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RNA basics: DNA vs RNA

DNA
• Nucleotide bases A, C, G, T
• Commonly double-stranded, 

comprising two W-C complementary 
helices

• B-form helix (base-planes about 
perpendicular to helical axis)

• Produced by replication from existing 
strands or (commercially) by ligation 
of short nucleotide sequences

• Kinetically inert in double-stranded 
form, reconfiguration requires either 
enzymes or denaturation (melting) 
and rehybridisation
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RNA
• Nucleotide bases A, C, G, U
• Commonly single-stranded, folds upon 

itself following W-C pairing rules (and 
other effects)

• A-form helix (base-planes at ~19˚ angle 
from perpendicular to helical axis)

• Produced by polymerase transcription 
from a DNA template, template can be 
genetically engineered

• Kinetically unstable as open strand, 
folds at room temperature into stable 
conformation



RNA basics: The RNA helix

HALT Days, 29 Aug 2024

Figure: Geary et al., Science 2014



RNA basics: Levels of RNA structure

• Primary structure: linear sequence of bases, listed from the 5’ to 3’ end

– Representation: linear string over alphabet {A, C, G, U}

• Secondary structure: pairing arrangement of bases in primary structure

– Representations: base-pairing diagram, arc diagram

• Tertiary structure: actual [min-energy] 3D shape of a secondary structure

• (Quaternary structure: interactions across several molecules)
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RNA basics: RNA secondary structure representations
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tRNA 3ary structure
tRNA 2ary structure
base-pairing diagram

tRNA 2ary structure arc diagram



RNA basics: Structural motifs and representations
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(a)+(d)+(g) Hairpin loop
(b)+(e)+(h) Hairpin with internal loop
(c)+(f)+(i) Kissing-loop pair (a type of “pseudoknot”)

Base-pairing diagram Arc diagram Dot-bracket sequence

g   ((((……))))

h   ((((…((((……))))…))))

i   ((((….[[))))…((((]]….))))



RNA basics: A 180˚ kissing-loop pseudoknot
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Figure: Geary et al., Science 2014



Design scheme for RNA origami wireframes
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1. Target mesh model 2. Spanning tree & strand routing

3. Stem pairings, kissing loops 4. Helix diagram Elonen et al.,
ACS Nano 2022



Experimental results
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Three structures were designed by the Sterna DNAforge tool and 
synthesised in the laboratory:
(a) tetrahedron, (b) bipyramid, (c) triangulated prism

(a) (b) (c)

Elonen et al.,
ACS Nano 2022



Tetrahedron
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Characterisation of the tetrahedron structure

Scalebars 10 nmScalebar 20 nm

Scalebar 20 nm

Scalebars 5 nm
Elonen et al.,
ACS Nano 2022



Bipyramid
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Characterisation of the bipyramid structure

Scalebars 10 nmScalebar 20 nm Scalebars 5 nm

Elonen et al.,
ACS Nano 2022



Prism
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Characterisation of the prism structure

Scalebars 20 nm Elonen et al.,
ACS Nano 2022



Problems with kissing loops
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• Aggregation across particles
• Possible issues with kinetics and long-term stability
• Limited set of experimentally validated ones (~10)

Hence one might want to minimise the number of KL’s 
used in the designs.



How about KL-free strand routing?
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• Criteria for good RNA strand routing (”antiparallel 
strong trace”; Fijavž, Pisanski, Rus, MATCH 2014):

1. Every edge in the design needs to be covered 
twice, in antiparallel directions

2. Vertices must be stable



Let’s try the tetrahedron
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Let’s try the tetrahedron
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Let’s try the tetrahedron
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• Klavžar & Rus (2013): A graph G admits an antiparallel “proper” trace if 
and only if 𝛿(G) ≥ 2 and G has a spanning tree T such that each connected 
component of the co-tree G∖T either (i) is of even size or (ii) contains a 
vertex of degree ≥ 4.

• Fijavž & al. (2014): A graph admits an antiparallel strong trace if and only 
if it has a cellular 1-face embedding in some closed orientable surface.



