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Outline
• Face Recognition

– Background
– Current Deformable Models

• Feature-based methods
• Optical Flow
• Methods using dense correspondences

• A more robust measure of deformation
– Long range dense correspondences
– Statistical models of these 

correspondences and resulting 
deformations
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Problem Statement
• Given a single unknown 2D image of a 

face, determine the most similar face 
from a database of known faces.

?

Images from:  A.M. Martinez, R. Benavente. The AR Face Database. CVC Technical Report #24, June 1998.
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Background: Image Alignment
• State of the art can reliably 

detect a small number of 
corresponding face feature 
points

• Align images
– Rotation, translation, scaling
– Minimize sum of squared distances 

between individual face point 
locations and average face point 
locations

• Image alignment is assumed 
preprocessing for all 
methods to follow

OMRON face 
points
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320,423

731,101

less different

Background: Image Differences
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Background: Image Differences
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676,316

635,435

less different?

Sum of pixel 
differences
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Face Representation Algorithms

• First attempts
– Methods that handle images directly

• Majority of talk
– Methods that deform input images

– Measure constructed images and 
deformations
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• Principal Component Analysis (PCA):
– Find low dimensional linear subspace that captures the 

most important variations in the dataset

• I: →
Normalize:  mean(I) = 0, var(I) = 1

•

– First k principal component vectors of V are the 
“eigenfaces” of the dataset.  Linear combinations 
provide approximations to true images.

Face Representation Algorithms: 
First Attempts

M. Turk , A. Pentland.  “Face Recognition using Eigenfaces.” Proc. IEEE Converence on Computer Vision and Pattern Recognition, 1991.




 ...




 = USV T
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• Some eigenfaces:

• A face projected into its eigenbasis:

Face Representation Algorithms: 
First Attempts

average 
face

first two 
eigenfaces

last two 
eigenfaces

Images from:  http://www.scholarpedia.org/article/Eigenfaces
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Face Representation Algorithms: 
First Attempts

• Linear Discriminant Analysis (LDA):
– Instead of finding the best subspace 

representation, find the best classification:

• Maximize difference between classes
SB : between-class covariance matrix

• Minimize difference within each class
SW : within-class covariance matrix

• ILDA = ωT I, pick projection ω to maximize

P. Belhumeur, J. Hespanha, D. Kriegman.  “Eigenfaces cs. Fisherfaces:  Recognition Using Class Specific Linear Projection.” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 1997.

ωTSBω
ωTSWω
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• Pixel-based methods fail when variations in pose, 
expression, lighting and occlusions are introduced.

• Want to warp input face to standard expression 
and pose before calculating the image difference.

Problems with Pixels
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Finding Correspondences

How to determine 
correspondences?

What to do with 
them once they are 
found?
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• Separate Shape (location) information from 
Texture (intensity) information:
– Indentify corresponding feature points in each image
– Warp points to average locations, interpolate all other points
– Map texture values respectively for “shape-free patch”

Active Appearance Models

original labeled 
image

average point 
locations

shape-free 
image

T. Cootes, G. Edwards, C. Taylor.  “Active Appearance Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001.
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• An individual image has shape vector x and 
texture vector t, where:

Qs: modes of shape variation

(PCA over point locations)
Qt: modes of texture variation

(PCA over warped images)
c: image-specific parameter values

Active Appearance Models

x = x̄+Qsc

t = t̄+Qtc
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• Iterate model to generate good match to 
input image
– Residual error at iteration m:

t0 = input image texture
tm = current warped model texture

– Update parameters:  

where         is chosen to minimize

using the first order Taylor expansion: 

Active Appearance Models

estimated from training 
data

r(cm + δcm) = r(cm) +
∂r
∂c
δc

r(cm) = t0 − tm

cm+1 = cm + δcm

‖r(cm + δcm)‖
2δcm
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Automatic Correspondences
• Unreasonable to expect large number of 

feature point correspondences

• State of the art can reliably detect a small 
number of face feature points
– Useful for image alignment
– Insufficient for warping

• Would like to automatically obtain 
correspondences
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Dynamic Link Matching
• To find correspondences for comparison

• Fit a uniform grid of nodes over a face, 
adjusting each node locally to best fit a 
model.

