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Face Recognition is a widely studied problem within the field of Computer Vision, and has many
real-world applications including security and human-computer interaction. Much work has been done
to interpret face images across variations in head pose and scene lighting. The third somewhat less
explored variable of face recognition is variation in facial expression. Changes in expression are generally
less extreme than potential variations in pose, but they can still be problematic. The most successful
algorithms that handle expression variation rely on comparisons between some form of morphable model
of a face. In my research, I will attempt to develop a more robust mathematical model of the face than
those commonly used, in order to more accurately measure moderate variations in expression and pose.

The face recognition problem I consider involves identifying an unknown individual pictured in a
single 2D image of reasonably good quality, given a database of known 2D face images. This involves
defining a metric between the new image and all images in the database, and identifying the unknown
individual with the identity of the closest known image. Each face will be modeled as a deformable
structure, and distances between faces can be described by an energy minimization problem depending
on how closely a new face can be deformed to match a known face and how much deformation is required
to achieve this similarity.

Before faces are compared, some image preprocessing is assumed. It is often a good idea to normalize
the intensities of an image, for example so that the pixel intensities have zero mean and unit variance.
Commercial face recognition systems can be relied upon to consistently locate a small number of facial
feature points in images, such as the centers of the eyes and the center of the mouth. From this small
number of points, the faces can be aligned to minimize the sum of squared distances between the feature
points on an individual face and the average locations of these points. This effectively removes image
rotation, translation and scaling from the problem.

Many traditional face recognition algorithms directly compare image intensities after performing only
the above image transformations. In the simplest case, after two faces are aligned, the difference in
intensities at each pixel location is computed, and these differences are summed, resulting in the overall
image difference. This method is very sensitive to even slight variations in pose, lighting and expression.
Two very common algorithms applied to face recognition that do not perform any image deformations
are known as Eigenfaces and Fisherfaces [7]. These methods treat an m×n image of a face as an mn× 1
vector, and face point correspondences are based purely on location in the image. The Eigenface method
uses Principal Component Analysis (PCA) to extract a meaningful set of face image vectors that can act
as a basis for the space of face images, maximizing the overall scatter of the data. The Fisherface method
uses Linear Discriminant Analysis (LDA) to maximize the ratio of between-class scatter to within-class
scatter, providing a basic classification scheme. These methods are able to weight some parts of an image
more heavily than others, removing some sensitivity to lighting and expression variation. Such methods
can be expanded using a Bayesian probability model to predict how a new face will fit in with existing
data, such as in [10]. But all these methods assume a correspondence between pixels in different images
that happen to be at the same coordinate location. For more general purpose face recognition, it is
desirable to allow unknown face images to be meaningfully deformed to more closely match known faces.

One way to model the variability of real-world data is through statistical structures, as is done in [8].
The method of Active Appearance Models learns the allowable variation in shape from the training set,
using PCA to extract the primary directions of this shape variation. An individual image consisting of
feature points x with intensity values g can be modeled as
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x = x̄ + Qsc (1)

g = ḡ + Qgc, (2)

where x̄ and ḡ are the mean shape values and intensity values, Qs and Qg are the matrices describing the
modes of variation from the image data, and c is the parameter vector controlling the influence of each
mode. To compare a novel image to the database, a synthetic images is generated using the allowable
variations in shape and intensity. A coarse initial prediction is produced, then at each iteration the
difference between the current guess and the novel image is calculated, and the model parameters are
updated to provide a better fit. This method requires a dense correspondence between all feature points
in all images. The method successfully captures the consistent principal variation in shape and intensity
of the known dataset, but it cannot handle any new types of variability.

Anatomically-based models of the human face have been constructed to model realistic changes in
facial expression, including the method of [12]. Here, the authors implement a 3D face model with
anatomically-based facial tissue and muscle control. The model is able to reproduce expressions found in
image sequences, and it can be used to generate synthetic images to closely match novel images, which
can then be used for comparison. However, the system can only reproduce expressions from images when
the salient features have been highlighted, and this extensive computational model has not been shown
to be any more effective than much simpler strictly 2D algorithms.

