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Abstract 

In this note, we prove that there does not exist a Steiner (v, k, 2) trade 
of volume m, where m is odd, 2k + 3 ~ m ~ 3k 4, and k ~ 7. This 
completes the spectrum problem for Steiner (v, k, 2) trades. 

1 Introduction 

A (v, k, t) trade T = {TI' T2 } of volume m = m(T) consists of two disjoint collections 
TI and T2 , each containing m k-subsets, called blocks, of some set V, such that each 
t-subset of V is contained in the same number of blocks in TI and T2 . The set 
of elements of V contained in Tl is denoted by F(TI). Note that there may exist 
elements of V which occur in no block of TI . In this paper since we are not concerned 
with the value of v we write (k, t) trade instead of (v, k, t) trade. 

Definition 1 A (k, t) trade T = {TI, T2 } is called Steiner (k, t) trade if any t-subset 
of F(TI ) occurs at most once in T I . 

Definition 2 The spectrum S(k, t) of Steiner (k, t) trade is 

S(k, t) = {m I there exists a Steiner (k, t) trade of volume m}. 
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It is well-known that 8(3,2) = {O, 4, 6, 7, 8, ... } (see [7]),8(4,2) = {O, 6, 8,,9,10, ... } 
(see [2]) and 8(4,3) = {O, 8,12,14,15,16, ... } (see [5] and references therein). In 
[3], Gray and Ramsay show that S(5,2) = {O, 8,10,12,13,14, ... } and S(6,2) = 
{O, 10, 12, 14,15,16, ... }. They also prove that: 

Theorem 3 (1) (See [3]) If ° < m < 2k - 2 or m 2k - 1, then m rf: S(k,2). If 
m = 0, or m 2: 3k 3, or m is even and 2k - 2 :s; m :s; 3k - 4, then m E S(k, 2). 
(2) (See [4]) 2k + 1 E 8(k, 2) precisely when k E {3, 4, 7}. 

So for k 2: 7, the inclusion of odd volumes between 2k+3 and 3k-4 in S(k, 2) has 
remained undetermined. In this note we prove there does not exist a Steiner (k,2) 
trade T with m = m(T) odd and 2k + 3 :s; m :s; 3k - 4 for k 2: 7. This completely 
settles the spectrum problem for Steiner (k,2) trades. 

2 Preliminary Results 

First we state some results of [6] and [3]. 

Definition 4 For an s-subset S and trade T = {TI' T2}, let rs(Td be the number of 
blocks in TI which contain 8. If S = {x}, we write rx for r{x}(Td. 

Lemma 5 (See [6]) If 8 is an s-subset, 1 :s; s < t, and T is a (k, t) trade, then 

rs(T) =/: 1, m(T) - 1. 

Lemma 6 (See [3]) Suppose T = {TI' T2} is a'Steiner (k, 2) trade with ra = 2 for 
some a E F(Td and m(T) < 4k - 10. If BI and B2 are the two blocks of TI 
containing 0:, then there exist (distinct) elements x E Bl and y E B2 such that at 
least k 1 blocks of Tl (including B I) contain x but not y, and at least k - 1 blocks 
of Tl (including B 2) contain y but not x. 

Lemma 7 (See [3]) Suppose T = {TI' T2} is a Steiner (k, 2) trade, k > 3, and there 
exist distinct elements x,y E F(TI) such that rx + ry 2: m(T). Then rx = ry = 
m(T)/2. 

We also make use of the following lemma in the next sections. 

Lemma 8 Let x, V, z and k be integers with k 2: 3 and c/>(x, v, z) = xz + yz - xv. If 

(1) x+V+z=k-l;and 

(2) O:S; x :s; V :s; z :s; k - 2, 

then c/>(x, V, z) 2: k 2 if k =/: 4,7 and c/>(x, V, z) 2: k 3 if k = 4 or 7. Furthermore, 
these minimum values are obtained only at 

(i) (x, V, z) (0,1, k - 2) for k = 3 or k ~ 8; 
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(ii) (x, y, z) E {(a, 1, 3), (1, 1, 2)} for k = 5; 

(iii) (x, y, z) E {(a, 1,4), (1,2, 2)} for k = 6; 

(iv) (x, y, z) (1,1,1) for k = 4; and 

(v) (x, y, z) (2,2,2) for k = 7; 

