
Motivation: QC needs error-correction

1

Physical (raw) qubits

● not well behaved
● faulty - affected by

environmental noise and
manufacturing inconsistencies

● solitary (not many) on a device

Error-corrected qubits

● controlling the risks
● not faulty - or controlled

failure rates
● difficult to achieve due to lack

of hardware qubits, not
scalable classical software
etc.

WHAT ALGORITHMS
SHOULD WE STUDY
WITH 100 QUBITS AND
1M LOGICAL GATES?

Arshpreet Singh Maan
Ioana Moflic, Alexandru Paler

Aalto University, Helsinki, Finland
Quantum Software and Algorithms Group

funded by:

A Brief Introduction to Surface Codes

Scalable (Machine Learning) Decoders

under consideration at PRX Quantum

ML Decoders: Introduction and Motivation
Optimal Decoding of QECC is a hard problem [1]

Belief propagation (BP) - one of the best-known classical decoding algorithms

● message passing between data nodes and check nodes
● the algorithm looks for qubit-wise most likely error
● converges when predicted syndrome == actual syndrome
● fast, but not good for surface codes -> BP + Ordered Statistics Decoder[5]

Are there more complex forms of BP (message passing) decoders?

● Neural-BP[2]
● Generalized BP[3]
● Can we learn the BP algorithm? Yes -> GNN (see next slides)

Neural Network (NN) decoding has constant decoding runtime

Limitations of previous NN based decoding approaches:

● Different NN architectures for different code types
● Retain for each code distance
● there is a GNN decoder [4], but it does not work like we want it

Tanner graph for surface code of
distance 3: RED vertices are check
nodes, GREEN vertices are data nodes

[1] https://arxiv.org/abs/1310.3235
[2] https://arxiv.org/abs/1811.07835
[3] https://arxiv.org/abs/2212.03214
[4] https://arxiv.org/abs/2307.01241
[5] https://arxiv.org/abs/2005.07016

13

O(n3)

We want to build a NN based decoder

● which is learning fast and which can operate fast
● works for LDPC codes – also the surface code

We present a decoder that is learning the constraints of QECC decoding

https://arxiv.org/abs/1310.3235
https://arxiv.org/abs/1811.07835
https://arxiv.org/abs/2212.03214
https://arxiv.org/abs/2307.01241
https://arxiv.org/abs/2005.07016

Why ML Decoders?

iOlius, A. D., Fuentes, P., Orús, R., Crespo, P. M., & Martinez, J. E. (2023).
Decoding algorithms for surface codes. arXiv preprint arXiv:2307.14989.

ML Decoding has linear time (although the scaling
of the models with code distance is not known)

Why ML Decoders?

iOlius, A. D., Fuentes, P., Orús, R., Crespo, P. M., & Martinez, J. E. (2023).
Decoding algorithms for surface codes. arXiv preprint arXiv:2307.14989.

ML Decoding has linear time (although the scaling
of the models with code distance is not known)

What the goal is:

What the state of the art is:

Astra: A Graph Neural Network (GNN) Decoder
Learning BP to Satisfy Constraints

red: input vertices in GNN
blue: output
green: node state
messages are sent along the edges

● edges are
constraints
necessary for the
solution

● vertices are
forming constraint
pairs

16

Decoding works like
solving Sudoku –
solve the
constraints

Ref [1]

[1] https://arxiv.org/abs/1711.08028

https://arxiv.org/abs/1711.08028

Astra: A Graph Neural Network (GNN) Decoder
The Sudoku analogy - Learning BP

red: input vertices in GNN
blue: output
green: node state
messages are sent along
the edges

● edges are constraints
necessary for the
solution

● vertices are forming
constraint pairs

17

? ? ?

0 1

? ? ?

1 0

Red = filled values =
syndromes
Green = to fill =
errors / data qubits

Tanner graph for
surface code of
distance 3: RED
vertices are
check nodes,
GREEN vertices
are data nodes

Astra as replacement of BP+OSD for Surface code

18

19

Extrapolated Astra+OSD vs BP+OSD for Surface code

Astra as replacement of BP+OSD for IBM’s BB code

20

Extrapolated Astra+OSD vs BP+OSD for IBM’s BB code

21

Very Fast Compilers (for Lattice Surgery)

● Start with a lattice of NN connected qubits that can
operate a Surface Code Cycle

● This lattice is partitioned into tiles.
● A tile can hold a patch, which encodes a logical qubit in

a planar code
● Patches have different kinds of boundaries that are

used to perform multibody measurements
● Unused lattice can be used as routing to carry out

measurements among patches with no shared boundary

23

Our Challenge: Logical Computations at scale
100s to 1000s of logical qubits

https://github.com/latticesurgery-com/

23

LS Compiler Architecture
A pluggable pipeline in decoupled stages, with options and text-based intermediate representations

Pre-processing is decoupled from routing on the lattice
thanks to an intermediate representation of Lattice
Surgery Instructions and a Layout Specification

Very Large Scale Circuit Optimizer

under consideration at PR Letters

Motivation
No software can handle gate optimization in
randomly chosen circuit locations for
circuits with millions (billions?) of gates!

Benchmarked state-of-the-art
optimizers with circuits
of 1 million templates.

Optimizer Time

Cirq 1.2.0 > 20 hours

Tket 1.21.0 ~ 1 min

PostgreSQL 14 ?

Example of
practical circuit

sizes

Why random? circuit optimisation is a combinatorial (not sequential) problem.
In-memory optimizers are slow for random memory access! Databases are faster.

26

Methods
We consider four types of gate templates:

● Single-qubit gate cancellations

● Two-qubit gate cancellations

● Base changes

● Commutations

27

Generating Synthetic Benchmark Circuits

1. Start from empty circuit - identity on all
qubits

2. For nr in range(LARGE_NUMBER)
a. Select random qubit(s)
b. Insert pairs of cancelling gates

i. Hadamard gates
ii. CNOTs

e.g. LARGE_NUMBER = 1 million (see next slides)

Results: Random Synthetic Circuits

● Our tool is faster than |tket>
○ for more than 10k gates
○ speed-up increases with circuit size

considered the fastest
optimizer (written in

Rust)

28

Results: Multi-threaded performance

Type-1 Type-2

Our benchmark circuit contains 1 million templates of either Type-1 or Type-2
● 2 million gates when using type-1
● 5 million gates when using type-2 29

Sp
ee

d-
up

Sp
ee

d-
up

Conclusion: Executing algorithms/circuits of 100
qubits and 1M gates requires more work

30

1. Decoders
a. Non-ML Decoders can be sped up by pipelining and parallelization

https://arxiv.org/abs/2205.09828
b. GNN Decoders are learning the messages and algorithms of a message passing

https://arxiv.org/pdf/2408.07038
2. Large scale compilation and optimization

a. Engineering Reward Functions seems to speed/improve RL https://arxiv.org/abs/2311.12498
b. Compression of RL states with autoencoders https://arxiv.org/abs/2303.03280
c. Some tricks can massively improve the compilation https://arxiv.org/abs/2408.08265

funded by:

https://arxiv.org/abs/2205.09828
https://arxiv.org/pdf/2408.07038
https://arxiv.org/abs/2311.12498
https://arxiv.org/abs/2303.03280
https://arxiv.org/abs/2408.08265