One of the first successful 2D morphable models developed for handling facial expression variation is
found in [3]. Here Lades et al. define the Dynamic Link Architecture, an extension of the classical Neural
Networks scheme used in many Artificial Intelligence applications. A uniform 7×10 grid of nodes is placed
over the face, where each node is a feature vector or “jet” defined by a Gabor wavelet convolution with
the image over five scales. To match a new image to a model image, the best rigid alignment is found,
then each node is displaced locally to find the location where it is the most similar to a corresponding
model node, by maximizing

Sv(JI , JM ) =

〈
JI , JM

〉
‖JI‖‖JM‖

(3)

for a each image jet JI and model jet JM . The relation to neighboring nodes is also considered, minimizing
the distortion of node xi relative to its neighbors xj where j ∈ V the vertex set and (i, j) ∈ E the set of
graph edges. With the distance between nodes defined as

∆ij = xj − xi, (4)

minimizing distortion is equivalent to minimizing

Se(∆I
ij ,∆

M
ij ) =

(
∆I

ij − ∆M
ij

)2
. (5)

The total cost to be minimized at each node is then a combination of these two terms, weighted by
distortion penalty λ:

C(xI
i ) = λ

∑
(i,j)∈E

Se(∆I
ij ,∆

M
ij ) −

∑
i∈V

Sv(JI(xI
i ), J

M
i ). (6)

This method separates global position information from relational information, allowing local distortions.
Small variations in expression and pose are successfully captured with this algorithm, but it breaks down
when occlusions are introduced. This method considers both the similarity of a transformed image and
the amount of transformation required to achieve this similarity.

Felzenszwalb and Huttenlocher set up a model similar to the Dynamic Link Architecture in [9] in
order to detect faces in images, but instead of using a uniform grid of nodes, they consider connections
between a smaller set of more meaningful “parts”. For a face, the “parts” correspond to the center of the
eyes, nose, and corners of the mouth. They are represented as 27-dimensional feature points constructed
using Gaussian derivative filters of different orders, orientations and scales, and their relations to one
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another are models as spring-like connections, allowing for variation in the relative locations of the parts.
A face is found in an unknown image by determining the best fit of the pictorial structure model L to
the image:

L∗ = argmin
L

∑
i∈V

mi(`i) +
∑

(i,j)∈E

dij(`i, `j)

 , (7)

where mi(`i) is the degree of mismatch when a part vi is placed at location `i, and dij(`i, `j) is the degree
of deformation of the model between parts vi and vj , measured by the Mahalanobis correlation distance

dij(`i, `j) = (Tij(`i) − Tji(`j))
T Σij (Tij(`i) − Tji(`j)) . (8)

Here Tij(`i) is the transformed location from starting point `i, and Σij is a diagonal weighting term.
This algorithm uses a deformable learned model of a face to find the best location of a face in an
unknown image. However, the algorithm is not suitable for distinguishing between individual faces, as
it models all faces as a single structure, and not enough discriminative information is present to narrow
this identification down any further. This method again considers both the similarity of a transformed
image and the amount of transformation required to achieve this similarity.

For more robust algorithms, we would like to consider more than just a small subset of feature points,
and we seek a fully dense correspondence between every point in each image. The most common automatic
method for finding dense image correspondences is the optical flow algorithm. Traditional optical flow
[6] estimates the motion between two images by determining the displacement of every pixel in the first
image to the most similar pixel in the second image. It is assumed that both images are taken by a single
moving camera at times t and t + δt so that the visible scene is similar, and it is assumed that intensity
is preserved between corresponding patches of the images, so that I(x + δx, y + δy, t + δt) = I(x, y, t).
For a 2D image I, using a first order Taylor expansion,

