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Abstract

We provide an abundance of strongly regular graphs (SRGs) for certain
parameters (n, k, λ, µ) with n < 100. For this we use Godsil-McKay (GM)
switching with a partition of type 4, n − 4 and Wang-Qiu-Hu (WQH)
switching with a partition of type 3, 3, n − 6 or 4, 4, n − 8. In most
cases, we start with a highly symmetric graph which belongs to a finite
geometry. Many of the graphs obtained are new; for instance, we find
16,565,438 strongly regular graphs with parameters (81, 30, 9, 12) while
only 15 seem to be described in the literature.

We provide statistics about the size of the occurring automorphism
groups. We also find the recently discovered Krčadinac partial geometry,
thus finding a third method of constructing it.

1 Introduction

‘Strongly regular graphs lie on the cusp between highly structured and
unstructured. For example, there is a unique strongly regular graph with
parameters (36, 10, 4, 2), but there are 32 548 non-isomorphic graphs with
parameters (36, 15, 6, 6).’ Peter Cameron, “Random Strongly Regular Graphs?”

A strongly regular graph (SRG) is a k-regular graph with n vertices such that
any two adjacent vertices have λ common neighbors, while any two non-adjacent
vertices have µ common neighbors [15]. We call (n, k, λ, µ) the parameters of an
SRG. SRGs are interesting for many reasons. Their existence relates to several
combinatorial objects such as Steiner triple systems, quasi-symmetric designs, rank
3 permutation groups, and partial geometries. See [5] for a recent survey. They are
also an important class of graphs for isomorphism testing [3, 30] as they are often
hard to distinguish which makes it interesting to have many SRGs with the same
parameters.

Our main aim is to provide an abundance of small SRGs which can be used to
test various conjectures in graph theory. For instance, researchers test conjectures
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by using Spence’s collection of SRGs [29]. Sometimes these are later refuted, cf. [13].
A larger selection of easily accessible SRGs as well as an easy method to generate
them will hopefully lead to better conjectures. An additional motivation is that [5]
cites some of the data of this document and we want to provide a proper reference.

Let us recall special cases of Godsil-McKay (GM) switching [12] and Wang-Qiu-
Hu (WQH) switching [33], cf. [16].

Theorem 1.1 (GM Switching) Let Γ be a graph whose vertex set is partitioned as
C ∪D. Assume that the induced subgraph on C is regular. Suppose that each x ∈ D
either has 0, |C|/2, or |C| neighbours in C. Construct a new graph Γ by switching
adjacency and non-adjacency between x ∈ D and C when |Γ(x) ∩ C| = |C|/2. Then
Γ and Γ are cospectral.

Theorem 1.2 (WQH Switching) Let Γ be a graph whose vertex set is partitioned
as C1 ∪ C2 ∪ D. Assume that the induced subgraphs on C1, C2, and C1 ∪ C2 are
regular, and that the induced subgraphs on C1 and C2 have the same size and degree.
Suppose that each x ∈ D either has the same number of neighbors in C1 and C2, or
Γ(x) ∩ (C1 ∪ C2) ∈ {C1, C2}. Construct a new graph Γ by switching adjacency and
non-adjacency between x ∈ D and C1 ∪ C2 when Γ(x) ∩ (C1 ∪ C2) ∈ {C1, C2}. Then
Γ and Γ are cospectral.

Cospectral SRGs have the same parameters, so WQH switching applied to an SRG
yields an SRG with the same parameters. We say that we apply WQH switching
with a partition of type `, `, n − 2` if |C1| = |C2| = `. The aim of this paper is to
provide a large collection of SRGs which can be generated by WQH switching with
a partition of type 2, 2, n − 4, a partition of type 3, 3, n − 6, or a partition of type
4, 4, n− 8.

Note that WQH switching with a partition of type 2, 2, n − 4 produces a graph
isomorphic to a graph with Godsil-McKay switching if C = C1 ∪ C2. As this is
mentioned in both [5] and [16] without proof, let us include one provided personally
due to Munemasa [27].

Lemma 1.3 Theorem 1.1 and Theorem 1.2 produce isomorphic graphs if C = C1 ∪
C2 and |C| = 4.

Proof: Let I and J denote the identity matrix and all-ones matrix, respectively.
Let P1 be the permutation matrix for (1, 2)(3, 4), P2 the permutation matrix for
(1, 3)(2, 4), and P3 the permutation matrix for (1, 4)(2, 3). Put Qi = 1

2
(J−2Pi). Put

P =

(
1
2
J − I 0

0 I

)
, R =

(
Q1 0
0 I

)
.

Let A be the adjacency matrix of Γ. Suppose that C = C1 ∪ C2 corresponds to
the first four vertices of A. Then the graph Γ1 from Theorem 1.1 has adjacency
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(n, d, c, a) # Type Seed �?