M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C. v.d. Malsburg, R. Wurtz, W. Konen.  “Distortion Invariant Object Recognition in the 
Dynamic Link Architecture.” IEEE Transactions on Computers, 1993.
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• Each node = “jet”, a vector:
– Gabor wavelet convolution with the image

• Gabor wavelets are a “good approximation to 
the sensitivity profiles of neurons found in the 
visual cortex” of the brain

– 5 scales

• Fit new image jet JI with model jet JM:

max Cv(J
I , JM ) =

〈
JI , JM

〉

‖JI‖‖JM‖

Dynamic Link Matching
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Dynamic Link Matching
• Also want to minimize the image distortion

– Distance between nodes:

– Overall distortion:

min Ce(∆
I
ij ,∆

M
ij ) =

(
∆Iij −∆

M
ij

)2

∆ij = 
xj − 
xi
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Dynamic Link Matching
• Total cost to be minimized:

• Optimize via simulated annealing
– Randomly shift the nodes

distortion 
penalty 
constant minimize distortions maximize node match similarity

C(xIi ) = λ
∑

(i,j)∈E

Ce(∆
I
ij ,∆

M
ij )−

∑

i∈V

Cv(J
I(xIi ), J

M
i )
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Pictorial Structures
• Learn cost function for deformations specific 

to faces, depends on:
– Local image similarity
– Amount of deformation 

required to arrive at
this similarity

• Consider connections 
between few higher 
level “parts”
– Unlike other algorithms, this method is only for  

face detection

P. Felzenszwalb, D. Huttenlocher.  “Pictorial Structures for Object Recognition.” International Journal of Computer Vision, 2005.
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Pictorial Structures
• “Part”

– 27-D vector

– Gaussian derivative filters

– Varies order, orientation and scale

• Learn what parts look like from labeled 
training examples
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• Best match of new image to model:

• Method detects faces
– Not discriminative enough for identification

Pictorial Structures

mismatch to model when 
part vi is placed at location li

deformation of the model 
between parts vi and vj

(Mahalanobis correlation 
distance)

L∗ = argmin
L




∑

i∈V

mi(ℓi) +
∑

(i,j)∈E

dij(ℓi, ℓj)




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Dense Correspondences

• Match every point in 
new face to some 
point in known face
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Dense Correspondences
• Match every point in new 

face to some point in 
known face.

• Optical flow
– Determine the displacement of 

every pixel in the first image to the 
most similar pixel in the second

– Return [u, v] vector for each point

• Vector field over the image

– Assume images are similar

– Assume intensity is preserved 
between corresponding patches



26

• Intensity constraint equation:

• Taylor series:

• Optical Flow equation:

Let

• Need second constraint to explicitly solve for u, v

Optical Flow

Optical flow values to be returned

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt

0 =
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
.

calculated using finite differences of pixels∂I
∂x
, ∂I
∂y
, ∂I
∂t

I(x+ δx, y + δy, t+ δt) = I(x, y, t)

∇I · 
v + It = 0

Eb = ∇I · 
v + It
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• Horn and Schunk
– Enforce smoothness by minimizing gradient of 

flow:

– To solve:

Optical Flow

E2c =

(
∂u

∂x

)2
+

(
∂u

∂y

)2
+

(
∂v

∂x

)2
+

(
∂v

∂y

)2

B. Horn, B. Schunck.  “Determining Optical Flow.” Artificial Intelligence, 1981.

min

∫ ∫ (
E2b + λE2c

)
dxdy
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Optical Flow
• Problems at motion boundaries

First two frames in video sequence

Least squares estimate of horizontal flow
(Horn and Schunk)

Robust gradient estimate of horizontal flow
(Black and Anandan)



29

Optical Flow
• Black and Anandan

– Robust Statistics
• Exclude outliers to handle object boundaries
• Incorporate robust ρ-function (error) and its 

derivative ψ (proportional to the influence 
function)

function to limit influence of outliers

M. Black, P. Anandan.  “The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields.” Computer Vision and 
Image Understanding, 1996.

min

∫ ∫ (
ρb(E

2
b ) + λρc(E

2
c )
)
dxdy
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Optical Flow

ρ-function 
(error)

ψ-function = 
derivative of ρ
(proportional to 
the influence 
function)
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Methods Using Dense 
Correspondences

• Use optical flow to 
obtain corresponding 
pixel for every point in 
an image.
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Warping A Single Image
• Use prior knowledge of face pose change to warp a 

single known image to a new artificial image.

Apply same 
transformation 
to generate 
virtual image

Known images →

D. Beymer, T. Poggio.  “Face Recognition From One Example View.” Proceedings of the Fifth International Conference on Computer Vision 
(ICCV), 1995.
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Warping A Single Image
• Algorithm to build database:

– Have single image of most people
– Find correspondence between new face and known face

• Provide key features by hand, interpolate for other points
• Similar to Active Appearance Models

– Apply known transformations to generate many virtual 
views

• Optical Flow at each point

Optical 
Flow
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Warping A Single Image
• Testing:

– Compare new image to most similar pose of 
every individual in database

– Nearest neighbor wins

????

known
image

virtual
image
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3D Morphable Model
• A “state of the Art” method solving the correspondence 

problem under pose and lighting variation
• Statistical 3D model instead of several 2D images

adjusting 1st

principal 
component

adjusting 
2nd principal 
component

PCA on 3D vector 
describing how a specific 
point differs from model 
average of that point