Proof If x ° then ¢(O, y, z) = yz, 0 ~ y ~ z and y + z = k - 1. So ¢(O, y, z) ~ 
k 2. Moreover, ¢(O, 1, k - 2) = k - 2. Now let x ~ 1. Then (2) becomes 1 ~ x ~ 
y ~ z ~ k - 2 and so k ~ 4. From (1) we have z = k 1 - x - y so 

1jJ (x, y) ¢ (x, y, k - 1 - x - y) = (x + y)( k - 1 (x + y)) - xy 

and x + 2y ~ k - 1. If we assume x, yare real numbers and 0 ~ A ~ y - x then 

'¢(x + A, y - A) (x + y)(k - 1 - (x + y)) (x + A)(y - A) 
(x + y)( k - 1 - (x + y) ) xy + A (x - y) + A 2 

(x + y)( k - 1 - (x + y)) - xy + A (x y + A) 
< 1jJ(x, y). 

So the minimum of 1jJ (x, y) occurs at x = y. Letting y = x in 1jJ (x, y) we find 
1jJ(x, x) = -5x2 + 2(k - l)x and by (1) and (2) we have 1 ~ x ~ (k - 1)/3. So 

1jJ(x, x) >= min( 1jJ(1, 1), 1jJ( (k - 1) /3, (k 1)/3)). 

N ow if x = 1 then 

¢(1, 1, k - 3) = 2k - 7 ~ k - 2 for k ~ 5 

and if x = (k - 1)/3 then 

¢((k - 1)/3, (k - 1)/3, (k - 1)/3) = (x 1)2 /9 ~ k 2 for k ~ 9. 

The case k E {4, 5, 6, 7, 8} is left for the reader. 

3 Steiner (k,2) trades with k > 8 

o 

In this section we prove that for k ~ 8 there does not exist a Steiner (k,2) trade T 
with m(T) odd and 2k + 3 ~ m(T) ~ 3k - 4. We begin with the following crucial 
lemma. 

Lemma 9 Suppose T = {T1' T2 } be a Steiner (k, 2) trade with k ~ 8. If there exists 
an Q E F(T1 ) with r a = 3 then m(T) ~ 3k - 3. 

Proof Let B1 , B2 and B3 be the three blocks in Tl which contain the element a 
and let G1 , G2 and 0 3 be the three blocks in T2 which contain the element a (see 
Table 1). Note that Bl U B2 U B3 = G1 U G2 U G3. 
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TI 
{C\(, b11 , b12 , ... , bl(k-l)} 
{C\(, b21 , b22 , ... , b2(k-I)} 
{C\(, b31 , b32 , ... ,b3(k-l)} 

Table 1 

T2 
{C\(, C11, C12,· .. , Cl(k-l)} 

{C\(, C21, C22, ... ,C2(k-I)} 
{C\(, C31, C32,·· ., C3(k-I)} 

Define Xij = (Ci n Bj ) \ {C\(} and Xij = IXij I for 1 ~ i, j ~ 3. Then it follows that 
:LT=1 Xij = k - 1 and :L;=l Xij = k - 1. Moreover, since Tl and T2 are distinct we 
have Xij ~ k - 2. We also define . 

for 1 ::; i ~ 3. Note that each Pi is the edge set of the complete tripartite graph, Gi 

say, with parts Xij, 1 ~ j ~ 3. Now let A E TI \ {BI' B 2, B3} and P = {{x, y} I x, Y E 

A}. Since each element of Pi occurs exactly in one block of TI we have IP n Pil = 0, 
1, or 3. Moreover, if IP n Pil = 3 then these three pairs form a triangle. Therefore 
there must be at least 

XilXi2 + XilXi3 + Xi2Xi3 - 2(maximum number of triangles in Gi) 

blocks in Tl to cover the pairs in Pi. Assuming XiI ~ Xi2 ~ Xi3, the maximum number 
of triangles in Gi is Xi1Xi2. So there must be at least 

blocks in Tl to cover the elements of Pi. On the other hand, no element of Pi and 
Pj can occur in the same block of Tl for i =f. j. Now applying Lemma 8 we see 

m(T) ~ 3 + (k - 2) + (k - 2) + (k - 2) = 3k - 3. 