(57, 24, 11, 9) 31,490,375 GM(9) S(2, 3, 19) no
(63, 30, 13, 15) 13,505,292 GM(5) Sp(6, 2) no
(64, 21, 8, 6) 76,323 GM(∞) Bilin(2, 3, 2) no
(64, 27, 10, 12) 8,613,977 GM(5) V O−(6, 2) yes
(64, 28, 12, 12) 11,063,360 GM(5) V O+(6, 2) maybe
(70, 27, 12, 9) 78,900,835 GM(10) S(2, 3, 21) no
(81, 24, 9, 6) 7,441,608 WQH3(6) V NO+

4 (3) maybe
(81, 30, 9, 12) 16,565,438 WQH3(∞) V NO−

4 (3) yes
(81, 32, 13, 12) 21,392,603 WQH3(6) Bilin(2, 2, 3) maybe
(85, 30, 3, 5) 237,787 WQH4(5) Sp(4, 4) yes
(96, 19, 2, 4) 178,040 WQH4(6) Haemers(4) maybe
(96, 20, 4, 4) 133,005 WQH4(6) GQ(5, 3) maybe

Table 1: The number of generated graphs.

matrix PAP , and the graph Γ2 from Theorem 1.2 has adjacency matrix RAR. We
have Q1Q2Q3 = 1

2
(J − I), and Q2Q3 = P2P3 is a permutation. Hence, PAP is a

permutation of RAR. Thus, Γ1 and Γ2 are isomorphic. 2

It was shown in several papers, for instance [1, 16], that GM and WQH switching
work well for several families of SRGs. Here we present a more thorough investi-
gation for small parameter sets. Note that WQH switching was almost observed
in Definition 3 of [4] by Behbahani, Lam, and Österg̊ard. This led to a similar
investigation.

Table 1 summarizes our results. Write GM(m) (respectively, WQH`(m)) if we
apply WQH switching up to m times with a partition of type 2, 2, n−4 (respectively,
`, `, n− 2`) to our seed graph.

Definitions of the graphs are in the corresponding subsections. The last column
“�?” contains a binary statement yes/no to state whether (as far as the author is
aware) the number of graphs constructed here is much larger than those found in the
literature. References are given in the corresponding subsections. We write “maybe”
when there are not many graphs in the literature, but at least one construction, which
in general is known to be prolific in some sense, is associated with the given set of
parameters. Note that exact counts are out of the scope of this note; for instance,
for parameters (64, 27, 10, 12) there are at least 6 different methods of constructing
such SRGs, see [5], and it is not clear how many nonisomorphic graphs these yield.

We provide the number of new graphs after each switching step and the automor-
phism group sizes for all graphs. All graphs can be found on the homepage of the
author in Nauty’s graph6 format: http://math.ihringer.org/srgs.php. There
we also provide selected versions of the C program used.

http://math.ihringer.org/srgs.php
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2 Finding Partitions and Other Technicalities

Our investigation itself uses the folklore method of keeping a global record of canon-
ical representatives of graphs for isomorphy rejection, see [20, Subsection 4.2.1] for
the general technique.

The canonical representative of a graph is given by McKay’s and Piperno’s nauty-
traces [26]. A tiny self-written C program applies the switching. We also use nauty-
traces to calculate the sizes of the automorphism groups. We use cliquer by Österg̊ard
[28] to calculate clique numbers in some cases. In two cases we use the default SRG
with the corresponding parameters from Sage [31], relying on Cohen’s and Pasech-
nik’s implementation of Brouwer’s SRG database [9]. Due to hardware constraints,
we usually end our search at around 10 million SRGs. A particular emphasis was
put on parameters (70, 27, 12, 9) as the existence of a partial geometry pg(6, 6, 4) is
open.

We want to calculate all graphs which we can obtain from a seed graph Γ0 by
applying a chosen type of switching up to i times. We describe the general method
in the following:

1: Replace the seed graph Γ0 by its canonical representative.
Note that there are many canonical forms for graphs and
one has to use the same method throughout the whole al-
gorithm.

2: T ← {Γ0}, C ← {Γ0}, j ← 0
3: for j < i do
4: N ← ∅
5: for Γ ∈ C do
6: Calculate the set MΓ of graphs which can be obtained by

applying the chosen switching to Γ. See Subsection 2.1 and
Subsection 2.2 for details.

7: Calculate the set NΓ of canonical representatives of the
graphs in MΓ. Note that MΓ might contain distinct, but
isomorphic graphs, while NΓ cannot.

8: N ← N ∪NΓ

9: end for
10: C ← N \ T
11: T ← T ∪ C
12: j ← j + 1
13: end for
14: Now T is the set of all canonical representatives of graphs which can be obtained

from Γ0 by applying the chosen switching up to i times.

Let us explain T , C, and N : At the beginning of the outer for-loop, T (as in total)
is the set of graphs after applying the chosen switching j times; C (as in current) is
the set of graphs in T to which the chosen switching was not yet applied. The inner
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for-loop applies the chosen switching to all elements in C and collects their canonical
representatives in N (as in new).

Our partition finding method is very simple and described below. It uses simple
pruning techniques. Our vertex set is labeled V = {1, . . . , n} and the adjacency
matrix of the graph is A.

2.1 Type 2, 2, n− 4

For WQH switching with a partition of type 2, 2, n−4, we implemented GM switching
with a partition of type 4, n− 4. The partition C ∪D has to satisfy the following:

(A) The induced subgraph on C is regular.

(B) All x ∈ D satisfy |Γ(x) ∩ C| ∈ {0, 2, 4}.

