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Abstract 

Let G be a simple graph. We assign a polynomial C(G; x) to G, called 
the clique polynomial, where the coefficient of Xi, i > 0, is the number 
of cliques of G with i vertices, and the constant term is 1. Fisher and 
Solow (1990), proved that this polynomial always has a real root. We 
prove this result by a simple and elementary method, which also implies 
the following results. If (G is the greatest real root of C (G; x) then for an 
induced subgraph H of G, (H ::; (G, and for a spanning subgarph H of G, 
(H ~ (G. As a consequence of the first inequality we have a(G) :::; -I/(G, 
where a(G) denotes the independence number of G. 

1 Introduction 

Throughout this paper we consider simple graphs, i.e. finite undirected graphs with 
no loops and multiple edges, and we use the terminology and notation of [1]. 

The dependence polynomial was first introduced by Fisher [2], who studied the 
following problem: How many n letter words can be made from an m letter alphabet 
if certain pairs of letters commute? Fisher and Solow [3] defined the dependence 
polynomial as follows: 

where w is the size of the largest clique in G and Ci denotes the number of complete 
subgraphs of size i in G. For a set S of words with an operation on them we assign 
a graph G s such that V (G s) = S and two vertices are joined iff they commute. 
Fisher [2] proved that the generating function for the above problem is precisely 

1 
fGs(X) . 

If we change the signs of all negative coefficients in fG(x) to positive signs, we 
obtain a polynomial which is called the clique polynomial of G. Using the notation 
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of [4] we denote it by C(G;x). So we have: 

In [3] Fisher and Solow showed that the dependence polynomial of a graph always 
has a real root. In fact they prove that the smallest root (in absolute value) of fG(x) 
is real. This result immediately implies the existence of a real root for the clique 
polynomial. 

In this paper we give a simple proof of the later result. In addition, we show 
that there is some relation between the largest negative root of C(G;x) and that of 
C(H;x), for special sub graphs H of G. 

2 Results 

We first present the following observation and then use it as the main tool to prove 
our main theorems. 

Lemma 1. Let G be a graph and let v E V (G). Then 

(a) C(G; x) = C(G \ v; x) + xC(G[N(v)]; x); where N(v) is the neighborhood of v. 

(b) C(G; x) = C(G - uv; x) + x2C(G[N(u) n N(v)]; x); where uv E E(G). 

Proof. Let Ai be an i-clique of G. (a) Either v ¢: Ai, then Ai is an i-clique in G \ v; 
or v E Ai, then Ai is obtained from an (i - I)-clique of G[N(v)]. Summing up the 
number of these two kinds of i-cliques we obtain relation (a). 
(b) Either Ai does not contain the edge uv, then Ai is an i-clique in G - uv; or it does 
contain uv, then Ai is obtained from an (i - 2)-clique of G[N(u) n N(v)]. Summing 
up the number of these two kinds of i-cliques we obtain relation (b). 0 

To pursue our study we need the following notation: 

Notation. Let G be a graph and let Z (G) be the set of negative real roots of C (G; x). 
If Z(G) is non-empty then define (G to be maxZ(G) and otherwise to be -00. 

The following theorem plays an essential role where we reprove the result of 
Fisher and Solow. Also it presents a nice property of (G in conjunction with induced 
subgraphs. . 

Theorem 1. If G is a graph and H is one of its induced subgraph, then (H ::; (G. 

Proof. Let n = I V (G) I. We prove the theorem by induction on n. For n = 1 and 
2 the assertion is obvious. If H is an arbitrary proper induced subgraph of G, then 
we can find a vertex v of G such that H is an induced subgraph of G \ v. Hence it 
is sufficient to prove the theorem for induced subgraphs of the form G \ v, for some 
v E V(G). Now, let v E V(G). If Z(G \ v) = 0 then there is nothing to prove. So 
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we can assume that Z (G \ v) is not empty. On other hand, by part (a) of Lemma 1 
we have: 

C(G; x) = C(G \ v; x) + xC(G[N(v)]; x). 

Substituting (C\v in both sides of the above equation and applying induction we have 
C(G[N(v)], (C\v) ~ 0, thus C(G, (C\v) ::; O. On the other hand C(G,O) = 1. So the 
theorem is proved. 0 

Theorem 2. For every graph G, -1 ::; (c < O. 

Proof. Let u be a vertex of G, and H be the subgraph induced on u. Clearly 
(H = -1. Thus by the above theorem we must have (c ~ -1, as desired. 0 

Thran's theorem for triangle-free graphs is a consequence of Theorem 2 : 

Corollary 1. If G is a triangle-free graph then IE (G) I ::; I V (G) 12 14. 

Proof. Since G has no triangle we have: 

C(G; x) = 1 + I V(G) Ix + I E(G) Ix2
• 

By Theorem 2, C(G; x) has a real root which implies that the discriminant of this 
polynomial i.e. IV(G)1 2 

- 4IE(G)1 is non-negative; as claimed. 0 

The two following propositions are obtained by considering some special induced 
subgraphs. 

Proposition 1. Let G be a graph and a(G) be the independence number ofG. Then 

a(G) ::; -l/(c. 

Proof. Consider the subgraph H induced by an independent set of size a( G). We 
have (H -l/(a(G)) and by Theorem 1, (H ::; (c. This proves the proposition. 0 

Proposition 2. Let G be a graph which is not complete and let g( G) be the girth of 
G. Then 

-1 
g(G) ::; (b + (c 

Proof. Consider a cycle of G with the size g( G). This is an induced subgraph of 
G. Calculating the ( of this cycle and applying Theorem 1 we obtain the desired 
inequality. 0 

Remark 1. By the same method one can prove a similar assertion with g(G) re­
placed by the length of the the smallest odd cycle. 

The following corollary is an immediate consequence of Proposition 1: 

Corollary 2. For every graph G, X(G) ~ -I V(G) I(c. 
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Theorem 3. If G is a graph and H is a spanning subgraph of G, then (c :::; (H. 

Proof. It is enough to prove the theorem in the case of H = G - e where e is an 
edge of G. Suppose e = uv for u, v E V(G). By the part (b) of Lemma 1 we have: 

C(G; x) = C(G - uv; x) + x2C(G[N(u) n N(v)]; x), 

where uv E E( G). Substitute (G in both sides of the above equation. We obtain: 

C(G - uV; (G) = -(~ C(G[N(u) n N(v)]; (G). (1) 

On the other hand G[N(u) n N(v)] is an induced subgraph of G and therefore by 
Theorem 1 the right hand side of equation (1) is negative, which implies that C(G­
uv; (G) is negative also. This together with the fact that C(G - uv; 0) = 1, implies 
the assertion. 0 

We can apply Theorem 3 to prove some necessary conditions for existence of 
Hamiltonian cycles and perfect matchings which are useful in some special cases. 

Corollary 3. Let G be a graph with n vertices. We have: 

(a) If n 2:: 4 and (G > -H~, then G is not Hamiltonian. 

(b) If n 2:: 2 and (G > -1 + Jl - 2/n, then G does not have perfect matching. 
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