This completes the proof. o 

Lemma 10 Suppose T = {TI' T2} is a Steiner (k, 2) trade, k ~ 8 and m(T) ~ 3k-4. 
Then each block of TI contains an element which occurs in exactly two blocks. 

Proof First note that if r 0: = 3 for some C\( E F (TI) then by Lemma 9 m(T) ~ 3k - 3 
which is a contradiction. Now consider the block {aI, a2, a3, ... , ak} E TI. If r ai > 3 
for all 1 ~ i ~ k then since each element aI, a2, a3, ... ,ak occurs at least four times 
in the blocks of TI and no pair of these elements can occur in more than one block 
of Tl it follows that m(T) ~ 3k + 1. This is also a contradiction. So each block of 
Tl contains an element which occurs exactly in two blocks. 0 

Theorem 11 Let m be odd, k ~ 8 and 2k + 3 ~ m ~ 3k - 4. Then there does not 
exist a Steiner (k, 2) trade of volume m. 
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Proof Let T {TI' T2 } be a Steiner (k, 2) trade of volume m. By Lemma 9, ra =I- 3 
for all 0:' E F(Td. By Lemma 10, there exists an element 0:' E F(Td with r a = 2. 
Now since for k > 7 we have 3k - 4 < 4k - 10, by Lemma 6 there exist distinct 
elements x and y in F(TI ) such that at least k - 1 blocks of Tl contain x but not y, 
and at least k 1 blocks of Tl contain y but not x, and a block from each of these 
collections contains 0:'. 

(i) If there is a block B in TI with x, Y E B, then we need at least (k -1) + (k -1) + 
(k - 2) + 1 = 3k - 3 blocks in T I , since by Lemma 5 rf3 2: 2 for all f3 E F(T1), which 
is a contradiction. So there is no block in TI containing both x and y. 
(ii) If each block of Tl contains either x or y then rx + ry 2: m(T). Now by Lemma 
7 r x = r y = m(T) /2 which is impossible since m is odd. So there is a block in Tl 
which contains neither x nor y. 
(iii) Let B E Tl and x, y (j. B. By Lemma 10 there is an element 'Y E B with r, = 2. 
Now since m(T) < 4k - 10 by Lemma 6 there exist distinct elements z and w in 
F(T1) such that at least k - 1 blocks of Tl contain z but not w, and at least k - 1 
blocks of TI contain w but not z, and a block from each of these collections contains 
'Y. If {x, y} n {z, w} = 0 then 

m(T) 2: (k - 1) + (k - 1) + (k - 3) + (k 3) > 3k - 4 for k 2: 8. 

So without loss of generality we can assume {x, y} n {z, w} = {x}, say x = w. By (i) 
the pair {x, z} cannot appear in any block of T1. If the pair {y, z} does not appear 
in any block of Tl then 

m(T) ~ (k - 1) + (k - 1) + (k - 1) = 3k - 3 > 3k - 4. 

So let {y,z} appears in a block ofTl . This forces that m(T) 3k 4 (so k is odd), 
r x = r y = r z = k - 1 and for any block A E Tl we have A n {x, y, z} =I- 0. Now for 
any element 6 E F(TI ) \ {x, y, z} we must have ro = 2. Therefore 

k(3k - 4) = (k - 1) + (k - 1) + (k - 1) + 2(IF(TI )I- 3). 

This is also impossible since left hand side is odd and right hand side is even. This 
completes the proof. 0 

4 Non-existence of a Steiner (7,2) trade of 
volume 17 

In this section we prove that there does not exist a Steiner (7, 2) trade of volume 17. 
So by [3] and [4] 8(7,2) = {O, 12, 14, 15, 18, 19, 20, ... }. 

Lemma 12 Let T = {TIl T2 } be a Steiner (7,2) trade with m(T) = 17. If there 
exists an 0:' E F(Td with ra = 3 then rx 2: 3 for all x E F(Tl)' 

Proof Let B I , B2 and B3 be the three blocks in Tl which contain the element 
0:' and let GIl G2 and G3 be the three blocks in T2 which contain the element 0:'. 
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Note that B1 U B2 U B3 = 0 1 U O2 U 0 3, Let Xij, Xij and Pi for 1 :::; i,j :::; 3 
be defined as in Lemma 9. So we have :Lf=l Xij = 6 and 2:1=1 Xij = 6. Applying 
Lemma 8 and the fact m(T) = 17 forces Xij = 2 for 1 :::; i, j :::; 3. This implies 
that the blocks in Tl have one of the two structures as shown in Table 2. Note 
that for both structures 0 1 = {a, 1,2,7,8,13, 14}, O2 = {a, 3,4,9,10,15, 16}, and 
0 3 = {a, 5, 6,11,12,17, 18}. Moreover rx 2': 3 for x E {l, 2, 3, ... , 18}. 