(C) There exists an x ∈ D with |Γ(x) ∩ C| = 2.

The last condition is not stated in Theorem 1.1 above, but otherwise Γ = Γ.

Most of our generated graphs have no symmetries,1 so we naively iterate through
all 4-tuples (c1, c2, c3, c4) with c1 < c2 < c3 < c4 in a nested loop. We only check
the conditions in the inner loop. First we check for (A) as it (naively) only involves
accessing up to |C|(|C| − 1) = 12 entries of A, while (B) and (C) might access up to
|D| · |C| = 4(n− 4) entries of A.

2.2 Type `, `, n− 2`

For WQH switching with a partition of type `, `, n − 2`, the partition C1 ∪ C2 ∪D
has to satisfy the following:

(A) The induced subgraph on C1 is regular for some degree k1.

(B) The induced subgraph on C2 is regular with the same degree k1.

(C) The bipartite subgraph between C1 and C2 (with the edges of Γ) is regular.

(D) All x ∈ D satisfy |Γ(x) ∩ C1| = |Γ(x) ∩ C2| or Γ(x) ∩ (C1 ∪ C2) ∈ {C1, C2}.

(E) The second case of (D) occurs.

While Theorem 1.2 asks for the induced subgraph in C1 ∪ C2 to be regular, in light
of (A) and (B), testing for (C) suffices and is faster.

Suppose that C1 = {c1, . . . , c`} and C2 = {c`+1, . . . , c2`}. We pick c1, . . . , c2` in
order, where c1 < · · · < c` and c1 < c`+1 < · · · < c2`. Write C̃m = {c1, . . . , cm}.

1 We have no a priori reason for this.
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Let k11(m) (respectively, k22(m)) be the minimal degree of the induced subgraph
on C̃m (respectively, C̃m \ C̃`) and let K11(m) (respectively, K22(m)) be the maximal
degree of the induced subgraph on C̃m (respectively, C̃m \ C̃`). We discard C̃m if
K1(m) − k1(m) > ` −m for m ≤ ` as then (A) is impossible. Similarly, we discard
C̃m if K2(m)− k2(m) > 2`−m for m > ` as then (B) is impossible.

Suppose {i, j} = {1, 2} and m > `. Consider the bipartite graph with parts C̃`

and C̃m \ C̃` (with the edges as in Γ). Let k12(m) be the minimal degree on C̃`,
k21(m) the minimal degree on C̃m \ C̃`, K12(m) the maximum degree on C̃`, and
K12(m) the maximum degree on C̃m \ C̃`. We discard C̃m if K21(m) > k21(m) (we
already picked all vertices of C̃`, so all degrees in C̃m \ C̃` must be the same by (C)).
We also discard C̃m if K12(m)− k12(m) > 2`−m as otherwise (C) is impossible.

For (D) and (E) we only test in the inner loop after C1 and C2 are fully chosen.

3 SRGs

In this section we present the generated SRGs. We apply switchings of type GM
and WQH3 to all the discussed graphs. If any of them does not work, then we try
to apply switchings of type WQH4. We mention precisely the cases for which our
technique produces SRGs which are nonisomorphic to the used seed graph.

3.1 Very Small Parameters

SRGs with very small parameters are discussed in [4]. For instance, there are at
least 342 SRGs with parameters (49, 18, 7, 6) and one has a GM switching class of
size 175.

3.2 SRG(57, 24, 11, 9)

There is a one-to-one correspondence between Steiner triple systems and SRGs de-
rived from a Steiner triple system [19, 30]. Particularly, the complete classification of
Steiner triple systems of order 19 [19] yields a large amount of SRGs with parameters
(57, 24, 11, 9). All of our graphs might be included in the 11,084,874,829 SRGs of
[19]. Similarly to [16, Theorem 4] one can see that certain cycle switches of designs
(see [18]) can be interpreted as WQH switchings. Particularly, the so-called Pasch
switching corresponds to WQH switching with a partition of type 2, 2, n− 4, that is
GM switching with a partition of type 4, n − 4. To our knowledge, this is first ob-
served in [4]. There it is also observed that GM switching can lead to non-geometric
SRGs. The authors of [4] only find 338,536 SRGs by GM switching which is small
compared to our number.

The number of generated SRGs after applying GM switching up to i times can
be found in Table 2.
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i 0 1 2 3 4 5 6 7 8 9

New 1 9 102 829 5,408 31,409 171,607 913,192 4,826,290 25,541,528
Total 1 10 112 941 6,349 37,758 209,365 1,122,557 5,948,847 31,490,375

Table 2: SRGs with parameters (57, 24, 11, 9).

The automorphism group sizes can be found in Table 3. The first row denotes
the size of the automorphism group, the second row denotes the numbers of SRGs
with an automorphism group of that size.

|G| 1 2 3 6 9
SRGs 31,489,648 468 255 1 3

Table 3: Automorphism group sizes of SRGs with parameters (57, 24, 11, 9).

