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Bayesian Networks



Bayesian Networks

• Graphical representation of multivariate probability distribution
• Structure given as a DAG
• Univariate probability tables conditionally to parents
• Pr(L, S, G, E) = Pr(L) Pr(S) Pr(G | L) Pr(E | S, G)

Stayed up (L)ate

(G)ot enough sleep

(E)xam goes well

(S)tudied

L = yes
0.5

L G = yes
yes 0.1
no 0.8

S G E = yes
yes yes 0.9
yes no 0.7
no yes 0.4
no no 0.1

S = yes
0.9
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Network Structures

• Some structures represent reality better than the others
• How to quantify the quality of a structure?
• Edges represent direct conditional dependencies, not causality
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Posterior

• For data D, we obtain posterior of DAGs G as

f(G) := p(G | D) = p(G)p(D | G)
p(D) ∝ p(G)p(D | G)

• Prior distribution p(G)

• Likelihood p(D | G)
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Score-based Structure Learning

• Under certain assumptions, likelihood reduces to a product
• Each parent set Gi of i has local score fi(Gi)
• Posterior is proportional to the product of local scores and prior:

f(G) ∝ p(G) ·
∏
i∈N

fi(Gi)

• Modular prior Also reduces to a product
• Order-modular prior Larger by a factor of No. linear extensions of G
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Sampling and Counting?

• Using only a highest-scoring DAG ignores uncertainty

DAG Counting
Objective: Compute ∑

G f(G)

DAG Sampling
Objective: Sample G with Pr(G) ∝ f(G)

• Model averaging, prevalence of features, ...
• Optimization is NP-hard1, counting #P-hard2

1 David M. Chickering. Learning Bayesian networks is NP-complete. AISTATS’95.
2 Juha Harviainen and Mikko Koivisto. Revisiting Bayesian Network Learning with Small Vertex Cover. UAI’23.
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Approaches

Exact
• Accurate
• Slow

MCMC
• Practical
• Convergence?

Constrained
• Tractable?
• Expressiveness?
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Exact



Exact Counting and Sampling

Issue Super-exponentially many DAGs

Solution Manipulate groups of DAGs simultaneously

Approach Dynamic programming, transforms, inclusion—exclusion...
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Modular Counting and Sampling

• With order-modular prior, modifying optimization algorithm suffices3

• For modular priors, partitions of nodes are utilized4

• A root-layering is obtained by repeatedly removing source nodes

1

2

3

4

6

5

R1 R2 R3

3 Ru He, Jin Tian, and Huaiqing Wu. Structure Learning in Bayesian Networks of a Moderate Size by Efficient Sampling.
JMLR. 2016.
4 Jack Kuipers and Giusi Moffa. Uniform random generation of large acyclic digraphs. Stat. Comput. 2015.
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Dynamic Programming

• Weighted counting with dynamic programming over layers5

• Let count(S, R) be the total score of DAGs on S whose last layer is R

count(S ∪ R′, R′) =
∑
R⊆S

count(S, R) · w(S, R, R′)

• Requires O(3nn) time to compute (R ⊆ S ⊆ N)

1

2

3

4
6

5

S \ R

R

R′

5 Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto. Exact Sampling of Directed Acyclic Graphs from Modular Distribu-
tions. UAI’19.
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Sampling

• Stochastic backtracking over the dynamic programming table
• Construct the DAG layer by layer
• Sample parents independently of other nodes
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Faster Counting

• Rectangular matrix multiplication yields running time O(2.985n)6

• Tighter analysis might improve the result to O(2.930n)
• If ω(2) = 3, then improvable to O(23n/2) = O(2.829n)

• Multiplying matrices of shapes N × N2 and N2 × N in O(N3+ϵ)?

6 Mikko Koivisto and Antti Röyskö. Fast Multi-Subset Transform and Weighted Sums over Acyclic Digraphs. SWAT’20.
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Faster Sampling

• Complexity O(2.829n) achieved with rejection sampling7

• Allow some duplicate counting, reject some samples to fix distribution
• Infeasible for larger networks, e.g., n ≥ 25
• Under SETH, an O((2 − ϵ)n)-time algorithm seems unlikely

7 Juha Harviainen and Mikko Koivisto. Faster Perfect Sampling of Bayesian Network Structures. UAI’24.
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MCMC



Markov chain Monte Carlo

• Generates a sequence of DAGs G1, G2, . . .

• Distribution of the next DAG depends only on the current state

p(Gt+1 | G1, G2, . . . , Gt) = p(Gt+1 | Gt)

Metropolis–Hastings As t increases, makes p(Gt) approach posterior

• Propose a DAG Gt+1 given Gt

• Keep Gt with certain probability, otherwise replace it by Gt+1
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Basic Moves

• Three “basic” moves8

• Add an edge
• Remove an edge
• Reverse an edge

• Every DAG can be reached
• Rather slow convergence

8 David Madigan and Jeremy York. Bayesian graphical models for discrete data. Int. Stat. Rev. 1995.
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Directions

• New moves
• “New edge reversal move”9

• Different state space
• Orderings of nodes10

• Root-layerings11
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9 Marco Grzegorczyk and Dirk Husmeier. Improving the structure MCMC sampler for Bayesian networks by introducing a new
edge reversal move. Mach. Learn. 2008.
10 Nir Friedman and Daphne Koller. Being Bayesian about network structure. Mach. Learn. 2003.
11 Jack Kuipers and Giusi Moffa. Partition MCMC for inference on acyclic digraphs. J. Am. Stat. Assoc. 2017.
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Performance

• How to measure the quality of MCMC?
• Hamming distance to ground truth
• Trace plot of scores or approximation errors
• Is there a more convincing method?

18



Constrained



Constrained Search Space

• Too many DAGs
• Consider only their subclass, e.g., rooted trees
• Are the problems tractable within that class?
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Parameterized Learning

• Study the complexity under some parameterization
• For example, allow only DAGs with bounded vertex cover number2

• For optimization, wide variety of results are known12

• Ideally, complexities of the form f(k) · nO(1)

• More commonly W[1]-hard or NP-hard

2 Juha Harviainen and Mikko Koivisto. Revisiting Bayesian Network Learning with Small Vertex Cover. UAI’23.
12 Niels Grüttemeier and Christian Komusiewicz. Learning Bayesian networks under sparsity constraints: A parameterized
complexity analysis. JAIR. 2022.
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Superstructures

• DAGs must be subgraphs of a given superstructure
• Even optimization is NP-hard for undirected superstructures with

bounded in-degree13

• Sampling and counting trivial for directed superstructures
• Parameterizing by a property of the superstructure

13 Sebastian Ordyniak and Stefan Szeider. Parameterized Complexity Results for Exact Bayesian Network Structure Learning.
JAIR. 2013.
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Expressiveness

• DAGs with, e.g., only a few edges are rather inexpressive
• Algorithms of complexity nΩ(k) impractical
• How expressive can we make the structures until the problem

becomes intractable?
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Concluding Remarks



Concluding Remarks

[]
[]
[]
[]

• Trade-offs
• Approach dependent on the application
• Many active research directions
• Best of all worlds?

[]
[]
[]

Thank you!
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