Tl (Structure 1) T1 (Structure 2) 
B1 : {a, 1,2,3,4,5, 6} B1 : {a, 1, 2, 3, 4, 5, 6} 
B2 : {a,7,8,9,10,11,12} B2 : {a,7,8,9,10,11,12} 
B3 : {a, 13, 14, 15, 16,17, 18} B3 : {a,13,14,15,16,17,18} 
B4 : {1,7,13,*,*,*,*} B4 : {1,7,*,*,*,*,*} 
B5 : {1,8,14,*,*,*,*} B5 : {1,13,*,*,*,*,*} 
B6 : {2,7,14,*,*,*,*} B6': {7,13,*,*,*,*,*} 
B7 : {2,8,13,*,*,*,*} B7 : {1,8,14,*,*,*,*} 
Bs: {3,9,15,*,*,*,*} Bs: {2,7,14,*,*,*,*} 
Bg: {3,10,16,*,*,*,*} Bg: {2,8,13,*,*,*,*} 
BlO: {4,9,16,*,*,*,*} BlO: {3,9,15,*,*,*,*} 
B 11 : {4,10,15,*,*,*,*} B ll : {3,10,16,*,*,*,*} 
B12 : {5,11,17,*,*,*,*} B12 : {4,9,16,*,*,*,*} 
B 13 : {5,12,18,*,*,*,*} B 13 : {4,10,15,*,*,*,*} 
B14 : {6,11,18,*,*,*,*} B 14 : {5,11,17,*,*,*,*} 
B 15 : {6,12,17,*,*,*,*} B 15 : {5,12,18,*,*,*,*} 
B16 : {*,*,*,*,*,*,*} B 16 : {6,11,18,*,*,*,*} 
B17 : {*,*,*,*,*,*,*} B17 : {6,12,17,*,*,*,*} 

Table 2 

Case 1 Let the blocks in Tl have Structure 1. 

(i) If a block contains an element which occurs exactly in three blocks it cannot 
contain an element which occurs in more than five blocks. 

(ii) There are at least five elements in Bl which occur in exactly three blocks. 

Case 2 Let the blocks in Tl have Structure 2. 

(i) If a block contains an element which occurs exactly in three blocks it cannot 
contain an element which occurs in more than four blocks. 

(ii) There are at least five elements in Bl which occur in exactly three blocks. 

Now let a, /3, r E F(T1) with rQ = rf3 = r, = 3. Then we need at least six blocks in 
Tl for these three elements. Now let r8 = 2 for some 6 E F(Td. Since m(T) = 17 < 
4.7 10 = 18 by Lemma 6 there exist (distinct) ,elements x and y in F(T1 ) such that 
at least 6 blocks of T1 contain x but not y, and at least 6 blocks of Tl contain y but 
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not x. So by (i) m(T) 2: 6 + 6 + 6 which is a contradiction. Therefore, if ra = 3 for 
some a E F(TI) then rx ~ 3 for all x E F(TI)' This completes the proof. 0 

In a similar manner to Theorem 11 we prove the following lemma. 

Lemma 13 Let T = {TI' T2 } be a Steiner (7, 2) trade with m(T) = 17. Then r x ~ 3 
for all x E F(TI)' 