3.3 SRG(63, 30, 13, 15)

Let us give a short description of the collinearity graph of Sp(2d, q): Vertices are 1-
dimensional subspaces of F2d

q . Two 1-dimensional subspaces are adjacent if they are
perpendicular with respect to the bilinear form x1y2−x2y1 + . . .+x2d−1y2d−x2dy2d−1.
For (d, q) = (3, 2), this graph has the desired parameters. WQH switching works for
Sp(2d, q), see [1] for q = 2 and [16] for the general case.

The graph Sp(6, 2) has an automorphism group of size 1,451,520, clique number
7 and coclique number 7. SRGs with the same parameters as Sp(6, 2) have spectrum
(30, 335,−527), clique number at most 7 and coclique number at most 9. More details
on Sp(6, 2) can be found in [5, Section 10.21].

At most 522,079 SRGs are known from intersection-8 graphs of quasi-symmetric
2-(36, 16, 12) designs [24], 4,653 SRGs with these parameters in [23], at least 9 SRGs
with these parameters in [2], and one more SRG in [1].

The number of graphs after applying GM switching up to i times can be found
in Table 4.

i 0 1 2 3 4 5

New 1 2 52 3,275 254,097 13,247,865
Total 1 3 55 3,330 257,427 13,505,292

Table 4: SRGs with parameters (63, 30, 13, 15).

The automorphism group sizes can be found in Table 5 and Figure 1. The first
column denotes the size of the automorphism group, the second column denotes the
numbers of SRGs with an automorphism group of that size.
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Figure 1: Group sizes for parameters (63, 30, 13, 15).

|G| SRGs |G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 8,226,588 9 1 32 45,390 160 6 576 2
2 4,428,326 10 8 36 4 192 28 640 1
3 531 12 241 40 1 256 32 768 2
4 648,049 16 18,136 48 54 288 2 1,344 1
5 5 18 3 64 1,605 320 1 1,536 3
6 501 20 1 96 50 384 10 4,608 1
8 135,468 24 107 128 130 512 3 1,451,520 1

Table 5: Automorphism group sizes of SRGs with parameters (63, 30, 13, 15).
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The number of cliques of size 7 can be found in Table 6. We also found graphs
with no cliques of size 6, but these examples are not reached in five steps. While a
partial geometry of type pg(6, 4, 3) is known, none of the 29,017 graphs with at least
45 cliques belongs to a partial geometry.

Cls SRGs Cls SRGs Cls SRGs Cls SRGs Cls SRGs

0 24 14 379,654 28 180,134 42 1,490 56 2
1 54 15 1,025,530 29 400,493 43 32,343 57 29
2 202 16 480,205 30 120,076 44 404 59 227
3 2,837 17 1,087,195 31 420,594 45 6,777 60 3
4 2,574 18 530,185 32 67,720 46 215 61 13
5 15,844 19 1,214,285 33 178,932 47 14,592 62 2
6 15,519 20 497,876 34 40,152 48 72 63 198
7 76,236 21 1,015,163 35 191,629 49 1,560 67 29
8 53,325 22 433,987 36 19,761 50 30 71 69
9 199,053 23 1,052,324 37 77,842 51 2,918 79 7

10 131,289 24 346,865 38 10,441 52 22 87 6
11 436,005 25 705,665 39 100,499 53 181 103 1
12 246,544 26 263,539 40 3,668 54 3 135 1
13 694,608 27 699,321 41 24,189 55 2,060

Table 6: Cliques of size 7 for parameters (63, 30, 13, 15).

3.4 SRG(64, 21, 8, 6)

See Subsection 3.10 for a description of the graph Bilin(2, 3, 2) which is our seed
graph. The search in [4] found more than 500,000 SRGs, while the GM switching
class of Bilin(2, 3, 2) has only size 76,323, therefore we omit any further details. We
calculated the index chromatic number of a random subset of size 1000, but failed
to find a counterexample to the conjecture in [8], namely that the chromatic index
of an SRG with n even is always k unless the SRG is the Petersen graph.

3.5 SRG(64, 27, 10, 12)

Let us give a short description of the graph V O−(2d, q). Let Q(x) = αx2
1 + βx1x2 +

x2
2 + . . . + x2

2d such that αx2
1 + βx1x2 + x2

2 is irreducible over Fq. For q = 2, we
can choose (α, β) = (1, 1). The vertices of V O−(2d, q) are the vectors of F2d

q . Two
vertices x, y are adjacent if Q(x−y) = 0. The graph V O−(6, 2) has an automorphism
group of size 3,317,760. More details on V O−(6, 2) can be found in [5, Section 10.25].

We find at least 9 SRGs with these parameters in [2].

The number of graphs after applying GM switching up to i times can be found
in Table 7.
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i 0 1 2 3 4 5

New 1 2 43 2,116 158,036 8,453,779
Total 1 3 46 2,162 160,198 8,613,977

Table 7: SRGs with parameters (64, 27, 10, 12).

The automorphism group sizes are as in Table 8. The first column denotes the
size of the automorphism group, the second column denotes the numbers of SRGs
with an automorphism group of that size.

|G| SRGs |G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 4,799,279 12 362 64 2,640 256 68 1,152 2
2 2,962,488 16 16,612 72 3 288 2 1,536 1
3 379 18 1 80 1 320 1 3,072 2
4 681,960 20 6 96 59 384 16 4,096 1
5 4 24 119 128 338 512 16 4,608 2
6 453 32 37,068 144 2 640 1 6,144 1
8 111,971 40 1 160 6 768 6 73,728 1

10 1 48 68 192 31 1,024 4 3,317,760 1

Table 8: Automorphism group sizes of SRGs with parameters (64, 27, 10, 12).