PCA on intensity value at 
each point

V. Blanz, T. Vetter.  “Face Recognition Based on Fitting a 3D Morphable Model.” IEEE Transactions on Pattern Analysis and Machine 
Intelligence (PAMI), 2003.
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3D Morphable Model
• m significant eigenvectors define variation of shape 

S and texture T

• Influence of each dimension on a particular face 
defined by coefficient vectors α and β

• Construct synthetic image to closely match 
unknown face image
– Minimize sum of squared distances between real and 

synthetic pixel intensities

s = s̄+
m−1∑

i=1

αiSi

t = t̄+
m−1∑

i=1

βiTi
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3D Morphable Model
• Construct model to match image:

– a posteriori estimate via Bayes:

• Match constructed model to known person:
– Compare model coefficients

maxP (α, β, ρ|Iin, F ) ∼ maxP (Iin, F |α, β, ρ) · P (α, β, ρ)

α = shape control parameters
β = texture control parameters
ρ = pose control parameters
Iin = new image
F = small set of feature points

found during preprocessing
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Examine the Optical Flow
• Martinez:  Weight 

importance of pixels 
by how much they 
deform

– Small change:
important for 
recognition

– Large change: 
ignore

A. Martinez.  “Recognizing Expression Variant Faces from a Single Sample Image per Class.” IEEE Computer Vision and Pattern 
Recognition (CVPR), 2003.
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Examine the Optical Flow
• Weighting scheme

– Compare new image T to known images In

(weight for each pixel i)

(cost to match T to In)Cn = ‖Wn(In − T )‖

Wn,i = max
i
‖Fn,i‖ − ‖Fn,i‖

Fn = OpticalFlow(In, T )
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Limitations of Current Approaches

• Methods using dense correspondences only 
measure resulting image similarity

• Optical flow meant to solve the small motion 
correspondence problem
– No reason to expect it to work for large pose or 

expression changes

• Need statistical models of deformation 
change due to expression/pose of same 
person vs change in identity
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Measuring the Deformation
• A successful face recognition system should 

consider:
– Similarity between images
– Amount and type of deformation required to 

achieve this similarity

→

→

=

=

smaller

smaller

∑
‖Optical Flow‖2

∑
‖I1 − I2‖2
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• Similarity between images I and J
– Let v be a transformation defined on every pixel of 

I such that v(I) ≈ J

– For each pixel x in J, the corresponding pixel in I is 

Measuring the Deformation

v (          ) =            ≈

I(v−1(x))
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• Similarity between images I and J, for all 
points x:

• To define:
– Deformation v
– Deformation norm g
– Relative weighting λ

Measuring the Deformation

deformed image intensity difference measure of deformation

d (I(x), J(x)) = ‖J(x)− I(v−1(x))‖2 + λ‖v(x)‖g
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• Deformation v:
– Traditional optical flow
– Longer range dense correspondence

• Deformation norm g:
– Optical flow: any metric defined on a vector field,             , …
– New field?

• Relative weighting λ:
– Implicit using Machine Learning techniques
– Learn from training set
– Incorporate into g

Measuring the Deformation

∑

i

‖vi‖2
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• Previous methods
– Dynamic Link Matching

– Pictorial Structures

Measuring the Deformation

minimize distortions maximize node match similarity

part-to-model mismatch model deformation

C(xIi ) = λ
∑

(i,j)∈E

Ce(∆
I
ij ,∆

M
ij )−

∑

i∈V

Cv(J
I(xIi ), J

M
i )

L∗ = argmin
L




∑

i∈V

mi(ℓi) +
∑

(i,j)∈E

dij(ℓi, ℓj)




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• Optical flow meant to solve small 
motion correspondence problem
– Correspondence between faces involves 

different set of requirements

• Alternative method meant to handle 
larger changes:  
– Deformations through Lie group action

Optical Flow Limitations
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Deformations Through Lie Group 
Action

• Image:  continuous Riemannian manifold

• Lie group:  diffeomorphisms of the manifold
– The possible image deformations

• Lie algebra:  vector space of infinitesimal 
steps in the direction of these deformations
– Continuous vector fields deforming the image

• Geodesic:  the deformation requiring the 
least energy  (v)

A. Trouve, L. Younes.  “Metamorphoses Through Lie Group Action.” Foundations of Computational Mathematics, 2004.
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input 1
t = 0

path generated by algorithm

input 2
t = 1

• Energy 

• A geodesic obtained by minimizing the 
energy between two given images:

Deformations Through Lie Group 
Action

E = min
v

(∫ 1

0

∥∥∥∥
∂I

∂t

∥∥∥∥

2

2

dt+

∫ 1

0

‖vt‖
2
g dt

)
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Future Research

• Define robust long range dense 
correspondences between images.

• Build statistical models of these 
correspondences and resulting 
deformations.

• Solve image classification problems 
using this information.