I(x + δx, y + δy, t + δt) = I(x, y, t) +
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt (9)

0 =
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt (10)

0 =
∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
. (11)

This is the fundamental equation of optical flow. The image derivatives ∂I
∂x , ∂I

∂y and ∂I
∂t are calculated

using finite differences of the pixel values. A second constraint must be added in order to explicitly solve
for vx and vy, and this is can be accomplished in many ways. It is common to minimize the overall norm
of the vector field (Horn and Schunk), or to assume the flow is constant within each small region of the
image (Lucas and Kanade). The vector [vx, vy]T defines the optical flow at each pixel, providing a dense
corresponding from pixels in the first image to locations in the second. Optical flow is used successfully
in many face recognition systems that attempt to handle variations including expression.

Beymer and Poggio use optical flow in [1], separating the information in an image into a texture vector
storing intensity values of each pixel, and a corresponding shape vector storing the (x, y) displacement
vectors of each pixel, as compared to a common reference image. A shape-free representation for each
individual is generated by warping all faces to a common view where features line up exactly. In this
representation, the only variations between images is texture, so direct texture differencing can be calcu-
lated to determine the similarity between images. In order to perform such a warp, the transformation
from a new image to a trained pose must be known. For each pixel j, this transformation to a new pose
r is determined by

(
ypj ,r − ypj

)
, a vector defining the displacement from the pixel location in the given

pose ypj to its location in the desired pose ypj ,r. Given a new face image yn, the synthetic image of this
face in pose r is then determined by

yn,r = yn + (yp,r − yp) , (12)
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warping the location of each pixel of the new image, as defined by the transformation learned from the
training images. The dense pixel-by-pixel transformation (yp,r − yp) is found using optical flow. This
method effectively generates synthetic images by applying learned transformations to new images, going
a step beyond the Dynamic Link Architecture in [3] which involves no trained decision making. The
method has trouble with regions of the image which should be visible in the synthetic view but not
the original view, and it is limited in the size of the deformations it can handle by the local nature of
the optical flow algorithm. In this paper, 15 views are generated for each individual varying the pose
of the head, and a novel image is compared to each view of each person to determine the best match,
effectively handling moderate variations in pose. Although expression variation is not discussed in this
paper, it could be treated in exactly the same manner given training images spanning known variations
in expression. The final matching decision of this algorithm depends only on the texture values of a
synthetic image after the warp, and it does not measure how much an image must be warped in order to
closely match an image in the database.

In [2], Blanz and Vetter develop an algorithm similar to that of Beymer and Poggio, using a statistical
3D model instead of several 2D images. Laser scans are used to collect 3D models of many different faces,
and a dense correspondence between these 3D training models is found using a 3D version of the optical
flow algorithm. Once this correspondence is found, shape and texture information can be completely
separated as in [1]. PCA is performed on the intensity information T , one value at each point, and on
the shape information S, a 3D vector describing how a specific point differs from the model average of
that point. This gives m significant eigenvectors representing the texture and shape information, and an
individual face can be modeled as

s = s̄ +
m−1∑
i=1

αiSi, (13)

t = t̄ +
m−1∑
i=1

βiTi. (14)

This means that a face is completely defined by the model coefficients ~α and ~β that determine the influence
of each principal component in S and T . To determine ~α and ~β for a new face, a synthetic image of
the model is generated that minimizes the sum of squared distances (SSD) between the intensity of each
pixel in the new image and the corresponding pixel in the synthetic image. A probability model is setup
to maximize

p
(
~α, ~β, ~ρ | Iinput, F

)
, (15)

where ρ is the parameter determining the pose of the face in the image, Iinput is the new image, and F is
a small set of feature points found on the face during preprocessing to determine the initial approximate
alignment of the model (the corners of the eyes, center of the nose, and corners of the mouth). This
probability is solved using Bayes rule and prior probabilities calculated from the training set. With ~α
and ~β determined, the full 3D model of the new face is determined, and the coefficients are compared
to every known set of coefficients in the training set. Setting ~ck to be the single vector of all model
coefficients for face k, it was found that the covariance-based distance function