The graph V O−(6, 2) is known to be (K5−e)-free and its complement is (K7−e)-
free. Therefore, it is a witness for the Ramsey number R(K5 − e,K7 − e) ≥ 65, see
[5, Section 10.25]. In fact, R(K5 − e,K7 − e) = 65. Among the 8,613,977 in our
collection, it is the only graph with that property. Indeed, it includes only 8 K5-free
graphs for which the complement is K7-free.

3.6 SRG(64, 28, 12, 12)

The graph V O+(2d, q) can be constructed the same way as V O−(2d, q) from the
preceding section, but with (α, β) chosen such that αx2

1 + βx1x2 + x2
2 is reducible

over Fq. For q = 2, we can choose (α, β) = (1, 0). The graph V O+(6, 2) has an
automorphism group of size 2,580,480. More details on V O+(6, 2) can be found in
[5, Section 10.26].

We find a at least 9 SRGs with these parameters in [2]. We find 15 SRGs with
these parameters in [17].

The number of graphs after applying GM switching up to i times can be found
in Table 9.

The automorphism group sizes can be found in Table 10. The first column denotes
the size of the automorphism group, the second column denotes the numbers of SRGs
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i 0 1 2 3 4 5

New 1 1 52 2,680 201,883 10,858,742
Total 1 3 55 2,735 204,618 11,063,360

Table 9: SRGs with parameters (64, 28, 12, 12).

with an automorphism group of that size.

|G| SRGs |G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 6,419,836 10 1 40 1 168 1 1,536 4
2 3,522,363 12 326 48 74 192 23 3,072 2
3 363 16 18,812 64 3,061 256 75 4,096 2
4 872,266 18 1 72 5 384 14 6,144 1
5 1 20 6 80 1 512 19 24,576 1
6 336 24 123 96 50 576 2 2,580,480 1
8 160,568 32 64,629 128 380 768 4
9 1 36 1 144 2 1,024 4

Table 10: Automorphism group sizes of SRGs with parameters (64, 28, 12, 12).

3.7 SRG(70, 27, 12, 9)

The classification of Steiner triple systems of order 21 [21, 22] is a rich source for a
large number of SRGs with parameters (70, 27, 12, 9). Maybe our list of 78,900,835
SRGs is mostly disjoint to the 13,168,639 SRGs in [22] and the 83,003,869 SRGs in
[21] as the extra conditions in [21, 22] appear to be restrictive.

Our seed graph belongs to a Steiner triple system on 21 points and has an auto-
morphism group of size 126.

The number of graphs after applying GM switching up to i times can be found
in Table 11.

i 0 1 2 3 4 5 6 7 8 9 10

New 1 1 7 85 775 6,094 43,397 286,285 1,799,283 10,976,064 65,788,843
Total 1 2 9 94 869 6,963 50,360 336,645 2,135,928 13,111,992 78,900,835

Table 11: SRGs with parameters (70, 27, 12, 9).

The automorphism group sizes can be found in Table 12. The first row denotes
the size of the automorphism group, the second row denotes the numbers of SRGs
with an automorphism group of that size.
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|G| SRGs |G| SRGs |G| SRGs

1 78,899,457 3 460 21 1
2 911 6 5 126 1

Table 12: Automorphism group sizes of SRGs with parameters (70, 27, 12, 9).

The complement of an SRG with parameters (70, 27, 12, 9) can be the point graph
of a partial geometry of type pg(6, 6, 4). An SRG belonging to such a partial geometry
has at least 70 cocliques of size 7 which pairwise meet in at most one vertex. In the
following, we list the number of the cocliques of size 7.

CoCls SRGs CoCls SRGs CoCls SRGs CoCls SRGs

4 9 22 3,441,902 40 600,491 58 108
5 26 23 4,097,976 41 426,302 59 69
6 101 24 4,693,209 42 297,407 60 38
7 416 25 5,175,736 43 203,004 61 13
8 1,165 26 5,509,532 44 136,577 62 10
9 3,248 27 5,668,239 45 88,848 63 4

10 8,476 28 5,640,194 46 57,586 64 6
11 19,938 29 5,436,783 47 36,770 65 2
12 43,282 30 5,082,314 48 22,903 66 2
13 86,276 31 4,612,777 49 13,991 68 2
14 162,550 32 4,074,374 50 8,570 69 1
15 287,714 33 3,491,432 51 5,205 70 2
16 477,322 34 2,922,707 52 3,170
17 749,488 35 2,382,507 53 1,790
18 1,115,548 36 1,893,952 54 1,018
19 1,585,748 37 1,468,602 55 601
20 2,146,052 38 1,111,984 56 348
21 2,778,104 39 826,135 57 179

Table 13: Cocliques of size 7 for parameters (70, 27, 12, 9).

We found only two graphs with a sufficient amount of cocliques. One has an
automorphism group of size 6, one of size 1. Both have at most 16 cocliques which
pairwise meet in at most one vertex. Hence, we do not obtain a pg(6, 6, 4).

