This completes the proof. III 

The extremal graphs in Theorem 1 have minimum degree 1. Thus by demanding 
a higher minimum degree we can obtain the following better upper bound depending 
on both the maximum and minimum degree. 

Corollary 1. Let G be a connected graph on n ~ 2 vertices of maximum degree 
D. = D. (G) and minimum degree 6 = 6 ( G). Then for W = W ( G) 

(G) < ~ _ 6 - 1 IWI 
I'w - D. + 1 D. + 1 . (1) 

If 6 =f. D., then equality holds in (1) if and only if G is a bipartite graph with partite 
sets Wand N(W) and d(w) = 6 for all W E Wand d(u) = D. for all u E N(W). If 
6 = D., then equality holds in (1) if and only if G = K2 , i.e. the complete graph on 
2 vertices. 

Proof For 6 = 1 this is exactly Theorem 1. Hence, we assume 6 ~ 2. If W = 0, 
then Lemma 1 implies IW(G) ::; ~ which implies (1) and equality in (1) can not hold. 
Hence, we assume W =f. 0 which implies 6 =f. D.. Let G1 be the graph which arises 
from G as G2 in the proof of Theorem 1. We obtain n(G I ) -n = I:wEw(d(w) -1) ~ 
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(8 - l)IWI where we have n(G1) - n = (8 - l)IWI if and only if all vertices w E W 
have degree 8. As in the proof of Theorem 1, every weak dominating set Dl of G 1 

yields a weak dominating set D ofG with IDI = IDll- (n(G1) -n). Hence, Theorem 
1 implies 

.6. 
'Yw(G) ::; 'Yw(G1) - (n(Gd - n) ::; .6. + 1 n(G1) - (n(Gd - n) 

.6. 1 .6. 1 
= .6. + 1 n - .6. + 1 (n(Gd - n) ::; .6. + 1 n .6. + 1 (8 - l)IWI· 

We have equality in the above relation if and only if 'Yw( Gd = .6.~1 n( Gd and n( Gd­
n = (8 - l)IWI. Hence, all components of G1 are stars K 1,.6. and all vertices w E W 
have degree 8. This implies that G has the demanded structure. 

Conversely, it is easy to see that for bipartite graph with the mentioned properties 
we get equality in the given relation. This completes the proof. l1li 

The disadvantage of Corollary 1 is that the bound contains the cardinality of the 
set W ( G). Our last corollary offers a way of eliminating I W ( G) I. 
Corollary 2. Let G be a connected graph on n ~ 2 vertices of maximum degree 
.6. = .6. (G) and minimum degree 8 = 8 ( G). Then 

.6.+8-1 
'Yw( G) ::; .6. + 28- In. 

Proof Corollary 1 gives us an upper bound on IW(G)I in terms of n,.6., 8 and Tw(G). 
If this bound is inserted in Lemma 1 the given bound is obtained. l1li 

4. Probabilistic upper bound on ~w( G) 

It is a well known result that 

(G) < n(G)(l + In(8(G) + 1)) 
T - 8(G) + 1 

(see for example [1]). In order to find an analogous result for Tw(G), we have to find 
a suitable replacement for 8 (G) in the above expression. 

Since every weak dominating set D contains W (G) and all vertices in N (W (G)) 
have a weak neighbour in W ( G), we consider only the vertices in V (G) - [W (G) U 
N(W(G))] for graphs for which this vertex set is not empty. The proof of the 
following result is streamlined from [1]. 

Theorem 2. Let G be a graph on n vertices with 

V(G) - [W(G) U N(W(G))] =f. 0. 

If 8w = min{dw(v, G) I v E V(G) - [W(G) U N(W(G))]}, then 

TW(G) ::; IW(G)I + (n -IW(G)I) 1 + ~:(~ 1+ 1). 
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Proof Set p = In~~~il) and choose every vertex from V(G) - W(G) randomly and 
independently with probability p. The set of all chosen vertices is denoted by S. Let 
Ys ~ V* = V(G) - [W(G) U N(W(G))] be the set of vertices that neither belong to 
S nor have a weak neighbour in S. Since all vertices in V* have at least 8w weak 
neighbours in V (G) - W (G), the probability for each vertex v E V* to belong to Ys 
is at most (1 - p)Ow+1. 

The expected value of lSI is (n -IW(G)l)p. The expected value of Ys is at most 

(n - IW(G) U N(W(G))I)(l - p)ow+1 ::; (n - IW(G)I)(l- p)ow+1 

::; (n -IW(G)l)e-p(ow+1) = (n - IW(G)I) 8
w 
~ l' 

Therefore, the expected value of lSI + IYsl is at most 

(n _ IW(G) I) 1 + In(8w + 1) . 
8w + 1 

Since W U S U Ys is a weak dominating set of G, this immediately implies the 
desired upper bound. .. 

5. Lower bound on 1w(G) 

Since r(G) ::; rw(G) for every graph G, all lower bounds on r(G) are also lower 
bounds on rw(G). But as r(G) and rw(G) can differ considerably, these lower bounds 
will not be very good in general. The next theorem presents an analog for the well 
known bound r( G) 2: A(b~L· 

Theorem 3. Let G be a graph on n vertices with maximum degree .6. and minimum 
degree 8. Then 

(G) > max{IW(G)1 n + IW(G)I n +.6. - 8}. 
"Iw - , .6. + 1 ' .6. + 1 

Proof Since "Iw(G) 2: IWI for W = W(G) is immediate, we only prove rw(G) ~ 
n1~~1 and rw (G) 2:: n!~~o. Let D be a minimal weak dominating set. We consider 
the set E* of edges which have one endpoint in D and the other in V-D. Since 
every vertex in V - D has a (weak) neighbour in D, we have I E* I 2: n - "Iw ( G). 

Since W ~ D and the vertices in W have degree at most .6. - 1, we have I E* I ::; 
IWI(.6. - 1) + (rw(G) -IWI).6.. 

Since every weak dominating set contains at least one vertex of minimum degree, 
we have IE*I ::; 8 + (rw(G) - 1).6.. 

Combining these two upper bounds on IE* I with the lower bound given above we 
conclude the two lower bounds on rw ( G). III 
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