Graph embeddings
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• In discussing 3D wireframe graph designs, it benefits mathematical 
accuracy to consider the model meshes as embedded in surfaces.

• E.g. polyhedral meshes can be viewed as embedded in genus-0 (sphere-
equivalent) surfaces.

• Graphs of polyhedra are often presented as Schlegel diagrams, obtained 
by projecting the polyhedral mesh on a plane.
• A Schlegel diagram of a convex polyhedral graph is always planar.



Background: definitions
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• Surface S = topological space of dimension two = every point has a 
neighbourhood homeomorphic to a closed unit disk.
• Homeomorphism = topological isomorphism = continuous bijection between 

topological spaces with a continuous inverse.

• Genus of S = number of nonintersecting cycles that can be drawn on S 
without separating it = number of “handles” or “3D holes” in S.

• Graph embedding G → S = continuous 1-1 mapping of G to S as a system 
of 0-D points and 1-D arcs connecting them.

• An embedding G → S divides S into regions or faces. If the interior of each 
region is homeomorphic to an open disk, the regions are called cells and 
the embedding a cellular embedding.

• A surface S is closed, if it is topologically compact and without boundary, 
and orientable, if there is a consistent sense of clockwise/ 
counterclockwise at each point, i.e. there is no embedding of the Möbius 
strip in S.

• We shall only be considering closed orientable surfaces.



Background: facts
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• Classification theorem of closed surfaces: Any two closed surfaces that 
have the same genus are homeomorphic, and vice versa.

• Corollary: Any closed orientable surface is homeomorphic either to the 
sphere (genus 0) or k tori sewn together (a ”k-hole donut” of genus k).

• Any embedding of a graph G = (V, E) in a closed orientable surface S of genus 
𝛾(S), with faces F, satisfies the Euler polyhedral equation:

  |V| - |E| + |F| = 2 - 2𝛾(S)

(Generalisation of Euler’s classic polyhedral formula |V| - |E| + |F| = 2.)



Embedding the cube in a sphere
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• This is a 6-cell embedding and can be constituted, with stable 
vertices, of 6 RNA/DNA strands as presented.

• Criterion for stable vertices: at each vertex, the incident edges are 
arranged in some cycle (permutation), and this cycle is followed in 
the strand routing.

• Different permutation systems across the vertices induce different 
strand cycles, and accordingly different cellular partitions across the 
embedding surface. (Here the all-clockwise permutations are used, 
generating 6 cells corresponding to the cube’s 6 faces on the 
sphere.)



Embedding the cube in a torus
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• Now there are only 4 cells and correspondingly 4 strand cycles!
• The cube is still perfectly constituted, but now from only 4 strands.



Embedding the cube in a torus
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• Now there are only 4 cells and correspondingly 4 strand cycles!
• The cube is still perfectly constituted, but now from only 4 strands.
• Different strand cycles are induced by different local edge-order 

permutations at the vertices.
• There is a 1-1 correspondence between the different permutation 

systems and antiparallel double-cycle covers of the graph’s edges.

Torus diagram



Minimising the number of strands

• Note that in embedding the cube graph, both the sphere and torus 
embeddings satisfy Euler’s equation:

• Sphere: |V| - |E| + |F| = 8 – 12 + 6 = 2 = 2 - 2𝛾(sphere)

• Torus: |V| - |E| + |F| = 8 – 12 + 4 = 0 = 2 - 2𝛾(torus)

• Key lesson: In an embedded graph, the number of faces is not a function of 
only the graph, but also the (genus of the) embedding surface.

• By Euler’s equation

 |V| - |E| + |F| = 2 - 2𝛾(S),

to minimise the number of faces in an embedding of a graph G, and hence 
the number of the RNA strands needed to render the structure, one needs 
to find a surface S of maximum genus in which G can be embedded.

• (NB: Considering this problem will eventually help also in the task of 
minimising the number of kissing loops in RNA designs.)
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Maximum-genus embeddings
• [Xuong (J. Comb. Theory 1979) and Furst et al. (J. ACM 1988)]

• Let G = (V, E) be a connected graph and T a spanning tree of G. The edge-complement of T,
co(T) = G ∖ T, is a co-tree of G.