3.8 SRG(81, 24, 9, 6)

A nice geometric graph with the given parameters can be obtained as follows. Let
Q(x) = x2

1 − x2
2 + x2

3 + x2
4. The vertices are the vectors of F4

3. Two vertices x and y
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are adjacent if Q(x − y) = 1. This graph is also known as V NO+(4, 3) and has an
automorphism group of size 93,312.

We find 13 graphs with these parameters in [4].

The number of graphs after applying WQH switching with a partition of type
3, 3, n− 6 up to i times can be found in Table 14.

i 0 1 2 3 4 5 6

New 1 2 31 596 15,183 377,270 7,048,525
Total 1 3 34 630 15,813 393,083 7,441,608

Table 14: SRGs with parameters (81, 24, 9, 6).

The automorphism group sizes can be found in Table 15. The first column denotes
the size of the automorphism group, the second column denotes the numbers of SRGs
with an automorphism group of that size.

|G| SRGs |G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 7,213,765 9 1,820 48 5 162 6 1,944 1
2 62,221 12 311 54 56 216 4 93,312 1
3 154,705 18 664 72 4 324 3
4 635 24 20 81 5 432 1
6 7,228 27 27 108 18 486 1
8 6 36 96 144 1 972 4

Table 15: Automorphism group sizes of SRGs with parameters (81, 24, 9, 6).

3.9 SRG(81, 30, 9, 12)

Van Lint and Schrijver discovered a partial geometry of type pg(5, 5, 2) [32], the
vL-S partial geometry. The point graph of this partial geometry is an SRG with
parameters (81, 30, 9, 12). Recently, a second partial geometry of the same type was
discovered by Krčadinac [25] and, almost at the same time, by Crnković, Švob and
Tonchev [10]. More details on V NO−(4, 3) can be found in [5, Section 10.29].

We can describe the SRG derived from the vL-S geometry as follows. Let Q(x) =
x2

1 + x2
2 + x2

3 + x2
4. The vertices are the vectors of F4

3. Two vertices x and y are
adjacent if Q(x− y) = 1. This graph is also known as V NO−

4 (3).

The number of graphs after applying WQH switching with a partition of type
3, 3, n−6 up to i times can be found in Table 16. Further applications of the switching
operation do not yield more graphs.
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i 0 1 2 3 4 5 6 7

New 1 2 21 144 1,249 12,560 107,665 691,650
Total 1 3 24 168 1,417 13,977 121,642 813,292

i 8 9 10 11 12

New 2,957,467 7,041,075 4,892,852 835,010 25,742
Total 3,770,759 10,811,834 15,704,686 16,539,696 16,565,438

Table 16: SRGs with parameters (81, 30, 9, 12).

The automorphism group sizes can be found in Table 17. The first column denotes
the size of the automorphism group, the second column denotes the numbers of SRGs
with an automorphism group of that size.

|G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 966 16 4 81 12 1,944 1
2 482 18 2,142 108 68 3,888 1
3 16,369,234 24 65 144 3 5,832 1
4 176 27 514 162 12 116,640 1
6 184,747 36 64 216 13
8 6 48 5 324 6
9 5,760 54 292 432 2

12 845 72 8 972 8

Table 17: Automorphism group sizes of SRGs with parameters (81, 30, 9, 12).

Our seed graph, the point graph of the vL-S partial geometry, has an automor-
phism group of size 116,640. By comparing automorphism group sizes, we see that
our list cannot contain all of the 14 new SRGs described in [10].

A partial geometry pg(5, 5, 2) necessarily has at least 81 cliques of size 6 which
pairwise meet in at most one vertex. Our search produced 38 SRGs with sufficiently
many cliques of size 6, see Table 18. Only the ones corresponding to the vL-S
partial geometry and the Krčadinac partial geometry are point graphs of partial
geometries. Hence, we rediscover the Krčadinac partial geometry via a third method.
The distance between the vL-S partial geometry and the Krčadinac partial geometry
is 6 using WQH switchings with |C1| = |C2| = 3.

3.10 SRG(81, 32, 13, 12)

The graph Bilin(2,m − 2, q), n ≥ 4, can be described as follows. The vertices are
the set of all 2-spaces of Fm

q which are disjoint to a fixed (m−2)-space. Two 2-spaces
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Cls SRGs Cls SRGs Cls SRGs Cls SRGs Cls SRGs

0 10,807,396 16 38 32 47 50 14 81 10
1 60 17 11 33 421 51 1 84 3
2 146 18 45,898 34 15 52 2 90 14
3 3,788,193 19 2 35 4 54 321 98 2
4 95 20 48 36 2,514 56 17 102 1
5 17 21 16,740 37 1 57 10 108 6
6 1,157,783 22 39 38 24 58 1 126 1
7 19 23 8 39 1,006 59 2 162 1
8 43 24 8,805 40 38 60 18
9 514,162 25 2 42 630 63 53

10 60 26 13 43 18 65 2
11 12 27 6,021 44 18 66 31
12 169,427 28 35 45 447 70 8
13 13 29 1 46 2 72 69
14 54 30 3,120 47 3 76 4
15 41,094 31 12 48 286 78 6

Table 18: Cliques of size 6 for parameters (81, 30, 9, 12).

are adjacent if their meet is a 1-space. This yields an SRG. For n = 4 and q = 3, its
parameters are (81, 32, 13, 12) and it has an automorphism group of size 186,624.