dW =

〈
c1, C

−1
W c2

〉
‖c1‖W ‖c2‖W

, (16)

where CW is the covariance matrix, provided the most accurate results. This algorithm does not compare
pixel intensities after one image has been warped to correspond with another, as is done in [1]; instead it
compares model coefficients. But similar to Beymer and Poggio, the amount of transformation required
to transform an example to fit the model is not considered in the final model comparison. This method
is often considered the state-of-the-art in face recognition, given good quality images in a semi-controlled
environment.
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Mart́ınez has developed several algorithms using a morphable model to capture variation in facial
expression. In [4], the optical flow is computed between a new image T and every image Ij in the training
set

Fj = OpticalFlow(Ij , T ), (17)

and then the amount of change at each pixel is considered. Small changes are weighted heavily and large
changes are weighted lightly, to emphasize invariants. Several weighting schemes are presented, with the
most successful being the simple linear model

wj = max(‖Fj‖) − ‖Fj‖, (18)

where max(‖Fj‖) is the maximal magnitude of the flow over all pixels in Fj . This defines the weight of
the optical flow at each pixel. The cost to transform Ij to T is then

C = ‖Wj(Ij − T )‖, (19)

and the best match to the novel image T is the training image Ij that minimizes this cost. This algorithm
makes its final matching decision again based on the similarity of a transformed image, but this similarity
is weighted by how much the image must be transformed at each pixel. The algorithm references the
amount of deformation required to warp one image to the other, but it does not include a full measure
of this deformation.

A successful face recognition system should be based on a cost function that measures both the
similarity between images and the amount of transformation required to attain this similarity. The
algorithms of [3] and [9] each incorporate both these costs into their final decision model, as can be
seen in equations (6) and (7). The methods of [1], [2] and [4] explore measurements of the similarity of
transformed images, with [4] also considering the amount of warping required for matching. To develop
a more robust model, I will explore the following problem: Given two images I(x) and J(x), define
a transformation v that warps I(x) to I(v−1(x)), an image similar to J(x), and define a metric ‖ · ‖g

that measures this transformation. Then the similarity between images can be defined by the following
distance cost function:

d(I, J) = min
v

‖J(x) − I(v−1(x))‖L2 + λ‖v‖g (20)

for weighting constant λ that adjusts the relative importance of the image similarity ‖J(x)−I(v−1(x))‖L2

with the cost of the deformation ‖v‖g. For many applications, it makes sense to allow the relative
influence to change with the data, and the most effective way to combine these values can be learned
using a standard Support Vector Machine algorithm such as in [11]. A Support Vector Machine finds
a binary classification model of a set of potentially very high dimensional data by finding the class
boundary hyperplane that maximizes the margin of separation between pre-classified training points
and the hyperplane. To pose face recognition as a binary classification problem, an unknown face is
determined to be either similar or not similar to a known faces.

An image transformation and transformation metric are presented in a robust mathematical frame-
work in [5]. Here, an image is represented as a continuous Riemannian manifold through the pixels. A
Lie group can be defined on the image as diffeomorphisms of the manifold, which determine the possible
transformations of the image. The corresponding Lie algebra is the vector space of infinitesimal steps
in the direction of these transformations, that is, continuous vector fields deforming the manifold. The
best transformation v can then be defined as a geodesic through these vector fields. From all possible
transformations, the geodesic can be thought of as the one requiring the least cost. This is a potentially
more robust algorithm than the variations of optical flow currently used to solve the dense correspondence
problem, and is still fully automatic. This mathematical framework has been successfully applied to a
small number of face images, defining a continuous morphing between faces in different poses. I propose
to expand this algorithm to a full face recognition system handling moderate variations in expression and
pose.
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