Proof Let ra = 2 for some a E F(T). Since m(T) = 17 < 18 = 4.7 - 10 then by 
Lemma 6 there exist (distinct) elements x and y in F(T1) such that at least 6 blocks 
of Tl contain x but not y, and at least 6 blocks of Tl contain y but not x. 
(i) If there is a block B in TI with X, Y E B then since by Lemma 5 r a ~ 2 for all 
a E F(T1) we need at least 6 + 6 + 5 + 1 = 18 blocks in Tl which is impossible. So 
there is no block in Tl containing both x and y. 
(ii) If each block of Tl contains either x or y then rx + ry 2:: m(T). Now by Lemma 7 
r x = r y = 17/2 which is impossible. So there is a block in TI which contains neither 
x nor y. 
(iii) Let BE Tl and x, y (j. B. If each element of B occurs in more then three blocks 
then m(T) 2:: 3.7 + 1 = 22 which is impossible. Moreover, by Lemma 12 and the 
fact that F(Tl) has an element which occurs in exactly two blocks, B contains no 
element which occurs in exactly three blocks. Therefore there is an element f3 E B 
with rf3 = 2. So by Lemma 6 there exist (distinct) elements z and w in F(TI ) such 
that at least 6 blocks of Tl contain z but not w, and at least 6 blocks of Tl contain 
w but not z. If {x,y} n{z,w} = 0 then m(T) ~ 6+6+4+4 = 20. So without loss 
of generality we can assume {x, y} n {z, w} = {x}, say x = w. By (i) the pair {x, z} 
cannot appear in any block of T1. If the pair {y, z} does not appear in any block of 
Tl then 

m(T) 2:: 6 + 6 + 6 = 18 > 17. 

So let {y,z} appears in a block ofTI . Since m(T) = 17 we have rx = ry = rz = 6 
and for any block A E TI we have A n {x, y, z} =I- 0. Now for any element 'Y E 
F(Td \ {x,y,z} we must have r, = 2. Therefore 

7.17 = 119 = 6 + 6 + 6 + 2(IF(TI)I- 3). 

This is also impossible since left hand side is odd and right hand side is even. This 
completes the proof. 0 

The proof of the following lemma is left for the reader. 

Lemma 14 Let T = {TI' T2 } be a Steiner (7,2) trade with m(T) = 17. 
(i) Any block of TI contains at most two elements which occur in more than three 
blocks. 
(ii) If a block B E TI contains two elements which occur in more than three blocks 
then An B =I- 0 for any block A E TI . 

Theorem 15 There does not exist a Steiner (7,2) trade with volume 17. 

309 



Proof Let T = {TI' T2 } be a Steiner (7,2) trade with m(T) = 17. Then by Lemmas 
12 and 13 the blocks of TI have one the two structures as shown in Table 2. 
Case 1 Let TI have Structure 1 as shown in Table 2. By Lemma 14 part (i), 
IBI6 n {I, 2, 3, ... , 18}1 = i, where 0 ~ i ~ 2. It is straightforward to check that if 
i = 0,1 then m(T) > 17. If i = 2 then by Lemma 14 part (ii), BI6 n Bj =f. 0 for 
1 ~ j ~ 17. This is impossible since BI n B2 n B3 = {a}. 
Case 2 Let Tl have Structure 2 as shown in Table 2. By Lemma 14 part (i) B4 n 
{I, 2, 3, ... ,18} = {1,7}. So B4 n Bj =f. 0 for 1 ~ j ~ 17. This is impossible since 
B3 n B4 0. 0 

5 Conclusion 

Here we summarize the results on the spectrum of Steiner (k, 2) trades. 

Theorem 16 There exists a Steiner (k, 2) trade of volume m if and only if 

(1) m o· , 

(2) m 2: 3k 3' , 

(3) m is even and 2k - 2 ~ m ~ 3k - 4; or 

(4) m = 2k + 1 when k E {3,4, 7}. 

The result of this paper contributes to the understanding of Steiner 2-designs for 
(at least) the following reasons. 

(1) It lays the foundation for solving the intersection problem for these designs, 
which heretofore has only been solved for block sizes 3 and 4. (See [1] for a 
survey on intersection problem.) 

(2) It aids in the investigation of defining sets (see [8]) for these designs. A defining 
set must meet every trade; so every bit of information about possible trades 
gives another small step towards understanding the seemingly unfathomable 
secrets of defining sets. 

(3) In practical applications of design theory (e.g. design of experiments), many 
appropriate designs can be found. As the experiment progresses, an additional 
constraint on the design might surface. Do we have to scrap it all and start 
over with a new design, or can we just wiggle the existing design a bit, so as to 
satisfy the new constraint, and only have to repeat some of the trials? Exactly 
what is needed here is a small trade. Our results here indicate just what kind 
of small trades are possible. 

Open problem. What is the spectrum of Steiner (k,3) trades? 
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