The number of graphs after applying WQH switching with a partition of type
3, 3, n − 6 up to i times can be found in Table 19. The automorphism group sizes
can be found in Table 20. The first row denotes the size of the automorphism group,
the second row denotes the numbers of SRGs with an automorphism group of that
size.

i 0 1 2 3 4 5 6

New 1 2 41 963 29,120 841,699 20,520,777
Total 1 3 44 1,007 30,127 871,826 21,392,603

Table 19: SRGs with parameters (81, 32, 13, 12).

3.11 SRG(85, 20, 3, 5)

See Subsection 3.3 for a description of the graph Sp(4, 4). It has an automorphism
group of size 1,958,400.

The number of graphs after applying WQH switching with a partition of type
4, 4, n−8 up to i times can be found in Table 21. Van Dam and Guo provide 127,433
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|G| SRGs |G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 20,082,770 12 1,225 48 8 144 4 972 6
2 286,231 16 16 54 111 162 3 3,888 1
3 961,829 18 3,623 64 1 216 9 186,624 1
4 6,108 24 74 72 7 288 1
6 45,007 27 163 81 5 324 5
8 206 32 3 96 3 432 2
9 4,971 36 182 108 27 486 1

Table 20: Automorphism group sizes of SRGs with parameters (81, 32, 13, 12).

graphs with parameters (85, 20, 3, 5) in [11]2. The list of graphs here shares precisely
3,501 entries with their list.

i 0 1 2 3 4 5

New 1 1 16 442 12,303 225,024
Total 1 2 18 460 12,763 237,787

Table 21: SRGs with parameters (85, 20, 3, 5).

The automorphism group sizes can be found in Table 22. The first column denotes
the size of the automorphism group, the second column denotes the numbers of SRGs
with an automorphism group of that size.

|G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 100,064 12 47 64 15 384 3
2 116,790 16 206 72 2 768 1
3 87 20 3 96 8 1,280 1
4 19,268 24 23 128 5 1,536 1
5 2 32 51 192 1 2,304 1
6 29 36 1 240 1 1,958,400 1
8 1,167 48 8 288 1

Table 22: Automorphism group sizes of SRGs with parameters (85, 20, 3, 5).

3.12 SRG(96, 19, 2, 4)

See [6, Section 8.A] for a construction of graphs of type Haemers(q). Note that even
for fixed q, this does not uniquely determine the graph. Our seed graph has an

2As of 12 April 2012. Their data changed after acceptance of this article.
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automorphism group of size 9,216.

In [14] we find 2 graphs with these parameters. Surely, there are many more as
several constructions are known and the constructions of type Haemers(4) allow for
some freedom.

The number of graphs after applying WQH switching with a partition of type
4, 4, n− 8 up to i times can be found in Table 23.

i 0 1 2 3 4 5 6

New 1 2 17 160 1,680 17,578 158,602
Total 1 3 20 180 1,860 19,438 178,040

Table 23: SRGs with parameters (96, 19, 2, 4).

The automorphism group sizes can be found in Table 24. The first column denotes
the size of the automorphism group, the second column denotes the numbers of SRGs
with an automorphism group of that size.

|G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 122,184 12 78 64 38 288 1
2 43,093 16 510 72 1 384 1
3 122 18 2 96 13 768 3
4 9,605 24 33 128 19 1,024 1
6 41 32 144 144 1 1,536 1
8 2,113 36 1 192 5 9,216 1
9 1 48 25 256 3

Table 24: Automorphism group sizes of SRGs with parameters (96, 19, 2, 4).

3.13 SRG(96, 20, 4, 4)

Our seed graph is the point graph of the unique generalized quadrangle of order (5, 3)
and has a group of size 138,240. In [14] we find 6 graphs with these parameters.
Surely, there are many more as plenty constructions are known, but we are unaware
of any counts.

The number of graphs after applying WQH switching with a partition of type
4, 4, n− 8 up to i times can be found in Table 25.

The automorphism group sizes can be found in Table 26. The first column denotes
the size of the automorphism group, the second column denotes the numbers of SRGs
with an automorphism group of that size.
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i 0 1 2 3 4 5 6

New 1 2 13 95 949 10,773 121,172
Total 1 3 16 111 1,060 11,833 133,005

Table 25: SRGs with parameters (96, 20, 4, 4).

|G| SRGs |G| SRGs |G| SRGs |G| SRGs

1 18,759 20 1 128 139 1,024 4
2 56,510 24 47 144 2 1,152 1
3 18 32 1,351 192 10 1,536 6
4 38,277 48 53 240 1 3,072 4
6 34 54 1 256 59 7,680 2
8 12,673 64 463 384 8 138,240 1

12 51 72 2 512 17
16 4,475 80 1 640 1
18 1 96 24 768 9

Table 26: Automorphism group sizes of SRGs with parameters (96, 20, 4, 4).