• Since any spanning tree of G has |V| - 1 edges, any co-tree of G has
 𝛽(G) = |E| - |V| + 1
edges. This is called the Betti number (or cycle rank) of G.

• The deficiency 𝜉(G, T) of a spanning tree T of G is the number of odd-sized connected 
components in co(T).  The deficiency 𝜉(G) of a graph G is the minimum of this over all 
spanning trees T of G.

Theorem (Xuong 1979). The maximum embedding genus of a graph G is
  𝛾M(G) = (𝛽(G) - 𝜉(G)) / 2.

Corollary. A graph G has a 1-face embedding if and only if 𝜉(G) = 0.

Proof. Consider an embedding of G in a surface of genus 𝛾 = 𝛾M(G). In this embedding,
 |F| = |E| - |V| + 2 - 2𝛾 = |E| - |V| + 2 – 2∙(E| - |V| + 1 - 𝜉(G))/2 = 1 + 𝜉(G).
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From maximising genus to minimising KL’s

• A Xuong tree for a graph G is a spanning tree T* of G for which co(T*) has a 
minimal number = 𝜉(G) of odd-sized components.

• Xuong trees can be found efficiently by a reduction to the Matroid Parity 
problem for graphic matroids (Furst et al. 1988), for which a polynomial 
time algorithm exists (Stallman & Gabow, IEEE FOCS 1984).

• A minimal kissing-loop RNA design for a graph G can now be found as 
follows:

1. Determine a Xuong tree T* for graph G, together with the components of co(T*)

2. For each odd-sized component in T*, remove one edge to be reconstituted later by a 
kissing-loop pairing, for a total of 𝜉(G) kissing-loop pairs.

3. Now all the components of T* are of even size. Find an adjacency pairing for the edges 
in each component. (That is, group the edges in disjoint pairs so that the edges in each 
pair have a common vertex. This can be done by a simple depth-first search method.)

4. Determine a 1-face (“twice-around-the-tree”) boundary walk for the tree T* and merge 
all the adjacency pairs into this one by one by the process presented on the next slide. 
Complement with the 𝜉(G) kissing-loop pairs.
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Adjacency pair augmentation

• [Xuong 1979, Furst et al. 1988]

• Let 𝜋 be a 1-face boundary walk for a graph G = (V, E) (= every edge in E is traversed 
twice by 𝜋, in antiparallel directions). Let {{v1,v2}, {v2,v3}} be an adjacency pair of 
edges in G \ E.

• The pair can be merged to the circuit 𝜋 in two steps (first {v1,v2}, then {v2,v3}), so that 
the result is a 1-face boundary walk π’ for graph G + {{v1,v2}, {v2,v3}}. 
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1. Adding {v1,v2} splits 𝜋 
in two circuits 𝜋1 and 𝜋2

π
π1

π’

π2

2. Adding {v2,v3} merges 
the two circuits 𝜋1 and 𝜋2 

into a new circuit 𝜋’



A 1-KL tetrahedron
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Upper-embeddable graphs

• A graph G is upper-embeddable if 𝜉(G) = 0 or 𝜉(G) = 1, that is if G can be rendered 
in RNA with 0 or 1 kissing-loops.

• For instance, the following classes of graphs are known to be upper-embeddable:
a. Locally connected graphs

Locally connected = the (punctuated, induced) neighbourhood of every vertex is connected

b. k-regular vertex-transitive graphs of girth k ≥ 4 or g ≥ 4
Vertex-transitive = all local neighbourhoods of vertices are isomorphic

c. Cyclically edge-4-connected graphs
Graph contains two cycles that cannot be separated by removing fewer than 4 edges

d. Simple graphs of diameter 2
Simple = no loops, no multiedges

Corollary 1. All fully triangulated graphs are upper-embeddable.

Proof. By condition (a) above.

Corollary 2. All wireframes of Platonic solids are upper-embeddable.

Proof. Condition (a): Tetrahedron, Octahedron, Icosahedron. Condition (b): Cube, 
Dodecahedron. 
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The DNAforge design tool
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https://dnaforge.org

https://dnaforge.org/


Thank you for your attention!
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