4 Future Work

It might be very fruitful to use switching to optimize SRGs for a certain parameter.
For instance, switching embeds naturally in a threshold accepting algorithm. Note
that for Steiner triple systems, one can find a similar suggestion in [18].

Our investigation is incomplete in at least two ways. Firstly, we might not have
checked all known SRGs with less than 100 vertices for the considered switchings
(as there are too many constructions known). Secondly, surely there exist SRGs for
some of the parameters which are at the time of writing unknown. Here is a list of
all sets of parameters for which SRGs are known, but we failed at finding a graph for
which our switching works. Note that we did not investigate parameter sets which
are completely classified.

(37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 24, 11, 12),

(50, 21, 8, 9), (53, 26, 12, 13), (65, 32, 15, 16), (70, 27, 12, 9),

(73, 36, 17, 18), (81, 40, 19, 20), (82, 36, 15, 16), (89, 44, 21, 22)

(97, 48, 23, 24), (99, 48, 22, 24).



F. IHRINGER/AUSTRALAS. J. COMBIN. 84 (1) (2022), 28–48 46

Acknowledgements

The author is supported by a postdoctoral fellowship of the Research Foundation —
Flanders (FWO). The author thanks Andries E. Brouwer, Gordon Royle, and the
second referee for comments and suggestions on earlier drafts of this paper. The
author thanks Akihiro Munemasa for the proof of Lemma 1.3.

A Ambiguous Seed Graphs

Here we list the used seed graphs for the less beautiful seed graphs.

A.1 SRG(57, 24, 11, 9)

x‘MjkWRlZLZHuJY^J]~NvkT?^_KB[Sl_LAimY_Wxy_WFSGj‘M_zopIn|?ZeaYYMo{Ceu

NC\Lap{\_]???^~{LiEiOKMaiaLQISj?taGIsd[cIMQLRoHMSMq[‘wg@@PUDl@xpcG[p

@|QlDCSeedCiHOrJ_yOOwdzLASGw‘zhrE_OjhCwlACKySW?Q@|[ouOBOBtuPrHaFGHuO

eb?sYB[ob‘KOe_u@rbE@jGHoMY[@p{_deCTgBbe_qqCVgBb_]E@rK{?????~~~~

A.2 SRG(70, 27, 12, 9)

~?@EQd_pJPwdUi{chWU‘w]W^hm‘Xt?}pX^HYwRu\G}WF~~sLX?Sdp?kd_HmLGAtS‘BFT

WGdYLGqAy[HaIpe]?NADaiCLQcXOc}pO_‘Z{aaCI^eGbhlGXCRTqcF_@}?N{RWiY[QPf

Eal‘_???F~~{TDQGdcAIbKCXaAdOa‘[cBUgGSMe?ss[_EIOakhi?cW‘SqET?‘ESzpHe@

?havWEX_oEWWXURAHe_ChDpg_rW?YNoo?pwK?oxkKQeABD[PqQLHADAyakGXOCHoI}V@

Dg?‘i@^\BgJQ_GbqIIV@RD@@UooE?@hQ_|h_tH?ASl?zUOy?R@PhOJ_FeoBGITgCw@xr

?eAa?^JUORW@cDG@{ueAMW?F‘tgC\KCMg?F‘ySAiqAVS?Bow@{c?{o~???????~~~~w

A.3 SRG(96, 19, 2, 4)

~?@_????CA?[_K?C?G?S_Ao???q@cACo?W?AA??OO??oEHC_WQCCGOGGCO_?Ew?CQ?d?P

_G[?S?d?@O?s?ScY??D‘J??@EGE@OPG‘GDE?@o??@OD@_‘A_GaP@PC??a_aG_?OSH‘IA?

Q@@GSGAOC?WBD?S?GWCg_g?Q?CgOPJ?OAEGAKoCCSAH?OgGGgHCAD?cO_CPG@_W_OG_oA

OAGDCO@C?‘C?oa?__Pg@?O?oCC‘OG@?C__‘?‘AG‘?AC?x?cD@?CA@WB?wKe?K?Ka@__aK

g?SaGQGAaQ_DAEE?M??_^_??GOAQC‘I@O?C_@cAQDA_??EECKe?W?WKKA_SI?@G?AQOWD

@_?E?B??N~??????F}???????@}@QpO?OOa?K?GUcW?OOa?H?CoCS?@OaaG_CE@D??DAI

Ga?OAa_PC@@CY?@?II@@GC@Cw?C?C‘X?‘GCU????CHQOGWCS_???G?????????F~~?BBo

@_?oK?w_AGPGPa?_O@?QDAHCPDG?‘?C?SD@_??@~w????Ko?I????AYeT@CB@@O????XU

Y_‘@GO@~_?????@xw?@oOIOOB_Gp?QG?OOOh?OF?aP?QG@?IR?E_GQA?OGK?_Ap_CgGO_

_OCH?_DG_hO‘?G?gA_@??UGGdAOA?I?a?O?EPPPCG@O‘???iG?BDDAO_D?c??AgO????B

_?wW?Fo?B_?K??AHO_P_gs?QOA_??@@aOGcDJ?BC@O???O@KE?]?wB?_?o???????????

?@~~~
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